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Abstract 

Objectives 

Cumulative dementia incidence in Parkinson’s disease (PD) is significant, with major personal 

and socioeconomic impacts upon individuals with PD and their carers. Early identification of 

dementia risk is vital to ensure optimal intervention. Saccadic deficits often distinguish 

neurodegenerative disorders and cognitive impairment, but their ability to predict cognitive 

decline in PD has yet to be determined.  

Study aims: 1) evaluate baseline (6.4±6.1months since PD diagnosis) differences in pro-

saccadic metrics between those with early PD and healthy age-matched adults; and 2) assess 

the ability of baseline pro-saccades to predict subsequent cognitive decline over 4.5 years. 

Methods 

One hundred and forty-one PD and 90 age-matched participants recruited at diagnosis 

underwent saccadometric assessment of pro-saccades at baseline and had cognition 

assessed at baseline, 18, 36 and 54-months. Pro-saccadic characteristics included latency, 

duration, amplitude, peak and average velocity. Cognitive assessment included executive 

function, attention, fluctuating attention and memory. Linear mixed-effects models examined 

pro-saccadic metrics as predictors of cognitive decline over 54-months. 

Results 

Pro-saccades were significantly impaired at baseline in PD compared with controls. Pro-

saccadic characteristics of latency, duration, peak and average velocity predicted decline in 

global cognition, executive function, attention and memory over 54-months in PD. Additionally, 

only reduction in global cognition and attention were predicted by pro-saccadic metrics in age-

matched adults, indicating that PD findings were not purely age-related. 

Conclusion 

Saccadic characteristics are impaired in early-PD and are predictive of cognitive decline in 

several domains. Assessment of saccades may provide a useful non-invasive biomarker for 

long-term PD cognitive decline in early disease. 
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Introduction 
Parkinson’s disease (PD) is the second most common neurodegenerative disease after 

Alzheimer’s disease (AD). Cognitive impairment is significant in PD, and cumulatively 80% 

may progress to dementia (PDD)1. Cognitive deficits significantly impact performance of daily 

activities, quality of life2 and reduce life expectancy3. There is an urgent need to develop and 

examine biomarkers that can predict individuals at risk of cognitive decline in PD. Such 

biomarkers would optimize clinical management, assist in the development of effective or 

timely treatments, and allow sensitive monitoring of cognitive function. However, the 

underlying pathophysiology of cognitive decline in PD is complex and not fully understood, 

with contributions from dopaminergic and cholinergic dysfunction4. Additionally, cognitive 

functions are selectively impacted which leads to heterogeneous cognitive profiles5. 

Therefore, a single biomarker or predictive measure is unlikely to yield sufficient sensitivity, 

and a range of such markers is likely required. Clinical biomarkers may be important in PD, 

as laboratory or imaging biomarkers are complex, expensive and invasive4.   

Oculomotor dysfunction, such as saccadic (fast eye movement) impairment, occurs in PD and 

relates to cognitive function6-9. Saccadic impairments in PD vary depending on disease stage, 

but include hypometria (where a primary saccade undershoots a target and may be further 

impaired by PD pathology in the vertical rather than horizontal direction11), reduced amplitudes 

and increased latencies8. Due to their relationship with cognition, saccades may be a potential 

biomarker for those at risk of cognitive decline and PDD6-9. Saccades can be non-invasively 

measured using saccadometry, which is a simple and low-cost tool that can be used in clinical 

practice10. Saccadometry involves anti-saccade (voluntary) and pro-saccade (reflexive) 

paradigms12, with greater errors made on such tasks by those with PD8. Anti-saccadic tasks 

require a voluntary saccade to be made in the opposite direction to a stimulus that appears 

on one side of a participant’s view, whereas pro-saccades require a saccade to be made in 

the same direction as the stimulus appearance. Anti-saccades, therefore, require inhibition of 

a reflexive saccade towards the stimulus and voluntary saccade away from the stimulus. A 

growing body of evidence has demonstrated an association between the inability to inhibit 

reflexive saccades (i.e. anti-saccade error) and cognitive deficits12. Pro-saccade tasks require 

only a reflexive saccade towards the stimulus, and shorter latencies are related to anti-

saccade errors and cognitive deficits13. However, pro-saccades have received less attention 

than anti-saccades despite their ease of application and similarities to usual neurological 

saccadic examination (i.e. looking towards a stimulus such as an examiner’s fingers).  

People with PD have shorter pro-saccade latencies with smaller amplitudes compared to 

controls14, although in early-PD there have only been a few small studies with variable results 

reported15-17. Furthermore, reflexive saccades are useful in differential diagnosis, with minor 

impairments associated with isolated cortical (as in AD) or nigrostriatal (as in PD) 

neurodegeneration, and more pronounced deficits when pathology impacts both of these 

cortical and subcortical regions, as occurs in Dementia with Lewy Bodies (DLB) or PDD18. 

Additionally, deficits in dopaminergic (primarily voluntary, top-down, anti-saccades19 20) and 

cholinergic (primarily reflexive, bottom-up, pro-saccades21-23) innervation influences saccadic 

activity24 and cognitive processes25. Despite these findings, the longitudinal relationship 

between saccades and cognition in PD is not established. 

This study aimed  to: 1) evaluate baseline differences in pro-saccadic metrics between those 

with early PD and healthy age-matched adults; and 2) assess the ability of pro-saccades 

recorded at baseline to predict subsequent cognitive decline over 4.5 years. We hypothesised 
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that discrete saccadic characteristics would be impaired at baseline in PD compared to 

controls, and that baseline pro-saccades would be sensitive to decline in selective cognitive 

functions in early PD.  

Methods 

Participants 

Recently diagnosed people with idiopathic PD and healthy age-matched adults were recruited 

to the Incidence of Cognitive Impairment in Cohorts with Longitudinal Evaluation-PD (ICICLE-

PD) study at Newcastle. Participants were recruited between June 2009 and December 

201126. Idiopathic PD was diagnosed according to UK Queen Square Brain Bank criteria. 

Participants were assessed over four sessions; baseline, 18 months, 36 months and 54 

months. Exclusion criteria included: cognitive impairment (≤24 Mini Mental State Exam 

[MMSE]), Dementia with Lewy Bodies, drug-induced parkinsonism, vascular parkinsonism, 

atypical parkinsonian syndromes, poor command of English language, and inability to give 

written, informed consent. Participants were assessed in an “on” motor state. The study was 

approved by the Newcastle and North Tyneside Research and Ethics Committee.  

Clinical Assessment 

Participant demographics including age (years), gender and years of education were 

recorded. Depression was assessed at each session using the Geriatric Depression Scale 

(GDS-15) and premorbid intelligence assessed at baseline using the National Adult Reading 

Test (NART). Parkinson’s disease duration was recorded in months since diagnosis. Motor 

severity was assessed using the International Parkinson and Movement Disorders Society 

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part-III, Hoehn and Yahr Stage 

(H&Y) and levodopa equivalent daily dose (LEDD) was calculated27. As part of a full cranial 

nerve examination, visual acuity was assessed using a hand-held near-reading (40cm) 

Snellen chart reading card (normal was a minimum distance equivalent score of 20/40). We 

also recorded any anomalies in colour vision, accommodation and pupillary response, as well 

as the use of any visual aids by participants and any reports of diplopia. 

Cognitive Assessment 

A comprehensive cognitive assessment battery was completed at each visit (baseline, 18 

months, 36 months and 54 months). Global cognition was measured using the Montreal 

Cognitive Assessment (MoCA)28. Executive function was measured using Cambridge 

Neuropsychological Test Automated Battery (CANTAB) one touch stockings (OTS) test, 

phonemic fluency (words beginning with F in 60 seconds) and semantic fluency (naming 

animals in 90 seconds)29. Attention was measured using Cognitive Drug Research battery 

(CDR)30 simple reaction time (SRT), choice reaction time (CRT), and digit vigilance (DV) tests. 

Power of attention (PoA) was calculated as the mean reaction time (ms) of SRT, CRT and DV 

combined. Fluctuating attention (individual reaction time variability) was calculated as the 

coefficient of variance (CoV) of the SRT, CRT, and DV combined. Memory was measured 

using spatial recognition memory (SRM), pattern recognition memory (PRM), and paired 

associate learning (PAL) tests from CANTAB.  

Saccadic Assessment 

Saccades, specifically pro-saccades, were measured only at baseline using a standardized 

testing battery with a ‘Saccadometer Advanced’ device (1kHz; Ober Consulting, Poland; 

Figure 1)31. A detailed account of the saccadic assessment is provided as supplementary 

methods 1. Saccadic outcomes included mean and SD for Latency (i.e. reaction time), 
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Duration (i.e. time to completion), Amplitude (i.e. distance covered), Peak Velocity (i.e. 

maximum velocity value) and Average Velocity (i.e. mean of velocity across entire 

movement)10.  

Statistical Analysis 

Statistical Analysis was conducted using SPSS (IBM Corp. v.21, USA) and R software 

(Version 3.0.1; R Foundation for Statistical Computing, Vienna, Austria). Data were examined 

for normality of distribution with visual histograms and Kolmogorov-Smirnov’s test. 

Comparisons of means between two groups were performed using independent t-tests or 

Mann-Whitney U tests as appropriate. Ordinal data were compared using chi-squared tests. 

Associations between variables were examined using Pearson’s or Spearman’s correlations 

as appropriate. Within R, lme4 was used to perform linear mixed effects analysis of the 

relationship between baseline saccadometry measures and cognition from baseline to 54 

months. Due to the longitudinal nature of this study, there were some missing data 

(Supplementary Table 5). This form of multilevel modelling is suitable for longitudinal data 

analysis due to its ability to handle missing data32, as it does not exclude subjects with missing 

data from the analysis. A random intercept model was used, where the intercept varied at the 

participant and time level. For each cognitive test, sex, number of years of completed 

education, age, time, medication (LEDD), depression (GDS-15) and disease severity (MDS-

UPDRS III) were entered into the model as fixed effects, as well interactions of time with age 

(age x time), LEDD (LEDD x time), MDS-UPDRS III (MDS-UPDRS III x time) and depression 

(GDS-15 x time). A basic model for each cognitive test was produced by excluding non-

significant predictors; saccadometry measures were then each added to the basic model. 

Each model fit was assessed by likelihood ratio tests and a stringent significance level of 

p≤0.03 was used due to the exploratory nature of the analysis.  

Results 

Participants 

At baseline, a total of 141 PD participants and 90 age-matched controls completed clinical 

assessment, and were followed-up at 18-month intervals (Figure 2). PD participants had a 

mean disease duration of 6.4±6.1 months. A total of 86 PD and 62 healthy age-matched adult 

controls completed all assessments up to 54-months.  

At baseline, there were no significant differences in the proportion of PD participants compared 

to controls in terms of abnormal visual acuity (44.7% vs. 68.9%, respectively, p>0.05) or 

diplopia (9.2% vs. 3.3%, respectively, p>0.06). A greater proportion of controls had corrected 

vision compared to PD participants (86.7% vs. 53.9%, respectively, p<0.001). PD participants 

were significantly impaired in all cognitive domains compared to controls (Table 1). PD 

participants also had significant impairments in baseline saccadic amplitude (p=.001) and 

Mean Velocity (p=.029) compared to age-matched adults. Weak but significant associations 

between baseline selective cognitive functions and saccadic metrics were observed for both 

groups, more so in PD (Supplementary Tables 1 and 2).  

Many cognitive abilities declined across several domains in PD, and less so in age-matched 

adults over the course of the study (Supplementary Table 3). However, those with intact global 

cognition (MoCA≥26) did not show a significant change over time with repeated assessments, 

whereas those considered to have mild cognitive impairment (MCI) (MoCA <26) or who 

developed PDD (based on clinical diagnosis) declined over time28.     
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Saccades predict cognitive decline over 54 months 

Linear mixed effects models determined the association between declining cognition over 54 

months and baseline saccadic metrics using all 141 PD participants (Table 2). The same 

analysis was performed in age-matched adults over 36 months, but associations with 

saccadometry measures were only found with declining MoCA and digit vigilance scores 

(Supplementary Table 4).  

Global cognition 

Baseline latency mean by time (χ2=142.9, p<0.001), latency SD by time (χ2=141.3, p<0.001) 

and baseline duration SD by time (χ2=143.4, p<0.001) significantly improved the basic model 

and predicted decreasing MoCA score over 54 months. This indicated that shorter saccadic 

latency and more variable latency and duration at baseline predicted global cognitive decline 

in PD.  

Executive function 

Only baseline latency SD by time significantly predicted poorer OTS score and significantly 

improved the basic model (χ2=150.6, p<0.001), indicating that greater saccadic latency 

variability was associated with decline in executive function in PD. However, saccadometry 

measures were not significant predictors of phonemic or semantic fluency (Table 2). 

Attention 

Some saccadometry measures were associated with PoA and PoA CoV as measures of 

attention, but not digit vigilance (Table 2). Increased baseline mean amplitude by time 

(χ2=431.74, p<0.001), baseline peak velocity mean by time (χ2=433.1, p<0.001) and baseline 

peak velocity SD by time (χ2=430.0, p<0.001) were associated with lower PoA over 54 months. 

When comparing the three models, baseline peak velocity mean had the best predictive power 

(χ2=1.3 and χ2=6.2, respectively, p<0.001). Slower peak saccadic velocity at baseline 

therefore predicted decline in attention in PD.  

Increased baseline mean duration by time was significantly associated with higher PoA CoV 

over 54 months and significantly improved the basic model (χ2=237.5, p<0.001). Declining 

PoA CoV was predicted by lower baseline peak velocity SD by time (χ2=235.1, p<0.001) and 

lower baseline average velocity mean by time (χ2=240.1, p<0.001). Comparing the three 

models, baseline average velocity mean was the strongest model (χ2=5.0 and χ2=2.7, 

respectively, p<0.001). Slower average saccadic velocity at baseline, therefore, predicted 

decline in fluctuating attention in PD. 

Memory 

Baseline amplitude mean by time, peak velocity mean by time and average velocity mean by 

time significantly predicted change in PRM scores over 54 months (Table 2) and significantly 

improved the basic model (χ2=145.6, χ2=145.3 and χ2=145.6, respectively, p<0.001 for all). 

No saccadometry measures were associated with SRM or PAL scores, although there was a 

trend (p=0.043, Table 2) observed for increased baseline latency mean by time improving the 
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model to predict worsening memory. Smaller saccadic amplitude, slower average velocity and 

shorter latency at baseline, therefore, predicted decline in memory in PD. 

Discussion 
To the best of our knowledge, this is the first study to examine pro-saccades in relation to 

cognitive decline in a large group of early PD participants and an age-matched control group. 

Our findings indicate that pro-saccades are impaired in early PD compared with age-matched 

controls, with deficits in amplitude and velocity. Furthermore, selective pro-saccade 

characteristics recorded at baseline can predict decline in various cognitive domains over the 

next 54 months in PD, whereas there is limited predictive capability for healthy age-matched 

adults.  

Pro-saccades (reflexive saccades) were significantly shorter and slower at baseline in our 

early PD group (mean disease duration of six months) compared to healthy age-matched 

adults. Due to saccadic velocity calculation relying heavily on saccadic amplitude (i.e. velocity 

is amplitude divided by time) the deficits in amplitude likely account for the lower velocities 

found. In contrast, previous studies that have involved small numbers of PD participants have 

provided conflicting reports on whether reflexive saccades are impaired15 16 or abnormal (i.e. 

increased velocity and latency)17 in early PD. However, our findings suggest that saccades 

are impaired early in the disease. Although we did not find any relationship between levodopa 

dose and saccades within our study, pro-saccadic PD impairments may relate to levodopa 

medication intake, as previous studies have demonstrated that the use of dopaminergic 

medication can slow reflexive saccades in PD33-35. Dopaminergic therapies may impact 

reflexive saccadic function through improved or over-active saccadic inhibitory control of the 

pre-frontal cortex through dopaminergic circuits, as dopamine primarily underpins cognitive 

(voluntary, top-down) control of saccades24 36. Similarly, we found no relationship between pro-

saccades and cholinergic medication burden (determined with the Anticholinergic Drug Scale), 

which was unsurprising as cholinergic therapies would likely increase rather than decrease 

reflexive saccade velocities through dampening saccadic inhibition37. Similarly, cholinergic 

therapies may also increase saccadic latency and reduce amplitude (or gain)38. Medication 

effect is one of the major challenges in interpretation of the results of saccadic impairments in 

PD, as it is difficult to determine whether deficits occur due to underlying PD pathology or the 

medications used to treat it. However, studies regarding the impact of medications on 

saccades are inconsistent and often conflicting, which may be a result of the small sample 

sizes examined. Despite potential medication effects, our results demonstrate that 

saccadometry is a sensitive tool to quantify impairments in early PD compared to those without 

PD.  

Saccades predict decline in selective cognitive domains in PD 

For PD participants, baseline pro-saccadic metrics independently predicted decline in 

cognitive outcomes over 54 months, specifically in global cognition, executive function, 

attention and memory. In contrast, pro-saccadic metrics only predicted decline in global 

cognition and attention in healthy age-matched adults over 36 months; this suggests that the 

associations found in PD subjects are not merely age-related. Specifically, greater saccadic 

duration variability (global cognition), latency variability (executive function), average and peak 

velocity (attention), and amplitude (memory) had the strongest predictive power for cognitive 

decline in PD across selective cognitive domains. These findings add to the literature 

pertaining to cross-sectional associations between saccades and cognition in PD and older 
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adults39-41, which particularly link executive processes with voluntary saccades. Indeed, 

several previous cross-sectional studies have reported that cognitive impairment can be 

determined by examination of saccades in older adults42 43, but the studies did not commonly 

assess reflexive saccades which limits comparisons to the current study.  

The underlying pathophysiology involved in saccadic and cognitive impairment in PD is not 

fully understood and may vary among subjects44 45. The parietal cortex (posterior parietal 

cortex and parietal eye-field) and the brain stem cholinergic system rather than the 

dopaminergic reward system primarily elicit reflexive pro-saccades24 36. Saccadic latencies 

increase with anticholinergic medication and frontal lobe dysfunction is implicated in PD 

saccadic deficits, particularly as the disease progresses8. The cholinergic system also has a 

central role in cognition46, particularly attention, and cholinergic deficits may therefore underpin 

both saccadic and cognitive dysfunction47 in PD.  

Study strengths and Limitations 

A major strength of this study was the prospective design, examining a large cohort of recently 

diagnosed incident PD participants. Previous cross-sectional studies examining associations 

between saccades and cognition in PD have been limited by small sample sizes and disease 

heterogeneity, with little focus on long-term monitoring or comparison with age-matched 

controls.  

Limitations included the inability of the saccadometry device to record vertical saccades, which 

may be prone to more significant impairment in PD, and therefore may be a more sensitive 

measure48. This study did not investigate anti-saccadic performance, which may strengthen 

longitudinal relationships between cognition and saccades due to the executive control 

required in performance. We also only assessed saccadic measures at baseline; future 

studies should consider repeating saccadic assessment concurrently with cognitive testing. 

We did not examine whether cognitive decline was better predicted with saccades or other 

potential clinical biomarkers, such as cognitive tests, which should be considered in future 

studies. As with many longitudinal studies, missing data were problematic (Supplementary 

Table 5). Additionally, the age-matched cohort completed detailed cognitive testing at 36-

month follow up, but not at 54 months. However, utilising a linear mixed effect modelling 

approach facilitated statistical analysis despite missing data and does not remove participant 

data list-wise. Some participants improved in their neuropsychological assessment scores 

over time, which could be due to a learning effect, medication or normal fluctuations in 

cognition. To reduce practice effects, we used a time interval of 18 months between testing. 

Future studies could also stratify groups based on cognitive status (i.e. normal, MCI, PDD) to 

examine predictive power of saccades for cognitive decline within sub-groups. Finally, 

although visual abnormalities were screened for as part of a neurological examination, a 

detailed assessment of visual acuity or adoption of a more comprehensive ophthalmological 

battery were not undertaken in this cohort. Future studies should consider including such 

measures. 

Conclusions 
Saccades are a predictor of cognitive decline in PD, with selective relationships between 

saccade characteristics and cognitive domains. Our results provide evidence that quantitative 

saccadic analysis using saccadometry in early PD is a potentially useful predictive marker for 

cognitive decline. Saccadometry is a low-cost and easy to use tool, which allows 



9 
 

comprehensive saccadic analysis within clinical practice. Combining this assessment with 

other clinical tools and biomarkers may provide an optimal means of predicting cognitive 

decline and, ultimately, more targeted early therapeutic intervention for dementia. Future work 

will examine saccades as a predictor of PD dementia as the cohort evolves.  
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Figure 1 – Saccadometer device and placement. 
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Figure 2 - Flowchart of participants recruited and assessed throughout the ICICLE-PD 

study. 
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Table 1 - Participant characteristics at baseline 

Characteristics Control 
(n=90) 

Mean (SD) 

PD 
(n=141) 

Mean (SD) 

p 

Demographics    
 Age 67.9 (8.2) 66.4 (10.4) .214 
 Height 1.7 (0.1) 1.7 (0.1) .878 
 Weight 80.2 (14.2) 79.0 (16.5) .565 
 NART 115.9 (8.7) 114.7 (10.7) .351 
 GDS-15 1.0 (1.5) 2.8 (2.6) <.001 
 Years of Education 13.1 (3.4) 12.8 (3.8) .521 
     

Cognition    
Global MoCA 26.9 (2.5) 25.3 (3.6) <.001 
 MMSE 29.0 (1.2) 28.6 (1.3) .023 
Executive 
function 

Phonemic Fluency 12.5 (4.4) 11.0 (4.5) .001 
Semantic Fluency 23.8 (6.1) 21.3 (6.5) .002 

 OTS 16.4 (2.6) 14.2 (4.0)  .003 
Attention PoA 1281.3 (139.1) 1370.5 (210.0)  <.001 
 PoA CoV 50.2 (9.9) 53.2 (10.0) .031 
 Digit Vigilance 95.9 (5.8) 92.1 (12.5)  .055 
Memory PRM 20.7 (2.4) 19.7 (2.9) .130 
 SRM 16.1 (1.9) 15.3 (2.2) .129 
 PAL 1.8 (0.5) 2.1 (0.8) .001 
     

Clinical    
 Disease duration - 6.4 (6.1) - 
 H&Y - I(32)/ II(80)/ III(28)/ IV(1) - 
 UPDRS III - 26.9 (12.1) - 
 LEDD - 178.1 (148.2) - 
     

Saccades     
 Latency - Mean 247.0 (60.1) 258.4 (64.3) .180 
 Latency - SD 150.5 (79.5) 168.9 (89.3) .112 
 Duration - Mean 53.2 (6.4) 52.1 (7.1) .195 
 Duration - SD 10.4 (5.5) 10.2 (5.0) .882 
 Amplitude - Mean 10.9 (2.0) 9.9 (2.2) .001 
 Amplitude - SD 2.7 (1.3) 2.7 (1.2) .939 
 Peak Vel - Mean 413.6 (96.9) 402.6 (108.6) .438 
 Peak Vel - SD 83.0 (47.2) 88.8 (49.8) .377 
 Av Vel - Mean 209.6 (46.8) 195.3 (49.2) .029 
 Av Vel - SD 46.2 (22.3) 45.5 (22.1) .816 
     

[Significance level p≤0.03 highlighted in bold. MoCA = Montreal Cognitive Assessment, MMSE = Mini Mental 

State Examination, OTS = One Touch Stockings, PoA = Power of attention, CoV = Coefficient of variance, PRM = 

Paired Recognition Memory, SRM = Spatial Recognition Memory, PAL = Paired Associated Learning, MDS-UPDRS 

III = Movement Disorders Society-Unified Parkinson’s Disease Rating Scale Part III, LEDD = Levodopa equivalent 

daily dose, GDS-15 = Geriatric Depression Score, Vel = Velocity, SD = Standard Deviation. Saccadic latency and 

duration measured in milliseconds, Amplitude measured in degrees, Peak and Mean velocity measured in degrees 

per second] 
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Table 2: Summary of association between baseline pro-saccades and longitudinal cognitive scores using linear mixed effects modelling 
  

Global Executive function Attention Memory   
MocAa Phonemic Fluencyb Semantic Fluencyc OTSd PoAe PoA CoVf Digit Vigilanceg PRMh SRMi PALj 

  
β p β p β p β p β p β p β p β p β p β p 

Basic model + 
Latency Mean 

Latency Mean 
0.000 0.969 0.004 0.443 -0.002 0.824 -0.010 0.095 0.530 0.087 0.011 0.420 -0.016 0.357 -0.002 0.640 -0.005 0.031 0.000 0.898 

Latency Mean x Time 
-0.004 0.016 -0.002 0.308 -0.003 0.404 0.004 0.128 0.142 0.285 0.004 0.540 -0.010 0.113 -0.003 0.060 0.003 0.043 0.001 0.414 

Basic model + 
Latency SD 

Latency Mean SD 
0.001 0.872 0.004 0.263 -0.001 0.797 -0.007 0.099 0.352 0.112 0.007 0.456 -0.010 0.417 -0.002 0.350 -0.003 0.122 -0.001 0.593 

Latency Mean SD x Time 
-0.002 0.032 -0.002 0.325 -0.003 0.148 0.004 0.030 0.069 0.448 0.005 0.275 -0.001 0.735 -0.001 0.251 0.001 0.282 0.000 0.641 

Basic model + 
Duration Mean 

Duration Mean 
0.032 0.425 0.066 0.189 0.005 0.941 0.063 0.226 -0.942 0.731 -0.141 0.266 0.018 0.905 -0.015 0.663 0.008 0.703 -0.013 0.475 

Duration Mean x Time 
-0.008 0.535 -0.007 0.703 0.001 0.967 -0.014 0.530 0.759 0.477 0.128 0.018 -0.023 0.648 -0.017 0.203 -0.025 0.069 0.014 0.219 

Basic model + 
Duration SD 

Duration SD 
0.012 0.841 -0.076 0.280 -0.083 0.419 0.032 0.681 9.507 0.017 0.186 0.312 -0.295 0.196 -0.094 0.047 -0.037 0.247 -0.028 0.259 

Duration SD x Time 
-0.053 0.011 -0.011 0.712 -0.059 0.171 -0.012 0.727 0.996 0.547 0.147 0.080 -0.055 0.498 -0.008 0.700 0.006 0.775 0.011 0.524 

Basic model + 
Amplitude Mean 

Amplitude Mean 
-0.109 0.409 0.056 0.738 0.098 0.686 -0.073 0.662 -14.590 0.091 -0.449 0.265 0.694 0.153 -0.032 0.764 0.015 0.830 0.030 0.603 

Amplitude Mean x Time 
0.076 0.079 0.082 0.159 0.064 0.457 0.028 0.691 -6.744 0.046 -0.275 0.113 0.180 0.279 0.108 0.009 -0.001 0.975 -0.021 0.572 

Basic model + 
Amplitude SD 

Amplitude SD 
-0.156 0.518 -0.003 0.991 0.016 0.969 -0.323 0.295 -3.203 0.843 -0.232 0.756 0.500 0.579 -0.117 0.554 0.052 0.684 0.046 0.671 

Amplitude SD x Time 
0.018 0.820 0.054 0.614 -0.072 0.645 0.206 0.114 -7.810 0.216 -0.267 0.406 0.301 0.329 0.116 0.128 -0.008 0.922 0.002 0.979 

Basic model + Peak 
Vel Mean 

Peak Vel Mean 
-0.002 0.464 -0.002 0.569 0.002 0.709 -0.002 0.644 -0.205 0.239 -0.004 0.653 0.015 0.133 0.001 0.599 0.000 0.934 0.000 0.701 

Peak Vel Mean x Time 
0.002 0.056 0.002 0.085 0.001 0.651 0.001 0.339 -0.162 0.010 -0.008 0.018 0.003 0.410 0.002 0.029 0.001 0.439 -0.001 0.362 

Basic model + Peak 
Vel SD 

Peak Vel SD 
-0.002 0.720 -0.001 0.940 0.002 0.858 -0.002 0.808 -0.158 0.683 0.000 0.996 0.020 0.346 0.002 0.634 0.000 0.798 0.002 0.554 

Peak Vel SD x Time 
0.002 0.194 0.003 0.325 0.000 0.992 0.005 0.100 -0.380 0.009 -0.012 0.107 0.010 0.172 0.003 0.108 0.001 0.757 -0.001 0.578 

Basic model +  Av 
Vel Mean 

Average Vel Mean 
-0.006 0.315 -0.003 0.699 0.003 0.783 -0.005 0.515 -0.443 0.254 -0.008 0.655 0.025 0.254 0.001 0.909 0.000 0.885 0.002 0.523 

Average Vel Mean x Time 
0.003 0.127 0.004 0.159 0.002 0.645 0.001 0.718 -0.297 0.044 -0.018 0.020 0.007 0.338 0.004 0.014 0.002 0.376 -0.002 0.329 

Basic model +  Av 
Vel SD 

Average Vel SD 
-0.008 0.563 -0.008 0.624 0.002 0.932 -0.006 0.718 -0.309 0.723 0.002 0.969 0.037 0.442 -0.001 0.903 0.000 0.9871 0.003 0.617 

Average Vel SD x Time 
0.003 0.429 0.006 0.314 0.001 0.929 0.009 0.227 -0.729 0.035 -0.029 0.108 0.024 0.161 0.007 0.108 0.002 0.6767 -0.001 0.708 

Significant results p ≤0.03 highlighted in bold.  
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Supplementary Material: Detailed Saccadic Assessment  

Saccadometry allows for up to 300 saccades to be recorded within 15 minutes, and is 

automatically calibrated using a small number (n=20) of preliminary trials. Specifically, 

participants looked at peripheral targets 10° to the left and 10° to the right of the central target. 

Targets were projected on an even surfaced wall at a distance of 1.5m from the participants 

chair in a quiet room with dimmed lights. Those with visual correction via contact lenses wore 

these during testing, but those who required glasses were asked during calibration if they 

could see all three saccadic targets clearly without their glasses and without diplopia before 

testing. Prior to the data recording, an interactive tutorial was given to each participant on the 

testing procedures. Each participant reported seeing all three target lights clearly, and 

demonstrated full understanding of the expected pro-saccade task before data recording. 

The saccadometer consisted of a head-mounted sensor that rested on the nose of the 

participant and measured horizontal saccades. The saccadometry task involved a pro-

saccadic step task paradigm with no anti-saccadic gap or overlap of stimuli. The saccadometer 

directed a laser (Red dot; 13 cd/m2, ~ 0.1°) at a wall 1.5m in front of the participant that they 

were instructed to fixate on. After a fixed fore-period (1 sec) and then a random fore-period 

(0.5-1sec) the central fixation light was extinguished and either a left or right target, chosen at 

random (50% fixed probability), was turned on and remained until a saccade was performed 

or for a maximum of two seconds. Participants performed a single run of the pro-saccade task 

for a total of 90 saccades (or trials) which took 5-10 minutes. Metrics from these responsive 

pro-saccades were extracted for further analysis.  

Recordings were stored initially in the saccadometer control unit before being transferred to 

LatencyMeter software (v.6.6, Ober Consulting). The LatencyMeter program automatically 

detected saccades via a velocity threshold (>5°/s) and removed erroneous trials due to blinks, 

as well as abnormal profiles (i.e. eye movement falling outside of normal range) as determined 

by the velocity, acceleration, duration and position (i.e. wrong direction) of eye movement 

traces1. It removed eye movements falling outside of an amplitude range (5-15°) and latency 

range 50-600ms (arbitrary limits were chosen to exclude anticipatory saccades or those with 

prolonged latency due to inattention, but to include express or other early saccades)1. Trial 

removal was based on the log likelihood value for each sample of a given trace according to 

the mean and standard deviation (SD) calculated from the whole population of traces for that 

sample1. The trace was rejected if the average log likelihood value for whole trace was below 

the rejection threshold for the profile metrics1. Other criteria for rejection were saccade 

detection failure and sensor range saturation. All pro-saccadic signals were visually checked 

via graphed traces of eye location and velocity to ensure appropriate recording using the 

LatencyMeter software. 

References 

1. Ober JK, Przedpelska-Ober E, Gryncewicz W, et al. Hand-held system for 
ambulatory measurement of saccadic durations of neurological patients. 
Warsaw: Komitet Biocybernityki i Inzyneierii Biomedycznej PAN 2003:187-
198. 
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Supplementary Table 1 - Correlations between baseline cognition and saccadometry metrics in Parkinson's disease 

r(p) Global Executive function Attention Memory 

 
MocA Phonemic 

Fluency 

Semantic 
Fluency 

OTS PoA PoA CoV Digit Vigilance PRM SRM PAL 

Latency Mean -.116 (.191) .056 (.507) -.161 (.059) -.263 (.002) .186 (.026) .061 (.470) -.116 (.168) -.097 (.263) -.285 (.001) .321 (<.001) 

Latency SD -.025 (.779) .120 (.154) -.067 (.438) -.203 (.018) .118 (.159) .067 (.429) -.090 (.285) -.054 (.535) -.239 (.005) .253 (.003) 

Duration Mean .041 (.643) .119 (.157) -.034 (.689) .110 (.203) .046 (.588) -.119 (.157) -.049 (.560) .008 (.929) .011 (.899) -.170 (.047) 

Duration SD -.015 (.867) -.070 (.408) -.057 (.504) .025 (.770) .308 (<.001) .128 (.127) -.163 (.052) -.085 (.326) -.195 (.023) .017 (.848) 

Amplitude Mean -.116 (.193) .053 (.532) .029 (.739) -.021 (.812) -.190 (.023) -.054 (.525) .162 (.054) -.059 (.497) .047 (.588) -.042 (.624) 

Amplitude SD -.137 (.122) .014 (.864) -.026 (.759) -.081 (.351) .017 (.843) .042 (.618) .046 (.588) -.058 (.506) -.028 (.743) .089 (.301) 

Peak Vel Mean -.094 (.293) -.047 (.577) .031 (.714) -.047 (.585) -.147 (.080) .025 (.765) .186 (.026) -.015 (.865) .027 (.754) .029 (.740) 

Peak Vel SD -.067 (.454) .021 (.802) .011 (.900) -.029 (.742) -.017 (.839) .107 (.202) .111 (.186) -.001 (.994) .013 (.880) .075 (.387) 

Av Vel Mean -.125 (.161) -.026 (.757) .035 (.681) -.051 (.552) -.166 (.047) .021 (.801) .154 (.067) -.041 (.637) .022 (.802) .046 (.595) 

Av Vel SD -.119 (.180) -.025 (.768) -.012 (.890) -.029 (.733) -.027 (.747) .087 (.303) .090 (.284) -.031 (.717) -.018 (.831) .075 (.386) 

           

Figures in table are Pearson’s r (p-value); Significant p ≤0.03 results highlighted in bold. 

MoCA = Montreal Cognitive Assessment, OTS = One Touch Stockings, PoA = Power of attention, CoV = Coefficient of variance, PRM = Paired Recognition Memory, SRM = Spatial Recognition 
Memory, PAL = Paired Associated Learning, MDS-UPDRS III = Movement Disorders Society-Unified Parkinson’s Disease Rating Scale Part III, LEDD = Levodopa equivalent daily dose, GDS-15 = 
Geriatric Depression Score. 
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Supplementary Table 2 - Correlations between baseline cognition and saccadometry metrics in controls 

r(p) Global Executive function Attention Memory 

 
MocA Phonemic 

Fluency 

Semantic 
Fluency 

OTS PoA PoA CoV Digit Vigilance PRM SRM PAL 

Latency Mean -.182 (.087) .012 (.912) -.147 (.166) -.324 (.002) .209 (.054) .177 (.102) -.107 (.326) -.111 (.311) -.015 (.890) .224 (.039) 

Latency SD -.024 (.826) .136 (.200) -.108 (.312) -.290 (.007) .222 (.040) .183 (.091) -.076 (.486) -.044 (.686) .095 (.389) .157 (.150) 

Duration Mean -.032 (.769) .022 (.834) .100 (.350) .002 (.986) .109 (.319) -.003 (.980) -.053 (.629) -.161 (.141) -.032 (.770) -.027 (.807) 

Duration SD .098 (.362) .065 (.544) .132 (.216) -.091 (.408) .177 (.104) -.101 (.357) .007 (.947) -.055 (.616) .126 (.250) -.120 (.276) 

Amplitude Mean -.168 (.116) -.100 (.351) -.089 (.406) -.177 (.105) .028 (.798) .066 (.548) -.023 (.837) .105 (.341) .153 (.163) .020 (.855) 

Amplitude SD -.062 (.562) .061 (.567) .093 (.382) -.162 (.140) .095 (.387) .073 (.504) -.048 (.658) .182 (.095) .234 (.031) -.035 (.749) 

Peak Vel Mean -.145 (.174) -.110 (.303) -.118 (.267) -.164 (.134) .015 (.890) .011 (.923) .022 (.837) .166 (.129) .167 (.127) .018 (.867) 

Peak Vel SD -.044 (.679) -.046 (.669) .029 (.784) -.084 (.446) .077 (.478) .039 (.720) -.014 (.897) .188 (.084) .224 (.039) -.033 (.764) 

Av Vel Mean -.121 (.259) -.118 (.267) -.112 (.294) -.163 (.137) -.029 (.794) .039 (.723) -.005 (.965) .153 (.162) .147 (.178) .028 (.798) 

Av Vel SD -.019 (.860) -.034 (.747) .120 (.262) -.091 (.410) -.004 (.971) -.017 (.875) .001 (.993) .225 (.038) .247 (.023) -.073 (.505) 

           

Figures in table are Pearson’s r (p-value); Significant p≤0.03 results highlighted in bold. 

MoCA = Montreal Cognitive Assessment, OTS = One Touch Stockings, PoA = Power of attention, CoV = Coefficient of variance, PRM = Paired Recognition Memory, SRM = Spatial Recognition 
Memory, PAL = Paired Associated Learning, MDS-UPDRS III = Movement Disorders Society-Unified Parkinson’s Disease Rating Scale Part III, LEDD = Levodopa equivalent daily dose, GDS-15 = 
Geriatric Depression Score. 
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Supplementary Table 3 - Cognitive change over 36 months 

 
Baseline (A1) 18months (A2) 36months (A3) Paired change (A3-A1) 

Repeated measures (A1, A2, 
A3) 

 

Control 
(n=90) 

PD (n=141) 
Control 
(n=76) 

PD (n=127) 
Control 
(n=66) 

PD (n=107) Control PD Control PD 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
Chi 
sq 

p 
Chi 
sq 

p 

MoCA 26.9 2.5 25.3 3.6 27.4 2.6 25.8 3.8 27.2 2.8 25.6 4.0 -0.19 2.45 -0.28 2.85 3.9 0.137 7.8 0.020 

F 12.5 4.4 11.0 4.5 12.8 3.8 12.1 4.4 13.1 4.2 12.7 4.9 -0.71 3.61 -1.49 4.12 4.9 0.086 10.0 0.007 

Animals 23.8 6.1 21.3 6.5 23.4 7.1 21.6 7.1 23.2 5.6 21.3 7.9 1.02 5.83 0.55 6.59 1.2 0.543 4.7 0.096 

OTS 16.4 2.6 14.2 4.0 16.5 2.5 14.1 4.6 16.4 2.6 12.5 6.0 0.31 2.32 1.92 4.58 0.2 0.901 11.1 0.004 

PoA 1281.3 139.1 1370.5 210.0 1306.6 161.0 1415.7 224.5 1333.0 185.1 1466.8 304.3 -60.78 139.58 -117.65 253.71 5.3 0.069 33.7 0.000 

PoA CoV 50.2 9.9 53.2 10.0 51.9 8.8 55.2 12.7 53.7 13.9 57.1 13.3 -3.96 13.14 -3.98 11.01 4.9 0.086 14.8 0.001 

Digit Vig 95.9 5.8 92.1 12.5 96.5 6.7 89.9 14.5 95.0 12.9 89.3 14.0 0.49 11.93 3.64 10.35 5.9 0.051 4.8 0.091 

PRM 20.7 2.4 19.7 2.9 20.7 2.6 19.8 2.9 20.6 2.9 19.6 3.5 0.05 2.28 0.40 2.50 0.2 0.888 1.5 0.478 

SRM 16.1 1.9 15.3 2.2 1.9 0.6 2.3 1.0 15.4 2.3 5.8 2.4 1.07 2.11 9.85 3.79 103.5 0.000 187.6 0.000 

PAL 1.8 0.5 2.1 0.8 15.6 2.1 14.5 2.8 1.9 0.7 2.3 1.1 -0.11 0.53 -0.30 0.77 93.0 0.000 151.9 0.000 

[Significance level p ≤ 0.03 highlighted in bold] 
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Supplementary Table 4 - Summary of the association between baseline saccadometry measures and longitudinal cognitive scores using linear mixed 
effects modelling in controls 

  
Global Executive function Attention Memory   
MocAa Phonemic Fluencyb Semantic Fluencyc OTSd PoAe PoA CVf Digit Vigilanceg PRMh SRMi PALj 

  
β p β p β p β p β p β p β p β p β p β p 

Basic model + 
Latency Mean 

Latency Mean 0.000 0.984 -0.001 0.924 -0.006 0.521 -0.012 0.007 0.293 0.267 0.008 0.660 -0.007 0.603 0.002 0.728 0.001 0.630 -0.001 0.762 

Latency Mean x Time -0.002 0.397 0.000 0.968 -0.006 0.280 0.004 0.089 0.024 0.858 0.004 0.718 0.014 0.097 0.000 0.862 0.000 0.868 0.001 0.611 

Basic model + 
Latency SD 

Latency Mean SD 0.002 0.526 0.007 0.174 -0.005 0.489 -0.007 0.025 0.351 0.069 0.015 0.237 -0.004 0.679 0.001 0.772 0.003 0.195 0.000 0.949 

Latency Mean SD x Time -0.001 0.649 -0.002 0.417 -0.003 0.396 0.003 0.173 -0.072 0.483 -0.004 0.615 0.016 0.010 0.002 0.361 -0.001 0.605 0.001 0.678 

Basic model + 
Duration Mean 

Duration Mean -0.004 0.919 0.001 0.991 0.128 0.152 0.015 0.707 1.827 0.450 -0.045 0.778 -0.035 0.786 -0.048 0.211 -0.001 0.962 -0.014 0.496 

Duration Mean x Time -0.028 0.209 -0.050 0.137 -0.084 0.098 -0.010 0.692 -0.862 0.513 0.061 0.562 -0.034 0.669 0.014 0.571 0.006 0.793 0.008 0.614 

Basic model + 
Duration SD 

Duration SD 0.019 0.673 0.062 0.436 0.093 0.385 -0.039 0.416 5.447 0.059 -0.060 0.749 -0.050 0.738 -0.041 0.363 0.040 0.196 -0.008 0.716 

Duration SD x Time -0.031 0.240 -0.037 0.349 -0.115 0.057 0.013 0.647 -2.782 0.071 -0.112 0.358 0.086 0.371 0.020 0.471 -0.031 0.218 0.019 0.316 

Basic model + 
Amplitude Mean 

Amplitude Mean -0.178 0.155 -0.200 0.352 -0.326 0.251 -0.278 0.035 2.831 0.714 0.259 0.604 -0.038 0.925 0.080 0.523 0.078 0.369 -0.029 0.663 

Amplitude Mean x Time 
0.171 0.018 0.071 0.502 0.013 0.933 0.074 0.335 6.560 0.109 0.344 0.282 0.207 0.409 -0.038 0.605 0.026 0.699 -0.013 0.801 

Basic model + 
Amplitude SD 

Amplitude SD -0.102 0.603 0.276 0.405 0.371 0.399 -0.385 0.061 8.705 0.454 0.582 0.450 -0.219 0.722 0.309 0.109 0.231 0.088 0.018 0.861 

Amplitude SD x Time 0.193 0.098 0.009 0.958 -0.353 0.152 0.132 0.271 4.967 0.438 -0.096 0.847 0.419 0.283 -0.035 0.760 -0.050 0.634 0.003 0.969 

Basic model + Peak 
Vel Mean 

Peak Vel Mean -0.004 0.165 -0.004 0.387 -0.010 0.095 -0.006 0.040 0.072 0.654 0.001 0.900 0.001 0.900 0.003 0.181 0.002 0.315 0.000 0.907 

Peak Vel Mean x Time 0.004 0.003 0.003 0.137 0.001 0.803 0.002 0.242 0.120 0.165 0.000 0.970 0.007 0.191 -0.001 0.651 0.000 0.929 0.000 0.818 

Basic model + Peak 
Vel SD 

Peak Vel SD -0.004 0.485 -0.002 0.825 0.001 0.919 -0.007 0.248 0.270 0.399 0.010 0.650 -0.002 0.902 0.009 0.086 0.006 0.107 0.000 0.944 

Peak Vel SD x Time 0.007 0.047 0.005 0.236 -0.004 0.511 0.001 0.860 0.165 0.337 -0.011 0.421 0.015 0.143 0.000 0.891 -0.002 0.560 0.000 0.964 

Basic model + 
Mean Vel Mean 

Average Vel Mean -0.007 0.180 -0.009 0.316 -0.020 0.107 -0.012 0.036 -0.008 0.980 0.011 0.608 -0.002 0.931 0.005 0.342 0.003 0.388 0.000 0.899 

Average Vel Mean x Time 
0.009 0.005 0.006 0.167 0.005 0.447 0.003 0.337 0.290 0.103 0.007 0.596 0.012 0.268 -0.002 0.455 0.000 0.974 -0.001 0.653 

Basic model + 
Mean Vel SD 

Average Vel SD -0.012 0.315 -0.001 0.940 0.017 0.526 -0.020 0.098 0.181 0.793 0.013 0.782 -0.008 0.817 0.018 0.112 0.012 0.116 -0.003 0.642 

Average Vel SD x Time 0.018 0.009 0.008 0.374 -0.016 0.264 0.007 0.315 0.328 0.370 0.000 0.994 0.027 0.229 0.000 0.976 0.000 0.940 -0.001 0.860 

Significant results p ≤0.03 highlighted in bold 

a Basic model = age, MDS-UPDRS III, Time; b Basic model = Number of years of education, age, time, age x time; c Basic model = Sex, number of years of education, age, LEDD, time; d Basic 
model = Age, time, MDS-UPDRS III, age x time, MDS-UPDRS III x time; e Basic model = Age, time, MDS-UPDRS III, GDS-15, age x time, MDS-UPDRS III x time, GDS-15 x time; f Basic model = 
Number of years of education, age, time, MDS-UPDRS III; g Basic model = Age, time, LEDD, MDS-UPDRS III, GDS-15, Age x time, LEDD x time, MDS-UPDRS III x time; h Basic model = Number of 
years of education, age, GDS-15, time; i Basic model = MDS-UPDRS III, time, MDS-UPDRS III x time; j Basic model = Time. 
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Supplementary Table 5 - Missing cognitive data 

  MoCA F Animals OTS PoA PoA CoV Digit Vig PRM SRM PAL 

PD 
 

           
Baseline 
(n=141) 

13 Introduced 
later in study 

1 Missing data 1 Missing data 7 Visual 
impairment 

(n=2), Missing 
data (n=5) 

2 Equipment 
failure 

2 Equipment 
failure 

2 Equipment 
failure 

7 Visual 
impairment 

(n=2), Missing 
data (n=5) 

7 Visual 
impairment 

(n=2), Missing 
data (n=5) 

7 Visual 
impairment 

(n=2), Missing 
data (n=5) 

 
18 months 
(n=127) 

0 0 0 3 Visual 
impairment 

(n=2), Missing 
data (n=1) 

3 Equipment 
failure 

3 Equipment 
failure 

3 Equipment 
failure 

3 Visual 
impairment 

(n=2), Missing 
data (n=1) 

3 Visual 
impairment 

(n=2), Missing 
data (n=1) 

3 Visual 
impairment 

(n=2), Missing 
data (n=1) 

 
36 months 
(n=107) 

3 Missing data 1 Missing data 1 Missing data 5 Visual 
impairment 

(n=2), Missing 
data (n=3) 

3 Missing data 3 Missing data 3 Missing data 5 Visual 
impairment 

(n=2), Missing 
data (n=3) 

5 Visual 
impairment 

(n=2), Missing 
data (n=3) 

5 Visual 
impairment 

(n=2), Missing 
data (n=3) 

 
54 months 
(n=86) 

0 0 0 36 Change in 
protocol, not 
completed 

(n=36), Visual 
impairment 

(n=1) 

35 Change in 
protocol, not 
completed 

35 Change in 
protocol, not 
completed 

35 Change in 
protocol, not 
completed 

36 Change in 
protocol, not 
completed 

(n=36), Visual 
impairment 

(n=1) 

36 Change in 
protocol, not 
completed 

(n=36), Visual 
impairment 

(n=1) 

36 Change in 
protocol, not 
completed 

(n=36), Visual 
impairment 

(n=1) 

Control 
           

 
Baseline 
(n=90) 

1 Missing data 0 0 5 missing data 4 Equipment 
failure (n=3), 
Missing data 

(n=1) 

4 Equipment 
failure (n=3), 
Missing data 

(n=1) 

4 Equipment 
failure (n=3), 
Missing data 

(n=1) 

5 missing data 5 missing data 5 missing data 

 
18 months 
(n=76) 

2 0 0 0 1 Missing data 1 Missing data 1 Missing data 0 0 0 

 
36 months 
(n=66) 

1 Missing data 1 Missing data 1 Missing data 2 Missing data 1 Missing data 1 Missing data 1 Missing data 2 Missing data 2 Missing data 2 Missing data 

 
54 months 
(n=62) 

0 0 0 Change in 
protocol, not 
completed 

Change in 
protocol, not 
completed 

Change in 
protocol, not 
completed 

Change in 
protocol, not 
completed 

Change in 
protocol, not 
completed 

Change in 
protocol, not 
completed 

Change in 
protocol, not 
completed 

 


