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Abstract

Industrial commodity markets are typically oligopolies in which firms set prices but need

to make sunk and durable investment decisions, requiring them to make predictions of future

prices. Mark-up pricing models are attractive both for setting prices and predicting future

prices for investment analysis. Simple algorithms can find Nash equilibria, but these equilibria

are not necessarily robust. This paper examines fixed and proportional mark-up models and

demonstrates that they are robust to single firm Nash Cournot deviations but not against

more sophisticated deviations in the deterministic case. Cournot equilibria are not robust

under demand uncertainty, where proportional mark-up models emerge as the most robust

when marginal costs are increasing.
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1 Introduction

Industrial commodity markets such as those for electricity, gas, chemicals, aluminium and steel1

are typically oligopolies, despite the homogeneity of their products that would seem to favour

∗This paper is a generalisation of the earlier paper “The strategic robustness of mark-up equilibria,” EPRG1318.

We are indebted to a number of earlier referees’ comments as well as to Robert Ritz and Marta Rocha.
†Corresponding author: Faculty of Economics, Sidgwick Ave, Cambridge, CB3 9DE, UK, ph: +44 1223 335248;

email: dmgn@cam.ac.uk.
‡EPRG, Cambridge; contact address: Faculty of Economics, Sidgwick Avenue, Cambridge UK CB3 9DE; email:

tg336@cam.ac.uk.
1Commodities that can be easily stored require an intertemporal analysis with additional complications (see

e.g. Baldursson, 1999). We therefore restrict attention to markets for goods like electricity that cannot easily be

stored.
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intense price competition. A key feature of these markets is that variable costs are typically

only a fraction of total costs, and high fixed, or more accurately, sunk costs create a barrier

to entry that supports the oligopoly (Grossman, 1990). In addition, different plants often have

different costs (through differences in the date of investment combined with technical progress,

different input and/or transport costs, etc.). Over time supply and demand conditions change,

but firms are imperfectly informed about their rivals’ costs and profits. At any moment, firms

in such industries are likely to be well-informed about their own variable costs, but aware that

their fixed costs are often accounting artifices, or more accurately as their investments are sunk,

their current value is only what they are worth in delivering future profits.

Tirole’s classic text on Industrial Organization notes the difficulty in theorizing about firms

with market power that repeatedly interact in markets, and notes (Tirole, 2000, p240) that “the

proliferation of theories is mirrored by an equally rich array of behavioral patterns actually ob-

served under oligopoly.” After discussing the delicacy of game theoretic models with reputation,

he turns to the Darwinian or evolutionary approach, in which agents may not consciously maxi-

mize but suboptimal rules will be rejected or lead to exit. “This approach ... looks at strategies,

or (better terminology) rules, that are ‘robust’ in the sense that they do relatively well against

a variety of other rules. . . . and that “only actors who use robust rules will stay around. . . .

What is mean by ‘robust rule’ is a priori contingent on the set and the probability distribution

of mutations, and on the set of strategies the robust rule is allowed to be compared to.”

Somewhere between the super-rational game players and a population of naive agents fol-

lowing differing rules that is winnowed out by natural selection lie models of learning in which

agents modify their rules in the light of their observations and experience. The simplest of

these that retain a degree of plausibility are mark-up rules, in which firms mark-up prices on

either variable or average costs. They have the obvious attraction that they focus on the key

strategic parameter, the price, and keep open the prospect that firms can move to the optimal

exploitation of their market power. They are particularly appealing for industrial commodities

with homogenous products where price, rather than quality or reputation (needed if quality is

hard to perceive ex ante), is the focus of competition. Such firms are more likely to choose

pricing strategies than choosing quantities to sell, although decisions on investment and capacity

are necessarily quantity decisions. More complex versions of such rules include supply function

models (Klemperer and Meyer, 1989) which have been applied extensively to electricity whole-

sale markets (e.g. Green and Newbery, 1992). They have attractions in that they can reconcile

capacity constraints, contracting, entry and repeated price setting (Newbery, 1998), but they run

into two serious objections: they suffer from a multiplicity of solutions, and they are extremely

hard to solve. As such they do not lend themselves to plausible adaptive learning rules, but their
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theoretical underpinnings nevertheless provide a lens through which to examine other equilibria,

as discussed below.

This dichotomy between setting prices in the short run but choosing quantities in the longer

run has been analyzed by Kreps and Sheinkman (1983), and at least under certainty,2 allows

the short-run decision to be considered as equivalent to a quantity choice, leading to a Cournot

equilibrium as a plausible oligopoly equilibrium concept. However, variations in demand with-

out instantaneous changes in capacity still force firms to choose prices rather than quantities,

except in rather special circumstances. Long-term contracts for metals and fuels may specify the

quantity but link the contract price to some index (e.g. gas is often linked to a lagged oil price),

and some spot markets operate as auctions in which some firms offer quantities but other firms

offer price-quantity pairs that set the clearing price for all (e.g. spot electricity auction platforms

such as EUPHEMIA).

For most industrial commodities, firms set prices and are aware that setting prices at short-

run marginal cost not only foregoes evident market power, but risks bankruptcy if variable cost

differences are modest. Firms therefore need to adopt pricing rules which can accommodate

these market features, and will therefore need to add a mark-up on variable costs (or possibly

average costs, where these are known) to reflect their market power and earn a return on their

sunk investment costs. Also, what firms observe, and whether they can imitate strategies or only

choose between strategies and learn of their outcome, clearly matters. Tirole (2000) cited above

makes the point that we should look for robust rules or strategies. Hence, it is clearly timely to

examine what form of mark-up to choose and test the robustness of these models to alternative

pricing strategies.

This paper examines two particular forms of mark-up pricing — fixed and proportional — that

seem well-suited to modeling market equilibria in homogenous industrial oligopolies, and asks

whether these models are robust against more sophisticated strategies. If so, they pass the first

test of plausibility, but if not, then marketers and modelers need to be aware of their fragility

and perhaps consider alternative strategies. The paper follows the tradition of looking at the

interaction of a small number of agents, each of which potentially has market power, but who

are not initially well-informed about the decisions their competitors or customers are making.

They therefore start out of equilibrium and must learn from their observations. Even if there is

no uncertainty about demand and technology (and hence costs), each agent is uncertain about

the choices its competitors will make, and therefore what is its own best strategy.

The literature on oligopoly pricing is huge. However, the literature is, as far as we know,

2Hviid (1991) noted that under uncertainty this result is threatened by the non-existence of pure-strategy

equilibria, a conjecture confirmed by Grant and Quiggen (1996).
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silent on the analysis of the robustness of oligopoly models. The papers of Herweg andMierendorff

(2013) and Atalay (2014) highlight the importance of stability in pricing. Atalay (2014) studies

the consequences of substantial variation in input prices in an industry of homogeneous products

and the survival of firms. Herweg and Mierendorff (2013) go a step further and consider how

to price in a market with demand uncertainty. They solve for the profit-maximizing tariff to

suggest a flat rate. This paper also considers demand uncertainty with increasing variable costs

and finds that proportional mark-ups are both more profitable and more robust.

The two papers closest to ours are Grant and Quiggin (1994; 1996). Grant and Quiggin

(1994) examine the case in which each firm chooses its profit-maximizing mark-up over average

cost instead of choosing the optimal (Cournot) output level. This has the attraction that firms

normally choose prices, not outputs, and relates back to the earlier Hall and Hitch (1939) findings

about firm behaviour. Firms are still assumed to set the mark-up where marginal cost is equal

to marginal residual revenue, although that residual revenue is governed by how other firms set

prices. However, once imperfect information is accepted, and that agents need to experiment to

discover the relevant features of their market environment, and specifically the residual demand

they face given final demand and the supplies of their competitors, the way is open to modeling

how this learning will take place. That will depend on what is known, what is unchanging (e.g.

final demand) and what may evolve (e.g. the actions of competitors). Several papers touch on

this way of adapting price to rivals’ actions. Bagwell (1995) looks at one-shot Stackelberg games

and finds that the first-mover advantage is eliminated if there is even a slight amount of noise

in observing the leader’s choice. Vega-Redondo (1997), Schipper (2009) and Duersch, Oechssler,

and Schipper (2012) look at dynamic stochastic Cournot strategies with varying learning and

adjustment strategies. Appendix B surveys various approaches to learning and their application

to oligopoly models, particularly those extensively used in the electricity industry. However, as

far as we know, no paper offers a theoretical exploration into the robustness of different mark-up

equilibria to alternative strategies such as Cournot and Stackelberg.

We show that the two mark-up strategies considered are more competitive than Nash-

Cournot behaviour, with the Nash choice of the optimal proportional mark-up on marginal

costs yielding lower prices and profits than the Cournot oligopoly but higher prices and profits

than the optimum fixed mark-up on marginal costs. In deterministic cases, while these mark-up

equilibria are robust against Nash deviations by single firms choosing quantities (or any other

actions) instead of mark-ups, they are not robust to more sophisticated single-firm Stackelberg

deviations in which the deviant maintains her output and the remaining players adapt to that

and find the corresponding mark-up equilibrium output levels. The deviant player makes higher

profits following this Cournot Stackelberg strategy. If demand is stochastic, then a fixed quantity

4



response (deterministic Cournot) is strictly inferior to either mark-up equilibria, and in the case

of linear marginal costs and linear demand, the proportional mark-up equilibrium as a supply

function equilibrium is robust against any deviation, while a fixed mark-up is vulnerable to a

proportional mark-up deviant.

This paper makes a number of contributions to the literature on oligopoly pricing. It first

sets the scene by ranking in order of profitability three common market equilibrium models:

the standard Cournot model (which can be rationalized in a world of certainty as a capacity

constrained short-run equilibrium), and two price-setting models in which firms set prices as

mark-ups on their marginal costs. This allows us to test their robustness against various kinds

of deviations by single and multiple firms, first on the assumption of certainty, and then un-

der uncertainty about demand levels. If, as in most industrial commodity industries, marginal

costs are increasing, we find that proportional mark-ups emerge as the most attractive pricing

model, which we relate to the literature on supply functions. These findings are relevant to

the considerable literature on simulation modeling of such industries, widely used in investment

analysis, policy reform (e.g. Green and Newbery, 1992, commenting on restructuring state-owned

monopoly generation companies) and anti-trust investigations.

When making investment decisions, such firms need to be able to model the future strategic

price-setting behaviour of their rivals in order to decide whether it is profitable to invest. Firms

devote considerable resources to modeling their industry, or hire specialist consultancy firms to

provide such models. To take just one example, the UK Government commissioned the LCP

Consulting to construct the Dynamic Dispatch Model to study the impact of various electricity

market reforms on investment incentives and hence future prices.3 Models are also used by

anti-trust authorities examining cases of suspected market abuse. In 2005, after energy prices

moved sharply upwards, the European Commission launched a Sector Inquiry into competition

in gas and electricity markets, pursuant to Article 17 of Regulation 1/2003 EC. The final report,

published as DG COMP (2007), identified serious shortcomings in the electricity and gas markets,

and was based on extensive modelling of these markets. Given the number of possible interactions

(between firms and over time), useful models need to strike a balance between simplicity in

specifying the rules and the complexity of strategic interactions. Increasingly, agent-based model

simulations are constructed to mimic the interaction of agents in quite complex market settings

(e.g. Bunn and Oliveira, 2001). Mark-up models emerge as very attractive candidates and have

seen widespread analysis and use in such models. Weidlich and Veit (2008) give an excellent

3See http://www.lcp.uk.com/news-publications/case-studies/2013/decc-dynamic-dispatch-model-envision/

and a review of the model at https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/65711/5427-

ddm-peer-review.pdf
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survey of wholesale electricity market models and compare different learning strategies and their

results.

The paper is organized as follows. In Section 2, we introduce our mark-up models. In

Section 3, we present and test the robustness of Cournot deviations, while in Section 4 we test

our models against Stackelberg deviations.

2 Mark-up models

The next section sets out the model in which demand and cost functions are assumed non-

stochastic. The need to model behaviour as learning is motivated by the imperfect knowledge

agents have about the shape of the residual demand schedule they face, which depends on the

choices of their competitors – all they observe are the ex post price realizations. Different mark-

up formulations lead to different equilibria that can be ranked in terms of profit, motivating the

reason why a sophisticated agent may wish to choose a different strategy from her rivals. The

two mark-up models are examined for their robustness against the first type of Nash-Cournot

deviation, demonstrating their robustness against single-firm deviations but not to multi-firm

deviations. Section 4 then constructs a counter-example of a beneficial deviation by a single firm

in the duopoly case in which a sophisticated leader plays a Stackelberg strategy — in this case

she can profitably commit to an inelastic output level or proportional mark-up that differs from

the mark-up chosen by the more naive follower.

3 The market model

Consider a market of  identical firms,  = 1   producing a non-storable homogenous output,

, (e.g. electricity) selling at price , each with cost function (), marginal cost, MC, 
0() 

0, 00() ≥ 0, facing an aggregate demand schedule (), 0()  0 00() ≥ 0  =
P

 The

residual demand schedule facing any single firm  (−()), − =
P

 6=  , will depend on

the supplies offered by the − 1 other firms at the market clearing price. Working with price as
the dependent variable, firm ’s residual demand will be () = ()− (− 1)(), where ()
is the equilibrium supply offered by each of the  − 1 remaining firms. Firm ’s profit will be

() = ()− (()) and the first order condition (f.o.c.) for profit maximization will be




= () + (−  0)




= 0 −  0 =



−0


This gives the Lerner Index, one of the standard measures of market power, as

−MC


= −







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3.1 The robustness of competitive and Cournot equilibrium

The benchmark perfectly competitive (Walrasian) equilibrium has () =  0(). As this paper

is concerned to examine the robustness of various equilibrium concepts, the logical place to

start is with an exploration of the competitive equilibrium, as Vega-Redondo (1997) argues for

the Walrasian (competitive) Equilibrium as the only equilibrium if firms adopt Evolutionarily

Stable Strategies (ESS). In the -firm case, would it be advantageous for one firm to choose a

quantity different from that implied by offering to supply at its marginal cost, MC? The answer

is clearly yes, as the supply of the remaining  − 1 firms can be subtracted from total demand

to give a downward-sloping (and hence well-behaved) residual demand facing the firm, who will

then choose output to maximize profit (i.e. where MC = MR). However, the Cournot deviant

raises the price for all other price-taking firms, who, as they outproduce the deviant, will make

higher profits than the deviant, raising the question whether firms would defect from a Cournot

oligopoly to become price takers. This is the situation examined by Duersch et al. (2012) and

others studying ESS, who argued that copying the actions of the most successful firm (in this

case the price-takers) would lead to a competitive outcome (see Appendix B for a more detailed

discussion of learning and ESS models).

One can turn the question round and ask whether, starting from the -firm Cournot oligopoly,

it would pay  ≥ 1 firms to deviate to become price-taking competitive firms and setting output
where MC equals price. Clearly as the deviant receives the same price as the Cournot firms, he

makes more profit than the other Cournot firms and might seem to find it more attractive to act

competitively than stay with the oligopolists. However, Appendix A shows (in a linear-quadratic

model) that the profit the deviant makes as a competitor facing  − 1 other competitive firms
and −  Cournot firms is less than the profit he would make as one of − +1 Cournot firms

facing  − 1 competitive firms, so there is no advantage in deviating.

3.2 The robustness of mark-up equilibria

In a symmetric -firm oligopoly the possible Nash Equilibria (NE) will depend on the strategy

set, and whether each firm chooses its strategic variable simultaneously. The three cases con-

sidered are the Nash-Cournot equilibrium, in which firms choose quantities, the fixed mark-up

equilibrium in which firms add a fixed mark-up  to MC: 
0() + , and the proportional

mark-up to marginal cost, in which firms offer supplies in proportion to MC,  0(),   1.

Proposition 1 ranks these equilibria.

Proposition 1 In the simultaneous move symmetric -firm oligopoly, the Nash Equilibrium

price is highest in the Nash-Cournot equilibrium, higher than in the proportional mark-up equi-
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librium, which in turn is higher than the fixed mark-up equilibrium, which is higher than the

competitive price.

Proof. (i) If the other firms choose quantities (Cournot), () =  and firm ’s residual

demand will be 
 () = ()− (− 1), so 0

 = 0(), and the f.o.c. for profit maximization

will define the equilibrium output :

()−  0() =


−0()  (1)

(ii) If firms choose a fixed mark-up on marginal cost, MC, their offer schedules will be

() =  0() + , the market clearing condition will be (
P

) = (), all , and

() =  0−1( − ), so 0
 = 0 − ( − 1) 0−1 = 0 − ( − 1) 00() so the f.o.c.

for profit maximization will be

− 0 =


−0 + (− 1) 00()  (2)

As 0  0 and  00 ≥ 0, the RHS of (2) is less than that of (1), but replacing  by .

But as demand slopes down and the MC slopes (weakly) up, the only way that the Nash-Cournot

mark-up could be higher would be if    and   . It follows that the fixed mark-up

price-MC margin will be lower than under Nash-Cournot competition.

(iii) If firms choose a proportional mark-up, then their offer schedules will be () =

 0(), (
P

) = (), all ,   1, and hence in equilibrium () =  0−1() and so

− 0 =


−0 + (− 1)( 00())  (3)

As   1, the RHS of (3) is larger than (2) but smaller than (1), each evaluated at , so

reasoning as in (ii), the proportional price-MC margin will be in between the mark-up margin and

the Nash-Cournot margin, demonstrating that the proportional MC strategy is less competitive

than the fixed mark-up strategy, but more competitive than the Nash-Cournot strategy, and the

equilibrium prices will lie between these two equilibria. Finally, in each case the price-MC margin

is strictly positive and hence prices will be higher than the competitive equilibrium price.

Figure 1 shows the result of the deviant choosing output when the remaining firms choose

to offer at a fixed mark-up on marginal cost for the simple case of linear demand ( =  − )

and quadratic costs (() =
1
2
2 ) as set out in Appendix A. The deviant’s optimal response

is to choose  to maximize profit, −(), given the residual demand generated by the fixed
mark-up behaviour, which in this linear case can be written  = ( − ) for some  and .

The question to address is whether choosing the Nash mark-up given in Appendix A equation

(13) is robust against a player optimizing against this strategy. Proposition 2 shows, as the figure

clearly demonstrates, that the answer is yes.
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Mark-up vs Cournot Nash Equilibria
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Figure 1  = 140  = 1  = 2  = 30

Proposition 2 In a deterministic Nash game, if players assume that the strategy space is the

choice of the fixed or proportional mark-up on its marginal cost, then that player will maximize

her profits regardless of whether another player chooses the same strategy choice as other players

(fixed or proportional mark-up on marginal cost) or an optimal quantity to supply, and hence the

two Nash mark-up equilibria are robust against Cournot deviations.

Proof. Each firm faces the same residual demand schedule and will choose the same optimal

output whether they choose the optimal fixed or proportional mark-up, or the optimal quantity

(or any other choice variable such as price) that corresponds to MC set equal to the marginal

residual demand revenue. QED.

Thus the Nash equilibrium behaviour in mark-ups or slopes is robust against a Nash-Cournot

deviant who can choose from a broader set of strategies that also includes quantities, at least in

a deterministic setting. Figure 2 illustrates this for the case in which all but the deviant firm

choose their supply as a proportional mark-up on their linear MC.
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Slope mark-up vs Cournot Nash equilibria
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Figure 2  = 140  = 1  = 2  = 2959

On reflection, this should not be surprising, as once the other firms have chosen their optimal

mark-up (or slope) given the residual demand they assume faces them, the deviant faces the same

residual demand and hence chooses the same mark-up, which is where the residual marginal

revenue meets MC, shown in Figures 1 and 2. One might reasonably argue that the resulting

outcome is no longer a true Nash equilibrium, in that while the deviant firm correctly predicts

what the other firms will do, these mark-up firms are not correctly predicting what strategy the

deviant is following and hence not correctly predicting the residual demand they face, although

they are predicting the mark-up she will actually choose. We will explore this further in section

4. It is also important to note that although the equilibrium is robust to deviations, the resulting

price depends on the strategy space, in this case mark-ups or supply slopes rather than quantities

(and is lower as a result).

3.3 Multi-firm deviations

Suppose that  firms decide to play a Cournot strategy, knowing that −  firms will continue

with their fixed mark-up strategies but the other deviants will choose the same output as the first

deviant (but independently, each taking the other’s output as given). For the linear-quadratic

example set out in Appendix A, the market clearing condition is  = −−(−1)− −

(−)

where  is the fixed mark-up,  is the output of each of the other Cournot deviants, taken as

given, and  is the output choice to be made. Then

 = −  − ( − 1) + (− )







= −1


  = 1 + (1− 


)
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As before the f.o.c. for the deviant is given by  = MC − or

 =  +  = −  − ( − 1) + (− )




Set  =  and substitute for  to give

( + 1 + ) = 
2(1 + )2 − 

2(1 + )2 − 


 = −  +
(− )

2(1 + )2 − 


As a numerical example, let  = 5,  = 2  = 1,  = 100, so that the symmetric mark-up

equilibrium has  = 995 = 947,  = 526. The deviants’ output will be 981045 = 9378

which is smaller, so the equilibrium will be different. The price will be  = 528 and so the

profit of a deviating firm rather than conforming to the original strategy will be 2748 rather

than 2742, or 022% higher. Thus there is a (small) incentive for a subset of more than one

(very) sophisticated firms to deviate from a Nash mark-up equilibrium. This is reminiscent of

Delgado and Moreno (2004), who show that only the Cournot outcome can be sustained by a

coalition-proof supply function equilibrium, in configurations such as this, with linear demand

and at least three players. However, the meaning of the Cournot outcome with supply functions

is rather different, as it is the least competitive supply function, which is not a constant level of

output.

3.4 Robustness under uncertainty

The results derived above assume no uncertainty in the level of demand nor of cost, and the

results are not robust to uncertainty. We know from Weitzman (1974) and Klemperer and

Meyer (1986) that the choice of quantity or price may be a matter of indifference under perfect

certainty, but not with uncertainty. Consider the simple case of additive risk:

e( ) = e = () + e e = 0 (4)

where e is a mean zero random variable (indicated with a tilde) and () is deterministic.

Proposition 3 Under additive risk, a Cournot deviant in a simultaneous play Nash game will

earn lower profits than players choosing either a constant or proportional mark-up on their mar-

ginal costs.

Proof. Under additive risk as in (4) the optimal mark-up is the same as under uncertainty,

as the partial derivatives of price and quantity with respect to the fixed mark-up, , or propor-

tional mark-up parameter, , are deterministic. Expected profit is ( )( )−(( ),
where  =  or . But  and  are both deterministic, and the f.o.c. are

0()



−




=




() = ()





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which is the same deterministic equation for  as for  in the deterministic case. Additivity

also implies the same deterministic f.o.c. for the deviant’s optimal choice of quantity,  = .

The difference in profit between the deviant choosing a fixed quantity and her mark-up rivals is

 =  = −  0

as  and  are positively correlated.

Whether a proportional mark-up equilibrium is robust against a fixed mark-up deviant, and

a fixed mark-up equilibrium is robust against a proportional mark-up deviant is less clear, except

in the linear marginal cost case.

Proposition 4 In the case of stochastic demand and linear marginal costs, the proportional

mark-up equilibrium is robust against a fixed mark-up deviant but the fixed mark-up equilibrium

is vulnerable to a proportional mark-up deviant.

Proof. We know from Klemperer and Meyer (1989) that there is a unique linear supply

function equilibrium in the case of linear marginal costs which has constant slope, so the propor-

tional mark-up equilibrium is also the supply function equilibrium and hence optimal against any

deviation.

4 Robustness to Stackelberg deviations

Although a single deviant was unable to improve on her profits by choosing quantities rather

than mark-ups in the deterministic case, knowing that the remaining firms were acting on the

(mistaken) assumption that all firms were choosing their mark-up facing the same residual de-

mand schedule, there remains a question whether this is a consistently formulated equilibrium

for a sophisticated deviant. If all that firms observe is the consequences of their choices in the

market price, then they are correctly choosing the optimal choice of mark-up (or output). If they

are basing their choice of mark-up on assumptions about the shape of the residual demand they

face, then the assumed residual demand will be incorrect in the face of a Cournot deviant. One

way round this inconsistency is to suppose that the deviant firm’s strategy choice is known to the

remaining firms, who nevertheless continue to choose their mark-up (and similarly the deviant

knows that the other firms will behave that way). In a learning context, this would require the

leader to stick to her output strategy, while the followers learned that they could then improve

their profits by adapting to the new environment. The resulting equilibrium is most simply mod-

elled as the outcome of a Stackelberg game in which the deviant is the leader who can commit

in this case to her output, and to which the followers respond. As the aim is to demonstrate

that deterministic mark-up equilibria are not robust to this more sophisticated deviation, this

12



section considers the simpler duopoly case ( = 2) for the linear quadratic example of Appendix

A. The first step reproduces the classic Cournot Stackelberg oligopoly. The leader can commit

to her output level,  before the other (the follower) makes his choice,  , so that the leader

can optimize against the follower’s reaction function (10) given in Appendix A. The resulting

equilibrium has

 =
(1 + 2)

2(1 + 4+ 22)
  =


¡
1 + 6+ 42

¢
4(1 + )(1 + 4+ 22)

 (5)

These expressions are somewhat opaque, but simplify in the constant returns case in which  = 0

to the familiar solution  = 2,  = 4 = , and the profit of the leader is 3216, larger

than the follower’s profit, who receives only one-third as much or 216, and also higher than

under the symmetric Nash Cournot equilibrium of 29. If  = 1, then  = 1256   =

5   = 1156 and the leader’s profit is 045% higher than in the symmetric duopoly.

4.1 Stackelberg quantity deviations from the mark-up equilibrium

The question we now address is whether choosing the optimal Nash mark-up is robust against a

more sophisticated player who in a sequential setting can stick to her optimal output while the

other player continues to mark up on marginal cost but learns the optimal mark-up (effectively the

correct position of his residual demand schedule). The previous duopoly example demonstrates

that mark-up behaviour it is not robust (in a deterministic setting at least) against a Cournot

(quantity-fixing) deviation and that is also the case when the follower is choosing his mark-up.

Thus if the leader commits to a quantity, , the follower chooses a mark-up  given the residual

demand schedule  () =  −  − . The follower’s supply schedule is given by Appendix A

equation (12) with  = 2 so market clearing yields

 = −  − −

2
 or  =

+ 2(− )

1 + 2
 (6)

The follower chooses  to maximize profit (see Appendix A) resulting in a reaction function

 =
−

2
=



1 + 2


The leader’s optimal response (and the follower’s output) are exactly as in the Stackelberg

Cournot equilibrium (5) in which both agents choose quantities, as shown in Figure 3.
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Figure 3  = 140  = 1  = 2  = 162  = 310

Proposition 5 If one player assumes that the strategy space is the choice of the mark-up on its

marginal cost, then with a quadratic cost function, linear demand and two identical players, the

other player will find it profitable to commit to choosing a (different) optimal quantity to supply.

Proof. From equation (5)    . Since the leader could have chosen the same output as

the follower but chose not to, she must be making higher profits.

4.2 Stackelberg quantity deviations from the proportional mark-up equilib-

rium

If the leader offers a fixed quantity  and the follower offers the supply schedule  =  0( ),

then  = 2, replacing  = 1. The market clearing price is

 =
2(− )

2 + 





= −(2 + )




The follower’s problem is to maximize  = 2(2− 2)4 for which the f.o.c. is

(2− 2) = (1− )(2 + )

 =
2

1 + 2
 (7)

It may seem surprising that this does not depend on the leader’s choice, but the follower’s

actual mark-up will be lower the larger the output of the leader and hence the lower the price,

which gives the leader the advantage. The leader chooses  to maximize profit, given that
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 = 2(−)(2+). The profit maximizing solution is again the Cournot Stackelberg equilibrium
(5).

Proposition 6 If one player assumes that the strategy space is the choice of the slope (or pro-

portional mark-up on marginal cost) of its offer, then with a quadratic cost function, linear

demand and two identical players, the other player will find it profitable to commit to choosing a

(different) optimal quantity to supply.

Proof. From equation (5),     Since the leader could have chosen the same output as

the follower but chose not to, she must be making higher profits.

4.3 Stackelberg proportional deviations from the mark-up equilibrium

If the leader chooses a proportional supply schedule given by  = 2 and the follower chooses

his mark-up , the market clearing price is given by

 = − 

2
− −

2
 or  =

2+

2+ 1 + 
 (8)

Figure 4 illustrates and Appendix A demonstrates that this can be a profitable deviation, al-

though not as profitable as choosing output rather than slope when confronting mark-up follow-

ers.

Leader chooses slope vs follower choosing mark-up
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Figure 4  = 140  = 1  = 2  = 290  = 297
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5 Conclusion

Mark-up pricing simulation models are attractive in attempting to model outcomes in complex

markets where some agents can act strategically, and there has been considerable interest in

whether adaptive learning will lead to Nash equilibria (Weidlich and Veit, 2008), as these would

seem natural equilibrium concepts. However, as with all attempts to model strategic behaviour,

the resulting equilibrium is sensitive to the action space from which agents choose. Standard

oligopoly models consider actions to be either quantities (supplies to the market), as in the

Cournot formulation, or prices offered to the market (the Bertrand assumption). In the presence

of uncertain or varying demand, supply function models, developed by Klemperer and Meyer

(1989) and applied to electricity markets by Green and Newbery (1992), are attractive inter-

mediate formulations, and their linear solutions4 have been influential in motivating the kind of

agent-based models considered here.

All these specifications assume a unitary or owner-managed firm pursuing maximum profit

but under managerial capitalism the ultimate owners need to motivate managers. Ritz (2008)

argues that rewarding managers for increasing their market share is consistent with the evidence

and can be a useful in pursuing more collusive strategies. Ritz concludes that though competing

for market shares seems more aggressive, it is indeed more “robust” to strategic manipulations.

Following the same line, Vickers (1985) and Fershtman and Judd (1987) study the strategic

distortion of preferences. These models compare different proximate objective functions with the

same choice variable (and with the same goal of ultimately maximizing profits). In contrast, our

paper has the same ultimate objective function — profit maximization — but compares different

choice variables.

While the choice of action space in optimizing models is normally guided by the market

structure and the actions that agents have, the choice of action space in simulation and particu-

larly agent-based models is normally guided by tractability, where a choice of a single parameter

(such as the fixed or proportional mark-up over marginal cost) considerably simplifies the prob-

lem. This paper has shown that the two mark-up strategies considered are more competitive than

Nash-Cournot behaviour, with the Nash choice of the optimal proportional mark-up on marginal

costs of the offers yielding lower prices than the Cournot oligopoly prices but higher prices than

the optimum fixed mark-up on marginal costs. In deterministic cases, while these mark-up equi-

libria are robust against Nash deviations by single firms choosing quantities instead of mark-ups

(so they are in that sense Nash equilibria), they are not robust to either group deviations or to

4Supply function models typically have a continuum of solutions, one of which may be linear, providing there

are no relevant capacity constraints. Where capacity constraints are important, there may be unique but non-linear

solutions.
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more sophisticated single firm Stackelberg deviations in which the deviant maintains her output

and the remaining players adapt to that and find the corresponding mark-up equilibrium output

levels. The deviant player makes higher profits following this Cournot Stackelberg strategy (or

the proportional mark-up against a fixed mark-up strategy), casting doubt on the robustness of

simultaneous move Nash mark-up equilibria. On the other hand, if demand is stochastic, then a

fixed quantity response (deterministic Cournot) is strictly inferior to either mark-up equilibria,

and in the case of linear marginal costs, the proportional or proportional mark-up equilibrium as

a supply function equilibrium is robust against any deviation, while a fixed mark-up is vulnerable

to a proportional mark-up deviant.

The problem becomes more complex if multiple deviants collude, in which case Delgado and

Moreno (2004) show that only the least competitive supply function equilibrium is coalition-

proof. But that is to address a different set of questions, and raises the issue of whether entry is

free or not, which considerably alters the set of sustainable equilibria, as Newbery (1998) shows.

The implication of our findings for agent-based modeling, which is where mark-up modeling

is most widely used, is that it would be sensible to test any resulting numerically found conver-

gence results for robustness against different choice variables by one or more (large) agents, who

would need to maintain their choice for sufficiently many iterations to induce responses by the

remaining agents. A finding that the resulting equilibria were close to the original solution would

attest to its robustness, but if not the proposed solution would remain suspect. One moderately

robust conclusion is that proportional or proportional mark-ups on marginal cost are likely to

be superior to and more robust than alternative modeling assumptions.
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Appendix A Derivations of results

The linear demand quadratic cost case

If the cost function is quadratic: () =  +
1
2
2 , then without loss of generality set  = 0

by measuring prices relative to the level . The marginal cost, MC, is  which gives an

aggregate competitive linear supply schedule  independent of . If demand is also linear,

() = −  then the inverse slope parameter can be set at  = 1 by a suitable choice of price

units, so that  = −. The perfectly competitive solution is  = MC = , with

 =


(1 + )
  =



(1 + )
 (9)

The Nash-Cournot solution is found from the reaction function derived from the first order

condition (f.o.c.):

 = (−−)(2 + ) (10)

so the symmetric oligopoly solution is

 =
( 1


+ )

(1 + + 1

)
   =



(1 + ) + 1
  (11)

Deviations from competitive equilibrium

The supply function of each competitive firm  is given by  =  so residual demand is

 = − − (− 1) = − (+−1


) The deviant firm  then maximizes profit, for which the

f.o.c. gives

 =


1 + + 
  =

(1 + )

(1 + )2 − 1
2

  =


1 + 


Note that the optimal output is the same as the Nash Cournot output give in (11). Profit for

the deviant is

 =
2((1 + )2 + 2(1 + ) + 1)

2(1 + + )2((1 + )2 − 12)   =
2

2(1 + )

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This last inequality can be demonstrated by subtracting competitive profit from deviant profit,

which, after simplification, has the sign of

(1 + + 1)2 ≥ 0

Thus, provided the competitive equilibrium has a positive price (i.e.   0), it is more

profitable to set quantity (or offer whatever the market demands at the price  above) than to

act competitively. This is equivalent to observing that the competitive equilibrium here is not a

Nash equilibrium with finitely many firms.

Fixed mark-up models

If each firm offers its supply at a fixed mark-up above marginal cost, MC, its offer price  = MC

+, (so − MC = ). As MC =  = −, the supply schedule in price space is

 =
(−)


 ( = 1    ) (12)

The market clearing price, MCP, (m−) solves, after substituting  from (12),

 = −
X

 =
(+

P
)

(1 + )
 so




=

1

(1 + )


 = − so



=
1


(



− 1)

The f.o.c. from maximizing profit w.r.t.  gives




= (−MC) 


+ 




=




(



− 1) + 






=
−(1− 1


+ )+ 

(1 + )
= 0 so  =




(− 1 + )

 = − = (− 1 + )

(1 + ) =  =
(+ +

P
 6=)

(1 + )


(
2(1 + )2 − 1) = +

X
 6=

 

The symmetric equilibrium has  = :

(2(1 + )2 − 1) = + (− 1)

 =


(1 + )2 − 1  (13)
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Stackelberg proportional deviations from the proportional mark-up equilib-

rium

It is convenient to work in terms of the inverse of the proportional markup,  = 1. From (8),

 = 1(1+2+) and the follower maximizes profit  −2 by his choice of  as before,

noting that  = (− 1)2 and − MC = , giving f.o.c




=



2
(



− 1) + 




= 0

 = 



=



1 + 2+ 
 but

 =
2+

2+ 1 + 


so

 =
2(1 + 2+ )

(2 + )(2 + 2+ )


The leader’s profit function is proportional to (2− 2)2 for which the f.o.c. can be written

 log 


=

− 1
(2− )

 but

 log 


=



1 + 2+ 
− 1

2 + 
− 

2 + 2+ 


from which the optimal value of  can be determined. For example if  = 1,  = 100, the

symmetric proportional mark-up equilibrium has  =
√
3 − 1 = 0732 and  = 211, but in

this case the solution is  = 07142 which is a slightly steeper slope. Instead of the symmetric

price being 
√
3 = 577, the new price is 581 and the leader’s output is 207 profit 774 Had

the leader accepted the fixed mark-up equilibrium, the price would have been 571, the output

214 and profit 765, which is less. If the leader had chosen output rather than the proportional

mark-up the equilibrium price would have been 589, quantity 214 and profit 800, higher than

choosing the proportional mark-up.

Appendix B Learning, adjustment, convergence and stability

In an oligopoly, agents compete against others who also possess market power, and the resulting

equilibrium, if one exists, will depend on the actions that agents take (setting prices, offering

quantities, choosing quality, investing, advertising, etc.), and the extent to which they take

account of strategic interactions, which will depend on what they know, what they can observe,

and what rules of behaviour they adopt. The wide range of oligopoly equilibria depends on the

rules followed, the strategy sets, and information available to players. This appendix briefly

surveys some of these options and their implications for the choice for modelling markets.
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The standard economic model assumes that firms have full information about costs and

demand and rationally decide on their profit-maximizing choice (of output or price in the simplest

case of homogenous products). Empirical industry studies in the 1940’s were concerned with the

apparent mismatch between the theory of profit maximization and the evidence that managers

had little if any concept of marginal cost and revenue. Instead they followed rules of thumb in

setting prices at a mark-up over average cost (Hall and Hitch, 1939). As Grant and Quiggin (1994)

observed, this led to a methodological debate in which Friedman (1953) argued that managers

could be following rules of thumb but still be pushed towards profit-maximizing behaviour, as

those who chose non profit-maximizing mark-ups would earn lower profits and lose market share

and/or exit. Grant and Quiggin further argued that this argument does not immediately apply

to oligopolistic markets in which managers need to anticipate how their rivals will respond to

their actions. If other firms were choosing mark-ups on costs, then this would affect the choice

of a profit maximizing firm.

Grant and Quiggin (1994) examined the case in which each firm chose its profit-maximizing

mark-up over average cost instead of choosing the optimal output level. This relates firms’

actions more closely to what they observe, but they are still assumed to set the mark-up where

marginal cost is equal to marginal residual revenue (although their opening remarks suggest that

firms actually adjust their mark-ups in response to market conditions and so grope towards this

profit-maximizing position, in the spirt of Friedman’s defence).

Once imperfect information is accepted, and that agents need to experiment to discover

the relevant features of their market environment, and specifically the residual demand they

face given final demand and the suppliers of their competitors, the way is open to modelling

how this learning will take place. That will depend on what is known, what is unchanging

(e.g. final demand) and what may evolve (e.g. the actions of competitors). One approach

has been to explore the consequences of imperfectly observing rivals’ actions but nevertheless

having otherwise full information about the consequences of any set of actions by the players.

Bagwell (1995) explores one-shot Stackelberg games to disentangle the implications of the two

standard assumptions - that one agent can move first, and that all other agents perfectly observe

her choice. He claimed that the first-mover advantage is eliminated if there is even a slight

amount of noise in observing the leader’s choice. van Damme and Hurkens (1997) criticized this

conclusion by noting that it depended on restricting choices to pure strategy equilibria, and that

Bagwell’s game always had mixed strategy equilibria close to the Stackelberg equilibrium when

the noise was small. Their paper contains an extensive discussion of equilibrium selection, but

remains firmly within the standard game-theoretic approach.

An alternative approach is to suppose that the information available to firms is limited to
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their own costs and market outcomes, which they can observe in a sequence of choices by all

the firms. Again there are several ways this can be modelled, depending on what firms can

observe. A number of papers have assumed that firms can observe the actions and subsequent

profits earned by their rivals, so that they can imitate their behaviour. Vega-Redondo (1997)

explores the classic Cournot setting of a market of quantity-setting firms producing a homogenous

output in which firms experiment with a different level of output with a -(small) probability,

and successful firms win out over less successful firms, as Friedman (1953) argued. He concludes

that the final resting place of this stochastic dynamic process was the unique Walrasian (i.e.

perfectly competitive) outcome. This approach was extended by Schipper (2009), who allowed

firms either to imitate the output choices of the most profitable firms, or to optimize against

the other firms, but with all firms making small mistakes. This time the long-run state is one

in which imitators are better off than optimizers. A subsequent paper by Duersch, Oechssler,

and Schipper (2012) extends this idea, which was prompted by observing experimental subjects

playing a Cournot duopoly against a computer programmed with a variety of learning algorithms.

The computer could easily be beaten, except when it followed the rule of copying the action of

the most successful player in the previous round.

Schipper and his colleagues assume that all firms can identify both the actions and the

resulting profits of their rivals, while Vega-Redondo (1997) adopted a more Darwinian approach

in that exit or death is more likely with lower profits. But in a world of strategic rivalry, firms may

go to considerable lengths to conceal both profits resulting from specific actions and the actions

themselves, and with imperfect competition they may be able to survive without necessarily

maximizing profits.

The idea of looking for equilibria as the outcome of Darwinian selection leads to the concept

of an Evolutionarily Stable Strategy (ESS), and this appears to be an attractive equilibrium

concept in a world of imperfect information in which agents experiment, and either prosper

or suffer in the resulting competition. Much of the subsequent literature has been driven to

characterize the resulting equilibrium: will interaction lead to competitive outcomes (WE) or

will firms learn to sustain imperfectly competitive outcomes, such as the Cournot Equilibrium

(CE), or the even more profitable tacit collusion equilibrium (TCE)?

Thus Vallée and Yildozoglu (2009) note that an action that harms the performer less than

it harms its rivals differentially advantages the performer. In some cases that may lead the

performer to have a higher survival probability even though it makes itself worse off. Hamilton

(1970) calls this a spite effect (familiar from trade literature as a “beggar-my-neighbour” policy).

But if firms are reasonably capital intensive and have high sunk costs (as generators are), they are

unlikely to follow a beggar-my-neighbour policy as the cost in lost variable profits may be high
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compared to the gain of bankrupting competitors, particularly if there is free entry. Although

in general not all Nash Equilibria (NE) are ESS, in the absence of the spite effect, Vallée and

Yildozoglu (2009, p6) prove that a strict NE is an ESS in a symmetric finite population oligopoly

game.

However, if survival depends on relative rather than absolute profitability - as in imitation-

based social learning - the result is convergence to the WE. Specifically, Vallée and Yildozoglu

(2009) show that strategies that imply a deviation from the WE will be eliminated while the

strategies that imply a deviation from the CE in the direction of the WE will diffuse in the

population. Social learning leads to WE because increasing output below the WE leads to a

relatively greater profit for the deviant than the original population, so it is advantaged. Note

that this requires less successful firms to exit unless they increase their output. Not surprisingly,

if firms take the price as given they are likely eventually to behave competitively.

Vriend (2000) draws the distinction between social learning where survival depends on rel-

ative performance, and individual learning in which firms cannot observe and therefore imitate

the actions of others, but instead experiment and learn from their own performance. If firms

assume that they can change their output holding constant the price enjoyed last period (i.e.

they ignore the effect their output will have on price next period) the WE is the ESS and the

CE is not an ESS. But if firms ignore the (misleading) price last period and continue to try out

strategies (output levels) for long enough to learn how they compare, they can converge to the

CE. Models of social learning therefore seem inappropriate for modelling oligopolistic markets.

Waltman and Kaymark (2008, p3277) note two approaches to individual learning: belief-

based learning and reinforcement learning. “Examples of belief-based learning models are Cournot

adjustment and fictitious play (Fudenberg and Levine, 1998). These two models assume that

an agent has the ability both to observe its opponents’ action choices and to calculate best re-

sponses. In a Cournot oligopoly game, the models predict that firm behavior can converge only

to the Nash equilibrium. Compared with belief-based learning models, reinforcement learning

models make few assumptions about both the information available to an agent and the cognitive

abilities of an agent. . . . An agent is only assumed to have knowledge of the strategies that

it can play and, after playing a strategy, of the payoff that it has obtained from that strategy.”

Given that, they show (under some rather delicate conditions) that reinforcement learning can

result in a TCE, the least competitive alternative to a WE.

What firms observe, and whether they can imitate strategies or only choose between strate-

gies and learn of their outcome, clearly matters. Tirole (2000, p240) notes that “the proliferation

of theories is mirrored by an equally rich array of behavioral patterns actually observed under

oligopoly.” Tirole (p261) also notes that the evolutionary approach “looks at strategies, or (better
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terminology) rules, that are “robust” in the sense that they do relatively well against a variety

of other rules. . . . and that “only actors who use robust rules will stay around. . . . What is mean

by “robust rule” is a priori contingent on the set and the probability distribution of mutations,

and on the set of strategies the robust rule is allowed to be compared to.”

All this argues for individual learning in mark-up models as appropriate for modelling elec-

tricity markets. There are several papers on the theory of mark-up pricing in learning models,

mostly based on mark-ups on average costs (AC). One that would seem to parallel our interests

closely is the paper by Pasche (2002), which looks at two forms of mark-up: either as an absolute

difference between price and AC, or as a proportion of the AC. He defines a number of equilib-

rium concepts for Stackelberg mark-up deviations from Cournot or Bertrand equilibria for the

differentiated duopoly case.

Al-Najjar et al. (2008) look at mark-up choices when firms follow “naïve” adaptive learning

to adjust prices and periodically try different “costing methodologies” to see whether they can

improve on their price searching behaviour, as part of a research programme to reconcile cost

misallocation and “irrational” pricing that appear to characterize actual firm behaviour and even

the management textbook advice. This follows from observations that companies “use full costs

rather than variable costs” (Maher, Stickney and Weil, 2004) but the same authors also note

that “cost-based pricing is far less prevalent in Japanese process-type industries (for example,

chemicals, oil and steel)” to which we would add electricity.

Agent-based models and learning

Agent-based models define a number of agents (e.g. firms, traders, consumers) and specify their

rules of behaviour — the actions they can take and the information available and on the basis

of which they learn and update their behaviour. The literature on models of learning (see also

Camerer, 2003) argues for the suitability of reinforcement learning for modeling industrial com-

modity and particularly electricity markets. Reinforcement learning models have been studied in

economics (e.g. Roth and Erev, 1995) and in the artificial intelligence literature (e.g. Sutton and

Barto, 1998). Q-learning is a reinforcement learning model originally developed in the field of

artificial intelligence (Watkins, 1989, further developed by Littman, 1994 and Hu and Wellman,

2006) and appears to be the preferred model for electricity markets. An agent using a Q-learning

algorithm keeps in memory a Q-value function of the weighted average of the payoffs obtained by

playing a certain action in the past. The agent then plays with high probability the action that

gives the highest payoff and with a small probability a randomly chosen different action (to test

that any optimum found is not just a local maximum), observes the payoff it obtains and then
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updates its Q-value (Krause et al., 2006; Waltman and Kaymak, 2008).5 Supply function mod-

els, developed by Klemperer and Meyer (1989) and applied to electricity markets by Green and

Newbery (1992), are attractive intermediate formulations. In particular, their linear solutions

have been influential in motivating the kind of agent-based models often chosen. In the simple

quadratic cost, linear demand model there are two simple types of deviation from competitive

bidding - marking-up the offer schedule by a constant amount, or proportionally marking up the

slope of the offer schedule, as in Hobbs et al. (2000). If marginal costs are linear, then there is

a supply function equilibrium which is a proportional mark-up on the marginal cost, and this

solution has been widely used in simple analytical models (e.g. Green, 1999).6

To summarize, a number of markets, for example electricity markets, can be explored

through agent-based modelling. In such models, agents learn by testing out deviations from

past strategy choices to see if they can increase profits, and continue to experiment until further

improvements can no longer be found. The model must specify exactly what can and cannot be

observed, and in many cases this is restricted to information about the firm’s profit and his past

choices (which can be computed from past outputs, the cost function and the associated market

prices). As such the information is even more imperfect than normally assumed in formal game-

theoretic studies, but may avoid some of the evident sensitivities of such studies to the precise

form of the information assumed.

Agent-based modelling of wholesale electricity markets

There are a wealth of examples of using such models to explore learning in complex markets.

Wholesale electricity markets are one example. Learning is seen where generators (and in some

cases other agents such as retailers or suppliers) might choose a variety of actions in their pursuit

of profit or advantage. In some, agents can sign contracts ahead of time as well as deciding

at what price to offer electricity into the spot market. Except for very stylized (e.g. Cournot)

models, it has been analytically very difficult to solve for the optimal combination of forward

contracts and spot sales in the presence of market power. Newbery (1998) was able to do this

for a supply function equilibrium model by assuming that existing generators would choose

contracts to deter entry that might otherwise lead to excess capacity. Unless average prices can

be externally specified (in this case by free entry), there are too many possible combinations of

5See Littman (1994) and Hu and Wellman (2003). Weidlich and Veit (2008) critically compare these with other

reinforcement learning models.
6With finite support to the distribution of demand and no capacity limits as here, there will be a continuum

of supply function equilibria, of which one is the linear supply function, which is the optimal response of any firm

provided all other firms have chosen that supply function.
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contracts and spot offers to be tractable in a supply function setting (arguably the most natural

choice for modelling electricity wholesale markets).

Bunn and Oliveira (2001) adopt an agent-based model to explore the possible implications of

moving from the original Electricity Pool for England and Wales to the New Electricity Trading

Arrangements (NETA) to see how this might impact on both generators and suppliers, given

that generators may have market power and can choose to contract ahead but also be exposed to

the Balancing Mechanism. Given that their model was developed before NETA went live some

of their predictions were remarkably prescient (such as the predicted low volume of trading in

the Balancing Mechanism), and illustrate the strength of this approach for studying proposed

market design changes in a realistic setting that includes contracting.

Bunn and Oliveira (2003) extend this model to explicitly consider market power in a model

of the English wholesale market in which the regulator, Ofgem, had imposed a Market Abuse

Licence Condition that was appealed to the Competition Commission. Again, the development of

their model was motivated by a practical policy question. Veit et al (2006) also study the case in

which an oligopoly of generators sign contracts ahead of time and then compete in a transmission

constrained spot market. In this case agent-based modelling is chosen to handle the complexity

of the decision process (complicated by the transmission constraints), and confirms the prediction

of simpler analytical models (e.g. Newbery, 1998) that forward contracting to sell leads to more

competitive spot market behaviour and hence lower prices.3 These and other agent-based models

of wholesale electricity market are discussed in the excellent survey by Weidlich and Veit (2008),

who compare different learning strategies and their results.

A key question facing such modelers is whether the resulting equilibrium is indeed a Nash

equilibrium (where that is unique) in the space of actions allowed in the formulation of the game,

and indeed what happens where there are multiple Nash equilibria. This is the question that

Krause et al. (2005) address in the context of a simplified power market, and answer affirmatively

for unique Nash equilibria.

The obvious problem with agent-based modelling where agents are assumed to learn about

the profit consequences and adapt their strategies to increase profits is that the action space over

which they make choices may be too restrictive and may allow other more sophisticated agents to

exploit this limited strategy choice by choosing from a wider range of actions. In that sense the

models may be dismissed as too simplistic to model the behaviour of more sophisticated firms

(who certainly hire the brightest and best to examine their strategic choices). A good defence

of adaptive learning would be to show that the equilibrium of the form of learning were robust

against more sophisticated players choosing from a wider set of actions.
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