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Cohort description

Pre-QC description

Alignment & variant Included in
Cohort Instrument calling workflow N (pre-QC) aggregate
covid - severe NovaSeq Genomics England pipeline 2.0 8,794 | aggCOVID_v4.2
covid - mild NovaSeq Genomics England pipeline 2.0 1,809 | aggCOVID_ v4.2
. . Illumina North Star Version 4
100K-Genomes(not realigned) | Hiseq X (NSVA4, version 2.6.53.23) 72,060 | aggV2
100K-Genomes(realigned) Hiseq X Genomics England pipeline 2.0 4,183 | aggCOVID_ v4.2

Supplementary Table 1: Description of the cohorts included in this study

Post-QC description

Predicted . , . 100K-Genomes | 100K-Genomes
Ancestry covid-severe | covid-mild (not realigned) | (realigned)

EUR 5,089 1,507 38,325 3,059
SAS 788 95 3379 319
AFR 440 14 1025 311
EAS 274 14 280 72

Supplementary Table 2: Description of the cohorts included in this study by predicted ancestry, after sample QC
and removal of related individuals.
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Sample QC Distributions of VCF-level quality metrics (aggCOVID_v4.2)
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Supplementary Figure 1: Each histogram shows the distribution of samples in the aggCOVID v4.2 data-set for
a particular VCF-level quality metric, following adjustment for sequencing platform and the first three ancestry
assignment principal components (as described in Methods). All metrics are calculated from autosomal bi-allelic SN'Vs.
The dashed read lines indicate the threshold for sample exclusion. Samples were removed that were four median
absolute deviations (MADs) above or below the median for the following metrics: ratio heterozygous-homozygous,
ratio insertions-deletions, ratio transitions-transversions, total deletions, total insertions, total heterozygous snps,
total homozygous snps, total transitions, total transversions. For the number of total singletons (snps), samples were
removed that were more than 8 MADs above the median. For the ratio of heterozygous to homozygous alternate
snps, samples were removed that were more than 4 MADs above the median. For sample-missingness (bottom-right
panel), a hard cut-off of 0.05 was applied (no adjustment for sequencing platform or ancestry).



Sample QC Distributions of VCF-level quality metrics (aggV2)
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Supplementary Figure 2: Each histogram shows the distribution of samples in the aggV2 data-set for a particular
VCF-level quality metric, following adjustment for sequencing platform and the first three ancestry assignment
principal components (as described in Methods). All metrics are calculated from autosomal bi-allelic SN'Vs. The
dashed read lines indicate the threshold for sample exclusion. Samples were removed that were four median absolute
deviations (MADs) above or below the median for the following metrics: ratio heterozygous-homozygous, ratio
insertions-deletions, ratio transitions-transversions, total deletions, total insertions, total heterozygous snps, total
homozygous snps, total transitions, total transversions. For the number of total singletons (snps), samples were
removed that were more than 8 MADs above the median. For the ratio of heterozygous to homozygous alternate
snps, samples were removed that were more than 4 MADs above the median. For sample-missingness (bottom-right
panel), a hard cut-off of 0.05 was applied (no adjustment for sequencing platform or ancestry).



PCA and ancestry
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Supplementary Figure 3: Projection of severe, mild and 100K individuals onto the PCs of the 1000 genomes project
phase 3 individuals (1IKGP3). (A) PCs 1 & 2 for 1IKGP3 unrelated individuals using the high quality independent
SNP set. (B-F). Projected PCs 1-10 for severe (cases) and mild + 100K individuals (controls). 1IKGP3 reference
individuals are shown in grey (as background). Note that for panels B-F, the displayed colored populations had
inferred genetic ancestry as EUR, SAS, AFR and EAS and were analysed in this study.
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Supplementary Figure 4: EUR PCs 1-10 for severe (cases) and mild 4+ 100K individuals (controls).
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Supplementary Figure 5:

SAS PCs 1-10 for severe (cases) and mild + 100K individuals (controls).
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Supplementary Figure 6:

AFR PCs 1-10 for severe (cases) and mild + 100K individuals (controls).
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Supplementary Figure 7: EAS PCs 1-10 for severe (cases) and mild + 100K individuals (controls).
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Cohort characteristics

Disease characteristics

100K control cohort disease breakdown

Neurology And Neurodevelopmental Disorders
Cardiovascular Disorders -

Renal And Urinary Tract Disorders
Ophthalmological Disorders A

Breast Cancer -

Colorectal Cancer

Ultra-Rare Disorders -

Tumour Syndromes

Lung Cancer 4

Other Cancer A

Renal Cancer

Skeletal Disorders A

Sarcoma Cancer A

Haematological And Immunological Disorders 4
Hearing And Ear Disorders -
Endometrial_carcinoma Cancer

Endocrine Disorders A

Metabolic Disorders 4

Dysmorphic And Congenital Abnormality Syndromes
Ovarian Cancer -

Adult_glioma Cancer A

Other Rare Disease

Prostate Cancer -

Bladder Cancer -

Respiratory Disorders

Growth Disorders
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Supplementary Figure 8: Disease characteristics for the 100K controls that were used in this study after QC filters.
The 100,000 Genomes Project includes participants with rare disorders and their family members, and participants
with a range of different cancer types. For the control population used in this study, unrelated participants were
selected from the 100,000 Genomes Project cohort (n=46,770), including a total of 34,621 rare disease participants
of which 18,915 were unaffected family members of rare disease participants, 14,701 were affected rare disease
participants (not related to the unaffected family members selected), 1,005 were rare disease participants not assessed
for affection status and 12,149 were cancer participants.



Significant comorbidity 1605 5873 13
Invasive ventilation 4028 3461 2
Died (60 days) 2154 5203 134
Supplementary Table 3: Characteristics and comorbidity of the Covid-19 severe cohort (n=7,491).

Demographics

A. Sex

Severe COVID19

. Males
. Females

Mild COVID19

100K

80 80
Percentage

-
-
0.03
0.02
0.01
0.00 0.00
0 30 60 90

0 30 60 90 0 90
Supplementary Figure 9: Demographic characteristics of Covid-19 severe, Covid-19 mild and 100K cohorts. Panel
A displays the numeric breakdown into males and females across the different cohorts. Panel B displays the age
distribution across cohorts.
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Supplementary Figure 10: Body mass index (BMI) for a subset of severe cases and controls of this study. Data
is shown for a subset of 35,732 100K controls and 4,852 severe Covid-19 cases with available BMI data. Numeric
counts by genetic ancestry AFR, EAS, EUR and SAS was 1043, 274, 31371, 3044 for 100K and 265, 168, 3864, 555

for severe Covid-19.

Metric | 100K Mild COVID-19 | Severe COVID-19
Nage 46,770 1,630 7,491

age 51[26] 46[22] 60[15]

nNBpmMmI 35,732 - 4,852

BMI 26.1(6.88] | - 29.9(8.48]

Supplementary Table 4: Age and BMI for each cohort analysed in this study. The sample sizes for calculating each
metric are given (nqg. and nparr) along with the median values for age and BMI and their interquantile range in
brackets.
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GWAS
Per-population GWAS results

Population No. of ld-pruned variants Bonferroni-corrected P-value threshold

EUR 2,264,479 2.26-08
SAS 2,729,540 1.8¢-08
AFR 5,370,001 9.3e-09
EAS 1,264,431 4e-08

Supplementary Table 5: Bonferroni-corrected P-values for the per-population GWAS analyses. The P-value
significance threshold (2.2 x 107%) was calculated by estimating the effective number of tests. After selecting the
final filtered set of tested variants for each population, we LD-pruned in a window of 250Kb and 2 = 0.8 with plink
1.9, which identified 2,264,479 independent linkage disequilibrium-pruned genetic variants. Results are consistent
with previous modelling. 2
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Supplementary Figure 11: Manhattan plots showing GWAS results for each population cohort (A. EUR B. SAS C.
AFR D. EAS). The highlighted results with blue are the variants that are LD clumped (r?=0.1, P,=0.01 in each
population) with each lead variant. Red dashed line is the Bonferroni-corrected P-value according to the number of

estimated independent tests in each population (indicated in Supplementary Table 5).
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LD-based validation of lead GWAS signals
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Supplementary Figure 12: Original and imputed z-scores and respective P-values with leave-one procedure for lead
variants of the EUR analysis. Variants with low support from neighbouring variants are highlighted with grey.
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Individual-level conditional analysis

CHR:POSj438:REF438:ALT | rsid condition rsid BETA | SE Pval BETAcong | SEcona | Pvaleong
chr1:155066988:C: T 18114301457 | rs7528026,rs41264915 0.874 | 0.142 | 6.87TE-10 | 0.867 0.142 9.09E-10
chr1:155175305:G:A 157528026 rs114301457,rs41264915 0.33 0.0593 | 2.6E-08 0.311 0.0593 1.62E-07
chr1:155197995:A:G 1541264915 rs114301457,rs7528026 -0.245 | 0.0343 | 8.87E-13 -0.229 0.0343 2.41E-11
chr3:45796521:G:T 1$2271616 rs73064425,rs343320 0.253 | 0.0305 | 1.07E-16 | 0.324 0.0309 | 8.93E-26
chr3:45859597:C:T 1573064425 1s52271616,rs343320 0.997 0.0406 | 4.75E-133 | 1.02 0.0408 4.17E-138
chr3:146517122:G:A 13343320 rs2271616,rs73064425 0.226 0.0385 | 4.44E-09 0.222 0.0385 8.27E-09
chr6:32623820:T:C 159271609 rs2496644 -0.13 0.022 3.27E-09 -0.136 0.0221 6.38E-10
chr6:41515007:A:C 152496644 rs9271609 -0.296 | 0.0854 | 0.000525 -0.292 0.0854 0.000634
chr17:46152620:T:C 182532300 rs3848456 -0.149 | 0.0253 | 4.09E-09 | -0.149 0.0253 | 4.28E-09
chr17:49863260:C:A 153848456 12532300 0.398 0.0621 | 1.38E-10 0.405 0.0621 7.39E-11
chr19:4717660:A:G 1512610495 rs73510898,rs34536443,rs368565 0.282 0.0224 | 2.69E-36 0.273 0.0224 | 5.53E-34
chr19:10305768:G: A 1373510898 rs12610495,rs34536443,rs368565 0.244 0.0361 | 1.4E-11 0.258 0.0363 1.19E-12
chr19:10352442:G:C 1334536443 rs12610495,rs73510898,rs368565 0.404 0.0485 | 7.87E-17 0.404 0.0486 1.03E-16
chr19:48697960:C:T 13368565 rs12610495,rs73510898,rs34536443 | 0.141 0.0213 | 3.12E-11 0.14 0.0213 5.17E-11
chr21:33230000:C:A rs17860115 rs8178521,rs35370143 0.217 0.0225 | 6.47E-22 0.195 0.0227 1.15E-17
chr21:33287378:C:T 1s8178521 rs17860115,rs35370143 0.163 0.0236 | 4.41E-12 0.139 0.0238 4.39E-09
chr21:33959662: T:TAC 1$35370143 | rs17860115,rs8178521 0.23 0.038 | 1.31E-09 | 0.228 0.038 1.84E-09

Supplementary Table 6: Results from individual-level conditional analysis using SAIGE for EUR population for
cases where multiple association signals reside in the same chromosome. Effect size estimates (BETA) and it’s
standard error (SE) and P-values along with the estimates when conditioning on other genome-wide lead signals on
the same chromosome (condition rsid) are shown.
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Comparison to 2020 GenOMICC microarray study

ChI’ZpOS (hg38) rsid REF ALT MAF BETA SE P MAF2020 BETA2020 SE2020 P2020

3:45859597 1573064425 | C T 0.0771 | 0.998 | 0.041 | 1.97E-133 | 0.083 0.763 0.067 4.77E-30
6:29831017 rs9380142 A G 0.315 | -0.080 | 0.022 | 0.000377 | 0.302 -0.263 0.047 3.23E-08
6:31153649 15143334143 | G A 0.068 | 0.101 | 0.042 | 0.0147 0.079 0.615 0.072 8.82E-18
6:32212369 rs3131294 A G 0.136 | -0.085 | 0.030 | 0.00495 0.140 -0.118 0.062 0.058

12:112942203 | rs10735079 | G A 0.359 | 0.072 | 0.022 | 0.000981 | 0.361 0.258 0.046 1.65E-08
19:4719431 52109069 G A 0.331 | 0.257 | 0.022 | 1.38E-31 | 0.328 0.306 0.044 3.98E-12
19:10317045 rs74956615 | T A NA NA NA NA 0.059 0.462 0.083 2.31E-08
21:33252612 rs2236757 A G 0.288 | -0.205 | 0.023 | 7.78E-19 | 0.291 -0.251 0.046 5.00E-08

Supplementary Table 7: Effect size and P-value comparison with our initial report from microarray and imputation
data from the GenOMICC study, Pairo-Castineira et al (2020).1
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Association signal forest plots by genetic ancestry
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Supplementary Figure 13: Forest plots by genetic ancestry for all lead signals.
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Supplementary Figure 14: Forest plots comparing the Odds ratios for all the lead signals with a combined meta-
analysis of HGI freeze 6 B2 and 23andMe. The HGI summaries were produced with new meta-analysis that removed
the GenOMICC cases to ensure statistical independence (n=22,598). The Genomics England 100K participants (i.e,
controls) summary data contributed to HGI C2 analysis and not B2 used here.
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Genetic fine-mapping
Fine-mapping analysis for lead variants

In the EUR ancestry group, we found two independent signals for the association at 1q22. The lead variant for
the first fine-mapped locus is a synonymous variant in EFNA/ (chrl:155066988:C:T), while the lead variant of the
second independent signal (chr1:155197995:A:G) is an intronic variant in THSBS3, in close proximity to the most
significant single-tissue eQTLs for MUC1 (chrl:155199564:G:T, chr1:155199139:G:A) in GTEx v8 , which are also in
the same intronic region. Fine mapping the multi-ancestry meta-analysis revealed a third independent signal at this
locus, with the lead variant (chrl:155175305:G:A, rs7528026, OR:1.39, 95% CIs:[1.24-1.55]) being in an intron of
TRIM/6. This variant is an sQTL and eQTL for MUC? in lung and and whole blood tissue, respectively, in GTEx
v82 (Supplementary File TWAS.xlsx).

Meta-analysis across genetically inferred ancestries revealed a novel locus at 2pl6.1, with the lead variant
(chr2:60480453:A:G, OR:0.88, 95 %CIs:[0.85,0.92]) being in an intron of BCLI1A.

We fine-mapped the signal in the 3p21.31 region, first reported by Ellighaus et al,* into two independent associations.
The lead variant for the first association is in the 5 UTR region of SLC6A20 (chr3:45796521:G:T, OR:1.29,
95%CIs:[1.21,1.37]). The second association in the chr3p21.31 region is seen at genome-wide significance in both
the EUR and SAS cohorts, with two of the three highest ranked variants in the fine-mapped region in the two
populations shared between the two cohorts (chr3:45818159:G:A, chr3:45859597:C:T) and residing in downstream
and intronic regions of LZTFL1.

The credible set for the 3q24 association included 9 variant and the lead variant (chr3:146517122:G:A,
r$343320,p.His262Tyr, OR:1.24, 95%CIs [1.15-1.33]) is a missense variant in PLSCR1, predicted to be damaging by
CADD (CADD:22.6).

At 5q31.1, the lead variant (chr5:131995059:C:T, rs56162149, OR:1.17, 95%CIs:[1.11,1.23]) is in an intron of ACSLGE.
The credible set for this locus contains 33 variants that span 484 kb including variants in genes CSF2 and IRF'1-AS1,
with chr5:132075767:T:C being a missense variant in CSF2 and chr5:131991772:C:G being missense in ACSL6 and
only intronic variants for IRF1-AS1.

The previously reported signal at 6p21.1, linked to FOXP/?, is stronger in the SAS cohort but has a consistent
effect across ancestries (Ppe;=0.49).

We fine mapped the signal at 9p21.3 to three variants with lead variant (chr9:21206606:C:G, rs28368148,p.Trp164Cys,
OR:1.74, 95% CIs [1.45-2.09]) being a missense variant in IFNA10 that is predicted to be damaging by CADD
(CADD:23.9) with potential functional impact.

The signal in the 11p13 region was fine-mapped to four variants (lead variant chr11:34482745:G:A, rs61882275,
OR:0.87, 95%CIs:[0.84-0.91]), all four of which are in an intron of ELFS5.

The credible set for the signal in the 12q24.33 region includes 24 variants spanning 95 kb, of which the lead
(chr12:132489230:GC:G, rs56106917, OR:1.13, 95% CIs:[1.09-1.18]) lies upsdtream FBRSLI.

The signal at 13q34 was fine-mapped to four variants, with lead variant (13:112889041:C:T, rs9577175, OR:1.18,
95%CIs [1.12-1.24]) lying downstream of ATP11A and upstream of MCF2L genes.

The association at 15q26.1 was fine mapped to two variants with lead variant (chr15:93046840:T:A, rs4424872, OR:
2.37, 95% CIs:[ 1.87-3.01] in an intron of RGMA. This a low frequency (allele frequency <1%) variant that was not
replicated due to lack of coverage in the available replication data and further validation in an independent dataset
is recommended.

The credible set for the association with lead variant at chr17:46152620:T:C (rs2532300, OR:1.16, 95% CIs:[1.10,1.22])
includes 1430 variants and spans 658 kb, indicating an association with the known inversion haplotype at 17¢21.31°.

We fine mapped the signal at 17¢21.33 to five variants, with lead variant (chr17:49863260:C:A, rs3848456, OR:1.5,
95% Cls:[1.33-1.70] residing in a regulatory element (ENSR00001010694) 15.5 kb upstream of the TAC4 gene.

In the 19p13.3 region, which we reported in 2020,7, we fine-mapped the signal to a single variant in DPP9
(chr19:4717660:A:G). This variant is a missense variant in transcript ENST00000599248 but intronic in other
transcripts including the MANE transcript (ENST00000262960.14).
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In the 19p13.2 region, where we previously reported a variant associated with TYK2,” we find two independent
signals, one of which is a damaging missense variant in TYK2, chr19:10352442:G:C (rs34536443, OR:1.50, 95%
CIs:[1.36,1.65], CADD=25.1), and the second is an intronic variant of ZGLP! (19:10305768:G:A, rs73510898,
OR:1.28, 95% CIs:[1.19,1.37]).

The signal at 19q13.33 was fine-mapped to ten variants, with the lead variant (chr19:48697960:C:T, rs368565,
OR:1.15, 95%CIs [1.1-1.2]) in an intron of FUT2 and variant chr19:48705753:T:C (rs503279) being in the 3’ UTR of
the MANE transcript for this gene.

In the 21q22.11 region, we described previously,” fine-mapping revealed three independent signals, for which the
lead variants reside in the 5> UTR of IFNAR2 (chr21:33230000:C:G,rs17860115, OR:1.24, 95% Cls:[1.19-1.30],
CADD=10.1), an intronic region of IL10RB (chr21:33287378:C:T, rs8178521, OR:1.18, 95% CIs:[1.12,1.23]) and in a
downstream long non-coding RNA (chr21:33959662: T: TAC, rs35370143, OR:1.26, 95% CIs:[1.17,1.36)).
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Fine-mapping check for rare variants

To investigate whether the discovered signals in the primary GWAS analyses were underlain by variants that were
rarer than the applied MAF threshold of >0.5%, we expanded our fine-mapping analysis around the lead signals to
variants with allele frequency as low as 0.02%. We performed this additional analysis for the European population
only, as this was the only population with a sufficiently large sample size to detect variants of such low frequency.
For this analysis check, we performed all standard site QC procedures to variants with MAF>0.02%, calculated
GWAS summaries with SAIGE within a window of 1.5 Mbp of either side of each EUR-discovered lead signal of
main Table 1, re-calculated the matrix of all pairwise correlation coefficients and rerun fine-mapping with susieR,
following the primary GWAS and fine-mapping procedure as described in Materials and Methods. For all of the 23
EUR-discovered signals, the lead variant in each credible set (i.e, variant with lowest P-value) remained the same
and the size of each credible set changed only slightly in a few cases (Supplementary Table 9).

Lead variant (MAF>0.5%) | Lead variant (MAF>0.02 %) nCS MAF>0.5% | nCS MAF>0.02%

chr1:155066988:C:T chr1:155066988:C:T 9 9
chr1:155197995:A:G chr1:155197995:A:G 3 3
chr3:45796521:G:T chr3:45796521:G: T 1 1
chr3:45859597:C: T chr3:45859597:C: T 9 9
chr3:146517122:G:A chr3:146517122:G:A 9 9
chr5:131995059:C:T chr5:131995059:C:T 32 33
chr6:32623820:T:C chr6:32623820:T:C 33 32
chr9:21206606:C:G chr9:21206606:C:G 3 3
chr11:34482745:G:A chr11:34482745:G:A 4 4
chr12:132489230:GC:G chr12:132489230:GC:G 25 25

chr13:112889041:C:T chr13:112889041:C:T 4 4
chr15:93046840:T:A chr15:93046840:T: A 2 2
chr16:89196249:G:A chr16:89196249:G:A 4 5
chr17:46152620:T:C chr17:46152620:T:C 1430 1426
chr17:49863260:C:A chr17:49863260:C: A 5 4
chr19:4717660:A:G chr19:4717660:A:G 1 1
chr19:10305768:G:A chr19:10305768:G:A 3 3
chr19:10352442:G:C chr19:10352442:G:C 1 1
chr19:48697960:C:T ¢hr19:48697960:C:T 10 10
¢hr21:33230000:C:A chr21:33230000:C:A 16 17
chr21:33287378:C:T chr21:33287378:C:T 33 33
chr21:33959662:T:TAC chr21:33959662: T:TAC 23 22

Supplementary Table 9: Fine-mapping results for the EUR-discovered signals for the primary results using variants
with MAF > 0.5% and the expanded analysis using variants with MAF > 0.02%. The lead variant (i.e, having the
lowest P-value) and the number of variants (nCS) included in each credible set are shown for each analysis. Provided
variant ids correspond to chr:posjgss:refyg3g:alt.
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Supplementary Figure 15: Locuszoom figures for the signals found in the per-population analyses. Upper panels
show lead signals and LD calculated in EUR, (n=>5,989) with all other loci in the window shown. r? values in the
legend denote upper limits, i.e. 0.2=[0,0.2], 0.4=(0.2,0.4], 0.6=(0.4,0.6], 0.8=(0.6,0.8],1=(0.8,1]. Credible sets for
each displayed signal that were inferred with susieR are displayed with outline black circles. The red dashed line
shows the Bonferroni-corrected P-value=2.2 x 1078 for Europeans. On the bottom panels an hg38 gene track is
displayed with colors matching significance from the metaTWAS analysis in discrete bins shown.
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Supplementary Figure 16: Locuszoom figures for the multi-ancestry meta-analysis signals with different panels
for LD calculated in the four populations of this study (AFR, EAS, EUR, SAS). r? values in the legend denote
upper limits, i.e. 0.2=[0,0.2], 0.4=(0.2,0.4], 0.6=(0.4,0.6], 0.8=(0.6,0.8],1=(0.8,1]. The red dashed line shows the
Bonferroni-corrected P-value=2.2 x 1078 (tested variants in meta-analysis was equal to the EUR tested variants).
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Sex- and age- stratified analysis

We performed sex- (< 60 vs. > 60) and age-stratified analyses. We did not obtain significant evidence for
sex- specific effects (Supplementary Figure 17). The locus at chr3:45801750:G:A (rs13071258) in the European
population had a significantly stronger effect in the younger age group (OR = 3.34,95%CI = 2.98 — 3.75 vs.
OR =2.1,95%C1T = 1.88 — 2.34).

A. age <60 vs. >=60

16

—log1o(P)

15 16 17 18 19202122
Chromosome

B. male vs. female
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©
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N

14 15 16 17 18 19202122
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Supplementary Figure 17: Manhattan plot for ¢-test P-values obtained from comparison of stratified GWAS analyses
by age and sex. GWAS analyses were run for stratified subsets of the severe vs. mild4+100K analysis for individuals
with (A) age >60 vs. >60 and (B) males vs. females. For each analysis we then performed a two-sided t-test
comparing between-group effect sizes per variant. Red dashed line corresponds to Bonferroni-corrected P-value =
2 x 1078,
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Matched case-control analysis

In order to assess whether the observed imbalance in age, sex and BMI (Supplementary Figures 9, 10) had an effect
on our results, we also performed a matched case-control analysis. We first selected a subset of cases (ngpyr=3864,
nSAS:555, TLAFR:265, nEAS:168) and controls (TLEUR:31,371, TLSAS:3,044, TLAFR:1,043, TLEA5:274) for which
we had BMI information. We then performed propensity score matching with Rfunction matchit to match a subset
of controls to cases based on age, sex and BMI and run GWAS analyses with SAIGE, including BMI as a covariate
in addition to the other primary covariates (i.e, sex, age, age x sex, age? and 20 PCs) and separately for each
ancestry group (Supplementary Figure 18).

As 22 out 25 association signals were discovered in the European population, we first assessed how the effect size and
P-values changed in the matched GWAS analysis versus the original unmatched study for EUR. We observed that
they were strongly correlated both genome-wide and for our lead variants (Supplementary Figure 19, Supplementary
Figure 20, left panels). For our lead variants, we also performed a GWAS analysis for EUR that used a random
sub-sample of unmatched controls of the same size as the size of the controls of the matched study to assess the
effect of the matching procedure versus the loss of power due to reduction in sample size of the matched study. The
reduction in significance in the matched study is of similar magnitude as that of the unmatched study with the same
sample size (Supplementary Figure 20, left versus middle panels). Adding BMI as covariate in the unmatched study
produced similar estimates for effect sizes and P-values (Supplementary Figure 20, right panels).

We also assessed how results for the three associations that were discovered with the multi-ancestry meta-analysis
were affected by case/control mismatches for age, sex and bmi by comparing the effect sizes across ancestries and
meta-analysed results for the original versus the matched study (left vs. right panels, Supplementary Figure 20).
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Supplementary Figure 18: Sex, age and BMI distributions for cases and unmatched and matched controls. The
"unmatched" panels for each ancestry include all individuals that were used in the main analyses of this study and
for which we had BMI measurements. The matched control cohorts (a subset of the unmatched controls) were

generated with propensity score matching.
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EUR, matched age,sex,BMI + BMI covariate EUR, matched age,sex,BMI + BMI covariate
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Supplementary Figure 19: Genome-wide Results for effect size (BETA) and P-values for a EUR SAIGE GWAS
analysis using the age,sex,bmi- matched case/control data. For this analysis default covariates of age, sex, age X sex,
20 PCs and BMI were used.
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Supplementary Figure 20: Results for lead variants of this study comparing effect size (BETA) and P-values for
EUR GWAS analyses using cases with matched and unmatched controls. Left panel shows the results of the matched
study which used default covariates of age, sex, age x sex and 20 PCs. Middle panels show results of a study using
unmatched controls of the same sample size as the matched study and using covariates as the principal study gwas
using only default covariates. Right panels show results of an unmatched study using default + BMI as covariate.
Results for EUR-discovered loci are shown in black and with grey the multi-ancestry meta-analysis results are shown.
Error bars for BETA represent standard errors of estimates.
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Supplementary Figure 21: Comparison of effect sizes between unmatched (left panels) and matched (right panels)
control results for the three loci that were found significant in the multi-ancestry meta-analysis. Whiskers show 95%
CI. For the matched study, controls were matched to cases by propensity score matching to cases for which we had
BMI information (using age, sex and bmi as matching covariates and performed separately for each ancestry): cases
TLEUR:?)864, nSAS:5557 TLAFR:265, ’ILEA5:168; controls nEUR:31,371, nsAS:3,O44, nAFR:1,043, nEAS:274-
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GWAS analysis using the mild Covid-19 cohort only as controls

Lead variant AFC,_-LSE AF100K+mild AFIOOK AFmild OR ORCI Pval ORmild ORmild CI Pvalmild Gene
chr1:155066988:C:T 0.0101  0.00521 0.00526  0.00464 2.4 1.82-3.16 6.8E-10 1.96 1.19-3.24 0.00813 EFNAJ
chr1:155175305:G:A 0.0408  0.0309 0.0308 0.0265 1.39 1.24-1.55 7.16E-09 1.33 1.04-1.72 0.0255 TRIM46
chr1:155197995:A:G 0.0874 0.112 0.112 0.12 0.783 0.732-0.838 1.02E-12  0.643 0.547-0.757 1.01E-07 THBS3
chr2:60480453:A:G 0.363 0.39 0.389 0.391 0.884 0.849-0.919 9.85E-10  0.901 0.817-0.994  0.0365 BCL11A
chr3:45796521:G:T 0.162 0.133 0.132 0.16 1.29 1.21-1.37 9.9E-17 1.02 0.894-1.15 0.81 SLC6A20
chr3:45859597:C:T 0.143 0.0679 0.0682 0.0687 2.71 2.51-2.94 1.97E-133 2.11 1.81-2.45 4.71E-22  LZTFL1
chr3:146517122:G:A 0.0938  0.0787 0.0785 0.0774  1.25 1.16-1.35 4.94E-09 1.28 1.09-1.5 0.00292 PLSCR1
chr5:131995059:C:T 0.193 0.167 0.167 0.158 1.2 1.13-1.26 7.65E-11 1.3 1.15-1.47 2.01E-05 ACSL6
chr6:32623820:T:C 0.323 0.353 0.353 0.347 0.878 0.841-0.917 3.26E-09  0.887 0.803-0.981  0.0193 HLA-DQA1
chr6:41515007:A:C 0.981 0.986 0.986 0.984 0.687 0.625-0.756 7.59E-15 0.915 0.642-1.3 0.624 LINC01276
chr9:21206606:C:G 0.0195 0.0124 0.0125 0.0113 1.74 1.45-2.09 1.93E-09 1.4 0.956-2.04 0.0838 IFNA10
chr11:34482745:G:A 0.348 0.381 0.38 0.393 0.871 0.835-0.909 1.61E-10  0.831 0.753-0.918 0.000241 ELF5
chr12:132489230:GC:G  0.522 0.495 0.496 0.483 1.13  1.09-1.18 2.08E-09 1.16 1.05-1.27 0.00257  FBRSL1
chr13:112889041:C:T 0.249 0.221 0.22 0.223 1.18 1.12-1.24 3.71E-11 1.2 1.07-1.33 0.0015 ATP11A
chr15:93046840:T:A 0.986 0.993 0.993 0.988 0.422 0.333-0.534 8.61E-13  0.796 0.531-1.19  0.269 RGMA
chr16:89196249:G:A 0.167 0.145 0.145 0.155 1.19 1.12-1.26 4.4E-09 1.08 0.954-1.23 0.22 SLC22A51
chr17:46152620:T:C 0.202 0.232 0.232 0.231 0.862 0.82-0.906  4.19E-09  0.879 0.782-0.989  0.0314 KANSL1
chr17:49863260:C:A 0.0404  0.0279 0.0281 0.0269 1.5 1.33-1.7 4.19E-11 1.32 1.02-1.7 0.034 .
chr19:4717660:A:G 0.365 0.305 0.304 0.305 1.32 1.27-1.38 3.91E-36 1.37 1.24-1.51 2.17E-10 DPP9
chr19:10305768:G:A 0.11 0.0905 0.0906 0.0947 128  1.19-1.37 1.57E-11 1.25 1.07-1.45 0.0039 ZGLP1
chr19:10352442:G:C 0.0664  0.0479 0.0481 0.0405 1.5 1.36-1.65 6.98E-17 1.64 1.35-2 5.94E-07 TYK2
chr19:48697960:C:T 0.469 0.438 0.438 0.439 1.15 1.1-1.2 3.55E-11 1.08 0.977-1.19 0.134 FUT2
¢hr21:33230000:C:A 0.357 0.31 0.309 0.314 1.24 1.19-1.3 9.69E-22 1.17 1.06-1.29 0.00212 IFNAR2
chr21:33287378:C:T 0.294 0.265 0.265 0.261 1.18 1.12-1.23 3.53E-12 1.21 1.09-1.34 0.000334 IL10RB
chr21:33959662: T:-TAC  0.0982  0.0808 0.0809 0.083 1.26  1.17-1.36 1.24E-09 1.21 1.03-1.42 0.0216 LINC00649

Supplementary Table 10: Allele frequency comparison and GWAS results for lead variants of the study using
unrelated individuals with EUR predicted ancestry with COVID-19 severe individuals as cases and COVID-19
positive individuals with only mild symptoms as controls. Allele frequencies shown are calculated for individuals with
EUR predicted ancestry that are part of severe COVID-19 cases (AFqse, n=5,989), EUR controls used in the main
study GWAS comprised of 100K and mild (AF100k +mitd, n=42,891), EUR controls comprised of 100K (AFigox,
n=41,384) and EUR controls comprised of COVID-19 mild individuals (AF},;14, n=1,507) and were calculated using
plink2 with the reference allele being hgsg. Odds ratio with 95% confidence interval and P-value from main study
results from table ?? (OR, OR¢y, Pval) are compared with results from a GWAS analysis that used only COVID-19
individuals with mild symptoms as controls (OR,14, ORmiia Cl, Pvaly,4). Provided variant ids correspond to
chr:pospgas:refyg3s:alt.

Heritability

We estimated the SNP-based heritability values of Covid-19 severity and four Covid-19 phenotypes of HGI v6 by
applying both the high-definition likelihood (HDL)® and LD score regression (LDSC)Y methods on the GWAS
summary statistics. The HDL method is expected to produce more consistent estimate than LDSC.?3

Except for the GenOMICC severity phenotype of Covid-19, which had an estimated heritability of 5.7% (s.e. 1.7%)
by HDL and 11.3% (s.e. 2.5%) by LDSC, the other Covid-19 phenotypes all had heritability estimates close to zero
(Supplementary Fig. 22, Supplementary Table 11).

GWAS n Heritabilitygpr, SFEppr Pvaluegpr Heritabilityrpsc SErppsc Interceptrpsc  Interceptsp
GenOMICC EUR 5,989 0.057 0.017 0.00092 0.11 0.025 0.98 0.0095

All cases HGI C2 112,612  0.0005 2e-06 0 0.0016 0.0002 1 0.0072
Hospitalised HGI B2 24,274 0 0 0.0022 0.0003 1 0.007
Hospitalised HGI B1 14,480 0 0 0.023 0.0053 1 0.0065
Severe HGI A2 8,779 0 0 0.0033 0.0006 1 0.008

Supplementary Table 11: Heritability estimates of Covid-19 based on GWAS summary statistics. The SNP-based
narrow-sense heritabilities of Covid-19 severity and four alternatively-defined Covid-19 phenotypes were estimated
using both the high-definition likelihood (HDL) and LD score regression (LDSC) methods. Comparisons are made
with HGIv6® ALL leave 23andme 20210607 analyses; A-C2 used population controls, B1 used test-negative controls.
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Supplementary Figure 22: Heritability estimates of Covid-19 based on GWAS summary statistics. Whiskers represent
the estimated 95% confidence intervals. See Supplementary Table 11 for details.
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Supplementary Figure 23: TWAS results from analysis of eQTL models from whole blood and lung tissues in
GTEXvS. Z-scores showing the direction of effect for the genotype-inferred expression of transcripts that encode
protein-coding genes in whole blood and lung tissue (GTEx v.8) are shown (with tested genes n=10,473 and
n=12,484, respectively). All significant genes at Bonferroni-corrected threshold P-value 4.77 x 1075 and 4 x 1076
for whole blood and Lung, respectively, are highlighted with blue and annotated.
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GTEX v8 meta-analysis
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Supplementary Figure 24: TWAS results from meta-analysis of eQTL models from all tissues in GTEXvS8. The

number of tested genes was 21,813 and significant genes at Bonferroni-corrected threshold P < 2.3 x 1076 (red
dashed line) are highlighted with blue and annotated.
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Colocalisation sensitivity analysis
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Supplementary Figure 25: Sensitivity analysis for colocalisation of TWAS-significant loci in blood (eQTLgen data)
with GWAS signals. Evidence for the following hypotheses is plotted across a range of prior probabilities: HO -
neither trait has a genetic association in the region; H1 - only trait 1 has a genetic association in the region; H2 -
only trait 2 has a genetic association in the region; H3 - both traits are associated, but with different causal variants;

H4 - both traits are associated and share a single causal variant.
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Supplementary Figure 26: Sensitivity analysis for colocalisation of TWAS-significant loci in blood (GTEXv8 data)

with GWAS signals. Evidence for the following hypotheses is plotted across a range of prior probabilities: HO -
neither trait has a genetic association in the region; H1 - only trait 1 has a genetic association in the region; H2 -
only trait 2 has a genetic association in the region; H3 - both traits are associated, but with different causal variants;

H4 - both traits are associated and share a single causal variant.
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Supplementary Figure 27: Sensitivity analysis for colocalisation of TWAS-significant loci in lung (GTEXvS data)
with GWAS signals. Evidence for the following hypotheses is plotted across a range of prior probabilities: HO -
neither trait has a genetic association in the region; H1 - only trait 1 has a genetic association in the region; H2 -
only trait 2 has a genetic association in the region; H3 - both traits are associated, but with different causal variants;
H4 - both traits are associated and share a single causal variant.

chr:pos (hg38) | rsid REF | ALT | Expression
1:155066988 rs114301457 -

1:155175305 157528026 -

1:155197995 rs41264915 MUC1
2:60480453 rs1123573 -

3:45796521 rs2271616 SLC6A20, CCR5

3:45859597 rs73064425
3:146517122 rs343320
5:131995059 rs56162149

LZTFL1, CCR9

ACSL6, FNIP1

6:32623820 159271609 HLA-DRB1
6:41515007 152496644 -
9:21206606 rs28368148 -
11:34482745 rs61882275 -
12:132489230 | rs56106917 -
13:112889041 | rs9577175 ATP11A

15:93046840 154424872
16:89196249 rs117169628

SLC22A31, CDHI5

17:46152620 152532300 ARHGAP27
17:49863260 rs3848456 -

19:4717660 rs12610495 -

19:10305768 rs73510898 -

19:10352442 rs34536443 TYK?2, PDEJA

19:48697960 15368565

21:33230000 rs17860115

21:33287378 rs8178521 -

21:33959662 rs35370143 TAC | -
Supplementary Table 12: Lead signals with genes where is evidence of gene expression affecting disease severity,
found by TWAS and colocalisation analysis.

FUT2, NTN5, RASIP1
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Mendelian Randomisation
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Aggregate variant testing (AVT)

Aggregate variant testing on aggCOVID_ v4.2 was performed using SKAT-O as implemented in SAIGE-GENE
v0.44.51%. Variant and sample QC for the preparation of the aggregate files has been described elsewhere. In
addition, the following filters were applied to the masked aggregate dataset:

o Bi-allelic SNPs only

e Minor allele frequency < 0.005

e Site wide missingness < 0.05

« Differential missingness between cases and controls, mid-p value < 107°

All the variants in the dataset were annotated using VEP v99.

Masks and Model

Two functional annotation masks were applied on top of the filters detailed. The first is a strict putative loss of
function (pLoF) filter, where only variants that are annotated by Loftee as high confidence loss of function are
included. The second is a more lenient filter (missense) where all variants from the strict filter are included, together
with all variants that have a consequence of missense or worse as annotated by VEP, with a CADD_ PHRED score
of > 10 (CADD version 1.5). The covariates used in the model were the same as for the single variant analysis:
sex, age, age?, age * sex and 20 (population-specific) principal components generated from common variants (MAF
> 5%).

The tests were run separately by genetically predicted ancestry, on all protein-coding genes as annotated by Ensembl.

AVT results

Supplementary table 14 shows the number of tested genes per mask per predicted ancestry. These numbers were
used to apply a Bonferonni correction on the SKAT-O P-values from SAIGE-GENE on a per population basis. The
P-value thresholds for gene-wide significance were taken as 0.05/n x 2, with n being the number of tested genes in
that population, divided by 2 (the number of masks used). This makes the assumption that each gene was tested by
both masks, which is conservative for the missense threshold.

Cohort | Tested genes, pLof mask | P-value threshold, pLof mask | Tested genes, missense mask | P-value threshold, misser

EUR 7,352 3.4e-06 18,631 1.3e-06
SAS 1,435 1.7e-05 17,291 1.4e-06
AFR 763 3.3e-05 16,125 1.6e-06
EAS 265 9.4e-05 12,519 2.0e-06

Supplementary Table 14: Number of tested genes per mask per predicted ancestry, with Bonferroni-corrected
P-values used to assess gene-wide significance.

No significant associations were found across any of the populations. Supplementary figure 28 shows the Manhattan
and Q-Q plots for each predicted ancestry using the pLoF mask, and supplementary figure 29 shows the Manhattan
and Q-Q plots for each predicted ancestry using the missense mask. Supplementary File AVTsuppinfo.xlsx, sheet A
and sheet B, show the top ten genes by P-value for each predicted ancestry and all combined ancestries, respectively.

Supplementary File AVTsuppinfo.xlsx, sheet C, shows the top genes that were highlighted as part of the GWAS
analysis, ranked by p value per predicted ancestry. Supplementary File AVTsuppinfo.xlsx, sheet D shows the
SKAT-O P-values for the 13 genes involved in the regulation of type I and III interferon immunity that were
implicated in severe Covid-19 pneumonia !, ranked by p value per predicted ancestry.
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Aggregate Variant Testing - Results by Gene and Predicted Ancestry - pLoF
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Supplementary Figure 28: Gene-level manhattan and Q-Q plots per predicted ancestry for the pLof mask. Each
point in the manhattan plot represents a gene. Panels from top to bottom are for EUR (A), SAS (B), AFR (C) and
EAS (D). The red dashed lines indicate Bonferonni corrected "gene-wide" P-values (see Supplementary Table 14).
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Supplementary Figure 29: Gene-level manhattan and Q-Q plots per predicted ancestry for the missense mask. Each
point in the manhattan plot represents a gene. Panels from top to bottom are for EUR (A), SAS (B), AFR (C) and
EAS (D). The red dashed lines indicate Bonferonni corrected "gene-wide" P-values (see Supplementary Table 14).
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HLA Inference and Association Tests

HLA imputation using HIBAG

HLA types were imputed at two field (4-digit) resolution for all samples within aggV2 and aggCOVID_ v4.2 for the
following seven loci: HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DQA1, HLA-DQBI1, and HLA-DPBI1 using the
HIBAG package in R'2. We used ancestry specific pre-fit classifiers trained on the Illumina 1M Duo genotyping array
on individuals of either European, Asian, and African ancestry dependent on the assigned ancestry of the sample in
hand. The list of HLA alleles represented in the reference panel is shown in Supplementary File HL Asuppinfo.xlsx
(Sheet A). HIBAG requires genotyped data in PLINK format as input. We lifted over the GRCh38 variant calls
from aggV2 and aggCOVID__v4.2 for the extended (xMHC) region to hgl9, keeping the variants included in the
pre-trained classifiers for the seven HLA loci which were present in both the aggV2 and aggCOVID_ v4.2 call-sets to
ensure that the variants used for the imputation were the same across the two datasets. We applied a threshold of
T'=0.5 on the posterior probabilities returned by HIBAG, as in the original publication.

HLA inference using HLA*LA and concordance between HIBAG and HLA*LA
callsets

We used a second HLA inference method, HLA*LA '3, to assess concordance and ensure call rates were comparable
between the two methods. HLA*LA (version fe00{82) was used with GRCh38 IMGT population reference graphs
to infer classical HLA types at G-group resolution for the three class I genes (HLA-A, HLA-C, HLA-B) and four
class IT genes (HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPB1) that were also umputed with HIBAG. HLA*LA
implements a graph alignment model for HLA type inference, based on the projection of linear alignments onto a
variation graph. Whole-genome sequencing BAM/CRAM files including unmapped reads were used as input. Where
CRAM files were used (alignments from aggCOVID_ v4.2 cohort), the reference genome FASTA file used for the
original alignment was also provided.

Note that at time of writing, only 82% of aggV2 and aggCOVID_ v4.2 samples had their HLA types inferred
by HLA*LA (Supplementary File HLAsuppinfo.xlsx (Sheet B)). All samples had their HLA types imputed using
HIBAG.

For samples for which we had both HIBAG and HLA*LA calls (n=45,796), we compared the 4-digit resolution
alleles called from HIBAG with the alleles called from HLA*LA. As HLA*LA calls alleles at G-group resolution, we
took all 4-digit alleles belonging to each G-Group and compared these to the HIBAG calls. For example, if a sample
is called as A*01:01:01G, the mapped HLA alleles at 4-digit resolution within HLA*LA are 01:01, 01:04, 01:10, 01:13,
01:14, 01:15, 01:22, 01:32, 01:37, 01:45, 01:56, 01:81, 01:87. These were compared against the HIBAG 4-digit calls. If
the 4-digits matched exactly (in either diploid combination - i.e. 01:01 / 01:04 vs 01:04 / 01:01), then sample alleles
were deemed concordant. We found that >96% of calls were identical between HIBAG and HLA*LA.

The percentage of concordant calls between HIBAG and HLA*LA by ancestry and locus is shown in Supplementary
File HLAsuppinfo.xlsx (Sheet C).

HLA Association Tests

HLA calls from HIBAG were aggregated into a single multi-sample VCF file containing sample genotypes for all
observed HLA calls. Per sample, the genotypes of any allele call with posterior probability < 0.5 were set to missing.
If a sample then had a missing genotype for a particular allele, all other alleles at that locus were also set to missing.
For each locus, samples that did not harbour a specific HLA allele (either in a heterozygous or homozygous alternate
state), were set to homozygous reference; unless already set to missing from the above mask.

HLA association analysis (single variant association tests) was run under an additive model using SAIGE (logistic
mixed-model regression) version 0.44.5; in an identical fashion to the SNV GWAS. The multi-sample VCF of
aggregated HLA type calls from HIBAG were used as input. The set of 60K high-quality common SNPs ag-
gCOVID_v4.2 aggV2 HQSNPs were used to create the GRM and variance ratio files. HLA association tests
were run per ancestry (EUR, SAS, EAS, AFR) on unrelated individuals for the sev_vs_mld_aggV2 cohort. Each
HLA association test was run using: sex, age, age?, age x sex, and the first 20 ancestral principle components as
covariates. No minimum minor allele count / frequency threshold was set. Results can be seen in Supplementary
File HLAsuppinfo.xlsx (Sheet D). Note this table combines the results for all ancestries (EUR, SAS, EAS, and AFR)
- which is referenced in the first column of the table. The table is sorted by ancestry and alphabetically by allele.
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HLA-DRB1*:04:01 was the only genome-wide significant HLA allele (OR = 0.80,95%C1T = 0.75—0.86, P = 1.6x10719,
in EUR), having a protective effect (casesMAF: 9.6%, controlsMAF: 11.7%). In EUR, the DRB1*04:01 allele had
a low rate of missingness (call rate >0.92 at T=0.5 posterior probability threshold), and was in Hardy-Weinberg
equilibrium for both cases (p=0.32) and controls (p=0.17). The observed allele frequency for HLA-DRB1*04:01 was
0.1%, 0.08%, and 0.02% for AFR, EAS, and SAS cohorts respectively. A meta-analysis was performed using METAL
with an inverse-variance weighted method across the four populations. DRB1*04:01 remained the only significant
association (OR = 0.80,95%C1T = 0.75 — 0.86, P = 1.4 x 10719), Supplementary File HLAsuppinfo.xlsx (Sheet E).

We also ran our association analysis on EUR samples with concordant calls between HIBAG and HLA*LA
using the same model as for the full analysis, and confirmed the observed association with HLA-DRB1*04:01
(OR = 0.78,95%C1s : 0.75 — 0.81, P = 1.3 x 1071!) which had a lower P — value than for the lead variant
(OR = 0.88,95%CIs : 0.86 — 0.90, P = 4.4 x 10~?), consistent with our results on the full HIBAG callset.

We also examined the robustness of our results to the choice of call threshold for the posterior probability for HIBAG
and performed the association tests for EUR without any call threshold (CT=0, i.e. best guess), with CT=0.5, and
with CT=0.7. We found that DRB1*04:01 remained the only significant locus across each of the three CT values
tested with the Odds Ratios and P-values being extremely consistent across all alleles (Supplementary Figure 30).

HIBAG + SAIGE: HLA Association Tests
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Supplementary Figure 30: Robustness of HLA association results to different posterior probability call thresholds
for HIBAG.Manhattan plot of HLA allele associations across the extended MHC region with Covid-19 critical
illness for the EUR cohort. Each panel corresponds to association results obtained using genotypes that were called
using a different call threshold for HIBAG (0, 0.5 and 0.7, respectively). Diamonds represent the HLA each allele
association, coloured by locus. The lead variant from the lead HLA allele is labelled. The dashed red line is the
Bonferroni-corrected genome-wide significance threshold for Europeans.

HLA conditional Analysis

We conducted a conditional analysis, controlling for the HLA-DRB1*04:01 allele, on the main GWAS results within
the extended MHC region. This analysis was performed on the European sev_vs_mld_ aggV2 cohort. To do this,
we firstly regressed out the effect of DRB1*04:01 (including age, sex, age x sex, age?, and the first 20 population
PCs), and performed linear regression on the residuals using the GWAS variant genotypes as the dependent variable.
No variants within the extended MHC remained genome-wide significant upon conditioning on DRB1*04:01. The
top GWAS signal (chr6:32623820 T/C; OR = 0.88,95%C1T = 0.84 — 0.92, P = 3.3 x 10~?) was attenuated following
conditional analysis (P = 0.001). Extended data Figure 6 shows the results of the combined HLA and GWAS
association results and the conditional analysis.
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Enrichment analysis

Enrichment analysis was run with XGR algorithm '* using 19 genes identified by TWAS and colocalisation analysis
(Figure 2) and genes with missense mutations that were either lead variants (Table ??) or were part of the credible
sets identified by the fine-mapping analysis with SusieR (Extended Data Table ?7?). The combined input gene list
was: MUC1, SLC6A20, CCRY, LZTFL1, CCR5, ACSL6, FNIP1, ATP11A, CDH15, SLC22A81, CDH15, IFNAR2,
DPPY, IL10RB, TYK2, NTN5, FUT2, PDE}A, THBSS, PLSCR1, CSF2, IFNA10.

Enriched Ontology Term Name Z-score | P-value | FDR Genes

GO Biological Component | cytokine-mediated signaling pathway 12.2 2.8E-10 | 1.4E-09 | CCR5, CSF2, IFNA10, IFNAR2, IL10RB, MUC1, TYK2
Reactome pathways Regulation of IFNA signaling 14 6.8E-08 | 3.4E-07 | IFNA10, IFNAR2, TYK2

KEGG pathways Jak-STAT signaling pathway 7.93 4.8E-07 | 7.6E-07 | CSF2, IFNA10, IFNAR2, IL10RB, TYK2

KEGG pathways Cytokine-cytokine receptor interaction 7.1 5E-07 7.6E-07 | CCR5, CCRY, CSF2, IFNA10, IFNAR2, IL10RB
GO Biological Component | type I interferon signaling pathway 10.9 7.3E-07 | 1.8E-06 | IFNA10, IFNAR2, TYK2

GO Biological Component | defense response to virus 8.32 1.7E-06 | 2.8E-06 | IFNA10, IFNAR2, IL10RB, PLSCR1

Reactome pathways Interferon alpha/beta signaling 8.4 3.9E-06 | 9.7E-06 | IFNA10, IFNAR2, TYK2

Reactome pathways Cytokine Signaling in Immune system 5.08 6.8E-05 | 0.00011 | CSF2, IFNA10, IFNAR2, TYK2

GO Biological Component | immune response 5.27 7.5E-05 | 9.4E-05 | CCR5, CCRY, CSF2, IL10RB

Reactome pathways Interferon Signaling 5.06 0.00014 | 0.00017 | IFNA10, IFNAR2, TYK2

KEGG pathways Natural killer cell mediated cytotoxicity 4.87 0.00019 | 0.00019 | CSF2, IFNA10, IFNAR2

GO Cellular Component integral component of plasma membrane 4.03 0.00024 | 0.0017 CCR5, CCRY, IFNAR2, MUC1, PLSCR1, SLC6A20
GO Cellular Component cell surface 3.12 0.0027 | 0.0093 CCR5, CCRY9, CDH15

GO Cellular Component perinuclear region of cytoplasm 2.82 0.0043 0.01 PDE}A, PLSCR1, THBS3

GO Cellular Component extracellular region 2.33 0.0089 0.016 CSF2, IFNA10, IFNAR2, NTN5, THBS3

GO Molecular Function calcium ion binding 2.31 0.01 0.021 CDH15, PLSCR1, THBSS

GO Cellular Component Golgi apparatus 2.09 0.015 0.02 CDH15, FUT2, PLSCR1

Reactome pathways Immune System 1.92 0.018 0.018 CSF2, IFNA10, IFNAR2, TYK?2

GO Biological Component | G protein-coupled receptor signaling pathway | 1.68 0.03 0.03 CCR5, CCRY, PDE}A

Supplementary Table 15: Enrichment analysis was applied to 19 genes identified by TWAS and colocalisation analysis
and/or harbouring missense mutations. These genes were input into the XGR algorithm '# to look for enrichment in
Gene Ontology (GO) terms (Biological component, Cellular component and Molecular function) and curated KEGG
and Reactome pathways. The table shows all enrichment terms with a false-discovery rate (FDR)<0.05. The most
significant enrichment was in the cytokine-mediated, interferon and Jak-STAT signalling pathways.
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Meta-analysis by information content (MAIC)

In order to put the results in the context of existing knowledge of host genes implicated in SARS-CoV-2 replication
or pathophysiology of Covid-19, we use meta-analyis by information content (MAIC)® to incorporate lists of named
genes from a large systematic review of in vitro and in vivo studies.'® Remarkably, the top 2000 named genes in our
metaTWAS contributes 19.5% of the total information content in this composite analysis (Supplementary Figure
31). Full results are available at baillielab.net/maic/covid.
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Supplementary Figure 31: Circular diagram of shared information content among data sources using MAIC analysis.
Each data source is represented by a coloured block on the outer ring of the circle; the size of data source blocks is
proportional to the summed information content of the input list—that is, the total contribution that this data source
makes to the aggregate, calculated as the sum of the MAIC gene scores contributed by that list and represented
numerically for datasets with the highest information content. Lines are coloured according to the dominant data
source. Data sources within the same category share the same colour (legend). The largest categories and data
sources are labelled. An interactive version of this figure is available at baillielab.net/maic/covid.
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