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Abstract

When comparing the risk of a post-infection binary outcome, e.g. hospitalisation,

for two variants of an infectious pathogen, it is important to adjust for calendar

time of infection. Typically infection time is unknown and positive test time used

as a proxy for it. Positive test time may also be used when assessing how risk of

the outcome changes over calendar time. We show that if time from infection to

positive test is correlated with the outcome, the risk conditional on positive test

time is a function of the trajectory of infection incidence. Hence, a risk ratio

adjusted for positive test time can be quite different from the risk ratio adjusted

for infection time. We propose a simple sensitivity analysis that indicates how

risk ratios adjusted for positive test time and infection time may differ. This

involves adjusting for a shifted positive test time, shifted to make the difference

between it and infection time uncorrelated with the outcome. We illustrate this

method by reanalysing published results on the relative risk of hospitalisation

following infection with the Alpha versus pre-existing variants of SARS-CoV-2.
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Results indicate the relative risk adjusted for infection time may be lower than

that adjusted for positive test time.

Key words: COVID-19; epidemic phase bias; selection bias.

1 Introduction

Consider the problem of estimating the distribution of time between a first event

(e.g. becoming infected with SARS-CoV-2) and a second event (e.g. testing

positive for the virus) in the population of individuals who ultimately experience

the second event. We shall call this time the ‘inter-event time’ or ‘delay’.

Estimating this distribution may be complicated by the first event time not being

observed and/or the available data being right-truncated on the second event

time, due to only sampling individuals who experience the second event by a

particular calendar time.

It has long been known that the inter-event times in the population of individuals

who have experienced the second event before a given calendar time tend to be

shorter than in the population of all individuals (who eventually experience the

second event) [1, 2, 3]. More precisely, the conditional probability that the

inter-event time is less than l given that the second event has occurred by a given

calendar time is greater than the corresponding unconditional probability (unless

all second events have occurred by that time).

It has also been noted that the conditional distribution of inter-event time given

the actual calendar time of the second event depends on the marginal distribution

of the first event time [4, 5, 6]. In particular, if the first event is generated by a

Poisson process whose rate is increasing with calendar time, then the conditional

distribution of the inter-event time given the calendar time of the second event is

shifted towards zero compared to the unconditional distribution. On the other

hand, if the rate is decreasing, the conditional distribution of the inter-event time
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is shifted away from zero compared to the unconditional distribution. This means

that in the context of an infectious disease the time from infection (first event) to

positive test (second event) in those who test positive at a given calendar time

tends to be shorter than average when the incidence of infection is rising, and

longer than average when the incidence is falling.

Now consider a third variable, which is measured at, or after, the time of the

second event and is correlated with the inter-event time. Just as the distribution

of inter-event time is affected by conditioning on the calendar time of the second

event, so might the distribution of this variable. For example, an infected

individual’s viral load at time of positive test is a function of time since infection.

Rydevik et al. (2016) observed that this relation could be used to estimate an

individual’s infection time from that individual’s viral load at the time of testing

positive [5]. Hay et al. (2021a) used this same idea to estimate the pattern of

incidence of infection in the population from data on the distribution of viral load

(measured as the cycle threshold) in a random sample of individuals who tested

positive on a given day [6]. If the mean viral load is high, this suggests most of

the sampled individuals were infected recently, which is consistent with a rising

incidence of infection. Conversely, if the mean viral load is low, this suggests less

recent infection, and so a falling incidence. Hay et al. (2021b) investigated using

such data to estimate simultaneously the pattern of incidence of infection and the

dependence of the viral load on the time since infection [7]. Similar work had

previously been done in the field of HIV/AIDS (e.g. [8, 9, 10]).

In the present article we consider the estimation of the distribution of a third

variable where this variable is a binary outcome of interest. An association

between this binary outcome and the inter-event time could arise due to factors

that determine both. We take the first and second events to be infection and

positive test, respectively, and the binary outcome to be hospitalisation within 14

days of the positive test, although what follows would apply to any other binary
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outcome, e.g. death within 28 days of a positive test. Individuals with more

severe infections may tend to experience symptom onset sooner after infection —

and consequently be tested earlier — than average and also be more likely to

become hospitalised. In this situation, the hospitalisation risk (i.e. the proportion

ultimately hospitalised) in individuals who test positive before a particular

calendar time would be higher than the risk in all individuals who eventually test

positive. More importantly for this article, the hospitalisation risk in individuals

who test positive at a particular calendar time will differ from the risk in all

individuals who eventually test positive (unless the incidence of infection is

constant over time). If the incidence of infection is rising, the former risk will be

higher than the latter; if incidence is falling, it will be lower.

This dependence of the hospitalisation risk on the trajectory of incidence of

infection is particularly relevant for any investigation of how the risk is changing

over calendar time. Ideally, such an investigation might involve comparing the

risks for individuals with different calendar times of infection. If, as is likely,

infection times are unknown, it would be natural to instead compare the risks for

individuals with different calendar times of positive test. The difficulty with

interpreting this latter comparison is that, as noted above, even if the risk does

not vary by calendar time of infection, it will depend on calendar time of positive

test.

Another situation where one might condition on calendar time of positive test is

when comparing the risks associated with two variants of a given pathogen, in

this case SARS-CoV-2. Here, controlling for (i.e. conditioning on) time of

infection would be important, because the ‘exposure’ (i.e. a binary variable for

the variant) and the outcome (hospitalisation) may both depend on calendar

time. The exposure would depend on calendar time if the ratio of the incidence

rates of infection with the two variants varied over time. That would the case if,

for example, one variant emerged earlier but the other variant later became

4



dominant. The hospitalisation outcome would depend on calendar time if

measures designed to reduce the need for hospitalisation and/or policies on

hospital admission changed over time. Failure to control for infection time when

comparing the risks of hospitalisation for the two variants would mean comparing

the risk in individuals infected with one variant, whose infection times may have

been predominantly when pre-hospital treatments were less effective and/or

hospital admission more encouraged, with the risk in individuals infected with

the other variant, whose infection times were mostly when pre-hospital

treatments were better or hospital admission more restricted. If infection times

are unknown, it would be natural to control instead for the time of positive test

as a proxy for infection time. The difficulty with this approach is that, even if the

hospitalisation risk is the same for both variants and does not depend on time of

infection, once we condition on calendar time of positive test a variant that has

increasing incidence of infection will appear to have a higher risk than a variant

that has a decreasing incidence.

Numerous studies have compared the risks of hospitalisation, intensive care unit

admission and/or death in individuals infected with two variants of SARS-Cov-2

(either Alpha versus pre-existing non-Alpha or Delta versus Alpha), adjusting for

calendar time of positive test, e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

In all these studies, the incidence of one variant has been rising while the other

has been falling or has been rising at a slower rate.

In this article, we describe in detail why and how the conditional risk of

hospitalisation given time of positive test depends on the trajectory of incidence

of infection, even when the conditional risk given time of infection does not. We

also propose an easily implemented method that provides an indication of how

much an estimate of the risk conditional on the positive test time might differ

from the estimate one would have obtained if it had been possible to condition on

the infection time. This method involves calculating the risk conditional on a
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shifted positive test time. For each individual who is not ultimately hospitalised,

this shifted test time is the same as the actual positive test time, i.e. there is no

shift. However, for each individual who is ultimately hospitalised, the shifted

time equals the actual positive test time plus the difference between the mean

time from infection to positive test in individuals who do not become hospitalised

and the mean time in individuals who do become hospitalised. This ensures that

the shifted time from infection to positive test is uncorrelated with the

hospitalisation outcome. Because this difference between mean times is unknown,

our method requires the user to specify a range of plausible values for it.

The structure of the article is as follows. Section 2 defines our notation. Section 3

describes why and how the distribution of the delay conditional on the calendar

time of positive test depends on the incidence of infection. Section 4 goes on to

explain how this dependence affects the conditional risk of hospitalisation given

calendar time of positive test. We introduce our proposed method in Section 5,

and its performance is studied in Section 6. Practical application of the method

is detailed in Section 7, and Section 8 illustrates its use on COVID-19 data from

England. We conclude with a discussion in Section 9.

2 Notation

We shall consider the population to be everyone who is at risk of infection from

some calendar time zero. Time can be measured discretely or continuously.

Suppose for now that all infections result in positive tests. In Section 9 we shall

discuss the consequences of violation of this assumption. If an individual has two

or more separate episodes of infection, we only consider the first episode.

For each individual in the population, let I denote the (calendar) time of

infection, and let L be the delay (‘L’ for ‘lag’) between infection and positive

test. Now, T = I + L is the time of positive test. Let H equal 1 if the individual
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is hospitalised within 14 days of positive test, and 0 otherwise. In Section 7 we

shall use V to denote a binary indicator of which of two variants has infected an

individual, and use U to denote a vector of variables that are fixed from the time

of infection, e.g. age and ethnicity. There we shall be interested in the odds ratio

of hospitalisation associated with V adjusted for U and I.

3 Delay distribution conditional on test time

In this section and Section 4, we shall assume, for simplicity, that L is

independent of I. Using Bayes’ Rule, fL(l | T = t), the conditional probability

distribution function of the delay given the positive test occurs at time t, can be

shown to be related to the unconditional probability distribution function fL(l)

by

fL(l | T = t) =
fT,L(t, l)

fT (t)
=
fI,L(t− l, l)

fT (t)
= fL(l)× fI(t− l)

fT (t)
(1)

If the incidence of infection is increasing over the period prior to time t, fI(t− l)

will be a decreasing function of l. So, for any l1 < l2, we have

fI(t− l1) > fI(t− l2) and so equation (1) implies

fL(l1 | T = t)

fL(l1)
=
fI(t− l1)

fT (t)
>
fI(t− l2)

fT (t)
=
fL(l2 | T = t)

fL(l2)
. (2)

From inequality (2), we have

fL(l1 | T = t)

fL(l2 | T = t)
>
fL(l1)

fL(l2)
.

That is, conditioning on T = t shifts probability mass from larger values of L to

smaller values. So, if we look only at those individuals whose positive test time is

t, then small delays will be over-represented and long delays under-represented.

This is not surprising, since an individual with positive test time t had a short

delay if he was infected recently and a long delay if he was infected long ago, and

there are more individuals infected recently than individuals infected long ago.
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Conversely, if the incidence of infection is decreasing, fI(t− l) will be a increasing

function of l, and so

fL(l1 | T = t)

fL(l2 | T = t)
<
fL(l1)

fL(l2)
.

That is, conditioning on T = t shifts probability mass from smaller values of L to

larger values: long delays are over-represented and short delays

under-represented. In this situation, there are fewer individuals infected recently

than individuals infected long ago.

Example 1

Suppose half of infected individuals test positive on the day after they are

infected and the other half test positive two days after they are infected. That is,

P (L = 1) = P (L = 2) = 0.5. Further, suppose that 100 individuals are infected

on day t− 2 and 150 individuals are infected on day t− 1 (so incidence is

increasing). Then 125 individuals will test positive on day t and, of these, 50

were infected on day t− 2 and 75 were infected on day t− 1. So, the proportion

of these 125 individuals whose delay was one day is 75/125 = 0.6 > 0.5.

Conversely, suppose that 150 individuals are infected on day t− 2 and 100

individuals are infected on day t− 1 (incidence is decreasing). Then 125

individuals will again test positive on day t, but the proportion of these whose

delay is one day is only 50/125 = 0.4 < 0.5. Figure 1 illustrates this example.

Example 2

Verity et al.[23] (see also [3]) showed that if infections are generated by a Poisson

process with rate at time t proportional to exp(λt) for some λ, and the delay L

has a gamma distribution with shape α and rate β, then the conditional

distribution of L given T = t is gamma with shape α and rate β + λ. If λ > 0,

then the incidence is rising (exponentially) and the conditional mean delay,

α/(β + λ), is less than the unconditional mean α/β. If instead λ < 0, then the
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incidence is falling and the conditional mean delay is greater than the

unconditional mean. If λ = 0, the two gamma distributions are the same.

Example 3

Figure 2 shows how the hospitalisation risk conditional on positive test time

varies according to positive test time in a scenario where the incidence of

infection first rises then falls, then rises and falls again. Here, the hospitalisation

risk conditional on infection time is 5% irrespective of the infection time, and the

mean time from infection to positive test is shorter in individuals who are

ultimately hospitalised than in those who will not.

4 Hospitalisation risk conditional on test time

As we have seen, conditioning on the positive test time changes the distribution

of the delay in circumstances where the delay is independent of the time of

infection. If hospitalisation is more common in individuals with shorter delays

than in those with longer delays, i.e. P (H = 1 | I = t, L = l) is a decreasing

function of l, then conditioning on the positive test time might be expected also

to change the probability of hospitalisation. The effect of conditioning on T = t

will depend on whether the incidence of infection is rising or falling. If it is rising,

we might expect the proportion of hospitalisations to be increased, because short

delays are over-represented. Conversely, if the incidence is falling, we might

expect the proportion of hospitalisations to be decreased. We now confirm

mathematically that this is true when the risk of hospitalisation either does not

depend on the time of infection or changes little over the course of all but the

longest delays.

Suppose that almost all delays are at most l∗ for some constant l∗ (i.e.

P (L > l∗) ≈ 0). Also, assume that
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P (H = 1 | I = t− l, L = l) ≈ P (H = 1 | I = t, L = l) for all 0 < l ≤ l∗. The risk

of hospitalisation conditional on time of infection can then be written as

P (H = 1 | I = t) =

∫ ∞
0

P (H = 1 | I = t, L = l) fL(l) dl

≈
∫ l∗

0

P (H = 1 | I = t, L = l) fL(l) dl. (3)

Likewise, the risk of hospitalisation conditional on positive test time is

P (H = 1 | T = t) =

∫ ∞
0

P (H = 1 | I = t− l, L = l) fL(l | T = t) dl

≈
∫ l∗

0

P (H = 1 | I = t− l, L = l) fL(l | T = t) dl.

≈
∫ l∗

0

P (H = 1 | I = t, L = l) fL(l | T = t) dl. (4)

Expressions (3) and (4) are both weighted averages of P (H = 1 | I = t, L = l). In

expression (3) the weighting function is fL(l); in (4) it is fL(l | T = t). If the

incidence of infection is increasing over the period [t− l∗, t], then, as explained in

Section 3, conditioning on T = t shifts probability mass from larger values of L to

smaller values. Hence, the weighted average in expression (4) gives more weight

to small values of l (and less weight to large values of l) than does the weighted

average in expression (3). This, combined with our assumption that

P (H = 1 | I = t, L = l) is a decreasing function of l, implies that (4) is greater

than (3). That is, P (H = 1 | T = t) > P (H = 1 | I = t). On the other hand, if

the incidence of infection is decreasing over the period [t− l∗, t], then (as

explained in Section 3) conditioning on T = t shifts probability mass from

smaller values of L to larger values, with the result that

P (H = 1 | T = t) < P (H = 1 | I = t).

Example 1 continued

Suppose P (H = 1 | I = t, L = 1) = 0.05 and P (H = 1 | I = t, L = 2) = 0.01.

Then P (H = 1 | I = t) = (0.05 + 0.01)/2 = 0.03. If the incidence of infection is
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increasing, then of the 125 individuals who test positive on day t, the expected

number who are hospitalised is 50× 0.01 + 75× 0.05 = 4.25, corresponding to a

proportion of 4.25/125 = 0.034 (which is > 0.03). If, on the other hand, the

incidence of infection is decreasing, then of the 125 individuals who test positive

on day t, the expected number who are hospitalised is

75× 0.01 + 50× 0.05 = 3.25, corresponding to a proportion of 0.026 (which is

< 0.03). The ratio of these two proportions is 0.034/0.026 = 1.31, and so the

hospitalisation risk conditional on time of positive test would differ by 31%

between a period of epidemic growth and a period of epidemic decline.

5 Hospitalisation risk conditional on infection

time plus random delay

Suppose now that we had a different proxy of infection time, which, unlike

positive test time, were not associated with the hospitalisation outcome. If we

conditioned on this proxy, we might achieve the goal of approximately adjusting

for time of infection without creating a measure of hospitalisation risk that

depends on the trajectory of the infection incidence. We now describe such a

proxy.

Suppose, hypothetically, that each individual who becomes infected at time I = i

and tests positive at time T = t is randomly assigned a time variable T 0 sampled

from the conditional distribution of T given I = i and H = 0, i.e. the distribution

of positive test time in those who are infected at the same time and who are not

ultimately hospitalised. This time T 0 will be our proxy of infection time. By

construction, it is not associated with the hospitalisation outcome H.

We cannot actually carry out this assignment in practice, because we do not

observe I. However, under the following working assumption, we shall still be

able to estimate P (H = 1 | T 0 = t).
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Assumption 1:

fT (t | I,H = 1) = fT (t+ c | I,H = 0),

where c is some known constant.

Assumption 1 means that the distribution of time from infection to positive test

(conditional on time of infection) in ultimately hospitalised individuals equals the

corresponding distribution in ultimately non-hospitalised individuals shifted by c

days. So, the mean time from infection to test in the ultimately hospitalised is c

days less than the mean in the ultimately non-hospitalised. We might expect that

c > 0.

If Assumption 1 holds, then (see Appendix for proof)

P (H = 1 | T 0 = t) = P (H = 1 | T + cH = t). (5)

It follows from equation (5) that P (H = 1 | T 0 = t) can be consistently estimated

simply by creating the new variable T ∗ = T + cH (which equals T for ultimately

non-hospitalised cases and T + c for ultimately hospitalised cases) and calculating

the proportion who have H = 1 among those sampled individuals with T ∗ = t

(or, if time is continuous, T ∗ ≈ t).

The hospitalisation risk conditional on T 0, i.e. P (H = 1 | T 0 = t), has the

desirable property that P (H = 1 | T 0 = t) = P (H = 1 | I = t) if P (H = 1 | I = t)

does not depend on t. More generally, if P (H = 1 | I = t) ≈ P (H = 1 | I = t+ l)

for all 0 < l ≤ l∗, then P (H = 1 | T 0 = t) ≈ P (H = 1 | I = t). That is, when the

risk conditional on I is constant or changes only slowly over time, conditioning

on T 0 yields almost the same risk as conditioning on I.

In practice, it is unlikely that we shall know the true value of c. However, one

may be able to specify a range of plausible values for it and then investigate how

sensitive the estimate of P (H = 1 | T 0) is to this value. We shall illustrate this

approach in Section 8.
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Assumption 1 states that the distribution of delay in hospitalised individuals

equals the distribution of delay in non-hospitalised individuals shifted by some

number (c) of days. This assumption may well be false. In particular, it implies

that the minimum delay in non-hospitalised cases cannot be less than c. So, in

Section 6 we shall investigate the extent to which P (H = 1 | T ∗) differs from

P (H = 1 | T 0) when one delay distribution is not a shifted version of the other

but we set c to be equal to E(L | I,H = 1)− E(L | I,H = 0), i.e. the difference

between the mean of the two delay distributions.

6 Investigation of proposed method

Suppose the incidence of infection at time t is proportional to exp(λt). If λ > 0,

then d = log(2)/λ is the doubling time; if λ < 0, then −d is the halving time.

Suppose that P (H = 1 | I = t), the risk of hospitalisation for an individual who

is infected at time t is r = 0.05 and does not depend on the time of infection.

Assume that the delay in the non-hospitalised cases has a gamma distribution

with mean 7 and variance 14 (i.e. shape α = 3.5 and rate β = 0.5). We consider

two scenarios for the distribution of delay in the hospitalised cases. In Scenario 1,

it is a gamma distribution with mean 4 and variance 8 (shape α1 = 2 and rate

β = 0.5). In Scenario 2, it is an equal mixture of a gamma distribution with

mean 7 and variance 14 and a gamma distribution with mean 1 and variance 2

(shape α2 = 0.5 and rate β = 0.5). So, in both scenarios the difference between

the mean delay in the hospitalised and non-hospitalised is three days. Figure 3

shows, for each scenario, the distributions of delay in the non-hospitalised (black)

and hospitalised (red) cases. The dotted line shows the distribution in the

non-hospitalised cases shifted by three days.

The number of non-hospitalised individuals who test positive at time t is
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proportional to

(1− r)
∫ t

−∞
exp(λu)

βα

Γ(α)
(t− u)α−1 exp{−β(t− u)} du

= (1− r) exp(λt)
βα

(β + λ)α
.

Similarly, the number of hospitalised individuals who test positive at time t is

proportional to

r exp(λt)
βα1

(β + λ)α1

in Scenario 1 and is

r exp(λt)× 1

2

{
βα

(β + λ)α
+

βα2

(β + λ)α2

}
in Scenario 2.

So, the risk when we condition on time of positive test T is

P (H = 1 | T = t) =
r βα1

(β+λ)α1

(1− r) βα

(β+λ)α
+ r βα1

(β+λ)α1

(6)

in Scenario 1 and is

P (H = 1 | T = t) =

r
2

{
βα

(β+λ)α
+ βα2

(β+λ)α2

}
(1− r) βα

(β+λ)α
+ r

2

{
βα

(β+λ)α
+ βα2

(β+λ)α2

}
=

r
{

βα

(β+λ)α
+ βα2

(β+λ)α2

}
(2− r) βα

(β+λ)α
+ r βα2

(β+λ)α2

(7)

in Scenario 2.

If we condition on T ∗ = T + 3H, the risk is

P (H = 1 | T ∗ = t) =
r exp{λ(t− 3)} βα1

(β+λ)α1

(1− r) exp(λt) βα1

(β+λ)α
+ r exp{λ(t− 3)} βα1

(β+λ)α1

=
r βα1

(β+λ)α1

(1− r) exp(3λ) βα

(β+λ)α
+ r βα1

(β+λ)α1

(8)
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in Scenario 1, and is

P (H = 1 | T ∗ = t) =

r
2

exp{λ(t− 3)}
{

βα

(β+λ)α
+ βα2

(β+λ)α2

}
(1− r) exp(λt) βα

(β+λ)α
+ r

2
exp{λ(t− 3)}

{
βα

(β+λ)α
+ βα2

(β+λ)α2

}
=

r
{

βα

(β+λ)α
+ βα2

(β+λ)α2

}
{(2− 2r) exp(3λ) + r} βα

(β+λ)α
+ r βα2

(β+λ)α2

(9)

in Scenario 2.

Table 1 shows the results of applying equations (6)–(9) in Scenarios 1 and 2,

when d = 4 and when d = 10. It also shows the results when d = −4 or d = −10,

meaning that the incidence is falling with a halving time is 4 or 10 days. We see

that the risks conditional on T are indeed different from the risk conditional on

time of infection I, i.e. r = 0.05. The proposed method produces conditional risks

P (H = 1 | T ∗) that are close to r.

Finally, Table 2 shows the risk ratios that Table 1 implies when comparing two

variants both of which have the same risk r = 0.05, but one of which has a

doubling time of 4 (respectively, 10) days and the other has a halving time of 4

(respectively, 10) days. The risk ratio conditional on time of infection is r/r = 1.

The risk ratios conditional on T vary from 1.5 to 2.8. When we instead condition

on T ∗, the conditional risk ratios vary from 0.95 to 1.04, i.e. they are much closer

to 1.

7 Practical implementation when comparing

risks of two variants

In practice, when comparing the risks of hospitalisation (or other post-infection

outcome, like death) associated with two variants, researchers may adjust not

only for positive test time but also for variables like age and ethnicity. In this

section, we detail how researchers can apply our proposed sensitivity analysis in

this situation. We shall begin by assuming that the researchers are using logistic
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regression (as did, e.g., [15, 16, 22]), and then go on to address the slightly more

complicated situation where there is administrative censoring of the outcome and

the researchers are using Cox regression or parametric survival regression (as did,

e.g., [14, 17, 18, 19, 20, 21]).

Let V be a binary indicator for variant and U denote a vector of other variables

that are fixed at the time of infection, e.g. age and ethnicity. Suppose the

researchers have specified a particular logistic regression model, with H, the

indicator of hospitalisation, as the outcome and with V , U and T (or functions of

T , e.g. calendar week of positive test) as the covariates, and suppose they have

fitted this model to all the individuals whose positive test time T lies in some

chosen interval of calendar time [τ1, τ2]. The coefficient of V in this model

represents the log odds of hospitalisation for variant adjusted for U and positive

test time T .

To apply our method, assume that fT (t | I,X,H = 1) = fT (t+ c | I,X,H = 0),

where X = (V, U). This is like Assumption 1 but conditional on X, and it implies

P (H = 1 | T 0 = t,X) = P (H = 1 | T + cH = t,X) (10)

(see Appendix for proof). Choose a range of plausible values for c. In Section 8

we illustrate how one might choose this range. Then, for any given value in this

range (e.g. c = 1 day or c = 2 days), calculate T ∗ = T + cH for each individual

who has tested positive. Identify the set of individuals whose T ∗ lies in the

interval [τ1, τ2]. Note that this set differs from the set whose T lies in [τ1, τ2],

because (assuming that c > 0) it excludes hospitalised individuals with

τ2 − c < T ≤ τ2 and includes hospitalised individuals with τ1 − c ≤ T < τ1.1 Fit

the same logistic regression model used earlier to this set of individuals, replacing

the covariate T (or functions of T ) in the model with a covariate T ∗ (or functions

of T ∗). The coefficient of V in this model is the log odds of hospitalisation for

1Alternatively, if data on individuals with T < τ1 are unavailable, one can instead identify
the set of individuals whose T ∗ lies in the interval [τ1 + c, τ2].
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variant adjusted for U and T ∗. Equation (10) implies that this is also the log

odds adjusted for U and T 0, when the true value of c is used. The Supplementary

Materials contain a simulation study that demonstrate the use of this method.

So far, we have assumed that the binary outcome H is observed for everyone who

tests positive and that logistic regression has been used. In practice, there may

be administrative censoring. This would occur if some of the sampled individuals

test positive less than 14 days before time τ2, had not yet been hospitalised by

time τ2, and no data were available on hospitalisations after time τ2. In this

situation, researchers may use the time from positive test to hospitalisation as the

outcome (rather than the binary indicator of hospitalisation within 14 days),

right-censoring this time at 14 days, and fit a Cox regression model (or a

parametric survival model) of this time-to-event outcome on V , U and T to all

the individuals whose T lies in the interval [τ1, τ2]. When the binary outcome is

rare and is fully observed, the hazard ratios (HRs) estimated from this Cox

regression would be approximately equal to the odds ratio estimates from logistic

regression [24].

Our proposed sensitivity analysis involves fitting exactly the same Cox regression

(or parametric survival) model that the researchers have used, with exactly the

same time-to-event outcome. The only difference is that: 1) the covariate T in

this model is replaced by T ∗; and 2) this model is fitted to all the individuals

whose T ∗ lies in [τ1, τ2]. A difficulty arises because T ∗ is calculated from T and

H, the last of which is unobserved for the censored individuals. To avoid

compromising the simplicity of the proposed method, we suggest assuming that

individuals whose hospitalisation status is unknown due to this administrative

censoring have H = 0 for the purpose of calculating T ∗ (and so setting T ∗ = T ).

Provided that hospitalisation within 14 days is uncommon, this assumption will

be true for the great majority of censored individuals.
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Figure 4 summarises this procedure for carrying out the sensitivity analysis.

8 Application to COVID-19 hospitalisation and

mortality data

8.1 Hazard ratio conditional on T and T 0

Based on record linkage of routine healthcare data in England, Nyberg et al.

(2021) recently reported a higher risk of hospital admission and mortality in

COVID-19 cases infected with the Alpha variant (B.1.1.7) than in cases infected

with pre-existing non-Alpha variants [18]. The study included data on 839,278

cases who had their first positive tests between 23 November 2020 and 31

January 2021 and whose positive test sample had been assessed for S gene target

failure (SGTF). SGTF was used as a proxy test for the Alpha variant, and had

positive and negative predictive values > 90% during the study period [25]. As

determined by SGTF, 592,409 cases had Alpha and 246,869 cases had non-Alpha

variants. Using stratified Cox regression, Nyberg et al. estimated that, after

adjustment for date of positive test and other covariates, the HR of hospital

admission within 14 days of positive test was 1.52 (95% CI 1.47–1.57) for Alpha

versus non-Alpha cases. Full details on the dataset, including inclusion criteria,

variant classification, outcome definitions, and adjustment methods, are available

in the recent publication [18].

The Alpha variant was first detected in England in November 2020. During the

study period the prevalence of the Alpha variant among newly test-positive cases,

as determined by SGTF, increased from 16% in the week commencing 23

November 2020 to 94% in the week commencing 25 January 2021, and the

prevalence of the pre-existing variants decreased accordingly [25]. During this

period, the number of cases of the Alpha variant had a considerably higher

growth rate than the number of cases of non-Alpha variants [26]. So, the
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aforementioned HR of 1.52 conditional on the positive test time T would be

expected to be greater than the corresponding HR conditional on the infection

time I.

We reanalysed the study dataset to estimate the HRs conditional on T 0 for

different choices of c. Columns 2 and 3 of Table 3 show the adjusted HR (and

associated 95% CI) of hospital admission for Alpha versus non-Alpha from

stratified Cox regression models fitted after adding c days to the date of first

positive test for those cases who were ultimately hospitalised. The HR when

c = 0 is that in the original publication [18]. As expected, there was a trend of

decreasing HR with increasing c. The HR was greater than one and statistically

significant when c was between 1 and 5 days.

8.2 Plausible upper bound for c

We now consider what might be a plausible upper bound for c. The cases used in

the analysis of Nyberg et al. all tested positive through the pillar-two national

SARS-CoV-2 testing programme. Pillar-two is a broad mass community testing

programme of individuals seeking testing due to symptoms or contact tracing

efforts, and 85.5% of the included cases reported COVID-19 symptoms at the

time of their positive test (88.5% in hospitalised cases and 85.4% in

non-hospitalised cases). The mean time from symptom onset to positive test was

2.65 days (standard deviation 2.13) in the symptomatic hospitalised cases, and

2.51 days (standard deviation 2.12) in the symptomatic non-hospitalised cases.

These percentages and means were similar in both Alpha and non-Alpha cases

(data not shown). These figures indicate no obvious association between

hospitalisation and time from symptom onset to test. Thus, we might reasonably

assume that the mean time is 2.5 days in both hospitalised and non-hospitalised

cases.

It has been estimated that the mean incubation time (i.e. time from infection to
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symptom onset) in cases who eventually experience symptoms is 5.74 days [27].

Since most of the cases in the data set were not (ultimately) hospitalised, this

can be regarded as the mean incubation time in non-hospitalised cases who

eventually experience symptoms. We assume that the mean incubation time in

hospitalised cases (all of whom must have been symptomatic or pre-symptomatic

at time of positive test) is less than or equal to the mean time in non-hospitalised

cases who eventually have symptoms, but is not less than two days.

We shall assume that the mean time from infection to positive test in the 14.6%

of (ultimately) non-hospitalised cases who were asymptomatic at time of positive

test is not more than 12 days. This choice of 12 days is somewhat arbitrary, but

does not seem unreasonable given that some of these cases will have been

pre-symptomatic at time of positive test. It now follows that the mean time from

infection to positive test in the non-hospitalised cases is not more than 8.8 days

(i.e. mean incubation 5.74 days plus mean time from symptoms to test 2.5 days

for the 85.4% of symptomatic cases, and 12 days for the 14.6% of asymptomatic

cases). Assuming that the mean time from infection to positive test in the

hospitalised cases is at least 4.5 days (i.e. mean incubation 2 days plus mean time

from symptoms to test 2.5 days), it follows that a plausible upper bound for c is

4.3 days (i.e. 8.8− 4.5).

8.3 Analysis of symptomatic cases

The analysis described above includes a proportion (14.5%) of cases who were

asymptomatic prior to their positive test. We now consider a modified analysis

that focuses on symptomatic cases. It is the same as the analysis above, except

that we now exclude cases who were both asymptomatic prior to positive test

and not (ultimately) hospitalised.

4.3% (36,233/839,278) of the cases were hospitalised. After excluding the 117,494

non-hospitalised cases who were asymptomatic at time of positive test, 5.0%
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(36,233/721,784) of the remaining cases were hospitalised. Columns 4 and 5 of

Table 3 show the results from analysing this subgroup consisting of symptomatic

and/or hospitalised pillar-two cases (henceforth referred to as ‘symptomatic

cases’). Consistent with the results using the full dataset, the HR point estimates

were ≥ 1.10 when c ≤ 4 but was lower when c = 5.

Using the same logic as described above, the mean time from infection to positive

test in the symptomatic non-hospitalised cases is not more than 8.2 days (i.e.

mean incubation 5.74 days plus mean time from symptoms to test 2.5 days).

Assuming again that the mean time from infection to positive test in the

hospitalised cases is at least 4.5 days, a plausible upper bound for c is 3.7 days

(i.e. 8.2− 4.5).

8.4 Mortality

Using the same stratified Cox regression approach, Nyberg et al. (2021) also

considered mortality as a secondary outcome, and reported an adjusted HR of

death within 28 days of 1.59 (95% CI 1.44–1.74) for Alpha versus non-Alpha.

Columns 6–9 of Table 3 show the original (c = 0) and adjusted HR of this

outcome, after adding c days to the date of first positive test for those cases who

ultimately died within 28 days of testing positive. There was a trend towards

lower HR estimates with increasing c. The HRs were statistically significantly

greater than 1 for c ≤ 4 when using all cases, and for c ≤ 3 when restricting to

symptomatic cases, but non-significant for higher c.

9 Discussion

In this article we have highlighted the difference between the risk of a binary

post-infection outcome (which, in this paper, is hospitalisation) conditional on

the time of infection I and the corresponding risk conditional on the time of
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positive test T , and noted that the latter is a function of the trajectory of

incidence of infection over calendar time. One way to interpret this difference is

as a bias: if the goal is to estimate the risk conditional on infection time and if

this risk differs from the risk conditional on the positive test time, then an

(asymptotically) unbiased estimator of the latter risk will be an (asymptotically)

biased estimator of the former risk. One might call this ‘epidemic phase bias’,

since its direction and magnitude depend on whether the incidence of infection is

falling or rising, and how quickly. This ‘bias’ may affect the results from a

number of studies, e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

We have proposed a simple, easily implemented sensitivity analysis. This involves

a third risk: that conditional on T 0, the infection time plus a random time that is

independent of the outcome. This third risk equals the risk conditional on

infection time when the latter does not change over time (i.e. as a function of

infection time), and is approximately equal to it when the risk conditional on

infection time changes slowly over time. More generally, the two risks differ, but

both have the advantage of not depending on the trajectory of incidence of

infection.

As with other sensitivity analysis approaches, e.g. for addressing unmeasured

confounding ([28]) and missing data ([29, 30]), ours does not yield a single

estimate of the risk. It does, however, provide an indication of how sensitive the

estimated risk is to the epidemic phase. If the incidence of infection is constant

over calendar time, the estimated risk will not change as c is varied; if incidence

is changing rapidly, the estimate will be very sensitive to the choice of c. When a

risk ratio comparing two variants is of interest, sensitivity will be least when the

variant-specific incidences of infection are both following the same trajectory

(constant, increasing at the same exponential rate, or decreasing at the same

rate), and will be greatest when one incidence is increasing rapidly and the other

is decreasing rapidly.
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The proposed method is likely to be most useful when a range of plausible values

can be specified for c, the difference between the mean time from infection to

positive test in the cases who experience the outcome and the corresponding

mean time in those who do not experience the event. For our re-analysis of the

healthcare data from England (Section 8) we suggested that the difference

between these mean times is unlikely to be greater than 4.3 days when all cases

are included. We found that the estimated hazard ratio (Alpha versus non-Alpha

variant) of hospital admission within 14 days declined from 1.52 (when c = 0) to

1.41, 1.31, 1.21 or 1.13, respectively, when c = 1, 2, 3 or 4, although all HR

estimates were statistically significantly greater than 1. When we restricted the

analysis to symptomatic cases, we argued that a plausible upper bound for c is

3.7 days. The hazard ratio using these cases declined from 1.49 (when c = 0) to

1.37, 1.28, 1.19 or 1.10, respectively, when c = 1, 2, 3 or 4, and was still

significant. The results were similar for the mortality outcome. Hence, although

this sensitivity analysis does not refute the reported association between the

Alpha variant and risk of hospital admission or mortality, the range of plausible

values of c includes the possibility that differences in epidemic phase might have

caused overestimation to some extent of the strength of association.

The true value of c is uncertain, however, and to establish the precise impact of

the epidemic phase ‘bias’, further research is needed to estimate the difference,

between ultimately hospitalised and non-hospitalised (or ultimately deceased and

non-deceased) cases, in their mean time from infection to onset of symptoms, and

their mean time from symptom onset to positive test. Of these, the difference in

time from infection to symptom onset (i.e. incubation time) is the more

uncertain. Estimates are available (e.g. [27]) for the mean incubation time in the

population of all cases who experience symptoms. Since hospitalisation is an

uncommon outcome, this mean should approximately equal the mean incubation

time in ultimately non-hospitalised cases. Harder to estimate is the mean
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incubation time in cases who are ultimately hospitalised. For some cases it may

be possible to establish retrospectively that they almost certainly became

infected on a particular day, perhaps because they are known to have been

exposed to an infected individual on that day and unlikely to have been exposed

otherwise during the period around that day. If a sufficient number of such cases

were identified, it ought to be possible to use them to estimate the mean

incubation time in ultimately hospitalised and non-hospitalised cases separately,

and hence the difference between these means. However, the numbers of cases

required to do this with precision could be large, because hospitalisation is

uncommon. There might also be a concern that these cases with known infection

times were unrepresentative of all cases.

It would be straightforward in theory to allow c to depend on observed variables

X. Simply assume that fT (t | I,X,H = 1) = fT{t+ c(X) | I,X,H = 0}, for

some function c(x) of x, and redefine T ∗ slightly as T ∗ = T + c(X)H. One might

also want to allow c to depend on the unknown infection time I. For example, if

the mean time from infection to positive test in the non-hospitalised cases is

getting smaller over the study period, then it is quite likely that the difference

between the mean time in non-hospitalised cases and the mean time in

hospitalised cases is also getting smaller. If it were necessary to allow c to depend

on I over the study period, then a crude but practical way of doing this would be

to specify c as a function of T and calculate T ∗ as T ∗ = T + c(T ).

We have focused on an observed binary outcome H, but also briefly addressed

right-censoring of this outcome. We proposed that T ∗ be calculated as though

the censored individuals did not experience the outcome (i.e. H = 0). This is a

reasonable approximation when the outcome is rare and the proportion of

censored individuals is small. For more common outcomes or when the extent of

censoring is larger, it would be preferable to use a more sophisticated approach.

More research is needed on this, but one possibility may be the following. Fit the
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Cox model to the original data. Estimate the baseline hazard. Use this estimated

baseline hazard and the estimated hazard ratios from the Cox model to calculate

the probability pi that a censored individual i has H = 1. Then create two copies

of each censored individual i: one with H = 1, T ∗ = T + c and weight pi; and one

with H = 0, T ∗ = T and weight 1− pi. An obvious drawback of this method is

that pi would be calculated from a model that implicitly assumed c = 0. A more

refined version might begin by calculating T ∗ as though the censored individuals

all had H = 0, then using the resulting fitted Cox model and estimated baseline

hazard to calculate pi.

We have assumed that all infections result in a positive test. This is obviously

not true in reality. However, this issue affects all studies of risks of post-infection

outcomes in samples of individuals who have tested positive, and is not specific to

this article. There is not a problem if those individuals who test positive are

representative of all infected individuals. Otherwise, the estimated risks must be

interpreted as risks conditional on eventually testing positive.

We have focused on a setting where most delays are measured in days or a small

number of weeks. Here, researchers may view time of positive test as a good

proxy for time of infection. In a setting where the mean delay is much larger or

where there is a long tail in the delay distribution, both the actual positive test

time T and its shifted counterpart T ∗ will typically be very different from the

infection time I. In that setting, although adjustment for T ∗ can still remove the

dependence of the risk on the trajectory of incidence to which the risk adjusted

for T is subject, neither of these adjusted risks should be seen as an

approximation of the risk conditional on I.

Finally, if additional information is available on the incidence of infection with

each variant over time, it may be possible to estimate the hospitalisation risk

without using data on positive test times. This could be done using deconvolution
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techniques, such as those developed in the 1980’s and 1990’s for back-calculation

in the context of the HIV/AIDS epidemic. There the purpose was to estimate the

distribution of HIV infection times from the observed distribution of AIDS onset

times and an assumed-known distribution of time from infection to AIDS onset.

For example, Rosenberg and Gail (1991) described how to do this using software

for Poisson regression with identity link function [31]. In the context of the

present article, the purpose would be to estimate, for each variant, the

distribution of time from infection to hospitalisation from the observed

distribution of hospitalisation times and an assumed-known distribution of

infection times. It may be possible to do this by applying, for example, an

adaptation of the Poisson regression method of Rosenberg and Gail with an

additional offset term for the total number of infections observed so far.
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Appendix: Proof of equations (5) and (10)

Since equation (5) is a special case of equation (10), it suffices to prove that the

latter is implied by the equation fT (t | I,X,H = 1) = fT (t+ c | I,X,H = 0).

The probability distribution function of the observed data (X,T,H) at (x, t, h) is

fX,T,H(x, t, h) =

∫
fI(i) fH|I(h | i) fX|I,H(x | i, h) fT |I,X,H(t | i, x, h) di.

By definition, T 0 is sampled from

fT |I,X,H(t | i, x, 0)

independently of T . So, the joint probability distribution function of (X,T 0, H)

evalulated at (x, t, h) is

fX,T 0,H(x, t, h) =

∫
fI(i) fH|I(h | i) fX|I,H(x | i, h) fT |I,X,H(t | i, x, 0) di. (11)

Let T ∗ = T + cH. Then the joint probability distribution function of (X,T ∗, H)

evalulated at (i, t, h) is

fX,T ∗,H(x, t, h) =

∫
fI(i) fH|I(h | i) fX|I,H(x | i, h) fT |I,X,H(t− hc | i, x, h) di.

(12)
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Assumption 1 can be written as

fT |I,X,H(t− c | i, x, 1) = fT |I,X,H(t | i, x, 0).

So, equation (12) becomes

fX,T ∗,H(x, t, h) =

∫
fI(i) fH|I(h | i) fX|I,H(x | i, h) fT |I,X,H(t | i, x, 0) di. (13)

The right-hand sides of lines (13) and (11) are the same. So, (X,T ∗, H) and

(X,T 0, H) have the same joint distribution. Therefore, the conditional

distribution of H given X and T 0 is the same as the conditional distribution of H

given X and T ∗.
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Figure 1: Illustration of Example 1. Crosses show numbers of infections. Black
and white circles represent cases with delays of 1 and 2 days, respectively.
In left-hand graph, infection incidence is increasing. 100 individuals are infected
on day t − 2, of whom half (i.e. 50) test positive with a delay of 2 days on day t.
In addition, 150 individuals are infected on day t − 1, of whom half (i.e. 75) test
positive with a delay of 1 day on day t. So, 75/(50 + 75) = 60% of the cases who
test positive on day t have a delay of 1 day.
In right-hand graph, incidence is decreasing. 150 individuals are infected on day
t− 2, of whom 75 test positive with a delay of 2 days on day t. 100 individuals are
infected on day t− 1, of whom 50 test positive with a delay of 1 day on day t. So,
50/(50 + 75) = 40% of the cases who test positive on day t have a delay of 1 day.
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Figure 2: Hospitalisation risk conditional on positive test time (solid black line)
when risk conditional on infection time is 0.05 (green line). Incidence of infection
is shown (dotted line). Time from infection to positive test is assumed to have a
gamma distribution with mean 4 and variance 8 for the ultimately hospitalised in-
dividuals and a gamma distribution with mean 7 and variance 14 for the ultimately
non-hospitalised individuals.

34



0 5 10 15

0.
00

0.
05

0.
10

0.
15

time (days)

de
ns

ity
 o

f t
im

e 
to

 te
st

Scenario 1

0 5 10 15

0.
00

0.
05

0.
10

0.
15

time (days)

de
ns

ity
 o

f t
im

e 
to

 te
st

Scenario 2

Figure 3: Distributions of time from infection to positive test. Solid black line is
distribution for ultimately non-hospitalised individuals. Dotted line is same dis-
tribution shifted by three days. Red line is distribution for ultimately hospitalised
individuals.
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Denote
H: outcome (e.g. hospitalisation).
V : binary variant indicator.
T : calendar time of positive test.
U : vector of other adjustment variables.
τ1: start of inclusion period.
τ2: end of inclusion period.

The original model is the regression model (e.g. a logistic or Cox
regression model) for the dependence of the risk of outcome H on
V , T and U that has been used to estimate the relative risk of H
for V = 1 versus V = 0 adjusted for T and U . This model has been
applied to individuals with τ1 ≤ T ≤ τ2.

Denote
c: difference between mean times from infection to positive test in
individuals who do not experience outcome H and in individuals
who do experience outcome H.

Choose a plausible range of values c = 0, . . . , cmax to consider.

For each c = 0, . . . , cmax:

1. Define the shifted calendar time variable

T ∗ = T + cH =

{
T if H = 0
T + c if H = 1

2. Restrict to individuals with τ1 ≤ T ∗ ≤ τ2.

3. Refit the original model with T replaced by T ∗, and thus
estimate the relative risk of H for V = 1 versus V = 0
adjusted for T ∗ and U .

Figure 4: Summary of implementation of proposed sensitivity analysis.
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Scenario d T T ∗

1 4 0.0760 0.0466
1 10 0.0601 0.0494
1 −4 0.0270 0.0447
1 −10 0.0404 0.0493
2 4 0.0830 0.0511
2 10 0.0612 0.0503
2 −4 0.0326 0.0536
2 −10 0.0414 0.0504

Table 1: Risks when adjusted for T and T ∗. If d = 4 or 10, the doubling time is 4
or 10 days. If d = −4 or −10, the halving time is 4 or 10 days.
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Scenario d T T ∗

1 4 2.810 1.044
1 10 1.489 1.003
2 4 2.551 0.954
2 10 1.480 0.997

Table 2: Risk ratios when adjusted for T and T ∗. One variant has doubling time
d = 4 (or d = 10) days and the other has halving time d = 4 (or d = 10) days.
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Hospitalisation outcome Death outcome
All COVID cases Symptomatic cases All COVID cases Symptomatic cases

c HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)
0 1.52 (1.47–1.57) 1.49 (1.44–1.54) 1.59 (1.44–1.74) 1.42 (1.29–1.56)
1 1.41 (1.36–1.45) 1.37 (1.33–1.42) 1.43 (1.30–1.57) 1.32 (1.20–1.45)
2 1.31 (1.27–1.35) 1.28 (1.24–1.32) 1.33 (1.21–1.46) 1.23 (1.12–1.35)
3 1.21 (1.17–1.25) 1.19 (1.15–1.22) 1.23 (1.12–1.35) 1.14 (1.04–1.25)
4 1.13 (1.09–1.16) 1.10 (1.07–1.14) 1.15 (1.04–1.26) 1.07 (0.97–1.17)
5 1.04 (1.01–1.07) 1.02 (0.99–1.05) 1.06 (0.97–1.17) 1.00 (0.91–1.10)

Table 3: Hazard ratios for the two outcomes hospital admission and death (and
95% confidence intervals) conditional on T ∗ for COVID-19 cases with Alpha com-
pared to non-Alpha variants, as determined based on S gene target failure. The
assumed difference in mean number of days from infection to first positive test
between individuals without the outcome and with the outcome is c. HRs were
estimated using stratification for calendar week of positive test, age group, sex,
ethnicity, index of multiple deprivation quintile, and region of residence (Public
Health England Centres); and including strata-specific linear terms for exact date
of positive test, exact age, and index of multiple deprivation rank; see [18].
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