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Fast interaction functions for bond-based peridynamics
H. David Mirandaa, John Orr a and Chris Williamsb

aDep. Engineering, University of Cambridge, Cambridge, UK; bDep. Architecture and Civil
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ABSTRACT
Numerical implementations of bond-based peridynamics
are computationally intensive. We propose a new class of
fast interaction functions for constitutive modelling that
reduce calculation time when compared to other formu-
lations in the literature. This is achieved by substituting
the stretch definition from the original interaction func-
tions with a new stretch measure that we call modified
stretch. The resultant interaction functions are proven to
approximate the existing formulations, and proven to
require equivalent stability and convergence conditions
under explicit time integration. Gains of speed greater
than 11% were obtained in numerical tests that compared
the new functions with those in the literature. The new
approach was verified against classical elastic theory
using simple examples and shows good agreement.
Examples describing three-dimensional quasi-brittle
structures are also presented. The proposed fast interac-
tion functions lead to improvements in the ability to
calculate the load response of realistic structures, since
they usually require fine discretisation and large compu-
tation time.
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1. Introduction

The behaviour of certain classes of materials such as rubbers and metal
alloys can be accurately predicted using the standard continuum
mechanics framework (de Souza Neto, Peric, & Owen, 2011). The equiva-
lent predictive capability has not yet been achieved in continuum damage
mechanics, despite considerable research over many years (Besson, 2010,
Chaboche, 1978, Jason, Huerta, Pijaudier-Cabot, & Ghavamian, 2006, Jing,
2003, Kachanov, 1958, Lemaitre, 1985, Murakami, 2012, Wu, Li, & Faria,
2006, Yu, Teng, Wong, & Dong, 2010). This research challenge arises as
the partial differential equations of continuum mechanics theory cannot be
used to model brittle damage without complex adaptations, resulting in
procedures that do not guarantee accurate predictions in every possible
scenario (Xu & Arson, 2014).
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To avoid issues related to material continuity (when cracks open), the
peridynamic theory was formulated (Silling, 2000, Silling, Epton, Weckner,
Xu, & Askari, 2007). Peridynamics uses an integral formulation that is
valid even if disruptions of the material continuity occur, since no space
derivatives are employed. Several numerical schemes to solve the equations
of peridynamics have been developed (Emmrich & Weckner, 2007, Gerstle,
Sau, & Silling, 2007, Macek & Silling, 2007, Silling & Askari, 2005).

One of the main disadvantages of peridynamic theory is that these numer-
ical implementations are computationally intensive when compared to clas-
sical methods such as the finite element method (Kilic &Madenci, 2010). The
two main formulations for peridynamics found in the literature are the bond-
based (Silling, 2000) and state-based (Silling et al., 2007) approaches. State-
based peridynamics is more general than bond-based peridynamics, but in
some cases it is preferred since it requires significantly less computation. In
this paper, we propose a novel formulation for the interaction function of the
peridynamic bond-based model that is fast to compute. This is achieved by
substituting the stretch definition from the original interaction functions
(Silling & Askari, 2005) with a new stretch measure that we call modified
stretch. The modification is quite general in the sense that it can be applied to
any interaction function defined in terms of stretch, for instance: micro
linear-elastic, micro elasto-plastic, damage, and so forth.

We also show that the proposed modified stretch is a reasonable alter-
native for modelling damage, provided the damage occurs at relatively
small strains, and that the resultant formulation requires equivalent stabi-
lity conditions as the ones in the literature (Gerstle et al., 2007, Silling &
Askari, 2005) under explicit time integration schemes. The main advantage
of the proposed approach is that it allows the computation of the interac-
tion function in a large number of bonds in less time than conventional
bond-based peridynamic models.

To demonstrate the potential of this alternative formulation, we apply it
using the formulation of Macek and Silling (2007) within a scheme of
explicit integration to the simulation of quasi-brittle structures to their
rupture. Comparisons of speed, numerical verifications, and examples of
applications to quasi-brittle structures are presented.

2. Peridynamic bond-based theory

2.1. Fundamental equations and constitutive modelling

In this section, a background overview of the peridynamic bond-based
theory is presented. More detailed descriptions can be found in the work
by Macek and Silling (2007), Silling (2000), Silling and Askari (2005). The
equilibrium of a material point is described by:
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ρ€u x; tð Þ ¼
ð
Hx

fðuðx 0; tÞ � u x; tð Þ; x 0 � xÞdVx0 þ b x; tð Þ; (1)

where t is an instant of time, u is the displacement field vector, x 0 and x are
the positions of the particles in the reference configuration. The interaction
function f is a pairwise force function whose value is the force vector (per
unit volume squared) that x 0 exerts on a particle x. The interaction between
the particles x 0 and x is called a bond and only occurs for pairs of particles
within a certain distance called the material horizon δ, corresponding to the
neighbourhood Hx, ρ is the mass density in the reference configuration, and
b is the prescribed body force density field.

For constitutive modelling, the interaction function f is expressed in
terms of relative position ξ and relative displacements η:

f ¼ f η; ξð Þ; (2)

ξ ¼ x 0 � x; (3)

η ¼ u x 0; tð Þ � u x; tð Þ: (4)

A more specific expression for the interaction function f , given in terms of
the scalar bond stretch s , is

f η; ξð Þ ¼ ηþ ξ

ηþ ξj j f y tð Þ; ξ; tð Þ; (5)

with

s ¼ ηþ ξj j � ξj j
ξj j ¼ y� ξj j

ξj j (6)

and

f s; t; ξð Þ ¼ cs: (7)

where c is a stiffness material parameter. In three-dimensions, c is related
to the material bulk modulus k by (see Macek & Silling, 2007):

c ¼ 18k

πδ4
: (8)

Equation (7) corresponds to a linear elastic model, although damage and
plasticity models can be easily defined with a few adaptations. Following
Macek and Silling (2007), the interaction function used to define damage
with a brittle micro-elastic material is given by

f s; t; ξð Þ ¼ μ t; ξð Þcs; (9)
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μ t; ξð Þ ¼ 1 if s t0; ξð Þ< s0 "0 � t0 � t
0 otherwise

�
(10)

with

s0 ¼
ffiffiffiffiffiffiffiffiffiffi
10G0

πcδ5

r
: (11)

where s0 is the critical stretch for failure and G0 is the material energy
release rate. Equation (11) is valid only in three-dimensions. The damage
at a certain point is defined as

φ x; tð Þ ¼ 1� �Hx
μ x; t; ξð ÞdVξ

�Hx
dVξ

: (12)

The discretised version of the Equation (12) becomes

φk tð Þ ¼ φ xk; tð Þ ¼ 1�PN
k¼1 μ xk; t; ξkð Þ

N
; (13)

where N represents the number of bonds initially connected to a certain
discretisation point xk.
A micro-plastic material (Macek & Silling, 2007) can be described through
an interaction function defined by

f s; t; ξð Þ ¼ c s� ŝ tð Þð Þ if ξj j � δ
0 otherwise

�
; (14)

and

ŝ 0ð Þ ¼ 0; _̂s ¼ _s if s� ŝj j � sY
0 otherwise

�
; (15)

where ŝ tð Þ is the plastic stretch history and sY the yielding stretch. The
force at yielding fY is

fY ¼ csY : (16)

The model described above requires only one elastic constant c (Equation (8)),
whereas isotropic linear elastic materials in classical theory are characterised
by two such constants (Silling & Askari, 2005). As described by Silling (2000),
the bond-based model given above has a Poisson’s ratio of 1=4 in 3D
problems and 1=3 in 2D plane strain problems.

The peridynamic formulation defined in Equation (1) leads to no
natural boundary conditions (Silling, 2000) and therefore surface traction
and point forces cannot be applied as boundary conditions, as their
integration results in zero, as shown by Kilic (2008). The method employed
in the validation and numerical tests in this paper consists of applying
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forces and kinematical restraints in several layers of points close to the
loaded surface or supports.

Equation (8) relates the classical parameter bulk modulus with the
elastic constant of the model; however, the expression is only valid if it is
assumed that the material point is within a sphere with the radius of the
material horizon, δ, and this condition is not satisfied near to free surfaces
or interfaces with other materials. Therefore, a correction strategy for the
parameter c that takes into account proximity to free surfaces and inter-
faces provided by Macek and Silling (2007) was employed in this article.
Following the work of Jason et al. (2006), we do not use volume correction
for particles that are only partially within the material horizon in this
paper. For a fixed number of particles, the approximation error obtained
by bond-based peridynamics due to surface effects is so much larger than
that due to volume effects, that such volume effects are practically negli-
gible. Therefore, for the purposes of this paper, it was decided that the
requirement for volume correction calculations would slow down the
method without meaningful improvement of accuracy. Although, it may
be useful to include such a correction in future work.

2.2. Modified bond stretch

The evaluation of the bond stretch, s, as defined in Equation (6), results in
the computation of square roots, which is known to be relatively slow. To
improve performance, we propose a new definition for the bond stretch
that does not require evaluation of square roots. The modified bond stretch
�s is defined as

�s ¼ y2 � ξj j2
2 ξj j2 : (17)

Notice that Equation (17) is simply a proposition where �s converges to s,
because both functions tend to zero when y tends to ξj j (i.e. η tends to zero).
These same considerations are also valid when computing s in Equations (10)
and (14). The modified bond stretch �s converges to the bond stretch s, when
the relative displacement field η converges to zero, since:

�s ¼ y2 � ξj j2
2 ξj j2 ¼ y� ξj jð Þ yþ ξj jð Þ

2 ξj j2 � y� ξj jð Þ2 ξj j
2 ξj j2 ¼ y� ξj j

ξj j ¼ s: (18)

Furthermore, both measures of stretch have the same first-order Taylor
expansion:

s η; ξð Þ ¼ s 0; 0ð Þ þ @s
@η

0; ξð ÞηþO η2; ξ
� �

; (19)
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where s 0; 0ð Þ ¼ 0 and O η2; ξð Þ represent the error resulting from trunca-
tion of the terms of second and higher orders. With some calculations, the
first derivatives of the bond stretch s and modified bond stretch �s can be
obtained as follows:

@s
@η

¼ @

@η

ηþ ξj j � ξj j
ξj j

� �
¼ ηþ ξ

ξj j ηþ ξj j ; (20)

@�s
@η

¼ @

@η

ηþ ξj j2 � ξj j2
2 ξj j2

 !
¼ ηþ ξ

ξj j2 : (21)

Replacing the terms from Equations (20) and (21) in Equation (19) with
η ¼ 0, the same first-order Taylor expansion is obtained for both para-
meters �s and s :

�s η; ξð Þ � ξ

ξj j2 η � s η; ξð Þ: (22)

Note that in Equation (22), the product between the vectors ξ and η is
a scalar product and results in a scalar. It is shown above that, despite bond
stretch s and modified bond stretch �s providing different forms of quantify-
ing stretch, they converge for infinitesimal bond deformations. In this
paper, we assume that the threshold stretch for damage or plastic flow of
the bonds (Equation 10) is small enough to be considered infinitesimal;
consequently, the use of either stretch s or modified stretch �s produces
a similar result in the interaction function (Equation (9)). Nevertheless,
large body deformations due to cracking can still be reproduced by damage
of individual bonds.

2.3. Peridynamic stretch measures under finite deformations

In this study, large deformations due to bond stretch without damage are
not employed since we assume a damage threshold stretch that is relatively
small. However, for illustrative purposes, we provide a comparison and
relate the stress measures under finite deformations in this section. The
two measures can be compared computing the relative difference

dr η; ξð Þ ¼ �s� s
s

: (23)

Substituting Equations (6) and (17) on Equation (23) leads to

dr ¼ y2 � ξj j2
2 ξj j2 � y� ξj j

ξj j

 !
y� ξj j

ξj j
� ��1

: (24)
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The simplification of Equation (24) and substituting again Equation (6)
results in Equation (25):

dr ¼ 1
2
y� ξj j

ξj j ¼ 1
2
s: (25)

Substituting dr given by Equation (23) in Equation (25) and rearranging
the equation results in a direct relationship between the two measures of
stretch:

�s ¼ 1
2
s2 þ s: (26)

The relation between modified stretch and stretch is represented in
Figure 1.

A large stretch of 100% corresponds to s ¼ 1 and to a modified stretch �s ¼
1:5 leading to a relative difference of 50%. Therefore, from Equations (23)
and (26) it can be concluded that a relatively large stretch leads to
a significant relative difference and a very different modified stretch.
Nevertheless, both the stretch measures mentioned above are valid for
describing small deformations and may be used, depending on appropriate-
ness for a particular problem. In the brittle micro-elastic model defined in
Equation (10), the interaction function only depends on the stretch up to the
critical stretch s0, after which point it is constant. The same can be said of the
micro (perfectly) plastic model in Equation (15), where the interaction
function only depends on the stretch up to the yielding stretch sY .
Therefore, in the brittle micro-elastic and micro-plastic material models

Figure 1. Relation between stretch and modified stretch under finite strains.
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presented above, the interaction function only depends on the stretch up to
a certain threshold that can be considered infinitesimal, and after that the
value of the interaction function remains constant. Nevertheless, other inter-
action functions can be employed; the only requirement is that the function
assumes a constant value after a certain threshold that can be considered
infinitesimal. Consequently, it is reasonable to use either stretch or modified
stretch within the interaction functions.

2.4. Stability conditions

A discretised version of the equilibrium equation (Equation (1)) is pre-
sented by Silling and Askari (2005), and corresponds to the sum given by

ρ€uni ¼
X

p
f unp � uni ; xp � xi
� 	

Vp þ bni ; (27)

where f is given in Equation (2), n is the time step number, and the
subscript denotes the node number. Therefore, unp is given as

uni ¼ u xi; t
nð Þ: (28)

For a uniform rectangular grid with spacing Δx, the volume Vp associated
with the node p is

Vp ¼ Δx3: (29)

A stability analysis of Equation (27) is described by Macek and Silling
(2007), and considers the linearisation:

ρ€uni ¼
X
p

C xp � xi
� �

unp � uni
� 	

Vp þ bni ; (30)

where C is a tensor-valued function called the micromodulus. In Appendix A,
we show that the micromodulus is the same using the modified bond stretch �s
or the bond stretch s. Therefore, we can adopt the condition of stability from
(Silling & Askari, 2005):

Δt <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρP

p Vp C xp � xi
� �

 



s
: (31)

Furthermore, the spatial and temporal discretisation errors associated with
Equation (30) can be shown to be O Δx2ð Þ þ O Δt2ð Þ as in the work by
Silling and Askari (2005).
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3. Numerical implementation

3.1. Initialisation of particles and bonds

Consider a system composed of a set of M material particles, and a set of N
bonds connecting pairs of particles. Each particle j 2 1; :::;M½ � consists of:

● position xj
● velocity vj
● resultant interaction force f j
● externally applied force f ext

j
● boundary condition cj
● mass mj

Each bond i 2 1; :::;N½ � connects two particles 1 and 2, and consists of:

● logic flag indicating if the bond is broken, μi
● the number of particles that connect to 1 and 2
● reference of the material connecting the particles

All particles are initialised and distributed according to a regularly spaced
rectangular lattice. The connection bonds are then initialised for all pairs
of particles within an initially specified material horizon δhoriz.

3.2. Explicit integration scheme

Following Gerstle (2015), dynamic relaxation (Day, 1965, Otter, 1965) was
employed to improve model convergence by introducing kinematic damp-
ing. An Euler explicit integration scheme was used, following the algorithm
given below:

(0) ψ ¼ 1þ Δt
ρ cυ

� 	�1

(1) loop
(2) t ¼ t þ Δt
(3) F ¼ minðt=tmax; 1:0Þ
(4) forall bonds i (connecting particles 1 and 2 )
(5) update the stretch : s ¼ s x1; x2ð Þ
(6) update broken bond flag: μi ¼ μ sð Þ
(7) compute interaction force: f i ¼ f x1; x2; s; μi

� �
(8) sum interaction force to the particles: f 1 ¼ f 1 þ f i f 2 ¼ f 2 � f i
(9) endfor
(10) forall particles j
(11) sum the external loads to the particles: f j ¼ f j þ Ff ext

j
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(12) update velocity: vj ¼ ψ vj þ Δt=mj
� �

f j
h i

(13) if j is constrained then
(14) set position to match the constrain: xj ¼ Fci
(15) set velocity to match the constrain: vj ¼ ci Δt=tmax

(16) else
(17) update position: xj ¼ xj þ vj:Δt
(18) endif
(19) reset the interaction force: f j ¼ 0
(20) endfor
(21) endloop

The factor ψ, which was used to incorporate dynamic relaxation (Day, 1965,
Otter, 1965), is computed considering the time step Δt, the density ρ , and the
damping coefficient cυ, with:

ψ ¼ 1þ Δt
ρ
cυ

� ��1

and 0>ψ � 1 : (32)

The loading factor F represents a ratio between the loads or displacements
applied at a given instant of time and their maximum, and is given by

F ¼ min ðt=tmax; 1:0Þ j0 � t � ttotal; (33)

where tmax indicates the time where the actions are applied with maximum
intensity and ttotal is the total time of the simulation (tmax � ttotal).

The update of the broken bond flag μi is given in Equation (17).
Therefore, if the threshold stretch s0 from Equation (11) is achieved, the
bond breaks. The computation of the interaction force is made according
to Equation (9) considering ξ ¼ x2 � x1; and the constant c determined
according to Equation (8). The algorithm was implemented in the
C programing language and for post processing of the results the software
Paraview (Squillacote & Ahrens, 2007) and Matlab (Higham & Higham,
2005) were employed.

3.3. Relation between particles, bonds, and material horizon

The number of particles M and number of bonds N are important to
determine the computation time. As a consequence of the initiation pro-
cess, N depends not only on the number of particles M but also on the
particular geometry of the body. Nevertheless, an approximated relation
between N and M can be obtained. If the body is assumed large enough to
be considered infinite, then the number of particles MV in a certain
representative volume is
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MV ¼ V=λ3: (34)

where λ is the interparticle distance. The volume of material Vhoriz within
the material horizon of a generic particle is

Vhoriz ¼ 4=3 πδ3horiz: (35)

The number of particles Mhoriz within the material horizon is obtained
substituting the volume in Equation (34) by Vhoriz from Equation (35),
resulting in

Mhoriz ¼ Vhoriz=λ
3 ¼ 4=3 π δhoriz=λð Þ3: (36)

Finally, the approximate number of bonds N can be obtained computing
the number of combinations of pairs of particles within the material
horizon and multiplying by the number of particles:

N � Nhoriz

2

� �
M ¼ ð 4=6 π δhoriz=λð Þ3 � 1=2

� �
M: (37)

For illustration, the approximate number of bonds per particle as a function
of the material horizon, computed with Equation (37), is given in Table 1.

From Equation (37) it can be concluded that while the number of bonds
grows linearly with the number of particles, it grows very rapidly with the
cube of the material horizon. Since the computation time depends on the
number of bonds, the computation time will grow very rapidly with the
material horizon.

4. Computational time required using stretch and modified stretch

This section presents a benchmark test where the time to compute a simple
structure is evaluated using two interaction functions based on different
stretch measures. These previously described definitions were the stretch
Equation (6) and modified stretch Equation (17). The structure considered
is shown in Figure 2. The fixed end beam is subjected to a tensile hor-
izontal displacement of 1mm (this geometry is based on Miranda,
Williams, and Orr (2016)).

The computational model consists of a rectangular, uniformly spaced
lattice of calculation points with interparticle spacing λ. The material
horizon considered for all the calculations in this paper was δhoriz ¼

Table 1. Approximate number of bonds per particle (N=M) as a function of the material
horizon (δhoriz=λ).
δhoriz=λ 1 2 3 4 5 6 7 8

N=M 1.6 16.3 56.0 134 261 452 718 1070
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2
ffiffiffi
3

p
λ (i.e. three times the diagonal of a cube with edge length equal to the

interparticle distance λ ), which is in agreement with common values used
in the literature (see, for instance, Hu, Ha, & Bobaru, 2011, Le & Bobaru,
2018, Silling & Askari, 2005). This value was found to lead to a good trade-
off between computational effort and representation of interactions
between neighbouring particles.

Simulations were performed, varying the interparticle spacing λ and
the definition of stretch. Two models were employed: model A and
model B. Model A, represented in Figure 3, had an interparticle spacing
λ = 50 mm. Model B is more refined, with λ = 25 mm. Both models
were simulated considering 37,500 time increments (corresponding to
a time interval of 15 s with increments of 4e–4s). Similar reaction forces
and displacement fields were obtained (less than 0.1% of difference).
Table 2 compares the computational time required using the definition
stretch s from Equation (6) and the modified stretch �s from Equation
(17) for each model.

The results in Table 2 confirm that Model B requires more computation
time compared to Model A, as expected, since it has more particles and
bonds. Nevertheless, for both models the modified stretch �s led to savings
in computation time: 12% for Model A and 11% for Model B.

Figure 2. Geometry and boundary conditions of the beam used for the benchmark. (a) cross
section; (b) boundary conditions (all dimensions in millimetres).

Figure 3. Representation of Model A used for the benchmark, the coloured nodes in the
borders are restrained (5229 nodes, 313,710 bonds).

12 H. D. MIRANDA ET AL.



Recalling the algorithm in Section 3.1.2, it was determined by mea-
surement that around 98% of the calculation time is spent on the loop
over the bonds (lines 4 to 9), and only 2% on the loop over the particles
(lines 10 to 20). It was shown in Section 3 that the number of bonds
increases with the cube of the material horizon; therefore, the computa-
tion time will also grow in the same order of the cube of the material
horizon. Unfortunately, it was technically difficult to measure with
acceptable precision the time of the operations within the bond loop,
due to the uncertainty introduced by the measuring process in very
small leaps of time. However, the savings seem reasonable provided
that the computation time is shared equally with the other three opera-
tions within the dominant loop.

All the simulations in this work were performed using a single processor
core in a laptop computer with a 2.5 GHz Intel Core i7 processor, 4 MB of
cache memory, and 16 GB of dynamic RAM. From the results of Table 2, it
was verified that the use of modified stretch �s resulted in a reduction of the
computation time above 10%. However, these results may vary with the
computer and architecture used to run simulations.

It can be concluded that the adaptation of the fast interaction function
is very simple to implement, since it only requires substituting the stretch s
by modified stretch �s but corresponds to an improvement in the computa-
tion speed. This is especially important in realistic problems requiring fine
discretisation and large amount of computation time and resources.

5. Numerical examples

In this section, we show both numerical examples to validate the model
under linear elasticity and examples to reproduce laboratorial experiments
with quasi-brittle materials. The material horizon considered for all the
calculations was δhoriz ¼ 2

ffiffiffi
3

p
λ as explained in the previous section.

5.1. Validations in the linear elastic regime

To verify the implementation of the algorithm proposed in Section 3,
example structures were analysed using the proposed algorithm and

Table 2. Comparison of computation times using different expressions for the stretch.
Model A B

Number of particles 5229 36,465
Number of bonds 313,710 2,627,528
Computation time using stretch s (Equation (6)) [hh:mm:ss] 00:10:39 01:30:46
Computation time using modified stretch �s (Equation (17)) [hh:mm:ss] 00:09:30 01:21:41
Relative time difference 12% 11%
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compared to the Finite Element Method and the classical analytical expres-
sions for the deflection of beams based on the Euler-Bernoulli theory (see,
for instance, Gere & Goodno, 2012).

5.1.1. Example 1: linear elements
Two beams with rectangular cross sections were considered: a clamped
beam and a cantilever beam (based on Miranda et al., 2016). The geometry,
applied loads, and boundary conditions for the beams are given in Figure
4. The uniformly distributed load considered was p = 10 kN/m. The
material parameters are given in Table 3.

where ρ0 is the real density of the material and ρ is a scaled value of the
density by a factor of 100 as a strategy of dynamic relaxation to improve
convergence (Day, 1965, Otter, 1965). The peridynamic models for these
beams consist of three-dimensional grids of points spaced by λ ¼ 0:05 m
in each direction. The material parameter c was defined from the material
properties according to Equation (8) and the critical time step for simula-
tion according to Equation (31). Kinematic damping was employed as
mentioned in Section 3.1.2. The load was applied gradually and propor-
tionally to the time over 10 initial seconds up to its maximum value and
was then sustained for the next 5 seconds to allow the transient response to
be damped as described by the loading curve in Figure 5.

Figure 4. Geometry and boundary conditions for Example 1: (a) beam cross section; (b)
clamped beam; (c) cantilever beam (all dimensions in millimetres).

Table 3. Material parameters.
E υ ρ0 ρ

20 GPa 0.25 25 kN/m3 2500 kN/m3
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Figure 6 shows the model of the clamped beam. A contour map of
vertical displacements is shown in Figure 7. Figure 8 compares the deflec-
tions obtained using the analytical Euler-Bernoulli formulation against the
proposed algorithm. The maximum relative difference was approxi-
mately 3%.

The results for the Cantilever beam are shown in Figure 9.
A comparison between the deflections using the analytical formulation
and the current method is presented in Figure 10; the maximum relative
difference was around 1%.

Each of the examples above required less than four minutes to run (with
a time step of 1e-3s corresponding to 15,000 increments) using the com-
puter described in Section 4.

5.1.2. Example 2: rectangular plate with three edges built in
The rectangular plate constrained on three of its edges and subjected to
a uniform load of 10 kN/m2 was modelled. Figure 11 describes the

Figure 5. Loading curve.

Figure 6. Model of the clamped beam (5229 particles and 313,710 bonds). Loaded particles
are represented at the top layer in red and boundary conditions at the sides in blue.
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geometry (based on Miranda et al., 2016), boundary conditions, and
loading while the material parameters are the same as in the previous
example as given in Table 3.

The peridynamic model for the plate consists of a three-dimensional
grid of points spaced by λ ¼ 0:25=4 m in each direction. The material
parameter c was defined from the material properties according to
Equation (8) and the critical time step for simulation according to
Equation (31). The kinematic damping was employed as mentioned in
Section 3.1.2. The load was applied gradually as described in the loading

Figure 7. Deflection in meters of the clamped beam.
(5229 particles and 313,710 bonds).

Figure 8. Comparison of deflections of the clamped beam using the analytical Euler-Bernoulli
formulation and the presented method.
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curve from Figure 12. The time between 10 and 30 s is used to damp the
dynamic response of the structure.

Analysis was undertaken using the finite element method and the
proposed peridynamic method. The results, given in terms of deflections,
are compared in Figure 13, Figure 14, and Figure 15. Figure 13 presents the
deflection contour plots for both methods. Figure 14 shows the deflection
curves through the centre of the slab in the perpendicular direction to the
free edge and Figure 15 shows the deflection curves along the free edge.

The maximum deviation between predictions is around 4%. The com-
putational time required for the explicit peridynamic analysis was less than

Figure 9. Deflection in meters of the Cantilever beam (4851 particles and 290,934 bonds).

Figure 10. Comparison of displacements for the Cantilever beam.
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2 min (with a time step of 15e-3s corresponding to 2000 increments) using
the computer described in Section 4.

5.2. Examples using quasi-fragile materials

In this section, the capacity of the model to reproduce cracking patterns
was explored. For simplicity and to enable comparison with real test data,

Figure 11. Model of the rectangular plate, the hatched zones are completely constrained (all
dimensions in millimetres).

Figure 12. Loading curve.
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well-known laboratorial tests were chosen: the bending of a simply sup-
ported beam and the compression of a cube for determination of the
compression strength. The examples given in this section are used to
illustrate applications of the theory. A rigorous validation by laboratorial
tests will form the basis of future work.

5.2.1. Simply supported beam
A simply supported beam (Figure 16) subject to a vertical displacement in
the mid-span δmax ¼ 20 mm was modelled.

The cross section is composed of a bulk material with a similar modulus of
elasticity to concrete of grade C16/20 (CEN, 1992) and reinforced with bars of
a linear elastic material to model steel in its elastic range. At the interface
between steel and concrete, the approach of Agwai, Guven, and Madenci
(2011) was adopted. Perfect bonding is assumed, and it is postulated that
rupture is initiated within the concrete, since this is a weaker material. Further
work is required to study the interface between materials in more detail.
Therefore, the interface connections between particles of the steel reinforce-
ment and particles of concrete are assumed to have the same properties as the

Figure 13. Contour plot of the deflection obtained using: (a) FEM (Hibbett et al., 1998) and (b)
the proposed method with 19,345 particles and 1,204,382 bonds (deflection values in meters).
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Figure 14. Plate deflection along the central line perpendicular to the free edge (x-axis).

Figure 15. Plate deflection along the free edge (y-axis).

20 H. D. MIRANDA ET AL.



connections between concrete particles. The properties of the cross-section
materials are indicated in Table 4.

The beam model was discretised with 13.5 thousand particles and
2.71 million bonds connecting these particles. A scalar variable D, describ-
ing the level of damage of a particle, was considered, as defined in
Equation (13) which leads to

D ¼ Nd=Np; (34)

where Nd is the number of broken bonds and Np is the total number of
bonds initially connected to the particle.

Figure 17 shows the damage levels obtained at 37% of the maximum
displacement. It was found that damage by spalling develops in the region
where the displacement is applied and near the supports due to the
concentrated stress developed in the absence of distributing reinforcement,
as is apparent in Figure 18. Failure occurs in shear due to the lack of
vertical elements of reinforcement in the model, as shown in Figure 18 and
Figure 19. Figure 20, from a similar laboratory experiment, shows the same
typical mode of failure as the one obtained in the numerical experiment.

5.2.2. Simulation of the standard testing of concrete compressive strength
The normalised method for determining the compressive strength of
concrete (Scrivener, Crumbie, & Laugesen, 2004) was simulated. In this

Figure 16. Geometry and boundary conditions of a simply supported beam: (a) reinforced
cross section; (b) support conditions and imposed displacement (all dimensions in
millimetres).

Table 4. Parameters of the materials.
Bulk material Reinforcement

Ec υc Tensile strength fct Es υs

20 GPa 0.25 2.0 MPa 200 GPa 0.25
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test, a cubic specimen of concrete is compressed until failure using
a calibrated compression machine. For the simulation, the prismatic
volume represented in Figure 21 with dimensions 150 × 150 × 170 mm3

was considered. The volume is divided into three vertical layers repre-
sented in blue and grey. The middle layer in grey with dimensions
0.150 m × 0.150 m × 0.150 m corresponds to the test specimen in plain
concrete of grade C60/75 with elastic modulus Ec ¼ 39 GPa and

Figure 17. Damage for δ ¼ 0:37δmax (displacements scaled 10 times).

Figure 18. Perspective of the deformed configuration for δ ¼ 0:79δmax (totally damaged
nodes were removed).

Figure 19. Deformed configuration for δ ¼ 0:79δmax (totally damaged nodes were removed).
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compressive strength fc ¼ 68 MPa (CEN, 1992). The upper and lower
layers in blue correspond to the plates of the compression machine. As
a simple hypothesis, we consider the plates to be completely fixed to the

Figure 20. Typical mode of failure exhibited by beams without transverse reinforcement in
laboratory experiments (photo courtesy Yuanzhang Yang).

Figure 21. Particle model for simulating compressive strength (8425 particles and approxi-
mately 1.8 million bonds).
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specimen. The interface connections between particles of the specimen and
particles of the machine are assumed to have the same properties as the
specimen particles. Connections between particles of the upper and lower
layers are considered to be one hundred times stiffer than the bonds
corresponding to the specimen in order to simulate the effect of the testing
machine. A uniformly distributed array of 8425 particles was considered
initially. The particles in the top and bottom layers were constrained in the
horizontal directions, and a compressive displacement of δmax ¼ 0:2mm
was applied in the vertical direction at a constant rate of 2.5e-3 mm/s.

The results of the simulation were obtained in terms of damage (as
defined in Equation (34)) and the specimen’s stress–strain response. The
stress–strain response obtained from the model is compared to the
Eurocode analytical curve for grade C60/70 concrete (CEN, 1992) in
Figure 22.

For the numerical model, the peak stress was 72.9 MPa at the strain of
εc ¼ 0:26%, while according to the experimental benchmark (CEN, 1992)
this value should be 68.0 MPa at a strain of 0.25%. Figure 23 shows
a sequence of plots representing the damage levels at different strains,
starting immediately before maximum resistance (εc ¼ 0:26%) and after-
wards during the brittle softening. Figure 24 shows the typical crack
pattern obtained for this laboratorial experiment (Del Viso, Carmona, &
Ruiz, 2008).

Figure 22. Comparison of stress–strain in compression from the numerical model and
experiments (CEN, 1992).
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Figure 23. Damage evolution (pre-peak εc � 0:26%, fragile softening εc > 0:26% ).
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From the simulation, it is apparent that the damage onset begins at the
boundaries, before a sudden brittle failure of the specimen occurs. The
damage pattern from Figure 23 is similar to that obtained in laboratorial
tests shown in Figure 24: all four exposed faces cracked approximately
equally, with little damage to the faces in contact with the machine.
Particles located near the free edges and free faces have less interactions
(bonds) with other particles, when compared with particles located in the
specimen’s interior, for geometrical reasons. Therefore, the damage tends
to initiate at the unconfined boundaries where fewer connections exist.

A certain degree of realism was obtained in replicating the cracking
patterns of concrete; however, the experimental and simulation for the
stress–strain relations are quite different. Before the peak strength, the
numerical model behaviour is almost linear and does not able to resemble
the slight and gradual reduction of stiffness that is shown in the experi-
mental curve. Furthermore, the post-peak behaviour is brittle with a very
abrupt reduction of strength, and not as soft as the one described in the
experimental stress–strain curve. Concrete is a complex material with
multiple scales; for instance, despite the fact that aggregates and cement
paste are known to have linear elastic behaviour, the combination of both
results in a non-linear material due to the interface transition zone
between aggregates and the cement (see Scrivener et al., 2004).
Therefore, the micro-brittle model used may be too simple to describe
completely the complexity of concrete. Nevertheless, for the described

Figure 24. Crack patterns obtained in laboratorial experiments (Del Viso et al., 2008).
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examples the model has the advantage of predicting qualitatively the
cracking and damage patterns without requiring any additional assump-
tions for the specific models.

6. Conclusions

A novel class of interaction functions are proposed for the computational
implementation of peridynamic theory under explicit time integration schemes.
The class of functions is very general since it consists of substituting the
peridynamic stretch measure with a modified stretch making it faster to com-
pute. This adaptation allows any constitutive model (linear elasticity, plasticity,
or damage) to be redefined. Themodified stretch was shown to converge to the
stretchmeasure originally defined by Silling (Silling, 2000) when the strains are
small. Furthermore, the equivalent stability conditions apply when using mod-
ified stretch under the explicit time integration schemes. We also presented
a simple relation between stretch and modified stretch.

This new interaction function was implemented in a time explicit integra-
tion scheme. In the speed benchmark tests, gains of more than 11% were
obtained in comparison with the traditional formulation. Good agreement
was obtained for the validations of the method under linear elastic conditions
against classical models. The capacity to reproduce cracking patterns and
capacity of computation was demonstrated using three-dimensional exam-
ples: a simply supported steel reinforced concrete beam and a cube of plain
concrete subjected to compression. Despite the limitations encountered due
to the simplicity of the micro-brittle model employed, the presented examples
demonstrate a certain capacity for reproducing crack and damage patterns.
Therefore, the proposed strategy might in future also be applied using more
refined models.
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Appendix A. Derivation of the micromodulus

In this appendix, we derive the micromodulus, and show that it is the same using the
modified bond stretch �s or the bond stretch s in the definition of f . The tensor-valued
function called micromodulus is defined by

C ξð Þ ¼ @f
@η 0; ξð Þ "ξ : (A1)

Considering

f η; ξð Þ ¼ ηþ ξ

ηþ ξj j cs; (A2)

and substituting in Equation (A1) we obtain

C ξð Þ ¼ @f
@η η; ξð Þ j η ¼ 0 ; (A3)
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which in indicial notation is equivalent to

Cij ¼ @
@ηj

ηiþξi

ηkþξkð Þ1=2 cs
� �

j ηi ¼ 0 : (A4)

Developing Equation (A4) leads to

Cij ¼ @
@ηj

ηiþξi

ηkþξkð Þ1=2
� �

csþ ηiþξi

ηkþξkð Þ1=2 c
@s
@ηj

j ηi ¼ 0 : (A5)

For η ¼ 0 , the first term of Equation (A5) vanishes, resulting in the following expression:

Cij ¼ ξi

ηkþξkð Þ1=2 c
@s
@ηj

j ηi ¼ 0 : (A6)

Considering Equations (20) and (21), it is possible to conclude that @s
@ηj

¼ @�s
@ηj

when

η ¼ 0. Therefore, substituting this derivative given in Equation (20) or Equation (21)
with η ¼ 0, in Equation (A6), leads to the micromodulus defined by

Cij ¼ ξi

ηkþξkð Þ1=2 c
ξj

ηkþξkð Þ2 ¼ c
ξiξj

ηkþξkð Þ3=2 or C ¼ c ξ�ξ
ξj j3 : (A7)
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