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ABSTRACT
TP53 overexpression is indicative of somatic TP53 mutations and associates 

with aggressive tumors and poor prognosis in breast cancer. We utilized a two-
stage SNP association study to detect variants associated with breast cancer survival 
in a TP53-dependent manner. Initially, a genome-wide study (n = 575 cases) was 
conducted to discover candidate SNPs for genotyping and validation in the Breast 
Cancer Association Consortium (BCAC). The SNPs were then tested for interaction 
with tumor TP53 status (n = 4,610) and anthracycline treatment (n = 17,828). For 
SNPs interacting with anthracycline treatment, siRNA knockdown experiments were 
carried out to validate candidate genes. 

In the test for interaction between SNP genotype and TP53 status, we identified 
one locus, represented by rs10916264 (p(interaction) = 3.44 × 10-5; FDR-adjusted p = 
0.0011) in estrogen receptor (ER) positive cases. The rs10916264 AA genotype 
associated with worse survival among cases with ER-positive, TP53-positive tumors 
(hazard ratio [HR] 2.36, 95% confidence interval [C.I] 1.45 - 3.82). This is a cis-eQTL 
locus for FBXO28 and TP53BP2; expression levels of these genes were associated 
with patient survival specifically in ER-positive, TP53-mutated tumors. Additionally, 
the SNP rs798755 was associated with survival in interaction with anthracycline 
treatment (p(interaction) = 9.57 × 10-5, FDR-adjusted p = 0.0130). RNAi-based depletion 
of a predicted regulatory target gene, FAM53A, indicated that this gene can modulate 
doxorubicin sensitivity in breast cancer cell lines. 

If confirmed in independent data sets, these results may be of clinical relevance 
in the development of prognostic and predictive marker panels for breast cancer.



Oncotarget18383www.impactjournals.com/oncotarget

INTRODUCTION

Genetic variation contributes to the phenotype 
and prognosis of breast cancer, as high-penetrance 
mutations and common variants correlate with various 
histopathological features, most notably estrogen receptor 
status [1]. The prognosis and indicated treatment for 
breast cancer is influenced by tumor grade, stage, HER2 
expression, and hormone receptor status, and it is plausible 
that genetic variants associated with these features would 
be of prognostic and predictive interest. Additionally, 
genetic variation may contribute to breast cancer survival 
independently of these markers, potentially by affecting 
the efficacy of the treatment. For example, prognostic and 
predictive SNPs have been discovered in the TP53 gene 
and its regulatory network, as well as in genes involved in 
oxidative stress [2-6]. 

TP53 is a key tumor suppressor involved in 
several cellular stress response pathways that regulate 
the cell cycle, apoptosis, senescence, and DNA repair. 
Somatic TP53 mutations are common in most types of 
cancer, including breast cancer where TP53 mutations 
have been estimated to occur in 20-30% of cases [7-9]. 
These mutations are most commonly dominant-negative 
missense mutations; truncating loss of function mutations 
are seen in less than 5% of breast cancers [10-12]. The 
dominant-negative missense mutations lead to the 
accumulation of mutated TP53 protein in cell nuclei, 
which is generally detectable by immunohistochemistry, 
although it must be noted that the concordance between 
immunohistochemical detection and sequencing is less 
than 75% when accounting for truncating mutations and 
missense mutations outside the conserved regions of the 
protein [12, 13].

Mutated TP53, detected either by 
immunohistochemistry or by sequencing, has been 

reported to associate strongly with aggressive tumor 
phenotypes, e.g. estrogen receptor negativity and high 
grade, and poor breast cancer survival [2, 7, 8, 10, 11, 14]. 
The prognostic value of TP53 mutation status appears 
to be particularly strong in ER-positive cases, however 
[11]. Furthermore, TP53 mutations may also influence 
disease outcome depending on the type of treatment, at 
least in the case of endocrine therapy for ER-positive 
cancer [15]. TP53 mutations have also been suggested to 
modulate sensitivity to anthracycline-cyclophosphamide 
combination chemotherapy, possibly in interaction with 
ER status, although the clinical significance of these 
findings remains inconclusive [12, 16, 17, 18]. We 
hypothesize that genetic variants that influence TP53-
related biological processes may have a TP53-dependent 
association with breast cancer survival. Such effects could 
be masked by TP53 mutations or occur exclusively in 
TP53-mutated cancers. To test this hypothesis, we have 
utilized a two-stage study design to search for genetic 
variants associated with survival in TP53-related breast 
cancer.

RESULTS

Rs10916264 and TP53 IHC have an interactive 
association with survival in ER-positive cases

First, we performed an initial genome-wide screen 
in the HEBCS-GWS data set (N = 572) for candidate 
SNPs that may be associated with survival in a TP53-
dependent manner. In this analysis, 111 SNPs met our 
selection criteria and were also represented on the BCAC 
iCOGS array and therefore selected for further validation 
(Supplementary Table 1). In total, 136 BCAC SNPs 

Figure 1: Kaplan-Meier curves for all combinations of rs10916264 genotype and TP53 status among pooled a) ER-positive 
and b) ER-negative BCAC cases.
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Table 1: Description of the data sets used in this study.

a T-stage for HEBCS-GWS. For BCAC, categorized based on tumor size: 1 = < 20 mm, 2 = 20-50 mm, 3 = >50 mm.
b In BCAC, approximately 5% of methotrexate-treated cases also received anthracycline treatment, and 2% of anthracycline-
treated cases also received methotrexate.
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matched the 111 HEBCS-GWS candidate SNPs at a LD 
threshold of r2 > 0.8.

Next, we performed an interaction analysis between 
SNP genotypes and TP53 immunohistochemistry (IHC) 
status in the BCAC validation series (N = 4610) (Table 
1). At this stage, five closely linked SNPs emerged as 
statistically significant, the strongest being rs10916264 
(p(interaction) = 3.44 x 10-5; p = 0.0011 after Benjamini-
Hochberg adjustment) among ER-positive tumors. These 
SNPs are in high LD with each other (minimum r2 0.93, D’ 
0.97) and therefore represent the same association signal. 
This interaction remained statistically significant after 
adjustment for standard prognostic factors (tumor size, 

grade, and node status). The Cox proportional hazards 
models for the rs10916264:TP53 interaction in ER-
positive cases are presented in Table 2. The hazard ratio 
of the interaction term 2.06 (1.47 – 2.91) is consistent 
with the corresponding HEBCS-GWS SNP rs6604887 (r2 
0.93, D’ 0.97) despite the low power in the ER-positive 
HEBCS-GWS subset (HR 1.94, 95% C.I. 0.82 – 4.02). 
In a comparison of the Cox models in ER-positive and 
ER-negative BCAC cases, the interaction terms suggested 
opposite effects and this difference was statistically 
significant (p = 0.0022, z-test for heterogeneity). The 
same was seen in the HEBCS-GWS data set, even though 
the interactions themselves did not reach statistical 

Table 2: Proportional hazards models depicting the interaction between rs10916264 genotype (additive model) and 
TP53 immunohistochemistry in ER-positive cases, and between rs798755 genotype (recessive model) and adjuvant 
anthracycline chemotherapy.

a Additive model, among ER-positive cases only
b Recessive model, all cases
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significance in either ER-based subgroup (heterogeneity 
p = 0.04).

To better illustrate the interaction results, we plotted 
Kaplan-Meier curves of all genotype-IHC combinations 
(Figure 1). The plots indicate that specifically the 
rs10916264 AA ancestral genotype (genotype frequency 
23.2%, allele frequency 48.0%; used as reference allele 
in the interaction analysis) associates with worse survival 
among ER-positive, TP53-positive cases, while all other 
genotype-IHC combinations are clustered together. We 
therefore also analyzed this SNP using the recessive 
genetic model, using G as the reference allele, and 
calculated Cox proportional hazard models in TP53- and 
ER-based subgroups. In ER-positive, TP53-positive breast 
cancer cases, the homozygous rs10916264 AA genotype 
associated with a HR of 2.36 (95% confidence interval 

[C.I.] 1.45 – 3.82; Figure 2a), while in ER-positive, TP53-
negative cases, the homozygous genotype did not associate 
with a difference in survival at all (HR 0.80, 95% C.I. 0.62 
– 1.02; Figure 2a). When the rs10916264:TP53 interaction 
model was calculated separately for each study, all studies 
were in agreement on the direction of the interaction term 
(I2 = 11.72%, Q test for heterogeneity p = 0.3927; Figure 
3). The interaction remained statistically significant (p 
= 2.6 x 10-4) when adjuvant endocrine therapy was 
included in the Cox model, and the interaction exists at a 
nominally significant level even among ER-positive cases 
not treated with endocrine therapy (n = 843, 140 events, p 
= 0.04). The interaction was also independent of adjuvant 
chemotherapy treatment with nominally significant 
interaction p-values in both chemotherapy-treated and 
untreated groups (p = 0.033 and 0.028, respectively).

Figure 2: Subgroup statistics of the SNPs detected in the interaction analyses. Hazard ratios and confidence intervals are 
displayed for the recessive model in the indicated subgroups for a) rs10916264 and b) rs798755. 
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No statistically significant SNP:P53 interactions 
were detected in the full BCAC data set (when ER-status 
was ignored), nor in ER-negative cases. A complete 
listing of all interaction test p-values can be found in 
Supplementary Table 2. See also Supplementary Table 
3 for a list of all candidate SNPs from the HEBCS-
GWS pilot, the corresponding BCAC SNPs, and linkage 
disequilibrium statistics between the two.

Rs798755 associates with survival after 
anthracycline therapy

As positive TP53 IHC correlates with aggressive 
tumor characteristics that often indicate adjuvant 
chemotherapy treatment in the clinic, some SNPs 
observed to interact with TP53 IHC in our pilot study may 
reflect response to treatment rather than a true biological 
interaction with TP53. We therefore also conducted a 
treatment-based interaction analysis irrespective of TP53 
status, restricting the interaction test to anthracycline-based 

regimens as this was the commonly used treatment type in 
both HEBCS-GWS and BCAC data sets. One statistically 
significant SNP emerged under the recessive genetic 
model: rs798755 (p(interaction) = 9.57 x 10-5; p = 0.0130 after 
Benjamini-Hochberg adjustment) (Supplementary Table 
2). The Cox proportional hazards models describing this 
interaction are presented in Table 2. Upon further analysis 
of genotype-specific hazards, the rs798755 homozygous 
AA-genotype (genotype frequency 4.0%, allele frequency 
19.7%) was associated with an increased hazard in 
anthracycline-treated cases (HR 1.72, 95% C.I. 1.15 – 
2.58), and a decreased hazard in cases not treated with 
anthracyclines (HR 0.67, 95% C.I. 0.50 – 0.92; includes 
also cases that received no adjuvant chemotherapy). In the 
HEBCS-GWS data set, the corresponding SNP rs798766 
(r2 1.0, D’ 1.0) also associated with an increased hazard 
in anthracycline-treated cases (HR 2.62, 95% C.I. 1.30 – 
5.29), although we saw no evidence of a protective effect 
in untreated cases (HR 1.54, 95% C.I. 0.88 – 2.72).

An analysis restricted to BCAC cases receiving 
non-anthracycline chemotherapy (instead of all cases not 

Figure 3: Forest plot depicting the hazard ratio (x-axis) and corresponding confidence intervals for the rs10916264:TP53 
interaction term (additive genetic model among ER-positive cases) separately in each eligible BCAC study. Studies with 
fewer th were pooled into the “Other” category.
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treated with anthracyclines) suffers from low statistical 
power, but the HR estimate is similar to the above (HR 
0.65, 95% C.I. 0.29 – 1.47). The interaction between 
rs798755 and anthracycline therapy may be dependent on 
ER status: an increased hazard was seen in ER-positive, 
anthracycline-treated cases (HR 2.51, 95% C.I. 1.59 – 
3.97), but not in ER-negative, anthracycline-treated cases 
(HR 0.74, 95% C.I. 0.27 – 2.01). (Figure 2b) 

Characterization of the rs10916264 locus

The rs10916264 locus is located at 1q42.11 in a 
promoter-flanking regulatory region (Ensembl regulatory 
region ID ENSR00001772409) between the genes 
TP53BP2 and FBXO28. The maximum LD region (r2 > 
0.1) around the SNP contains the genes CAPN8, TP53BP2, 
FBXO28, DEGS1, CNIH4, and WDR26. Computational 

annotation of correlated SNPs using multiple sources 
of genomic data revealed several potentially functional 
variants. Intersection of variants with genomic features 
relevant to target gene prediction methods suggested 
several potential target genes. For example, SNPs 
correlated (at r2>0.8) with rs10916264 overlap regulatory 
marks associated with CHIA-PET signals that interact 
with the promoters of CNIH4 and FBXO28. Enhancers 
associated with expression of FBXO28 and DEGS1 
also harbor highly correlated SNPs. Many of these 
variants overlap annotated regulatory features (such 
as Roadmap and ENCODE enhancers, promoters and 
transcription factor binding sites) and consequently exhibit 
RegulomeDB scores suggestive of functional impact. 
These results are presented in detail in Supplementary 
Table 4.

Our eQTL analyses of METABRIC gene expression 
data indicate that rs10916264 and its tagging SNPs 

Figure 4: Drug Sensitivity Scores (DSS) for cells transfected with FAM53A siRNAs and negative control siRNAs in 
each of the four cell lines. Higher DSS scores indicate better sensitivity to doxorubicin. 



Oncotarget18389www.impactjournals.com/oncotarget

Figure 5: Diagram of the workflow of this study.
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associate with the expression of FBXO28 also in breast 
tumor tissue (p = 0.0016). The rs10916264 A-allele was 
associated with higher expression of FBXO28. We also 
noted two additional cis-eQTLs between the rs10916264 
locus and the genes TP53BP2 (p = 0.0087) and CNIH3 (p 
= 0.0023). Of these, FBXO28 and CNIH3 were predicted 
to be regulatory targets of the variants in this region. No 
statistically significant trans-eQTLs were detected.

Analysis of Kaplan-Meier Plotter data indicates that 
high FBXO28 expression is associated with poor survival 
among ER-positive breast cancer cases (HR 1.57, 95% 
C.I. 1.35 – 1.81; p = 9.5 x 10-10). Similar to the rs10916264 
SNP, this effect is not seen in ER-negative cases: the 
calculated HR for high FBXO28 expression would in fact 
suggest a protective effect (HR 0.81, 95% C.I: 0.63 – 1.03) 
although the difference is not statistically significant (p 
= 0.081). Restricting the analysis to cases with known 
sequence-based TP53 mutation status greatly reduces 
statistical power, but the association between FBXO28 
and survival is consistent with the SNPs in the rs10916264 
locus. High FBXO28 expression was associated with poor 
survival in ER-positive, TP53-mutated cases (HR 2.35, 
95% C.I. 1.17 – 4.72, p = 0.0133), but not in ER-positive 
TP53 wild-type cases (HR 1.27, 95% C.I. 0.82 – 1.96, p 
= 0.2886). A similar result was seen for TP53BP2, where 
high expression had a protective effect in ER-positive, 
TP53-mutated cases (HR 0.27, 95% C.I. 0.12 – 0.63, p = 
0.001), but not in ER-positive TP53-wild type cases (HR 
0.82, 95% C.I. 0.53 – 1.27, p = 0.383) or in ER-negative 
cases (HR 1.19, 95% C.I. 0.91 – 1.56, p = 0.191). The 
direction of the hazard ratios for TP53BP2 and FBXO28 
were consistent with the directions of the eQTLs observed 
for the survival-associated SNPs in the region. Unlike 
FBXO28 and TP53BP2, the expression level of CNIH3 
did not associate with survival. 

Characterization of the rs798755 locus

The rs798755 LD region (r2 > 0.1) on chromosome 
4 contains the genes FAM53A, SLBP, TMEM129, and 
TACC3, all of which are in eQTL association with the 
SNPs in the region in numerous cell types, although 
no such correlation has been reported specifically in 
breast tissue. The SNP is located in a regulatory region 
(ENSR00002001253) containing multiple active promoter 
and enhancer histone marks in a variety of tissues 
including breast. At this locus, SNPs correlated with 
rs798755 (r2 > 0.8) overlap with multiple MCF7 ChIA-
PET signals that interact with the promoters of the above 
four genes as well as a number of other genes further 
along the chromosome: FGFR3, MXD4, WHSC1, RP11-
572O17.1 and NELFA. Correlated SNPs also intersect 
with computationally predicted enhancers linked to 
expression of TACC3 and SLBP. Many highly correlated 
variants coincide with regulatory elements in normal and 
tumor breast cell types, including enhancers, promoters 

and transcription factor binding sites. In our METABRIC 
eQTL analysis of breast tumor data, SNPs correlated with 
rs798755 were associated with the expression of TACC3 (p 
= 0.00099). See Supplementary Table 4 for details on the 
predicted regulatory sites in this region. Gene expression 
based survival analyses were not feasible for these genes, 
since data on specific adjuvant chemotherapy regimens 
was not available in the Kaplan-Meier Plotter database.

siRNA knockdown of FAM53A expression 
influences doxorubicin sensitivity in breast cancer 
cells

To test whether the expression levels of the genes 
surrounding rs798755 influence anthracycline response in 
breast cancer cell lines (CAL-120, MCF7, MDA-MB-231, 
and MDA-MB-361), we tested whether siRNA knockdown 
of these genes influences the doxorubicin dose response of 
the cells. Of the genes in the rs798755 region, FAM53A 
knockdown resulted in increased doxorubicin resistance 
(lower DSS) compared to the negative control siRNA in 
the triple-negative, TP53-mutated MDA-MB-231 cells (p 
< 10-16). In CAL-120 cells, a similar but statistically non-
significant effect was seen between FAM53A siRNAs and 
negative controls (p = 0.162). In the Luminal-B MDA-
MB-361 and Luminal-A MCF7 cell lines, FAM53A 
knockdown instead resulted in increased sensitivity to 
doxorubicin (p = 0.005 and p = 0.017, respectively). See 
Figure 4 for a visual comparison of DSS scores between 
FAM53A siRNAs and negative controls in the four cell 
lines. Knockdown of SLBP, TMEM129, or TACC3 did not 
influence doxorubicin sensitivity in any of the cell lines. 

DISCUSSION

We have performed a two stage SNP association 
study for the purpose of discovering genetic variants that 
may influence breast cancer survival in a TP53-dependent 
manner. The general workflow of the study is illustrated 
in Figure 5. In an interaction test between SNP genotypes 
and TP53 overexpression, one locus (represented by 
rs10916264 and linked SNPs) emerged as statistically 
significant among ER-positive cases, independently 
of conventional prognostic factors; this effect differed 
significantly from ER-negative cases. Although initially 
detected using the additive genetic model, the effect 
appears to be recessive: specifically the rs10916264 AA-
genotype is associated with poor survival in TP53- and 
ER-positive cases. The survival difference in this group of 
patients is remarkable: rs10916264 appears to distinguish 
a subgroup of TP53-positive cases with poor prognosis 
among ER-positive cases (Figure 1a). No association of 
rs10916264 with survival was seen in the ER-positive, 
TP53-negative cases, nor in ER-negative cases. The 
interaction was not seen in the main analysis of all BCAC 
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cases, but this is consistent with the effect direction 
differing between ER-positive and ER-negative cases. 
This effect appeared to be independent of both endocrine 
and adjuvant chemotherapy treatment, although more 
detailed analyses of specific chemotherapy regimens were 
not carried out due to lack of statistical power. 

The rs10916264 locus is in a promoter-flanking 
region upstream of the FBXO28 gene, a predicted target 
of the regulatory variants in LD with rs10916264. The 
rs10916264 A-allele correlates with increased expression 
of FBXO28, which in turn was associated with poor breast 
cancer survival in the Kaplan-Meier Plotter database. 
Similar to the SNP, FBXO28 expression was only 
associated with survival in ER-positive breast cancers 
with somatic TP53 mutations. A similar but opposite 
effect was seen for TP53BP2, also consistent with the 
eQTL direction: low TP53BP2 expression associated 
with adverse prognosis in ER-positive cases with TP53 
mutations. This lends credence to the idea that genetic 
variation at this locus influences breast cancer survival 
through regulation of one or both of the genes TP53BP2 
and FBXO28. 

Our evidence points to FBXO28 as the strongest 
candidate gene in the region: it is predicted to be a target of 
the regulatory variants, its expression in breast tumor tissue 
correlates with these variants, and its expression level 
also associates with breast cancer survival specifically 
in ER-positive, TP53-mutated breast cancer. Functional 
FBXO28 activity has also been shown to be associated 
with adverse breast cancer prognosis, and correlates with 
TP53 mutation status specifically in ER-positive breast 
tumors [19, 20]. FBXO28 belongs to the F-box family of 
proteins that determine the substrate specificity of the SCF 
ubiquitin ligase complex, a regulatory system that plays 
a critical role in tumorigenesis [21, 22]. SCF-FBXO28 
specifically ubiquitylates Myc, promoting Myc-p300 
transcriptional activity and subsequent oncogenic 
signaling [19]. Increased FBXO28 gene expression alone 
is not sufficient for this process: FBXO28 activation 
requires phosphorylation by the cyclin-dependent kinases 
CDK1 and CDK2. Since CDK activity is regulated by 
TP53 through p21 [23], this provides another rationale 
for why increased FBXO28 expression would influence 
survival predominantly in TP53-mutated cancer.

While TP53BP2 was not a predicted target in 
our computational analysis, variants in strong LD with 
rs10916264 did associate with its expression in breast 
tumors. This, along with the gene’s well-characterized 
interaction with TP53, makes it also a strong candidate to 
functionally connect the regulatory variants in this region 
to breast cancer survival. The association between low 
TP53BP2 expression and poor survival in TP53-mutated 
breast cancer seems counterintuitive at first, because 
TP53BP2 binds TP53 to induce apoptosis, and this pro-
apoptotic cooperation can be defective or absent when 
TP53 is mutated [24, 25]. However, TP53BP2 also has 

TP53-independent binding partners and tumor suppressor 
activities that can partially compensate for defective 
TP53. TP53BP2 can bind IκB and induce repression 
of p63 through NF-κB, suppressing tumorigenesis and 
metastasis in squamous cell carcinoma [26]. It can also 
inhibit autophagy by binding Ras [27], a mechanism 
through which TP53BP2 has been shown to enhance 
oxaliplatin-induced apoptosis in colorectal cancer cells 
independently of TP53 [28]. Furthermore, TP53BP2 can 
regulate proliferation and apoptosis in the TP53-mutated 
MDA-MB-231 breast cancer cell line [29]. 

Certain caution is advisable in the interpretation 
of these results, since TP53 immunohistochemistry as 
used in this study is not a comprehensive method for 
TP53 mutation detection. The detectable over-abundance 
of TP53 results from typically dominant-negative TP53 
missense mutations that lead to the accumulation of a 
stable but dysfunctional form of the protein. The study 
material therefore includes an unknown proportion 
of cases with other types of somatic mutations; the 
concordance between TP53 immunohistochemistry and 
DNA sequencing has previously been estimated to be 
below 75%, mainly due to truncating mutations [12, 13]. 
The immunohistochemically detectable dominant-negative 
mutations may be of particular interest, however, as they 
have been reported to confer oncogenic activity to TP53 
[30]. It is also of note that the initial SNP selection in this 
study relies on a small sample set with relatively little 
statistical power, which may have led to missed SNPs 
as well as an inflated number of false positives in the 
initial candidate SNP set. Our goal was to offset this by 
the increase in statistical power achieved by focusing the 
validation analysis on a fairly small set of SNPs, resulting 
in a lesser degree of multiple testing and therefore more 
power to detect weak to moderate effect sizes (HRs). 
Given that positive TP53 status was strongly associated 
with aggressive tumor characteristics and therefore 
correlated strongly with the administration of adjuvant 
chemotherapy, we speculated that the initial TP53-
based signal in HEBCS-GWS might in fact reflect an 
interaction with treatment. When we tested for interaction 
between candidate SNP genotypes and anthracycline 
treatment, the SNP rs798755 emerged as statistically 
significant. This locus (rs798766, r2 = 1) has previously 
been shown to associate with urinary bladder cancer risk 
and recurrence [31]. Our breast tumor eQTL and target 
prediction analyses pointed to TACC3 as the gene most 
likely affected by variants in this region. Overexpression 
of TACC3 has previously been associated with oncogenic 
activity, defective DNA repair, and poor survival in breast 
and lung cancer [32]. This would be consistent with the 
association of the rs798755 minor allele with high TACC3 
expression in our eQTL analysis of breast tumor data. 
However, TACC3 siRNA knockdown did not influence 
doxorubicin sensitivity in the breast cancer cell lines we 
tested, although we cannot rule out the possibility that 
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this gene may contribute to the observed association with 
survival in vivo.

Previously published studies have identified 
rs798755 as a cis-eQTL locus for the FAM53A gene in 
a wide variety of tissue types. FAM53A belongs to a 
vertebrate-specific family of three homologous genes 
of largely unknown function: FAM53A, FAM53B, and 
FAM53C [33]. In the siRNA experiment, FAM53A 
knockdown affected doxorubicin response significantly in 
three out of four tested cell lines. The TP53-mutated, basal 
MDA-MB-231 cells were rendered more doxorubicin-
resistant by FAM53A depletion, and a similar but 
statistically non-significant effect was seen in the similarly 
basal and TP53-mutated CAL-120 cell line, while the 
luminal MDA-MB-361 (truncating TP53 mutation) and 
MCF7 (TP53 wild-type) cells became more sensitive to 
doxorubicin. It is tempting to speculate that this effect is 
caused by the basal-luminal difference, and/or the presence 
of gain-of-function TP53 mutations in the two basal cell 
lines, but more cell lines would have to be examined to 
support such conclusions, and further study is required to 
elucidate the underlying biological mechanisms and their 
in vivo relevance. These findings are consistent with our 
SNP-based clinical findings and eQTL data, however: 
the rs798755 A-allele associates with poor prognosis in 
ER-positive, anthracycline-treated cases, as well as with 
higher FAM53A expression, which based on our siRNA 
experiments correlates with anthracycline resistance in 
ER-positive cell lines. It can therefore be speculated that 
FAM53A may play a role in the commonly seen resistance 
to anthracyclines and other chemotherapy drugs in ER-
positive breast cancer [34-36]. 

The functions of FAM53A and its paralogues are 
not well understood. The best-known member of the 
family is FAM53B, a controller of tissue development 
and cell proliferation [33, 37]. FAM53B is required for 
Wnt signaling, a pathway involved in epithelial-to-
mesenchymal transition and subsequent metastasis in 
breast cancer [38-40]. FAM53B has also been identified 
as a critical gene in the prognosis of multiple myeloma 
in a transcriptional network analysis [41]. FAM53B has 
also been shown to bind 14-3-3 chaperones, a family of 
proteins known to play a key role in cellular resistance 
to anticancer drugs, including doxorubicin [33, 42-44]. 
FAM53A is therefore a plausible candidate to influence 
anthracycline response in breast cancer, even though the 
mechanism of action cannot be speculated on in any detail, 
and the results concerning rs798755 and its associated 
genes must be considered hypothesis-generating without 
immediate clinical relevance. If confirmed, however, 
these results may aid researchers in understanding the 
mechanisms of anthracycline resistance in ER-positive 
breast cancer, which in turn can facilitate clinical research 
towards improved individualized therapy. 

In conclusion, we have identified a regulatory 
genetic locus in 1q42.11, represented by rs10916264 and 

other SNPs in its LD region, which distinguishes a group 
with poor survival after breast cancer specifically in cases 
with TP53 overabundance in ER-positive tumors. This 
genetic variation may influence the expression and/or 
regulation of several genes in the region, with the evidence 
pointing most strongly to FBXO28 and TP53BP2. This 
result may provide useful clues to the relationship between 
TP53 and ER signaling in breast cancer as well as to the 
way this interplay influences tumor progression and the 
outcome of the disease. We have also identified a cis-eQTL 
variant for FAM53A that may associate with response to 
anthracycline treatment in ER-positive breast cancer. Both 
of these genetic loci may provide useful prognostic and/
or predictive genetic markers that, if validated, may be 
of clinical use in identifying cases likely to benefit from 
specific treatments or more aggressive treatment regimens. 
Detailed investigation of the biological and clinical 
significance of these variants requires further study.

MATERIALS AND METHODS

Discovery GWS (HEBCS-GWS)

The collection and genotyping of the HEBCS-
GWS series has been previously described [45]. In total, 
genotype information was obtained from a study series 
consisting of 805 Finnish breast cancer cases (HEBCS-
GWS), enriched for cases with distant metastasis or death 
at the time of the initiation of the study in 2008: the series 
includes 312 breast cancer specific events, and 339 any-
cause mortality events. TP53 immunohistochemistry data 
was available for 575 cases [2]; these cases comprise the 
discovery series. All cases were female, ascertained for 
their first primary invasive breast cancer. See Table 1 for a 
detailed description of this data set.

Validation (BCAC)

Candidate SNPs identified in the HEBCS GWAS 
analysis were included on a custom Illumina Infinium 
array (iCOGS) for large-scale genotyping of a data set 
of 50,927 individuals from 52 Breast Cancer Association 
Consortium (BCAC) member studies [46]. Each of the 
host institutions of the respective study recruited under 
ethically approved protocols by the local institutional 
review boards. BCAC studies represented on the iCOGS 
chip were included in survival analysis if sufficient follow-
up data was available, with a minimum requirement of 
at least ten survival events (deaths from any cause) per 
study. Additionally, we included only studies with cases 
from predominantly European ancestry (in total 99.7% 
of individuals known to be of European origin), and 
that provided data on either adjuvant treatment or TP53 
immunohistochemistry. See Supplementary Table 5 for a 
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description of these studies. Clinicopathological data was 
collected as previously described [47], including TP53 
immunohistochemistry data from 3,476 cases. Tumor 
tissue microarray (TMA) samples from an additional 
set of 1,134 individual cases (from five BCAC studies) 
were stained for TP53 and scored centrally at the Helsinki 
University Hospital using monoclonal mouse anti-human 
DO-7 antibody (Dako Inc., Carpinteria, CA 93013, USA) 
at a 1:200 dilution. Slides were pre-treated for 60 minutes 
in CC1 buffer (Ventana Inc., Tucson, AZ 85755, USA) 
and stained using the Ventana Benchmark XT system 
(Ventana, USA). The Ultraview Universal DAB Detection 
kit 760-500 (Ventana, USA) was used for detection. 
Scoring was categorized into a positive/negative score 
based on a cutoff of >20 % clearly positive tumor nuclei. 
See Supplementary Table 6 for a listing of the TP53 
staining and scoring methods for each study.

Two partially overlapping subsets of the BCAC 
data set were used. For the primary TP53 interaction 
analysis, we selected all cases with available genotype, 
TP53 immunohistochemistry, and survival data (N = 
4,610). For an analysis of chemotherapy-related effects, 
we included all cases with available survival and adjuvant 
chemotherapy information, irrespective of TP53 data 
availability (N = 17,828). These data sets are described in 
detail in Table 1. 

Statistical analysis

Survival statistics were calculated using Cox 
proportional hazards models. The preliminary HEBCS-
GWS survival analysis was carried out using two different 
endpoints in parallel: five-year BDDM (breast cancer 
death or distant metastasis), and 10-year overall survival 
(death from any cause). Two different approaches were 
used: (i) survival analyses restricted to TP53-positive 
cases only (N = 157), and (ii) interaction analyses between 
SNP genotypes and TP53 immunohistochemistry in all 
cases (N = 575). Only the log-additive genetic model was 
analyzed at this stage. SNPs associating with survival 
at p < 0.005 in either of the two tests were selected as 
candidates for validation in the next stage. If the SNP itself 
was not present on the iCOGS genotyping chip, tagging 
SNPs were selected using 1000genomes r2 > 0.8 as the 
minimum LD threshold for proxy SNP selection.

At the validation stage (BCAC), 10-year overall 
survival (death from any cause) was used as the end 
point in all survival analyses. Follow-up times were left-
truncated to account for case recruitment latency. All Cox 
models were adjusted for age at diagnosis and stratified by 
study. The primary analysis consisted of an interaction test 
between SNP genotypes and TP53 immunohistochemistry 
using the log-additive genetic model; statistical 
significance was determined by a likelihood ratio test. The 
following groups were analyzed: all cases, ER-positive 

cases, and ER-negative cases. For statistically significant 
SNPs, we also calculated multivariate Cox interaction 
models that included the following standard prognostic 
factors in addition to age: estrogen receptor status (ER), 
histological grade, nodal metastasis (N), and tumor size.

In the anthracycline treatment based analyses, 
interaction terms of the form SNP*Anthracycline were 
introduced to the Cox models. To take advantage of the 
greater statistical power in this data set, both the additive 
and recessive genetic models were analyzed. Statistically 
significant hits from the BCAC interaction analysis were 
tested for consistency of effect direction in HEBCS-
GWS within identically defined subgroups. Taxane- and 
methotrexate-based regimens were not investigated, 
as these regimens are less representative of the original 
HEBCS-GWS material, and the numbers were deemed 
to be too small for an adequately powered interaction 
analysis. Benjamini-Hochberg correction was used to 
confirm statistical significance in the presence of multiple 
testing [48].

eQTL analysis

To determine if the survival-associated SNPs or 
other SNPs in the LD region (r2 > 0.1) associate with 
gene expression in breast cancer, we utilized the publicly 
available METABRIC data set [49]. The METABRIC gene 
expression data was generated by the Illumina Human 
WG6 v3 platform. Tumor tissue genotyping had been 
carried out using the Affymetrix Genome Wide Human 
SNP array 6.0. METABRIC consists of 1,328 breast 
tumor samples with both genotype and gene expression 
data. eQTL analysis was carried out by calculating linear 
models between genotype and gene expression using the 
R package ‘MatrixEQTL’ [50]. We searched for cis-eQTLs 
within regions defined as ±1 Mb from any SNP in the LD 
region. Any genes outside these regions were analyzed for 
trans-eQTL and subjected to transcriptome-wide multiple 
testing correction (Benjamini-Hochberg).

Further in silico evaluation of SNPs and candidate 
genes

It is likely that the prognostic SNPs identified in this 
study are merely linkage disequilibrium proxies for other, 
functionally significant variants in their genomic vicinity. 
In an effort to identify the SNPs and genes with a direct 
functional impact on breast cancer survival, we utilized a 
number of public databases. For these analyses, regions of 
interest were defined as regions containing SNPs in any 
linkage disequilibrium (LD) with the survival-associated 
SNPs at r2> 0.1. Linked SNPs in these regions were 
analyzed for their impact on regulatory features using 
a target gene prediction pipeline that utilizes publicly 
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available chromosome conformation capture, promoter 
prediction, super-enhancer, and enhancer promoter cap 
data to connect regulatory variants to likely target genes 
in breast-derived cell types as previously described [51]. 
These data were intersected with the breast cancer specific 
eQTL results from METABRIC to identify the most likely 
target genes. For a detailed listing of the target prediction 
resources, see Supplementary Table 4. Candidate genes 
in the regions surrounding the prognostic SNPs were 
analyzed in Kaplan-Meier plotter, a gene expression and 
survival database [52]. These analyses were performed 
using 10-year relapse-free survival, as this was the most 
widely available end-point, and optimized break points for 
the binarization of gene expression levels. 

siRNA transfection / drug response measurement 
of breast cancer cell lines

In the case of SNPs that associated with survival 
in anthracycline-treated cases, we performed a siRNA 
knockdown based drug response experiment to test 
whether the genes in the LD regions surrounding the 
SNPs influence doxorubicin response in breast cancer 
cell lines. The target genes and selected siRNAs were 
FAM53A, SLBP, TACC3, and TMEM129. Three different 
siRNAs were used per gene (see Supplementary Table 
7 for details), and assayed separately, each with five 
replicates. The cell lines used were MCF7 (luminal 
A, TP53 wild-type), MDA-MB-361 (luminal B, TP53 
truncating mutation), MDA-MB-231 (triple-negative, 
TP53 missense mutation), and CAL-120 (triple-negative, 
TP53 missense mutation). Cells were transfected with 
siRNAs and 24h later supplemented with five different 
doxorubicin concentrations: 0.83, 10, 100, 500, and 1000 
nM. The number of viable cells was measured after 71h 
doxorubicin treatment. Based on cell viability at increasing 
doxorubicin concentrations, drug response curves were 
calculated and converted into Drug Sensitivity Score 
(DSS) statistics [53]. DSS scores for each target gene were 
then pooled across replicates and siRNAs and compared to 
cells transfected with a target-less negative control siRNA 
in twelve replicates using Student’s t-test.

Data availability

The relevant BCAC SNP genotype data 
underpinning these analyses can be accessed by applying 
to the BCAC consortium (http://bcac.ccge.medschl.cam. 
ac.uk/). The dataset can be made available by the BCAC 
coordinating centre upon request to the corresponding 
authors and with the permission of BCAC Data Access 
Coordination Committee.

Abbreviations

BCAC Breast Cancer Association Consortium
SNP Single Nucleotide Polymorphism
ER Estrogen Receptor
eQTL Expression Quantitative trait Loci
HR Hazard Ratio
C.I. Confidence Interval
FDR False Discovery Rate
GWS Genome-Wide association Study
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siRNA Small Interfering RNA
LD Linkage Disequilibrium
CDK Cyclin-Dependent Kinase
TMA Tumor Tissue Microarray
N Lymph Node metastasis
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