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Abstract

- Perla Maiolino' - Ed Bray’ - Fumiya lida’

This paper proposes a framework to investigate the influence of physical interactions to sensory information, during robotic
palpation. We embed a capacitive tactile sensor on a robotic arm to probe a soft phantom and detect and classify hard inclusions
within it. A combination of PCA and K-Means clustering is used to: first, reduce the dimensionality of the spatiotemporal
data obtained through the probing of each area in the phantom; second categorize the re-encoded data into a given number
of categories. Results show that appropriate probing interactions can be useful in compensating for the quality of the data, or
lack thereof. Finally, we test the proposed framework on a palpation scenario where a Support Vector Machine classifier is
trained to discriminate amongst different types of hard inclusions. We show the proposed framework is capable of predicting
the best-performing motion strategy, as well as the relative classification performance of the SVM classifier, solely based on

unsupervised cluster analysis methods.

Keywords Robotic palpation - Tactile sensing - Physical sensing - Sensory—motor coordination

1 Introduction

In the last decades, substantial efforts have been made in
enhancing the sensing capabilities of robots by providing
them with a sense of touch (Dahiya et al. 2010; Drimus et al.
2014). Haptic sensing differs from other modalities, such
as vision, in virtue of its tight coupling with, and need of,
physical interactions. Haptic sensing requires direct physi-
cal contacts with sensing targets, inducing spatio-temporal
force patterns on the contact surface, which may or may not
be the consequence of motor behaviors of the robots. Further-
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more, force patterns are significantly related to the shape and
mechanical properties of sensing surfaces (e.g. stiffness) and
the target objects (Scimeca et al. 2018; Iida and Nurzaman
2016).

In medical palpation diagnosis, for example, given the
nature of soft tissues in the human body, haptic perception
plays a fundamental role (Puangmali et al. 2008). Here, prac-
titioners necessitate the use of different palpation strategies
according to the task, whether this is an organ to examine,
finding cancerous inclusions or investigating their charac-
teristics. In this context, contacts and physical interactions
are the basis of rich sensory stimuli, with which practi-
tioners can judge the conditions of target areas (Bendtsen
et al. 1995; Eberman and Finn 2010; Wang et al. 2010).
Indeed, previous research has focused on the use of haptics
for RMIS and medical training (McLaughlin et al. 2002).
These systems, currently based on vision, can be augmented
with tactile information, improving the ability of surgeons to
detect the mechanical properties of touched organs, and help
in the localization of tumors and lumps (Konstantinova et al.
2014a).

In the past, many robotics palpation systems have been
developed, for the detection of hard inclusions in soft tis-
sue. In the early 1980s, the development of the WAPRO-4
showed how a robotics palpation system couple be capable
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of performing simple breast palpation to identify relatively
large inclusions (Kato et al. 1988). This has been followed in
more recent years with increasingly anthropomorphic palpa-
tion systems (Dario and Bergamasco 1988) and abdominal
palpation systems (Davaria et al. 2014). Over a decade prior
to this work, Trejos et al investigated the ability to use TSI to
augment the abilities of surgeons to perform internal organ
palpation under minimally invasive surgery (Trejos et al.
2009). In Hui et al. (2016) and Hui and Kuchenbecker (2014),
Hui et al investigated the use of SynTouch BioTac tactile
sensor, coupled with a Gaussian inference model or Support
Vector Machine classifiers, for the detection of soft plas-
tic inclusions within a simulated silicon tissue sample. In
Gwilliam et al. (2010) Gwilliams et al compared the ability
of an artificial tactile sensor to that of a human finger, thus
showing key differences between the two, and the ability of
the former to outperform the latter in specific scenarios. In
Li et al. (2017), Li et al proposed the use of a compliant
capacitive tactile sensor array, between the tissue and a prob-
ing apparatus, to capture tissue properties during palpation.
They show the technology is capable of imaging lumps, if
somewhat dependent from their depth within the tissue.

In all previous research, there has been little focus on the
physical palpation techniques employed by the robot during
the palpation examination. The robotic palpation techniques
employed, in fact, were mainly simple vertical displace-
ment, mostly with the tactile sensor constantly normal to
the surface of the tissue under palpation. However, it is
generally possible to positively influence sensory response
through appropriate physical interaction, as advocated by
the sensory—motor coordination framework. In the context
of palpation, the efficacy of diagnosis could be significantly
improved by influencing the sensory response through appro-
priate palpation techniques (Lungarella et al. 2003; Scimeca
et al. 2018).

The strong dependence between the somatosensory sys-
tem and motor actions in human palpation has been inves-
tigated in relation to the development of robotic palpation
systems for detection of hard inclusions (Konstantinova et al.
2014b; Sornkarn and Nanayakkara 2016; Yen 2003; Kon-
stantinova et al. 2017; Herzig et al. 2018). In the context of
hard inclusion detection, the structure of sensory stimuli gen-
erated physical palpation, helps to understand similarities or
differences amongst the palpated objects. Through pertinent
physical interactions, sensory stimuli of similar objects will
maintain strong invariant similarities in the sensing space,
whilst increasing their difference with dissimilar objects. In
this context, the invariances allow for the dissociation of
stimuli originated from different objects and the associa-
tion, instead, of stimuli derived from similar objects. This
fundamental process, corresponding to the separation and
association of sensor stimuli into groups, will be referred to
as categorization.
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The importance of categorization has previously been
emphasized in Hoffmann and Pfeifer (2012), and the use
of active interactions to solve the categorization problem has
been explored in previous research (Pfeifer and Scheier 1997;
Nolfi and Marocco 2002; Tuci et al. 2009). Considering the
problem of categorization in the scenario of robotic palpa-
tion systems, much is still unclear. This paper addresses two
related problems. First, we wish to investigate how motor
actions can aid in the separation and categorization of tac-
tile sensor information. Research has previously shown that
motor actions can introduce structure in sensory information
(Lungarella et al. 2005; Sporns and Lungarella 2006; Pfeifer
et al. 2007), but it is yet to be understood which principles
guide the emergence of such structure. Second, as later shown
in this paper, knowing the task to solve may not be enough
to understand which physical interaction strategy is appro-
priate to use, or predict its effects to the tactile information.
Here, instead, it is first necessary to understand the properties
of the objects in interaction with the agent and the level of
abstraction intended for the categorization.

In order to address the above problems this paper investi-
gates the processing of sensor signals based on dimension-
ality reduction and clustering. We propose a framework to
explore the way active physical interactions with a soft body
affect the structure of haptic spatio-temporal information.
Through the proposed framework it is thus possible to choose
in which way it is most appropriate to interact with objects,
to improve their categorization and thus solve a classification
task. The task, in this scenario, is the detection and classifi-
cation of hard inclusions within a robotic palpation system.

The paper is organized as follows: In Sect. 2 we describe
the methods used, starting from the experimental set-up in
Sect. 2.1, to the acquisition of tactile data though various
probing strategies in Sects. 2.2 and 2.3. In Sect. 3 we describe
the proposed framework. In Sect. 4 we report the results of
the experiments followed by a case study in Sect. 5 and the
conclusion in Sect. 6.

2 Methods

We arrange an experimental scenario where a robotic arm,
equipped with an end-effector and a tactile sensor, probes the
soft tissue of a soft phantom organ, to detect hard inclusions
within it. The properties of the phantom organ designed to
test the ability of the robotic agent to be detect hard inclusions
by their depth and size, as shown to be important in previous
systems (Herzig et al. 2018).
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Fig.1 The figure shows the robotic set-up for the experiments, including a the robot set up and b-e the phantoms developed and their properties

2.1 Soft phantom and robot set-up

We built two 160 x 160 x 40 mm soft phantom organs using
Ecoflex 00-10" from Smooth-on. The phantom organs are
divided in 16 locations disposed in a coarse grained grid sys-
tem as shown in Fig. le. Each location in the phantoms may
or may not contain hard inclusions. An inclusion consists of a
3D-printed hard, spherical bead, embedded in the phantoms
at a depth of either 5 mm or 15 mm, and having a diameter of
7 mm or 20 mm (Fig. 1d). Hereafter we may refer to a 7 mm
inclusion placed at a depth of 5 mm as SS (Small-Shallow),
a 20 mm inclusion placed at 5 mm as BS (Big-Shallow),
a 7 mm inclusion placed at 15 mm as SD (Small-Deep), a
20 mm inclusion placed at 15 mm as BD (Big-Deep) and an
area containing no hard inclusions as NA.

The experiments were performed on two phantoms: Ph-1,
containing 12xNA, 1xS8D, 1xSS, 1xBS, 1xBD (Fig. 1b);
and Ph-2, containing 4xXNA, 3xSD, 3xSS, 3xBS, 3xBD
(Fig. Lc¢).

We 3D-printed a custom-made end-effector and inte-
grated a capacitive tactile sensor onto its surface to retrieve
tactile images during the probing experiments (Fig. 2b).
The printed end-effector, coupled with the tactile sensor, was
mounted onto an ST-Robotics R12/5 robotic arm? (Fig. 1a).

! https://www.smooth-on.com/products/ecoflex-00-10/.

2 http://www.robotshop.com/uk/st-robotics-r12-5-axis-articulated-
robot-arm.html.

2.2 Tactile sensor technology and data acquisition

High spatial resolution is a crucial component of the sensor
technology necessary for the analysis in this paper. The tac-
tile sensor used is described in Schmitz et al. (2011). The
adopted sensing mode is based on the capacitive transduc-
tion principle. A capacitive transducer (i.e., a tactile element,
or taxel) is organized in a layered structure: the lower layer
consists of the positive electrode, which is mounted on a Flex-
ible Printed Circuit Board (FPCB); a small air chamber act
as dielectric and the upper layer is a ground plane made with
conductive lycra. The tactile sensor is made up of a number
of taxels geometrically organized in triangular modules.

In the current prototype, each module hosts 7 taxels
(Fig. 2b), as well as the Capacitance to Digital Converter
(CDC) chip (namely, the AD7147 from Analog Devices) for
converting capacitance values to digital. The CDC chip can
measure variations in capacitance values with 16 bits of reso-
lution. All the modules are interconnected and communicate
through an SPI bus to a read-out board which performs a pre-
liminary processing of the tactile sensor data and send them
to the PC through CAN bus (Fig. 2a) with a sensitivity of
0.32 fF.

In this context, the normal forces exerted on the sensor
produce variations in capacitance values reflecting the var-
ied pressure over the taxel positions. A sensor reading, or
tactile image, from the tactile sensor described is produced
at 20 Hz, and corresponds to a 7-dimensional array, where
each element contains the capacitance variation value of the
corresponding taxel.
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Fig. 2 a The CySkin technology architecture. The hexagonal patch is
connected to a Intelligent Hub Board (IHB) that collect the tactile sensor
data and send them to the PC through a CAN bus. b The sensorised probe
coupled with the CySkin patch used for the experiments
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Fig. 3 Diagram of the two probing motions employed. The vertical
probing motion is performed when r = 0 and is described by the
parameter d. The rotatory motion is performed with r > 0, and is
fully described by both the d and r parameters

2.3 Probing strategies

We control the r12/5 robotic arm open-loop in Cartesian coor-
dinates. A teach-pendant was used to manually teach the
robot the x-y location of the areas to probe. We use the stored
end-effector positions in the subsequent control algorithm,
where the robot automatically probes each location using
the preferred probing strategy. We differentiate between two
qualitatively different types of probing strategies, summa-
rized in Fig. 3: vertical and rotatory.

First, the vertical probing strategy is performed with the
probe aligned vertically and plunged directly down into the
phantom at 0.5 mm increments. After each increment, the
robot briefly pauses to allow a tactile image to be recorded
before continuing with the next movement. This continues
until the probe is at a depth d below the surface of the silicon,
whereupon it stops recording and returns to a neutral position
10 mm above the surface in a single movement.

Second, the rotary motion is performed with the robot d
mm below the surface of the silicone, rotating about a nexus
point r mm away in the vertical direction. To reach the initial
position of this motion strategy, the robot moves vertically
downward from its rest position, until it reaches the position
set by d. Hence, a nexus point r distant from the end effector
is assumed, and the robot rotates about it in the +6 direction
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Abstraction Level

Fig.4 Analytical framework

until it is at an angle of 30° from its initial, vertical, position.
Here, the palpation action can begin. The probe rotates in
the —6 direction at 1° increments, recording a tactile image
after each step. Once the probe has rotated of 60° it stops
recording, and returns to its rest position 10 mm above the
surface of the silicone.

In general, a probing strategy can be uniquely identified
by a depth d and a radius r, thus:

@z{d}, (M

r

where if r = 0, the probing motion will be vertical, while
if » > 0 the probing takes place via the rotatory strategy
(Fig. 3).

3 Analytical framework

In this paper we consider the framework in Fig. 4. In the
framework, an agent retrieves tactile sensor information
while interacting with samples of objects, defined by a task.
Here, the tactile information is directly influenced by the
interactions with the samples. A categorization system allows
for the information to be: first, re-encoded into a meaningful,
lower-dimensional space (Cognitive Mapping); second, dif-
ferentiated into useful categories (Category Formation). The
abstraction level corresponds to the number of categories that
should be observed in the sensor information and has a direct
influence on the significance of the formed categories. At its
limit, 2 categories might be too coarse to be useful in cap-
turing differences amongst different types of objects, while a
number of categories equal to the number of object samples is
impractical in identifying any similarities amongst them, and
therefore amongst similar objects. The direct influence of the
physical interactions to the tactile information, if substantial,
should be observable in the category formation process.

3.1 Task and physical interactions

Within the considered framework, the agent is an embod-
ied system equipped with a tactile sensor, and capable of
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performing probing actions. The interactions consist of phys-  as:
ical probing, through different strategies, of target areas in .
a soft phantom, as was described in Sect. 2.3. As exempli- W= L Z - )
fied in Fig. 5, an experiment consists of an agent probing N '

a preselected phantom with a chosen probing strategy. The
agent iteratively selects a target area in the phantom to probe,
and performs the chosen probing strategy for the experiment
(described by ©@) while acquiring and storing tactile infor-
mation. After probing all intended areas the stored sensor
information can undergo categorization.

3.2 Categorization
3.2.1 Cognitive mapping

A process is needed to reduce the high dimensionality of the
spatiotemporal data acquired through the tactile sensor, while
interacting with the environment. We define a tactile image
sequence as a series of tactile sensor readings taken at set
intervals, and concatenated into a single array. After acquir-
ing tactile image sequences for each probed location, we
use Principal Component Analysis projection (PCA) Tip-
ping and Bishop (1999) to reduce the dimensionality of the
acquired data (Lloyd 1982).

For a set of N different locations in a phantom, let X be a
(N x D) matrix where each unique tactile image sequence
for a probed location is a D dimensional row (D >> 2) in the
matrix. The dimension of D, then, will be strictly dependent
on the probing strategy and on the interval at which the agent
captures each tactile image within the sequence.

After obtaining the tactile image sequences matrix X, we
begin the process by finding the average tactile sequence p

i=1

where X; is a column vector corresponding to the ith row in
X. We compute a (D x D) scatter matrix S as:

N
S=) xi—meE -’ 3)

i=1

and use Single Value Decomposition to factorize S into
S=QAQ™" @)

where Q is a matrix such that each column g; corresponds
to an eigenvector of S, and each element 4 j; in the diagonal
matrix A is its corresponding eigenvalue. We list the eigen-
vectors in ascending order of eigenvalue and select the first
two in the list. Let p; and p; be the selected eigenvectors
obtained from PCA.

We form a (D x 2) projection matrix P as:

P =[p!.pl] o)

where p]T and pg are column vectors in P.
Finally, we project the D-dimensional row vectors in X
onto a 2-dimensional subspace by:

W=X.P (6)
where W is a (N x 2) matrix. Each row in the matrix is a

2-dimensional encoding of a tactile image sequence for a
probed location.

@ Springer
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3.2.2 Category formation and abstraction level

To observe the effects of the probing strategies to the tactile
sensor information we wish to have a process to categorize the
re-encoded sensor information. We use K-Means Clustering
(K MQC) to find clusters in the data, where each found cluster
will represent a potential category of inclusion types. The
abstraction level is set by the number of clusters we wish
to find in the data. We initialize the K M C algorithm with
random centroids, and split the re-encoded sequences in W
into K clusters by:

v=KMCg(W) @)

The resulting v is an N-dimensional array, where each
element v; € {l,...,K},and Vi € {1, ... ,N} 3Jj €
{1, ... ,N}: i # j A v #v; (Fig. 5); in other words,
none of the resulting clusters can contain all the sample areas
in the phantom.

In general v; = k only if the ith tactile image sequence
belongs to cluster &, thus the v vector contains the cluster
membership of each probed location in the initial set.

To avoid cluster anomalies due to the random centroid
initializations we run the K M C algorithm three times and
discard the clustering attempt if, after convergence, any of
the three cluster guess vectors differs from any other. At the
end of the clustering process a list of centroids C is obtained,
uniquely dividing the space into K categories (5). In this
context, the cluster assignments for each probed location is
largely dependent on the probing strategy employed.

The category formation is an unsupervised analysis to the
data, and it is thus useful if performed on all available data
at the time of analysis.

3.3 Motion strategy scoring

Atthe end of the clustering process it is necessary to be able to
assess the usefulness of the probing in generating meaningful
data for classification. For the unsupervised clustering algo-
rithm to be able to find meaningful clusters in the re-encoded
tactile data, it is necessary that the data exhibits structure.
Therefore we score the probing strategy that generated the
data via a metric of structure tightly connected to the type of
clustering utilized in this paper, i.e. the silhouette score (or
coefficient) (Rousseeuw 1987).

The silhouette score s (i) for cluster i can be computed as:

b)) —ali)
SO = @@, b)) ®)

where a (i) is the mean intra-cluster distance of cluster i, and

b(i) is its mean nearest-cluster distance. We will refer to the
silhouette score s as the average score for each cluster found
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by KMC, i.e.:

K .

The score will thus be a number s € [—1, 1], where data
exhibiting more structure will score higher s values.

After probing the selected phantom through various prob-
ing strategies, the maximum observed silhouette score can
identify which probing strategy is capable of generating
structured data for hard inclusion detection and classifica-
tion. The analysis as described thus far can be done without
any prior labelling, and can thus be applied to all available
data at the time of analysis. After, a supervised method can,
for example, be used to perform the classification.

3.4 Experimental procedure

We execute 180 experiments, each of which sees the robot
probing all 16 areas of Ph-1 or Ph-2 with the preferred @
parameters. The experiments are carried out for all combi-
nations of d € [6.5mm, ..., 20.5mm] at 1 mm increments
andr € [Omm, 10 mm, 12 mm, 14 mm, 16 mm]. The bounds
were chosen to reach the minimal/maximal experimentally
feasible probing depth and rotation with the robotic arm, and
the devised soft phantoms.

Given the procedure two datasets are collected, consists
of time-series tactile data collected from either the first or
the second phantom under examination (Ph-1 or Ph-2). Each
dataset contains 90 sets of experiments, each of which is
composed of 12 data-points, so 1440 data-points are present
for each of the datasets. Each data-point is a time series of
tactile images with variable length (each tactile image is a
7-dimensional array). For the rotatory motion, each tactile
image was taken at 1° increments, while for the vertical
motion each image was taken at 0.5 mm increments.

For each of the experiments, after the probing has ended,
the time-concatenated data is used to form the tactile image
sequence matrix described (see Sect. 3.2.1). The matrix can
then be used to re-encode the tactile sensor information
for each probed location into a lower dimensional space
(Cognitive Mapping). After clustering, each probed loca-
tion will be differentiated into one of a predetermined number
of categories (Category Formation).

4 Results

The following sections will progressively analyse the described
framework, starting from the dimensionality reduction pro-
cess (PCA), to the repercussions of physical interactions to
categorization (K M C).
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Fig.6 Raw spatiotemporal tactile image sequences, as captured when
probing Ph-2 vertically at varying depths, in an area containing no hand
inclusion, and an area containing a 15 mm inclusion placed 20 mm deep.

4.1 Sound dimensionality reduction

One of the principal components of the proposed framework
is the reduction of the high dimensional spatiotemporal tac-
tile information, into re-encoded lower dimensional data. An
example of the acquired tactile information is shown in Fig. 6.
Without knowing which category each tactile sequence vec-
tor x; belongs to, it is impossible to assess the quality of
dimensionality reduction from X to W. However, it is fea-
sible to maximize the information retention in the original
tactile sensor data.

The explained variance can be thought of as a measure of
the information captured by the PCA subspace after projec-
tion. As the eigenvalues in A (see Eq. 4) are proportional to
the variance captured by the corresponding PCA principal
components, we can compute the explained variance t; for
the principal component p; as:

A

- (10)
Z?’:l Aj

T =

where A; is the eigenvalue corresponding to the ith principal
component. Here, 7; is a measure of the proportion of vari-
ance in the data, captured along the direction the principal
component p; in the original sensor space.

Figure 7 shows the explained variance of each p;, after the
robot probed Ph-2 in two different experiments where both
©® and the number of probed areas used for the projection (N)
were varied. As clear from the figure, the number of probed
areas and the ® choice significantly affect the distribution of
the sensor data in its original D space. In one case, the sensor
data is mainly spread along 7 axis (p; — p7) (Fig. 7b), mak-
ing it unsuitable for dimensionality reduction. In the other,
instead, p; captures the majority of the information in the
data (Fig. 7a). The figure suggests the suitability of the tac-
tile information to the drastic reduction in dimensionality is
dependent both on the properties of the probed areas, and
probing strategy employed.

NA
N

“time |
19.5
© o={3’}

Figure a shows the spatial layout of the taxels in the Cyskin sensor, while
each tactile image sequence in b and ¢ corresponds to a re-shaped x;

We further explore the way the probing strategy, and the
properties of the probed areas in the phantom, affect the
amount of information retained after dimensionality reduc-
tion. The explained variance achieved prior to categorization
is I = 11 4+ 1. Fig. 8b shows the explained variance trends
when the number of probed areas used for PC A projection
varies. When the number of probed areas in maximal (16
areas, red plot in Fig. 8b), the influence of © is negligible.
Conversely, with less data to base the PC A projection on (2
areas, blue plot in Fig. 8b), the choice of & can be the sole
determinant to induce structure in the data. A second interest-
ing phenomenon can be observed in Fig. 8a, when comparing
the explained variance obtained after projecting X based on
4 vs 8 probing areas in the phantom (yellow vs green plots).
Here, the agent retains more information, even when basing
the projection on less data, if the employed probing is vertical
and at a depth of at least 17.5 mm. This result suggests that
proper physical interaction can help information retention in
the absence of enough data.

Ultimately, we observe the influence of the quality of the
data samples to the information retention after PCA projec-
tion. Fig. 9a shows how in presence of very diverse inclusion
types (left triangle plot), the effects of the vertical probing
strategy @ to [ is negligible. The presence of very diverse
data, in fact, is useful for P C A to find good projection axis. In
absence of good data, or non-diverse inclusion types, instead,
appropriate interaction can minimize information loss (peaks
in Fig. 9a, b). In the figures, it is possible to see how the least
diverse set of samples can yet induce the tactile informa-
tion to retain most of the information when the phantom is
appropriately probed (peak in triangle plot, Fig. 9a).

The explained variance analysis shown allows for a pre-
liminary assessment of the robot palpation action employed.
For any one palpation we show that good palpation actions
correspond to information that can be safely projected onto
a two dimensional space, preserving most of the information
in but a few principal components.

@ Springer
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Fig. 8 The change in explained variance by the 2D PCA subspace projection, when probing vertically (a) and through the rotatory motion (b),
changing the number of samples used to find the principal components (N in X, see Sect. 3.2.2)
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4.2 Information structure and silhouette coefficient

Similarly to the previous sections we wish to observe the
effects of changing the ® parameters to the structure of the
information after P C A projection. The silhouette coefficient,
as explained in Sect. 3.3, depends on the mutual mean intra-
cluster distance, and mean nearest-cluster distance for each
pair of clusters (Fig. 10).

Figures 11 and 12 both show how the change in ®
influences the silhouette score. This influence, however, is
primarily dependent on N and the diversity of the inclusions
probed, as suggested by the change in trends of the plots
in each of the figures. Fig. 11a shows that little structure
emerges when probing Ph-2 vertically too superficially or
too deeply. In both cases, in fact, the sensor response is uni-
formly too moderate or too steep to have any variation from
an area of the phantom to another, thus inducing no variation
in the information. Fig. 11b, instead, shows how, when in
absence of enough data samples (2 areas, blue plot), a cor-
rect choice of ® can be the sole determinant for good or bad
structure in the information. In Fig. 12a and b, interestingly,
it is shown how even without much diversity in the inclu-
sion types, good structure can emerge when the phantom is

16.5 14.5 )
0 16 ’

At last, we investigate the influence of the number of
clusters K to the structure of the information s. The num-
ber of clusters sets the level of abstraction that the robot
may wish to have to make use of the tactile information,
and directly affect the interpretation of the emerging clus-
ters. We choose three varying number of clusters: K = 2,
presence vs. absence of an hard inclusion; K = 3, absence
vs. small vs. large inclusion; K = 5, all inclusion types.
Fig. 13 shows the trends when probing the soft phantom
vertically at varying depths and changing K in the KMC

probed appropriately (® = { or® = {

algorithm. The emerging clusters present different structural
properties. The different trends in the figure suggest how K
directly affect the way the probing strategy influences the
structure of the data. Interestingly, probing at a deeper depth
increasingly helps to sense inclusions, or detect their size. To
dissociate between all different inclusion types, instead, an
optimal probing depth is found for d =14.5 mm, after which
the increasingly high sensor response converges, and renders
the clusters less separable, thus decreasing the values of s.

4.3 Motion influence on cognitive maps

Predicting the effects of ® to the low-level encoding of the
information in W is a highly complex process. Understanding
such effects, however, would allow an agent to appropriately
choose a ® when solving the probing task.

To understand this relationship we make a plot of the
cognitive maps for each set of motion parameters in @
and observe how the encoding of each probed area changes
according to the probing strategy used. Here, to have a better
understanding of the motion effects, we perform the exper-
iment on the least cluttered phantom, i.e. Ph-1 (Fig. 1c),
which would suffer less from disturbances due to the vicinity
of adjacent inclusions. Figure 14a and b show the plots cor-
responding to probing the phantom vertically at the minimal
and maximal experimental depth. By increasing the depth of
probing, two very interesting effects take place: one, nearest
cluster distance b(i) between almost all types of inclusions
increases, allowing for better dissociation of diverse tac-
tile information; two, the intra cluster distance a (i) between
any two probing areas with the same type of hard inclusion
decreases, allowing for each possible phantom inclusion type
to be better represented.

Extending the analysis to the rotational probing strategy
we can similarly observe the effects of changing the param-
eters in ® from their minimal to their maximal experimental
values. Interestingly, when employing the rotational strat-
egy, the generated tactile information presents a structured
layout, by which it is already possible to dissociate one stim-
ulus type from another. In this scenario, then, the effect of the
rotational parameter r to the structure of the data s appears to
only mildly act upon the nearest-cluster distance parameter
(Fig. 15a, b). The effect of increasing d, instead, confirms the
hypothesis by which the probing depth influence acts upon
the intra cluster distance of each stimulus type.

The effect of the depth parameter can be attributed to
the strength in response of the sensorised probe. The tactile
sensor, in fact, detects pressure levels on its surface. When
probing the phantom at the minimum depth, the pressure reg-
istered by the sensor is mostly due to the elastic response of
the Ecoflex 00-10 soft phantom, almost independently from
the presence or absence of inclusions in the probed area.
As the depth increases, the elastic response is influenced
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Fig. 11 The change in silhouette coefficient by the 2D PCA subspace projection, when probing vertically (a) and through the rotatory motion (b),
changing the number of samples used to find the principal components (N in X, see Sect. 3.2.1)
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Fig. 12 The change in silhouette coefficient by the 2D PCA subspace projection, when probing vertically (a) and through the rotatory motion (b),
changing the quality of the samples used to find the principal components, while maintaining their number constant

by the non-elasticity of the hard inclusion, should there be
one in the probed area. We hypothesize this influence can
be captured by the sensor response in three ways: first, the
response should be higher when inclusions are present in
the probed area; second, the sensor’s increase in detected
pressure should arise at slightly different sample intervals
depending on where the inclusion is placed in the phantom
(deep vs shallow inclusion); third, the area of the response
should vary depending on the size and depth of the inclu-
sion.

In this framework, an acceptable probing depth is one
which neither saturates the sensor response in each area, nor
fails to detect changes in pressure when the probed area con-
tains non-elastic inclusion. The task of dissociating amongst
all different types of inclusions is optimized (i.e. maximal
silhouette score) for ® = {1%5} in Ph-1and ® = {1‘(‘)‘5} in
Ph-2. This analysis can be applied to any one dataset, to
explore which way the robot action has influenced the haptic
data in terms of information structure. The action parame-
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Fig. 13 The silhouette score of PCA projected tactile sensor informa-
tion for every probing area in the soft phantom, when performing the
probing action at different depths, and over varying number of clusters

ters generating the data with the maximal silhouette score
can thus be used to perform palpation on the tissue under
examination.



Autonomous Robots (2020) 44:1377-1393

10000{ @
® BS S’
NA -
7500 : e
O ss
5000 N
\..\\ 5
SERNNC 2

Ta 2500 \\ ~$

—2500
N

N N
NN
-5000 N \
1 \\
\ N IQ \
A \
— .

5000

p1

@) ©— {6(.)5}

o
,
;
,
,
,
,
4
;
I, 4
, g
¥ ,
, ,
o=
N
Ry
;
s N
,
,

—10000 -5000 0 10000 15000 20000

10000
<§5 @® BD
® Bs
8000 ®
B so
6000 <> ss
4000
/r-‘\
T& 200 @ .’§5
<~~~ \, 7
S Sazas S
7
' f\w
\ N
\N_ SN
~2000 D
—4000 .
D
-6000 \ P
~10000 0 10000 20000 30000
-
P1

(b) © = {1%5}

Fig. 14 The 2-dimensional projection of the tactile information generated from probing Ph-2 at varying depths. The ellipses correspond to the
distributions of the clusters based on their true inclusion types, at a distance of 2 standard deviations from their respective cluster center

40000
7
(#D ® w
N ® BS
30000 - @ NA
W so
Q s
20000
o~ 10000
Q.
0
~10000
@
7/ ﬁs
—20000 L K
N
—~20000 0 20000 40000 60000
-
P1
10
(@) o=
10
7
(#7 i
\\__//
30000 ®
B so
20000 <> SS
10000
o~
Q.
0 <§S
-10000
—20000 =)
{#3
\\ 4
~20000 0 20000 40000 60000
-
P1

@o- (i)

7
{ &b @
N ® ss
30000 ® A
Bl so
20000 O ss
PSRN
.
~ 10000 o ' i
1 /
Q s /
0 A
IS ,
;o= y
.
~10000 ! ) e <§S
\ e
\ -
Sl PE
y
~20000 ! ﬁS
N J
2206000 ) 20000 40000 60000
-
P1
(b) © — 10
16
[ #D o @
N ® Bs
30000 @ A
Bl so
20000 O s
10000
o
TQ
° 5
~10000
~20000 S
{3
N J
220000 ) 20000 40000 60000
-
(%1

we- (1)

Fig. 15 The 2-dimensional projection of the tactile information generated from probing Ph-2 at varying depths and radii. The ellipses correspond
to the distributions of the clusters based on their true inclusion types, at a distance of 2 standard deviations from their respective cluster center

@ Springer



1388

Autonomous Robots (2020) 44:1377-1393

4.4 Categorization and similarity abstractions

In robotics palpation, proper physical interaction can help in
the dissociation of tactile information, such that the emerg-
ing clusters can be meaningful with respect to solving a task
(e.g. finding hard inclusions in a soft phantom). Besides dis-
sociating amongst different object types, however, another
fundamental, yet usually neglected, fragment of information
is related to the similarity associations between clusters. The
distances between found clusters in the 2D re-encoded tactile
information subspace, in fact, grants the agent the possibility
to associate types of objects, and order or rank them based
on such association.

In the context of probing a soft phantom to find hard inclu-
sions, for example, the agent might need to prioritize possible
findings based on the depth of the inclusion, e.g. [NA, SD/BD,
SS/BS], we’ll refer to this as rank-1. In a different scenario
where the size of the hard inclusion should take priority over
its depth, the ranking might, for example, change to [NA,
SD/SS, BD/BS], or rank-2. In this scenario, the influence of
the physical interactions with the soft phantom may induce
the agent to see some inclusion types as more similar to oth-
ers, depending on which property is deemed more important.

To assess the performance of category formation in each
experiment, we first need to match the clusters found by the
KMC algorithm to any set of target classes for the phantom
under analysis. We devise a cluster matching process based
on maximal accuracy.

Given the previously computed guess vector v and classes
C, we first define a function I" such that

I'v,C) =[x|x=Cy, fori e[l,...,N]] an

where v; is the ith element in v, v; € C, and Cy, is the V;h
element in C. The function remaps the elements in v based
on C.

Given a target vector t we define a function ¥ to re-
associate the classes in C such that the distance between
the target and the guess vector is minimal, thus:

W (v, C) = argmin||I"(z,C ) — V||
C/

where C ' € S(C), S(C) is the set of all permutations of C,
and || - || is the Euclidean norm of a vector. Finally we define
the cluster-matching as:

CM(v,t,C) =TI'(v, ¥(v,0)) (12)

We use the cluster-matching process to re-associate the clus-
ter memberships

v’ = CM(,t, C). (13)
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Here v ' is a new vector maximizing accuracy for a partic-
ular task given (specified by the target vector t). A vector
v=1[22100]forataskt = [1 10 2 2], for example,
would be re-associated as v/ = [1 1 0 2 2]. We utilize the
cluster memberships in v’ to compute each cluster center
and retrieve the mutual distances between clusters.

In this analysis we consider two scenarios where we may
want to associate the clusters by depth or size of inclusion,
and use the NA type as ground zero, we thus consider the
distance from the cluster-matched NA inclusion type and the
remaining types (Fig. 16). As clear from Fig. 16, by duly
interacting with the soft phantom, the distance between each
cluster type and the NA cluster changes drastically. In this
context, then, it is possible to induce a ranked understanding
of robot’s perceived similarities between different inclusion
types by simply acting on the ® parameters.

We demonstrate the ability to achieve similarity rela-
tionships of the kind previously described by finding the
parameters for which the agent can rank the system based on
rank-1 or rank-2. We perform the experiments in Ph-2, and
we use the experimental data gathered through the probing
of the soft phantom to find the parameters by which we can
solve the ranking. We find the robot capable of abstracting
similarities relationships according to rank-1 for ® = {9(')5}
(Fig. 17a), and according to rank-2 for © = {'5’} (Fig. 17b).

5 Palpation test case

We perform experiments to test the ability of the framework
developed to assess and identify the motion control which can
best allow an agent to differentiate among different types of
inclusions. For this purpose, the robot is set to perform palpa-
tion on a phantom containing 4xNA, 3xSD, 3xSS, 3xBS,
3xBD. The sensorized robotic arm is made to palpate the
phantom vertically on each location, as described in Sect. 2.3.
At this point, dimensionality reduction is used to pass from a
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high dimensional sensor description of each palpated phan-
tom location, to a two dimensional descriptor based on PCA
analysis (see Sect. 3.2.1).

After dimensionality reduction it is possible to utilize
Equations (7) through (9) to assess the quality of each motion
strategy with respect to the collected data. The motion strat-
egy parameters generating the highest structure in the data
can thus be saved.

Here we make use of a standard classification procedure
to dissociate amongst the different types of inclusions, and
we assess the ability of the framework described in this paper
to assist in determining which motion would have generated
the best data for palpation classification. We use a off-the-
shelf multi-class Support Vector Machine (SVM) (Cortes and
Vapnik 1995) classifier, as implemented in the scikit-learn
python tool (Pedregosa et al. 2011).

The dataset utilized for this test scenario consists of 224
data-points, each consisting of sequence of tactile images.
The data corresponds to vertical palpations performed at 14

different depths spaced by 0.5 mm each, thus for each depth
16 data samples are present. An SVM classifier is trained on
a single sample for each type of inclusion (one-shot learn-
ing), at each different depth. We thus fit 14 different SVM
classifiers, and we show how the unsupervised analysis run
on the same data is capable of faithfully predicting the most
performing action parameter before any supervised learning
is necessary.

Three different type of classification are executed, fol-
lowing the same qualitative analysis in Sect. 4.2. First a
classification with two classes, where the SVM classifier is
trained to discriminate between locations containing hard
inclusions, and locations with no inclusions. Second, three
classes, where the classifier is trained to discriminate between
large inclusions, small inclusions or no inclusions. Third, 5
classes, where all inclusion types are considered. For each
of the three classification types, the classifier is trained on
the minimal possible number of inclusions per class, i.e. 1
sample, and the data-set is split into training and test set
accordingly. For each probed depth, the 16 data-points are
therefore divided into 5 samples for training and 11 for test-
ing. This is done at all 14 different depths. The split was
purposefully chosen to observe the classifier performance
when lacking large amounts of data.

After training, the SVM classifier separates the two dimen-
sional space according to the two, three or five classes,
maximizing the distance to the nearest training data points
of any class. Once the classifier has been fit to the training
samples, we test the ability of the SVM to classify a new
inclusion correctly by testing it on the unseen phantom test
locations.

Figure 18 shows the resulting accuracy of the classifier
at different probing depths and when classifying the inclu-
sions following the three different sets of classes described.
Given the difficulty of the classification task with the limited
amount of data, the classifier can only achieve an aver-
age classification accuracy of 68.78% when detecting hard
inclusions, 36.26% when detecting inclusions based on size
and 47.40% when discriminating inclusions based on all
their properties. Even in this scenario, the motion strategy
detected by the proposed framework can achieve accuracies
of respectively 78.57%, 69.23% and 63.63% in the same
tasks, improving on the average classification accuracy of up
to 10-33%, as shown by the black circles in Fig. 18. More
significantly, when comparing Figs. 13 and 18, it becomes
clear how the general performance of the classification can
indeed be predicted by the framework proposed, by solely
relying on information structure. In fact, additionally to the
best performing motion strategy, both the motion parameters
resulting in the least accurate classification, as well as the
general flow of the accuracy graph in Fig. 18 can be almost
faithfully predicted based on the scores in Fig. 13.
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Fig. 18 The classification test accuracy of a multi-class SVM trained
on a single sample for each inclusion type, when performing a vertical
probing action at different depths, and over varying number of clusters.
The highlighted black circles correspond to the maximal silhouette score
computed through the proposed framework (see Fig. 13)

6 Conclusion

In this paper we investigated the effects of various motion
strategies to the response of a capacitive tactile sensor, for
the task of detecting hard inclusions in a soft body. Actively
choosing an interaction strategy, to optimize sensory recep-
tion for a specific task at hand, has the potential to be a
powerful tool. Such tool could endow robots with the ability
to dynamically filter properties of touched objects, actively
helping in the completion of a task (Olsson et al. 2004; Bohg
et al. 2017) even before the sensor information arrives to a
central processing unit.

The experiments were performed by embedding a capaci-
tive tactile sensor onto a 3D-printed end-effector, and probing
two soft phantoms with various hard inclusions through dif-
ferent probing strategies. The sequential sensor data obtained
through the probing of each area in the phantom was clus-
tered, and the change in information due to each strategy
observed and analised.

We found the amount of information retained after PCA
projection to be highly dependent both on the probing strat-
egy and the properties of the sample areas in interaction.
More interestingly, we found that appropriate probing strate-
gies can help retain information even when lacking a large
quantity or good quality of it. Using the explained variance as
ameasure of information is useful in ensuring large amount of
heterogeneity is kept in the data, but it is not capable of ensur-
ing the quality of the information retained. In fact, it could
be possible that the projection makes the information relative
to highly distinct object, indistinguishable after projection.
However, under the assumption of no prior knowledge of
target labels, keeping variance in the data is usually a sensi-
ble choice. The proposed analysis can therefore help choose
those actions which allow sound dimensionality reduction,
with the minimum loss of information variance in a low
dimensional inference space.

@ Springer

Furthermore, we analysed the impact due to motion on
cognitive maps and extracted how the motion influenced the
tactile information. This analysis is useful in understand-
ing the effects of motion to the perception of the probed
areas, and can be used to appropriately choose an interac-
tion strategy that generates structure. To make full use of
such effects, however, it would be ideal to instead be able
to predict such change, before interaction takes place. Here,
the change in position of each point within a cognitive map
could be interpreted as a transformation in the same domain.
The transformation function could be learned from initial
interaction and used in future tasks to optimize the sensor
response for a specific task. The transformation function,
however, would not only be dependent on the motion parame-
ters employed, but also on the properties of the sample objects
in interaction, like demonstrated in the results.

It is also possible to take categorization one step further
and abstract similarities between object types from Cogni-
tive Maps. Here we have shown that the physical interaction
can drive the similarity relationship between objects. In an
unsupervised scenario, the abstractions can be highly infor-
mative and can, for example, be useful to fix an ordering,
via mutual distances, on the sensed object types. The object
ordering can be purposefully fixed to the agent’s advantage.
In a real scenario a practitioner might diagnose the gravity
of a detected inclusion based on various features. In our fic-
titious example we show how it is possible for an agent to
prioritize over two features by simply changing the palpation
strategy.

The unsupervised analysis framework proposed in this
work is meant to assess how the robot’s palpation tech-
nique may influence its ability to diagnose hard inclusions in
soft tissue. Without need for explicit labels or knowledge of
whether the tissue under palpation has abnormal lumps, the
framework can still inform a robotic agent on what type of
haptic interaction is likely to be most discriminative. As such
the framework is most useful when used as a pre-learning
step, before any actual supervised learning takes place. We
later show this with a simple supervised test case, where the
most discriminative palpation actions are found to be coher-
ent with the unsupervised analysis proposed. In the test case
application of the proposed framework a robot is made to
palpate a clustered phantom, and an SVM multi-class classi-
fier is trained on the minimal possible number of samples per
class. The classifier is shown to perform best when employing
the highest scoring motion strategy, as detected by the pro-
posed framework. The chosen strategy is shown to improve
the classification accuracy of the classifier of up to 33%.
More interestingly, we observe the silhouette analysis based
on our method can predict the general relative performance of
the classification a priori. The SVM based classifier utilized
is effective in showing the usefulness of the analysis, how-
ever, it is too simplistic to outperform any other state of the
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art supervised learning system. The SVM, in fact, performs
simple on-shot learning, and tries to classify lumps based on
only one example of each type. Although not in the scope of
this research, more complex inference methods can also be
considered, and are likely to still benefit from analysis shown
in this paper.

As a parametric discretization of the sizes of the lumps was
necessary for the analysis in this paper, the work described
palpation on 5 different types of spherical inclusions, thus
no evidence was shown for other types or sizes. As the anal-
ysis itself was independent of the size or type of lump, be
believe it can extend to any-one type of lump parametrization
necessary, as shown by the consistency of the results when
sub-sampling the lumps in type groups of 2, 3 or 5 types
(see Sect. 5). However, a second assumption was due to the
location of the inclusion, should there have been one present
in the tissue under palpation. Here it is key that the type of
lump is approximately the same across experiments, this is
true also of its location with respect to the examining probe.
Should this not hold true, it is possible the unsupervised clus-
tering method may classify two lumps of the same type into
different clusters. Here, additional research is necessary to
address the need of haptic search algorithms to locate, rather
than discriminate, between lumps in a soft tissue.

Finally, the parameters were optimized with respect to
the actual tissue under palpation, and are thus likely to be
valid for the phantom devised for these experiments. For any
new tissue under palpation, however, the same analysis can
be applied, and new optimized parameters retrieved without
knowledge of whether an inclusion is or is not present under
the palpated tissue. This can serve as a first filtering procedure
before carrying out more expensive, supervised experiments,
where the breath of possible robot action may be too large
to be employed. Moreover, the analysis can retrieve motion
parameters which either maximise information retention in
lower dimensional sensor inference space, and/or maximize
information structure within the retrieved haptic data.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Bendtsen, L., Jensen, R., Jensen, N., & Olesen, J. (1995). Pressure-
controlled palpation: A new technique which increases the relia-
bility of manual palpation. Cephalalgia, 15(3), 205-210.

Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal,
S., et al. (2017). Interactive perception: Leveraging action in per-
ception and perception in action. I[EEE Transactions on Robotics,
33(6), 1273-1291.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine
Learning, 20(3), 273-297.

Dahiya, R., Metta, G., Valle, M., & Sandini, G. (2010). Tactile sensing-
from humans to humanoids. IEEE Transactions on Robotics,
26(1), 1-20.

Dario, P., & Bergamasco, M. (1988). An advanced robot system for
automated diagnostic tasks through palpation. IEEE Transactions
on Biomedical Engineering, 35(2), 118-126.

Davaria, S., Najafi, F., Mahjoob, M., & Motahari-Bidgoli, S. (2014).
Design and fabrication of a robotic tactile device for abdominal
palpation. In 2014 second RSI/ISM international conference on
robotics and mechatronics (ICRoM), IEEE, (pp. 339-344).

Drimus, A., Kootstra, G., Bilberg, A., & Kragic, D. (2014). Design of
a flexible tactile sensor for classification of rigid and deformable
objects. Robotics and Autonomous Systems, 62(1), 3—15.

Eberman, L. E., & Finn, M. E. (2010). Enhancing clinical evaluation
skills: Palpation as the principal skill. Athletic Training Education
Journal, 5(4), 170-175.

Gwilliam, J. C., Pezzementi, Z., Jantho, E., Okamura, A. M., & Hsiao,
S. (2010). Human vs. robotic tactile sensing: Detecting lumps in
soft tissue. In 2010 IEEE haptics symposium, IEEE (pp. 21-28).

Herzig, N., Maiolino, P, lida, F., & Nanayakkara, T. (2018). A variable
stiffness robotic probe for soft tissue palpation. I[EEE Robotics and
Automation Letters, 3(2), 1168-1175.

Hoffmann, M., & Pfeifer, R. (2012). The implications of embodiment
for behavior and cognition: animal and robotic case studies. arXiv
preprint arXiv:1202.0440.

Hui, J. C., Block, A. E., Taylor, C. J., & Kuchenbecker, K. J.
(2016). Robust tactile perception of artificial tumors using pair-
wise comparisons of sensor array readings. In 2016 IEEE Haptics
symposium (HAPTICS), IEEE (pp. 305-312).

Hui, J. C., & Kuchenbecker, K. J. (2014). Evaluating the biotac’s ability
to detect and characterize lumps in simulated tissue. In: Interna-
tional conference on human Haptic sensing and touch enabled
computer applications (pp. 295-302). Berlin: Springer.

Iida, F., & Nurzaman, S. (2016). Adaptation of sensor morphology: An
integrative view of perception from biologically inspired robotics
perspective. Interface Focus, 6, 20160016.

Kato, I., Koganezawa, K., & Takanishi, A. (1988). Automatic breast
cancer palpation robot: Wapro-4. Advanced Robotics, 3(4), 251-
261.

Konstantinova, J., Cotugno, G., Dasgupta, P., Althoefer, K., &
Nanayakkara, T. (2017). Palpation force modulation strategies
to identify hard regions in soft tissue organs. PLoS ONE, 12(2),
e0171706.

Konstantinova, J., Jiang, A., Althoefer, K., Dasgupta, P, &
Nanayakkara, T. (2014a). Implementation of tactile sensing for
palpation in robot-assisted minimally invasive surgery: A review.
IEEE Sensors Journal, 14(8), 2490-2501.

Konstantinova, J., Li, M., Mehra, G., Dasgupta, P., Althoefer, K., &
Nanayakkara, T. (2014b). Behavioral characteristics of manual
palpation to localize hard nodules in soft tissues. /[EEE Transac-
tions on Biomedical Engineering, 61(6), 1651-1659.

Li, B., Shi, Y., Fontecchio, A., & Visell, Y. (2017). Mechanical imaging
of soft tissues with a highly compliant tactile sensing array. IEEE
Transactions on Biomedical Engineering, 65(3), 687-697.

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1202.0440

1392

Autonomous Robots (2020) 44:1377-1393

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transac-
tions on Inform Theory, 28(2), 129-137. https://doi.org/10.1109/
TIT.1982.1056489.

Lungarella, M., Metta, G., Pfeifer, R., & Sandini, G. (2003). Develop-
mental robotics: A survey. Connection Science, 15(4), 151-190.

Lungarella, M., Pegors, T., Bulwinkle, D., & Sporns, O. (2005). Meth-
ods for quantifying the informational structure of sensory and
motor data. Neuroinformatics, 3(3), 243-262.

McLaughlin, M. L., Hespanha, J. P., & Sukhatme, G. S.: Introduction to
haptics. In: Touch in Virtual Environments, pp. 1-31. MISC Press
Multimedia Series (Prentice Hall) (2002)

Nolfi, S., & Marocco, D. (2002). Active perception: A sensorimotor
account of object categorization. In From animals to animats 7:
Proceedings of the VII international conference on simulation of
adaptive behavior, et al., Cambridge, MA (pp. 266-271).

Olsson, L., Nehaniv, C. L., & Polani, D. (2004). Sensory channel group-
ing and structure from uninterpreted sensor data. In Proceedings
of NASA/DoD conference on evolvable hardware, IEEE, (pp. 153—
160).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12, 2825-2830.

Pfeifer, R., Lungarella, M., Sporns, O., & Kuniyoshi, Y. (2007). On the
information theoretic implications of embodiment—principles and
methods. In 50 years of artificial intelligence, Berlin: Springer (pp.
76-86).

Pfeifer, R., & Scheier, C. (1997). Sensory-motor coordination: The
metaphor and beyond. Robotics and Autonomous Systems, 20(2—
4), 157-178.

Puangmali, P., Althoefer, K., Seneviratne, L., Murphy, D., & Dasgupta,
P. (2008). State-of-the-art in force and tactile sensing for minimally
invasive surgery. I[EEE Sensors Journal, 4(8), 371-381.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpreta-
tion and validation of cluster analysis. Journal of Computational
and Applied Mathematics, 20, 53-65.

Schmitz, A., Maiolino, P., Maggiali, M., Natale, L., Cannata, G.,
& Metta, G. (2011). Methods and technologies for the imple-
mentation of large-scale robot tactile sensors. IEEE Transaction
on Robotics, 27(3), 389—-400. https://doi.org/10.1109/TRO.2011.
2132930.

Scimeca, L., Maiolino, P., & lida, F. (2018). Soft morphological pro-
cessing of tactile stimuli for autonomous category formation. In
IEEE international conference on soft robotics, Robosoft.

Sornkarn, N., & Nanayakkara, T. (2016). The efficacy of interaction
behavior and internal stiffness control for embodied information
gain in haptic perception. In IEEE international conference on
robotics and automation (ICRA), IEEE (pp. 2657-2662).

Sporns, O.,& Lungarella, M. (2006). Evolving coordinated behavior
by maximizing information structure. In Artificial life X: Proceed-
ings of the tenth international conference on the simulation and
synthesis of living systems, Citeseer (vol. 10, p 323).

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal com-
ponent analysis. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 61(3), 611-622. https://doi.org/10.
1111/1467-9868.00196.

Trejos, A. L., Jayender, J., Perri, M., Naish, M. D., Patel, R. V., &
Malthaner, R. (2009). Robot-assisted tactile sensing for minimally
invasive tumor localization. The International Journal of Robotics
Research, 28(9), 1118-1133.

Tuci, E., Massera, G., & Nolfi, S. (2009). On the dynamics of active
categorisation of different objects shape through tactile sensors. In
European conference on artificial life, Berlin: Springer (pp. 124—
131).

Wang, N., Gerling, G. J., Childress, R. M., & Martin, M. L. (2010).
Quantifying palpation techniques in relation to performance in a

@ Springer

clinical prostate exam. /[EEE Transactions on Information Tech-
nology in Biomedicine, 14(4), 1088-1097.

Yen, P. L. (2003). Palpation sensitivity analysis of exploring hard objects
under soft tissue. In: Proceedings of IEEE/ASME international
conference on advanced intelligent mechatronics, AIM, IEEE (vol.
2, pp. 1102-1106).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Luca Scimeca received his Bach-
elor degree in Artificial Intelli-
gence and Software Engineering
from the University of Edinburgh,
where he graduated summa cum
laude in 2017. During his bache-
lor Luca has won over 13 awards,
9 of which paid scholarships for
academic performance. Luca cur-
rently conducts his research at the
Biologically Inspired Robotics Lab-
oratory (BIRL) in Cambridge Uni-
versity, where he is a Ph.D. stu-
dent under the supervision of Dr
Fumiya lida. His research inter-
ests lie in the use of Machine Learning in robotics, and the concept
of machine intelligence. His research focus at BIRL is on tactile per-
ception and the employment of morphology, and motor-coordinated
behaviour to aid in manipulation tasks.

Perla Maiolino received her Ph.D.
in Robotics (2010) from the Uni-
versity of Genoa as well as her
M.S. in Robotics and Automation
(2006). She joined the Mecha-
tronic and Control Laboratory
(MACLAB) at the Department of
Informatics, Bioengineering,
Robotics and System Engineering
(DIBRIS) University of Genoa in
2006 where, as Ph.D. student first
and then as research fellow, car-
ried out research about to all the
aspects related to the development
and integration of distributed tac-
tile sensor for robots, with a strong focus on materials and design
of new technological solutions. From November 2013 to February
2014, She has been affiliated to IIT (Italian Institute of Technology),
working on the integration of literally thousand of sensor on differ-
ent robotics platforms. Currently She is working at the Biologically
inspired Robotics Lab (BIRL) at University of Cambridge pursuing
research related to tactile perception and tactile based robot control


https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TRO.2011.2132930
https://doi.org/10.1109/TRO.2011.2132930
https://doi.org/10.1111/1467-9868.00196
https://doi.org/10.1111/1467-9868.00196

Autonomous Robots (2020) 44:1377-1393

1393

Ed Bray is an undergraduate stu-
dent studying engineering at the
University of Cambridge, special-
ising in Electrical and Informa-
tion Sciences. This work formed
a part of his masters project, enti-
tled “Tactile-based robotic con-
trol for the examination of a soft
object”.

Fumiya lida is a university lec-
turer at Department of Engineer-
ing, University of Cambridge. He
is also the director of Biologically
Inspired Robotics Laboratory and
a fellow of Corpus Christi Col-
lege. He received his bachelor and
master degrees in mechanical engi-
neering at Tokyo University of
Science in Japan, and Dr. sc. nat.
in Informatics at University of
Zurich in Switzerland. During his
Ph.D. project, he was also engaged
in biomechanics research of human
locomotion at Locomotion Labo-
ratory, University of Jena in Germany. While he worked as a post-
doctoral associate at the Computer Science and Artificial Intelli-

gence Laboratory, Massachusetts Institute of Technology in USA,
he awarded the Fellowship for Prospective Researchers from the
Swiss National Science Foundation, and then, the Swiss National
Science Foundation Professorship hosted by ETH Zurich. In 2014
he moved to the University of Cambridge as the director of Bio-
Inspired Robotics Laboratory. His research interest includes bio-
logically inspired robotics, embodied artificial intelligence, and soft
robotics, where he was involved in a number of research projects
related to robot locomotion, manipulation, and human-robot inter-
actions leading to some start-up companies. He was a recipient of
the IROS2016 Fukuda Young Professional Award, and Royal Society
Translation Award in 2017.

@ Springer



	Structuring of tactile sensory information for category formation in robotics palpation
	Abstract
	1 Introduction
	2 Methods
	2.1 Soft phantom and robot set-up
	2.2 Tactile sensor technology and data acquisition
	2.3 Probing strategies

	3 Analytical framework
	3.1 Task and physical interactions
	3.2 Categorization
	3.2.1 Cognitive mapping
	3.2.2 Category formation and abstraction level

	3.3 Motion strategy scoring
	3.4 Experimental procedure

	4 Results
	4.1 Sound dimensionality reduction
	4.2 Information structure and silhouette coefficient
	4.3 Motion influence on cognitive maps
	4.4 Categorization and similarity abstractions

	5 Palpation test case
	6 Conclusion
	References




