
Efficient Bayesian Active

Learning and Matrix Modelling

Neil MT Houlsby

St. John’s College

University of Cambridge

A thesis submitted for the degree of

Doctor of Philosophy

August 2014

mailto:nmth2@cam.ac.uk
http://www.eng.cam.ac.uk
http://www.cam.ac.uk


I, NEIL MATTHEW TINMOUTH HOULSBY, confirm that this dissertation is

the result of my own work and includes nothing which is the outcome of work done

in collaboration except where specifically indicated in the text. Where information has

been derived from other sources, I confirm that this has been indicated in the thesis.

I also confirm that this thesis is below 70,000 words and contains less than 150 fig-

ures, in fulfillment of the requirements set by the degree committee for the Department

of Engineering at the University of Cambridge.

i



Acknowledgements

I would sincerely like to thank my supervisors, Zoubin Ghahramani and

Máté Lengyel for their expert advice and kindliness with which they have

guided my work. Their contributions to my research, education, and pro-

fessional development has been invaluable.

I am grateful to the Google European Doctoral Fellowship for funding my

PhD, and to St. John’s College, Cambridge, for funding my 10th term. I

enjoyed two internships at Google, and I would like to thank my mentor

Massimiliano Ciaramita. It was a inspiration to work with Massimiliano,

and this experience has directly influenced my career path. I would also

like thank the rest of the Google Zurich summarization research team for

their help and making my internships so enjoyable.

Thank you to the members of the Cambridge Computational and Biolog-

ical Learning (CBL) group for numerous discussions and providing such a

stimulating research environment. I would particularly like to thank Ferenc

Huszár and José Miguel Hernández-Lobato with whom I have conducted

much of my research. They have been fantastic colleagues to work with and

I have learnt a great deal from them both.

Finally, I would like to thank Guy Houlsby, Jenny Houlsby, José Miguel

Hernández-Lobato, Sina Tootoonian, Sarah Williams, Marc Deisenroth and

Denise Chappell for boldly reading early versions of this thesis and providing

valuable feedback.



Publications and Collaborations

This thesis includes published and unpublished work from a number of

collaborations. The following paragraphs relate the chapters to publications

and list the contributions of the individuals involved.

Chapter 2 contains work by NMTH, co-supervised by Máté Lengyel and

Zoubin Ghahramani.

Chapter 3 contains work in collaboration with Ferenc Huszár, Michael Os-

bourne, ML and ZG. Part of this chapter is documented in a technical

report [Houlsby et al., 2011]. NMTH was the primary developer of the

BALD framework. FH derived the approximation to BALD for GPC. MO

invented the MGP and advised the work on GPR. NMTH derived the active

GPR algorithm, wrote the code, and ran and analyzed the experiments.

Chapter 4 contains work published in two papers. The first was work with

FH [Huszár & Houlsby, 2012]. Both authors contributed equally to all

aspects of research, an alternative exposition is given in Huszár [2013].

The laboratory experiments were conducted by Konstantin Kravtsov, Stan-

silav Straupe, Igor Radchenko and Sergey Kulik at the Prokhorov General

Physics Institute RAS, Moscow, and are reported in Kravtsov et al. [2013].

NMTH was the sole UK collaborator for this paper, and contributed the

algorithm, derivations and simulations.

Chapter 5 contains work with José Miguel Hernández-Lobato and ZG, pub-

lished in Hernández-Lobato et al. [2014b]. NMTH and JMHL contributed

to all aspects of research.

Chapter 6 contains a collaboration with FH, JMH and ZG, published in

Houlsby et al. [2012]. FH derived the preference kernel. JMH contributed

the inference routine and the majority of the code. NMTH contributed to

the modelling and code, ran experiments and performed analysis.

Chapter 7 is work with JMH and ZG published in Houlsby et al. [2014]. JMH

derived the inference algorithm and ran the model comparison experiments.



NMTH derived and implemented the active learning algorithm, and ran the

cold-start experiments.

Chapter 8 contains unpublished work by NMTH, supervised by ML with

advice from David Stillwell and Michal Kosinski at the Cambridge Psycho-

metrics Centre.

Finally, I would like to acknowledge the collaborators of published work con-

ducted during my PhD that does not feature in this thesis. Collaborative

work with Tomoharu Iwata and ZG is published in Iwata et al. [2013], this

paper is closely related to the active learning work presented in this thesis,

but was omitted due to space limitations. Joint work with JMH and ZG

is published in Hernández-Lobato et al. [2014a]. Work with FH, Moham-

mad Ghassemi, Gergo Orbán, Daniel Wolpert and ML is in Houlsby et al.

[2013]. Work with Guy Houlsby is published in Houlsby & Houlsby [2013],

work conducted at Google with Massimiliano Ciaramita is in Houlsby &

Ciaramita [2014] and work with David Blei, conducted at Princeton Uni-

versity, is in Houlsby & Blei [2014].



Abstract

With the advent of the Internet and growth of storage capabilities, large col-

lections of unlabelled data are now available. However, collecting supervised

labels can be costly. Active learning addresses this by selecting, sequentially,

only the most useful data in light of the information collected so far. The

online nature of such algorithms often necessitates efficient computations.

Thus, we present a framework for information theoretic Bayesian active

learning, named Bayesian Active Learning by Disagreement, that permits

efficient and accurate computations of data utility. Using this framework we

develop new techniques for active Gaussian process modelling and adaptive

quantum tomography. The latter has been shown, in both simulation and

laboratory experiments, to yield faster learning rates than any non-adaptive

design.

Numerous datasets can be represented as matrices. Bayesian models of

matrices are becoming increasingly popular because they can handle noisy

or missing elements, and are extensible to different data-types. However,

efficient inference is crucial to allow these flexible probabilistic models to

scale to large real-world datasets. Binary matrices are a ubiquitous data-

type, so we present a stochastic inference algorithm for fast learning in this

domain. Preference judgements are a common, implicit source of binary

data. We present a hybrid matrix factorization/Gaussian process model for

collaborative learning from multiple users’ preferences. This model exploits

both the structure of the matrix and can incorporate additional covariate

information to make accurate predictions.

We then combine matrix modelling with active learning and propose a new

algorithm for cold-start learning with ordinal data, such as ratings. This

algorithm couples Bayesian Active Learning by Disagreement with a het-

eroscedastic model to handle varying levels of noise. This ordinal matrix

model is also used to analyze psychometric questionnaires; we analyze clas-

sical assumptions made in psychometrics and show that active learning

methods can reduce questionnaire lengths substantially.



Contents

Contents vi

1 Introduction 1

1.1 Introduction to Bayesian Machine Learning . . . . . . . . . . . . . . . . 2

1.2 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Bayesian Active Learning 7

2.1 Introduction to Active Learning . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 When Active Learning may be Applied . . . . . . . . . . . . . . 7

2.1.2 Query Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Information Theoretic Active Learning . . . . . . . . . . . . . . . . . . . 10

2.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 The Information Gain Utility Function . . . . . . . . . . . . . . . 13

2.3 Bayesian Active Learning by Disagreement . . . . . . . . . . . . . . . . 14

2.3.1 Symmetry in the Objective . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Computational Advantages . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Simulation: Estimating the Utility from Samples . . . . . . . . . 17

2.3.4 Extension: Nuisance Parameters and Focused Active Learning . 19

2.3.5 Inductive and Transductive Learning . . . . . . . . . . . . . . . 19

2.3.6 Myopic Assumption and Submodularity . . . . . . . . . . . . . . 20

2.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Classical Optimal Experimental Design . . . . . . . . . . . . . . 23

2.4.2 Information Theoretic Methods . . . . . . . . . . . . . . . . . . . 26

2.4.3 Data Subsampling . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Decision Theoretic Methods . . . . . . . . . . . . . . . . . . . . . 29

2.4.5 Non-Probabilistic Methods . . . . . . . . . . . . . . . . . . . . . 30

vi



CONTENTS

2.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Active Gaussian Processes 33

3.1 Primer on Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Active GP Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Active GP Regression with Unknown Hyperparameters . . . . . . . . . 47

3.3.1 Marginal Gaussian Process . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Focused Active Learning with the MGP . . . . . . . . . . . . . . 48

3.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Conclusions and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Adaptive Quantum State Tomography 58

4.1 Primer on Quantum Statistics . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 States and Density Matrices . . . . . . . . . . . . . . . . . . . . . 59

4.1.2 Measurements with Probabilistic Outcomes . . . . . . . . . . . . 59

4.1.3 Infidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.4 Entanglement and The Curse of Dimensionality . . . . . . . . . 61

4.2 Current Experimental Designs . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Bayesian Quantum Tomography . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Sequential Importance Sampling . . . . . . . . . . . . . . . . . . 63

4.4 Adaptive Quantum Tomography . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.1 Single Qubit Tomography . . . . . . . . . . . . . . . . . . . . . . 66

4.5.2 Separable and MUB Tomography of Two Qubits . . . . . . . . . 69

4.6 Laboratory Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.1 Setup and Apparatus . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.2 Modelling Experimental Imperfections . . . . . . . . . . . . . . 72

4.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Stochastic Inference for Large Binary Matrices 76

5.1 Introduction to Probabilistic Matrix Modelling . . . . . . . . . . . . . . 76

5.2 Limitations of Batch Inference . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 A Probabilistic Model for Binary Matrices . . . . . . . . . . . . . . . . . 79

vii



CONTENTS

5.4 Stochastic Variational Inference for Binary Matrices . . . . . . . . . . . 81

5.4.1 Primer on Variational Bayes . . . . . . . . . . . . . . . . . . . . . 81

5.4.2 VB for Binary Matrices . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.3 SVI for Binary Matrices . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.4 Natural Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.5 Sampling Distributions for Sparse Imbalanced Matrices . . . . . 86

5.4.6 Learning the Minibatch Online . . . . . . . . . . . . . . . . . . . 87

5.4.7 The Full SIBM Algorithm . . . . . . . . . . . . . . . . . . . . . . 90

5.4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.1 Sampling Strategies and Automatic Minibatch . . . . . . . . . . 94

5.5.2 Comparison to Batch and Alternative Methods . . . . . . . . . . 94

5.6 Conclusions and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Collaborative Preference Learning 102

6.1 The Preference Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Properties of the Preference Kernel . . . . . . . . . . . . . . . . . 105

6.2 Multi-User Preference Learning . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Probabilistic Description of the Model . . . . . . . . . . . . . . . 107

6.2.2 The Predictive Distribution . . . . . . . . . . . . . . . . . . . . . 108

6.3 Hybrid EP-VB Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 Primer on Expectation Propagation . . . . . . . . . . . . . . . . 109

6.3.2 Inference for Collaborative Preference Learning . . . . . . . . . 110

6.3.3 Algorithmic Details . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.4 Sparse GPs for Linear Computational Time . . . . . . . . . . . . 113

6.4 Active Preference Elicitation . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5 Related Multi-User Models . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6 Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 116

6.6.1 Comparison to Other Multi-User Models . . . . . . . . . . . . . . 117

6.6.2 Active Learning on Large Datasets . . . . . . . . . . . . . . . . . 119

6.6.3 Tuning the Kernel Lengthscale . . . . . . . . . . . . . . . . . . . 120

6.7 Conclusions and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Heteroscedastic Matrix Factorization for Cold-Start Learning 124

7.1 A Robust Model for Ordinal Matrix Data . . . . . . . . . . . . . . . . . 125

7.1.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 126

viii



CONTENTS

7.1.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.1.3 Predictive Distribution . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Cold-Start Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2.1 Implementation of BALD . . . . . . . . . . . . . . . . . . . . . . 132

7.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3.1 Probabilistic Models for Rating Matrices . . . . . . . . . . . . . . 133

7.3.2 Cold-Start Learning . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.4.1 Comparison to Other Models for Rating Data . . . . . . . . . . 135

7.4.2 Cold-Start Active Learning . . . . . . . . . . . . . . . . . . . . . 138

7.5 Conclusions and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 144

8 Bayesian Exploratory Psychometrics 147

8.1 Background on Psychometrics . . . . . . . . . . . . . . . . . . . . . . . . 148

8.1.1 The Big Five Personality Traits . . . . . . . . . . . . . . . . . . . 148

8.1.2 IPIP Questionnaires . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.2 Models and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.2.1 Item Response Models . . . . . . . . . . . . . . . . . . . . . . . 149

8.2.2 Unidimensional Models . . . . . . . . . . . . . . . . . . . . . . . 150

8.2.3 Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.2.4 Multidimensional Item Response Theory . . . . . . . . . . . . . . 151

8.2.5 Evaluation of Model Fit . . . . . . . . . . . . . . . . . . . . . . 152

8.2.6 A Posterior Predictive Check . . . . . . . . . . . . . . . . . . . . 154

8.3 Experiments and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.3.1 Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . . 156

8.3.2 Direct Model Comparisons . . . . . . . . . . . . . . . . . . . . . 164

8.3.3 Computer Adaptive Testing . . . . . . . . . . . . . . . . . . . . . 168

8.4 Conclusions and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 170

9 Conclusions 173

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.2.1 Heteroscedastic Unsupervised Learning . . . . . . . . . . . . . . 174

9.2.2 Optimizing Utility over a Horizon . . . . . . . . . . . . . . . . . 175

9.2.3 Meta-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

References 177

ix



Chapter 1

Introduction

Machine learning concerns the design of algorithms whose performance improves with

accumulated data. To achieve this, a machine learning algorithm must discover patterns

in the data that it can exploit. The process of pattern discovery first requires one

to posit a model, whose structure is governed by parameters. Learning, or training,

entails adjusting these parameters in the light of some observed data. After the model

is trained, it may be used for its desired purpose; such as providing insight into the

structure of the data, or making predictions about unseen datapoints. Using models to

describe observations and make predictions is central to most scientific methods. The

high level goal of machine learning is to automate this process and allow data, rather

than human judgement, to drive learning as much as possible.

After specifying the task to be solved, machine learning systems can usually be

decomposed into a three step pipeline:

i Collect the training data.

ii Propose a model, and learn its parameters using the data.

iii Use the model for its desired purpose.

These processes are most often carried out sequentially and independently. However,

feedback between these steps can improve the quality of the overall system. For exam-

ple, insights gained from step (iii) can be used to refine the model or learning algorithm

in step (ii) [Box, 1976; Gelman et al., 1996].

Similarly, step (ii) may also feedback into step (i), that is, the model may be used

to influence the data collection. In passive learning the model has no influence over the

data collection. The converse, where such feedback is present, is called active learning.

Active learning is the focus of the first half of this thesis.

1



The above three steps may be divided into a number of sub-tasks. For example, step

(i) can include data collection, cleansing and feature extraction. Step (ii) is normally

decomposed into designing the model (this process can be data-driven, and is then

called model selection), and then learning the parameters (inference). The processes of

modelling and inference have different requirements. The model must be designed to

capture all the relevant patterns in the data. Inference is an algorithmic problem; it

entails learning the parameters accurately in a reasonable amount of time. Normally,

these processed are co-designed; model expressiveness is balanced with the cost of

inference. In practice, the best solutions tend to be data and task dependent. The

second half of this thesis focuses upon both modelling and inference with a very common

data-type: matrix data. The latter chapters also draw on the active learning methods

developed in the first half.

To design robust and extensible learning algorithms, it is important to ground

machine learning in rigorous mathematical theory and to understand the assumptions

made during modelling and inference. This thesis is built upon the Bayesian learning

framework. This methodology follows the rules of probability theory [Gelman et al.,

2003] and allows assumptions to be clearly encoded. However, to design useful methods,

it is also important not to lose sight of step (iii) above, the intended applications for the

learning algorithm [Wagstaff, 2012]. Therefore, in this thesis the proposed techniques

are tied closely to practical tasks, and solutions to a number of applied problems using

Bayesian active learning and matrix modelling are presented.

1.1 Introduction to Bayesian Machine Learning

A primary difficulty that must be addressed when learning from data is uncertainty.

Uncertainty can arise from two sources. First, observed datasets are finite. With limited

observations it is not possible determine a model’s parameters exactly. This source of

ambiguity will be referred to as parameter uncertainty. Second, uncertainty arises from

unpredictable noise in the data. Such noise is often random and independent across

datapoints, and therefore has no useful structure for learning and making predictions.

This noise may arise from observing the data, or more generally, from randomness in

the data that is not explained by the model. This uncertainty will be referred to as

observation noise or inherent uncertainty.

Probability theory provides a principled framework to manipulate uncertain quan-

tities, based upon a unique set of axioms consistent with common sense [Cox, 1946].

In probabilistic or Bayesian machine learning, all quantities, including the parameters

2



of the model, are treated as random variables whose uncertainty is represented by

their probability distribution. Bayes rule for inference arises directly from the laws of

probability [Jaynes, 2003].

The core principles of Bayesian machine learning follow. Denote the model M, and

its parameters θ, before making any observations, the assumed probability distribution

over the parameters is called the prior, p(θ|M). After observing data D the posterior

distribution over the parameters p(θ|D,M) is computed using Bayes’ rule,

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
. (1.1)

The quantity p(D|θ,M) is known as the likelihood of the parameters. The likelihood

indicates how well the parameters θ explain the observed data. p(D|M) is known as

the marginal likelihood or model evidence, this quantity measures how appropriate the

model is for the data.

To make honest probabilistic predictions on new data D?, the rules of probabil-

ity theory dictate that one should integrate over all sources of uncertainty. A central

assumption is that the model captures all the structure in the data, so after condi-

tioning on the parameters, the datapoints are independent. With this assumption, the

predictive distribution is given by

p(D?|D,M) =

∫
p(D?|θ,M)p(θ|D,M)dθ . (1.2)

Equation (1.2) includes both aforementioned sources of uncertainty. The parameter

uncertainty is modelled by the posterior distribution p(θ|D,M), and the observation

noise is captured by the likelihood function p(D?|θ,M).

The advantages of a Bayesian approach to machine learning include:

• The ability to make quantitative statements about all aspects of uncertainty

through the rules of probability theory.

• The ability to deal formally with missing and noisy data. This is a corollary of

the above.

• A transparent framework for encoding assumptions. Assumptions about the data

generating process and assumptions about the model are separated into the like-

lihood function and prior distribution, respectively.

• The ability to treat any quantity of the system as a random variable. For example,

3



one can regard the model M itself as an uncertain quantity, and reason over this

variable also.

• The ability to extend models formally. For example, by adding more complexity,

or adapting them to new data types. This is a corollary of the previous two bullet

points.

These principles provide the core framework for the work presented in this thesis on

active learning and matrix modelling.

1.2 Active Learning

Collecting data is often expensive. The possible costs may include time, human effort,

money, battery power etc. In these cases it is advantageous to be selective about which

data to collect. As an analogy, an astronomer will choose to observe regions of the sky

that they expect to be interesting since they are unlikely to discover something new by

directing their telescope randomly. Similarly, active learning algorithms choose which

data to collect, but they do so automatically. Whilst large collections of unlabelled

data are often readily available (such as from scraping the web), active learning is

particularly relevant in the context of supervised learning, where annotated or labelled

training data is required. Labelling a datapoint may be expensive, such as in the

following domains.

• Engineering systems: training data for a complex system may be expensive.

For example, a model to transcribe audio requires sequences annotated at the

phoneme level by an expert. A one minute sequence can take several hours to

label [Zhu, 2005].

• Scientific experimentation: experiments require scientists’ time, or expensive mea-

surements. For example, optimal designs are used to minimize the length of tests

on human subjects in cognitive science [Myung & Pitt, 2009].

• Measuring an environment: measurements can be financially costly, such as in

hydrocarbon exploration, or require sensors with a limited capacity, for example,

due to finite battery life [Osborne et al., 2010].

• Interactive agents: recommender systems can provide a better service by learning

about the user, however, they do not wish to over-burden the user with excessive

requests for information [Boutilier et al., 2002].

4



Active learning concerns making modelling data efficient, acquiring the most useful

data from a limited collection budget. In addition, active learning algorithms often run

online and and so must also be computationally efficient. This is particularly relevant if

the associated labelling cost is time, such as in a scientific experiment, or an interactive

system.

Chapter 2 provides an introduction to active learning. We then present a Bayesian

framework for active learning, called Bayesian Active Learning by Disagreement. In

many domains this framework provides computationally efficient and accurate algo-

rithms for information theoretic Bayesian active learning [MacKay, 1992b]. Using this

approach, Chapter 3 presents new active learning algorithms for Gaussian processes,

a popular supervised machine learning model [Rasmussen & Williams, 2005]. Next,

in Chapter 4 this framework is used to tackle an applied problem, quantum tomogra-

phy, for which we present a new adaptive design. As well as simulations, laboratory

experiments show that our adaptive algorithm yields substantially more data-efficient

experiments than current designs. During this PhD, we addressed another application,

active data visualization. However, for space reasons this work is omitted, but is pre-

sented in Iwata et al. [2013]. The active learning techniques are developed further with

the matrix models in Chapters 6, 7 and 8.

1.3 Matrix Factorization

Numerous sources of data can be represented a matrices. These include any data that

can be expressed in tabular form, where elements are associated with a particular row

or column, but the rows and columns can be permuted arbitrarily. There are three

common matrix data-types:

• Real valued matrices, such as the levels of gene expressions. Here, rows correspond

to samples and the columns to genes [Devarajan, 2008].

• Ordinal matrices, such as movie ratings [Bennett & Lanning, 2007] or responses

to questionnaires [Goldberg, 1999]. Each row corresponds to a user and each

column to an item or question.

• Binary matrices, such as connectivity matrices of unweighted graphs, market bas-

ket data [Brin et al., 1997], or pairwise preference data [Fürnkranz & Hüllermeier,

2003].

5



Many popular approaches to modelling matrix data assume a low rank structure. A

classical algorithm for fitting a low rank matrix to a dataset is Singular Value Decom-

position (SVD). However, real-world matrices are usually sparse, most of the elements

are missing. Furthermore, the observed entries are often corrupted by noise. In these

cases, classical algorithms such as SVD can produce poor factorizations. Probabilistic

methods can provide improve factorizations. This is because they are well equipped

to handle uncertainty, and so they often exhibit strong performance in tasks involving

matrix data, such as recommendation [Salakhutdinov & Mnih, 2008]. Bayesian models

for matrix factorization are therefore becoming increasingly popular.

The second half of this thesis presents advances in probabilistic modelling and

inference with matrix data. In Chapter 5 binary matrices are considered. These are

typically very large, necessitating computational efficiency, for which we develop a

new inference algorithm. Preference data is an abundant source of binary data as it

can be collected implicitly from user behaviour. Chapter 6 presents a new model for

learning from multiple users’ preferences simultaneously, incorporating side-information

where available. Chapter 7 addresses the “cold-start” problem in recommender systems.

This chapter brings together matrix modelling and active learning techniques to learn

efficiently (in a ‘data’ and ‘computational’ sense) about new users or items, for whom

one has no previous information. Finally, Chapter 8 presents a study on psychometric

questionnaires. With the probabilistic model for ordinal-valued ratings developed in

Chapter 7, some of the fundamental assumptions in psychometric analysis are re-visited,

and active learning is used to reduce questionnaire lengths.

6



Chapter 2

Bayesian Active Learning

This chapter introduces the Bayesian framework used to design the active learning

algorithms in this thesis. This framework takes an information-theoretic approach to

active learning. First, in Section 2.1 we introduce active learning and then describe the

Bayesian information theoretic approach in Section 2.2. We discuss possible computa-

tional difficulties, and present our framework which can circumnavigate these, called

Bayesian Active Learning by Disagreement (BALD), in Section 2.3. We discuss prop-

erties of the framework, such as computational complexity and submodularity. The

chapter finishes with a review of related literature in active learning and experimental

design that has developed in statistics, experimental science, social science, computer

science and machine learning.

2.1 Introduction to Active Learning

We first introduce active learning, discuss when it is applicable, and present the different

settings for active querying.

2.1.1 When Active Learning may be Applied

Data, particularly labelled data, can be expensive to obtain. Therefore, it is desirable

to collect only the most useful points. To address this, active learning algorithms choose

their training data. These are ‘active’ in the sense that they can adjust which points

they choose in light of data collected so far.

A concern may arise: when choosing the data to learn from, can one bias the infer-

ences made? Fortunately, this is not the case, provided that we condition our inferences

on the actively selected variables. More concretely, consider the setting where we choose

7



θ

xi yi

i = 1 . . . N

Figure 2.1: Graphical model for a discriminative learner. White nodes indicate latent
(unobserved) variables and shaded nodes denote observed variables. Note that the
distribution of the input x is assumed to be independent of the parameters θ.

a query x ∈ X, and observe a variable y ∈ Y in response. These quantities shall be

referred to as the input and output variables respectively.1 Suppose that we also have a

model with parameters θ ∈ Θ that describes the dependence of the output on the input,

p(y|x, θ). This setting is called discriminative learning, see Figure 2.1. Provided that

we condition on x, we may perform Bayesian computations without introducing infer-

ential bias into posterior distribution p(θ|y,x) or the predictive distribution p(y|x)2.

More specifically, when computing these quantities, we must compute the likelihood

function p(y|x, θ). When computing the likelihood we implicitly integrate over all of

the unobserved data. Ignoring this integral does not effect the likelihood provided that

we condition on all observed data, regardless of how it was collected, and do not filter

it based upon the output variable y.

The alternative to discriminative learning is generative learning in which the entire

data distribution p(x,y) is modelled [Ng & Jordan, 2002]. Learning a full generative

model actively is not possible because one does not observe an unbiased sample from

p(x). However, this terminology may be confusing. For example, probabilistic models

of matrix data are normally termed ‘generative’ as the data is a matrix Y, and matrix

models typically generate the entire dataset, they learn p(Y|θ). However, active learn-

ing with matrices can be reconciled with the framework in Figure 2.1. Here, we select

a row and column index and observe that entries’ value. The location of each matrix

entry corresponds to the input variable x, and we do not model the entries’ locations

directly, but we condition upon them. However, this variable is usually implicit in the

equations.

1 X,Y can be general input and output spaces. Unless stated otherwise, X will be a real-valued
vector space X = RD. Y will usually be uni-dimensional, but may be binary, real-valued, ordinal etc.

2 In this context we use the term ‘bias’ loosely to mean that the distributions differ to those
computed by integrating all of the unobserved data, not in the formal sense of a biased statistical
estimator.

8



A second distinction that is often made is between supervised and unsupervised

learning. In supervised learning there are clearly defined input and output variables,

and the goal is to predict the output corresponding to new, unseen inputs. Super-

vised learning fits well into the discriminative setting in Figure 2.1. Supervised active

learning is the focus of this thesis, although the methods could be extended to unsu-

pervised learning by choosing a partition of the variables and learning the conditional

distributions actively.

2.1.2 Query Scenarios

Active learning can be performed in three scenarios: continuous sampling, pool based

and stream based learning. In continuous sampling any point in input space may be

selected. This is appropriate when the input space can be queried to arbitrary preci-

sion. For example, in cognitive science where the queries may be computer generated

stimuli with real-valued parameters, or when learning the kinematics of a robot arm

by choosing joint angles and measuring hand coordinates [Cohn et al., 1996]. However,

in other regimes continuous querying is inappropriate. In a handwriting recognition

system, Baum & Lang [1992] found that many generated query images contained no

recognizable symbols and hence could not be labelled. In Chapter 4 we perform con-

tinuous sampling, adjusting real-valued parameters of a physics experiment to select

continuous measurements.

In pool based active learning one has access to a set (pool) of unlabelled data from

which to select points for annotation. For example, in a study on the effects of smoking

on cancer rates, the pool contains people whose age, smoking habits etc. are known, and

the scientist wants to select only the most informative few for expensive clinical trials.

This is probably the most common scenario in machine learning, occurring in many

applications including text classification [Tong & Koller, 2002], image classification

[Tong & Chang, 2001], speech recognition [Tur et al., 2005], cancer diagnosis [Liu,

2004] and recommendation systems [Jin & Si, 2004].

Stream based active learning is closely related to pool based learning, except that

the pool is presented sequentially and the algorithm must decide online whether or not

to collect the point’s label. A famous example is ‘triggering’ on the CERN particle

accelerator; there is insufficient storage capacity to store the vast stream of events, so

only potentially interesting measurements are recorded [Aad et al., 2012].

Active learning algorithms must assign a score, or utility, to each location in input

space that may be queried. Continuous sampling is the most flexible, but requires

9



optimization of the utility function over input space. This may involve a hard high

dimensional, multi-modal optimization problem. If the utility function is not differen-

tiable, continuous optimization may be infeasible. In pool based active learning the

utility is normally evaluated for every point in the pool, but if the pool is large, or

the utility is expensive to evaluate, pruning may be required [Roy & McCallum, 2001].

We now present general strategies for active learning, these are usually applicable in

any of the three scenarios, but the computational issues above should be considered in

practice.

2.2 Information Theoretic Active Learning

Probabilistic active learning broadly divides into two categories, decision and informa-

tion theoretic. We take the information-theoretic approach, which we first motivate.

2.2.1 Motivation

In Bayesian methods, it is common to separate learning from decision making. This per-

mits general models and learning algorithms to be used in a variety of tasks. Learning,

or inference1, involves applying Bayes’ rule (1.1) to compute the posterior distribution

of the parameters of the model p(θ|D). Decision making involves choosing an action

a, which incurs a particular loss that depends on the true parameters of the system

θ̂, denoted L(θ̂, a). However, in practice the true parameters are unknown. Therefore,

the optimal course of action, on average, is to minimize the expected loss given our

beliefs about the parameters,

RD(a) = Ep(θ|D)L(θ, a) . (2.1)

RD(a) is called the Bayes posterior risk. Inference and decision making can be separated

because the posterior is not a function of the loss. This can be beneficial because the

same posterior can be used to solve different tasks.2

Active learning algorithms need to quantify how ‘useful’ datapoints are. To do

this, they are equipped with a utility function U(x) : X → R. The optimal utility

1 Sometimes these terms are distinguished. Inference is often used to refer to computing the
posterior distribution over variables local to each datapoint. Learning then refers to optimizing or
computing the posterior over global model parameters. Unless context dictates otherwise, these terms
will be used interchangeably.

2 Recent work couples inference with the loss function in order to incur lower loss when the posterior
can only be approximated [Abbasnejad et al., 2013; Lacoste-Julien et al., 2011].

10



function, from a loss minimization standpoint, minimizes the expected posterior risk

after observing the output y corresponding to input x,

U(x) = Ep(y|x,D) argmin
a

R{D,x,y}(a) . (2.2)

Choosing samples to maximize Equation (2.2) is known as decision theoretic active

learning [Kapoor et al., 2007; Roy & McCallum, 2001].

Decision theoretic active learning, although theoretically optimal in terms of ex-

pected loss minimization, can be disadvantageous for two reasons. First, the utility

function is tied to a particular task and loss function. These may not be known ahead

of time, or we may desire a learning algorithm that can perform well with a variety of

loss functions. Second, computing the expected change in risk can be expensive. This

is because the utility function in Equation (2.2) includes both the learning and decision

making processes. Thus, to compute Equation (2.2) one must calculate the expected

change in beliefs and then compute the new optimal decision after including any new

data {x,y}.
An alternative is to focus upon learning alone, and choose data that is most useful

for inferring the parameters θ. This approach decouples learning from future decision

making which is consistent with many Bayesian methods. To measure the utility of a

datapoint, we must quantify its ‘informativeness’ about the parameters. Information

theory is a natural tool for doing this, so this approach is called information theoretic

active learning.

2.2.2 Information Theory

Before presenting information-theoretic active learning, a brief overview of elementary

information theory is provided. For a complete introduction see Cover et al. [1994].

Information theory was founded by Claude Shannon who studied data transmission

over noisy communication channels [Shannon, 1948]. Shannon derived a theoretical

upper bound for the capacity of a channel, which is the maximum rate that a set of

symbols X = {x1 . . . xN} which have distribution P (X) can be transmitted with zero

reconstruction error. To do this he defined the information content in a symbol x, and

the entropy, which is the average information content in the ensemble.

Information content: J(x) = − logP (x) , (2.3)

Entropy: H[P (X)] = −
∑
x

P (x) logP (x) . (2.4)

11



The usual shorthand P (x) ≡ P (X = x) will be used to denote the probability that X

takes a particular value x when context makes the usage clear. When unambiguous,

H[X] will be used to denote the entropy of the distribution P (X). Entropy is a measure

of uncertainty in a distribution that satisfies two intuitive desiderata. First, H[X] ≥ 0,

and takes value zero only when all of the mass in P (X) is concentrated on a single

symbol. In this case the outcome of sampling from P (X) is certain. Furthermore,

H[X] is maximized when P (X) is a uniform distribution. Intuitively, this corresponds to

maximal uncertainty. The second desiderata is that entropy is additive for independent

random variables. If X and Y are independent, then H[P (X,Y )] = H[P (X)]+H[P (Y )].

Intuitively, if we have n units of uncertainty in X and m units of uncertainty in Y , then

we have n+m units of uncertainty in their joint distribution. The base of the logarithm

in Equations (2.3) and (2.4) changes the quantities by a multiplicative constant, with

base two the units of information are called bits. When measured in bits, the entropy

may be interpreted as “The average number of binary questions that must be asked to

determine the value of a sample from P (X).”

Shannon’s entropy can be extended to distributions over continuous variables by

replacing the sum in Equation (2.4) with an integral. This quantity is known as the

differential entropy.1

Differential entropy: H[p(X)] = −
∫
p(x) log p(x)dx ,

where X now denotes a continuous random variable and p(X) is a continuous prob-

ability density function. Again, this quantity is maximized when p(X) is a uniform

distribution over the domain of X, and it is minimized when p(X) is a Dirac delta

function δ(x − x′). However, in this case the differential entropy equals −∞, because

x can be specified to infinite precision and hence can carry an infinite amount of infor-

mation.

Two further information theoretic quantities that occur frequently are the mutual

information, and Kullback-Leibler (KL) divergence. The mutual information between

1 It may concern some that, unlike entropy in Equation (2.4), the differential entropy is not a
dimensionless quantity. However, it be thought of as the KL divergence, Equation (2.7), to an improper

uniform distribution u(x), H[p(x)] = −
∫
p(x) log p(x)

u(x)
dx, which is dimensionless.

12



two random variables X and Y is

mutual information: I[X,Y ] = H[p(X)]− Ep(Y )H[p(X|Y )] (2.5)

= H[p(Y )]− Ep(X)H[p(Y |X)]

= H[p(X)] + H[p(Y )]−H[p(X,Y )] , (2.6)

where Ep(Y )H[p(X|Y )] is the conditional entropy, and is often denoted H[X|Y ]. Mutual

information is a non-negative quantity that is symmetric in its arguments. It measures

how much information X carries about Y , and vice versa. Shannon showed that the

maximum possible capacity of a channel is given by the mutual information between

the sent and received signals. The mutual information equals zero if and only if X and

Y are statistically independent, that is p(X,Y ) = p(X)p(Y ).

The KL divergence is a measure of dissimilarity between two probability distribu-

tions p(X) and q(X),

KL divergence: KL[p(X)||q(X)] =

∫
p(x) log

p(x)

q(x)
dx . (2.7)

This divergence is non-negative, but asymmetric. It is equal to zero if and only if p(X)

is identical to q(X). Intuitively, the KL divergence is the number of additional bits

needed to transmit symbols with distribution p(X), if our model of the distribution is

q(X).

Entropy is a well established characterization of uncertainty in a probability distri-

bution and provides a natural metric for information theoretic active learning.

2.2.3 The Information Gain Utility Function

In information theoretic Bayesian active learning one is agnostic to future decision

tasks and loss functions. The goal is to learn as quickly as possible about the model

parameters θ. With Shannon’s entropy (2.4) to quantify the uncertainty in a probability

distribution, the natural objective is to minimize posterior entropy after collecting data.

However, if we collect many datapoints in sequence, optimizing this quantity is NP-

hard in the horizon length [Ko et al., 1995; Krause & Guestrin, 2005]. Therefore, as is

common in sequential decision making, we take a myopic (greedy) approach, selecting

the next point as if it were the last. The implications of the myopic approximation are

discussed in Section 2.3.6. The myopic expected information gain is given by

U(x) = H[p(θ|D)]− Ep(y|x,D)H[p(θ|D,x,y)] .1 (2.8)

13



The expectation over y is taken because the output is unknown before the query has

been made. Equation (2.8) was first proposed for the design of Bayesian experiments in

Lindley [1956]. However, just as Bayes’ rule itself is usually intractable, Equation (2.8)

is difficult to compute with most interesting models. Therefore, much recent work

has addressed information theoretic active learning; mathematical approximations and

algorithmic techniques have been developed to apply Equation (2.8) to complex models.

As an aside: another intuitive information-theoretic objective is to maximize the

KL-divergence between the current and next posterior, KL[p(θ|D,x,y)||p(θ|D)]. How-

ever, after taking expectations with respect to y this utility function is equivalent to

entropy decrease in Equation (2.8) [MacKay, 1992b].

2.3 Bayesian Active Learning by Disagreement

We now present an entirely equivalent formulation of Equation (2.8). This reformula-

tion can provide substantial practical advantages that shall reappear throughout this

thesis. We then discuss various properties of this approach to active learning includ-

ing computational issues, extensibility, inductivity and submodularity. Inductivity and

submodularity are general properties of information-theoretic active learning. The com-

putational properties and extensions are specific to our method used to compute the

utility, Bayesian Active Learning by Disagreement.

2.3.1 Symmetry in the Objective

An important insight arises if we note that Equation (2.8) is equivalent to the mutual

information (2.5) between parameters and the unobserved output, conditioned upon

the input and the observed data I[θ; y|D,x]. Because mutual information is symmetric

in its arguments, Equation (2.8) can be re-written as follows,

U(x) = H[p(θ|D)]− Ep(y|x,D)H[p(θ|D,x,y)]

= I[θ,y|D,x] (2.9)

= H[p(y|x,D)]− Ep(θ|D)H[p(y|x, θ)] . (2.10)

Equation (2.10) is equivalent to the expected information gain in Equation (2.8), but

it provides a different intuition about the utility function. The first term in Equa-

tion (2.10) seeks the input x for which the model has high uncertainty about output

1Note that the first term is independent of x, and is therefore constant, this term is included for
clarity in subsequent sections.

14



y. That is, the output has a high marginal entropy, H[p(y|x,D)]. However, given any

particular parameter value θ drawn from the posterior, Equation (2.10) seeks a dat-

apoint with low expected conditional uncertainty, Ep(θ|D)H[p(y|x, θ)]. This relates to

the two sources of uncertainty described in Section 1.1: parameter uncertainty and ob-

servation noise. Equation (2.10) will reward datapoints whose output has high entropy

due to parameter uncertainty, which is captured by the marginal predictive distribution

p(y|x,D), but penalizes uncertainty due to inherent noise, which is modelled by the

likelihood p(y|x, θ). Equivalently, Equation (2.10) can be interpreted as seeking the

x for which the parameters under the posterior make confident predictions, but these

predictions are highly diverse. That is, the parameters disagree about the output y,

hence we name this formulation Bayesian Active Learning by Disagreement (BALD).

The equivalence follows from straightforward application of the properties of Shan-

non’s entropy and has been noted in the literature [Lindley, 1956; Shewry & Wynn,

1987]. A number of active learning algorithms are derived starting from the mutual

information in Equation (2.9) between observed variables and ‘variables of interest’

[Caselton & Zidek, 1984; Ertin et al., 2003; Krause et al., 2008], and thus may compute

this quantity in either direction. However, the use of BALD, Equation (2.10), as an

general-purpose alternative to posterior entropy minimization is not widely discussed.

We argue that this reformulation is a valuable tool for information theoretic active

learning, and it has a number of practical advantages. Noting the direct equivalence to

information gain allows us to relate and formalize a number of popular active learning

methods (Section 2.4). By working in this framework we derive new algorithms for spe-

cific domains in the subsequent chapters. However, we highlight BALD in its general

form as a starting point for active learning algorithms in many other possible domains.

2.3.2 Computational Advantages

The BALD reformulation in Equation (2.10) can provide a number of computational

advantages over direct entropy minimization in Equation (2.8). We discuss the immedi-

ate advantages in this section. In the next section we investigate empirically a further

computational advantage from improved sample complexity if Monte Carlo is used to

estimate the utility function.

A principal difference between Equations (2.8) and (2.10), is that Equation (2.10)

computes entropies in output space Y rather than parameter space Θ. Often param-

eter space is high dimensional and so posterior entropies are usually intractable. One

possibility is to use a histogram estimator [Paninski, 2003], but the number of bins

15



scales exponentially with the dimensionality of parameter space. Another possibil-

ity is to sample from the posterior and estimate Equation (2.8) using these samples.

However, estimating entropies directly from samples in an unbiased manner is notori-

ously hard [Panzeri et al., 2007]. Therefore, the intractable posterior entropy is often

approximated directly from approximations to the posterior [Herbrich et al., 2002; Kr-

ishnapuram et al., 2004; Lewi et al., 2007; MacKay, 1992b].

In Bayesian nonparametric models, such as Gaussian processes (GPs), parameter

space is infinite dimensional and so entropies in parameter space are ill-defined. How-

ever, output space is often simple. For example, in regression and classification, the

output is usually a uni-dimensional real valued or binary variable, respectively. The en-

tropy of these scalars is usually straightforward to compute, either analytically or with

a one-dimensional grid. Therefore, BALD can often compute expected changes to pos-

terior entropy exactly, even with infinite dimensional parameter spaces. Furthermore,

because Equation (2.10) does not compute the entropy of the posterior distribution di-

rectly, estimating information gain in this way is not tied to a particular method for

approximating the posterior. Section 2.3.3 presents an empirical study on a toy prob-

lem to demonstrate that U(x) can be estimated more accurately from posterior samples

with BALD than with direct estimation using Equation (2.8).

A second advantage that BALD has over the original formulation is that the pos-

terior does not need to be updated until after a query has been made. Equation (2.8)

requires calculating the updated posteriors after including every possible new datapoint

p(θ|D,x,y). However, only the current posterior p(θ|D) appears in Equation (2.10).

Suppose we have a pool of N possible inputs, and can receive one of |Y| possible out-

puts – for continuous y output space could be partitioned into a grid. To compute

Equation (2.8) we must calculate N |Y| new posterior distributions. This will usually

require expensive approximate inference. BALD requires updating the posterior only

once per sample, after labelling the datapoint. This is the same as number of updates

required by passive online learning. If cinf is the cost of inference, and hθ is the cost to

compute the entropy of the posterior, then the complexity to compute Equation (2.8) on

N candidates is O(N |Y|cinf +N |Y|hθ). With BALD, the cost is O(cinf +Ncpred +Nhy),

where cpred is the cost to compute the predictive distribution, and hy is the cost to

compute the entropies in output space. For many models, cpred � cinf and hy � hθ.

Like any algorithm, BALD does not offer a free lunch. If output space is compli-

cated, such as in structured models [Tsochantaridis et al., 2004], then direct entropy

minimization may be easier. Even if this is not the case, the terms in Equation (2.10)

may still be non-trivial to compute. In practice, the first term is usually straightforward

16



because the marginal predictive distribution p(y|x,D) is central to most applications of

Bayesian machine learning. Therefore techniques for computing this quantity have been

developed for many models. However, the second term, the posterior mean conditional

entropy Ep(θ|D)H[p(y|x, θ)] is more unusual. As we shall see in the following chapters,

computing this term is normally the main challenge when implementing BALD.

2.3.3 Simulation: Estimating the Utility from Samples

A toy linear-Gaussian model is used to investigate empirically the accuracy of esti-

mating U(x) from posterior samples, either directly (2.8), or with BALD (2.10). The

likelihood function is p(y|x, θ) = N(y; θ>x, σ2), where the parameters θ and input x

are 10-dimensional real valued vectors and the output y is a scalar: X = R10,Y = R,

Θ = R10. N(x;µ,Σ) denotes a (in general, multivariate) Gaussian distribution over x

with mean µ and covariance matrix Σ. The noise level σ2 is fixed and known. With

a Gaussian prior on θ, the posterior is tractable and Gaussian, so its entropy can be

computed analytically to assess the quality of the sampling approximations. Further-

more, in this model the posterior entropy is independent of the future observations, so

U(x) can be computed without simulating any y values.

Even a 10-dimensional parameter space is impractical to grid up, so we approximate

Equation (2.8) using Monte Carlo samples from the posterior,1

H[p(θ|D)] ≈ − 1

N

N∑
i=1

log p(θi|D), θi ∼ p(θ|D) , (2.11)

where N is the number of samples. Note that we do not have to integrate over y as the

output value does not influence the posterior entropy. We may also use these samples

to estimate U(x) using BALD,

U(x) ≈ H

[
1

N

N∑
i=1

p(y|x, θi)

]
− 1

N

N∑
i=1

H[p(y|x, θi)] . (2.12)

With this simple linear-Gaussian model the entropy of the second term in Equa-

tion (2.12) is constant with respect to x. The first term is the entropy of a mixture of

N one-dimensional Gaussians, which can be computed using a one-dimensional grid.

We define the approximation error as the normalized difference in utility between

1 In practice posterior samples will have often been computed already from the approximate infer-
ence algorithm. This is the case in Chapter 4.

17



50 100 150 200 250
−6

−4

−2

0

2

Number of samples of θ

lo
g

1
0
 s

q
u

a
re

d
 e

rr
o
r

 

 

direct

BALD

50 100 150 200 250
−1

−0.5

0

0.5

1

Number of samples of θ

e
rr

o
r

 

 

direct

BALD

Figure 2.2: Error in the estimation of U(x) using samples directly (2.11) or with BALD
(2.12). Thicker lines give the mean and thinner dash-dot lines indicate ±1 s.d. over 200
repeats. The x-axis is the number of samples. Left: log squared error. Right: error,
Uapprox(x)− Utrue(x).

the truth, computed analytically, and the Monte Carlo approximations,

error =
Uapprox(x)− Utrue(x)

Utrue(x)
. (2.13)

The experiment was repeated 200 times, resampling x each time. Figure 2.2 shows the

distribution of errors over these runs as a function of the number of samples used to

estimate U(x) by either method. The left-hand plot in Figure 2.2 shows that BALD

provides a more accurate estimate of the information gain as the squared estimation

error is over an order of magnitude smaller than with direct estimation of posterior

entropy.

However, the right-hand plot in Figure 2.2 demonstrates that with very few sam-

ples (< 50) BALD tends to underestimate the entropy change. This is probably due to

the mixture of Gaussians used to estimate the marginal predictive entropy (the term

of Equation (2.12)). The true predictive distribution has infinitely many components.

Each component has the same variance, and with few samples the finite mixture approx-

imation is likely to yield an underestimate. In the extreme case of one sample, BALD

will always underestimate this marginal entropy and will return a utility of zero. How-

ever, as indicated by the error bands, BALD yields an estimate with smaller variance

and the bias is much smaller than the standard deviation of the direct estimate.

18



2.3.4 Extension: Nuisance Parameters and Focused Active Learning

In many settings some parameters are more important to learn than others. Here, in

addition to the parameters of primary interest θ, the model has some other ‘nuisance

parameters’ of lesser importance φ. For example, in Bayesian models, φ may correspond

to hyper-parameters of the prior. Rather than collecting data that provides maximal

information about the joint distribution over all of the parameters p(θ, φ|D), we would

like to focus learning efforts on the parameters of interest alone. In particular, we want

to minimize the entropy of the marginal distribution p(θ|D). Equation (2.10) can be

directly extended to this scenario,

I[θ; y|x,D] = H

[∫
p(θ, φ|D)dφ

]
− Ep(y|x,D)H

[∫
p(θ, φ|x,y,D)dφ

]
(2.14)

= H[p(y|x,D)]− Ep(θ|D)H[Ep(φ|θ,D)p(y|x, θ, φ)] , (2.15)

where Equation (2.14) is the information gain in the marginal written explicitly and

Equation (2.15) is the computationally efficient rearrangement. The first term in this

‘focused’ BALD utility function is the entropy of the marginal predictive distribution,

as in the original BALD formula (2.10). The second term differs, the integral over

the nuisance parameters has moved inside the entropy. Intuitively, this only penalizes

datapoints about whose output we are still uncertain if we know θ, but not φ. We only

seek disagreement between the parameters of interest θ, and hence focus our efforts on

refining the distribution over these parameters only.

In the next two sections we discuss two properties of posterior information-gain for

active learning: inductivity and submodularity.

2.3.5 Inductive and Transductive Learning

In learning theory, inductive and transductive learning are distinguished [Vapnik, 2000].

Posterior information gain (2.8), and hence BALD, is an inductive approach. Inductive

methods address the generic task of generalization from samples, whereas transductive

methods minimize the expected loss on a particular test set or distribution. A trans-

ductive algorithm needs access to test-time information during training and exploits

this information. Therefore, inductive algorithms seek good performance in a variety

of possible test scenarios, but are not optimal for any single setting.

This distinction between inductive and transductive algorithms applies in active

learning [Tong, 2001; Yu et al., 2006]. It relates to the distinction between information

19



and decision theoretic methods. Decision theoretic algorithms are inherently transduc-

tive because they focus on loss minimization on a particular test distribution. However,

information-theoretic transductive algorithms have also been proposed. These minimize

the average predictive variance or entropy over regions of interest in input space [Cohn

et al., 1996; Krause et al., 2008; MacKay, 1992b]. Note that this is not the same as

BALD, which uses predictive entropies to minimize the parameter entropy.

These approaches have relative advantages and disadvantages. If the test inputs are

known, transductive methods are likely to yield a smaller test loss because they focus

on learning in that region. Inductive methods may choose to learn about parameters

that have a small effect on the predictions in the interest region. However, transductive

methods first require the interest region to be known, then a distribution over it to be

defined. This is usually done using a set of reference points. These points may be

placed in a grid [Krause et al., 2008], but this is impractical in higher dimensions.

Alternatively, samples from the pool may be used. However, in this case an inductive

algorithm will naturally focus on the region of interest as well because the samples used

to train the model are also from the pool.

An advantage of inductive methods is that information about future inputs is not

required. Another advantage is by maximizing information gain in the parameters one

can choose which parameters to learn actively using Equation (2.15). With transductive

methods, the parameters are learnt selectively, but the algorithm designer cannot select

them directly. Directly choosing parameters to focus learning on can be advantageous if:

i) The values of particular parameters themselves are of primary interest. ii) Selective

learning allows the algorithm to be improved in other ways. For example, in Chapter 3

we find that choosing the order in which parameters are actively learnt appropriately

is crucial for robust active GP regression. In Chapter 7 we learn about a new user in

a recommendation system who is represented by a few parameters in a much larger

model.

2.3.6 Myopic Assumption and Submodularity

The utility functions presented so far have been myopic or greedy. That is, they seek

the optimal x as if it were the last datapoint to be selected. However, often one has a

budget to collect a set of L samples, X, and receive a set of labels Y . In this case we

want to maximize information gain over the entire set,

U(X) = H[θ|D]−H[θ|Y,X,D] . (2.16)

20



Unfortunately, optimizing Equation (2.16) is, in general, NP-hard in the horizon length

L [Ko et al., 1995; Krause & Guestrin, 2005]. Therefore, a common approach is to

greedily maximize the utility with respect to the next sample alone [Dasgupta, 2005;

Heckerman et al., 1994]. Fortunately, under certain conditions, the greedy strategy is

near-optimal. We now discuss when these conditions apply to information theoretic

active learning.

The L-step utility (2.16) is a set function. A set function F (Y ) : 2Y 7→ R is a

function whose input is a set Y and (usually) outputs a real value. Submodularity is

an extension of convexity to set functions. Intuitively, submodular set functions exhibit

‘diminishing returns’. More precisely, adding an element y to a set Y small produces a

greater increase to F than adding y to Y large, where Y large ⊃ Y small. A set function is

submodular if for all Y large and Y small, and every y 6∈ Y large

F (Y small ∪ y)− F (Y small) ≥ F (Y large ∪ y)− F (Y large) . (2.17)

A set function is non-decreasing if F (Y large) ≥ F (Y small). The key result of

Nemhauser et al. [1978] is that if a set function is submodular, non-decreasing, and

F (∅) = 0, then greedy, sequential maximization is guaranteed to produce a solution

whose function value is within (1− 1/e) ≈ 63% of the global optimum.

Equation (2.16) is a set function from labels Y to information gain. Due to the

‘information never hurts’ bound [Cover et al., 1994], F is non-decreasing, and clearly

F (∅) = 0. Unfortunately, as noted in Krause et al. [2008] information gain is not in

general submodular. For example, consider a collection of three variables (y1, y2, z).

We wish to gain information about z by observing y1 or y2; z may be thought of as the

‘parameter of interest’ z ≡ θ. The input variable x is simply the index 1 or 2. Suppose

(y1, y2, z) are jointly Gaussian distributed as

p(y1, y2, z) = N
(

[y1, y2, z]
>; 0,Σ

)
, where Σ =

2 1 1

1 2 0

1 0 2

 . (2.18)

The information gain in observing set Y is IG(Y ) = H[z] − H[z|Y ]. y2 and z are

independent, therefore IG(y2)− IG(∅) = 0. Now suppose that we have observed y1, the

joint distribution of the remaining variables given y1 is

p

([
y2

z

]∣∣∣∣∣ y1

)
= N

(
1

2

[
y1

y1

]
,

[
1.5 −0.5

−0.5 1.5

])
.

21



z

y1 y2

Figure 2.3: Graphical model for the joint Gaussian in Equation (2.18).

Now y2 and z are conditionally dependent, y2 provides information about z, IG(y1 ∪
y2) − IG(y2) = H[z|y1] − H[z|y1, y2] > 0. Therefore, the increase in information gain

when adding y2 to y1 is greater than when adding y2 to ∅. Since ∅ ⊂ y1, IG(Y ) does

not exhibit diminishing returns and is not submodular.

Fortunately, under certain conditional independence conditions, information gain

will be submodular. The following theorem is given in Krause & Guestrin [2005].

Theorem 1. Let S,U be disjoint subsets of (a finite set of random variables) V such

that the variables in S are independent given U . Let ‘information gain’ be IG(A) =

H[U ] − H[U \ A|A], where A ⊆ W , for any W ⊆ S ∪ U . Then IG is submodular and

non-decreasing on W , and IG(∅) = 0.

Theorem 1 seems a little daunting, but it has a simple intuition. We wish to learn

about some variables U by observing some variables A chosen from a set W . W includes

both the variables we are learning about U , or some extra variables S. Provided that

these extra variables S are independent given the variables that we are learning U , then

the information gain is a submodular set function. There is one further detail; if we

are selecting A from U , then we only care about the information gain in the remaining

variables in U , IG(A) = I[A,U \A].

Information theoretic active learning in the discriminative setting in Figure 2.1 is a

special case of Theorem 1. Identifying U with the parameters θ, we never observe U

directly, so W = S. Furthermore, since S ∩ U = ∅ we have U \ A = U . S is the set

of labels Y in Equation (2.16). The inputs X do not feature in the Theorem, they just

index the set of labels. For IG(θ) to be submodular and non-decreasing the variables

in Y must be independent given θ. This is the case in Figure 2.1 as θ forms a Markov

blanket between the variables yi.

So what is different in the joint Gaussian model in Equation (2.18)? The graphical

model for Equation (2.18) is in Figure 2.3. Here, z does not form a Markov blanket

between y1 and y2, so this figure cannot be mapped to the graphical model in Figure 2.1

and does not satisfy the conditional independence condition required by Theorem 1.

22



θ φ

xi yi

i = 1 . . . N

Figure 2.4: Graphical model for the discriminative learner with parameters θ and
hyperparameters φ.

In summary, if the model can be mapped to the discriminative framework in Fig-

ure 2.1, then the information theoretic utility function in Equation (2.8) is submodular

and so the myopic assumption only results in a small constant loss of utility.

However, for ‘focused’ information theoretic active learning this is not always the

case. Consider a hierarchical Bayesian model in Figure 2.4. Suppose that the pa-

rameters of interest θ are the hyper-parameters and the ‘lower level’ parameters are

considered to be nuisance parameters φ. For example, in Section 3.3 we want to learn

the hyper-parameters of a GP kernel but do not care about the latent function. In this

case BALD in Equation (2.15) integrates out the nuisance parameters. After integrat-

ing out φ, the outputs yi are dependent, even when conditioned on θ. Therefore, with

focused active learning, BALD may not be submodular. In practice we found that the

myopic strategy performed well empirically, but investigating look-ahead techniques

could produce further improvements here.

2.4 Literature Review

Active learning has been widely studied in machine learning, statistics and experimental

and social sciences, where it is also referred to as query learning or optimal experimental

design (OED). We outline some of the key related algorithms. It is not possible to

cover the entire field, for comprehensive coverages see the textbooks Fedorov [1972]

and Settles [2012].

2.4.1 Classical Optimal Experimental Design

Classical OED, developed in statistics, focuses primarily on linear regression,

y = θ>x + ε . (2.19)

23



The noise is usually Gaussian distributed with zero mean, ε ∼ N(0, σ2). In this case the

maximum likelihood estimator (MLE) of θ is equivalent to the least squares estimator.

The MLE is θ̂ = (X>X)−1X>Y, where X is the N ×D ‘design matrix’ consisting of N

input vectors x, and Y is the vector containing N real valued outputs y. The variance

of the MLE is given by σ2(X>X)−1, the inverse of the variance is the Fisher Information

(FI) matrix for this model. The FI provides an alternative to Shannon’s entropy for

measuring the information in a sample x about the unknown parameters θ. With linear-

Gaussian models classical OEDs maximize the FI, or equivalently minimize the variance

of the MLE, with respect to the next datapoint to be added to the design matrix.

However, because the FI is a matrix quantity, not a scalar like the posterior entropy,

a number of different utility functions have been proposed. These have alphabetized

names, such as A-, D-, or E- optimality. We discuss a few of the most famous amongst

these, others can be found in Atkinson [1988].

D-optimal design maximizes the determinant of X>X. This is equivalent to the

Bayesian information gain criterion used by BALD (2.8) if a flat (non-informative) prior

on θ is used. For example, if we have a zero mean Gaussian prior with covariance Σ, then

the posterior p(θ|X,Y) is Gaussian with covariance σ2(X>X+Σ−1)−1. The entropy of

a Gaussian is proportional to the log determinant of its covariance matrix, and so with

a non-informative prior, such as Σ = limε→0
1
ε I, the determinant of the design matrix

is a monotonic function of the posterior entropy. Bayesian D-optimality extends D-

optimality to include a prior. In this case |(X>X + Σ−1)−1| is minimized, which is

equivalent to posterior entropy minimization with the linear-Gaussian model (2.19).

Bayesian equivalents of most classical OEDs are formed by replacing the covariance of

the MLE (X>X)−1 with the posterior covariance matrix (X>X + Σ−1)−1 [Chaloner &

Verdinelli, 1995].

D-optimal design can be motivated using other utility functions on θ. Posterior

entropy minimization is equivalent to minimizing expected log loss on the parameters.

If the true parameter is θ̂ we can define a ‘score’ for the posterior distribution as

S(θ̂, p(θ|D)) = log p(θ̂|D). This score rewards posteriors with high density at the true

parameter value. The expected score given the current posterior beliefs is

Ep(θ|D)[S(θ, p(θ|D))] = −H[p(θ|D)] .

Maximizing the expected score with respect to the data D is therefore equivalent to

posterior entropy minimization. S(θ, p(θ|D)) is an example of a proper scoring rule.

These are scores that reward honest estimates of uncertainty. Proper scoring rules are

24



beyond the scope of this thesis, see Dawid [2007]; Huszár [2013] for details. Other scor-

ing rules may be used, and with linear-Gaussian models, D-optimality is also equivalent

to maximizing the Brier score [Brier, 1950]. However, unlike Shannon’s information,

which is induced by the log score, other scoring rules do not result in symmetric utility

functions. Hence, computationally efficient rearrangements like BALD in Section 2.3.1

are not generally possible.

A-optimality minimizes the trace of (X>X)−1. The Bayesian equivalent, minimizing

the trace of the posterior covariance, is motivated if a point estimate of the parameters θ̂

is sought. This is because A-optimality is equivalent to minimizing the expected squared

Euclidean distance of an estimator θ̂ to the true parameters, U(x) = −Ep(y,θ|x,D)||θ −
θ̂||22.1 The trace operation minimizes the average variance of the estimator over the

dimensions of θ. If this average is replaced with a minimax criterion, then the objective

is called E-optimality. E-optimality minimizes the maximum posterior variance for any

linear projection of θ, argmaxc:||c||=1 c>(X>X)−1c.

E-optimality is mathematically similar to G-optimality which minimizes

argmaxx? x?>(X>X)−1x?, where x? is any point in input space. The Bayesian equiv-

alent has a decision-theoretic flavour: to minimize the greatest predictive variance at

any point in input space. This arises because the variance of the Bayesian predictive

distribution (1.2) for the linear-Gaussian model is Var [p(y?|x?,D)] = σ2x?>(X>X +

Σ−1)−1x?.

These designs have been extended to nonlinear regression models, y = f(θ>x) + η,

where f is a nonlinear function. In the linear-Gaussian model (2.19) most designs, such

as D-optimality, are independent of the output y. This is also true for other models

such as the generalized linear model with Poisson likelihood and exponential link func-

tion [Lewi et al., 2009]. With linear regression the design is also independent of the

parameters. In these cases, the optimal sequence of measurements can be computed

a priori. However, this is not the case with nonlinearities. Similar to active learning,

classical designs often take an iterative approach. They estimate the parameter θ̂ and

then select the next measurement using this estimate [Chaloner & Verdinelli, 1995].

In Bayesian OED, the posterior usually becomes intractable, so a number of approx-

imations have been proposed. The most popular methods approximate the posterior

with a Gaussian, whose mean is equal to the MLE or MAP estimate θ̂. The vari-

ance of the approximation is computed using the inverse of the FI matrix. In general,

the FI matrix is the Hessian of the negative log likelihood surface, and is a function

1 Note that an expectation of the unseen y is needed here because, although the posterior variance
is not a function of y, the estimator θ̂ may be.

25



Cost Function Bayesian Interpretation/Equivalence

D |(X>X)−1| max Shannon information gain in θ
A tr[(X>X)−1] min variance of a point estimate for θ
E argmaxc:||c||=1 c>(X>X)−1c min max post. variance for any projection of θ

G argmaxx? x?>(X>X)−1x? min max predictive variance at locations x?

Table 2.1: A few classic optimal experimental designs. Cost is ‘negative utility’.
Bayesian equivalents are formed by replacing X>X by X>X + Σ−1, where Σ is the
prior covariance of θ. More general equivalents for nonlinear regression models are
given by replacing X>X with the general form of the Fisher Information Matrix, F (θ̂).

of θ and y, unlike for the linear model where it is simply equal to X>X. This is the

Laplace approximation, widely used in machine learning and statistics [Kass & Raftery,

1995]. The classical design criteria can then be estimated for nonlinear designs using

the approximate distribution over θ.

Table 2.1 summarizes the classical designs presented in this Section.

2.4.2 Information Theoretic Methods

Maximizing Shannon’s information for Bayesian experimental design was originally

proposed in Lindley [1956]. This paper studies the fundamental properties of this

objective. These properties are studied further in Fedorov [1972]; MacKay [1992b].

In the latter, the posterior information gain for an arbitrary parametric model with a

Gaussian likelihood is approximated using the Laplace approximation. As described

in Section 2.3.2, performing active learning by computing parameter entropies can be

expensive, even with a Laplace approximation. More recently, a fast algorithm that

minimizes posterior entropies directly is proposed in Lewi et al. [2007].

Algorithms that work with predictive distributions tend to be more easily applicable,

but do not necessarily optimize an objective, such as information gain. The most well

known of these algorithms is Maximum Entropy (or uncertainty) Sampling (MES)

[Shewry & Wynn, 1987]. MES selects datapoints with the largest predictive entropy.

This corresponds to the first term in BALD, Equation (2.10). MES was originally

proposed for regression models with constant observation noise, such as the linear-

Gaussian model. Here, the second term in Equation (2.10) is constant with respect

to x, so it can be ignored. However, MES is not equivalent to BALD with more

complex models, such as classification or heteroscedastic models. This is because it

fails to differentiate between parameter uncertainty and observation noise. As a result

26



}}
Figure 2.5: Toy example of classification with a 1D input. Circles and crosses denote
labelled datapoints. The plot shows the mean and variance of the predictive distribu-
tion. Maximum Entropy Sampling (MES) selects data from regions of high marginal
uncertainty. BALD seeks more informative data in the region of uncertainty due to
high posterior variance.

MES over-samples in regions of noisy data. For example, points near a classification

decision boundary may be very noisy, and hence provide no information about the

model. BALD, on the other hand, directly maximizes the information gain so does not

exhibit such pathologies. BALD will learn that a region has high inherent uncertainty

thus will explore elsewhere. Figure 2.5 illustrates this point on a 1D classification

example.

The mutual information between measured variables and ‘variables of interest’ has

been proposed in various applications. These include tracking via Bayesian filtering

[Ertin et al., 2003]. Here, the hidden state is the variable of interest, and with a linear

Gaussian model, the utility function reduces to MES. Fuhrmann [2003] applies mutual

information in noisy communication channels with binary variables, in this case entropy

computations are simple. With BALD, the interest variables are model parameters, the

above approaches do not learn these.

Another application of mutual information is for monitoring environmental vari-

ables. Here, the mutual information between measured locations and interest loca-

tions is maximized [Caselton & Zidek, 1984]. This approach is transductive (see Sec-

tion 2.3.5), it learns the function optimally just at the interest locations. This technique

is applied with GP regression in Krause et al. [2008], where a grid of interest locations is

specified. However, gridding the region of interest is impractical for higher dimensional

problems.

The above mutual information based methods do not consider hyperparameter

learning which we will address for GP regression in Chapter 3. Hyperparameter uncer-

tainty has been considered in a similar setting to GPs, Empirical Kriging. Zimmerman

27



[2006] minimize the predictive variance at interest locations for active sensor place-

ment with unknown kernel hyperparameters. A linearized approximation of the effect

of hyperparameter uncertainty (measured using Fisher Information) on the predictive

variance is added to the utility function. Focused BALD (2.15) minimizes hyperparam-

eter uncertainty more directly.

2.4.3 Data Subsampling

Active learning is primarily used for collecting data when labelling is expensive. How-

ever, if the dataset is very large, or there is a continuous stream of data, and one does

not have the resources to process all of the points then active learning can be used

to subsample the dataset to a feasible size. This simple approach to ‘compressing’ a

large dataset is referred to as the subset of data approximation [Quiñonero-Candela &

Rasmussen, 2005]. Subset of data methods differ to active learning because the label y

can be observed prior to sampling, therefore, although active learning techniques can

address the subset of data problem, the reverse is not possible.

A popular dataset subsampling algorithm for GPs is the Informative Vector Machine

(IVM) [Herbrich et al., 2002].1 Like BALD, the IVM maximizes information gain in

the parameters. However, y is observed so the IVM does not work explicitly with

predictive distributions, but works directly in parameter space. However, GPs have

an infinite dimensional parameter, the latent function. The IVM computes parameter

entropies in the marginal subspace that corresponds to the observed datapoints. Now,

the entropy decrease after inclusion of a new point is calculated efficiently using the GP

covariance matrix. Figure 2.6 shows the difference between this approach and BALD.

As a result, the IVM has a transductive bias, the locations of the observed data defines

the parameters whose entropy are minimized. BALD is inductive because it works

implicitly with the full infinite-dimensional latent function.

Although the IVM and BALD are motivated by the same objective, they have

different properties when approximate inference is carried out, such as in Gaussian

process classification (GPC). At time t both methods have an approximate posterior

qt(θ|D). This can be updated with the likelihood of a new data point p(yt+1|f,xt+1),

yielding p̂t+1(θ|D,xt+1, yt+1) = 1
Z qt(θ|D)p(yt+1|f,xt+1). If the posterior at t + 1 is

approximated directly one gets qt+1(θ|D,xt+1, yt+1). BALD calculates the entropy

difference between qt and p̂t+1, without having to compute qt+1 for each candidate

xt+1 and label yt+1. In contrast, the IVM calculates the entropy change between qt

1 GPs are introduced in Section 3.1.

28



f

fi

yixi

i = 1 . . . N

Figure 2.6: Graphical model for Gaussian processes. The infinite dimensional latent
parameter f gives rise to scalar latent variables fi at each input location, xi. The
directed links from the top layer to the 2nd layer are deterministic marginalizations,
not probabilistic dependencies. Given the latent function fi the likelihood function
generates the labels yi. The IVM calculates entropies in the second layer, whereas
BALD calculates entropy changes to the entire f at the top.

and qt+1, and so must compute the new posterior for all possible queries. Methods

that compute posterior entropies directly require O(N |Y|cinf + N |Y|hθ)) computations

per sample since the posterior must be recomputed for all candidates.1 Therefore,

because cinf enters the complexity per candidate, the IVM for GPC must perform fast

approximate inference using assumed density filtering (ADF). BALD requires only one

posterior update, so costs O(cinf + Ncpred + Nhy). Therefore, more accurate iterative

procedures, such as expectation propagation (EP) [Minka, 2001b], can be used. ADF

is a single-pass version of EP, so this results in qt+1 being a direct approximation to

p̂t+1 which BALD implicitly works with.

2.4.4 Decision Theoretic Methods

Decision theoretic methods directly minimize the expected loss, measured using the

Bayes posterior risk (2.1). In many tasks, the loss is hard to quantify, but in classifica-

tion, the misclassification rate provides a sensible loss function [Kapoor et al., 2007; Roy

& McCallum, 2001; Zhu et al., 2003]. These methods assume knowledge of the location

of the test data and then minimize the expected 0/1 classification loss. However, as

1 For homoscedastic regression with fixed hyperparameters the posterior variance is independent
of y, so only O(Ncinf +Nhθ) updates are needed. With further approximations to the likelihood the
IVM can be sped up further for regression [Seeger et al., 2003].

29



Bayesian Non-Probabilistic

parameter setting hypothesis/hyperplane
posterior distribution version space (VS)
posterior entropy log volume of VS
Gaussian approx to posterior hypersphere approx to VS

e.g. EP, Laplace e.g. Tong & Koller [2002]
samples from posterior committee members
MES margin sampling
Equation (2.8) directly minimizing VS volume
BALD QBC with an infinite committee

and probabilistic voting

Table 2.2: Analogies between Bayesian active learning and non-probabilistic active
learning methods for SVMs.

noted in Roy & McCallum [2001], a limitation of decision theoretic methods is the com-

putational cost. In general, with T test points they require O(N |Y|cinf + TN |Y|cpred)

computations to calculate the posterior risk on the test set for all possible new data-

points. Incremental re-training and re-classification can speed up computations with

certain models [Roy & McCallum, 2001]. Further computational savings require ap-

proximations such as pruning the query search space or sub-sampling the test set.

2.4.5 Non-Probabilistic Methods

Non-probabilistic methods have analogies with Bayesian active learning. The most

well known non-probabilistic active learning methods are for Support Vector Machines

(SVMs) [Seung et al., 1992; Tong & Koller, 2002]. SVMs are a sparse non-probabilistic

model mostly used for binary classification. SVMs classify the data using a hyperplane

with maximal separation from each class.1 The set of possible hyperplanes that cor-

rectly classifies the training data is called version space (VS). An introduction to SVMs

can be found in Burges [1998].

A popular approach to SVM active learning minimizes the number of possible hy-

potheses (hyperplanes), which is done by minimizing the volume of VS. VS can be

interpreted as a deterministic equivalent to the posterior distribution, and its volume

is analogous to the posterior entropy. If a uniform (improper) prior and a determin-

istic likelihood are used then the log volume of VS is equivalent to the entropy of the

posterior. Each observed datapoint defines a plane in VS and hypotheses consistent

1 SVMs are not limited to linear decision planes, they can use kernels to produce complex decision
boundaries [Schölkopf & Smola, 2002].

30



with the data lie on one side of this plane. The goal of active learning with SVMs is

to sample a datapoint that cuts VS in half. Thus, after receiving the label, at worst

almost half of the hypotheses are eliminated.

However, just as Bayesian posterior distributions can be intractable, VS can become

complex after observing many datapoints, and the relevant volumes hard to compute.

Therefore, Tong & Koller [2002] propose approximating a complex VS with simpler

shapes, such as hyperspheres. Their simplest approximation fits the largest possible

hypersphere into VS and selects the point whose dual hyperplane falls closest to the

centre of this sphere. This is equivalent to margin sampling, which chooses the point

closest to the decision boundary [Campbell et al., 2000]. Similar to MES, margin

sampling can over-sample noisy data beside the boundary. This approximation of VS

using a simple shape is similar to Bayesian inference methods that approximate the

posterior with a simple distribution, such as a Gaussian.

Query by Committee (QBC) sidesteps complex version spaces and, like BALD,

works directly with predictions [Seung et al., 1992]. QBC samples parameters from VS

‘committee members’, each of whom makes a prediction, ‘votes’, on the label of x. The

x with the most balanced vote is selected, this is termed the ‘principle of maximum

disagreement’. If Equation (2.10) is approximated by sampling θ, then BALD resem-

bles QBC, but with a probabilistic measure of disagreement. By discarding confidence

estimates QBC can exhibit the same pathologies as MES, namely over-sampling noisy

data. QBC was proposed for classification, and to extend this algorithm directly to

other scenarios, such as regression, the disagreement measure needs to be re-designed

[Burbidge et al., 2007]. McCallum & Nigam [1998]; Melville et al. [2005] replace the

deterministic voting in QBC with the Jensen-Shannon (JS) divergence between a finite

number of predictive distributions. These works do not uncover the link to information

gain in the parameters; BALD also minimizes the JS-divergence of predictive distribu-

tions, but from infinitely many committee members drawn from the posterior. Table 2.2

summarizes the analogies between Bayesian and non-probabilistic methods for active

learning.

2.4.6 Summary

We have presented a framework for Bayesian information theoretic active learning called

BALD. This framework directly exploits the rearrangement of parameter entropies to

predictive entropies. There are many approaches to active learning, but BALD can be

advantageous for a number of reasons:

31



• It is inductive, so does not make any assumptions about a future decision task,

loss or test set.

• With many models, the utility function is smooth and so BALD may be applied

to both continuous sampling and pool-based active learning.

• The utility function is often, but not always, submodular and hence greedy max-

imization is near-optimal.

The above advantages are specific to the classical information gain objective function

in Equation (2.8). The potential advantages of the rearrangement that BALD exploits

(2.10) and the extension in Equation (2.15) are:

• The required computations are not inherently tied to a particular model or infer-

ence method.

• If output space is ‘simpler’ than parameter space, as is often the case, then the

required entropies are more straightforward to compute.

• The number of (approximate) posterior updates is reduced from one per possible

datapoint to one per observed datapoint.

• One can focus upon learning particular variables in the model.

However, computation of the utility in Equation (2.10) may still be non-trivial. Whether

BALD is computationally useful depends on the particular task and model. Whether

BALD is practically useful is a matter of empirical performance. In the following

chapters we apply this framework in machine learning and scientific domains to yield

efficient algorithms with strong practical performances.

32



Chapter 3

Active Gaussian Processes

Gaussian processes (GPs) are a powerful, Bayesian non-parametric model for classifi-

cation and regression. They have been extended to a number of other domains such as

optimization [Osborne et al., 2009], quadrature [Ghahramani & Rasmussen, 2002], di-

mensionality reduction [Lawrence, 2004] and preference learning [Chu & Ghahramani,

2005b]. Using information-theoretic active learning with GPs appears to be challeng-

ing because their parameter space is infinite dimensional. However, with BALD (Sec-

tion 2.3) we can calculate posterior information gains accurately without having to

compute entropies of infinite dimensional objects.

In this chapter we first provide a brief introduction to GPs, for full details see Ras-

mussen & Williams [2005]. In Section 3.2 we demonstrate how BALD may be applied

to Gaussian process classification (GPC). In vanilla Gaussian process regression (GPR)

the observation noise is constant over the input domain, however, this is not true in

GPC which makes active learning more difficult. Other active learning algorithms that

work with predictions, such as maximum entropy sampling (MES), confound posterior

uncertainty with inherent noise. BALD provides a principled and intuitive balance

between these sources of uncertainty in GPC. Furthermore, unlike in GPR, inference in

GPC is intractable and so GPC requires more expensive inference routines. Therefore,

the reduction in the number of posterior updates for N candidates and l possible labels

from O(Nl) to O(1) when using BALD (see Section 2.3.2) is important with GPC.

Like most models, Gaussian processes have additional parameters, known as hyper-

parameters. Obtaining good performance with GPs requires appropriate hyperparam-

eter management. Typically, these are optimized using type-II maximum likelihood

Rasmussen & Williams [2005], but this method can perform poorly and integration

over the hyperparameters yields better predictions [Garnett et al., 2010]. This problem

33



is particularly important in active learning which usually works in the low-data regime

(labels are expensive). Hence, ignoring uncertainty estimates may cause extreme over-

fitting of the GP. Particularly, in GPR maximizing information gain has been found to

yield poor performance after the first couple of samples when the hyperparameters are

fixed [Seeger et al., 2003; Seo et al., 2000]. In Section 3.3 we address this problem by

combining BALD for ‘focused’ learning of particular variables of interest with a new

algorithm for approximate hyperparameter marginalization, the Marginal GP [Garnett

et al., 2013]. Using these techniques we provide a complete pipeline for active GPR

with unknown hyperparameters.

3.1 Primer on Gaussian Processes

Informally, Gaussian processes provide a distribution over a broad class of functions.

The probabilistic model underlying GPR and GPC is

prior: p(f) = GP(µ(·), k(·, ·)) , (3.1)

regression likelihood: p(y|x, f) = N(y; f(x), σ2) , (3.2)

classification likelihood: p(y|x, f) = Bernoulli(Φ(f(x))) . (3.3)

The latent parameter for this model, f , is a function X→ R. A Gaussian process prior

on this function is fully specified by a mean function µ(x) : X 7→ R and covariance

function or kernel k(x,x′) : X×X 7→ R. Under the GP prior, the marginal of f evaluated

at any finite set of points {x1, . . . ,xn} follows a multivariate Gaussian distribution

with mean m, whose components are mi = µ(xi), and covariance matrix Σ, where

Σij = k(xi,xj).

For regression, the output variable y is modelled directly using f plus additive Gaus-

sian noise. For classification we consider the probit likelihood. Here, given the value of

f , y takes a Bernoulli distribution with parameter Φ(f(x)), and Φ(·) is the standard

Gaussian c.d.f. (probit function). As an alternative one can use a logistic likelihood,

but in practice there is little difference in performance [Rasmussen & Williams, 2005].

In GPR, the Gaussian process prior (3.1) is conjugate to the Gaussian likelihood

(3.2), so inference is tractable. Exponential family likelihoods, such as the Gaussian,

have conjugate priors. These priors yield tractable posterior distributions that are in

the same family as the prior, see Bishop [2006], Chapter 2, for details. However, the

GP prior is not conjugate to the classification likelihoods. Therefore exact inference is

intractable; given some observations D, the posterior over f is non-Gaussian. There are

34



a number of approximate inference methods, the most common of which – expectation

propagation (EP) [Minka, 2001a], the Laplace approximation [Kass & Raftery, 1995],

assumed density filtering [Ito & Xiong, 2000] and sparse methods [Naish-Guzman &

Holden, 2007] – all approximate the posterior by a Gaussian. Throughout we will

assume that such a Gaussian approximation is provided, though the active learning

algorithm does not care which. We will denote the use of such approximate inference

by
1
≈.

After performing inference, given a Gaussian (exact or approximate) posterior, the

predictive distribution at a new point x? is computed by integrating over the latent

function,

p(y|x?,D) =

∫
p(y|fx?)p(fx? |D)dfx? , (3.4)

where fx
∆
= f(x). With both the regression and classification likelihoods given in

Equations (3.2) and (3.3) respectively, this computation can be performed analytically.

We now show how BALD may be used for active GPC.

3.2 Active GP Classification

In classification, the level of observation noise is input-dependent. For example, data

near a decision boundary may be highly noisy. Therefore, standard MES can per-

form poorly, which we confirm empirically in Section 3.2.1. Furthermore, the posterior

p(f |D) is intractable in GPC and approximate inference can be expensive. BALD al-

lows us to compute the information gain given by Equation (2.8) directly, but with the

same low computational cost as MES.

The BALD utility in the context of GPs is

U(x) = H[p(y|x,D)]− Ep(f |D)H[p(y|x, f)] , (3.5)

where for classification p(y|fx) is the probit likelihood function, Equation (3.3). The

entropy of the binary output variable y given a fixed function f is given by the binary

entropy function h(p),

H[p(y|x, f)] = h (Φ(fx)) ,

where h(p) = −p log p− (1− p) log(1− p) .

35



Using a Gaussian approximation to the posterior, for each input x, fx follows a Gaussian

distribution with mean µx|D and variance σ2
x|D. To calculate U(x) we have to compute

two entropies. With a probit likelihood the first term in Equation (3.5), H[p(y|x,D)],

can be handled analytically,

H[p(y|x,D)]
1
≈ h

(∫
Φ(fx)N(fx;µx|D, σ

2
x|D)dfx

)

= h

Φ

 µx|D√
σ2

x|D + 1

 . (3.6)

The second term, Ep(f |D)H[p(y|x, f)], requires a second, minor approximation,

Ep(f |D)H[p(y|x, f)]
1
≈
∫

h(Φ(fx))N(fx;µx|D, σ
2
x|D)dfx (3.7)

2
≈
∫

exp

(
− f2

x

π ln 2

)
N(fx;µx|D, σ

2
x|D)dfx

=
C√

σ2
x|D + C2

exp

− µ2
x|D

2
(
σ2

x|D + C2
)
 ,

where C =
√

π ln 2
2 . The first approximation,

1
≈, denotes any standard Gaussian ap-

proximation to the posterior. The integral on the left hand side of Equation (3.7) is

intractable. We tackle this using a Taylor expansion on ln h(Φ(fx)),

g(x) = g(0) +
g′(0)x

1!
+
g′′(0)x2

2!
+ . . .

g(x) = ln h(Φ(x))

g′(x) = − 1

ln 2

Φ′(x)

h(Φ(x))
[ln Φ(x)− ln(1− Φ(x))]

g′′(x) =
1

ln 2

Φ′(x)2

h(Φ(x))2
[ln Φ(x)− ln(1− Φ(x))]

− 1

ln 2

Φ′′(x)

h(Φ(x))
[ln Φ(x)− ln(1− Φ(x))]

− 1

ln 2

Φ′(x)2

h(Φ(x))

[
1

Φ(x)
+

1

1− Φ(x)

]
,

∴ ln h(Φ(x)) = 1− 1

π ln 2
x2 + O(x4) .

Thus, ln h(Φ(fx)) can be approximated up to O(f4
x) by an unnormalized Gaussian,

36



−5 0 5
0

1

x

va
lu

e
h(Φ(·))

exp( −x2
π log(2)

)

0

5 · 10−3

d
iff

er
en

ce

difference

Figure 3.1: Analytic approximation (
1
≈) to the binary entropy of the error function ( )

by a squared exponential ( ). The absolute error, whose scale is given by the right
hand y-axis ( ) remains smaller than 3 · 10−3.

exp(−f2
x/π ln 2). We denote this approximation with

2
≈. We now apply the standard

convolution formula for Gaussians to get a closed form expression for both terms in

Equation (3.5).

Figure 3.1 depicts the striking accuracy of this simple approximation. The maximum

error occurs when N(fx;µx|D, σ
2
x|D) = δ(fx − 2.05). In this worst case

2
≈ yields only a

0.27% error to the integral in Equation (3.7). In Section 3.2.1 we confirm empirically

that this approximation is negligible relative to standard approximate inference
1
≈.

To summarize, the BALD algorithm for GPC consists of two steps. First it applies

any standard approximate inference algorithm for GPC (such as EP) to obtain the

posterior predictive mean µx|D and σx|D for each point of interest x. Then it selects

the query x that maximizes the utility function

U(x) = h

Φ

 µx|D√
σ2

x|D + 1

− C exp

(
−

µ2
x|D

2
(
σ2
x|D+C2

)
)

√
σ2

x|D + C2
. (3.8)

For most kernels, the objective (3.8) is a smooth and differentiable function of x.

Therefore gradient-based optimization procedures can be used to find the maximally

informative query. The resulting optimization surface may be high dimensional and

multimodal, and having access to gradients may be crucial to make optimization feasi-

ble. Many non-probabilistic approaches, such as those described in Section 2.4.5, have

discontinuous utility surfaces and will be much harder to optimize. In our experiments

we only have access to fixed set of inputs x. Therefore, we perform pool-based learning,

37



evaluating Equation (3.8) on the entire pool.

Equation (3.8) gives us insight into the data that is sought. If the latent function

has zero mean, µx|D = 0, then we are uncertain about the label, and the first term

gives us a maximal +1 bit of information. However, if the posterior variance σ2
x|D is

also small, then the GP knows that the label for x is noisy. Hence the second term will

reduce U(x). Figure 3.2 demonstrates the behaviour of Equation (3.8) on toy 2D GPC

problem. In this example, on either side of the points in class ‘one’ (+) are those from

a bimodally distributed class ‘two’ (×). The training data is plotted on each panel in

Figure 3.2. Panel (a) shows the true posterior probability contours of the two classes.

There is large separation between class one and the mode of class two in the top right

corner, but not in the bottom left, where there is a region around (−0.5,−0.5) of high

observation noise. Contours in panel (b) are the posterior mean prediction, the green

regions indicate areas of high predictive uncertainty. Panels (c) and (d) give contours

of utility functions for BALD (3.8) and MES, the first term in Equation (3.8). MES

rewards sampling in any region of uncertainty. BALD behaves differently, rewarding

regions that have both a posterior predictive mean close to 0.5 and a high posterior

uncertainty.

3.2.1 Experiments

We compare to a number of popular active sampling algorithms for classification, de-

scribed in Section 2.4, including decision theoretic algorithms that are privy to infor-

mation about the test data. We use a number of challenging hand-constructed and

real-world datasets.

Datasets

We used four artificial, and nine real-world datasets. GP-D5 is generated from the

assumed GPC model with a 5D input. Checkerboard, Noisy Block and Distracting

Block are three challenging hand-crafted 2D datasets, inspired by Zhu et al. [2003].

These datasets are depicted in Figure 3.3, top. Checkerboard consists of 16 clusters of

datapoints arranged in a checkerboard pattern. Noisy Block contains a block of noisy

data on the decision boundary in which the class labels are random and Distracting

Block contains a block of uninformative data far from the decision boundary. On

Checkerboard a strong active learning algorithm should sample one point from each

island of data. On Distracting and Noisy Block a good active learning algorithm should

avoid the non-informative blocks of data.

38



(a) data distribution (b) posterior mean

−5 0 5
−5

0

5

x
1

x
2

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−5 0 5
−5

0

5

x
1

x
2

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) BALD utility (d) MES utility

−5 0 5
−5

0

5

x
1

x
2

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−5 0 5
−5

0

5

x
1

x
2

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3.2: Binary classification problem. Points depict the training data. (a) True
class probability contours. (b) Posterior mean prediction. Green regions indicate high
predictive uncertainty. (c), (d), BALD and MES utility functions, respectively.

39



Dataset D |pool| |test| Note

GP-D5 5 250 250 in-model
Checkerboard 2 400 400 hand crafted
Distracting Block 2 194 250 hand crafted
Noisy Block 2 194 250 hand crafted
Austra 14 345 345 UCI
Branin 2 1000 1000 Branin fn. & Probit lik.
Cancer 9 342 341 UCI
Crabs 5 100 100 UCI
Letter D vs. P 16 804 804 UCI
Letter E vs. F 16 772 771 UCI
Vehicle 18 423 423 UCI
WDBC 30 285 284 UCI
Wine 13 100 78 UCI

Table 3.1: Statistics of the binary classification datasets.

HMC EP (
1
≈) Laplace (

1
≈)

MC 0 7.51± 2.51 41.57± 4.02
2
≈ 0.16± 0.05 7.43± 2.40 40.45± 3.67

Table 3.2: Percentage approximation error (±1 s.d.) for approximate inference algo-
rithms (columns) and for evaluating Equation (3.7) (rows). Monte Carlo (MC) sam-
pling from the posterior was used to evaluate the ground truth binary entropy in Equa-
tion (3.7), and Markov chain Monte Carlo, implemented using Hamiltonian Monte Carlo
(HMC), to evaluate the posterior.

Branin is generated using a 2D Branin function passed through a probit likelihood.

The real-world sets Austra, Cancer, Crabs, Letter E vs. F, Letter D vs. P, Vehicle,

WDBC and Wine are classification datasets from the UCI repository.1 Table 3.1 pro-

vides the statistics for all of the datasets and the size of the partitions used in the

following experiments. We first quantify the loss from our approximation to the binary

entropy function
2
≈ presented in Section 3.2.

Quantifying Approximation Losses

To compute BALD for GPC (3.8), two approximations were used: any standard ap-

proximate inference scheme that results in a Gaussian approximation to the posterior
1
≈, and an approximation to the binary entropy of the Gaussian CDF by a squared

exponential
2
≈. We evaluate the loss incurred due to these approximations by replacing

1 http://archive.ics.uci.edu/ml/datasets.html

40

http://archive.ics.uci.edu/ml/datasets.html


Checkerboard Noisy Block Distracting Block

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Dim. 1

D
im

. 
2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Dim. 1

D
im

. 
2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Dim. 1

D
im

. 
2

10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

number of samples

te
s
t 

lik
e

lih
o

o
d

 

 

10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

number of samples

te
s
t 

lik
e

lih
o

o
d

 

 

10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of samples

te
s
t 

lik
e

lih
o

o
d

 

 

BALD
Rand
MES
IVM
QBC−2
QBC−100

Figure 3.3: Active GPC experiments on three hand-crafted 2D datasets. Top: Depic-
tions of the datasets, markers denote datapoints from the two classes. Bottom: Learn-
ing curves for each information theoretic active learning algorithm. The x-axis gives
the number of active datapoints selected. The y-axis gives the performance measured
using likelihood on the test set.

them with extensive Monte Carlo as the ‘gold standard’. Ultimately we are interested

in evaluating the ability of the algorithm to find the most informative sample, therefore

a relevant measure of loss is the expected information loss, defined as

maxx I(x)− I(argmaxx Î(x))

maxx I(x)
· 100% , (3.9)

where I is the objective computed using the gold standard (Monte Carlo) and Î is the

approximate objective. Table 3.2 contains the information losses on the Cancer dataset.

As noted in Section 3.2, the introduced approximation to the binary entropy
2
≈ can only

yield a maximum error < 0.3% to the integral in Equation (3.7). Table 3.2 confirms that

this approximation yields negligible information loss compared to standard methods of

approximate inference, the Laplace approximation and EP. Laplace results in larger

loss than EP, which is consistent with the comparison presented in Kuss & Rasmussen

[2005]. Therefore, we use EP in all of the following GPC experiments.

41



GP-D5 Austra Branin

10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

number of samples

te
s
t 

lik
e

lih
o

o
d

 

 

10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

0.7

number of samples

te
s
t 

lik
e

lih
o

o
d

 

 

10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

0.7

number of samples

te
s
t 

lik
e

lih
o

o
d

 

 

Cancer Crabs Letter D vs. P

10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

number of samples

te
s
t 

lik
e

lih
o

o
d

 

 

10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

number of samples

te
s
t 

lik
e

lih
o

o
d

 

 

10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of samples

te
s
t 

lik
e

lih
o

o
d

 

 

Letter E vs. F Vehicle WDBC

10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of samples

te
s
t 

lik
e

lih
o

o
d

 

 

10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

number of samples

te
s
t 

lik
e

lih
o

o
d

 

 

10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

number of samples

te
s
t 

lik
e

lih
o

o
d

 

 

Wine

10 20 30 40 50
0.75

0.8

0.85

0.9

0.95

number of samples

te
s
t 

lik
e

lih
o

o
d

 

 

BALD
Rand
MES
IVM
QBC−2
QBC−100

Figure 3.4: Performance versus number of active samples learning curves on the in-
model and real-world datasets for all of the information-theoretic algorithms. Predictive
performance is measured using exponentiated log likelihood on the test set.

Experimental Procedure

We followed a standard pool-based active learning scenario where the datapoints are

selected from a fixed set (pool) of data. To do this, the datasets were first partitioned

equally into pool and test sets, when fewer than 200 points were available, pool was

42



Dataset BALD Rand MES IVM QBC2 QBC100 Emp Kap07 Zhu03

GP-D5 79.3 77.2 78.8 55.5 78.6 78.7 69.3 78.6 79.0
Checkerboard 88.7 82.5 88.7 84.3 85.7 89.2 60.4 88.2 87.9
Distracting Bl. 96.9 93.4 96.9 94.7 96.2 96.9 82.0 96.5 96.5
Noisy Block 86.1 81.7 75.9 63.7 79.3 75.8 85.6 85.9 78.7
Austra 68.2 67.6 67.5 49.5 68.2 68.1 63.9 68.3 68.1
Branin 67.4 65.5 64.9 53.7 66.9 65.4 60.1 67.1 67.1
Cancer 87.6 87.4 87.5 71.8 87.5 87.5 81.0 88.2 88.1
Crabs 86.5 84.9 86.4 81.2 86.3 86.3 77.7 86.5 86.5
Letter D vs. P 93.4 89.1 93.4 81.3 92.1 93.4 76.2 92.7 92.7
Letter E vs. F 92.4 88.3 92.2 76.3 91.4 92.4 74.4 92.0 91.8
Vehicle 55.4 58.1 51.1 29.9 55.7 51.8 56.2 56.8 55.4
WDBC 86.4 86.1 86.4 69.7 86.8 86.4 75.2 88.0 88.1
Wine 86.1 85.1 86.1 84.5 85.9 86.1 80.3 86.2 86.2

Table 3.3: AUC for exponentiated log likelihood classification learning curves up to
collecting 100 active samples. Bold indicates the best performing method (and those
statistically indistinguishable) that does not observe the test data, underlined indicates
the best performing overall.

given 100 so that the active learning algorithms had sufficient data to choose from.

The algorithms were initialized by sampling five points at random from the pool and

adding them to a training set. Each algorithm was trained upon this set and, using its

active learning criterion, selected further points from the pool to be added to training.

After each sample the GP was re-compute, and its predictive performance, measured

using exponentiated log likelihood, was evaluated on test. The exponentiated log likeli-

hood is given by exp{
∑

i∈test logP (yi|xi,D)}. The likelihood is summed outside of the

logarithm because this results in a proper scoring rule [Dawid, 2007]. A proper scoring

rule rewards accurate estimation of the uncertainty in yi, the true P (yi|xi) attains the

highest score. Averaging the predictive distribution directly is not a proper scoring rule

because predicting argmaxy P (y|xi,D) with probability one yields the best expected

score.

In this experiment we were interested in evaluating the ability of the algorithms

to learn the latent function f , and so the hyperparameters were fixed a priori to the

type-II maximum likelihood estimate on the pool. We used an RBF kernel with ARD

and additive noise. Therefore the hyperparameters corresponded to the length scales

along each dimension, the signal variance and the noise variance. The entire procedure,

including the random partitioning of the data was repeated 50 times.

43



Other Algorithms

We compare BALD to random sampling and information-theoretic alternatives for ac-

tive GPC described in Section 2.4. These methods include Maximum Entropy Sampling

(MES), Query by Committee (QBC) with 2 and 100 committee members and the In-

formative Vector Machine (IVM). This last algorithm does not strictly perform active

learning as it has access to the labels before sampling. We also evaluate two decision

theoretic algorithms, Zhu et al. [2003] and Kapoor et al. [2007], denoted Zhu03 and

Kap07 respectively. These decision theoretic algorithms should outperform BALD be-

cause they observe the test data and minimize classification error directly. However,

as described in Section 2.4, they have much higher computational cost. Finally, we

minimize the empirical training error directly (Emp); this is not a standard algorithm,

but is used for the analysis of Kap07. Due to the high computation cost of decision

theoretic algorithms, when actively selecting new data, the pool and test sets were sub-

sampled to 150 points with these algorithms. This approximation yielded no noticeable

detriment to performance.

Results

Figure 3.3, bottom, shows the learning curves on the hand-crafted datasets, and Fig-

ure 3.4 presents the rest of the datasets. Table 3.3 contains the area under the (expo-

nentiated log likelihood) curve (AUC) for each method on each dataset up to the active

collection of 100 samples. AUC evaluates the quality of the algorithms for choosing

samples useful for classification performance right from the start.

BALD is the best performing information theoretic algorithm, and is even compet-

itive with the decision theoretic methods (Zhu03, Kap07). BALD is robust to noisy

data, e.g. see Noisy Block in Figure 3.3. On this dataset, MES focuses on the noisy

region, and hence does not learn the classification boundary well. On the noiseless ar-

tificial datasets, Checkerboard and Distracting Block, MES behaves the same as BALD.

Therefore, Table 3.3 indicates that some of the real-world datasets, such as Cancer,

Letter D vs. P, WDBC and Wine, have low noise since MES performs as well as

BALD.

QBC can work well, and with more query members it becomes a closer approxi-

mation to BALD. However, QBC’s deterministic vote criterion can lead to poor per-

formance with noisy data, like MES, e.g. Noisy Block, Cancer. The IVM can exhibit

pathological performance. For example on Noisy Block the IVM focuses heavily on the

block. This is likely to be because the algorithm has a transductive bias encouraging

44



Dataset BALD MES IVM QBC2 QBC100 Emp Kap07 Zhu03

GP-D5 5.5 7.2 0.6 6.1 13.9 4268.7 3864.2 3369.1
Checkerboard 5.7 6.6 0.6 5.7 19.2 3578.1 4326.2 4193.7
Distracting Bl. 5.6 5.9 0.9 5.8 6.5 5404.2 6071.2 5848.6
Noisy Block 5.5 8.8 0.9 5.7 9.5 3247.8 3261.6 2749.8
Austra 4.3 3.1 0.7 3.4 6.6 3145.1 3466.4 3249.1
Branin 9.5 11.1 0.9 11.1 63.6 3045.3 2949.6 2718.7
Cancer 4.5 5.0 0.6 4.8 14.1 3747.2 3865.3 3564.1
Crabs 5.7 5.9 0.6 5.1 6.7 2005.0 1671.4 1759.3
Letter D vs. P 9.6 10.9 1.0 11.1 58.3 3675.4 4350.5 4217.1
Letter E vs. F 8.7 7.9 0.8 9.2 32.2 3609.8 4473.6 4354.7
Vehicle 9.6 9.1 0.8 10.3 23.4 3658.2 3949.8 3582.7
WDBC 7.0 6.2 0.8 7.2 16.7 4384.0 5444.7 5211.3
Wine 4.8 5.4 0.9 5.8 6.1 1794.8 2044.7 1973.1

Table 3.4: Cumulative clock times (seconds) to compute the active learning criteria
for each method up to collecting 100 samples.

it to shrink the posterior near the data it has already collected, and hence not explore.

Overall, the decision theoretic methods perform comparably to BALD. Observing

the test data helps in come cases, for example, on Checkerboard the decision theoretic

methods choose one point from the centre of each island of data during the first 16

samples. BALD also chooses a point from each island, but does not necessarily pick

central points because it is unaware that it will have to classify the rest of the data in

the surrounding island. However, these decision theoretic methods are very expensive,

the clock times are presented in the following section. Emp performs poorly because it

only reinforces the classification of the observed data, so fails to explore.

Random sampling usually performs worse than the active methods, except on Ve-

hicle where it performs best. On Vehicle the GP made poor predictions as little data

is available and the length scales were short in most dimensions. With such imprecise

predictions all active schemes performed poorly. To get obtain good performance on

such high dimensional data, more structured kernels [Duvenaud et al., 2012] or GP em-

beddings [Garnett et al., 2013] may be required to capture the structure of the latent

function from just a few datapoints.

Computational Complexity and Run Times

We recorded the cumulative clock times required to compute the active learning utility

functions up to collecting 100 samples. All algorithms were implemented in MATLAB.

45



To perform EP, we used the GPML toolbox.1 For the IVM, we used code made publicly

available by the authors.2

Table 3.4 contains the recorded times. The information theoretic active learning

algorithms have similar computational time, which was mostly spent running EP once

per iteration to compute the predictive distributions on the pool. After collecting M

training points, and for N candidates in the pool, the complexity of BALD, MES

and QBC to select the next active sample is O(M3 + NM2). M3 computations are

required to re-train the posterior, and NM2 to make predictions for each candidate.

Should time be critical, this could be reduced with sparse approximations, such as the

Fully Independent Training Conditional [Snelson & Ghahramani, 2006] or incremental,

rank-one posterior updates.

It is not possible to compute exact entropies of f directly using Equation (2.8), but,

as in the IVM, one could approximate this quantity with the entropy of the posterior

marginal corresponding to the locations of the data. The cost of this approximation

would be O(NM3). However, the IVM is fast since it uses ADF for approximate

inference and ADF is a single pass approximation to EP. Note that, for a fair comparison

of performance, we used EP when making predictions with the data chosen by the IVM.

The time spent in evaluation is not included in Table 3.4.

The decision theoretic methods are much slower. In practice, the time to compute

Zhu03 and Kap07 up to 100 samples, even after subsampling the pool and test sets to

150 points, was around 1 hour, whereas BALD took < 10s. The cost to select a sample

with these methods is O(NM3 +NTM2), where T is the number of test points under

consideration. These decision theoretic algorithms could be sped up by making further

approximations when re-computing the posterior, such as rank-one updates or ADF.

For a fair performance comparison we used the same EP inference scheme for all of

the active learning methods. However, even with additional approximations, decision

theoretic methods are still likely to be much slower than BALD.

3.2.2 Summary

We have demonstrated that BALD is an effective framework to do active classification

with Gaussian processes. Its two main advantages are (i) that it only requires com-

puting entropies of the Bernoulli output variable, like MES, and (ii) it only requires

re-computing the posterior once, after the acquisition of each active sample. Equa-

tion (3.8) allows one to compute information gains to the infinite dimensional latent

1 http://www.gaussianprocess.org/gpml/code/matlab/doc/
2 http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/ivm/

46

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/ivm/


function accurately. Besides standard approximate inference, the only approximation

is to the binary entropy, which is both theoretically and empirically negligible. Meth-

ods that work directly with entropies over the latent function must approximate the

utility function more severely. Experiments indicate that BALD’s performance com-

pares favourably to many other active learning methods for classification, even decision

theoretic algorithms that have access to the test data and have a much greater compu-

tational cost.

On Austra BALD exhibits weaker performance in the first couple of samples, but

then rapidly overtakes the other algorithms. This is likely to be because the hyper-

parameters were fixed, and their uncertainty was not accounted for. Dealing with

hyperparameter uncertainty appropriately is a major research focus for GPs, as the

marginal likelihood surface can be highly complex. However, appropriate hyperparam-

eter management is particularly important in active learning, where one usually works

in the low-data regime, and hence uncertainty is high. In the next section we address

this problem in the context of Gaussian process regression.

3.3 Active GP Regression with Unknown Hyperparame-

ters

Obtaining good performance with GPs requires appropriate hyperparameter manage-

ment. To address active GPR with unknown hyperparameters, we extend a new tech-

nique for hyperparameter marginalization and inference, the marginal Gaussian Process

(MGP) [Garnett et al., 2013], to our framework. We use the ‘focused’ version of BALD

in Equation (2.15) to learn actively either about the hyperparameters or the latent func-

tion itself. This results in a robust pipeline for active GPR. First, we present the MGP,

and then derive the appropriate utility functions to compute BALD in this domain.

3.3.1 Marginal Gaussian Process

The Marginal Gaussian Process (MGP) is a general means of managing uncertainty

in GP hyperparameters appropriately, originally proposed for learning the parameters

of a linear embedding of a high dimensional GP [Garnett et al., 2013]. It performs

approximate marginalization of hyperparameters, improving upon ubiquitous type-II

maximum likelihood estimation. An alternative to hyperparameter marginalization

would be to sample their values. However, such an approach would require re-inverting

the kernel matrix for every sample. The MGP has the advantage that the kernel matrix

47



only needs to be inverted once, as with fixed hyperparameters.

The MGP makes two approximations in order to make the required integrals tractable.

First, assume a Gaussian posterior over hyperparameters p(ξ|D) = N(ξ; ξ̂,Σ). If the

true posterior is non-Gaussian, as is usual, a Laplace approximation is used. For this,

the mean is set to the MAP estimate, ξ̂, and the Hessian of the log posterior is used to

fix the covariance as Σ−1 = −∇∇> log p(ξ|D)|ξ̂.
The second approximation is to linearize the mean of the conditional predictive

distribution p(fx|D, ξ) as a function of ξ, and approximate the covariance as constant

around the MAP hyperparameters, ξ̂,

p(fx|D, ξ) = N(fx;µ(ξ), σ2(ξ)) ≈ N(fx; a>ξ + b, c) . (3.10)

The parameters of the approximation a, b, c are fixed by matching derivatives to the

true predictive distribution p(fx|D, ξ) . The results is a Gaussian marginal posterior,

given by

p(fx|D) = N(fx;µx|D, σ
2
x|D) (3.11)

where µx|D = µ̂x|D ,

σ2
x|D =

4

3
σ̂2

x|D +
∂µ̂x|D

∂ξ

>
Σ
∂µ̂x|D

∂ξ
+

1

3σ̂2
x|D

∂σ̂2
x|D

∂ξ

>

Σ
∂σ̂2

x|D

∂ξ
,

and µ̂x|D, σ̂2
x|D denote the posterior predictive mean and variance under ξ̂, respec-

tively. All gradients in (3.11) are evaluated at ξ̂, notation omitted for clarity. The

marginalization does not change the MAP predictive mean, but it augments the vari-

ance appropriately to account for the hyperparameter uncertainty. Incorporating this

uncertainty is crucial for robust active learning.

We investigate empirically the information lost due to making the MGP approxi-

mations, in Section 3.3.3, and find that it is usually small.

3.3.2 Focused Active Learning with the MGP

With the MGP, all predictive distributions are Gaussian, so predictive entropies may

be computed analytically. During training we wish to learn optimally about the hy-

perparameters, but we do not necessarily wish to use up samples to learn the latent

function everywhere. Therefore, we use the focused-BALD utility, for reference, the

48



general form of this utility function is given again,

U(x) = H[p(y|x,D)]− Ep(θ|D)H[Ep(φ|θ,D)p(y|x, θ, φ)] . (3.12)

In this setting the hyperparameters are included in the variables of interest, and

the latent function is the ‘nuisance parameter’, that is θ = ξ and φ = f . The first term

in Equation (3.12) is the entropy of the MGP predictive distribution, H[p(y|x,D)] ∝
0.5 ln(2πeσ2

x|D). The second term is computed by assuming that the predictive variance

is constant with respect to the hyperparmeters under the posterior. This is the same

approximation that is used by the MGP in Equation (3.10). The resulting term is

Ep(ξ|D)H[Ep(fx|ξ,D)p(y|fx)] ≈ H[Ep(fx|ξ̂,D)p(y|fx)] = 0.5 ln(2πeσ̂2
x|D) .

Now the utility function for active learning of the hyperparameters for GPR is

Uξ(x) ∝ ln(σ2
x|D)− ln(σ̂2

x|D) . (3.13)

Intuitively, Equation (3.13) prefers locations with large marginal uncertainty under the

MGP, but low uncertainty given the MAP hyperparameters. That is, we seek data

where we have additional predictive entropy over the MAP prediction due to the hy-

perparameter uncertainty.

The complexity to compute the MGP and Equation (3.13) is O(|ξ|3 +M3 +NM2).

The additional |ξ|3 over the complexity for classification, presented in Section 3.2.1,

is to invert the hyperparameter posterior covariance in Equation (3.11). Again, work-

ing directly with posterior entropies would be much more expensive, this would cost

O(N |ξ|3 + NM3). Note that with fixed hyperparameters, the design is independent

of y and can be pre-computed [MacKay, 1992b], this is no longer the case as p(ξ|D)

depends on the collected outputs.

If we want to learn the latent function then we should try to decrease the posterior

entropy over all model parameters. Now f is also included in the ‘parameters of interest’

θ and so the second term in Equation (3.12) becomes Ep(fx,ξ|D)H[p(y|fx, ξ)]. We assume

homoscedastic observation noise, so this term is constant with respect to x. Therefore

in GPR, active learning of the latent function is equivalent to MES,

Uf,ξ(x) = σ2
x|D . (3.14)

We may also consider learning only f and treating the hyperparameters as nuisance

49



(a) Dataset (b) p(ξ|D), 6 samples (c) p(ξ|D), 55 samples

−2

0

2 −2

0

2
−1

0

1

2

x2x1

y

1 2 3 4 5 6
−1

0

1

2

3

4

log l1
lo
g
l 2

 

 

truth

post. mean
post. covariance

1 2 3 4 5 6
−1

0

1

2

3

4

log l1

lo
g
l 2

 

 

truth

post. mean
post. covariance

(d) BALD(ξ) (e) BALD(f), 6 samples to learn ξ (f) BALD(f), 55 samples to learn ξ

−2 −1 0 1 2
−2

−1

0

1

2

x1

x
2

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

−2 −1 0 1 2
−2

−1

0

1

2

x1

x
2

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

−2 −1 0 1 2
−2

−1

0

1

2

x1

x
2

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 3.5: Demonstration of BALD for GPR with unknown hyperparameters. (a)
2D in-model dataset. (b), (c) Posterior over hyperparameters after observing 6 and
55 samples respectively. (d) First 15 samples chosen by BALD(ξ), Equation (3.13).
Contours depict the posterior predictive variance. (e), (f) First 15 samples chosen by
BALD(f), Equation (3.14), after 6 and 55 samples were used to learn ξ, respectively.

parameters, including them in φ. Now the second term in (3.12) is given by

Ep(f |D)H[Ep(ξ|f,D)p(y|fx, ξ))] .

The expectation over p(f |D) may be computed using the MGP approximation to the

marginal predictive distribution in Equation (3.11). In general, we require Bayes’ rule

to compute p(ξ|f,D). However, if we are again consistent with the approximations

made by the MGP, the predictive variance and hence entropy is independent of ξ and

so this term is constant. Under these assumptions the algorithm also reduces to MES.

Demonstration

We demonstrate the behaviour of Equations (3.13) and (3.14) on a low-noise artificial

dataset generated from a GP with a two-dimensional input. Figure 3.5(a) depicts the

dataset. The generating GP has a long length scale along dimension x1 and a short

length scale along dimension x2. The corresponding true log length scales (l1,l2) are

50



denoted by the black markers (+) in panels (b), (c). These panels also show the

Gaussian MGP approximation to the posterior over the length scales, after drawing

samples using BALD to learn the hyperparameters, BALD(ξ), Equation (3.13). The

algorithm was initialized with 5 random samples then actively selected 1 and 50 samples

in (b) and (c) respectively. With only 6 samples in total, the posterior mean for ξ falls

near to the prior mean at (2, 2). As expected with more data the variance shrinks

and the mean moves towards the true hyperparameter values. Panels (d)-(f) show

the locations of selected datapoints, x, and contours denote the posterior predictive

variance σ2
x|D. Panel (d) depicts the first 15 active samples selected by BALD(ξ) to

learn the hyperparameters, and the predictive variance after training the GP on these

samples. Panels (e) and (f) show the first 15 active samples chosen using BALD to learn

the latent function, BALD(f), Equation (3.14). In (e) and (f), the hyperparameters are

fixed to their MAP values given in the panels (b) and (c), that is, learnt using 1 and

50 (plus 5 initial) active samples, respectively.

Panel (d) shows the behaviour of BALD when learning the hyperparameters alone.

Some datapoints have been placed very close together, and some far apart, in order

to learn the length scales. However, this strategy does not try to learn the latent

function, and completely ignores a large region of input space, where the predictive

variance remains high. Panel (e) shows that trying to learn f with poor estimates of

the hyperparameters can be pathological. Remember, the hyperparameters used in (e)

are the MAP values given in (b). The algorithm focuses on the extreme corners of

input space, and the posterior variance remains high everywhere. However, in panel

(f), when the hyperparameters have been learnt from 55 samples, BALD(f) behaves

much more sensibly and the variance is low everywhere. The algorithm knows that

the length scale along dimension x1 is long, so simply needs to observe the y values

at either edge of the region along this dimension in order to interpolate to the rest of

input space. However, the length scale along x2 is short, so BALD(f) explores that

dimension appropriately. In conclusion, BALD(ξ) does not waste data seeking to learn

the latent function everywhere, so that it focuses on collecting maximal information

about the hyperparameters. As a result, to learn the latent function one needs to use

BALD(f). However, this algorithm will probably do a poor job if the hyperparameters

have not been reasonably estimated already. With these initial findings we design a

two-phased experiment to test the algorithms on real-world data.

51



Dataset D |pool-model| |pool-eval| |test| Note

GP-D1 1 2500 1500 1000 in-model
GP-D2 2 2500 1500 1000 in-model
GP-D5 5 2500 1500 1000 in-model
Auto 7 199 99 99 UCI
Branin 2 2500 1500 1000 Branin + noise
Concrete 8 515 257 258 UCI
Energy1 8 384 192 192 UCI
Energy2 8 384 192 192 UCI
Machine 6 105 52 52 UCI
Servo 4 100 33 34 UCI
Yacht 6 154 77 77 UCI

Table 3.5: Statistics of the regression datasets.

MC (term 2) MGP (term 2)

MC (term 1) 0.00± 0.00 2.44± 2.74
MGP (term 1) 7.73± 14.12 1.48± 2.35

Table 3.6: Percentage information loss (3.9) when replacing the MGP with MC sam-
pling in either term in Equation (3.12). Values are averages across all datasets.

3.3.3 Experiments

We evaluate the ability of BALD to actively learn both the hyperparameters and the

latent function on a number of real-world regression datasets. For this we use a two-

phase ‘model learning’ and ‘evaluation’ experiment. We also empirically evaluate the

information loss due to the MGP approximation.

Datasets

We used three in-model datasets, GP-D1, GP-D2 and GP-D5, the Branin function with

Gaussian additive noise, Branin, and seven UCI regression datasets: Auto, Concrete,

Energy 1, Energy 2, Machine, Serve and Yacht. Table 3.5 gives the statistics of the

datasets and the size of the experimental splits.

MGP Approximation Loss

We evaluate the information loss (3.9) from the MGP approximation when learning

the hyperparameters. Either term in BALD (3.12) may be computed by replacing the

MGP approximation to the integral over p(ξ|D) with MC sampling. When using MC for

both terms in Equation (3.12), information loss is measured relative to an independent

52



set of samples to verify convergence. Table 3.6 contains the results. Interestingly,

approximating both terms using the MGP is the best alternative to sampling both

terms, yielding a loss of only about 1.5%. This is because BALD contains the difference

between two terms, and to retain the correct ranking of candidates, it is important be

consistent in approximating each. The linearization and independence assumptions in

the MGP result in a small relative underestimate to both terms in Equation (3.12) for

datapoints with high predictive entropy. Note that the MGP is typically conservative in

its absolute estimates of predictive uncertainty, mostly due to the 4/3 pre-multiplying

factor to the variance in Equation (3.11). By being consistent, the ranking of the pool

correlates highly with the MC estimate.

Experimental Procedure

We evaluate BALD for learning both the hyperparameters and the latent function.

Therefore, we simulate a two-phase learning scenario. In the first, ‘model-learning’,

we seek to actively learn the hyperparameters. In the second, ‘evaluation’, we actively

learn the latent function, using the learnt hyperparameters. The datasets were split

randomly into three sets: pool-model, pool-eval, and test, the sizes of each split on each

dataset are given in Table 3.5.

In Phase one, a fixed budget of M = 50 datapoints was actively sampled from

pool-model and the model was retrained after each sample. We used Equation (3.13)

to learn optimally about the hyperparameters, BALD(ξ). ξ includes the length scales,

signal variance and observation noise of our RBF-ARD kernel. In Phase two, the

hyperparameters are fixed to their MAP values at the final iteration in Phase one. We

used Equation (3.14), BALD(f), to learn the latent function by actively sampling from

pool-eval. After each sample, the GP is retrained and evaluated on test. In both phases,

we compare to random sampling as a control. We also compare to MES for Phase one

(in Phase two, BALD(f) is equivalent to MES). The entire procedure, including random

partitioning of the data, was repeated 100 times.

Results

Figure 3.6 depicts the learning curves for each algorithm. These curves show the test log

likelihood as a function of the number of samples in Phase two. Table 3.7 summarizes

these learning curves by the performance after selecting 50 samples in both Phase one

and two. BALD is effective for both the learning of the hyperparameters and the

latent function. With a limited budget, efficient learning of the hyperparameters may

53



GP-D1 GP-D2 GP-D5

0 20 40 60 80 100
1400

1500

1600

1700

1800

1900

2000

2100

number of samples

te
s
t 

lo
g

 l
ik

e
lih

o
o

d

 

 

0 20 40 60 80 100
1700

1750

1800

1850

1900

1950

2000

2050

number of samples

te
s
t 

lo
g

 l
ik

e
lih

o
o

d

 

 

0 20 40 60 80 100
−500

0

500

1000

1500

2000

number of samples

te
s
t 

lo
g

 l
ik

e
lih

o
o

d

 

 

Auto Branin Concrete

0 20 40 60 80 100
−100

−90

−80

−70

−60

−50

−40

number of samples

te
s
t 

lo
g

 l
ik

e
lih

o
o

d

 

 

0 20 40 60 80 100
−1200

−1000

−800

−600

−400

−200

0

200

number of samples

te
s
t 

lo
g

 l
ik

e
lih

o
o

d

 

 

0 20 40 60 80 100
−400

−350

−300

−250

−200

−150

number of samples

te
s
t 

lo
g

 l
ik

e
lih

o
o

d
 

 

Energy-1 Energy-2 Machine

0 20 40 60 80 100
−200

−100

0

100

200

300

number of samples

te
s
t 

lo
g

 l
ik

e
lih

o
o

d

 

 

0 20 40 60 80 100
−200

−150

−100

−50

0

50

number of samples

te
s
t 

lo
g

 l
ik

e
lih

o
o

d

 

 

0 10 20 30 40 50
−25

−20

−15

−10

−5

0

number of samples

te
s
t 

lo
g

 l
ik

e
lih

o
o

d

 

 

Servo Yacht

0 10 20 30
−70

−60

−50

−40

−30

number of samples

te
s
t 

lo
g

 l
ik

e
lih

o
o

d

 

 

0 20 40 60 80
−40

−20

0

20

40

60

80

100

number of samples

te
s
t 

lo
g

 l
ik

e
lih

o
o

d

 

 

BALD(ξ), BALD(f)
BALD(ξ), Rand
Rand, BALD(f)
Rand, Rand
MES, BALD(f)
MES, Rand

Figure 3.6: Active GPR learning curves as a function of the number of samples taken
in Phase two. 50 samples were used to learn the hyperparameters in Phase one.

54



BALD(ξ), BALD(ξ), Rand, Rand, MES, MES,
Dataset BALD(f) Rand BALD(f) Rand BALD(f) Rand

GP-D1 1.98e+03 1.98e+03 1.98e+03 1.99e+03 1.99e+03 1.99e+03
GP-D2 2.01e+03 2e+03 2e+03 1.99e+03 2.01e+03 2e+03
GP-D5 1.55e+03 1.37e+03 1.5e+03 1.35e+03 1.51e+03 1.37e+03
Auto -51.4 -51.5 -63.9 -58.2 -52.8 -51.5
Branin 52.6 -15.4 -13.4 -91.9 40.7 -44.6
Concrete -205 -198 -222 -202 -259 -223
Energy-1 206 164 131 112 11 -1.2
Energy-2 -11 -20.9 -41.8 -41.9 -131 -113
Machine -0.93 -0.75 -16.2 -13.4 -2.09 -1.84
Servo -34.5 -34.5 -64.6 -57.6 -50.2 -49.8
Yacht 92.6 90.4 59.9 58 73.6 75.1

Table 3.7: GP regression experiments. Log likelihood after obtaining 50 samples to
learn the hyperparameters in Phase one and 50 samples to learn the latent function in
Phase two. Bold denotes the best performing algorithm, and those statistically indis-
tinguishable according to a paired t-test. Each column is labelled with the algorithm
used in Phase 1, Phase 2.

be crucial, on some datasets, e.g. Machine and Servo, the performance after learning

the hyperparameters from 50 random samples is poor. Using MES in Phase one is

much less robust than BALD, and on some data (Energy-1,2 and Concrete) performs

very poorly, worse than random sampling. MES effectively tries to learn the latent

function too early, as in Equation (3.14). By doing so it fails to gain information about

the hyperparameters, which results in poor predictions and hence, poor samples. As in

our classification experiments, BALD is also effective for learning the latent function –

particularly when the hyperparameters have been well estimated in Phase one. Using

BALD for both phases performs best (or joint best) on all datasets.

We also evaluated the methods using root mean squared error (RMSE), Table 3.8

contains the results. As with log likelihood, using BALD in both phases performs best

overall. However, when evaluating with RMSE, using BALD for learning the latent

function is more important. Rand+BALD(f) and MES+BALD(f) have better relative

performance; for example, Rand+BALD(f) matches BALD(ξ)+BALD(f) more often

when using RMSE than with log likelihood. RMSE only scores the predictive mean,

and ignores predictive uncertainty. Incorrect values of the signal noise hyperparameter

can yield a large detriment to the predictive log likelihood, but may have little effect

the posterior mean, and hence RMSE many not be affected greatly. This indicates that

using active learning is important for learning the noise as well as the length scales.

55



BALD(ξ), BALD(ξ), Rand, Rand, MES, MES,
Dataset BALD(f) Rand BALD(f) Rand BALD(f) Rand

GP-D1 0.033 0.033 0.033 0.033 0.033 0.033
GP-D2 0.032 0.033 0.032 0.033 0.032 0.033
GP-D5 0.051 0.069 0.054 0.071 0.052 0.067
Auto 0.396 0.400 0.400 0.408 0.395 0.398
Branin 0.226 0.258 0.243 0.280 0.229 0.267
Concrete 0.512 0.508 0.507 0.508 0.525 0.512
Energy-1 0.092 0.159 0.104 0.176 0.145 0.187
Energy-2 0.242 0.259 0.218 0.255 0.246 0.264
Machine 0.564 0.565 0.581 0.579 0.575 0.572
Servo 0.545 0.544 0.555 0.536 0.530 0.540
Yacht 0.076 0.081 0.075 0.080 0.077 0.083

Table 3.8: As Table 3.7, but using RMSE to evaluate the test error.

3.3.4 Summary

Appropriate management of hyperparameter uncertainty is important to obtain good

performance in Gaussian process regression. This is particularly important when work-

ing with small quantities of data. The MGP provides a cheaper alternative to sampling

for learning and marginalizing over uncertain hyperparameters. With BALD can gain

maximal information about the hyperparameters alone. Once sufficient information

has been collected, one can actively learn the latent function also. Our experiments

indicate that in both phases of learning, active sampling can substantially improve

predictive performance.

3.4 Conclusions and Extensions

In conclusion, Gaussian process classification and regression models are models for

which BALD is particularly useful. This is because the parameter space is infinite

dimensional, and so directly computing posterior entropies necessarily requires sub-

stantial approximations which are normally not inductive. In GPR and GPC output

space is only one-dimensional, so computing predictive entropies is relatively straight-

forward. Furthermore, with non-conjugate likelihood functions, such as the probit, or

when doing hyperparameter learning, approximate inference can be expensive, so using

BALD to reduce the number of updates to one-per-sample is critical.

In classification, Equation (3.8) intuitively balances uncertainty due to lack of knowl-

edge in the posterior and inherent noise. This provides an information theoretically

56



motivated generalization of the popular technique MES, which is appropriate for GPR

with fixed hyperparameters, to classification. The ability to focus learning upon par-

ticular parameters of interest enables us to perform robust active learning in the face

of uncertain hyperparameters in GPR.

BALD is submodular, hence near-optimal, if the observations are conditionally in-

dependent given the parameters of interest (Section 2.3.6). With GPs this is true if the

latent function is the parameter of interest. However, when learning the hyperparam-

eters using the MGP, Equation (3.13), this is no longer the case. Nevertheless, we find

empirically that BALD is effective for learning the hyperparameters alone even with

the myopic assumption. However, due to the objective not being submodular, further

performance gains might be achieved by considering a longer horizon.

A direct extension would be to apply the MGP to non-conjugate likelihoods, such

as those used in GPC. The challenge here is to devise a method to propagate the

uncertainty p(ξ|D) through any approximate inference technique. Active GPs have

recently been proposed to tackle global optimization [Hennig & Schuler, 2012], and

quadrature [Osborne et al., 2012]. To apply BALD, computing the second term in

Equation (2.10) is the central challenge as one must condition the predictions on a

particular optimum or non-negative function with a particular integral, respectively.

However, as for the models presented here, using BALD for GP optimization and

quadrature is potentially rewarding as it can avoid the expensive inferences required in

previous approaches.

57



Chapter 4

Adaptive Quantum State

Tomography

Quantum information theory has become a popular field in physics and statistics. This

is largely due to the allure of quantum computing, but also the potential for secure

quantum communication and highly accurate quantum metrology. Quantum computers

can, in theory, solve certain problems exponentially faster than classical computers, such

as the factorization of large numbers which is central to cryptography [Shor, 1994]. The

engineering required to realize a quantum computer is extremely challenging, but this

is an exciting time for this field as early prototypes are able to implement rudimentary

algorithms [Ladd et al., 2010].

One problem that arises when working with quantum systems is how to character-

ize the quantum states being produced by the system. Due to the fundamental laws

of quantum mechanics, one cannot determine a quantum state exactly from a single

measurement. Therefore, in quantum tomography a series of measurements are made

on copies of the state, from which the state is estimated [Paris & Řeháček, 2004]. The

problem is that many measurements may be required to attain appropriate fidelity1

in the estimation. We employ the active learning methods developed in this thesis to

vastly reduce the number of measurements required. Further, in collaboration with

experimentalists, our active learning algorithm was implemented in a laboratory ex-

periment using polarized qubits. In these experiments, the large simulated gains are

realized in practice.

The chapter is structured as follows, Section 4.1 provides a brief primer on quantum

1 This is a technical term that will be formalized in Section 4.1.3. As the name implies, it measures
the accuracy of an estimate of the state.

58



statistics. Next we describe how Bayesian inference can be used in this domain. A new

algorithm for adaptive experimental design in quantum tomography based upon the

BALD framework is proposed in Section 4.3. We then validate our approach with sim-

ulated experiments. In Section 4.6.2 we show how to deal with real-world experimental

noise, and present the laboratory experiments in Section 4.6.3.

4.1 Primer on Quantum Statistics

The necessities required to follow the work in this chapter are presented here. For a

comprehensive introduction to quantum statistics see Petz [2008].

4.1.1 States and Density Matrices

The fundamental unit in quantum mechanics is a qubit, which has two states denoted

|0〉, |1〉. The angled brackets are the “bra-ket” notation, for our purposes, they simply

indicate that the vector inside is complex-valued. A classical bit can exist in only one

of the two states, 0 or 1. However, a qubit, denoted |ψ〉, can exist in any (complex)

linear superposition of the states. A qubit stochastically realizes one of its states when

measured, at which point the qubit is destroyed and no further measurements can be

performed on it. Mathematically, a qubit |ψ〉 is a complex vector of length one. In a

single qubit system |ψ〉 is two-dimensional and hence has two degrees of freedom. For

example, if the state being represented is a photon of light, |ψ〉 represents its horizontal

and circular polarization angles.

A state represented by |ψ〉 is a pure state. A system can also emit a statistical

combination of states. these are known as mixed states, and are represented by a more

general quantity, a density matrix ρ. In a single qubit system, ρ is a 2 × 2 complex-

valued matrix which must be Hermitian and have unit trace to be a valid state. A pure

state is a special case of a mixed state, where ρ = |ψ〉〈ψ|. Here, the bra-ket notation

denotes the generalization of the the outer product to complex vectors, that is, |ψ〉
multiplied by its conjugate transpose.

4.1.2 Measurements with Probabilistic Outcomes

When a binary quantum state in measured, one observes one of two outcomes with

probability depending on the state and measurement made. For example, if we pass

light through a polarizing filter, the two outcomes are i) the photon passing through

59



the filter, or ii) it being reflected. The probability of each outcome depends on the po-

larization state of the light, fully specified by the density matrix ρ, and the polarization

angle of the filter.

More precisely, a single outcome of a measurement γ is characterized by another

complex valued Hermitian matrix Mγ . The set of matrices for all outcomes of the mea-

surement is called a positive operator-valued measure (POVM), denoted M = {Mγ}Γγ=1,

where Γ = 2 for single qubit systems. A POVM must satisfy
∑Γ

γ=1Mγ = I. This en-

sures that the probability of all outcomes sum to one. When the measured system is

in state ρ, the probability of each outcome γ is given by Born’s rule,

P (γ|ρ,M) = tr [Mγρ] . (4.1)

As in many learning scenarios, including those in this thesis, uncertainty in quantum

tomography arises from two sources. First, there is uncertainty in the state from

observing only a finite number of measurement outcomes γ. Second, due to the laws

of quantum mechanics, the measurements are stochastic, and some measurement/state

combinations will yield more deterministic outcomes than others. With some states the

outcome will be highly unpredictable, regardless of the measurement. For example, for

a pure single qubit state (ρ is rank 1), there exists a POVM, such that outcome ‘one’

is always observed. This is achieved by setting M2 to live in the null space of ρ, and

M1 to its orthogonal complement. Alternatively, if ρ = I, then with any measurements

that have equal trace, tr[M1] = tr[M2], the outcome will be uniformly distributed.

A single POVM is insufficient to infer a qubit state. For a single qubit, ρ is charac-

terized by three real parameters and a POVM has two outcomes. Even after observing

infinitely many measurements outcomes, one degree of freedom in ρ is unspecified.

Therefore, a full tomographic protocol consists of a series of measurements with differ-

ent POVMs, each in configuration α, denoted {Mα}. The probability of observing a

dataset consisting of N measurements D = {γn, αn}Nn=1 is a straightforward extension

of Born’s rule (4.1), accounting for the possible permutations,

P (D|ρ) =

N∏
n=1

P (γn|ρ, αn) =
∏
α

nα!
Γ∏
γ=1

1

nαγ !
tr[Mαγρ]nαγ , (4.2)

where nα is the number of measurements made in configuration α, and nαγ is the

number of times outcome γ was observed in configuration α.

60



4.1.3 Infidelity

The main goal of quantum state tomography is to provide an estimate ρ̂ for ρ based

on the data D [Paris & Řeháček, 2004]. Methods for computing this estimate are

described in Section 4.3. The estimate should be close to the real state in some

reasonable sense, therefore various notions of statistical distance between quantum

states have been proposed [Bengtsson & Zyczkowski, 2006; Braunstein & Caves, 1994].

One of the most widely used measures of statistical distance is fidelity, defined as

F (ρ, ρ̂) = tr
[√√

ρρ̂
√
ρ
]2

. When ρ̂ = ρ the fidelity takes its maximum value of one,

and when the true and estimated states are orthogonal it equals zero. It is common to

work with the infidelity, defined as 1 − F (ρ, ρ̂) The goal of a tomographic protocol is

to minimize the infidelity after a fixed number of measurements.

4.1.4 Entanglement and The Curse of Dimensionality

A single pure qubit state is represented by the two dimensional state vector |ψ〉. In a

system with m separable qubits, the state vector has dimension D = 2m, and takes the

form |ψ〉 = |ψ1〉 ⊗ . . . ⊗ |ψm〉. Due to the lack of interaction between the states, the

resulting D ×D density matrix for mixed separable states has 3D degrees of freedom.

Quantum states can also be entangled, entangled mixed states can take any valid D×D
density matrix, so have D2 − 1 free variables. With either separable or entangled

states, the number of parameters that must be estimated scales exponentially in the

number of qubits, hence exponentially many resources are required for reconstruction.

In statistics, this difficulty is known as the ‘curse of dimensionality’ [Bellman, 1961].

This means that, even in systems of modest size, tomography requires many mea-

surements. For example, in a four-qubit system over a week of net experimental time

is reported in Amselem & Bourennane [2009]. Therefore, it is crucial to minimize the

number of measurements by gathering only the most useful data; this is an active

learning task. Note, however, that active learning cannot overcome the fundamental

limitation of the curse of dimensionality. However, as we will show, it can provide

large practical gains which can substantially reduce experimental time in modest sized

systems.

4.2 Current Experimental Designs

Most existing optimal experimental designs in quantum tomography are static, a fixed

set of measurements is determined prior to the experiment. It is known that in this

61



setting that mutually unbiased bases (MUBs) yield optimal information gain [Adamson

& Steinberg, 2010; Patra, 2007; Wootters & Fields, 1989]. MUBs are a set of POVMs

{Mi}, such that, tr[MiγMjγ′ ] = D−1/2 ∀i 6= j, γ, γ′, informally these can be thought of

as an ‘orthogonal’ measurement set. Research since has focused mainly on proving or

disproving the existence of, and implementing MUBs in various dimensions [Adamson &

Steinberg, 2010; Raynal et al., 2011; Yan et al., 2010]. Another approach to designing

static OEDs is to use the Cramér-Rao bound with maximum likelihood estimation

[Kosut et al., 2004; Nunn et al., 2010].

However, with fixed designs the infidelity scales as 1 − F ∼ N−1/2 on average for

almost-pure states, which are the interesting regime for most applications. Although

smart choices of measurement, such as MUBs, can alter the pre-factor [Bogdanov et al.,

2011; de Burgh et al., 2008; Řeháček et al., 2004], the scaling law for large N is unaf-

fected. With adaptive designs, one can hope to beat this limit. In physics, this active

learning approach has been referred to as self-learning measurements [Fischer et al.,

2000; Hannemann et al., 2002]. However, due to the expensive computations involved,

these methods are restricted to two dimensional pure quantum states, or very few mea-

surements. With fast Bayesian inference methods and the BALD framework we can

improve learning rates in practical scenarios.

4.3 Bayesian Quantum Tomography

The task in quantum tomography is to infer the unknown state ρ given a number

of measurement outcomes. The simplest approach is to invert Born’s rule using the

matrix pseudo-inverse. However, with finite data, this can result in unphysical density

matrices. From Born’s rule, we know the data generating process, and so we have access

to the appropriate likelihood function (4.2). Therefore, one can perform maximum

likelihood estimation of ρ. A well-known drawback of maximum likelihood is that

it often yields rank-deficient estimates, and thus assigns zero predictive probability to

certain observations [Blume-Kohout, 2010]. This is analogous to statistical ‘over-fitting’

[Hawkins, 2004].

More recently, Bayesian methods have been proposed because they maintain the

uncertainty in ρ [Blume-Kohout, 2010, and refs. therein]. The posterior is computed in

the usual manner,

p(ρ|D) ∝ P (D|ρ)p(ρ) , (4.3)

where P (D|ρ) is the likelihood given by Born’s rule, and p(ρ) is the prior on physical

62



density matrices. Ultimately, when predicting the states being produced by a quantum

system we desire a point estimate. For this we may report the posterior mean, called

the Bayesian mean estimate (BME) ρ̂ = Ep(ρ|D)[ρ]. The BME uniquely optimizes

any operational divergence. These are the quantum equivalent of proper scoring rules

[Dawid, 2007] and reward honest estimates of the state [Blume-Kohout & Hayden,

2006].

To perform Bayesian inference, we need to specify a prior over density matrices

p(ρ). Typically a non-informative (uniform) prior is selected, unless there is reason

to favour particular states a priori. Designing appropriate priors is an open area of

research [Blume-Kohout, 2010]. We adopt a representation that treats D ×D dimen-

sional state ρ as part of a larger, D×K dimensional multipartite system.1 In particular,

we put a uniform prior over a D ×K dimensional pure state |ψD×K〉. This represen-

tation is easier to work with than with the density matrix ρ because |ψ〉 has fewer

constraints. For example, ρ must be complex conjugate, but the columns of |ψ〉 can

be adjusted independently. The original state is formed by taking the complex outer

product ρD×D = |ψD×K〉〈ψK×D| (known as “tracing out” the K ancillary dimensions).

For K ≥ D, this will result in any rank-D state ρ. Larger values of K put more mass

on pure states, and smaller values will yield rank-deficient states. Therefore we choose

K = D to be maximally uninformative.

As in most Bayesian models, the posterior (4.3) is intractable. Therefore, we use

Markov chain Monte Carlo (MCMC) sampling for approximate inference.

4.3.1 Sequential Importance Sampling

To deal with the intractable posterior in (4.3) MCMC approaches have been proposed

[Blume-Kohout, 2010, and refs. therein]. However, each time inference is performed,

these methods require evaluation of the likelihood given all the data (4.2). This compu-

tation has O(N) cost in the number of different measurement configurations used. This

is undesirable for adaptive tomography because: i) If we are fully adaptive, and adjust

the measurements after each observation, then N is the total number of observations.

ii) Inference must be performed after each measurement; if inference takes longer than

the time to produce and measure another state then it may be better to collect more

data using a fixed design. Note that (ii) is not always a concern in active learning; for

example, when surveying for minerals the measurement cost is financial and one may

have a large offline computational budget. To avoid a large inference cost per sample

1 A multipartite system is one in which there is no entanglement between states, see Section 4.1.4.

63



we use sequential importance sampling (SIS) [Doucet et al., 2001], which has O(1) cost

per iteration.

In SIS one keeps track of S samples, often called particles, ρs, and corresponding

weights ws, (
∑

sws = 1) which are updated every time a new measurement is made.

After n measurements, having observed data Dn, the particles ρs and weights w
(n)
s

constitute an approximation to the posterior,

p(ρ|Dn) ≈
S∑
s=1

w(n)
s δ(ρ− ρs) . (4.4)

Using this approximation and Bayes’ rule, after observing a new outcome γn+1 in

configuration αn+1, the updated posterior is given by

p(ρ|αn+1, γn+1,Dn) =
P (γn+1|ρ, αn+1)p(ρ|Dn)∫
P (γn+1|ρ, αn+1)p(ρ|Dn)dρ

(4.5)

≈
S∑
s=1

P (γn+1|ρs, αn+1)w
(n)
s∑S

r=1 P (γn+1|ρr, αn+1)w
(n)
r︸ ︷︷ ︸

w
(n+1)
s

δ(ρ− ρs) .

The new weights w
(n+1)
s are the re-normalized product of the current weights w

(n)
s

and likelihood of the new datapoint P (γn+1|ρs, αn+1). This update is fast as it only

requires computing one term of the full likelihood, thus its complexity is independent of

how many configurations have been used before. However, as time progresses, several

weights decay towards zero, so the quality of the approximation falls. This issue can

be detected and handled by monitoring the effective sample size, defined as ESS(t) =(∑S
s=1w

(t)
s

2
)−1

. When the weights are uniform the ESS takes its maximal value,

ESS(t) = S. When the ESS falls too low the particles are resampled using all of the

data and given uniform weights again.

4.4 Adaptive Quantum Tomography

We apply Bayesian experimental design to adaptive measurement selection. In quan-

tum tomography the aim is to pick an experimental configuration α, such that after

observing the outcome γ, we reduce the entropy of the posterior over the state as much

64



as possible. Therefore, the utility of configuration α is

U(α) = H [p(ρ|D)]− Ep(γ|α,D) [H [p(ρ|γ, α,D)]] . (4.6)

If the posterior is not updated, D = ∅, Equation (4.6) will select MUBs for its

first measurements [Patra, 2007]. We demonstrate this effect in Section 4.5.1. How-

ever, the usual difficulties arise. It is hard to estimate the entropy of the, potentially

high dimensional, distribution over density matrices from which we only have weighted

samples. Furthermore, it is impractical to update all of the weights for each possible

configuration α and outcome γ. Therefore, we use BALD (2.10) to rewrite the utility

as

U(α) = H [P (γ|α,D)]− Ep(ρ|D) [H [P (γ|α, ρ)]] . (4.7)

The predictive distributions are D−dimensional multinomials, and so both terms

in Equation (4.7) can easily be computed using the sampling approximation to the

posterior in Equation (4.4). As demonstrated on a toy model in Section 2.3.3, computing

the information gain indirectly from samples of ρ using Equation (4.7) is likely to be

much more accurate than estimating H[p(ρ|D)] directly from the samples.

The inclusion of the second term in (4.7) is particularly important in quantum

tomography, because certain measurements will always yield a maximum entropy (uni-

form) outcome for a particular state. In a one qubit system, a measurement with

tr[Mγρ] = 0.5, ∀γ ∈ {1, 2} will always exist. Even after infinitely many measurements

using this POVM, ρ can only be constrained to a plane of solutions, but uncertainty

sampling would continue to select this measurement.

Information gain has a decision theoretic interpretation because the task involves

making predictions about the quantity being actively learnt, the state ρ. Minimizing

the entropy of the posterior (4.6) is equivalent to minimization of the Bayes risk if the

log loss is used to evaluate probabilistic estimate of the state. In a decision theoretic

framework, other loss functions could be used, such as the fidelity [Fischer et al., 2000].

Although this loss is theoretically attractive for quantum tomography, the cost to op-

timize this loss is very high. Fischer et al. [2000] simulate only 60 measurements. In

Hannemann et al. [2002] experimental designs for all 2N possible sequences of outcomes

are pre-computed, and so the authors are limited to very short experiments (< 20 mea-

surements). With BALD and SIS we can perform more efficient adaptive quantum

tomography, and hence run longer experiments. In the next section we demonstrate

in simulation that we attain much better estimates of the state than non-adaptive

schemes.

65



4.5 Simulations

We simulate single and two qubit systems. First we demonstrate how BALD behaves

in this setting.

4.5.1 Single Qubit Tomography

We first study tomography of single qubits (D = 2). Recall that mixed state qubits

have three real degrees of freedom, therefore ρ may be represented as a point in a unit

ball called the Bloch sphere. For illustration purposes, in our first example we omit

the third component, and only infer the two remaining parameters, which lie in a unit

(Bloch) disk. For example, this corresponds to determining linear polarization of a

photon, assuming that the circular polarization is zero. We allow for arbitrary projec-

tive1 measurements with binary (Γ = 2) outcomes. These are represented by pairs of

antipodal points on the perimeter of the Bloch disk. Geometrically, Born’s rule states

that the probability of each outcome is proportional to the length of the projection of

the state vector onto the corresponding measurement vector. Here α ∈ [0, π) indexes

the orientation of the measurement. Figure 4.1 shows the progression of measurement

bases chosen by BALD. The first two measurements are mutually unbiased, however,

the third measurement is equally biased with respect to both previous bases, demon-

strating that using a fixed MUB set is suboptimal in the adaptive setting. Throughout

the rest of the experiment the algorithm explores a wide range of measurements.

In the next experiment we compare to random measurements and MUBs, this time

inferring all three coordinates in the full Bloch sphere. We average over many runs

each with randomly drawn pure states. The performance of the random and adaptive

designs is independent of the true state, but this is not the case for MUBs. Figure 4.1(d)

shows that the majority of measurements ‘point in the direction of’ the true state ρ̄.

Drawing intuition from this, fixed MUBs perform better with certain states. In fact,

the best case for MUBs is when ρ̄ aligns with one of the measurements, then the rate of

convergence of fidelity can be improved from N−1/2 to N−1 [Mahler et al., 2013]. We

denote this scenario MUB-best; note of course that this is not a practical alternative as

one does not know ρ̄ a priori and hence cannot align the MUBs correctly. We denote

the opposite case MUB-worst, this occurs when the true state is equally biased with

respect to the MUBs.

We average over many runs with randomly drawn pure states, and evaluate the

1 A projective measurement is analogous to a pure state. Most practical measurement devices give
projective measurements.

66



(a)

|H〉|V 〉

|D〉

|A〉

(b)

(c) (d)

Figure 4.1: Adaptive tomography using BALD. Scatter plots show 400 samples from
current posterior. Shaded circles around the ‘Bloch disk’ show the relative value of the
objective in Equation (4.7) for different measurement directions (lighter is higher). Pairs
of arrows show the most informative next measurement (POVM). Circular histograms
show the number of times measurement directions have been used. (a) Initially, no
observations are made, samples shown are from the uniform prior. All measurements
are equally informative, we chose to start with {|H〉 , |V 〉}. (b) After one measurement,
the posterior is updated, now the best measurement is mutually unbiased w.r.t. the first
one. It is now {|D〉 , |A〉}. (c) After two observations, the best measurement is equally
biased to the first two bases. (d) Posterior after 1000 observations concentrates around
true state. The method tries a range of measurements, with a tendency to point towards
the solution.

67



2 2.5 3 3.5 4
−4

−3.5

−3

−2.5

−2

−1.5

−1

log
10

(num samples)

lo
g

 m
e

a
n

 i
n

fi
d

e
lit

y
 l
o

g
1
0
(E

p
(ρ

|D
)[1

 −
 F

(ρ
)]

)

 

 

adaptive
random
MUB
MUB−best
MUB−worst

N
−1/2

N
−1

Figure 4.2: Simulated tomography using three measurement selection methods: ran-
domly sampled (red continuous line), MUBs (blue ×) and fully adaptive Bayesian
tomography, using BALD (black ◦). For these methods, the true state is random and
pure, the results presented here are the average of 20 independent runs. Functions
1 − F = N−1/2 (magenta, dash-dotted) and 1 − F = N−1 (cyan, dashed) are shown
for comparison. To account for state-dependence of MUB tomography, we also present
its performance for the ‘worst’ and ‘best’ true states (dark green +, light green •,
respectively).

performance after each observation using the posterior mean infidelity measured against

the true state, Ep(ρ|D)[1−F (ρ, ρ̄)]. The Bayesian mean is a fairer score than the infidelity

of a point estimate, such as the BME 1 − F (Ep(ρ|Dn)[ρ], ρ̄). This is because the BME

can be correct even if we have no knowledge about the system, for example, the BME

of a uniform distribution over states will achieve zero infidelity for a completely mixed

state. The posterior mean infidelity rewards distributions that are both centred in the

correct location and have low variance.

Figure 4.2 shows the mean infidelity versus the number of measurements made using

each algorithm. We fit a power law, 1 − F ∝ Na to the data. Random tomography

yields a = −0.66 ± 0.03, which is in reasonable correspondence with the expected

asymptotic scaling N−1/2 for fixed designs [Adamson & Steinberg, 2010]. However,

adaptive tomography performs close to the N−1 level with average a = −0.90 ± 0.03.

In its most favourable scenario, MUBs also perform close to the N−1 rate and have

a small multiplicative constant improvement over the adaptive scheme. In practice,

68



(a) max. mixed

102 103 104

10−3

10−2

10−1

100
m

ea
n

in
fi
d
el

it
y (b) HH + VV

102 103 104

10−3

10−2

10−1

100

(c) HV

102 103 104

10−3

10−2

10−1

100

num samples

m
ea

n
in

fi
d
el

it
y (d) random pure

102 103 104

10−2

10−1

num samples

Figure 4.3: Two qubit tomography with uniform selection from MUBs ( ), SSQT
bases ( ) and Bayesian adaptive sampling from the same set of MUBs ( ), SSQT
bases ( ) or a more flexible set of 81 separable bases ( ). Panels (a)-(c) are
the same as those in Adamson & Steinberg [2010], (d) shows average results over 20
randomly generated entangled pure states.

the optimal MUBs are unknown a priori. In the case of arbitrarily chosen MUBs we

observe that on average the rate is nearer N−1/2: a = −0.64± 0.05.

4.5.2 Separable and MUB Tomography of Two Qubits

In multipartite systems, such as m-qubit registers, there are two fundamentally dif-

ferent classes of measurements one can apply: separable or entangling. Separable to-

mographic experiments are straightforward and cheap to implement, while entangling

measurements are statistically more powerful. Notably, entanglement is required to

implement MUBs [Adamson & Steinberg, 2010]. To investigate this trade-off in the

light of adaptive tomography, we reproduce and extend the experiments in Adamson &

Steinberg [2010]. We compare five algorithms. Two non-adaptive methods – uniformly

69



selecting from a set of MUBs, and a set of Standard Separable Quantum Tomographic

(SSQT) bases. Three methods that use BALD – adaptively selecting from (i) MUBs,

(ii) SSQT bases, and (iii) a larger, over-complete, set of 81 separable bases.

We simulate the tomography of four different states, results are presented in Fig-

ure 4.3. Figure 4.3 (a) shows results with a maximally mixed state, ρ̄ = I. This corre-

sponds to a single qubit state that lies in the centre of the Bloch sphere. In this case all

measurements yield uniformly distributed outcomes. As expected, with a maximally

mixed state the choice of measurement strategy has little effect. Figure 4.3 (b) shows an

entangled state (|HH〉+|V V 〉)/
√

2. MUBs outperform SSQT when uniformly sampled,

but by allowing for adaptivity we can close the performance gap. Figure 4.3 (c) shows

a separable state |HV 〉. In this case SSQT outperforms MUBs because separable mea-

surements align better with the state than the more flexible entangled MUBs. Again,

when choosing measurements adaptively both measurement bases perform equally well.

Figure 4.3 (d) shows a random pure state. Here, BALD with the flexible set of separable

measurements yields a large improvement in performance. In this case, adaptive to-

mography with an over-complete set of separable bases only needed 104 measurements

to achieve ≈ 98.7% mean fidelity, which required 105 measurements using MUBs.

In summary, all substantial differences between MUBs and standard separable to-

mography (SSQT) vanish when we allow for adaptivity (Figure 4.3 a–c). Furthermore,

for random pure states, we are able to realize a ten-fold improvement over MUBs when

using adaptive separable measurements (Figure 4.3 d). The results indicate that allow-

ing for adaptivity with an imperfect, but flexible set of measurements offers greater

advantages than using a fixed set of MUBs.

We have demonstrated in simulation the potential for BALD to greatly reduce the

number of measurements relative to the optimal, non-adaptive, MUB designs. In two-

qubit systems, a ten-fold reduction can be achieved. In a one-qubit systems, we are

able to beat the N−1/2 scaling of infidelity, observing rates closer to N−1. However,

can such gains be made in a real-world, noisy environment? In the next section we

present laboratory experiments on single state polarization qubits.

4.6 Laboratory Experiment

We investigate the benefits of adaptive Bayesian quantum tomography in laboratory

experiments on a single photon light source. In a real world setup there are additional

sources of noise. After presenting the experimental setup we describe how to model

this noise and show our findings.

70



Figure 4.4: Experimental setup. An attenuated laser is used as a source, the po-
larization state is prepared by a custom waveplate, and analyzed by a sequence of a
quarter- and half-wave plates, followed by a polarizing beam-splitter and two single-
photon counters. Waveplates are rotated by electronically controlled step-motor drivers
to allow for adaptivity.

4.6.1 Setup and Apparatus

We perform polarization tomography on single photons of light emitted from an atten-

uated laser. A measurement is made by passing the light through a filter called the

polarization beam splitter (PBS). Depending on the state, the photon will pass though

the PBS or be reflected. Detectors, called single-photon counting modules (SPCMs),

count the photons that follow each path. Recall that in single qubit tomography, a pro-

jective measurement is characterized by two degrees of freedom, the polar and azimuth

angles in the Bloch sphere. The different measurements are achieved by rotating the

photon twice, using a quarter-wave plate (QWP) and a half-wave plate (HWP). Their

orientation is set using motors, and during adaptive tomography, the wave plates are

rotated to achieve the optimal measurements.

Figure 4.4 depicts the setup. In detail, we use a CW 850 nm vertical-cavity surface-

emitting laser (VCSEL) diode laser coupled to a single-mode fibre as the light source.

The radiation is attenuated to the single-photon level by a set of neutral density filters

(F) and additionally spatially filtered with small iris apertures. The input polarization

state is defined by a Glan-Taylor prism GP with high extinction ratio (more than

6000:1), the prism transmits horizontally polarized light, which may be transformed to

an arbitrary state with a proper choice of a quartz wave plate (WP).

The measurement scheme consists of an effective zero-order QWP and a HWP. The

plates are rotated by step-motor-driven stages, with minimal angular step of 0.1◦. The

71



zero position is controlled by a Hall sensor providing uncertainty of 0.2◦. We clean

up the polarization states in the output channels of the PBS cube with two additional

Glan-Taylor prisms to ensure high extinction ratio. Effectively this is equivalent to

introducing some losses in the ideal PBS cube without altering the output polarization

states. In each channel photons are coupled to multi-mode fibres (MMF) and detected

by single photon counting modules D1 and D2 (Perkin-Elmer). Electronic pulses from

SPCM’s are sent to a counter built in-house which may operate in two ways - count

for a fixed period of time or until a specified number of counts is reached.

4.6.2 Modelling Experimental Imperfections

In practice quantum tomography is subject to experimental noise. This noise is not

modelled in the likelihood function given by Born’s rule (4.2). In our experiment we

identified two major additional sources of noise: dark counts with detector-specific rates

and attenuation in both channels due to detector inefficiency and losses at the optical

elements.

Dark and Background Counts

Dark and background counts are false positive observations that are detected even when

there is no photon present. A popular approach to account for dark counts is to model

the observed state as a linear mixture of the true state and the maximally mixed state

[Lvovsky et al., 2001]. With this approach one can describe certain simple sources of

noise, such as dark counts being generated at each detector with equal rates. We take

a more flexible approach and model the noise directly in the likelihood function.

We assume that photons produced at the laser source and dark counts are all

generated independently. In particular, we assume that the production of photons

by the laser source, and generation of dark counts by the detectors can be modelled

using independent homogeneous Poisson processes with rate parameters λs for the

source and λγd for each detector γ. We assume that the rates of the Poisson processes

remain constant over time. This homogeneity assumption is likely to be violated due

to parameter drift in the apparatus, but by re-calibrating the system periodically we

ensure that the drift is small. Audenaert & Scheel [2009] consider more general noise

scenarios, but the resulting computations are more complex and may require numerical

methods. The rates Λ = {λs, {λγd}
Γ
γ=1} are estimated from prior experimentation.

The new likelihood function follows directly from these assumptions and Born’s

rule. The total rate of photons (including dark counts) entering the system follows a

72



Poisson process with rate λs +
∑Γ

γ=1 λ
γ
d . Therefore the probabilities that a detection

is from the source or a dark count are given by

P (source|Λ) =
λs

λs +
∑Γ

γ=1 λ
γ
d

, P (dark|Λ) =

∑Γ
γ=1 λ

γ
d

λs +
∑Γ

γ=1 λ
γ
d

.

The likelihood follows from Born’s rule (4.1),

P (γ|ρ, α,Λ) = P (γ|source, ρ, α)P (source|Λ) + P (γ|dark)P (dark|Λ)

= tr[Mαγρ]
λs

λs +
∑Γ

γ=1 λ
γ
d

+
λγd∑Γ
γ=1 λ

γ
d

∑Γ
γ=1 λ

γ
d

λs +
∑Γ

γ=1 λ
γ
d

=
tr[Mαγρ]λs + λγd
λs +

∑
γ λ

γ
d

. (4.8)

When there are no dark counts, λγd = 0, ∀γ, then Equation (4.8) reduces to Born’s rule

(4.1).

Channel Inefficiency

As well as dark counts, the detectors can produce false negatives. Photons may also

be reflected at the optical elements, such as the wave-plates and PBS. Furthermore,

the GT prisms may have different attenuation factors. To model these channel-specific

losses, each detector is assigned an efficiency ηγ ∈ [0, 1]. the probability of a photon

being ‘lost’ in the channel ending in detector γ is given by 1 − ηγ . Therefore, the

probability of observing a measurement at detector γ is proportional to tr[Mαγρ]ηγ .

The likelihood is straightforward,

P (γ|ρ, α, η1, . . . , ηγ) =
tr[Mαγρ]ηγ∑
γ tr[Mαγρ]ηγ

. (4.9)

In Equations (4.8) and (4.9), both the numerator and denominator contain only

linear terms in the additional parameters (Λ, {ηγ}). Therefore, one only requires esti-

mates of the ratio of the dark count rates to the source rate λγd/λs, and, for single-qubit

tomography, the ratio of the efficiencies of the two channels η1/η2. For this reason we

do not need to measure the absolute attenuations in the GT prisms.

73



102 103 104

10-3

10-2

 

 

 Adaptive
 Random
 MUB

av
er

ag
e 

in
fid

el
ity

, 1
-F

number of measurements, N

Figure 4.5: Experimental results: mean infidelity 1 − Ep(ρ|D)F (ρ, ρ̄) with true state ρ̄
for random measurements – red (middle) line, adaptive measurements – black (lower)
line, and measurements in MUBs – blue (upper) line. We average over 10 experimental
runs, shaded areas show the standard deviation. Dashed straight lines indicate the
power law fits.

Block Sampling

The time taken to rotate the WPs into position is longer than rate of generation of the

states or the time required to run SIS or BALD. Therefore, we adjust the apparatus

after blocks of measurements that increase in size with amount of data collected as

dN/100e. In simulation we found no statistical difference between this strategy and

adjusting after every measurement.

4.6.3 Results

In a real world application of tomography the true state is unknown, so we estimate the

prepared state by averaging over many runs of adaptive protocol. Figure 4.5 gives the

mean infidelity to the (estimated) true state. Power law fits give a = −0.64± 0.02 and

a = −0.60± 0.05 for random and MUB protocols, respectively, while adaptive strategy

yields a = −0.92± 0.03.

Within the errors bands, the scaling laws obtained in the experiments agree with the

simulations in Section 4.5.1. This demonstrates that we were able to realize in practice

the advantages of using BALD for adaptive Bayesian tomography. Our model does not

74



take into account systematic errors, such as imprecise waveplate rotations. However,

for the infidelities values that we reached, 10−4 − 10−3, we did not observe deviations

from the expected behaviour and could not identify the influence of systematic errors.

4.7 Conclusions

The ability to characterize states in a quantum system in reasonable time is important

for the practical application of quantum technology. We have presented the use of

Bayesian methods and the BALD framework for adaptive quantum tomography. This

adaptive approach outperforms MUBs, widely accepted as the optimal fixed measure-

ments. In both simulation and laboratory experiments we can achieve much faster con-

vergence rates in single qubit tomography with nearly pure states than those achieved

by MUBs or a random design. We approach the theoretical limit for any tomographic

protocol, N−1, and so any further improvements can only effect the multiplicative

constant.

Moreover, the adaptive framework applies regardless of dimensionality, and can be

applied to spaces where MUBs do not even exist [Patra, 2007; Raynal et al., 2011].

In simulation we achieved up to a 10-fold reduction in the number of measurements

required in two-qubit systems using adaptive separable measurements. This motivates

a shift in experimental focus from implementing complex entangling measurements to

quickly reconfigurable simpler measurements.

Although we have demonstrated a substantial leap forward in terms of empirical

performance, it is important to keep in mind that adaptive tomography does not resolve

the curse of dimensionality; the size of the parameter space still scales exponentially

with the number of qubits. To achieve feasible tomography in higher dimensional

spaces, it is necessary to restrict the search space. Bayesian methods could be extremely

useful here, as the prior can be used to impose the desired assumptions about the state.

75



Chapter 5

Stochastic Inference for Large

Binary Matrices

Chapters 5, 6 and 7 focus upon modelling of matrices, a common data-type in ma-

chine learning, engineering and science. Chapters 6, 7 and 8 also draw on techniques

developed in the previous chapters to do active learning with matrix data in various

scenarios.

5.1 Introduction to Probabilistic Matrix Modelling

Many datasets take the form of a matrix or table. Examples include: user-by-product

rating or purchase matrices; sample-by-gene expression bioinformatic matrices; person-

by-person social network graphs; and user by response questionnaires. Recently, matrix

data received attention in machine learning due to the widely contested $1M Netflix

Challenge [Bennett & Lanning, 2007]. In this challenge participants were given a large

user-by-movie ratings matrix with very many missing entries and were required to

predict unobserved ratings. This is one of the most common tasks with matrix data;

to predict or rank missing elements in highly sparse matrices. Sometimes the rows and

columns have covariates, and predictions can be improved using supervised learning

with these features (this is investigated in Chapter 6). When there are no features,

patterns in elements of the matrix must be exploited directly. The task of discovering

the structure of a matrix to make predictions is known as collaborative filtering.

A number of approaches have been developed for matrix modelling, such as cluster-

ing models [Ungar & Foster, 1998], mixture models [Hofmann, 2004], neighbourhood

methods [Sarwar et al., 2001] and matrix factorizations (MF) [Koren et al., 2009; Srebro

76



et al., 2005]. MF techniques are probably the most successful due to their simplicity

and often superior predictive performance. They were central to many of the best single

models in the Netflix challenge [Bell et al., 2010]. Recently, probabilistic methods for

matrix factorization have been developed. These have become popular because i) they

are robust to overfitting [Salakhutdinov & Mnih, 2008], ii) they can produce estimates

of uncertainty in their predictions, and iii) they can be adapted to different data-types,

such as continuous matrix entries [Salakhutdinov & Mnih, 2008], binary data [Rendle

et al., 2009] and ordinal valued data [Stern et al., 2009].

However, a number of challenges arise in probabilistic matrix modelling. The main

challenge is to scale inference algorithms to handle large modern datasets. Further open

issues include extending models to include covariates or to use other forms of feedback,

such as binary preferences, being robust when there is very little data available, and

collecting entries in an active manner. In the following chapters we tackle these chal-

lenges. First we address the task of scaling inference with large binary matrices for

which we develop stochastic inference techniques.

5.2 Limitations of Batch Inference

Probabilistic models for matrix factorization assume that a partially observed data

matrix X is well approximated by a low rank matrix UVT. Normally X is very sparse,

with most elements being unobserved. The objective is then to find the two matrices

U and V given X. Probabilistic methods treat each element in U and V as model

parameters to be inferred. Fast approximate inference is usually implemented using

variational Bayes [Lim & Teh, 2007; Nakajima et al., 2010; Raiko et al., 2007]. The

resulting techniques are computationally efficient because their cost depends only on

the number of entries observed in X, which is usually low, and not on the size of X,

which can be large.

Many real-world datasets are binary, that is, the entries of X take values in {0, 1}.
Some common examples of sources of binary data include include market basket data

[Mild & Reutterer, 2003], click-stream data [Joachims, 2002], network data [Airoldi

et al., 2008] or file dependencies in complex software systems [Hu et al., 2010]. How-

ever, for binary matrices, X is usually fully observed, entries take either zero or one and

there is no ‘unobserved’ value. For example, in a news portal, we know which articles

77



a user has visited, and which they have not.1 With fully observed matrices the afore-

mentioned probabilistic approaches to solving the MF problem are infeasible in practice

because they require looking at the entire matrix before making any adjustments to

the parameters.

More specifically, current popular inference methods are based on batch variational

algorithms that require processing all the entries in X before producing even a single

update to the variational parameters. An alternative is to use a likelihood function for

continuous data instead of one for binary data [Nakajima et al., 2010]. In this case,

an analytic solution exists which scales with the number of ones in X. However, this

solution is restricted to zero-mean spherical priors on U and V, and homoscedastic

Gaussian likelihood functions for X. In our experiments, we find that these restrictions

lead to poor predictions when X is binary.

We address scalable learning with probabilistic MF models that are flexible enough

to produce state-of-the-art predictions on large binary matrices. To meet this challenge

we propose an algorithm based upon stochastic inference. Stochastic methods have the

advantage that, with large datasets, they can make reasonably accurate predictions

before batch algorithms generate a single parameter update. The algorithm is based

on a recent technique called stochastic variational inference (SVI) [Hoffman et al.,

2013]. Existing implementations of SVI do not extend to MF models directly, which

present specific challenges that are not encountered in models currently addressed by

this inference algorithm, such as topic models. This is because in MF we subsample

individual matrix entries instead of complete data instances, such as an entire document

in a topic model. In standard SVI all the variational parameters are updated each time

a data instance is subsampled. With matrices, we have different parameters for each

row and column in X and each time we subsample a matrix entry, we update only the

variational parameters associated with the row and column of that entry. This makes

the data sub-sampling strategy more important because it determines which parameters

are updated and how often. For this reason, we develop a data subsampling strategy

with different sampling probabilities across the rows and columns of X. This method

significantly outperforms standard uniform subsampling.

A second challenge for SVI presented by MF is that parameter estimates in MF

models often exhibit heavy-tailed empirical distributions [Lakshminarayanan et al.,

2011]. These heavy tails can significantly reduce the convergence speed of stochastic

1 In some domains it may be ambiguous whether a ‘zero’ corresponds to a negative observation or
lack of observation. In these ambiguous cases it is advantageous to treat the zeros as observed, since if
they were unobserved the maximum likelihood solution would predict ones everywhere. We return to
this point in Section 5.6.

78



algorithms. A solution is to use minibatches to reduce the effect of outliers in the

noisy estimates of the gradients. However, the best minibatch size S can be dataset-

dependent. To avoid having to hand-tune S to each dataset, which is common practice

[Orr & Müller, 1998], we propose a method that adaptively selects the value of S online.

With this approach we scale probabilistic MF methods to large binary matri-

ces whilst maintaining strong empirical performance. Experimentally, our algorithm

demonstrates faster convergence than batch alternatives [Raiko et al., 2007] and yields

more accurate solutions than existing scalable variational methods [Nakajima et al.,

2010; Paquet & Koenigstein, 2013; Seeger & Bouchard, 2012]. The focus of this chap-

ter is on improving the state-of-the-art in probabilistic MF methods, but we also com-

pare to one of the best alternative non-probabilistic techniques for MF [Rendle et al.,

2009]. Encouragingly, our method performs favourably. We can improve upon the

state-of-the-art because:

1. We handle fully observed matrices and learn by subsampling individual matrix

entries.

2. We use a likelihood function for binary data and not for continuous data.

3. Flexible priors and additional bias parameters may be incorporated easily with

our method.

4. We use improved subsampling strategies and automatically select the appropriate

minibatch size for the data.

The chapter is organized as follows. In the next section we introduce a model

for binary matrices and present our core stochastic variational inference algorithm.

We then describe the extensions including our sampling strategy in Section 5.4.5 and

our automatic minibatch size selection strategy in Section 5.4.6. Related literature

is discussed are in Section 5.4.8 and experiments with a number of real world binary

matrices in Section 5.5. Section 5.6 finishes with a summary, discussion and extensions.

5.3 A Probabilistic Model for Binary Matrices

We describe a probabilistic model for the generation of an L×M sparse binary matrix

X. The assumption made by MF methods is that the rows and columns are the result

of a linear combination of a small number of unobserved latent factors. Following

this, we assume that there are two low rank matrices or latent factors U ∈ RL×D and

79



V ∈ RM×D, where D � min(L,M), such that X is obtained as a function of U, V

and some additive noise. In particular, we assume that

X = Θ[UVT + z + E] , (5.1)

where Θ[·] applies the Heaviside step function to the entries of a matrix, z ∈ R is a global

bias parameter and E is an L×M additive noise matrix whose entries eij are i.i.d. with

cumulative distribution function given by the logistic sigmoid σ(x) = 1/[1 + exp(−x)].

This results is the likelihood

p(X|U,V, z) =

L∏
i=1

M∏
j=1

p(xi,j |ui,vj , z)

=
L∏
i=1

M∏
j=1

[
σ(uiv

>
j + z)xi,j · σ(−uiv

>
j − z)1−xi,j

]
, (5.2)

where ui and vj are the i-th and j-th rows of U and V, respectively. We specify fully

factorized Gaussian priors for U, V and z,

p(U) =
L∏
i=1

D∏
d=1

N(ui,d; ū
0
i,d, ũ

0
i,d) ,

p(V) =

M∏
j=1

D∏
d=1

N(vj,d; v̄
0
j,d, ṽ

0
j,d) ,

p(z) = N(z; z̄0, z̃0) .

In all of our experiments we used priors with zero-mean and unit variance.

We also incorporate a local bias to each row and column. To do this, column D in

V may contain the biases for the columns. In this case, ū0
i,D = 1 and ũ0

i,D = ε, where ε

is a small positive constant. Similarly, column D − 1 in U may contain the biases for

the rows and v̄0
j,D−1 = 1 and ṽ0

j,D−1 = ε. The posterior distribution for U, V and z is

computed as

p(U,V, z|X) =
p(X|U,V, z)p(U)p(V)p(z)

p(X)
. (5.3)

As given in the generative process in (5.1), we assume that the observed matrix X

is corrupted by noise E, and we would like to reason about the noise-free latent matrix.

To do this we make predictions about the possible value x?i,j that an entry xi,j in X

80



could have taken during the generation of X from U, V, b and E. For this, we use

p(x?i,j |X) =

∫ [
σ(uiv

>
j + z)x

?
i,j · σ(−uiv

>
j − z)

1−x?i,j
]
p(U,V, z|X) dUdVdz . (5.4)

The computation of Equations (5.3) and (5.4) is infeasible in practice and we have to

use approximations. In the following section we present variational Bayes to compute

approximations to (5.3) and (5.4).

5.4 Stochastic Variational Inference for Binary Matrices

5.4.1 Primer on Variational Bayes

Variational Bayes (VB) is a general purpose inference algorithm that approximates

an exact posterior over some parameter θ, p(θ) with a simpler, tractable distribution

q(θ) [Jordan et al., 1998]. The parameters that govern q are known as variational

parameters. These are optimized by maximizing the following lower bound on the

marginal likelihood given some data X,

log p(X) = log

∫
p(X, θ)dθ

= log

∫
q(θ)

p(X, θ)

q(θ)
dθ

≥
∫
q(θ) log

[
p(X, θ)

q(θ)

]
dθ

= Eq(θ)[log p(X, θ)]− Eq(θ)[log q(θ)] (5.5)

= −KL[q(θ)||p(θ|X)] + log p(X) , (5.6)

where the step from lines 2 to 3 follows from Jensen’s inequality. Equation (5.5) is

known as the evidence lower bound, or ELBO. This lower bound holds for all q, and

the objective of VB is to maximize this lower bound with respect to q. The ELBO

can be re-written as Equation (5.6). log p(X) is independent of q, therefore maximizing

the ELBO is equivalent to minimizing the KL between the approximation q(θ) and the

true posterior p(θ|X). Equation (5.6) shows that if the true posterior is contained in

the same the family of distributions as q, then the lower bound will be maximized by

recovering the true posterior, that is setting q(θ) = p(θ|X). In summary, variational

Bayes turns inference, an integration problem, into an optimization task for which many

techniques, such as stochastic methods, have been developed.

81



5.4.2 VB for Binary Matrices

VB for binary matrices proceeds by approximating the posterior in (5.3) with the

simpler distribution q(U,V, z). We choose q(U,V, z) to be a fully factorized Gaussian,

q(U,V, z) =

[
L∏
i=1

D∏
d=1

N(ui,d; ūi,d, ũi,d)

] M∏
j=1

D∏
d=1

N(vj,d; v̄j,d, ṽj,d)

N(z; z̄, z̃) , (5.7)

where Φ = {{{ūi,d, ũi,d, }Li=1, {v̄j,d, ṽj,d}Mj=1}Dd=1, z̄, z̃} are the variational parameters

that are adjusted so that q(U,V, z) is as similar as possible to p(U,V, z|X) by mini-

mizing the KL divergence between Equations (5.7) and (5.3), or maximizing the ELBO

L(Φ) = Eq [log p(U,V, z,X)]− Eq [log q(U,V, z)] . (5.8)

Once q(U,V, z) has been adjusted, we approximate (5.4) by first approximating

the posterior distribution of uiv
T
j + z by a Gaussian with mean µi,j =

∑
d ūi,dv̄j,d + z̄,

and variance s2
i,j =

∑
d ū

2
i,dṽj,d + ũi,dv̄

2
j,d + ũ2

i,dṽj,d + z̃. After this, we approximate the

logistic function with a rescaled probit function that has the same gradient at the origin

as the logistic function σ(·) [MacKay, 1992a]. We finally obtain

p(x?i,j |X) ≈
∫
σ[(2x?i,j − 1)a]N(a;µi,j , s

2
i,j) da

≈ σ[ϕ(s2
i,j)µi,j(2x

?
i,j − 1)] , (5.9)

where ϕ(x) = (1 + πx/8)−1/2.

However, in (5.8), Eq [log p(U,V, z,X)] cannot be evaluated analytically. To ad-

dress this, we use the Gaussian lower bound to the logistic function described in

Jaakkola & Jordan [1997]. We choose this approximation because it yields Gaussian

complete conditional distributions. A complete conditional is the conditional distribu-

tion of a variable given all of the other variables and observations. Models with con-

jugate complete conditionals admit tractable update equations with variational Bayes

[Ghahramani & Beal, 2000] and allow us to use natural gradients, which improve con-

vergence [Hoffman et al., 2013]. We lower bound σ(a)xi,j · σ(−a)1−xi,j in (5.2) with

τ(a, ξ) = eaxi,jσ(ξ)e−
a+ξ
2

+λ(ξ)(a2−ξ2) , (5.10)

where λ(ξ) = (0.5−σ(ξ))/(2ξ) and ξ is adjusted to maximize the lower bound, making

it tight at a = ±ξ. When we replace each p(xi,j |ui,vj , z) in (5.2) with an instantiation

82



of (5.10) that includes its own parameter ξi,j , we obtain a new lower bound of the form

L′(Φ,Ξ) =
L∑
i=1

M∑
j=1

αi,j +
L∑
i=1

D∑
d=1

βi,d +
M∑
j=1

D∑
d=1

γj,d + κ , (5.11)

where Ξ = {{{ξi,j}Li=1}Mj=1} is the collection of all the additional variational parameters

associated with the lower bound to the logistic function for each entry in X, and

αi,j = log σ(ξi,j)−
µi,j(1− 2xi,j) + ξi,j

2
+ λ(ξi,j)(µ

2
i,j + s2

i,j − ξ2
i,j) ,

βi,d =ρ(ũi,d, ũ
0
i,d, ūi,d, ū

0
i,d),

γj,d =ρ(ṽj,d, ṽ
0
j,d, v̄j,d, v̄

0
j,d),

κ =ρ(z̃, z̃, z̄0, z̄0) ,

with ρ(a, b, c, d) =− 1

2
− 1

2
log

a

b
+

(c− d)2 + a

2b
.

One solution would be to tune q using block coordinate descent, that is, by alternative

maximization of L′ with respect to Φ and Ξ. Given Φ, Ξ is optimized by setting

ξi,j =
√
µ2
i,j + s2

i,j . (5.12)

Given Ξ, Φ can be optimized by doing an iteration of gradient descent. Raiko et al.

[2007] describe a state-of-the-art batch method for optimization of the ELBO in MF

models with Gaussian likelihood. Although effective with small datasets, the resulting

batch algorithm is infeasible when X is very large and fully observed since each iteration

requires the examination of all the entries in X before updating any variational parame-

ters. For massive matrices, we propose to use stochastic optimization methods [Robbins

& Monro, 1951]. These techniques produce parameter updates after examining only a

reduced fraction of the data. The following section describes our stochastic method for

optimizing L′ based on the technique stochastic variational inference [Hoffman et al.,

2013].

5.4.3 SVI for Binary Matrices

Stochastic optimization methods follow noisy estimates of the gradient of the target

function to be optimized. This function is often constructed by summing over a large

number of terms. Noise in the gradient arises because the target function is approxi-

mated by a noisy estimate which is cheaper to compute. This estimate is obtained by

83



summing over a reduced set of terms that are randomly subsampled. To optimize the

correct objective function, the subsampled terms must be rescaled so that the expec-

tation of the gradient of the noisy estimate is the same as the gradient of the original

target function.

The difficulty with computing the ELBO and its gradients in Equation (5.11) is the

sum over the L×M terms αi,j which correspond to the likelihood for each entry in the

matrix. To avoid computing this expensive sum at each iteration we apply stochastic

optimization to L′(Φ)
∆
= maxΞ L′(Φ,Ξ). For this, we iterate over the following process.

First, we randomly select row and column indices i ∈ {1, . . . , L} and j ∈ {1, . . . ,M}
with probability p(i, j). Second, we optimize ξi,j by setting ξi,j =

√
µ2
i,j + s2

i,j as in

(5.12). Third, we compute a noisy estimate of L′(Φ),

L′noisy(Φi,j) = [cαi,j ]
−1αi,j +

D∑
d=1

βi,d +
D∑
d=1

γj,d + κ , (5.13)

where cαi,j is a rescaling constant. Finally, we update Φi,j = {{ūi,d, ũi,d, v̄j,d, ṽj,d}Dd=1,

{z̄, z̃}} by making a small step in the direction of the gradient of (5.13). Intuitively,

(5.13) is an appropriately rescaled version of (5.11) that includes only those terms

which have the same indexes i and j as the subsampled matrix entry xi,j . Importantly,

the constant cαi,j is chosen to guarantee that the expectation under the data-sampling

strategy p(i, j) of the gradient of (5.13) with respect to the elements of Φi,j is the same

as the gradient of L′(Φ) with respect to those elements. That is, when we update ūi,d

or ũi,d we set cαi,j = p(j|i). For v̄j,d or ṽj,d we set cαi,j = p(i|j) and finally, for z̄ or z̃ we

set cαi,j = p(i, j).

5.4.4 Natural Gradients

Instead of standard gradients, one can achieve much faster convergence using natural

gradients [Amari, 1998]. For this, we work with the natural parameters of (5.7). For a

Gaussian distribution the natural parameters are the precision and precision times the

mean,

u̇i,d = ūi,d/ũi,d , üi,d = 1/ũi,d ,

and v̇j,d, v̈j,d, ż and z̈ are defined equivalently. Denote the two-dimensional vector

of natural parameters for the Gaussians associated with each element in U as ůi,d =

(u̇i,d, üi,d) and let ∇L′(ůi,d) denote the natural gradient of (5.13) with respect to ůi,d.

84



When the model has exponential family complete conditionals, as provided by the

Gaussian lower bound to the logistic function in (5.10), then ∇L′(ůi,d) = ů?i,d − ůi,d,

where ů?i,d = (u̇?i,d, ü
?
i,d) is the value of ůi,d that maximizes (5.13) when all the other

natural parameters are kept fixed to their current values. Note that ů?i,d is a noisy

estimate of the maximizer of the exact ELBO (5.11) with respect to ůi,d. Thus, the

stochastic update rules for ůi,d, v̊j,d and z̊ are

ůnew
i,d = ůold

i,d + ρui∇L′(ůi,d) = (1− ρui )ůold
i,d + ρui ů

?
i,d, (5.14)

v̊new
j,d = v̊old

j,d + ρvj∇L′(̊vj,d) = (1− ρvj )̊vold
j,d + ρvj v̊

?
j,d, (5.15)

z̊new = z̊old + ρz∇L′(̊z) = (1− ρz )̊zold + ρzz̊?, (5.16)

where ρui , ρvj and ρz are the stepsizes taken in the direction of the natural gradient.

The values of u̇?i,d, ü
?
i,d, v̇

?
i,d, v̈

?
i,d, ż

?, z̈? that maximize Equation (5.13) when we have

subsampled the entry xi,j from X are

u̇?i,d =ū0
i,d/ũ

0
i,d + v̄j,d [0.5(2xi,j − 1) + 2λ(ξi,j)(µi,j − ūi,dv̄j,d)] /p(i|j) ,

ü?i,d =1/ũ0
i,d − 2λ(ξi,j)(v̄

2
j,d + ṽj,d)/p(i|j) ,

v̇?j,d =v̄0
j,d/ṽ

0
j,d + ūi,d [0.5(2xi,j − 1) + 2λ(ξi,j)(µi,j − ūi,dv̄j,d)] /p(j|i) ,

v̈?j,d =1/ṽ0
j,d − 2λ(ξi,j)(ū

2
i,d + ũi,d)/p(j|i) ,

ż? = [0.5(2xi,j − 1) + 2λ(ξi,j)(µi,j − z̄)] /p(i, j) + z̄0/z̃0 ,

z̈? =1/z̃0 − 2λ(ξi,j)/p(i, j) .

Note that performing full coordinate updates, that is, computing in alternation

ůnew
i,d = ů?i,d, v̊new

j,d = v̊?j,d and z̊new = z̊?, is equivalent to taking steps of size one in the

direction of the natural gradient. Even if one observed all of the data and computed

ů?i,d, v̊?j,d, and z̊? exactly, this step-size can yield slow convergence, and with noisy

estimates of these quantities using a fixed unit stepsize can cause the algorithm to be

unstable.

The resulting Stochastic Inference method for Binary Matrices (SIBM) works by

iterating over the following two steps. First, randomly subsample an entry xi,j from X

with probability p(i, j). Second, perform a small update to the variational parameters

that approximate the posterior distribution of the i-th row of U, the j-th row of V

and the global bias z. In practice, each time we sample the indices i and j, we first

update z̊, then all the v̊j,d and finally all the ůi,d. For faster convergence, each of these

operations is performed using the updated parameter values produced by the previous

85



Figure 5.1: Binary matrix obtained by selecting randomly 250 rows with at least 10
ones and the 500 columns with the most ones from the BMS-POS dataset. This matrix
is very sparse and has different frequencies of ones across rows and columns.

operations. Furthermore, we recompute the optimal value for ξi,j whenever any of the

natural parameters change.

5.4.5 Sampling Distributions for Sparse Imbalanced Matrices

We consider different choices of p(i, j), the probability distribution used to subsample

the entries of X. The usual objective in binary matrix factorization is to predict the

location of those entries in X that would have taken value one but actually took value

zero due to the additive noise matrix E; for example, to recommend new products to

a user or discover new links in a network. However, real-world binary matrices are

usually highly sparse, as illustrated in Figure 5.1. This means that when the sampling

strategy is uniform (denoted S-Uniform), that is p(i, j) = 1/(LM), most of the sampled

entries xi,j will take value zero. As a result, SIBM may take many iterations to obtain

good predictive performance.

We propose strategies that subsample the more useful entries of X so that the model

converges rapidly. This resembles active learning, except that unlike in active learning,

we must eliminate the sampling bias introduced by our specific choice of p(i, j). That

is, we must select cαi,j so that the expected gradient of (5.13) is the same as the gradient

of (5.11). Therefore, we propose two simple strategies for which we can compute the

appropriate rescaling constants.

To ensure that we see enough ones, a better strategy is to sample zeros and ones

86



with equal probability, regardless of the empirical frequencies found in X (S-Balanced),

p(i, j) =
1

2
∑L

l=1

∑M
m=1 I[xi,j = xl,m]

,

where I[·] is the indicator function. Now, each time that an entry is sampled we obtain

a zero or a one with equal probability. However, another characteristic of real-world

binary matrices is that the frequency of ones and zeros can change considerably across

rows or columns. For example, the matrix in Figure 5.1 contains a few columns with

a large number of ones and many columns with very few ones. A similar pattern is

observed in the rows, although in this case the effect is smaller. In practice, it will

take SIBM a long time to accurately model those ones located in rows/columns with

many zeros. Any entry sampled in those rows/columns will usually take value zero

and sampling a zero there is unlikely to be useful since SIBM can learn quickly that

these rows/columns are very sparse. Therefore, we propose a new sampling strategy

(S-Biased) to account for this by biasing S-Balanced so that the probability of sampling

a one at location (i, j) is proportional to i) the number of zeros found in the i-th row

and ii) the number of zeros found in the j-th column. The equivalent bias is introduced

for the zeros. The resulting sampling distribution is

p(i, j) =
r

(1−xi,j)
i c

(1−xi,j)
j

2
∑L

l=1

∑M
m=1 I[xi,j = xl,m]r

(1−xl,m)
l c

(1−xl,m)
m

,

where r
(0)
i and r

(1)
i are the number of zeros and ones in the i-th row of X and likewise

c
(0)
j and c

(1)
j count the number of zeros and ones in the j-th column. These counts are

lower thresholded at 1 so that p(i, j) 6= 0.

5.4.6 Learning the Minibatch Online

Stochastic methods often use minibatches to reduce variance in the noisy estimates

of the natural gradient to help the algorithm converge faster. Instead of updating

the variational parameters after subsampling a single matrix entry, the updates are

averaged over a minibatch of data. When using a minibatch of size S, we randomly

subsample S entries from X. For each subsampled entry xi,j , we compute and store

the parameter values ů?i,d and v̊?j,d that would have been produced during the normal

execution of SIBM without minibatches. After subsampling S entries, we update each

ůi,d if at least one of the last S subsampled entries belongs to the i-th row of X. The

87



minibatch update rule follows from Equation (5.14),

ůnew
i,d = (1− ρui )ůold

i,d + ρui ů
?,avg
i,d , (5.17)

where ů?,avg
i,d =

1

n(i)

n(i)∑
s=1

ů?,si,d ,

and n(i) is the number of entries from the i-th row found in the last minibatch of S

subsampled entries with ů?,si,d being the value of ů?i,d produced when the s-th of those

entries is subsampled. The minibatch update rules for v̊j,d and z are similar.

An important question in stochastic methods is how to choose the minibatch size

S. The choice of S is particularly relevant when working with matrix factorization

models, because parameter distributions are often heavy tailed [Lakshminarayanan

et al., 2011]. In our stochastic method, this results in heavy tailed noisy estimates

of the natural gradients. The choice of S governs a trade-off between the reduction

of these heavy tails and slow convergence due to excessively large minibatches, in the

limit of S = LM we reduce to batch optimization.

Typically S is hand-tuned to each dataset or optimized with expensive cross-

validation search. To avoid these procedures, we propose an adaptive algorithm that

selects S appropriately to the statistics of the data during learning. In particular, we

choose S so that we bound the magnitude of the error in the noisy gradient. Let ů?,?i,d
be the value of ůi,d that maximizes the exact ELBO (5.11), that is, the optimum given

all of the data with the other parameters fixed. We obtain a probabilistic bound on

the relative error of ů?,avg
i,d in (5.17) with respect to the global maximizer of the ELBO,

ů?,?i,d , using Markov’s inequality. Markov’s inequality is an upper bound on the proba-

bility that a non-negative random variable exceeds a particular value. This is a general

bound that makes no assumptions about the distribution of the variable. This gives us

the following bound on the error,

δ = p

[
‖ů?,avg

i,d − ů?,?i,d ‖
2
2

‖ů?,?i,d ‖22
≥ θ

]
≤

E[‖ů?,avg
i,d − ů?,?i,d ‖

2
2]

θ‖ů?,?i,d ‖22

=
‖Var[̊u?i,d]‖1
θ‖E[̊u?i,d]‖22

E
[

1

n(i)

]
≈

‖Var[̊u?i,d]‖1
Sp(i)θ‖E[̊u?i,d]‖22

, (5.18)

where Var[̊u?i,d] is a vector with the variances of the entries in ů?i,d and p(i) is the

88



probability of sampling an element from the i-th row of X, p(i) =
∑M

j=1 p(i, j). In

Equation (5.18) we approximate E [1/n(i)] by 1/[p(i)S]. Also note that ů?,?i,d = E[̊u?,avg
i,d ].

We now solve for S to obtain a minibatch size that approximately limits the probability

that the relative error of ů?,avg
i,d is larger than θ,

Sui,d =
‖Var[̊u?i,d]‖1

θδp(i)‖E[̊u?i,d]‖22
. (5.19)

Intuitively, the resulting minibatch size increases with the inverse of the signal to noise

ratio (SNR) in the estimate ů?i,d of the global maximizer of the exact ELBO in (5.11),

ů?,?i,d . If the SNR decreases, this rule chooses larger minibatches to mitigate the greater

relative errors. The rule in (5.19) provides a different minibatch size Sui,d for each ůi,d,

and similarly for each v̊j,d. Therefore, to select the overall size S we average of the

minibatch sizes chosen for each parameter,

S =

∑L
i=1

∑D
d=1 S

u
i,d +

∑M
j=1

∑D
d=1 S

v
j,d

DL+DM
. (5.20)

The proposed approach requires choosing a single dataset-independent parameter,

the product of θ and δ, as opposed to hand-tuning S to each dataset. By making θδ

small we limit the expected deviation of ů?,avg
i,d from ů?,?i,d . Empirically we find θδ = 2

leads to good performance.

Equation (5.19) requires E[̊u?i,d] and Var[̊u?i,d] which are unknown a priori. There-

fore, we estimate these quantities online using exponentially weighted moving averages.

Let ūi,d and ¯̄ui,d denote respectively estimates of the mean and mean squared value of

ů?i,d. Each time we draw a sample from the i-th row of X, we update these averages as

ūi,d = (1− ρ̂ui )ūi,d + ρ̂ui ů
?
i,d ,

¯̄ui,d = (1− ρ̂ui )¯̄ui,d + ρ̂ui [̊u?i,d ◦ ů?i,d]

where “◦” denotes the Hadamard element-wise product operation. The interpolation

weight ρ̂ui is selected as ρ̂ui = (1 + t̂iu)−λ, where t̂iu is the number of times that we have

sampled an entry in the i-th row of X and we set λ = 0.7. The quantities E[̊u?i,d] and

Var[̊u?i,d] are then estimated using E[̊u?i,d] ≈ ūi,d and Var[̊u?i,d] ≈ ¯̄ui,d − ūi,d ◦ ūi,d. The

minibatch sizes Svj,d for the natural parameters v̊j,d are obtained in a similar manner.

As learning progresses and the parameters are updated these statistics will change,

therefore the algorithm adapts the minibatch size online.

Finally S in (5.20) is computed efficiently by exploiting the fact that Sui,d and Svj,d

89



only change if the minibatch includes a sample in the i-th row or j-th column. To

collect the initial statistics, we use S = 5L for the first minibatch, subsequent values of

S chosen by the algorithm are insensitive to this choice, as evidenced by our experiments

in Section 5.5.

5.4.7 The Full SIBM Algorithm

The final detail required for SIBM is the choice of the stepsizes ρui , ρvj and ρz. These

should be reduced each time ůi,d, v̊j,d and z̊ are updated in order to satisfy the require-

ments for correct convergence of the stochastic gradient descent routine described in

Robbins & Monro [1951]. We use a simple Robbins-Monro schedule. For this, let tui , tvj ,

tvj be the number of times that each vector of natural parameters ůi,d, v̊j,d and z̊ have

been updated respectively. After each stochastic update, the stepsizes are computed

as ρui = (1 + tui )−λ, ρvj = (1 + tvj )
−λ and ρz = (1 + tz)−λ, where λ ∈ (0.5, 1]. In our

experiments we found λ = 0.7 produced good overall results. The full SIBM routine is

summarized in Algorithm 1.

5.4.8 Related Work

Specific Challenges for SVI in Matrix Factorization

SVI has been applied to other probabilistic models such as Latent Dirichlet Allocation

[Hoffman et al., 2010], the Hierarchical Dirichlet Process, [Hoffman et al., 2013], and

Bayesian Nonparametric models [Bryant & Sudderth, 2012; Wang et al., 2011]. In these

cases there is a clear distinction between local and global parameters or variables. The

distinction is governed by the conditional dependencies in the model. A local variable is

associated with each observation, and the conditional distribution of each observation

and its local variable is independent of all other local variables and observations given

the global variables [Hoffman et al., 2013].

Therefore, local parameters are updated only when a particular data point is sub-

sampled and in the aforementioned models the global variational parameters are up-

dated when any datapoint is subsampled. In MF, the definition of a datapoint is more

ambiguous: does a datapoint correspond to a row, column, entry or entire matrix?

We subsample individual matrix entries. In this case the row and column parameters

U and V are partially global since they do not satisfy the conditional independence

assumptions to be local, and are only updated when elements in the corresponding

row or column are subsampled. With MF, the partially global nature of the row and

column parameters makes the data sub-sampling strategy more important because it

90



Algorithm 1 Stochastic Inference for Binary Matrices

1: Input: matrix X, initial parameters Φ, # samples T
2: for t = 1 to T do
3: select minibatch size S using (5.20)
4: for s = 1 to S do
5: save ůi,1, . . . , ůi,D, v̊j,1, . . . , v̊j,D and z̊
6: sample row and column indices (i, j) ∼ p(i, j)
7: compute stepsize ρz using Robbins-Monro
8: update ξi,j using (5.12)
9: compute z̊? and update z̊ using (5.16)

10: for d = 1 to D do
11: update ξi,j using (5.12)
12: compute v̊?j,d and update v̊j,d using (5.15)

13: update v̊?,avg
j,d

14: end for
15: for d = 1 to D do
16: update ξi,j using (5.12)
17: compute ů?i,d and update ůi,d using (5.14)

18: update ů?,avg
i,d

19: end for
20: restore ůi,1, . . . , ůi,D, v̊j,1, . . . , v̊j,D and z̊
21: end for
22: for any row i sampled in the last minibatch do
23: compute stepsize ρui using Robbins-Monro
24: update ůi,1, . . . , ůi,D using (5.17)
25: end for
26: for any column j sampled in the last minibatch do
27: compute stepsize ρvj using Robbins-Monro
28: update v̊j,1, . . . , v̊j,D
29: end for
30: compute stepsize ρz using Robbins-Monro
31: update z̊
32: end for
33: Output: {ůi,1, . . . , ůi,D}Li=1, {v̊j,1, . . . , v̊j,D}Mj=1 and z̊

91



determines which parameters are updated and how often. A more closely related ap-

plication of SVI is to the Mixed-Membership Stochastic Blockmodel for L-node binary

networks [Gopalan et al., 2012], but in this case only one L×D matrix of parameters,

the community memberships, is partially global.

A second difficulty for SVI posed by MF models arises from the direct coupling of

the parameters updates. For example, the update for the row variational parameters

in (5.14) is a direct function of the column parameters v̊j,d. As noted in Section 5.4.6,

the parameters in MF models are often heavy tailed. The combination of update

coupling and heavy tailed parameters results in heavy tailed noisy gradients. This

makes the minibatch size selection particularly important with MF models. Algorithms

that adaptively change the stepsize online have been proposed [Ranganath et al., 2013;

Schaul et al., 2012]. However, these algorithms assume a Gaussian distribution of

noisy estimates of the natural gradients. Since the noisy estimates have heavy tails

these methods can result in unstable behaviour in MF models, and we found that the

sequences of the stepsizes ended up diverging.

Algorithms for Probabilistic Binary MF

An alternative stochastic algorithm just subsamples the zeros is proposed in Paquet &

Koenigstein [2013]. However, unlike SIBM, this method does not correct for the bias

introduced by the subsampling process and hence yields poorer solutions, as we observe

in our experiments.

With sparse matrices batch variational inference schemes can be efficient since the

time required to update the parameters scales linearly only in the number of observa-

tions [Lim & Teh, 2007]. However, with fully observed matrices this is usually imprac-

tical since each update costs O(LM). We note that with sparse binary matrices the

required computations with a Gaussian likelihood in Raiko et al. [2007] can be rear-

ranged so that the cost per iteration is linear only in the number of ones. This can be

achieved essentially by decomposing the likelihood into a sum of a term corresponding

to a full matrix of zeros and correction factors for the observed ones. Now any O(LM)

terms may be pre-computed, however, this is not possible with the logistic likelihood

which is more appropriate for binary data.

With a Gaussian likelihood, one can avoid optimization altogether, and use the

analytic solution for the global maximum of the ELBO derived in Nakajima et al.

[2010]. However, the solution only applies to highly restricted models. The limitations

92



include i) the likelihood must be Gaussian with equal variance across matrix entries,1

ii) U and V must have zero-mean isotropic priors, and iii) no bias parameters can be

included. These constraints yield a large negative effect to predictive performance, as

we show in our experiments. An iterative scheme has been proposed to extend this

approach to binary likelihoods at the cost of making very crude approximations to

the logistic likelihood function [Seeger & Bouchard, 2012]. In practice, with binary

matrices this method tends to produce only small gains in performance with respect to

the solution in Nakajima et al. [2010].

A large number of non-probabilistic algorithms have been proposed for MF. With

binary matrices, one of the best performing is Bayesian Personalized Ranking (BPR)

which directly optimizes a ranking loss function. BPR has shown state-of-the-art results

on item recommendation against a wide range of systems [Rendle et al., 2009]. It was

also a key component in many of the best solutions in Track 2 of the KDD-Cup’11

music recommendation competition [Dror et al., 2012]. We show comparisons to all of

the above methods, including BPR, in our experiments.

5.5 Experiments

SIBM is evaluated in experiments with synthetic and real-world binary matrices. We

consider six datasets that include i) a synthetic dataset generated by sampling X from

the generative model assumed by SIBM. We fix D = 5 and generate U and V by

sampling all the ui,d and vj,d independently from N(0, 100). The global bias is fixed

to z = −500, yielding binary matrices with about 98% sparsity. We consider two real-

world datasets from the FIMI repository: ii) purchase data from a retail store (retail)

[Brijs et al., 1999] and iii) click data from an online news portal (Kosarak). We include

two datasets from the 2000 KDD Cup [Kohavi et al., 2000; Zheng et al., 2001], iv)

point-of-sale data from a retailer (POS, originally BMS-POS) and v) click data from

an e-commerce website (WebView, originally BMS-WebView-2). Finally, we include vi)

the Netflix data, treating 4-5 star ratings as ones. We pre-process the original datasets

to be able to compare to the computationally expensive batch approach. We keep the

1000 columns with the highest number of ones and discard rows with fewer than 10

ones. We consider small and large versions of each dataset. We subsample 2000 rows for

the small and 40,000 rows for the large datasets, except in retail and WebView, where

1 The restriction to equal likelihood variances across the matrix means that the analytic solution
cannot be used directly with the Gaussian approximation to the sigmoid function in (5.10) to handle
the logistic likelihood.

93



we use approximately the maximum number of rows for the large datasets, 10,000 and

5000, respectively.

Each matrix is randomly split into a training matrix and a set of test entries with

value one. The training matrix is generated by randomly removing a single one from

each row in the original matrix and adding it to the test set. Predictive performance is

evaluated using recall at N , which is equivalent to precision when a single one is held

out. Recall is popular metric for recommendation tasks [Gunawardana & Shani, 2009]

because it measures directly the ability to find the items a user may like. We iterate

over the rows, using (5.4) to compute the probability of each zero entry actually taking

value one. We select the top N zero entries with highest probability in that row. Recall

is computed as the average number of times that the test entry appears in this list. We

use N = 10 and repeat the experiment 25 times on each small dataset and 10 times on

each large one.

5.5.1 Sampling Strategies and Automatic Minibatch

Figure 5.2, left, shows results for SIBM when using the sampling strategies S-Uniform,

S-Balanced and S-Biased on the small Netflix dataset. To eliminate the dependence

of these strategies on the minibatch size, we select the value of S for each strategy

using cross-validation. The results for all other datasets were similar. On all of the

datasets S-Biased performs best, followed by S-Balanced. As expected, with sparse

binary matrices, uniform sampling (S-Uniform) yields slow convergence.

Figure 5.2, right, shows the evolution of the minibatch size S on each small dataset.

Similar results are obtained for the large datasets. The plot shows that the chosen

value of S is highly dataset-dependent. Interestingly, for some datasets S grows as

learning progresses, but for others it shrinks. We fix the minimum value for S to

max(L,M) = 2000. This value is selected in the retail dataset.

5.5.2 Comparison to Batch and Alternative Methods

Other Algorithms

We compare the full SIBM algorithm that selects the minibatch size S automatically

(SIBM-auto) with an alternative in which S is selected via cross-validation to maximize

recall on a validation set (SIBM-recall).

We also compare with a version of SIBM-recall that finds the maximum a posteriori

(MAP) solution using stochastic gradient ascent with the same data subsampling strat-

egy (MAP-recall). MAP-recall employs the same rescaling constants cαi,j as SIBM. Two

94



6 6.5 7 7.5 8
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

R
e

c
a

ll

log
10

 # observations

 

 

S−Uniform
S−Balanced
S−Biased

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

Minibatch iteration number

A
v
e

ra
g

e
 s

iz
e

 

 

Synthetic

Netflix

Kosarak

POS

WebView

Retail

Figure 5.2: Left : average recall obtained for different sampling strategies in the small
Netflix dataset. Right : evolution of the average minibatch size S selected in each small
dataset.

modifications to SIBM-recall are required to obtain MAP-recall. First, we no longer

use the variational parameters related to the variance of the posterior approximation

since we only seek a point estimate of the model parameters. Second, MAP-recall uses

standard gradients and not natural gradients. Natural gradients are not available when

doing MAP inference because the Kullback-Leibler divergence between probability dis-

tributions is no longer being minimized. In MAP-recall we select the stepsizes taken

in the direction of the noisy gradient using a Robbins-Monro schedule similar to the

one used in SIBM-recall. In particular, let tui , tvj , t
v
j be the number of times that the

parameters ui,d, vj,d and z have been updated, respectively. The stepsizes are given

by ρui = (tu0 + tui )−λ, ρvj = (tv0 + tvj )
−λ and ρz = (tz0 + tz)−λ. We fixed λ = 1, which

worked better than λ = 0.7 used by SIBM. We also hand-tuned tz0, ty0 and tv0 to yield

the best possible overall performance. We found that MAP-recall was more sensitive

to the values of tz0, ty0 and tv0 than SIBM, for which tz0 = ty0 = tv0 = 1 works well. The

increased sensitivity to these learning parameters is probably due to the inability to

use natural gradients with MAP inference.

On the small datasets we compare with the batch algorithm (batch) that maximizes

the exact ELBO (5.11) [Raiko et al., 2007]. This method is too expensive with the large

datasets. Therefore, with these datasets we run batch by subsampling zeros, keeping

only 20 times as many zeros as ones.

We compare our method to the analytic solution for a Gaussian likelihood [Naka-

jima et al., 2010] (Nak10) and the extension of this method to binary matrices [Seeger &

95



Small Datasets

Synthetic Netflix Kosarak

6 6.5 7 7.5 8

0.2

0.25

0.3

0.35

0.4

R
e

c
a

ll

log
10

 # observations
6 6.5 7 7.5 8

0.1

0.12

0.14

0.16

0.18

0.2

0.22

R
e

c
a

ll
log

10
 # observations

6 6.5 7 7.5 8
0.3

0.32

0.34

0.36

0.38

0.4

0.42

R
e

c
a

ll

log
10

 # observations

POS WebView Retail

6 6.5 7 7.5 8

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

R
e

c
a

ll

log
10

 # observations
6 6.5 7 7.5 8

0.2

0.25

0.3

0.35

0.4

0.45

R
e

c
a

ll

log
10

 # observations
6 6.5 7 7.5 8

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

R
ec

al
l

log
10

# observations

SIBM−recall
SIBM−auto
batch
MAP−recall
Paq13
BPR
Nak10
See12

Figure 5.3: Average recall for each method on each small dataset versus number of
samples drawn from X.

Bouchard, 2012] (See12). We also evaluate the scheme described in Paquet & Koenig-

stein [2013] (Paq13). Finally, we compare to one of the best performing non-variational

Bayesian algorithms, BPR [Rendle et al., 2009].

Results

Figures 5.3 and 5.4 show the average recall obtained by each method versus the number

of entries subsampled from X on the small and large datasets respectively. Other than

the analytic solutions (Nak10 and See12), all algorithms have linear cost in the number

of observations. It is hard to quantify the number of entries observed by Nak10 and

See12, which are based on iterative calls to an SVD subroutine. Therefore, we assume

that they run instantaneously and their performance is presented as a constant line.1

We present also the negative ELBO (cost) versus number of samples in Figure 5.5

Tables 5.1 and 5.2 contain the average recall and cost after observing 107 samples

in the small datasets and WebView and Retail large datasets, and 108 on the others.

We take a slice rather than presenting performance after convergence of the algorithms

because we are interested in scalable methods that produce good solutions with a

1This is a generous assumption for See12, see wall-clock times in Figure 5.6.

96



Large Datasets

Synthetic Netflix Kosarak

7 7.5 8 8.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
e

c
a

ll

log
10

 # observations
7 7.5 8 8.5

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

R
e

c
a

ll
log

10
 # observations

7 7.5 8 8.5
0.3

0.32

0.34

0.36

0.38

0.4

0.42

R
e

c
a

ll

log
10

 # observations

POS WebView Retail

7 7.5 8 8.5

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

R
e

c
a

ll

log
10

 # observations
6 6.5 7 7.5 8

0.2

0.25

0.3

0.35

0.4

0.45

R
e

c
a

ll

log
10

 # observations
6.5 7 7.5 8

0.16

0.18

0.2

0.22

0.24

0.26

R
e

c
a

ll

log
10

 # observations

 

 

SIBM−recall
SIBM−auto
batch
MAP−recall
Paq13
BPR
Nak10
See12

Figure 5.4: Average recall for each method on each large dataset versus number of
samples drawn from X.

limited computational budget. Running the algorithms to convergence on massive

matrices can take an infeasible amount of time. With the large datasets, computing

the ELBO is too expensive so we do not report cost values. We only report cost

for the stochastic methods and See12 since BPR, MAP, Paq13 and Nak10 do not yield

comparable lower bound values. This is because BPR and MAP are not performing VB,

the model in Paq13 subsamples the zeros and Nak10 uses a Gaussian likelihood so the

ELBO is incomparable. Bold typeface indicates the best results (and those statistically

indistinguishable using a paired t-test at the 5% level), underlining denotes the second

best. Tables 5.1 and 5.2 show that in terms of recall, the best method is SIBM-recall,

with SIBM-auto coming close. Regarding the ELBO, SIBM-auto yields the best results.

Figures 5.3 and 5.4 show that SIBM converges faster than batch and sometimes to

better solutions, such as in the WebView dataset. SIBM-auto produces the greatest

improvements during the first iterations of learning. These first iterations are most

relevant for large scale learning. With large datasets, only a few passes over the available

data are possible. It is then when stochastic methods are most useful. In terms of the

ELBO, the batch algorithm will converge to an optimum of the lower bound. However,

early in learning the stochastic algorithm achieves much better values. In most cases

97



Synthetic Netflix Kosarak

6 6.5 7 7.5 8
1.6

1.7

1.8

1.9

2

2.1

2.2
x 10

5

C
o

s
t

log
10

 # observations
6 6.5 7 7.5 8

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3
x 10

5

C
o

s
t

log
10

 # observations
6 6.5 7 7.5 8

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4
x 10

5

C
o

s
t

log
10

 # observations

POS WebView Retail

6 6.5 7 7.5 8
1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56
x 10

5

C
o

s
t

log
10

 # observations
6 6.5 7 7.5 8

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9
x 10

5

C
o

s
t

log
10

 # observations
6 6.5 7 7.5 8

1.48

1.5

1.52

1.54

1.56

1.58

1.6

1.62

1.64

1.66
x 10

5

C
o

s
t

log
10

 # observations

 

 

SIBM−recall
SIBM−auto
batch

Figure 5.5: Average cost (negative ELBO) versus number of samples for each method
on each small dataset.

SIBM achieves a reasonably good solution before batch has completed a single iteration.

On recall, the results of SIBM-auto are very close to those of the gold-standard SIBM-

recall and MAP-recall performs worse in general than the variational methods SIBM-

auto and SIBM-recall. MAP-recall seems to overfit since its performance sometimes

deteriorates during the later iterations.

The analytic algorithms (Nak10, See12) obtain poor results due to the simplistic

modelling assumptions that they make. Paq13 performs poorly because this method

subsamples the zeros and does not correctly account for the bias introduced by the

subsampling process. As a result, it converges to suboptimal solutions. BPR converges

to worse solutions than SIBM and batch.

Wall Clock Times

We recorded the wall-clock times for each algorithm. Figure 5.6 gives the times for

each small dataset. As with ‘number of samples’ in Figures 5.3 and 5.4. the results

on the large datasets are very similar to those on the small datasets. Clock time is

more implementation-dependent than number of samples observed, to be as fair as

possible, all algorithms were implemented in C. Nevertheless, results for recall vs. time

and recall vs. number of observed entries are similar. The main difference is that now

98



recall cost×10−5

Dataset
SIBM
recall

SIBM
auto

batch
MAP
recall

Paq13 BPR Nak10 See12
SIBM
recall

SIBM
auto

batch See12

Synthetic 0.368 0.360 0.314 0.347 0.234 0.321 0.250 0.295 1.804 1.803 1.821 4.313
Netflix 0.198 0.198 0.203 0.189 0.143 0.187 0.188 0.201 4.555 4.550 4.383 6.807
Kosarak 0.388 0.382 0.348 0.348 0.327 0.348 0.336 0.352 2.124 1.963 1.994 3.607
POS 0.373 0.371 0.351 0.353 0.354 0.345 0.295 0.350 1.413 1.415 1.437 2.674
WebView 0.398 0.372 0.322 0.374 0.235 0.327 0.307 0.218 1.672 1.573 1.630 2.886
Retail 0.234 0.230 0.229 0.237 0.233 0.223 0.152 0.228 1.557 1.490 1.511 2.430

Table 5.1: Small datasets, recall and cost after observing 107 samples. Bold typeface
indicates the best result (and those statistically indistinguishable) on each dataset,
underlining indicates the second best.

Dataset
SIBM
recall

SIBM
auto

batch
MAP
recall

Paq13 BPR Nak10 See12

Synthetic 0.387 0.367 0.324 0.368 0.249 0.374 0.262 0.266
Netflix 0.203 0.193 0.190 0.192 0.146 0.190 0.190 0.199
Kosarak 0.391 0.372 0.346 0.368 0.327 0.370 0.319 0.341
POS 0.373 0.368 0.348 0.352 0.352 0.374 0.289 0.347
WebView 0.390 0.343 0.359 0.360 0.235 0.326 0.303 0.213
Retail 0.235 0.230 0.233 0.239 0.235 0.237 0.149 0.228

Table 5.2: Large datasets, recall after observing 107 samples from WebView, Retail
and 108 from others.

SIBM-recall, MAP-recall and BPR are penalized due to the additional time that they

require to run cross-validation searches for selecting the minibatch size (SIBM-recall

and MAP-recall) and regularization parameters (BPR).

5.6 Conclusions and Extensions

In this chapter we have addressed one particular difficulty encountered in matrix fac-

torization: scaling probabilistic inference with fully observed binary matrices. For this

we have presented a complete algorithm that can handle heavy tailed parameter values

and sparse, imbalanced matrices that are common in practice. The approach extends

stochastic variational inference to matrix factorization models, a class of models not ad-

dressed before by SVI. The proposed method has the following advantages with respect

to existing probabilistic solutions for binary matrix factorization: i) we can handle fully

observed matrices, ii) learning occurs by subsampling the matrix entries, iii) we use a

likelihood function for binary data instead of for continuous data, iv) flexible priors

and additional bias parameters can be easily incorporated into the model. As a result,

99



Synthetic Netflix Kosarak

0 0.5 1 1.5 2 2.5 3

0.2

0.25

0.3

0.35

0.4

R
e

c
a

ll

log
10

 time (s)
0 0.5 1 1.5 2 2.5 3

0.1

0.12

0.14

0.16

0.18

0.2

0.22

R
e

c
a

ll

log
10

 time (s)
0 0.5 1 1.5 2 2.5 3

0.3

0.32

0.34

0.36

0.38

0.4

0.42

R
e

c
a

ll

log
10

 time (s)

POS WebView Retail

0 0.5 1 1.5 2 2.5 3

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

R
e

c
a

ll

log
10

 time (s)
0 0.5 1 1.5 2 2.5 3

0.2

0.25

0.3

0.35

0.4

0.45

R
e

c
a

ll

log
10

 time (s)
0 0.5 1 1.5 2 2.5 3

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

R
e

c
a

ll

log
10

 time (s)

 

 

SIBM−recall
SIBM−auto
batch
MAP−recall
Paq13
BPR
Nak10
See12

Figure 5.6: Average recall for each method on each dataset versus wall clock times.

our algorithm achieves faster convergence than an alternative batch approach and has

better predictive performance than other state-of-the-art scalable solutions or analytic

methods based on the SVD decomposition. Good performance in this domain requires

appropriate data subsampling mechanisms and the use of minibatches. To account for

this, we have provided new data subsampling strategies and a technique to adjust the

minibatch size automatically and adaptively to the data. Our technique for learning

the minibatch size could be applied more generally to other SVI algorithms.

One extension would be to learn the stepsize schedule also. However, as noted in

Section 5.4.8, such an algorithm has to be robust to the heavy tailed noisy updates

observed in MF models. For a second extension, to achieve scalability to truly massive

matrices, would be to combine parallel architectures with our online algorithm. Cer-

tain ‘inner loop’ operations could be trivially parallelized, such as the for loops in lines

10 and 15 of Algorithm 1. However, parallelization of larger operations is more likely

to help due to the time taken to transfer data to, and results from, worker machines.

Larger parallelizations, say of the outer loop over minibatches (line 2 in Algorithm 1),

would require more care since parameter values would become out-dated in parallel

machines. However, although theoretically hard to justify, asynchronous stochastic op-

timization architectures have enjoyed recent success with neural networks [Dean et al.,

2012].

100



In some binary matrix datasets it may be ambiguous whether an entry with value

zero corresponds to an observed negative or a lack of observation. For example, in

market basket data a zero could correspond to a user deciding not to buy an item, or

never having observed the item. Modelling all of the zeros as observed is advantageous

over treating them as unobserved, since in the latter case the maximum likelihood

solution would predict ones everywhere. If we modelled this ambiguity we would need

a latent variable for each zero in X. Also, for matrices which are not fully observed,

such as rating matrices, the missing entries may not be selected at random, which is

often the case with rating data [Marlin & Zemel, 2009]. Proper probabilistic treatment

requires consideration of all the matrix entries, both observed and unobserved, during

inference. When modelling ambiguous zeros or missing data, the computational cost is

at least as great as with a fully observed matrix. Therefore, in these cases our stochastic

routine could also be used to achieve computationally efficient inference.

Finally, the scaling constants cαi,j in Equation (5.13) require knowing the matrix

dimensions L and M . Currently, our algorithm cannot handle formally new rows or

columns being added to the matrix. The inability to handle streamed data, whose

size is not known a priori, is a difficulty encountered by all SVI algorithms since the

‘goal posts’ of the optimization move when the dataset changes size. Current research

addresses this problem in similar inference frameworks [Broderick et al., 2013]. This is

particularly relevant for matrix factorization, since in many applications such as online

retail, new users and items are continuously introduced. We address the problem of

making good recommendations with new users and items in Chapter 7. Extending

stochastic inference routines to this setting could yield a practical scalable probabilistic

recommendation framework.

101



Chapter 6

Collaborative Preference

Learning

Preference data is a common source of binary data. If we have preference judgements

from multiple users, this data can be represented by a binary matrix. There are two

main differences between preference matrices and the binary matrices in Chapter 5.

First, entries can be unobserved because now there is a distinction between the two

possible preferences and ‘no observation’. Second, preference data has an additional

anti-symmetry structure that should be leveraged by the model. In this chapter we

develop probabilistic matrix factorization techniques, introduced in Chapter 5, and

Gaussian process (GP), introduced in Chapter 3, to model preference data from multiple

users. Furthermore, BALD is exploited for efficient active preference elicitation with

this model.

Preference learning concerns making inferences from data consisting of pairs of items

and corresponding binary labels indicating user preferences. This data arises in many

contexts, including medical assistive technologies [Birlutiu et al., 2010], graphical design

[Brochu et al., 2007] and recommendation systems [De Gemmis et al., 2009]. This data-

type is abundant because it may often be collected implicitly, such as from clickthrough

logs [Joachims, 2002], hence preference learning is a rapidly growing sub-field of machine

learning [Fürnkranz & Hüllermeier, 2010].

A popular approach to modelling preference data assumes the existence of a utility

function f(x) : X 7→ R that gives the ‘value’ of an item with feature vector x; f(xi) >

f(xj) indicates that item i is preferred to item j. Bayesian methods can be used to learn

f , for example, Chu & Ghahramani [2005b] model f with a GP prior. However, when

data from many users is available, this method does not leverage similarities between

102



the users’ preferences because the GPs are fitted independently. For example, news

preferences may be summarized by interests in latent themes such as sports, politics or

technology. By identifying these common themes, at the individual level we only need

to infer a user’s relative interest in each of them.

Current probabilistic multi-user models are limited to one of two possible scenarios:

i) user features are available and they are useful for prediction, or ii) no features are

available. In particular, Bonilla et al. [2010] require that features are available for each

user and assume that users with similar features have similar preferences. Birlutiu et al.

[2010] perform single-user learning, ignoring user features, but tie information across

users with a hierarchical prior. Additionally, these methods involve solving at least U

GP problems, where U is the number of users. This cost is prohibitive even for modest

U . Our model can address both i) and ii) by combining collaborative information

with user features, if available. Furthermore, we perform scalable inference to handle

problems with large U .

To do this, our model has two components: first, supervised GP utility function

learning [Chu & Ghahramani, 2005b] is included to learn users’ preferences. Second,

unsupervised matrix factorization methods from collaborative filtering are included to

learn similarities in users’ behaviours without requiring access to user-specific features.

However, if user features are available they may be useful, so the model can incorporate

them also. Our method is based on a connection between preference learning and GP

binary classification. We show that both problems are equivalent when a covariance

function called the preference kernel is used. This kernel simplifies the inference process,

allowing us to implement relatively complex models such as the proposed multi-user

approach. Finally, in real scenarios, querying users may be costly and intrusive, so it is

desirable to learn their preferences from as little data as possible. For this we exploit

BALD to perform active preference elicitation.

The chapter is organized as follows. We derive the preference kernel in Section 6.1.

In Section 6.2 we present the model. In Section 6.3 we introduce our inference algorithm

which uses a hybrid of EP and VB. We show how BALD can be applied in this sce-

nario in Section 6.4 and discuss related probabilistic models in Section 6.5. Section 6.6

contains our experiments. Conclusions and extensions follow.

6.1 The Preference Kernel

The problem of pairwise preference learning can be recast as a special case of binary

classification. Consider two items i and j with corresponding feature vectors xi,xj ∈ X.

103



In the pairwise preference learning problem we are given pairs of feature vectors xi and

xj and corresponding class labels y ∈ {−1, 1} such that y = 1 if the user prefers item i

to item j and y = −1 otherwise. The task is to predict the class label for a new pair of

feature vectors not seen before. This problem can be addressed by introducing a latent

preference function f : X 7→ R such that f(xi) > f(xj) whenever the user prefers item

i to item j and f(xi) < f(xj) otherwise. If we assume that the evaluations of f are

corrupted by additive Gaussian noise with zero mean and variance σ2, we obtain the

following likelihood for f given xi, xj and y,

p(y|xi,xj , f) = Φ

(
f(xi)− f(xj)√

2σ2
y

)
, (6.1)

where Φ(·) is the probit function (standard Gaussian c.d.f.). As in GP classification, we

may assume without loss of generality that
√

2σ2 = 1. A Bayesian model for preference

learning is specified by combining the likelihood function in (6.1) with a GP prior on f :

f ∼ GP (µ, k). The posterior for f may then be used to predict the user’s preferences

on new pairs of items.

Note, however, that the likelihood in (6.1) only depends on the difference between

f(xi) and f(xj). If we define g : X2 7→ R as a new latent function g(xi,xj) = f(xi)−
f(xj), we may recast the inference problem in terms of g and forget about f . When

the evaluation of g is contaminated with standard Gaussian noise, the likelihood for g

given xi, xj and y is

p(y|xi,xj , g) = Φ[g(xi,xj)y] . (6.2)

Since g is obtained from f via a linear operation, the GP prior over f induces a

GP prior over g. The mean µpref and covariance function kpref of the GP on g can be

computed from the mean and covariance of the GP on f as

µpref (xi,xj) = E [g(xi,xj)]

= E [f(xi)− f(xj)]

= µ(xi)− µ(xj) ,

104



and

kpref ((xi,xj), (xk,xl)) = Cov[g(xi,xj), g(xk,xl)]

= Cov [(f(xi)− f(xj)) , (f(xk)− f(xl))]

= E [(f(xi)− f(xj)) · (f(xk)− f(xl))]

− (µ(xi)− µ(xj)) (µ(xk)− µ(xl))

= k(xi,xk) + k(xj ,xl)− k(xi,xl)− k(xj ,xk) .

We call kpref the preference kernel. Similar kernels have been derived for large margin

classifiers [Fürnkranz & Hüllermeier, 2010], however, to our knowledge, this preference

kernel has not been used previously in GP-based models.

6.1.1 Properties of the Preference Kernel

Kernel functions must be positive semi-definite. Since the preference kernel, kpref, is

constructed from the covariance of a stochastic process it is guaranteed to have this

property. The preference kernel also respects the anti-symmetry property of preference

learning. The prior correlation between g(xi,xj) and g(xj ,xi) is

Corr(g(xi,xj), g(xj ,xi)) =
kpref ((xi,xj), (xj ,xi))√

kpref ((xi,xj), (xi,xj))
√
kpref ((xj ,xi), (xj ,xi))

=
k(xi,xj) + k(xj ,xi)− k(xi,xi)− k(xj ,xj)√

k(xi,xi) + k(xj ,xj)− k(xi,xj)− k(xj ,xi)
√
k(xj ,xj) + k(xi,xi)− k(xj ,xi)− k(xi,xj)

= −1 ,

where we have assumed that µpref = 0 to simplify the derivations. This shows that

the value of g(xi,xj) is perfectly anti-correlated with the value of g(xj ,xi) under the

prior. With a zero mean function g(xi,xj) = −g(xj ,xi), ∀xi,xj , which is the desired

anti-symmetry property for modelling binary preferences.

Note also that the preference kernel respects transitivity between pairwise item pref-

erences. Since g(xi,xj) = f(xi)−f(xj), we have that if g(xi,xj) > 0 then f(xi) > f(xj)

and if g(xj ,xk) > 0 then f(xj) > f(xk), so f(xi) > f(xk). Therefore, if g(xi,xj) > 0

and g(xj ,xk) > 0 then g(xi,xk) > 0.

The original preference likelihood function in (6.1) is more complicated than likeli-

hood functions used in standard regression or classification. Thus, previous GP-based

preference models have used relatively simple approximate inference algorithms, such

as the Laplace approximation [Bonilla et al., 2010; Chu & Ghahramani, 2005b]. The

105



preference kernel moves the additional structure in preference learning from the likeli-

hood function into the prior. The combination of the new likelihood in Equation (6.2)

with a GP prior based on the preference kernel allows us to transform pairwise pref-

erence learning into binary classification. This means that state-of-the-art algorithms

for GP binary classification, such as expectation propagation, can be applied directly

to preference learning. Thus, the preference kernel allows us to implement complex

methods such as the following multi-user approach.

6.2 Multi-User Preference Learning

Consider I items with feature vectors x ∈ X. The single-user approach to preference

learning assumes an independent latent function for each of U users, gu(x,x′) : X2 7→
R. We approach the multi-user problem by assuming a common structure in these

user latent functions. In particular, we assume a set of D shared latent functions,

hd(x,x
′) : X2 7→ R, where D � U . The user latent functions are generated using a

linear combination of these shared functions,

gu(xi,xj) =
D∑
d=1

wu,dhd(xi,xj) , (6.3)

where wu,d ∈ R is the weight given to function hd for user u. We place a GP prior over

the shared latent functions hd using the preference kernel described in the previous

section. This allows different users’ preferences to share some common structure repre-

sented by the shared latent functions. This assumption results in a matrix factorization

dimensionality reduction as is common in collaborative filtering.

We extend this model to the case where, for each user u, there is a feature vector

uu containing relevant information about the user. We denote the set of all the users’

feature vectors as U = {u1, . . . ,uU}. The user features are incorporated by placing

a separate GP prior over each user’s weights. That is, we replace the scalars wu,d in

Equation (6.3) with functions w′d(uu). These weight functions describe the contribution

of shared latent function hd to the user latent function gu as a function of the user

feature vector uu.

In the multi-user setting we have a set of P pairs of items evaluated by the users,

where P ≤ I(I − 1)/2 (the maximum number of item pairs). Denote a preference

judgement as yi,u, for i ∈ {1, . . . , P}, u ∈ {1, . . . , U}, where yi,u = 1, indicates that

user u prefers the first item in pair i to the second and yi,u = −1 otherwise. Denote the

106



set of user/item-pair indices for which we have observed preference judgements as D.

The complete data consists of the set of feature vectors for the users U (if available),

features for the items X, and the preferences {yu,i}(i,u)∈D.

6.2.1 Probabilistic Description of the Model

To predict preferences on unseen item pairs we cast the model into a probabilistic

framework. Let G be a real valued U × P ‘user-function’ matrix, where each row

corresponds to a particular user’s latent function. That is, the entry in the u-th column

and i-th row is gu,i = gu(xα(i),xβ(i)) where α(i) and β(i) denote respectively the first

and second item in the i-th pair. Let H be a D × P ‘shared-function’ matrix, where

each row represents the shared latent functions, that is, the entry in the d-th row and

i-th column is hd,i = hd(xα(i),xβ(i)). Finally, we introduce the U×D weight matrix W,

where each row contains a user’s weights. The entry in the u-th row and d-th column is

wd,u = wd(uu). Equation (6.3) can now be written as a matrix factorization G = WH.

Let Y be the U × P binary target matrix given by Y = sign[G + E], where E is a

U ×P noise matrix with entries sampled i.i.d. from a standard Gaussian. The function

“sign[·]” retains only the sign of the elements in a matrix. Let YD and GD represent

the elements of Y and G for which we have observed preferences. Then, the likelihood

for GD given the observations YD, and conditional distribution for GD given H and

W are

p(YD|GD) =
∏

(u,i)∈D

Φ(tu,igu,i) , p(GD|W,H) =
∏

(u,i)∈D

δ(gu,i −wuh·,i)

respectively, where wu is the u-th row in W, h·,i is the i-th column in H and δ is the

Dirac delta function.

We now select the priors for W and H. We put GP priors on each function

w1, . . . , wD with zero mean and some covariance function. Let Kusers be the U × U
covariance matrix for the entries in each column of W. Then

p(W|U) =

D∏
d=1

N(w·,d; 0,Kusers) , (6.4)

where w·,d is the d-th column in W. If user features are unavailable, we use independent

standard Gaussian priors on each element in W, so Kusers becomes the identity matrix.

Lastly, we put a GP prior on each shared latent function h1, . . . , hD with zero mean and

covariance function given by a preference kernel. Let Kitems be the P × P preference

107



covariance matrix for the observed item pairs. The prior for H is

p(H|X) =

D∏
d=1

N(hd; 0,Kitems) , (6.5)

where hj is the j-th row in H. The resulting posterior for the latent variables W, H

and GD is

p(W,H,GD|YD,X,U) =
p(YD|GD)p(GD|W,H)p(W|U)p(H|X)

p(YD|X,U)
, (6.6)

where p(YD|X,U) is the (intractable) marginal likelihood, or model evidence.

6.2.2 The Predictive Distribution

Given a new item pair with index P +1, we compute the predictive distribution for the

preference of the u-th user on this pair by integrating over the posterior on parameters

H,W and GD as

p(yu,P+1|YD,X) =

∫
p(yu,P+1|gu,P+1)p(gu,P+1|wu,h·,P+1)

p(h·,P+1|H,X)p(H,W,GD|YD,X,U) dH dW dGD , (6.7)

where

p(yu,P+1|gu,P+1) = Φ(yu,P+1gu,P+1) ,

p(gu,P+1|wu,h·,P+1) = δ(gu,P+1 −wuh·,P+1) ,

p(h·,P+1|H,X) =
D∏
d=1

N(hd,P+1; k>? K−1
itemshd, k? − k>? K−1

itemsk?) .

k? is the prior variance of hd
(
xα(P+1),xβ(P+1)

)
and k? is a P -dimensional vector that

contains the prior covariances between hd
(
xα(P+1),xβ(P+1)

)
and hd

(
xα(1),xβ(1)

)
, . . . ,

hd
(
xα(P ),xβ(P )

)
. The posterior (6.6) and predictive distribution (6.7) are intractable

so approximations must be used. For this, we use a combination of EP and VB.

6.3 Hybrid EP-VB Inference

Approximate inference in our model is implemented using a combination of expectation

propagation (EP) [Minka, 2001b] and variational Bayes (VB) [Attias, 1999; Ghahramani

108



& Beal, 2000]. We choose EP as the core inference routine since empirical studies show

that EP obtains state-of-the-art performance in the related problem of GP binary

classification [Nickisch & Rasmussen, 2008]. We first give a brief primer on EP.

6.3.1 Primer on Expectation Propagation

Expectation propagation is a deterministic algorithm for approximate Bayesian infer-

ence, originally developed in Minka [2001a]. Similar to VB, introduced in Section 5.4.1,

the algorithm approximates an intractable distribution over variables θ, p(θ), with a

simpler, factorized distribution q(θ). The EP algorithm matches the approximation q

to the posterior p by attempting to minimizing the KL divergence between the two,

KL[p(θ)||q(θ)], with respect to the parameters of q. Note that the direction of the KL

is the reverse of that used in VB, Equation (5.6). For most models, with many param-

eters, minimizing KL[p(θ)||q(θ)] over the entire distribution q is intractable. Therefore,

EP uses an iterative procedure.

For most models, the posterior distribution can be decomposed into a product of

factors: p(θ) =
∏
a fa(θ). In EP, the posterior approximation q is decomposed into

approximate factors f̂a(θ) that approximate the true factors fa(θ). The approximate

posterior is the re-normalized product of approximate factors q(θ) ∝
∏
a f̂a(θ). EP

iteratively refines each approximate factor f̂a(θ) by minimizing the following KL diver-

gence,

KL
[
fa(θ)q

\a(θ)||f̂a(θ)q\a(θ)
]

=

∫
faq
\a log

faq
\a

f̂aq\a
+ faq

\a − f̂aq\adθ , (6.8)

where q\a(θ) is the current approximation with the a-th term removed, q\a(θ) =

q(θ)/f̂a(θ) ∝
∏
b 6=a f̂b(θ). The form of the KL in Equation (6.8) accounts for the dis-

tributions being unnormalized. For exponential family distributions, optimizing Equa-

tion (6.8) corresponds to matching the expected sufficient statistics of distributions on

either side of the KL. With a Gaussian approximate posterior this computation is

equivalent to moment matching.

EP iterates over the approximate factors, minimizing (6.8) until convergence. This

procedure does not guarantee to minimize the global KL divergence between p(θ) and

q(θ), or even converge. However, in practice it has demonstrated strong empirical

performance with many models and has become a popular inference algorithm. For

thorough overview see Minka [2001a].

109



6.3.2 Inference for Collaborative Preference Learning

We describe our EP routine for our multi-user preference learning model. We approxi-

mate the posterior in (6.6) with fully factorized Gaussian distributions over all of the

elements in W, H and GD,

q(GD,W,H) =

[
U∏
u=1

D∏
d=1

N(wud;m
w
u,d, v

w
u,d)

][
D∏
d=1

P∏
i=1

N(hd,i;m
h
d,i, v

h
d,i)

]
 ∏

(u,i)∈D

N(gu,i;m
g
u,i, v

g
u,i)

 , (6.9)

where mw
u,d, v

w
u,d, m

h
d,i, v

h
d,i, m

g
u,i, and vgu,i are free parameters to be determined by

EP. The superscripts w, h and g indicate the random variables described by these

parameters.

The joint distribution p(GD,W,H,YD|X,U) consists of four factors f1, . . . , f4,

p(GD,W,H,YD|X,U) =
4∏

a=1

fa(G
D,W,H) ,

with correspondences f1(GD,W,H) = p(YD|GD), f2(GD,W,H) = p(GD|W,H),

f3(GD,W,H) = p(W|U) and f4(GD,W,H) = p(H|X). EP approximates these exact

factors by approximate factors f̂1(W,H,GD), . . . , f̂4(W,H,GD) that have the same

functional form as q,

f̂a(G
D,W,H) =

[
U∏
u=1

D∏
d=1

N(wud|m̂a,w
u,d , v̂

a,w
u,d )

][
D∏
d=1

P∏
i=1

N(hd,i|m̂a,h
d,i , v̂

a,h
d,i )

]
 ∏

(u,i)∈D

N(gu,i|m̂a,g
u,i , v̂

a,g
u,i )

 ŝa , (6.10)

where m̂a,w
u,d , v̂a,wu,d , m̂a,h

d,i , v̂a,hd,i , m̂a,g
u,i , v̂

a,g
u,i and ŝa are free parameters of the approximate

factors. As described in Section 6.3.1, q is obtained from the normalized product
∏
a f̂a.

The first step is to initialize f̂1, . . . , f̂4 and q to be uniform. Then EP iteratively refines

each f̂a by minimizing the KL divergence between faq
\a and f̂aq

\a, KL[faq
\a||f̂aq\a]

with respect to the parameters of f̂a.

However, such KL minimization does not perform well for refining f̂2. This term

corresponds to the matrix factorization G = WH. Using EP for this factor is likely

110



to perform poorly. This is because the matrix factorization has many invariances; the

solution is invariant to rotations, reflections or re-scalings of W and H. This means

that the posterior is multimodal. EP will average across the modes of the posterior

(6.9), which will result in a poor overall solution [Bishop, 2006; Stern et al., 2009].

Therefore we use VB to refine f̂2. As discussed in Chapter 5, VB is a popular inference

routine for probabilistic matrix factorization because it will model just one of the modes

of the posterior, which is sufficient for making good predictions. Therefore, instead

of minimizing KL[q\2f2‖q\2f̂2] as is required by EP, the direction KL divergence is

reversed, that is we minimize KL[q\2f̂2‖q\2f2].

EP iteratively refines all the approximate factors until convergence. After run-

ning inference we approximate the predictive distribution (6.7) by replacing the exact

posterior with q. The approximate predictive distribution is

p(yu,P+1|YD,X,U) ≈ Φ

yu,P+1m
g
u,P+1√

vgu,P+1 + 1

 ,

where

mg
u,P+1 =

D∑
d=1

mw
u,dm

h
d,P+1 ,

vgu,P+1 =

D∑
d=1

[mw
u,d]

2vhd,P+1 +
D∑
d=1

vwu,d[m
h
d,P+1]2 +

D∑
d=1

vwu,dv
h
d,P+1 ,

and mh
d,P+1 and vhd,P+1 are given by

mh
d,P+1 = k>?

[
Kitems + diag[v̂h,2d ]

]−1
m̂h,2
d ,

vhd,P+1 = k? − k>?

[
Kitems + diag[v̂h,2d ]

]−1
k? ,

where diag[·] converts a vector into a diagonal matrix and m̂h,2
d , v̂h,2d are the vectors

m̂h,2
d = (m̂h,2

1,d , . . . , m̂
h,2
P,d)

> and v̂h,2d = (v̂h,21,d , . . . , v̂
h,2
P,d)

>. Note that EP approximates the

posterior with fully factorized Gaussians for each factor. However, to interpolate to the

new item pairs we use the full GP prior over the user latent functions hd. Therefore,

when computing the EP approximation to the predictive distributions, we replace the

approximate factor f̂3 corresponding to an uncorrelated prior over the item pairs with

the full GP prior covariance matrix.

EP is also used to approximate the normalization constant in Equation (6.6) (the

111



model evidence) with the integral of the product of all the approximate factors f̂1, . . . , f̂4.

Computing the model evidence with EP requires moment matching the 0th order mo-

ments of the distributions in Equation (6.8). With the VB routine for second factor f̂2

we use the variational lower bound to the evidence (the ELBO).

6.3.3 Algorithmic Details

Damping

Unlike VB, EP does not optimize a bound on the likelihood, and is not guaranteed to

converge so may oscillate. This undesirable behaviour can be prevented by damping

the EP updates [Minka & Lafferty, 2002]. Let f̂new
a denote the value of the approximate

factor that minimizes the KL in (6.8). Damping consists of using

f̂damp
a =

[
f̂new
a

]ε [
f̂a

](1−ε)
, (6.11)

instead of f̂new
a to update the approximate factor, where f̂a is the factor before the

update. The parameter ε ∈ [0, 1] controls the degree of damping. ε = 1 yields no

damping and with ε = 0 the factor f̂a remains unchanged. To improve the converge of

EP, we use a damping schedule recommended in Hernández-Lobato [2010] that uses an

initial ε = 1 and then progressively reduces ε by a constant multiplicative factor.

Refinement of f̂2

The specific computations required to refine the probit likelihood function f̂1 follow from

those for GP classification [Rasmussen & Williams, 2005]. Refining f̂3 and f̂4 requires

standard moment matching of a multivariate Gaussian to independent Gaussians.

For the second factor f̂2, we use VB in a similar manner to Stern et al. [2009].

To do this, we first marginalize q\2f2 with respect to GD. This yields an auxiliary

unnormalized distribution s(W,H) which can be computed analytically using

s(W,H) =

∫ ∏
(u,i)∈D

δ[gu,i −wuh·,zu,i ]q
\2(GD,W,H) dGD . (6.12)

Let qW,H be the posterior approximation (6.9) after marginalizing out GD. The pa-

rameters of qW,H, are then optimized by minimizing KL[qW,H‖s]. This corresponds to

performing a VB matrix factorization with a Gaussian likelihood, for which we use the

gradient descent algorithm described in Raiko et al. [2007]. After this, f̂2 is updated

112



using the ratio of Gaussians, f̂2 = qW,H/q
\2.

6.3.4 Sparse GPs for Linear Computational Time

The cost to perform inference with GPs is cubic in the number of observations. In

our case, refining the third factor f̂3 costs O(DU3), where U is the number of users,

and D is the number of shared latent functions. The cost to refine the fourth factor

f̂4 is O(DP 3), where P is the number of observed item pairs. These cubic costs can

be prohibitive. However, GP inference may be reduced to a cost linear in the number

of observations with sparse approximations. We use the Fully Independent Training

Conditional (FITC) approximation [Snelson & Ghahramani, 2006]. In essence, FITC

channels covariance information from the full dataset through a small number of pseudo-

inputs that can be located arbitrarily.

We reduce the costs of refining f̂3 and f̂4 by approximating Kusers and Kitems in

Equations (6.4) and (6.5) using FITC. Under this approximation, an N ×N covariance

matrix K resulting from the evaluation of a covariance function at N locations is ap-

proximated by a low rank matrix K′ = Q+diag(K−Q), where Q = KNN0K
−1
N0N0

K>NN0
.

The N0 × N0 matrix KN0N0 contains evaluations of the covariance function at only

N0 < N pseudo-inputs and the N ×N0 matrix KNN0 contains the covariances between

the original data and the pseudo-inputs.

This approximation allows us to refine f̂3 and f̂4 in O(DU2
0U) and O(DP 2

0P ) oper-

ations, where U0 and P0 are the number of pseudo-inputs for the users and the item

pairs respectively. We choose U0 and P0 to balance cost and accuracy. The calcula-

tions required to implement EP and to approximate the predictive distribution and

model evidence with FITC follow from those in Lázaro Gredilla [2010]; Naish-Guzman

& Holden [2007]. Both of the other factors, f̂1 and f̂2, have linear cost in the total

number of datapoints, O(|D|). Without FITC, this cost is dominated by the cubic

cost of the GPs, and the total cost of our inference routine is O(|D| + DU3 + DP 3).

With FITC, the total cost is linear in the number or users, item pairs and datapoints,

O(|D|+DU2
0U +DP 2

0P ).

6.4 Active Preference Elicitation

In many applications one can present users with new item pairs to elicit new preference

judgements. However, often users will only provide limited feedback, therefore it is

desirable to collect data that will yield maximal information about their preferences.

For this we use the active learning techniques developed in Chapters 2 and 3.

113



With the multi-user preference model the parameter that we are interested in learn-

ing is the user latent function gu. We may apply BALD, introduced in Chapter 2,

directly to this task. In particular, following Equation (2.10), we suggest items pairs

(x,x′) to a user to maximize the information gain about gu,

U(x,x′) = H[p(gu|YD)]− Ep(y|x,x′,YD)H[p(gu|y,x,x′,YD)] , (6.13)

= H[p(y|x,x′,YD)]− Ep(gu|YD)H
[
p(y|x,x′, gu)

]
. (6.14)

As in GP regression and classification, rearranging from the direct computation of pos-

terior entropies in Equation (6.13) to the formulation used by BALD (6.14) is necessary

to compute information gain about the entire latent function accurately. Since inference

with our multi-user model requires running the EP-VB routine, it is particularly impor-

tant to reduce the number of posterior updates from 2P new to 1 per sample, where P new

is the number of possible new item pairs, as permitted by the BALD rearrangement.

Since we have used the preference kernel to reduce the likelihood function for pref-

erence learning to the probit likelihood used in classification models, we may use the

techniques proposed in Section 3.2 for active GPC. Therefore, we apply Equation (3.8)

directly to compute Equation (6.14) with our preference model.

6.5 Related Multi-User Models

We describe the differences between our approach and two alternative multi-user GP

preference learning models described in Birlutiu et al. [2010]; Bonilla et al. [2010]. We

compare to them empirically in Section 6.6.

Model of Birlutiu et al. As in the single-task preference learning model, this model

fits a different GP to data from each user. However, the different classifiers are now

connected by a hierarchical GP prior over the latent user-preference functions gu. This

model does not include user-features. The parameters of the hierarchical prior (the

mean and covariance) are optimized using the expectation-maximization (EM) algo-

rithm [Dempster et al., 1977]. In the E-step the GP posterior mean and covariance

over the item pairs is computed for each user. Then, in the M-step the mean and

covariance of the hierarchical prior are adjusted to maximize the log likelihood of all of

the data.

This model is flexible because it learns the full covariance matrix for each of the

114



P item pairs for each user. However, this causes the EM routine to be computation-

ally expensive since each iteration requires the inversion of U covariance matrices of

dimension P × P , this results in O(UP 3) computations. The cost of our equivalent

model, that does not incorporate user features, is O(DP 3).1 Our model is significantly

cheaper because D � U . In our implementation, to reduce the computational burden

of the model in Birlutiu et al. [2010], we limit the EM algorithm to 20 iterations. In

our experiments, increasing this number did not lead to improvements in the predictive

performance of this method.

Birlutiu et al. [2010] do not use the preference kernel. Without this, their cost is

reduced to O(UI3), where I is the total number of items. However, they still need to

solve U GP problems. Furthermore, GP inference with their likelihood is harder, so

they resort to a sampling-based approximation. For a fair comparison of the underlying

models, we implemented their method using the preference kernel and EP.

Model of Bonilla et al. This model assumes that user features are available and

users with similar characteristics have similar preferences. This model uses a single

large latent function g which depends on both the item features x and user features u.

With the preference kernel, the likelihood function for their model is

p(y|xi,xj ,uu, g) = Φ(g(xi,xj ,uu)y) . (6.15)

A GP prior is used for g, and its covariance function is constructed using a product

kernel,

kBonilla((uu,xi,xj), (us,xk,xl)) = kusers(uu,us)kpref((xi,xj), (xk,xl)) , (6.16)

where kpref is the preference kernel and kusers is a covariance function for user features.

Therefore kusers encourages the model to assign similar preferences to users with similar

feature vectors. The preference kernel allows us to do efficient approximate inference in

this model using a standard EP implementation for GPC. However, the computational

cost of this method is high, it has cubic cost in the total number of observations,

O(|D|3). Our model, with user features, has a much lower cost of O(|D|+DU3 +DP 3).

Again, Bonilla et al. [2010] do not use the preference kernel, but instead use the

standard GP preference likelihood in Equation (6.1). In this case the cost is lower,

but still large at O(|I|3), where |I| is the sum of number of unique items evaluated

by each user. Inference with this likelihood is more complex so the authors use the

1 Without the FITC approximation, which is not used in Birlutiu et al. [2010].

115



Laplace approximation. EP normally outperforms Laplace in binary GPC [Nickisch &

Rasmussen, 2008], so to compare the underlying models we implemented their model

with the preference kernel and EP. In practice, with cubic cost in the total number

of observations, the method in Bonilla et al. [2010] is infeasible with more than a few

hundred users (they report experiments with only 50 training users). Additionally, this

model cannot be used if user features are absent, and if users with similar features do

not have similar preferences one obtains poor predictive performance as we observe in

our experiments.

6.6 Experiments and Discussion

We evaluated the performance of our collaborative preference model with BALD in

experiments on five datasets. There are not many public multi-user preference learning

datasets available, so some of the datasets were converted from multi-user regression.

The datasets were:

i) Synthetic This data was generated from the assumed multi-user preference learn-

ing model with D = 5.

ii) Jura This dataset contains concentration measurements for 7 heavy metals in

soils of the Swiss Jura region at 359 locations [Atteia et al., 1994]. We converted

this into preferences by first standardizing the measurements of each metal. Then the

standardized measurements were used as utility values to generate preferences between

pairs of heavy metals at each location. The locations correspond to ‘users’ and metals

to ‘items’. The item features were generated using the standardized measurements at

20 randomly held-out locations. We used the x and y coordinates for the measurements,

and rock and land types for the item features.

iii) MovieLens This dataset contains 1 million ratings from 6,000 users on 4,000

movies, available at http://grouplens.org/datasets/movielens/. 10 movies were

sampled from the 50 movies with most ratings. We selected users with at least 7 ratings

on these movies. The missing ratings were filled in using a nearest neighbour method.

The ratings were used as utility values to generate preferences between movies. The

user features included gender, age and occupation. The item features are genres such

as action, comedy or adventure.

116

http://grouplens.org/datasets/movielens/


iv) Sushi This dataset contains complete rankings of 10 sushi types by 5,000 users

[Kamishima et al., 2005], where each sushi includes features such as style, group, heav-

iness, consumption frequency etc. The user features include gender, age and geograph-

ical information.

v) Election This dataset contains the votes for 8 political parties (items) in 650

constituencies (users) in the 2010 general elections in the UK, available from http:

//www.electoralcommission.org.uk/. We kept constituencies with votes for more

than 6 parties. Missing votes were estimated using a nearest neighbour method. We

generated ‘item’ feature vectors as the votes from 20 randomly held-out constituencies.

The ‘user’ features were the map coordinates of each constituency’s centroid.

6.6.1 Comparison to Other Multi-User Models

Alternative Models

We compared the two versions of our collaborative preference (CP) model. The first

(CPU) takes into account the available user features, as described in Section 6.2. The

second (CP) ignores these features by replacing Kusers in Equation (6.4) with the iden-

tity matrix. We compare to the two multi-user preference models described in Sec-

tion 6.5, Birlutiu et al. [2010] (BI) and Bonilla et al. [2010] (BO). Finally, we consider

a single user baseline (SU) that fits an independent GP classifier independently to the

data of each user.

Experimental Procedure

Due to the high computational cost of BI and BO, to compare to these methods we

must subsample the datasets, keeping only 100 users. The datasets were split randomly

into training and test sets of item pairs, where the training sets contained 20 pairs per

user in Sushi, MovieLens and Election, 15 pairs in Jura and 30 in Synthetic. The

remaining data was used to evaluate predictive performance.

In CPU and CP, we set the number of latent functions to D = 20. We set the kernel

lengthscales to be equal to the median distance between feature vectors. This lead to

good empirical performance for most methods. An exception is BO, where the kernel

hyperparameters are tuned to some held-out data using automatic relevance determi-

nation. In our model, we can also estimate the kernel lengthscales by maximizing the

EP approximation of the model evidence, see experiments below. This approach may

be used when it is necessary to tune the lengthscale parameters to the data. In CPU

117

http://www.electoralcommission.org.uk/
http://www.electoralcommission.org.uk/


Dataset CPU CP BI BO SU

Synthetic 0.162 0.180 0.175 0.157 0.226
Sushi 0.171 0.163 0.160 0.266 0.187
MovieLens 0.182 0.166 0.168 0.302 0.217
Election 0.199 0.123 0.077 0.401 0.300
Jura 0.159 0.153 0.153 0.254 0.181

Table 6.1: Average test error with 100 users.

Dataset CPU CP BI BO SU

Synthetic 7.793 9.498 22.524 311.574 0.927
Sushi 5.694 4.307 20.028 215.136 0.817
MovieLens 5.313 4.013 19.366 69.048 0.604
Election 13.134 12.408 20.880 120.011 0.888
Jura 3.762 2.404 15.234 88.502 0.628

Table 6.2: Training times (seconds) with 100 users.

we used U0 = 25 pseudo inputs for approximating Kusers. These pseudo inputs were

selected randomly from the set of available datapoints. Similarly, in CP and CPU, we

used P0 = 25 pseudo inputs for approximating Kitems, except in the Jura and Election

datasets (which contain fewer items) where we used P0 = 15. The results are not sen-

sitive to the number of pseudo inputs, provided the number is not excessively low. The

results were averaged over 25 repeats of the entire routine, including the random data

partitioning.

Results

Error was measured as the fraction of held out preferences incorrectly predicted by the

models. Average test errors are contained in Table 6.1. Those highlighted in bold are

statistically better to those not highlighted (according to a paired t test).

Overall, CP and CPU outperform SU and BO, and break even with BI; this last

result is notable as BI learns the full mean and covariance structure for all users, our

model uses only a few latent dimensions, which provides the key to scaling to many

more users. CP outperforms CPU in all cases except on the Synthetic dataset, where

we know that the features correlate with the preferences. Therefore, it appears that in

these real-world datasets, users with similar features do not have similar preferences,

so correlating the behaviour of users with similar features is detrimental. The unsuper-

vised, collaborative learning of similarities in user preferences is more useful for making

predictions than the user features. This also explains the poor overall performance of

118



Synthetic Sushi MovieLens

0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

num samples

er
ro

r

0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

num samples

er
ro

r

0 2 4 6 8 10

0.2

0.25

0.3

0.35

num samples

er
ro

r

Election Jura

0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

num samples

er
ro

r

0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

num samples

er
ro

r

CPU−B
CPU−E
CPU−R
CP−B
CP−E
CP−R
SU−B
SU−E
SU−R

Figure 6.1: Average test error for CPU, CP and SU, using the strategies BALD (-B),
entropy (-E) and random (-R) for active learning.

BO.

The Synthetic dataset was generated using a latent dimension of D = 5, but CPU

and CP still obtain good results using D = 20. Hence, CPU and CP appear to be

robust to overfitting, over-estimation of D does not harm predictive performance. This

automatic pruning of unnecessary degrees of freedom is common in methods based on

variational Bayes [MacKay, 2001].

Wall-clock run times are presented in Table 6.2. The entries for BO do not include

the time spent tuning the kernel hyper-parameters with this method. CP and CPU are

faster than BO and BI. The FITC approximation adds a large multiplicative constant

to the cost of CP and CPU, so for larger datasets the gains are much greater.

6.6.2 Active Learning on Large Datasets

We now evaluate BALD for active preference elicitation on all the available users from

each dataset, up to a maximum of 1000 users. We compare CPU, CP, and SU using

BALD (-B), Maximum Entropy Sampling (-E) and random sampling (-R). For each

user the available preferences were split randomly into training, pool and test sets

with 5, 35, 5 pairs respectively in Synthetic, Sushi and MovieLens, 3, 22, 3 pairs in

Election and 3, 15, 3 pairs in Jura. Each model was fitted using the training sets and

119



Dataset CPU-B CPU-E CPU-R CP-B CP-E CP-R SU-B SU-E SU-R

Synthetic 0.135 0.135 0.139 0.153 0.160 0.173 0.249 0.259 0.268
Sushi 0.148 0.153 0.178 0.144 0.151 0.176 0.179 0.197 0.212
MovieLens 0.170 0.176 0.199 0.163 0.170 0.195 0.225 0.235 0.248
Election 0.202 0.158 0.224 0.097 0.093 0.151 0.332 0.346 0.338
Jura 0.143 0.141 0.168 0.138 0.138 0.169 0.176 0.166 0.197

Table 6.3: Test error for each method and active learning strategy with 1000 users, or
the maximum available.

its performance was then evaluated on the corresponding test sets. Next, the most

informative datapoint was identified in each user’s pool set. These datapoints were

moved into the corresponding training sets and the process was repeated for 10 of these

active additions. The entire process, including the dataset partitioning was repeated

25 times.

Figure 6.1 shows the test errors versus the number of active samples. Average

errors after 10 queries from the pool presented in Table 6.3. For each model (CPU, CP

and SU), the results of the best active learning strategy are highlighted in bold. The

results of the best overall model/active learning strategy combination are underlined.

BALD appears to be effective for preference elicitation. It always outperforms random

sampling and significantly outperforms MES in 9 cases, while MES is better in only 2

cases.

6.6.3 Tuning the Kernel Lengthscale

We attained good performance in CP and CPU by setting the GP kernel hyperparam-

eters to the the median distance between feature vectors. The hyperparameter may be

tuned to the data by maximizing the marginal likelihood (model evidence). We per-

form an additional experiment to show that the approximation to the model evidence

returned by EP may be used for this task

Figure 6.2 shows a contour plot of the log-evidence returned by EP on the synthetic

dataset with 100 users. We used a squared exponential (RBF) kernel with isotropic

lengthscales. The evidence is plotted against different values for the lengthscale pa-

rameters σusers and σitems. The synthetic data was generated using log σusers = 0 and

log σitems = 0. The highest evidence returned by EP corresponds to values of log σusers

and log σitems close to the true values of zero. Again, the model used D = 20 latent

functions, while the data are generated using D = 5, so our proposed model seems to

be robust to over-specification of the number of latent dimensions.

Although EP can return an estimate of the evidence that includes the VB lower

120



Log Evidence Returned by EP

−2 −1 0 1 2

−
2

−
1

0
1

2

Figure 6.2: Log evidence returned by EP on the synthetic data. x and y coordinates
are the log of the lengthscales σusers and σitems respectively. The synthetic data was
generated with log σusers = 0 and log σitems = 0.

bound, it is difficult to compute the gradient of the evidence with our hybrid infer-

ence algorithm. Thus, tuning the lengthscales using the evidence with more hyperpa-

rameters, such as with an ARD kernel may be difficult and is the subject of further

investigation. However, our experiments indicate that most of the information about

the users arises from the collaborative information in their preferences, and not their

features, so in practice further tuning of the hyperparameters may not be necessary

with our model.

6.7 Conclusions and Extensions

We have proposed a multi-user model that combines collaborative filtering methods

with GP preference learning. To perform efficient inference with this relatively com-

plex model we recast preference learning as a particular case of binary classification

with GPs. This is made possible by the preference kernel. The proposed multi-user

model performs favourably compared to the single user approach and current multi-

user models which are more expensive. Furthermore, our model may incorporate user

features if they are available and useful. Current methods either must use them, or

121



cannot include this information. We also show that BALD for GPC can be directly

extended to elicit useful preferences from the users.

One abundant source of implicit preference data is web clickthough logs [Joachims,

2002]. Here, the number of users and items may be enormous. Although our method

is more scalable than current probabilistic models for this task, more work is required

to extend to such web-scale data. With FITC, the linear scaling in the number of

users is favourable, however, placing the pseudo-inputs randomly (as we do) may not

capture all of the relevant patterns in a GP with many users. Snelson & Ghahramani

[2006] locate the pseudo-inputs by optimizing the model evidence. However, computing

the gradient of the evidence with respect to these parameters is difficult in our model.

An alternative could be to use BALD to select informative locations for the pseudo-

inputs. An extension to the IVM has been proposed that uses decision-theoretic loss

functions to subsample items for GP-sparsification in preference learning [Abbasnejad

et al., 2013]. BALD could select pseudo-inputs from any continuous location.

Although the preference kernel is crucial for implementing accurate EP inference,

the resulting cubic (or linear with FITC) scaling in the number of observed item pairs

is undesirable. The recent work in Abbasnejad et al. [2013] has developed EP for the

model in Bonilla et al. [2010] (BO), discussed in Section 6.5. Since they use the original

preference likelihood (6.1), their factors are bivariate, which complicates inference. This

may result in difficulties in our model because we include a dimensionality reduction

also. However, extending our inference procedure in a similar manner to handle the

more complicated original likelihood in (6.1) may be required to scale to large numbers

of items.

Our model can incorporate user features if available, or fall back on collaborative

information alone if not. However, it does not handle partially missing features vectors

formally. Dealing with partially missing inputs in discriminative models is, in general,

unsolved. With a prior distribution over the possible values of a missing input, one

should integrate the likelihood function over this prior. However, with GPs this is

intractable. A heuristic approximation integrates the kernel directly against the input

uncertainty [Girard et al., 2003; Turner, 2011]. With a Gaussian prior over the missing

input and a squared exponential kernel this results in augmenting the length scales.

However, with our preference model, this approach is somewhat unsatisfactory because

CPU would not reduce to CP when all the inputs are missing. Designing a method

that can smoothly interpolate between CP and CPU with partially missing inputs is

an open problem.

In this chapter we considered elicitation of preferences from users for whom we

122



have already observed a number of judgements. However, suppose a new user arrives

for whom we have little data. In this case, preference elicitation is hard because the

model will be very uncertain about the user’s weights wu,d in Equation (6.3). It will

only have covariate information to go by, and this may not even be available. Making

recommendations with new users or items is referred to as the cold-start problem in

collaborative filtering. As we have seen with GPs in Chapter 3, performing robust

Bayesian active learning requires appropriate modelling of all sources of uncertainty.

In the next chapter we address the cold-start problem with a new robust matrix fac-

torization model for rating data.

123



Chapter 7

Heteroscedastic Matrix

Factorization for Cold-Start

Learning

In the previous two chapters we have modelled binary and preference matrix data.

We now address the classic data-type in collaborative filtering (CF) systems: rating

data. Here, users assign items ordinal-valued ratings or responses, such as {?, ??, . . .},
{strongly agree, agree, . . . }, etc. Specifically, we address the cold-start problem. Cold-

start is one of the most challenging problems for recommender systems: what to rec-

ommend to new users or items for which one has little or no data. For this we propose

a new matrix factorization model for rating data that can be combined with BALD to

elicit maximally useful ratings in a manner that is robust in this setting.

Collaborative filtering (CF) based recommender systems exploit shared regularities

in behaviour to learn about entities such as users and items. The patterns learnt can

then be used to make decisions such as recommending new items to a user. However, CF

methods can perform poorly when new users or items are introduced to the system and

the amount of data available for such entities is very limited. This scenario is referred

to as the cold-start problem [Maltz & Ehrlich, 1995; Schein et al., 2002]. One solution

to the cold-start problem is to use information from features (e.g. age and gender for

users) to make predictions about the new entities [Ahn, 2008; Claypool et al., 1999;

Park & Chu, 2009; Park et al., 2006]. However, such features may not be available,

e.g. for privacy reasons. A complementary strategy is to collect an initial set of ratings

so that the system learns as much as possible about the new entities from a minimal

number of user interactions. This is active learning.

124



We address the cold-start problem using our Bayesian approach to active learning

developed in Chapter 2. Bayesian methods exhibit a number of advantages for CF,

discussed in Section 5.1. One of the primary advantages is that they provide estimates

of uncertainty in predictions and parameter values. This property is important for the

success of active learning. In practice, obtaining correct estimates of uncertainty in

both the model parameters and the noise levels is essential for identifying the most

informative data to collect. This is especially relevant to cold-start learning, as the

parameters relating to the new user or item are highly uncertain. To achieve good es-

timates of uncertainty, we propose a new probabilistic model for rating data that both

encodes uncertainty through a posterior distribution over the model parameters and

includes a likelihood function for ordinal data with different noise levels (heteroscedas-

ticity) across users and items. We demonstrate superior performance of this model on

several rating datasets relative to current state-of-the-art alternatives.

As in the preference learning model presented in Chapter 6, inference with this

model requires an iterative EP routine. Thus, we use BALD to yield efficient computa-

tion of information gains, avoiding having to perform multiple runs of EP per sample.

Furthermore, in cold-start learning it is important to use the data as efficiently as possi-

ble and collect information only about the model parameters of primary relevance. For

this we extend the ‘focused’ active learning formulation presented in Section 2.3.4. In

cold-start learning it is critical to gain maximal information from the very first sample

so as not to deter a new user with multiple requests for information. Empirically, we

find that to get the same predictive performance as from a single rating requested by

BALD, requires on average 1.59 ratings with random sampling and 1.85 with uncer-

tainty sampling. An increase from one to two initial rating requests may be critical to

whether a user stays with the system.

7.1 A Robust Model for Ordinal Matrix Data

In CF with rating data, we are given a dataset {ru,i : 1 ≤ u ≤ U, 1 ≤ i ≤ I, ru,i ∈
{1, . . . R}, (u, i) ∈ D} of discrete ratings by U users on I items, where the possible rating

values are ordinal, 1 < . . . < R, for example, 1 to R ‘stars’ assigned to a product. D is

the set of pairs of users and items for which a rating is available (observed). We assume

that the dataset is a sample from a full U × I rating matrix R, where the entry ru,i

in the u-th row and i-th column of R contains the u-th user’s rating for the i-th item.

In practice, the observed dataset contains only a small fraction of the entries in R, we

denote the observed ratings RD.

125



Figure 7.1: Graphical representation of the model for ordinal matrix data as it is
described in the main text. The observed variables are the rating values ru,i. All the
other variables are latent. Dots denote fixed hyperparameters.

We propose a new probabilistic model for R. This model is robust, in that it

allows the level of noise in the entries of R to vary across rows and columns. This is

particularly important for active learning, where collecting data from users or items

that are too noisy is wasteful. To capture the discrete nature and natural ordering

of rating data, our model follows an ordinal regression approach [Chu & Ghahramani,

2005a; Stern et al., 2009]. This is an advantage over the Gaussian likelihood, usually

used for this task, that inappropriately assumes continuous entries in R. To obtain

better predictions, our ordinal likelihood function has different hyperparameters for

each column (item) of R. We learn these hyperparameters using a hierarchical prior.

Further, the model is based on a low rank matrix factorization with a hierarchical prior

on the latent low rank factors. This second hierarchical prior increases the robustness

of the model to overfitting and parameter specification. Figure 7.1 shows the graphical

model for this probabilistic method, which we now describe in detail.

7.1.1 Model Description

We model the generation of the ratings R as a function of two low rank latent matrices

U ∈ RU×D and V ∈ RI×D, where D � min(U, I). The value of ru,i is determined by

i) the scalar uT
uvi, where uu is the vector contained in the u-th row of U and vi in

the i-th row of V, and ii) a partition of the real line into R − 1 contiguous intervals

with boundaries bi,0 < . . . < bi,R, where bi,0 = −∞ and bi,R = ∞. The value of ru,i

126



is obtained as a function of the interval in which uT
uvi lies. Note that the interval

boundaries are different for each column of R. A simple model would be ru,i = k

if u>u vi ∈ (bi,k−1, bu,k]. However, due to noise, there may be no bi,0, . . . , bi,R, U and

V that guarantee u>u vi ∈ (bi,ru,i−1, bi,ru,i ] for all of the observed ratings in RD. We

model this by adding zero-mean Gaussian noise eu,i to u>u vi before generating ru,i, and

introducing the latent variable au,i = u>u vi+ eu,i. The probability of ru,i given au,i and

bi = (bi,1, . . . , bi,R−1) is

p(ru,i|au,i,bi) =

ru,i−1∏
k=1

Θ[au,i − bi,d]
R−1∏
k=ru,i

Θ[bj,k − au,i]

=

R−1∏
k=1

Θ [sign[ru,i − k − 0.5](au,i − bi,d)] , (7.1)

where Θ denotes the Heaviside step function; Θ[x] = 1 for x ≥ 1 and zero otherwise.

Thus, the likelihood (7.1) takes value 1 when au,i ∈ (bru,i−1, bru,i ] and 0 otherwise.

Note the dependence of (7.1) on all the entries in bi and not only on bru,i−1 and

bru,i . The prior for the vector of boundary variables bi for the i-th column of R is

hierarchical Gaussian, p(bi|b0) =
∏R−1
k=1 N(bi,k; b0,k, v0), where b0 is a vector of base

interval boundaries, with prior p(b0) =
∏R−1
k=1 N(b0,k;m

b0
k , v0). mb0

1 , . . . ,mb0
R−1 and v0

are hyperparameters. Note that although the boundaries may cross a priori, crossed

boundaries have zero likelihood, so the posterior means remain in order.

We include heteroscedasticity in the additive noise eu,i across users and items. For

this, eu,i follows a priori a zero-mean Gaussian distribution with variance γrow
i × γcol

j ,

where γrow
i and γcol

j are factors that specify the variance of eu,i for the u-th row and

i-th column of R. We define cu,i = uT
uvi and assume that the conditional distribution

of au,i given cu,i, γ
row
i and γcol

j is p(au,i|cu,i, γrow
i , γcol

j ) = N(au,i; cu,i, γ
row
i γcol

j ). To learn

the user and item specific noise levels we put inverse Gamma priors on γrow
i and γcol

j .

For robustness to fixing parameter values, we use a hierarchical Gaussian prior for

U and V, that is, p(U|mU,vU) =
∏U
u=1

∏D
d=1 N(uu,d;m

U
d , v

U
d ) and p(V|mV,vV) =∏I

i=1

∏D
d=1 N(vi,d;m

V
d , v

V
d ), where mU and mV are mean parameters for the rows of U

and V respectively. We select factorized standard Gaussian priors for these parameters.

Similarly, vU and vV are variance parameters for the rows of U and V and are given

factorized inverse Gamma priors.

Lastly, let CD be the set of variables cu,i for which ru,i is observed, then p(CD|U,V) =∏
(u,i)∈D δ(cu,i − u>u vi). Similarly we collect the variables au,i for the observed ratings

into AD, and the threshold boundary variables bi into a d× (R− 1) matrix B. Let

127



RD denote the set of entries in R that are observed. Then the likelihood factorizes as

p(RD|AD,B) =
∏

(u,i)∈D p(ru,i|au,i,bi). Given RD, the posterior distribution over all

of the variables Ξ = {AD,CD,U,V,B,γrow,γcol,b0,m
U,mV,vU,vV} is

p(Ξ|RD) =p(RD|AD,B)p(AD|CD,γrow,γcol)p(CD|U,V)p(U|mU,vU)p(V|mV,vV)

p(B|b0)p(b0)p(γrow)p(γcol)p(mU)p(mV)p(vU)p(vV)[p(RD)]−1 , (7.2)

where p(RD) is the normalization constant. Conditioning on hyperparameters has been

omitted for clarity.

Hyperparameter Values

All of the Gaussian hyper-priors were given standard Normal distributions. The prior

means mb0
1 , . . . ,mb0

L−1 were set to form an evenly spaced grid on the interval [−6, 6],

as suggested in Paquet et al. [2012]. The prior variance v0 for each component of b0 is

initialized to v0 = 0.1.

The hyperparameters aγ0 and bγ0 for the priors on γrow
u and γcol

i are set to aγ0 = 5

and bγ0 = 5
√

10. This yields a mean value of 10 for the product of γrow
i and γcol

j , which

is the recommended noise level in the (homoscedastic) ordinal MF model in Paquet

et al. [2012]. The other inverse gamma hyperpriors were given values au0 = av0 = 5 and

bu0 = bv0 = 5. The is equivalent to having seen a random sample of size 10 with unit

empirical variance.

7.1.2 Inference

As with most non-trivial models, computing the posterior (7.2) exactly is intractable.

Thus we perform approximate inference using a combination of expectation propagation

(EP) and variational Bayes (VB). This algorithm follows a similar procedure to the

scheme used for the preference learning model in Chapter 6, except that the ordinal

model has more factors to refine. We use the following parametric approximation to

128



the exact posterior:

q(Ξ) = ∏
(u,i)∈D

N(au,i;m
a
u,i, v

a
u,i)

 ∏
(u,i)∈D

N(cu,i;m
c
u,i, v

c
u,i)

[ U∏
u=1

D∏
d=1

N(uu,d;m
u
u,d, v

u
u,d

]
[

I∏
i=1

D∏
d=1

N(vi,d;m
v
i,d, v

v
i,d

][
I∏
i=1

R−1∏
k=1

N(bi,d;m
b
i,d, v

b
i,d)

][
R−1∏
k=1

N(b0,k;m
b0
k , v

b0
k )

]
[
D∏
k=1

N(mU
k ;mmU

k , vm
U

k )

][
D∏
d=1

N(mV
d ;mmV

d , vm
V

d )

][
D∏
d=1

IG(vU
d ; av

U

d , av
U

d )

]
[
D∏
d=1

IG(vV
d ; av

V

d , bv
V

d )

][
U∏
u=1

IG(γrow
u ; aγ

row

u , bγ
row

u )

][
I∏
i=1

IG(γrow
i ; aγ

col

i , bγ
col

i )

]
. (7.3)

The parameters on the right hand side of (7.3) are refined using EP. There are 13

approximate factors, these correspond to the each of the terms in the numerator of

the posterior in Equation (7.2). These approximate factors take the same functional

form as the posterior approximation in (7.3). The approximation to the posterior q(Ξ)

is obtained as the normalized product of the 13 factors. To refine q, each factor is

refined in turn. A overview of how to refine approximate factors using EP is given in

Section 6.3.1. There are various levels of approximation required to refine the factors

of our ordinal MF model, which we now describe. Full details can be found in the

supplementary material to Houlsby et al. [2014].

Exact Factors

Some of the approximate factors have the same functional form as the factors in the

true posterior (7.2). Thus the EP update results in no approximation and these factors

are exact. This applies to the Gaussian priors p(mU), p(mU), p(b0) and the inverse

Gamma priors p(vU), p(vU), p(γrow),p(γcol). For these, the parameters in the approx-

imate factors are set to the hyperparameters given above. Further, since these updates

do not depend on the parameters of any other approximate factor, they are refined

once during initialization and not adjusted any further.

Exact EP

Some of the approximate factors will not have the same functional form as their cor-

responding true factors, but the EP refinement procedure, which involves moment

129



matching the approximate factor to the true factor (see Section 6.3.1) can be per-

formed exactly. This includes the likelihood p(RD|AD,B) and the hierarchical prior

on the layer boundaries p(B|b0). The prior on B requires the moment matching of

Gaussian distributions. The update equations for likelihood follow from those required

for classification with a probit likelihood [Rasmussen & Williams, 2005].

Approximate EP

The EP refinement calculations are intractable for some of the factors. These are

p(AD|CD,γrow,γcol), p(U|mU,vU) , p(V|mV,vV). This is due to the inverse Gamma

priors over the variances in these factors. To update the approximations to the latter

two factors, after integrating out these variances we need to solve the integral of a

Gaussian times a Student’s t-distribution, which has no analytic form. Therefore, we

approximate the Student’s t-distribution with a Gaussian with the same mean and

variance. To do this we follow the technique described in Hernández-Lobato [2007]. In

p(AD|CD,γrow,γcol) the variance depends on the product of two variables that follow

inverse Gamma distributions. To make the required marginalizations tractable, we

approximate the inverse Gammas with delta functions at their mode.

Variational Bayes

As described Section 6.3.2, EP provides a poor approximation to factors that correspond

to matrix factorizations due to invariances in the solutions to MFs [Stern et al., 2009].

Therefore, to refine the approximation to the final factor p(CD|U,V) we use VB. For

this we follow the same routine outlined in Section 6.3.3.

7.1.3 Predictive Distribution

Given the approximation to the posterior in (7.3), we estimate the predictive probability

of a new entry r?u,i of R that is not contained in the observed ratings RD using

p(r?u,i|RD) ≈
∫
p(r?u,i|a?u,i,bi)p(a?u,i|c?u,i, γrow

i , γcol
j )p(c?u,i|uu,vi)q(Ξ) dΞ da?u,i dc

?
u,i

≈ Φ
[
ζ(r?u,i)

]
− Φ

[
ζ(r?u,i − 1)

]
, (7.4)

130



where

ζ(r?u,i) =
mb
i,r?u,i
−mc,?

u,i√
vc,?u,i + vbj,r?u,i

+ vγu,i

, (7.5)

mc,?
u,i =

h∑
k=1

mu
u,dm

v
i,d,

vc,?u,i =
h∑
k=1

[mu
u,d]

2vvi,d + vuu,d[m
v
j,k]

2 + vuu,dv
v
j,k,

vγu,i =
bγ

row
bγ

col

(aγrow + 1)(aγcol + 1)

and Φ is the standard Gaussian c.d.f.

As well as replacing the true posterior with the EP approximation q, two approx-

imations were used to compute Equation (7.4). These were required to integrate over

the inner product of random vectors in p(c?u,i|uu,vi) and the product of variance param-

eters in p(a?u,i|c?u,i, γrow
u , γcol

i ). In both cases we moment-match Gaussian distributions

to the integral over these factors, and as before we approximate the inverse Gammas

over γrow
u and γcol

i with point masses at their modes.

Intuitively, the above predictive distribution (7.4) incorporates two sources of un-

certainty. The first originates from the unknown value of the variables in Ξ. This

uncertainty is captured by the width (variance) of the different factors that form q and

it is summarized in ζ(r?u,i) by the variance terms vc,?u,i and vbi,r?u,i
. The second originates

from the heteroscedastic additive noise in a?u,i. This uncertainty is encoded in ζ(r?u,i) by

the variance term vγu,i. Therefore, (7.4) allows us to take into account the uncertainty

in model parameters Ξ and the intrinsic noisiness of the data when making predictions.

Equipped with this model we can take a robust Bayesian approach to active learning.

7.2 Cold-Start Active Learning

In the cold-start scenario we have little information about the new user or item. Fur-

thermore, in recommender systems the budget for making queries for ratings may be

very small, since a user will expect reasonable recommendations without providing lots

of initial information. It is therefore crucial to gain maximal information about only the

most relevant parameters, such as the new user’s latent feature vector, and not waste

data reinforcing all of the other model parameters in Ξ. Thus, the best framework for

131



this task is the version of BALD that focuses on particular parameters, introduced in

Section 2.3.4.

To recap, denote the set of parameters of interest Θ, and the set of additional

nuisance parameters Φ. After running inference on the observed data RD we have

a posterior p(Θ,Φ|RD). In the context of CF we seek to elicit the an additional

r?u,i from R to maximize the information gain about Θ. The utility function, and

computationally efficient BALD rearrangement are then

U(u, i) = H

[∫
p(Θ,Φ|RD) dΦ

]
− Ep(r?u,i|RD)

{
H[

∫
p(Θ,Φ|r?u,i,RD) dΦ]

}
, (7.6)

= H[p(r?u,i|RD)]− Ep(Θ|RD)

{
H[Ep(Φ|Θ,RD)p(r

?
u,i|Θ,Φ)]

}
.1 (7.7)

Equation (7.7) indicates that for effective cold-start active learning we must capture

both the uncertainty in the model parameters with an accurate inference routine (to

compute the first term), and the intrinsic heteroscedastic noisiness in the data (to

compute the second term).

7.2.1 Implementation of BALD

Let u be the index of a new user. We would like to make good predictions for this user

from minimal user-interactions. For this, we have to gain maximal information about

the user’s latent vector uu, the u-th row of matrix U. Thus, uu forms the parameters

of interest Θ and all the other model parameters Ξ \ {uu} are collected into the set

of nuisance parameters Φ. We approximate the terms in Equation (7.7) by replacing

the posterior with posterior approximation (7.3) and the predictive distribution with

Equation (7.4). The first term in (7.7) is then straightforward to compute since it is

the entropy of the multinomial distribution given in Equation (7.4). The second term

requires the computation of

Eq(uu)H[Eq(Φ)p(r
?
u,i|uu,Φ)] = Eq(uu)H[p(r?u,i|uu)] , (7.8)

where

p(r?u,i|uu) = Φ[ζ(r?u,i)]− Φ[ζ(r?u,i − 1)]

1Note that in the general discriminative framework given in Figure 2.1 there are no input features
x. Here we may consider the row and column indices (u, i) as the input that we choose for ‘labelling’.

132



in this case the components mc,?
u,i and vc,?u,i of ζ(·) in (7.5) are given by:

mc,?
u,i =

D∑
d=1

mv
i,duu,d, vc,?u,i =

D∑
d=1

vvi,du
2
u,d

since we have now conditioned on a particular uu = (uu,1, . . . , uu,D).

Equation (7.8) includes an intractable D-dimensional Gaussian integral over uu. We

approximate this integral by Monte Carlo sampling. In particular, we compute the ex-

pectation of p(r?u,i|uu) over a random sample from the Gaussian q(uu). Experimentally

we found that this estimate converges quickly; fewer than 100 samples were required for

accurate computation of (7.7). However, when computational time is critical we can

use the unscented approximation which uses only 2D+ 1 samples placed at fixed loca-

tions [Julier & Uhlmann, 1997]. This method is fast, but can generate biased estimates

to the integral. In practice, we found that the unscented approximation is sufficiently

accurate to identify the most informative item in most cases, see Section 7.4.

We may use exactly the same methodology described above to learn actively about

new items rather than new users. In this case we wish to learn optimally about a new

item with index i, so now Θ = vi, the i-th row of V. The required computations are

symmetric to those for the new user scenario.

7.3 Related Work

We review previous probabilistic models for rating matrices and both model-based and

model-free strategies for cold-start active learning.

7.3.1 Probabilistic Models for Rating Matrices

Bayesian ordinal matrix factorization is addressed in Paquet et al. [2012], but their

model does not include heteroscedasticity. This component is important since users

and items can exhibit variable noise levels. We show empirically that this particularly

important to take account when performing active learning. The model in Paquet et al.

[2012] does not learn the boundary variables B either. Both of these components yield

improvements in predictive performance, as we demonstrate empirically in Section 7.4.

Furthermore, the method in Paquet et al. [2012] uses Gibbs sampling for inference while

our EP-VB method produces accurate and compact approximations that can be easily

stored and manipulated. Heteroscedasticity has been previously considered in a MF

133



model with a Gaussian likelihood [Lakshminarayanan et al., 2011]. However, as ob-

served in Chapter 5, using an inappropriate Gaussian likelihood for discrete data yields

poor predictions. Our experiments in Section 7.4 confirm this for ordinal data. An-

other alternative for discrete ratings has been proposed in Marlin & Zemel [2007]. This

work assumes that each row in the rating matrix R is sampled i.i.d. from a Bayesian

Mixture of Multinomials (BMM) model. This mixture model is not as expressive as

MF approaches.

7.3.2 Cold-Start Learning

Cold-start active learning has been investigated in other probabilistic models [Boutilier

et al., 2002; Harpale & Yang, 2008; Jin & Si, 2004]. These methods either seek to

maximize the expected value of information or compute posterior uncertainties directly.

As in Equation (7.6), this requires the (potentially expensive) re-computation of the

posterior for all possible ratings that could be collected. To reduce the computational

cost, such methods approximate their utility function [Boutilier et al., 2002] or perform

approximate incremental updates [Jin & Si, 2004]. Furthermore, these works restrict

themselves to relatively simple models where parameter updates can be fast, such as

the multiple-cause vector quantization model [Ross & Zemel, 2002], naive Bayes, the

aspect model [Hofmann, 2003] and the flexible mixture model [Si & Jin, 2003]. With

Equation (7.7) we only update the posterior distribution after collecting the new rating.

Model-free strategies have also been proposed for active data collection [Rashid

et al., 2002, 2008]. Here, empirical statistics of the data such as item popularity or

rating entropy are used to select items. These heuristics are computationally cheap,

but they tend to perform poorly relative to model-based approaches. In complementary

lines of work to ours, query strategies have been designed for non-probabilistic models,

such as Mahalanobis distance-based methods in the co-clustering model, and decision

trees in functional MF [Le & Tu, 2010; Zhou et al., 2011].

7.4 Experiments

We evaluated our model and active learning strategy with experiments on seven rating

datasets from a diverse set of domains. Unless otherwise stated, the ratings in each

dataset were ordinal valued, in the range 1, . . . , 5. These were obtained and processed

as follows:

134



i) Book A set of ratings for books, publicly available from http://www.informatik.

uni-freiburg.de/~cziegler/BX/. The ratings take values 1, . . . , 10. Most of them

take value higher than 6, so we merged the ratings 1, . . . , 6 to yield 5 values in total.

ii) Dating A set of ratings from an online dating website, described in Brozovsky &

Petricek [2007] and available at http://www.occamslab.com/petricek/data/. These

original ratings take values in {1 . . . , 10}. We mapped these to {1, . . . , 5} as: {1, 2} → 1,

{3, 4} → 2, {5, 6} → 3, {7, 8} → 4, {9, 10} → 5.

iii) IPIP This dataset contains responses to a 336 item International Item Pool ques-

tionnaire [Goldberg et al., 2006]. These data were collected from Facebook [Kosinski

et al., 2013] and are available for research upon request at http://mypersonality.

org/wiki/doku.php?id=start. This dataset is dense, all of the ratings are observed.

All of the other datasets have many missing entries.

iv) Jester A collection of ratings for jokes, available at http://goldberg.berkeley.

edu/jester-data/. The ratings on this dataset are real valued ∈ [−10, 10]. We con-

verted these to ordinal ratings by grouping the values into 5 bins with equal counts.

v) MovieLens100K and MovieLens1M Collections of ratings for movies, com-

monly used for benchmarking recommendation systems. These are available at http:

//grouplens.org/datasets/movielens/.

vi) MovieTweets This set was released recently, and consists of ratings for movies

collected from Tweets. It is described in [Dooms et al., 2013], and available from

https://github.com/sidooms/MovieTweetings. The original ratings take values in

{0 . . . , 10}. We mapped these to values in {1, . . . , 5} as: {0, 1, 2} → 1, {3, 4} → 2,

{5, 6} → 3, {7, 8} → 4, {9, 10} → 5.

vii) Webscope A collection of ratings on songs. It has been made available for re-

search upon request from Yahoo! Labs. We used the ‘R3’ dataset at http://webscope.

sandbox.yahoo.com/catalog.php?datatype.

7.4.1 Comparison to Other Models for Rating Data

We first evaluate the predictive accuracy of our matrix factorization model against

a number of state-of-the-art alternatives. We then investigate the performance of our

135

http://www.informatik.uni-freiburg.de/~cziegler/BX/
http://www.informatik.uni-freiburg.de/~cziegler/BX/
http://www.occamslab.com/petricek/data/
http://mypersonality.org/wiki/doku.php?id=start
http://mypersonality.org/wiki/doku.php?id=start
http://goldberg.berkeley.edu/jester-data/
http://goldberg.berkeley.edu/jester-data/
http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/
https://github.com/sidooms/MovieTweetings
http://webscope.sandbox.yahoo.com/catalog.php?datatype
http://webscope.sandbox.yahoo.com/catalog.php?datatype


HOMF OMF
Dataset HOMF OMF -NoB -NoB Paquet RBMF BMF BMM

Book -1.415 -1.436 -1.507 -1.439 -1.427 -1.545 -1.544 -1.622
Dating -0.867 -0.906 -0.890 -1.028 -1.009 -1.045 -1.140 -0.948
IPIP -1.096 -1.140 -1.131 -1.189 -1.188 -1.194 -1.225 -1.270
Jester -1.238 -1.306 -1.240 -1.320 -1.320 -1.312 -1.368 -1.290
ML1M -1.136 -1.165 -1.141 -1.177 -1.170 -1.173 -1.210 -1.324
ML100K -1.203 -1.234 -1.208 -1.243 -1.232 -1.238 -1.277 -1.493
MTweet -0.956 -0.991 -0.984 -1.025 -1.012 -1.014 -1.077 -1.115
WebScope -1.207 -1.253 -1.209 -1.257 -1.236 -1.529 -1.532 -1.298

Table 7.1: Average test log likelihood. Bold typeface denotes the best method, and
those statistically indistinguishable.

1 2 3 4 5 6 7 8

BMF
BMM
RBMF
OMF−NoB

HOMF
HOMF−NoB

OMF
Paquet

Figure 7.2: Mean rank of each method across all of the datasets.

method for cold-start active learning. Our model for heteroscedastic ordinal matrix fac-

torization (HOMF) is compared to the following methods: i) the homoscedastic model

with an ordinal likelihood presented in Paquet et al. [2012] (Paquet); ii) a method for

robust Bayesian matrix factorization (RBMF) based on a Gaussian likelihood which

also has heteroscedastic additive noise [Lakshminarayanan et al., 2011]; iii) the Bayesian

mixture of multinomials model (BMM) described in Marlin & Zemel [2007]; and iv) a

matrix factorization model like RBMF but with homoscedastic noise (BMF). We eval-

uate the improvements in predictive performance produced in HOMF by considering

heteroscedasticity and learning the boundary variables B. For this, we compare to

OMF, a homoscedastic version of HOMF, where the variance parameters γrow
u and γcol

i

are equal across rows and columns, respectively. We also compare to HOMF-NoB which

uses fixed boundary parameters bj rather than learning them for each item. Finally,

OMF-NoB is a homoscedastic version of HOMF that does not learn B. For all of the

matrix factorization models and we fixed the latent dimension to D = 10, and used 10

mixture components in BMM.

Some of the datasets are very sparse, so we selected only users and items that have

10 ratings or more, as proposed in Rendle et al. [2009]. Then we randomly split the

136



T
es

t 
U

se
rs

Items

U
se

rs
 a

lre
ad

y 
in

 t
he

 S
ys

te
m

Figure 7.3: Experimental setup for cold-start active learning. The squares depict avail-
able ratings. Red squares form the training set. These are all of the ratings for those
users already in the system and one rating per test user. Green squares form the test
set. The remaining hollow squares form the pool set for the test users. Note that most
ratings are missing.

available ratings for each dataset into a training and a test set with 80% and 20% of

the ratings respectively. Each method was adjusted using the entries in the training

set and then we evaluated the predictive log likelihood on the corresponding test set.

The entire procedure was repeated 20 times.

Table 7.1 contains the test log likelihood obtained by each method on each of

the datasets, and Figure 7.2 summarizes the overall performance of each algorithm.

The proposed model, HOMF, outperforms all of the other methods on all datasets.

Significance is assessed with a paired t-test at the 5% level. The likelihood function

for ordinal data is more appropriate for ratings than the Gaussian likelihood: HOMF

and Paquet outperform RBMF and BMF. Furthermore, one attains improvements in

predictive performance by modelling heteroscedasticity across rows and across columns

since HOMF outperforms OMF and Paquet, and RBMF outperforms BMF. Learning

the biases also results in substantial improvements to the performance of our model.

Finally, the matrix factorization models (HOMF, Paquet, RBMF and BMF) usually

outperform the mixture model BMM.

137



7.4.2 Cold-Start Active Learning

For each dataset we selected the 2000 users and 1000 items (up to the maximum

available) with the most ratings. This provides the active sampling strategies with the

largest possible pool of data to choose from. We partitioned the data randomly into

three sets: training, test and pool. For this, we randomly sampled 75% of the users

and then added all of their ratings to the training set. These represent the ratings for

the users that are already in the system. Each of the remaining 25% test users were

initialized with a single item, adding that rating to the training set. For each test

user, we randomly selected three ratings and add these to the test set. The remaining

ratings were added to the pool set. Figure 7.3 illustrates this setup. We also simulated

new items arriving to the system. In this case the setup is identical except that the

role of the users and items were interchanged. We denote the new-users and new-items

experiments by appending -U and -I to the dataset names respectively.

HOMF was adjusted using the available ratings in the training set. Then, during

each active learning iteration, a single rating was selected from the pool set for each

test user using an active learning strategy. The selected ratings were then added to the

training set and HOMF is incrementally re-adjusted using the new training set. We

evaluated the second term in Equation (7.7) using Monte Carlo sampling from q with

100 samples. As alternatives to BALD we consider random sampling (Rand) maximum

entropy sampling (Entropy), and a model-free version of Entropy that selects the item

whose empirical rating distribution in the training data has the largest entropy (Emp-

Ent). On each active learning iteration, we compute the average log likelihood on the

test set. The whole procedure was repeated 25 times.

Active Learning Strategies

Figures 7.4 and 7.5 show the learning curves for each strategy on each new-user and

new-item experiment respectively. Table 7.2, left hand columns, summarize the results

with the average test log likelihood after drawing 10 samples from the pool set of each

test user (-U) or item (-I). With HOMF, BALD yields the best (or joint best) predictions

in all but one case. Both the model based and empirical methods for entropy sampling

often perform poorly in our experiments because they ignore the inherent noisiness in

the users or items.

Note that in most datasets most users have only a few ratings available. This

means that BALD is restricted to sampling from a limited pool set. In particular,

138



Heteroscedastic (HOMF) Homoscedastic (OMF) BMM

BALD Entro Emp-Ent Rand BALD Entro Emp-Ent Rand BALD Entro Emp-Ent Rand

Book-U -2122 -2129 -2129 -2126 -2146 -2149 -2150 -2147 -2405 -2418 -2413 -2411
Dating-U -1214 -1239 -1241 -1248 -1217 -1230 -1235 -1244 -1234 -1309 -1305 -1255
IPIP-U -1944 -1977 -1960 -1967 -1945 -1978 -1964 -1973 -1964 -1988 -1983 -1987
Jester-U -2051 -2095 -2070 -2064 -2080 -2119 -2100 -2099 -2041 -2075 -2054 -2045
MLens100k-U -918 -928 -926 -920 -926 -927 -929 -926 -989 -1001 -997 -988
MLens1M-U -1831 -1843 -1844 -1835 -1840 -1850 -1854 -1846 -1877 -1899 -1898 -1879
MTweets-U -1467 -1475 -1475 -1471 -1503 -1508 -1508 -1503 -1608 -1624 -1622 -1613
Webscope-U -1837 -1869 -1869 -1846 -1882 -1898 -1903 -1880 -1951 -1984 -1970 -1958
Book-I -2038 -2039 -2037 -2038 -2095 -2094 -2094 -2095 -2186 -2198 -2202 -2195
Dating-I -1630 -1720 -1655 -1612 -1672 -1722 -1684 -1643 -1603 -1691 -1631 -1602
IPIP-I -319 -325 -339 -329 -325 -325 -339 -330 -335 -347 -346 -339
Jester-I -99 -99 -99 -100 -102 -102 -101 -102 -104 -107 -106 -104
Mlens100k-I -1085 -1103 -1095 -1099 -1110 -1112 -1111 -1113 -1160 -1186 -1171 -1170
Mlens1M-I -1831 -1843 -1844 -1835 -1840 -1850 -1854 -1846 -1877 -1899 -1898 -1879
MTweets-I -1470 -1479 -1475 -1476 -1519 -1520 -1520 -1520 -1605 -1617 -1613 -1608
Webscope-I -1837 -1869 -1869 -1846 -1882 -1898 -1903 -1880 -1951 -1984 -1970 -1958

Wins / 16 15 1 2 7 15 7 5 12 16 1 2 12

Table 7.2: Log likelihood after receiving 10 samples. Underlining indicates the top
performing active sampling algorithms for each model, and bold denotes the best overall
method. The bottom row gives the number of datasets on which each strategy yields
the best (or joint best) performance with each model.

Book, MovieTweets and Webscope are the most sparse, with only 2, 3 and 5% of rat-

ings available respectively. Unsurprisingly, BALD exhibits smaller performance gains

on these datasets. In practice, in most of these domains, most users would be able to

provide ratings for a larger number of items; they may watch a new movie, listen to

a song, read a book, etc. Consequently, we would expect to see larger gains in perfor-

mance on these sparse datasets like in the denser datasets, such as IPIP and Jester.

However, this assumption may not always hold, for example, in dating recommenda-

tion a user may not take any recommendation to provide a rating. In this case, the

probability of receiving a rating should be accounted for; this is a subject of future

research.

In cold-start learning it is crucial to elicit useful information from the very first

sample, so as not to deter the user with multiple requests for information. The average

(over datasets) number of queries required to achieve the same predictive performance

as the first active sample chosen by BALD is 1.85 with entropy, 1.83 with Emp-Ent and

1.59 with random sampling. This means that on average around 60% more random

samples are required to gain the same performance as the first sample from BALD.

139



Book-U Dating-U IPIP-U

5 10 15
−2300

−2250

−2200

−2150

−2100

te
s
t 

L
L

# samples / item

 

 

5 10 15 20 25
−1350

−1300

−1250

−1200

−1150
te

s
t 

L
L

# samples / item

 

 

5 10 15 20 25
−2100

−2050

−2000

−1950

−1900

−1850

−1800

te
s
t 

L
L

# samples / item

 

 

Jester-U MovieLens100k-U MovieLens1M-U

5 10 15 20 25
−2300

−2200

−2100

−2000

−1900

te
s
t 

L
L

# samples / item

 

 

5 10 15 20 25
−980

−960

−940

−920

−900

−880

te
s
t 

L
L

# samples / item

 

 

5 10 15 20 25
−1950

−1900

−1850

−1800

−1750

te
s
t 

L
L

# samples / item

 

 

MovieTweets-U Webscope-U

5 10 15
−1650

−1600

−1550

−1500

−1450

−1400

te
s
t 

L
L

# samples / item

 

 

5 10 15 20 25
−2200

−2100

−2000

−1900

−1800

−1700

te
s
t 

L
L

# samples / item

 

 

BALD
Entropy
Emp Ent
Rand

Figure 7.4: Predictive log likelihood with new users after each round of active sampling
for each selection algorithm. The x-axis is truncated to 15 active samples when the
methods have converged within that number.

140



Book-I Dating-I IPIP-I

5 10 15
−2100

−2090

−2080

−2070

−2060

−2050

−2040

−2030

te
s
t 

L
L

# samples / item

 

 

5 10 15 20 25
−2100

−2000

−1900

−1800

−1700

−1600

−1500

−1400
te

s
t 

L
L

# samples / item

 

 

5 10 15 20 25
−370

−360

−350

−340

−330

−320

−310

−300

te
s
t 

L
L

# samples / item

 

 

Jester-I MovieLens100k-I MovieLens1M-I

5 10 15 20 25
−103

−102

−101

−100

−99

−98

−97

te
s
t 

L
L

# samples / item

 

 

5 10 15 20 25
−1200

−1180

−1160

−1140

−1120

−1100

−1080

−1060

te
s
t 

L
L

# samples / item

 

 

5 10 15 20 25
−1950

−1900

−1850

−1800

−1750

te
s
t 

L
L

# samples / item

 

 

MovieTweets-I Webscope-I

5 10 15
−1650

−1600

−1550

−1500

−1450

te
s
t 

L
L

# samples / item

 

 

5 10 15 20 25
−2200

−2100

−2000

−1900

−1800

−1700

te
s
t 

L
L

# samples / item

 

 

BALD
Entropy
Emp Ent
Rand

Figure 7.5: Predictive log likelihood with new items after each round of active sampling
for each selection algorithm. The x-axis is truncated to 15 active samples when the
methods have converged within that number.

141



HOMF OMF

5 10 15
−1650

−1600

−1550

−1500

−1450

te
s
t 
L
L

# samples / item

 

 

5 10 15
−1650

−1600

−1550

−1500

te
s
t 
L
L

# samples / item

 

 

BALD

Entropy

Emp Ent

Rand

Figure 7.6: Comparison of active learning strategies when using HOMF and OMF
with the MovieTweets-I dataset.

Heteroscedasticity vs. Homoscedasticity

We run each active learning strategy with the homoscedastic version of our model,

OMF, and the homoscedastic method BMM. Table 7.2 contains the results for all meth-

ods. With the homoscedastic models active learning significantly outperforms random

sampling on fewer datasets than with the heteroscedastic model. This demonstrates

that accurate estimates of the intrinsic noisiness of the data are required to unlock the

full potential of Bayesian active learning. Figure 7.6 presents example learning curves

on MovieTweets-I, where the difference in relative performance of BALD and Rand

when using HOMF and OMF is large. One can see that BALD provides much faster

learning than the other strategies with HOMF, but all strategies are indistinguishable

with OMF. This indicates that some users in this dataset provide highly noisy ratings.

HOMF is able to model this and elicit ratings only from the useful, low noise users.

Root Mean Squared Error

We also used root mean squared error (RMSE) to evaluate performance. RMSE scores

only the predictive mean and discards confidence. Furthermore, unlike log likelihood,

it is not invariant to the (normally arbitrary) assignment of numeric values {1, . . . , 5}
to ordinal valued ratings. Tables 7.3 and 7.4 contain the RMSE values for the model

comparison and cold-start experiments respectively.

With RMSE, the best performing model is OMF, very closely followed by HOMF.

Learning heteroscedasticity does not appear to effect the predictive mean, just the

predictive confidence. We speculate that the small improvement of OMF over HOMF

with RMSE is due to the fact that OMF has fewer parameters to learn.

142



HOMF OMF
Dataset HOMF OMF -NoB -NoB Paquet RBMF BMF BMM

Book 1.207 1.204 1.246 1.204 1.214 1.281 1.280 1.390
Dating 0.822 0.821 0.823 0.836 0.829 0.825 0.838 0.913
IPIP 0.886 0.885 0.887 0.887 0.887 0.893 0.895 1.046
Jester 1.019 1.006 1.015 1.008 1.009 1.016 1.015 1.078
MLens1M 0.838 0.836 0.839 0.837 0.836 0.842 0.847 0.965
MLens100K 0.895 0.894 0.895 0.895 0.895 0.898 0.903 1.077
MTweet 0.699 0.698 0.701 0.699 0.703 0.712 0.722 0.817
WebScope 1.200 1.195 1.201 1.195 1.185 1.215 1.218 1.283

Table 7.3: Average test RMSE for the model comparison experiments.

Heteroscedastic (HOMF) Homoscedastic (OMF) BMM

Dataset BALD Entro Emp-Ent Rand BALD Entro Emp-Ent Rand BALD Entro Emp-Ent Rand

Book-U 1.185 1.188 1.189 1.187 1.186 1.188 1.189 1.187 1.345 1.352 1.353 1.350
Dating-U 0.768 0.788 0.790 0.795 0.769 0.783 0.788 0.794 0.789 0.841 0.838 0.807
IPIP-U 1.033 1.058 1.047 1.055 1.030 1.051 1.042 1.050 1.063 1.080 1.075 1.085
Jester-U 1.089 1.119 1.103 1.103 1.086 1.110 1.100 1.101 1.121 1.140 1.130 1.129
MLens100k-U 0.968 0.983 0.979 0.974 0.975 0.973 0.977 0.973 1.047 1.054 1.053 1.043
MLens1M-U 0.888 0.897 0.899 0.894 0.890 0.895 0.898 0.894 0.916 0.926 0.926 0.917
MTweets-U 0.704 0.708 0.708 0.706 0.703 0.704 0.704 0.703 0.777 0.775 0.783 0.774
Webscope-U 1.192 1.213 1.217 1.201 1.199 1.205 1.216 1.198 1.290 1.313 1.311 1.291
Book-I 1.175 1.175 1.174 1.175 1.175 1.174 1.174 1.175 1.250 1.256 1.258 1.254
Dating-I 0.910 0.962 0.941 0.914 0.924 0.951 0.937 0.909 0.966 1.019 0.989 0.963
IPIP-I 1.039 1.066 1.121 1.088 1.058 1.059 1.122 1.089 1.102 1.163 1.155 1.125
Jester-I 1.086 1.100 1.095 1.108 1.105 1.101 1.096 1.113 1.155 1.175 1.176 1.162
Mlens100k-I 0.943 0.960 0.955 0.957 0.953 0.954 0.954 0.957 1.004 1.030 1.016 1.015
Mlens1M-I 0.888 0.897 0.899 0.894 0.890 0.895 0.898 0.894 0.916 0.926 0.926 0.917
MTweets-I 0.721 0.725 0.724 0.724 0.725 0.725 0.725 0.725 0.768 0.774 0.774 0.769
Webscope-I 1.192 1.213 1.217 1.201 1.199 1.205 1.216 1.198 1.290 1.313 1.311 1.291

Wins /16 15 1 2 6 15 10 5 9 16 2 0 11

Table 7.4: RMSE after receiving 10 samples in the cold-start active learning experi-
ments.

In cold-start active learning, when evaluated with RMSE heteroscedasticity is still

important for gaining improved predictive performance with BALD. Table 7.4 indicates

this in two ways: first, within the HOMF model, BALD outperforms Rand in more cases

than it does with OMF. Second, HOMF+BALD outperforms OMF+BALD overall but

HOMF+Rand loses to OMF+Rand. Thus, although OMF achieves a slightly better

RMSE with random sampling, adding heteroscedasticity yields a greater performance

gain from BALD. In summary, although heteroscedasticity does not assist in the final

evaluation of RMSE, it is still necessary to enable BALD to find the informative ratings.

143



Speeding Up the Computation of BALD

In online settings, the time available for selecting the most informative matrix entries

may be limited. In this case, we can reduce the cost of BALD by making approx-

imations when computing the second term in the utility function in Equation (7.7),

Eq(uu)H[p(r?u,i|uu)], as described in Section 7.2.1. We evaluate the accuracy of three

approximations: Monte Carlo (MC) sampling, the unscented approximation, and eval-

uating the integral with a delta function located at the mode of q. We are interested

in finding the most informative item, so we evaluate the error in the estimation of

Equation (7.7) using fraction information loss, measured as:

maxi Î(i)− Î(argmaxi I(i))

maxi Î(i)
, (7.9)

where I(i) is the value of Equation (7.7) evaluated on item i using the approximation

under analysis and Î(i) is the gold standard obtained with MC with a separate set of

1000 samples. The results are averaged over all test users. The average losses across

all datasets (±1 s.d.) from MC with 100 samples, the unscented approximation and

the posterior mode approximation were 0.017± 0.007, 0.035± 0.031 and 0.136± 0.073

respectively. Figure 7.7 depicts the loss as a function of the number of evaluations of

H[p(r?i,j |ui)] on the Book and Movielens100k datasets. Results for the other datasets

are similar. When using MC sampling the integral converges rapidly, and the loss

falls below 5% in fewer than 50 samples on all datasets. The unscented approximation

requires only 2D+ 1 = 21 evaluations, and in most cases yields a better estimate than

MC with this number of samples. In practice, we found no statistical difference in

performance when running the experiments using the unscented approximation or MC

with 100 samples. We therefore recommend the unscented approximation as an efficient

solution for systems with computational constraints.

7.5 Conclusions and Extensions

We have used BALD to address the cold-start problem in recommender systems. The

key to achieving good performance here is to accurately model all sources of uncertainty:

the uncertainty in the parameters of the posterior distribution and the varying levels of

intrinsic noise across the matrix. For this we have developed a new matrix factorization

model that takes into account the ordinal nature of rating data. The proposed model

uses hierarchical priors to provide robustness to fixing hyperparameter values, and we

144



Book MovieLens100k

0 1 2 3
0

0.05

0.1

0.15

0.2

log
10

 num evaluations

in
fo

 l
o

s
s

0 1 2 3
0

0.1

0.2

0.3

0.4

log
10

 num evaluations

in
fo

 l
o

s
s

 

 

mode
unscented
MC

Figure 7.7: Information loss (7.9) from approximations to Eq(ui)H[p(r?i,j |ui)] versus the

number of samples drawn from q. Vertical bars indicate the 10th and 90th percentiles.

use hybrid EP-VB inference to obtain accurate estimates of parameter uncertainty. The

model also includes heteroscedastic noise to account for the varying noise levels across

users and items. The model alone generates state-of-the-art predictions on rating data,

and when combined with BALD acquires ratings useful for prediction from the very

first active sample.

In this work we have assumed that users will rate any item. However, this will

not always be the case. For example, in a holiday recommender system users will only

rate locations they have already visited. Model-free approaches to this problem use

hand crafted utility functions to balance informativeness with the chance of receiving

a rating [Rashid et al., 2002, 2008]. A simple probabilistic approach is to multiply

the expected information gain with the predictive probability of observation [Harpale

& Yang, 2008]. Although this method is theoretically optimal, in terms of expected

information gain, in a pilot investigation we found that this approach is fragile. Any

misscalibration between the model used to predict the probability of observation and

the rating model caused the algorithm to perform poorly. Ultimately, it is the ranking

of the items that matters for selection. Casting this task as a learning to rank problem

with two (or more) models providing rankings based on different criteria could yield a

more robust approach.

Another possible extension to HOMF is to data missing not at random. Most

probabilistic models assume that the data is missing at random. In this case the

observation mechanism can be ignored and one can condition upon the observed data

alone without biasing inference. However, there is substantial evidence that in CF data

is missing not at random [Marlin & Zemel, 2007]. For example, users may only rate

145



movies that they like. In this case one cannot ignore the data observation mechanism

without biasing inferences. We have recently published an approach that combines

HOMF with the binary model presented in Chapter 5 to model the missing data and

hence remove the aforementioned bias [Hernández-Lobato et al., 2014a].

146



Chapter 8

Bayesian Exploratory

Psychometrics

Psychometrics concerns the measurement and assessment of human psychological vari-

ables. These variables include personality traits, skills, IQ, opinions, happiness and

education. Measurement of these traits involves designing psychological tests, such

as questionnaires, and statistical models to interpret the test results. Most classical

psychometric studies are limited to few (tens or hundreds of) subjects. Nowadays test-

ing can be performed online, often through social media. These online questionnaires

may be taken by thousands or millions of users, and so they yield new computational

challenges in psychometrics.

With small traditional datasets, most psychometric techniques did not need to

focus greatly upon computational scalability. Furthermore, new models of increasing

complexity, such multi-dimensional models for ordinal-valued questionnaires, are under

active research [Makransky et al., 2013]. Scalable data analysis is required to take

advantage of large subject pools and advanced modelling techniques. We address this

problem using the machine learning tools developed in this thesis. In particular, we

analyze a large dataset of personality questionnaires collected from Facebook. We

use the Heteroscedastic Ordinal Matrix Factorization (HOMF) model, developed in

Chapter 7, to leverage information across thousands of subjects.

Using HOMF and the Facebook data, we first visit a popular assumption in psy-

chometrics, that there are five main personality factors (the Big Five). With a purely

data-driven analysis, we investigate what conclusions may be drawn from using tradi-

tional factor analysis and HOMF. This is an exploratory analysis, in that we let the

data drive the conclusions. This differs to a confirmatory analysis, in which the model

147



is used to verify, or otherwise, a pre-determined hypothesis

In the second half of this chapter, we focus on a machine learning analysis; we

compare the performance of different methods directly. We test how well HOMF,

factor analysis, and state-of-the-art psychometric models can predict questionnaire re-

sponses. We also perform active questionnaire design, known as Computer Adaptive

Testing (CAT) in psychometrics, and show that combining Bayesian Active Learning

by Disagreement (BALD, Chapter 2) with HOMF results in an effective algorithm for

multidimensional CAT with ordinal responses.

8.1 Background on Psychometrics

The Big Five personality traits and the IPIP questionnaires used to measure them

are well-known principles in psychometrics. Here, a brief overview is provided with

references to details.

8.1.1 The Big Five Personality Traits

A central objective in psychological research is to discover a unified structure in hu-

man personality. Several decades of research have sought a small number of traits or

facets that summarize personality. Two main questions are: how many of these traits

are there? And, what ‘dimensions’ of personality do these traits represent? Many

independent studies have reported five traits. This conclusion has been drawn using

a number of different methods, including lexical analysis, peer ratings, and self-report

via questionnaires. A review of this work is presented in Digman [1990], in which

they describe convergence to the ‘Big-Five’ factors [Goldberg, 1990; McCrae & Costa,

1987]. These five factors have become widely accepted, and are interpreted as ‘Open-

ness’, ‘Conscientiousness’, ‘Extraversion’, ‘Agreeableness’ and ‘Neuroticism’ (OCEAN).

These dimensions are sometimes partitioned into finer-grained traits [Costa & McCrae,

1992a], but the top-level clustering normally remains as the Big-Five factors.

8.1.2 IPIP Questionnaires

We examine questionnaire data for evidence of the Big-Five factors. We analyze IPIP-

NEO questionnaires.1 These questions were designed to assess the Big-Five factors

directly [Costa & McCrae, 1992b; Goldberg et al., 2006]. Thus, most models for this

1IPIP-NEO stands for International Personality Item Pool - Neuroticism, Extraversion & Openness.
Agreeable and conscientiousness feature similarly, but are not included in the acronym.

148



data are confirmatory; the Big-Five are assumed and the models infer individual sub-

ject’s traits. We perform an exploratory data-driven analysis where we do not assume

that the Big-Five traits exist, but we infer the latent dimensions. However, as we show,

the confirmatory nature of the IPIP questionnaires can introduce biases.

Our data consists of two IPIP-NEO questionnaires collected from Facebook. These

were provided by the Cambridge University Psychometrics Centre as a part of the

MyPersonality project [Kosinski et al., 2013].1 The questions have R = 5 responses

that follow an ordinal Likert scale: ‘strongly disagree’, ‘disagree’, ‘neutral’, ‘agree’,

‘strongly agree’. The first questionnaire consists of P = 100 questions (IPIP100) and

has a large number of subjects, N ≈ 3M. The second contains P = 336 questions

(IPIP336) and has N ≈ 7k subjects.

8.2 Models and Metrics

We first overview the types of models encountered in psychometrics and describe in

more detail the exploratory models that we compare with. Then, we present the metrics

that we use to evaluate the models and analyze the data.

8.2.1 Item Response Models

Item Response Theory (IRT) concerns the design and analysis of tests to measure latent

attributes [Baker, 2001]. IRT models seek to infer latent features in matrix data. Let

Y be the N × P dataset of N users’ responses to P questions. IRT typically assume

two low rank matrices that underlie Y. The first is an N ×D matrix of latent factors

for each user X, where each row is a user’s personality vector. The second is the

P ×D factor loading matrix A, each row determines the influence of each personality

dimension on the response to a question.2 The latent trait and loading matrices are

usually real-valued. Many IRT models are based upon a linear low rank factorization

plus a non-linear likelihood function used to generate the responses, Y ∼ p(XA>).

IRT models differ along the following dimensions: The structure of latent matrices, the

form of the likelihood function f(·), the assumptions about the data-type (real-valued,

binary, discrete, or ordinal) and whether the factor loading matrix is known in advance.

1 www.mypersonality.org
2We have changed the notation from Chapter 7 to be more consistent with psychometric literature.X

equivalent to U in Equation (7.2) and A is equivalent to V.

149

www.mypersonality.org


8.2.2 Unidimensional Models

The majority of IRT models are unidimensional, only a single latent trait influences

each question. In this case the rows in the factor loading matrix A contain a single one,

and the other entries are zeros. Knowledge of which trait influences which dimension

is assumed, so the factor loading matrix is fixed. This is how the Big-Five factors

are usually computed; each IPIP question is assumed to have a fixed influence on one

of the factors. Unidimensional models have been developed for binary (dichotomous)

or ordinal (polytomous) responses. Key models include the Graded Response Model

[Samejima, 1969], (Generalized) Partial Credit Model [Masters, 1982; Muraki, 1992]

and the Rating Scale Model [Andrich, 1978]. The models have different likelihood

functions, whose parameters may be learnt. Recently in machine learning, expectation

propagation has been used to train an expressive Bayesian unidimensional IRT model

[Hennig, 2011].

Unidimensional models do not exploit correlations in the latent traits, or that a

single item may be influenced by many factors. Thus, in recent psychometric research

multidimensional IRT models have been developed [Reckase, 2009]. In confirmatory

analyses, the factor loading matrix is assumed, but in exploratory analyses it is learnt.

This requires the dimensionality reduction from P questions to D factors to be learnt,

and HOMF provides a model to do this.

8.2.3 Factor Analysis

A well-known model for multidimensional IRT is Gaussian Factor Analysis (GFA), this

model assumes that the responses are given by the linear dimensionality reduction plus

Gaussian noise. The noise level can vary over the questions. This model may be used

in a confirmatory or exploratory setting by fixing or learning A, respectively. GFA

is not strictly an question response model because the continuous likelihood cannot

model binary or ordinal responses properly. Nevertheless, this model is popular due to

its simplicity and computationally efficiency. Denote the indices of the observed entries

in Y as D (although our datasets have no missing entries we may hold some out for

testing), the GFA model is

p(Y|X,A,Σ) =
∏
u,i∈D

N(yu,i; x
>
u ai, σ

2
i ) , p(X) =

∏
u

N(x; 0, ID×D) , (8.1)

where Σ is the set of variance parameters for each item {σ1, . . . , σP } and 0 is a vector of

zeros. A factorized Gaussian prior is used for the traits X. Unlike in HOMF where we

150



infer distributions over all of the latent variables, the factor loading matrix A and vari-

ance Σ are optimized by maximum likelihood. The expectations maximization (EM)

algorithm is an efficient coordinate descent method for this optimization [Dempster

et al., 1977; Roweis & Ghahramani, 1999].

Because GFA does not model ordinal data, the responses are mapped to the real

values {1, . . . , 5}. To make probabilistic predictions with GFA, the continuous predic-

tive distribution is divided into five bins with boundaries {−∞, 1.5, . . . , 4.5,+∞} and

the mass in each bin is assigned to the corresponding rating.

8.2.4 Multidimensional Item Response Theory

Recently, multidimensional Item Response Theory (MIRT) exploratory models for non

real-valued data have been developed. Two state-of-the-art methods are described in

Chalmers [2012]. The first is a polytomous extension of the 2-Parameter Logistic (2PL)

model [Birnbaum, 1968]. This is a ‘graded’ model that consists of a sequence of 2PL

likelihood functions, MIRT-graded. The likelihood is

P (ru,i = k|X,Θ) = P (ru,i ≥ k|X,Θ)− P (ru,i ≥ k + 1|X,Θ) , (8.2)

where P (ru,i ≥ k|X,Θ) = σ(x>u ai + di,k) ,

and σ(·) denotes the logistic sigmoid function. The set of model parameters Θ contains

R−1 offsets, also known as ‘difficulties’, for each item {di,k}, and the factor loadings A.

Equation (8.2) is similar to the likelihood used by HOMF (7.1), except with a logistic

rather than probit function. The offsets are similar to the item boundary variables.

The main difference is the heteroscedasticity in HOMF, which is not present in MIRT-

graded.

The second MIRT model is a multidimensional extension of the Generalized Partial

Credit model, MIRT-GPCM. The likelihood function is

P (ru,i = k|X,Θ) =
exp

{
(k − 1)x>u ai + di,k

}∑R
l=1 exp {(l − 1)x>u ai + di,l}

. (8.3)

This model is also parametrized by a factor loading matrix and item difficulties. Equa-

tion (8.3) includes a softmax function, which is used for discrete observations with no

natural order, such as in multiclass classification. The factors (k− 1) in Equation (8.3)

encourage the model to respect the natural ordering of the ordinal data. This is because

an increase in x>u ai increases the probability of a higher valued response more than a

151



lower value. The extra factors in Equation (8.3) make the likelihoods for MIRT-GPCM

and MIRT-graded closely related. In a non-probabilistic setting, where the softmax is

replaced with an argmax and the sigmoids are replaced with step functions, these two

likelihood functions are equivalent [Antoniuk et al., 2013].

An important difference between HOMF and the methods in Chalmers [2012] is

the inference algorithm. Two algorithms are presented in Chalmers [2012] to infer the

traits X and optimize the other variables in both MIRT models. The first is exact

EM using Gauss-Hermite quadrature and the second is Metropolis-Hastings Robbins-

Monro (MHRM) [Cai, 2010]. MHRM is stochastic algorithm, closely related to EM. We

found that EM was infeasible with more than a few (5-10) latent dimensions because a

large number of numerical quadratures are required. We show in our experiments that

EP and HOMF attain much better solutions at higher dimensions than the MHRM

algorithm also.

8.2.5 Evaluation of Model Fit

The marginal likelihood, or model evidence, is a popular measure of the quality of

Bayesian models. This metric is often used to optimize hyperparameters, such as the

Gaussian process kernel hyperparameters in Section 3.2 and preference kernel parame-

ters in Section 6.6. However, GFA and MIRT optimize many parameters, such as the

thresholds and loading matrix. When optimizing, maximizing the (marginal) likelihood

can cause overfitting because adding more parameters will only increase the likelihood

(if optimization is performed correctly). To assess the optimal number of dimensions

D we need an evaluation metric that penalizes overfitting.

The Bayesian Information Criterion (BIC) is a classic metric. For a model M with

parameters Θ it is

BIC(M) = −2 log p(Y|Θ) + k log(N) , (8.4)

where k = |θ|, the number of optimized parameters of the model. A lower score

indicates a better fit. BIC trades-off a large likelihood p(Y|M) with a small number of

parameters. Although setting k is non-trivial due to invariances [Beal & Ghahramani,

2006], we may evaluate GFA using BIC. However, HOMF has no optimized parameters,

and the model evidence is hard to approximate in this complex model. Therefore, we

need a more model-agnostic metric.

Predictive power is a transparent metric with which to different models. We measure

predictive power on both the observed (training) and unobserved (test) entries in Y

152



using log likelihood,

LLtrain(M) = exp

 1

|D|
∑

(u,i)∈D

log p(yu,i|Θ)

 , (8.5)

LLtest(M) = exp

 1

|¬D|
∑

(u,i)∈¬D

log p(yu,i|Θ)

 , (8.6)

where ¬D denotes the indices of the unobserved elements in Y. We average the like-

lihoods for each datapoint in log space. This ensures that probabilistic models are

rewarded most greatly for honest predictions of the uncertainty in Y [Dawid, 2007]

(see Section 3.2.1). A more complex model will have a larger training likelihood, but a

lower test likelihood if it is overfitting.

To discover the optimal number of latent dimensions D we need choose the single

best model using the above metrics. With BIC, we select the model with the low-

est (best) value. However, this may not work with predictive performance. Robust

Bayesian models can integrate out unnecessary degrees of freedom and prune excess

parameters (particularly with VB, that is part of the HOMF inference routine [MacKay,

2001]). With these models the test log likelihood may not be reduced if D is overesti-

mated. Therefore, we propose a heuristic to select the best model from a set of models

with different dimensions {MD}. We select the model with the smallest D whose test

likelihood is statistically indistinguishable from the model with highest likelihood in

{MD},

Dopt = argmin
D

{
LLtest(MD); pt-test[LLtest(MD),LLtest(M̂)] < 0.05

}
, (8.7)

where M̂ = argmin
MD

LLtest(MD) ,

and pt-test[LLtest(MD),LLtest(M̂)] is the p-value of a t-test over experimental repeats on

the likelihoods returned by the models MD and M̂. The intuition is that by Occam’s

Razor, with all else being equal, the model with lower complexity is more likely to

explain the data correctly.

The optimal dimensionality chosen by this criterion will depend on the choice of

statistical test and confidence level, therefore it is unsuitable for making strong conclu-

sions about the absolute optimal dimensionality. However, it may be useful to assess

the existence of a finite optimal dimensionality, or make comparisons across datasets

and models.

153



8.2.6 A Posterior Predictive Check

Posterior predictive checks (PPCs) are another class of methods for analyzing model

fit [Box, 1980; Gelman et al., 1996; Rubin, 1984]. Unlike predictive power, PPCs

do not require data to be held-out during training. Furthermore, they provide more

information about the model misfit than the scalars provided by BIC, Bayesian model

evidence or log likelihood.

PPCs can assess particular characteristics of the model that we care about. A

general framework to do this involves sampling data from the model and comparing

chosen statistics of the sampled data to the training data [Rubin, 1984]. Although these

methods are flexible, they may require careful construction and expertise to interpret.

Therefore we propose a simple PPC based upon p-values of the predictive distribution.

We introduce the test in a general form. Consider a model with fixed parameters Φ

and per-datapoint vectors of latent variables x. The predictive p-value is the cumulative

distribution function (c.d.f.) of the model’s predictive distribution for a scalar obser-

vation y given the parameters and latent variables, π =
∫ y
−∞ p(y

′|x,Φ)dy′. If the data

was generated by the model, then the distribution of predictive p-values over possible

outputs and latent variables (x, y) will be uniform between 0 and 1, p(π|Φ) = Unif(0, 1).

This is intuitive, if the model correctly describes the data generating process then the

outputs will be distributed according to model’s predictive distribution. Marginalizing

over (x, y), the distribution over π is

p(π|Φ) = Ep(y)Ep(x|y) [p(π|y,x,Φ)] , (8.8)

where p(π|y,x,Φ) = δ

(
π −

∫ y

−∞
p(y′|x,Φ)dy′

)
.

Suppose that the parameters are unknown, but we have a posterior distribution

over them given some data D and the model M. The distribution of p-values for the

model is the expectation of Equation (8.8) under the posterior

p(π|M) = Ep(Φ|D)Ep(y)Ep(x|y) [p(π|x, y,Φ)]

= Ep(y)Ep(Θ|y,D) [p(π|y,Θ)]

≈ 1

|D|
∑
y∈D

Ep(Θ|D) [p(π|y,Θ)] . (8.9)

In the second line, the parameters and latent variables are collected into a single set

Θ = {Φ,x}. In practice the true data distribution p(y) is unknown, so in Equation (8.9)

154



we estimate p(π|M) using the training data.

With the polytomous MIRT models and HOMF, the expectation in Equation (8.9)

is intractable. Therefore we approximate the distribution of predictive p-values further

by sampling parameters Θ,

p(π|M) =
1

|D|
∑

(u,i)∈D

Ep(Θ|D) [p(π|yu,i,Θ)]

≈ 1

|D|S
∑

(u,i)∈D

S∑
s=1

p
(
π|yu,i,Θ(s)

)
, Θ(s) ∼ qD(Θ) . (8.10)

To obtain an unbiased estimate we should sample from the true posterior p(Θ|D).

However, we perform approximate inference, such as EP, with the ordinal matrix fac-

torization models. Therefore we sample from the posterior approximation qD(Θ) to

compute Equation (8.9). We could perform approximate inference by sampling from

the exact posterior and then re-using those samples for the PPC. We do not do this

because we want to evaluate both the models and inference algorithms for fitting the

data. Equation (8.10) does not involve a test set, so the models may be trained on all

of the elements in Y.

If the model correctly describes the generative process and the inference algorithm

returns an accurate posterior approximation, then p(π) will be a uniform distribution.

If the model is inaccurate then the p-values will be non-uniform. If the model underfits,

the p-values will lie around 0.5 and if it overfits, the test data will appear unexpected

and the p-values will lie close to zero or one. However, this is not always the case.

If the likelihood has the correct functional form and the model learns the noise level,

then model mismatch can be accounted for by adjusting the noise. For example, data

generated by GFA is marginally Gaussian, that is p(y|A) = Ep(x)p(y|x, A) is Gaussian.

If we trained a GFA model with too few dimensions, the data would appear more noisy,

but the marginals would still be Gaussian. We would overestimate Σ in Equation (8.1)

and the p-values would still be uniform. Therefore, this test is a necessary but not

sufficient condition for model correctness. It controls for type-I error and will not

reject a correct model, but it does not control for type-II error, an incorrect model may

pass the test.

155



IPIP100 IPIP336

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

num factors (D)

e
x
p

o
n

e
n

ti
a

te
d
 l
o

g
 l
ik

.

 

 

train
test

0 50 100
−0.2

0

0.2

0.4

0.6

num factors (D)

e
x
p

o
n

e
n

ti
a

te
d
 l
o

g
 l
ik

.

 

 

train
test

0 10 20 30 40 50
1.24

1.26

1.28

1.3

1.32
x 10

5

num factors (D)

B
IC

0 20 40 60 80 100
4.2

4.3

4.4

4.5

4.6

4.7

4.8
x 10

5

num factors (D)

B
IC

Figure 8.1: Predictive likelihood (top) and BIC (bottom) with the IPIP100 (left)
and IPIP336 (right) questionnaires using GFA with different latent dimensionalities.
N = 500 subjects were used in all cases. Dotted lines indicate ±1 standard deviation
across experimental repeats.

8.3 Experiments and Analysis

We first present exploratory experiments in which we seek evidence for the optimal

number of factors. We then investigate the models’ abilities to make accurate predic-

tions and test our adaptive questionnaire design.

8.3.1 Exploratory Analysis

Evidence for Five Factors?

We first perform an experiment that indicates that a small number of dimensions, five

to ten, is optimal. However, we show that this conclusion follows only when there is

too little data and the model is inappropriate.

We randomly subsampled N subjects with completed questionnaires, so the data

matrix Y had no missing entries. Some subjects had taken the 100-question test

156



IPIP100 IPIP336

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

num factors (D)

e
x
p

o
n

e
n

ti
a

te
d

 l
o

g
 l
ik

.

0 50 100 150
0

0.2

0.4

0.6

0.8

num factors (D)

e
x
p

o
n

e
n

ti
a

te
d

 l
o

g
 l
ik

.

N=100
200
500
1k
2k
5k

0 10 20 30 40 50
0.25

0.3

0.35

0.4

0.45

num factors (D)

e
x
p

o
n

e
n

ti
a

te
d

 l
o

g
 l
ik

.

0 50 100 150
0.25

0.3

0.35

0.4

0.45

num factors (D)

e
x
p

o
n

e
n

ti
a

te
d

 l
o

g
 l
ik

.
N=100
200
500
1k
2k
5k

Figure 8.2: Log likelihood as a function of the number of traits on IPIP100 (left) and
IPIP336 (rights). Each curve indicates a different number of subjects N used. Top:
using GFA. Bottom: using HOMF. Dashed lines with circular markers give the training
LL, solid with crosses show the test LL.

(IPIP100) multiple times, we used their first questionnaire sitting. We randomly split

the data 80 : 20 into training and test sets. We trained GFA models over a grid of

dimensionalities D and assessed the fits using BIC and LL. In each experimental repeat

the subjects and data splits were resampled.

Figure 8.1 shows the results with 500 subjects on the IPIP100 and IPIP336 datasets.

The training likelihood increases with D in both datasets. However, the maximum

test likelihood occurs between 5 and 10 dimensions. The rapid fall-off in test LL

occurs because the log likelihood heavily penalizes overfitting; if the model assigns very

low probability to any response the overall likelihood will be close to zero. BIC also

indicates that the optimal dimension is around D ∈ [5, 10].

We now use larger datasets, and fit HOMF instead of GFA. Figure 8.2 shows the

predictive performance versus dimensionality for different dataset sizes. Figure 8.2 in-

dicates that HOMF is much more robust to overfitting than GFA in two ways. First,

157



with increasing data the test likelihood for GFA improves, but the training likelihood

decreases. With HOMF, a greater training likelihood always implies a greater test like-

lihood and increasing N increases both. Second, GFA fails (attains a test likelihood of

zero) when D grows too large. The failure point moves to larger dimensionalities with

more data, but even with 5k subjects the test predictive performance peaks at around

D = 20. HOMF, on the other hand, is robust to over-specification of D. Even with 100

subjects and 50 dimensions, HOMF shows little signs of overfitting. This robustness

advocates integrating over uncertain parameters, and not optimizing them.

Regarding the optimal dimensionality, the dimension at which GFA fails increases

as the dataset size grows. With HOMF, the dimensional at which test likelihood

plateaus is more consistent across different dataset sizes, but it appears to be larger

than D = 5. We conclude that if one uses too little data and a classical model that

optimizes many parameters then one can incorrectly conclude that a small number of

dimensions, around 5, is optimal. This is not the case with more data or a better

model, which we investigate further in the next section.

True Latent Dimension

We first check that the model selection criteria in Section 8.2.5 can uncover the true

dimensionality with in-model data. We created ordinal datasets from the generative

process assumed by HOMF. We consider three datasets, two with P = 100 items:

synth100-D10 and synth100-D50 which were generated using 10 and 50 latent traits

respectively, and one dataset with P = 336 and 10 latent traits, synth336-D10. We

trained HOMF and GFA using the same experimental procedure as above, using a

grid of different dimensions and number of subjects. Using BIC (for GFA only) and

Equation (8.7) we choose the best model for each dataset size.

Figure 8.3 shows the results. BIC often overestimates the number of dimensions.

BIC can be imprecise due to parameter counting difficulties for estimating k in Equa-

tion (8.4). In our experiments we subtracted D2 degrees of freedom to account for the

arbitrary rotation of the factor loadings and traits, and normalizing the mean of the

data to zero. Nevertheless, BIC is only accurate in the easiest case, synth336-D10,

where the data is largest and dimensionality is smallest.

The test log likelihood requires more data to provide evidence for a more latent

traits. When the true dimensionality is 10, the likelihood-based criterion discovers the

correct value with fewer than 500 subjects. When the true latent dimension is 50,

HOMF requires 5k subjects to infer the dimensionality correctly, but GFA is unable

158



synth100-D10 synth336-D10 synth100-D50

0 1000 2000 3000 4000 5000

2

3

5

7

10
12
15

20
25
30

50

75

num subjects (N)

b
e
s
t 
n
u
m

 f
a
c
to

rs

 

 

HOMF−LL
GFA−LL
GFA−BIC

0 1000 2000 3000 4000 5000

2

3

5

7

10
12
15

20
25
30

50

75

num subjects (N)

b
e
s
t 
n
u
m

 f
a
c
to

rs

 

 

HOMF−LL
GFA−LL
GFA−BIC

0 1000 2000 3000 4000 5000

2

3

5

7

10
12
15

20
25
30

50

75

num subjects (N)

b
e
s
t 
n
u
m

 f
a
c
to

rs

 

 

HOMF−LL
GFA−LL
GFA−BIC

Figure 8.3: Optimal number of dimensions as a function of the number of users in
the dataset. Each curve denotes a different model or metric used to select the optimal
dimension. y-axis labels indicate the grid of dimensions used. Data is generated from
HOMF with P = 100, D = 10 (left), P = 336, D = 10 (centre), and P = 100, D = 50
(right).

IPIP100 IPIP336

0 1000 2000 3000 4000 5000

2

3

5

7

10
12
15

20
25
30

50

num subjects (N)

b
e
s
t 
n
u
m

 f
a
c
to

rs

 

 

HOMF−LL
GFA−LL
GFA−BIC

0 1000 2000 3000 4000 5000

2

3

5

7

10
12
15
20
25
30

50

75
100

150

num subjects (N)

b
e
s
t 
n
u
m

 f
a
c
to

rs

 

 

HOMF−LL
GFA−LL
GFA−BIC

Figure 8.4: Optimal number of dimensions as a function of the number of users in the
IPIP100 dataset (left) and IPIP336 (right).

to do so with up to 5k subjects. This is unsurprising because the data was generated

using HOMF and not GFA. The fact that HOMF finds the correct number of dimensions

with sufficient data indicates that the heuristic selection criterion in Equation (8.7) is

sensible.

Figure 8.4 shows the same experiment but on the real datasets. Using the likelihood-

based selection criterion, HOMF indicates that around 20 dimensions are optimal on

IPIP100, but selects 50-75 dimensions on IPIP336. If the true dimensionality is low,

then the synthetic experiments indicate that HOMF uncovers the correct dimensionality

regardless of the number of questions. Therefore, this experiment indicates there is no

fixed small number of latent traits.

159



These conclusions assume that the models’ structures are correct. A central assump-

tion in both GFA and HOMF is that the responses are functions of linear mappings

of the latent trait vectors. If the mapping were nonlinear, these models would require

more than the true number of dimensions to account for the misspecification. Most

MIRT and matrix factorization models, however, assume a linear dimensionality reduc-

tion; our experiments indicate that in this case there is no small true dimensionality in

our IPIP data.

Posterior Predictive Checks

We visualize the distribution of predictive p-values on the training set p(π|M) computed

using our PPC in Equation (8.10). We trained the models on the entire data matrix of

5000 subjects. Figure 8.5 shows the PPCs on the synth100-D10 and IPIP100 datasets.

To assess uniformity we measured the KL-divergence between the distributions of p-

values and a uniform distribution, KL[Unif(0, 1)||p(π|M)]. This value was computed

over the grid used in the histograms in Figure 8.5.1

Synth100-D10 is an ordinal matrix generated using HOMF with D = 10. As ex-

pected, when modelling this data using HOMF withD = 10, the distribution of p-values

is almost uniform. There is slight upwards bow which may be due to EP-VB inference

overfitting slightly. The pattern is identical with N = 500 (not plotted), indicating that

this bow is not caused by too little data. With 50-dimensional HOMF the p-values are

near-uniform. This is either because HOMF prunes excess dimensions or because the

PPC can be insensitive to type-II error. The latter is observed when HOMF uses too

few dimensions, D = 5, because the p-values are still near-uniform. HOMF appears to

model the IPIP data well, the distributions appear uniform, and their KL-divergences

are only 2− 3 times larger on IPIP than on in-model data.

Interestingly, GFA is more informative about the IPIP data with this test. On the

synthetic data, GFA with too few dimensions (D = 5) yields a highly non-uniform

distribution of p-values, as expected. However, when the dimensionality is correct

(D = 10) or larger than the true value, the distribution is relatively uniform. The

KL reduces by a factor of 14 from D = 5 to D = 50. Surprisingly, at D = 50 the

KL is smaller than for HOMF. This indicates that the discretized Gaussian predictive

distribution (Section 8.2.1) can approximate the ordinal likelihood well. However, on

1We also used a Kolmogorov-Smirnoff test to quantify uniformity. However, this test was too
sensitive and gave p < 10−30 in all cases because of the large number of samples (5M – 5k subjects, 100
questions, 10 parameter samples for each). Therefore this test was not informative about the relative
uniformity of the distributions.

160



D = 5 D = 10 D = 50

GFA, synth100-D10

KL = 9.3 · 10−4 KL = 1.7 · 10−4 KL = 0.7 · 10−4

0 0.5 1
0

0.5

1

p-value, π

p
(π
)

0 0.5 1
0

0.5

1

p-value, π

p
(π
)

0 0.5 1
0

0.5

1

p-value, π

p
(π
)

GFA, IPIP100

KL = 56.4 · 10−4 KL = 44.3 · 10−4 KL = 22.3 · 10−4

0 0.5 1
0

0.5

1

p-value, π

p
(π
)

0 0.5 1
0

0.5

1

p-value, π

p
(π
)

0 0.5 1
0

0.5

1

p-value, π

p
(π
)

D = 5 D = 10 D = 50

HOMF, synth100-D10

KL = 2.5 · 10−4 KL = 3.3 · 10−4 KL = 3.5 · 10−4

0 0.5 1
0

0.5

1

p-value, π

p
(π
)

0 0.5 1
0

0.5

1

p-value, π

p
(π
)

0 0.5 1
0

0.5

1

p-value, π

p
(π
)

HOMF, IPIP100

KL = 7.2 · 10−4 KL = 8.0 · 10−4 KL = 7.3 · 10−4

0 0.5 1
0

0.5

1

p-value, π

p
(π
)

0 0.5 1
0

0.5

1

p-value, π

p
(π
)

0 0.5 1
0

0.5

1

p-value, π

p
(π
)

Figure 8.5: Empirical distribution of predictive p-values, Equation (8.10). Top row:
GFA, synthetic dataset with P = 100, D = 10. Second row: GFA, IPIP100 dataset.
Third row: HOMF, synthetic dataset. Fourth row: HOMF, IPIP100 dataset. Columns
correspond to different latent dimensionalities.

the IPIP100 data, the p-values of GFA are highly non-uniform at all dimensionalities.

On the dataset with a small true dimensionality, synth100-D10, GFA can compensate

for an inappropriate likelihood when many dimensions are used. Therefore, the non-

uniform p-values in Figure 8.5 for GFA D = 50 on IPIP100 also provides strong evidence

that there is not a small number of linear latent factors in this data.

161



0 5 10 15 20
0

0.05

0.1

0.15

0.2

dimension

n
o
rm

a
lis

e
d
 s

in
g
u
la

r 
v
a
lu

e
s

 

 

HOMF
GFA
data

Figure 8.6: Normalized singular values of the data matrix Y, and the factor loading
matrices A returned by HOMF and GFA with 20 dimensions. In all cases 5000 subjects
were used.

Dataset Bias

We finish this section with a caution regarding biases introduced by the confirmatory

IPIP questionnaires. Singular Value Decomposition (SVD) is a non-probabilistic tool

that can be used to estimate the true dimensionality of the data. SVDs decompose a

matrix into orthogonal singular vectors with corresponding singular values. Informally,

each singular vector’s singular value indicates its prevalence in the matrix. If a P ×D
matrix only has d < min(P,D) singular values significantly larger than zero, then only d

dimensions contribute substantially to the values in the matrix. In real-world matrices,

the other [min(P,D)− d] dimensions could be artifacts of noise.

We perform an SVD of the IPIP data matrix Y and factor loading matrices A

learnt by the models. The results are plotted in Figure 8.6 for N = 5k and D = 20. A

kink appears in the curves in Figure 8.6 around D = 5 or 6. This could indicate that

human personality has 5− 6 more dominant dimensions.

However, the IPIP-NEO questions are designed for confirmatory studies. Each ques-

tion probes for one Big-Five trait. Questions that probe for the same trait are often

very similar. For example, two questions for determining agreeableness ask whether the

subject “holds a grudge” or “gets back at others”, and two questions for conscientious-

ness ask whether the subject “completes tasks successfully” or “does things according

to plan”. Subjects’ answers to these questions are very likely to correlate regardless

of their personality. An SVD will find these five strong dimensions in the IPIP data,

regardless of the structure of human personality.

162



O C E A N
0

0.2

0.4

0.6

0.8

1

c
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t

BIG5 dimension

BIG5 vs. A (HOMF)
BIG5 vs. A (GFA)
permutation vs. A (HOMF)

Figure 8.7: Correlation coefficient ρ of the factor loading matrices A learnt by each
model with each dimension of the Big-Five factor loading matrix ABIG5 and a random
baseline. Each group of 3 bars corresponds to one Big-Five traits (columns of ABIG5).

We can observe the Big-Five question structure directly in the factor loading ma-

trices. The traits that each question in IPIP-NEO are designed to assess imply a

particular factor loading matrix ABIG5 with a single one per row (the responses to

negative questions which would imply a −1 are reversed). We compute the correlation

of each dimension in the inferred loading matrices with each dimension (O, C, E, A

and N) of the Big-Five loading matrix ABIG5. A large correlation indicates that these

dimensions are recovered by the models. We need to account for rotations of the latent

matrices in the exploratory models. To do this, we rotate the loading matrices such

that the first five columns correlate maximally with the five columns of ABIG5 using

Canonical Correlation Analysis (CCA) [Thompson, 2005]. By chance, even random

vectors of finite length will correlate to some degree. Therefore, as a baseline we per-

form the same test but with the rows of ABIG5 permuted randomly. The models were

trained with D = 5 and N = 5000 and correlation was evaluated using Pearson’s linear

correlation coefficient.

Figure 8.7 shows the results. The rotated factor loading matrices have much higher

correlation with the Big-Five dimensions than the random matrix. This correlation

can be observed directly in the factor loading matrices. Figure 8.8 shows 15 rows of:

A learnt by HOMF, ABIG5, and A rotated to so that it correlates maximally with the

columns of ABIG5. A clear resemblance between the rotated matrix and the Big-Five

loading matrix can be seen.

One interpretation of these results is that the Big-Five traits are fundamental to

human psychology. However, this presence of the Big-Five dimensions in the learnt

factors loadings is probably due to the similarity between the questions for each trait.

163



A returned by HOMF ABIG5 rotated A

Figure 8.8: Left: First 15 rows of the factor loading matrices returned by HOMF
(left). Centre: Loadings used by the Big-Five. Right: HOMF loading matrix rotated
to correlate maximally with the Big-Five matrix.

When performing exploratory analysis with IPIP-NEO questionnaires one must be wary

of this dataset bias and interpret evidence for the Big-Five dimensions in light of it.

In this section we have provided evidence that human behaviour on IPIP-NEO

questionnaires is not governed by linear dimensionality reduction to a small number

of latent traits. Nevertheless, although models for questionnaires may not capture the

data generating process exactly (which is likely to be very complex), they are still useful

for discovering structure in the data, inferring properties of the subjects, and making

predictions. In the next section we pit HOMF directly against state-of-the-art MIRT

models for making predictions.

8.3.2 Direct Model Comparisons

Weak and Strong Predictive Power

We test the models’ abilities to make accurate predictions. We used IPIP100, which

many subjects had taken multiple times, referring to each repeat as a ‘sitting’ of the

questionnaire. We only used subjects with two or more than complete sittings. The

repeated tests serve two purposes. First, they provide a model-free estimate of how well

one can predict responses. Second, they allow us to evaluate both the predictive power

on held-out questions from within a sitting, we call this weak predictive power, and

across sittings, the strong predictive power. We compute the predictive powers using

both exponentiated log likelihood, Equation (8.6), and ‘fraction correct’, the proportion

of times that most probable (MAP) response predicted by the model is correct. The

first sitting for each subject was used for training. 20% of the ratings were held out

from the training set to evaluate the weak predictive power and the entire second sitting

164



was used to evaluate the strong predictive power.

Test-retest Reliability

The test-retest reliability is the proportion of times that the subject’s response is the

same across questionnaire sittings. It is an estimate of the best possible predictive

performance. For example, a subject who responds randomly will have a reliability of

1/R = 0.2, and no model can perform better than that. In particular, if a subject

provides response k with probability pk, their reliability is

reliability = E

[
R∑
k=1

p2
k

]
, (8.11)

where the expectation is over the users and items in the dataset. The best possible

fraction correct is achieved by selecting most likely response based on pk. The score is

then,

best fraction correct = E
[
max
k

(pk)

]
. (8.12)

Equation (8.12) is an upper bound on Equation (8.11). Therefore the reliability is a

lower bound on the best fraction correct achievable. An upper bound can also be

derived from the reliability [Neri & Levi, 2006]. However, this bound may be loose and

it returned values greater than one on our data, so we do not use it.

Subjects may be more consistent within a sitting, so the weak fraction correct

cannot be compared to the reliability. Furthermore, it is harder to relate the reliability

to the log likelihood, which will always be smaller than or equal to the fraction correct.

However, we can provide a chance baseline for both metrics, presented in the next

section.

Frequency-weighted Chance

A näıve chance baseline is 1/R = 0.2. However, a better baseline takes into account

the imbalance in the responses in Y. This may still be considered ‘chance’ because

the identities of the subject and question are ignored when making predictions. Under

fraction correct, the best constant predictor assigns a point mass to the most frequent

response, p(y = k) = I[k = argmaxi p̂i], where I[·] is the indicator function and p̂i is

the empirical proportion of response i. This predictor attains a chance level of maxi p̂i.

Intuitively, if the data is more imbalanced, predictions are easier, and chance increases.

Under log likelihood, the best constant predictor assigns the empirical proportion to

165



0

0.2

0.4

0.6

fr
a
c
ti
o
n
 c

o
rr

e
c
t

tra
in
in
g

te
st
−w

ea
k

te
st
−s

tro
ng

0

0.1

0.2

0.3

0.4

e
x
p
o
n
e
n
ti
a
te

d
 l
o
g
 l
ik

.

tra
in
in
g

te
st
−w

ea
k

te
st
−s

tro
ng

HOMF
GFA
MIRT−graded
MIRT−GPCM
GFA−BIG5
GFA−rand
reliability
chance (per question)

Figure 8.9: Weak (intra-questionnaire) and strong (inter-questionnaire) predictive pow-
ers using D = 5 dimensions in all models. Error bars indicate ±1 s.d. across experi-
mental repeats. Left: Fraction correct, solid horizontal line is the test-retest reliability,
dashed line is the mean question-specific baseline. Right: Exponentiated log likelihood.

each response, p(y = k) = p̂k. The chance likelihood is then exp(−H[{p̂k}]), where H[·]
is the entropy function. These chance levels are improved further by making different

predictions for each question, but ignoring the identity of the subjects. The predictions

are now based on the empirical statistics in the corresponding columns of Y. There

are too few questions to compute a good user-specific baseline. In our experiments we

computed these chance levels using the entire first sittings of the questionnaires.

Methods

In Section 7.4.1 we showed that HOMF outperforms a number of models for ordinal

matrices developed in machine learning. In this section we focus on models used in

psychometrics: GFA, MIRT-graded and MIRT-GPCM, see Section 8.2.1. The MIRT

models were implemented using the R package described in Chalmers [2012]. We also

investigate how well the data can be predicted using the Big-Five traits. To do this we

use a unidimensional confirmatory GFA model with fixed loading matrix corresponding

to the Big-Five measurements, as depicted in Figure 8.8, centre (GFA-BIG5). GFA-

BIG5 only learns the latent traits X and the item noise levels Σ, and is constrained

to five dimensions. As a baseline for GFA-BIG5, we run the same algorithm but

using a random loading matrix with i.i.d. standard normal elements (GFA-rand). We

used N = 5000 subjects, and repeated the entire procedure, including sampling of the

subjects and dataset splits, five times.

166



0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

num factors (D)

fr
a
c
ti
o
n
 c

o
rr

e
c
t

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

num factors (D)

e
x
p
o
n
e
n
ti
a
te

d
 l
o
g
 l
ik

.

HOMF
GFA
MIRT−graded
MIRT−GPCM
reliability
chance (per question)

Figure 8.10: Training (dashed line, × markers), weak-test (dash-dot line, ◦ markers)
and strong-test (solid line, + markers) predictive powers using different latent dimen-
sions (GFA-Big5 and GFA-rand not plotted because they are constrained to D = 5).
Left: Fraction correct. Right: Exponentiated log likelihood.

Results

Figure 8.9 and 8.10 show the results using five latent traits and across dimensionali-

ties, respectively. HOMF performs best by a substantial margin with both metrics.

The MIRT models are significantly outperformed by HOMF at D = 5. Beyond five

dimensions, the MIRT models perform very poorly, and failed to run with D > 20.

Furthermore, they only beat GFA at very low dimensionalities, D < 5. MIRT-graded

has a similar likelihood to HOMF (see Section 8.2.1), this indicates that the MHRM

inference algorithm used by the MIRT models is ineffective as the dimensionality grows.

GFA-BIG5 substantially outperforms the baseline GFA-rand. As noted in the pre-

vious sections, the Big-Five dimensions are highly prevalent in IPIP data, so provide

useful basis vectors. However, exploratory GFA improves upon GFA-Big5, which indi-

cates that some questions provide information about multiple traits, which the multi-

dimensional model can exploit.

According to log likelihood, HOMF is the only model that makes robust inter-

questionnaire predictions at larger dimensionalities. The heteroscedasticity is likely to

be contributing to HOMF’s robustness. We use the re-tests to assess whether HOMF

learns the noise levels correctly. We correlate the reliability of each subject with the

MAP noise level for each subject returned by HOMF, γrow in Equation (7.2). We do the

same for the items. Note that HOMF only observes a single sitting of the questionnaire

and so does not directly observe inconsistent behaviour.

Figure 8.11 shows the correlation coefficients using different dimensionalities. For

the subjects, the learnt noise levels correlate negatively (p < 0.05) with the reliabilities,

indicating that HOMF learns the noise correctly. For the questions, there is negative

167



0 20 40 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

num factors (D)

c
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t

 

 

per subject
per question

Figure 8.11: Pearson’s correlation coefficient ρ between the test-retest reliability for
each user and question and their corresponding noise level inferred using HOMF. Points
marked with an × have significant correlation (p < 0.05) points with a ◦ are not
significant.

correlation at low dimensionalities, but not at high dimensionalities. This may be

because the intra-questionnaire response entropy for each item (empirical entropy of

the columns of Y) correlates negatively with the reliability (ρ = −0.85, p < 10−20). At

low dimensionalities the model cannot capture the response patterns, so models high

entropy items with high noise. Therefore, the noise also correlates with the unreliable

items. However, at high dimensionalities the model decouples response entropy from

noise, and there are insufficient questions to attain a strong correlation with reliability.

8.3.3 Computer Adaptive Testing

Computer Adaptive Testing (CAT) concerns the design of active questionnaires. Many

adaptive designs have been proposed for unidimensional models, see Gershon [2005] for

a review. Recently, CAT for multidimensional models (MCAT) has been developed.

Most MCAT algorithms apply to dichotomous (binary) response models [Segall, 2010].

Extensions have been proposed for a model similar to MIRT-GPCM [Wang & Chen,

2004]. In this work a D-optimal design is used learn optimally about the traits (see

Section 2.4). Makransky et al. [2013] provide experimental evidence that with MCAT

the Big-Five traits can be recovered from IPIP data with many fewer questions. How-

ever, most polytomous MCAT algorithms do not consider exploratory models where

the parameters are learnt online. Current methods fix the item-parameters to values

learnt a priori.

We propose the active learning algorithm in Chapter 7 for MCAT. This algorithm

168



0 10 20 30 40 50

0.24

0.26

0.28

0.3

num active samples

te
s
t 

lik
e

lih
o

o
d

 

 

BALD
Big Five
rand
final perfomance

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

num active samples

c
o

rr
e

la
ti
o

n
 o

f 
tr

a
it
s

 

 

BALD
Big Five
rand
final perfomance

Figure 8.12: Performance of adaptive questionnaire designs versus number of selected
questions. Left: Test exponentiated log likelihood, dash-dot horizontal line shows the
likelihood after observing all of the questions in the pool. Right: Mean correlation of
the traits with those learnt using all of the 95 questions in the pool.

combines HOMF with BALD to learn optimally about the user’s latent traits. The

advantages of this approach over MCAT designs include: (i) we can handle (high di-

mensional) multidimensional traits; (ii) we can work with polytomous or dichotomous

responses, (iii) we update both the traits and other model parameters online, whilst

focusing active learning on the users’ traits. Here we consider exploratory learning, but

the factor loading matrix can easily be fixed to apply HOMF to confirmatory analyses.

We validate our MCAT method on IPIP100 in a similar experiment to those in

Section 7.4.2. We initially train HOMF (D = 5) on 1500 subjects. We then use BALD

to select questions for 500 further ‘test’ subjects. These questions are selected from

a pool of 95 questions per subject, the remaining 5 are held-out for evaluation using

log likelihood. HOMF is incrementally re-trained after each response is collected. We

repeated the experiment ten times.

Psychologists are often most interested in the subjects’ latent trait vectors them-

selves x and not just the predictive power. Therefore, we also evaluated the methods

using the correlation of the test subjects’ trait vectors with the ‘final’ traits. The fi-

nal traits are those inferred using all 95 questions in the pool. To account for model

invariance due to the arbitrary rotations of the latent matrices, we use CCA to rotate

the traits (posterior mean) X to correlate maximally with the final traits. We report

the mean correlation returned by CCA over the five dimensions of x.

Current MCAT methods do not handle polytomous responses with exploratory

models. Therefore we compare to a simple heuristic (Big-Five) that selects questions

169



that assess each of the Big-Five traits in turn. The intuition is that because the

Big-Five dimensions are highly prevalent in the data, see Section 8.3.1, then probing

each dimension equally will result in a reasonable questionnaire. We also use random

sampling of questions as a baseline.

Figure 8.12 shows the performance versus the number of questions chosen by each

method. The heuristic Big-Five is not effective in this exploratory setting and does not

improve over random sampling. With BALD, one requires substantially fewer questions

to gain the same performance as random sampling. To gain 90% of the predictive log

likelihood of the entire pool we required 10 questions one average chosen by BALD, 14

by random sampling and 15 by the Big-Five heuristic. To achieve a 90% correlation

with the final trait vectors we required 23 questions chosen by BALD, 31 by random

sampling and 29 by the Big-Five heuristic. Thus, we achieve over a 25% reduction in

the number of questions when using BALD instead of random sampling.

8.4 Conclusions and Extensions

From our experiments we concluded that the IPIP data does not support a small

number of linear latent factors, as assumed by most factor analysis techniques. The

two main sources of evidence are: First, our model selection heuristic in Equation (8.7)

finds the correct dimension using HOMF on simulated data, but on IPIP the optimal

dimensionality grows with the number of users N and questions P (up to N = 5000,

P = 336). Second, with GFA our posterior predictive check behaves very differently

on synthetic ordinal data with a low dimensionality (D = 10) than on the IPIP data.

We note that spurious evidence for five dimensions can be found. If one uses

too little data and optimizes many parameters, as in GFA, then overfitting occurs

at higher dimensionalities and lower dimensionalities appear better. Furthermore, the

IPIP questionnaire is primarily designed for confirmatory analyses with the Big-five

factors. Therefore, SVDs of the data or factor loading matrices indicate that there are

around five more dominant factors. However, these factors correspond to the intended

unidimensional factor loadings intended by the IPIP questions.

We next showed that HOMF substantially out-predicts state-of-the-art MIRT mod-

els. HOMF infers a distribution over all parameters, whereas the MIRT models optimize

the item parameters, usually with EM-like routines. Our experiments indicate that our

EP-VB algorithm is more robust than the MHRM algorithm, particularly at higher

dimensionalities.

A central contribution of HOMF to psychometrics is that it differentiates structure

170



in the matrix (interindividual variations) from noise (intraindividual variations). The

validity of models that do not differentiate between interindividual and intraindividual

variations (also known as trait versus state) has been questioned [Borsboom et al., 2003].

Other models distinguish between these types of variation [Hamaker et al., 2005, 2007],

but these models are trained using extensive longitudinal studies with few subjects,

for example N = 22 in Hamaker et al. [2007]. The heteroscedastic component in

HOMF learns the intraindividual variability directly, and the interindividual variability

is modelled by the latent factors. Our test-retest analysis (Figure 8.11) indicates that

HOMF learns the intrasubject variability correctly without a longitudinal study.

Finally, we have proposed a new MCAT algorithm using BALD with HOMF. This

routine yields a substantial reduction in the amount of data required to infer the la-

tent traits. Unlike previous algorithms, we can handle polytomous data and online

parameter learning in an exploratory setting.

Extending HOMF to confirmatory settings would be straightforward. We could then

infer the Big-Five traits directly as well as the intraindividual variances and item noise.

The quality of the inferred Big-Five traits could be assessed by making predictions

on external variables (such as gender, age, location, number of friends etc.) [Kosinski

et al., 2013].

We only sampled a small fraction of the 3M subjects in IPIP100. HOMF was faster

than the MIRT models we compared to, and took around 10 minutes to run on 5k

subjects with D = 10. HOMF scales as O(D) which will be prohibitive on very large

fully observed matrices. Parallelization would be required to scale to millions of users.

However, even with more users, a fixed optimal number of traits may not appear if

the true dimensionality reduction is non-linear. Nonlinear dimensionality reduction

methods, such as kernel PCA, could be used [Mika et al., 1998]. However, in general,

kernel methods require inverting an N × N matrix, so scaling these methods to large

numbers of datapoints is an active area of research.

One approach to overcoming the IPIP dataset bias (Section 8.3.1) would be to use a

joint model. This model could have one component to capture the known correlations

due to the construction of the questions, and another exploratory component to learn

additional structure in the data. This approach has been used for modelling genetic

regulatory factors and confounding environmental factors jointly [Fusi et al., 2012].

Finally, recent work has questioned the existence of latent personality traits as a

cause of human behaviour [Cramer et al., 2012]. The authors posit that behaviour

is governed by a network of cognitive and behavioural variables that depend on each

other for causal or logical reasons. Personality traits then arise from the structure

171



of this network and not due to some underlying hidden factors. In this manner, the

responses to the IPIP-NEO questions can be modelled as a network of variables whose

covariation is governed by the unknown network structure. Learning the structure of

Bayesian networks [Friedman & Koller, 2003] or directions of causality [Pearl, 2000]

are hard problems being tackled by current research. The application of new statistical

tools, analogous to the ones developed here, to address these tasks could result in

substantial advances in psychometrics.

172



Chapter 9

Conclusions

In this thesis we have tackled various applied problems and developed general algo-

rithms and models. We first summarize these, then present three areas of future work

to build upon this research.

9.1 Summary

Bayesian techniques for active learning and probabilistic modelling of matrices have

been developed. With these methods we have addressed a number of engineering and

scientific problems. Specifically, we have provided new active learning algorithms in

the following domains.

• General regression and classification tasks with Gaussian processes.

• Adaptive designs for quantum tomographic experiments.

• Learning from preferences made by many users.

• Elicitation of ratings in collaborative filtering systems in the cold-start setting.

• Multidimensional computer adaptive testing with psychometric questionnaires.

With advances in probabilistic matrix modelling we have addressed the following tasks.

• Learning efficiently with large binary matrices, such as market basket data, click-

through data and networks.

• Modelling multi-user preference data, including side information where available.

• Robust modelling of rating data in collaborative filtering systems.

173



• Analysis of psychometric questionnaires.

The goal of machine learning research is not just to provide solutions to specific

problems such as the above, but to develop tools for practitioners to use to solve new

tasks. In this thesis the following general-purpose methods have been developed.

Bayesian Active Learning by Disagreement (Chapter 2) is a framework for informa-

tion theoretic active learning with probabilistic models. In many cases, including those

presented in this thesis, one can derive efficient algorithms with this framework and

avoid difficult computations that are often required by Bayesian active learning meth-

ods. In practice, when implementing BALD, computing the second term in Equation

(2.10) or (2.15) efficiently usually requires the most thought.

Our stochastic variational inference (SVI) algorithm (Chapter 5) has general appli-

cability to data that can be represented as a binary matrix. For example, a binary

matrix that represents the location of observed elements in any sparse matrix. Mod-

elling this fully observed binary matrix provides the first step towards modelling the

data generation mechanism for data missing not at random. The sampling strategies

given in Chapter 5 could be generalized to other data-types and the minibatch size

selection strategy could be applied to any SVI algorithm.

We have proposed two new general-purpose probabilistic matrix models. These

include the collaborative model for preference data (CP/CPU, Chapter 6) and the het-

eroscedastic model for rating data (HOMF, Chapter 7). These models may be applied

directly to any preference or ordinal matrix, respectively. Both models scale to datasets

with a few thousand rows or columns. Going significantly beyond this number would

require parallelization or extending our online routine to these models.

9.2 Future Work

Direct extensions to the methods presented in this thesis are given at the end of the

chapters. Here we outline three broader research topics that could build upon this

work.

9.2.1 Heteroscedastic Unsupervised Learning

Many of our methods perform well because they can distinguish the two sources of

uncertainty outlined in the introduction: parameter uncertainty and observation noise.

BALD outperforms the ubiquitous uncertainty sampling because uncertainty sampling

174



rolls both types of uncertainty into one quantity, but BALD distinguishes the two.

HOMF, Chapter 7, is robust because it learns variable levels of observation noise across

the rows and columns of a matrix.

Most models assume constant observation noise, but in the statistics literature, and

more recently in machine learning, heteroscedastic models have been developed. These

heteroscedastic models are mostly supervised. They usually are regression models where

the noise level is a function of the input variable x [Harvey, 1976; Kersting et al., 2007].

In unsupervised learning, where x is a latent variable to be inferred, the noise levels

may also vary with x. For example, in psychometrics a subject’s response noise level is

likely to depend on their personality (one might expected noise to correlate negatively

with the Big-Five trait ‘conscientiousness’).

Heteroscedastic unsupervised models have not been widely explored. Continuing the

psychometric example, a heteroscedastic factor analysis model could use an extended

version of the likelihood function in Equation (8.1),

p(Y|X,A) =
∏
u,i∈D

N(yu,i; x
>
u ai, vi(x))

where vi(·) is a non-negative item specific function that maps the trait to the noise

level. This model implies more structured noise than HOMF that assumes that vi are

different constants for each user, independent of x. Although writing down the model

is straightforward, deriving an efficient inference algorithm to learn the latent traits

X, the factor loadings A, and the parameters of each function vi(x) jointly may be

challenging.

9.2.2 Optimizing Utility over a Horizon

For all of the active learning problems addressed in this thesis we have proposed greedy

algorithms. As discussed in Section 2.3.6, this approximation yields little loss when

the utility function is submodular. This is often the case in active learning, but not

always, such as when learning GP hyperparameters actively but not the latent function

(Section 3.3). Furthermore, in many scenarios there may be an immediate reward asso-

ciated with the value of each obtained measurement. Often, the ultimate objective is

to maximize the accumulated reward over a set of active samples. For example, in cold-

start recommendation, one is ultimately rewarded when a user purchases a product.

The maximally informative product may not be one that the user likes. Nonetheless,

175



learning a good model of the user is useful for identifying high-reward items. Thus,

one must balance immediate reward with attaining information about future rewards;

this balance is known as the exploration/exploitation trade-off. When optimizing over

a horizon it is essential to avoid the intractable evaluation of exponentially many pos-

sible outcomes. Techniques developed in reinforcement learning for maximization of

accumulated utility over a horizon, such as Markov decision processes (MDPs), address

this issue [Puterman, 2009]. Bandit theory also provides a framework to balance explo-

ration and exploitation [Gittins, 1979]. A line of future work could combine Bayesian

active learning for identifying informative data with a task specific reward function

within an MDP or bandit framework for maximizing reward over a horizon.

9.2.3 Meta-Learning

Approximate inference algorithms will always fail to capture some characteristics of

the true posterior distribution. These methods usually have hyperparameters or sub-

routines that control their behaviour. For example, the location of the pseudo-inputs

in the FITC approximation to the GPs in our preference learning model (Chapter 6),

or our sampling strategies for SVI with matrices (Chapter 5). It is often hard to di-

rectly optimize the overall performance metric with respect to these hyperparameters.

Returning to the previous examples, it would be expensive to optimize the marginal

likelihood of our preference model with respect to the location of the pseudo-inputs. It

would also be hard to compute a priori the sampling strategy that would yield fastest

convergence of SVI. However, active learning techniques could be used as a tractable

alternative objective. For example, one could select the FITC pseudo-inputs to be

maximally informative about the GP, or adjust the sampling strategy online to favour

entries that will be informative about the direction of the true natural gradient.

Meta-learning, using a simpler model to optimize a more complex procedure, is

a new area of machine learning research. Interesting examples include learning the

Hessian for quasi-Newton optimization [Hennig & Kiefel, 2013], learning the number

of datapoints to use when evaluating acceptance in a Metropolis-Hastings sampler

[Korattikara et al., 2014], and modelling an algorithm’s generalization performance for

hyperparameter optimization [Snoek et al., 2012]. Our minibatch selection strategy,

Section 5.4.6, is a meta-learning algorithm. With complex inference algorithms, such

the expectation propagation and stochastic variational routines presented in this thesis,

meta-learning of optimal strategies, such as which factors to refine, or the order in which

to process the data could produce substantially more efficient learning algorithms.

176



References

Aad, G., Abbott, B., Abdallah, J., Abdelalim, A., Abdesselam, A., Abdi-

nov, O., Abi, B., Abolins, M., Abramowicz, H. & Abreu, H. (2012). Perfor-

mance of the atlas trigger system in 2010. The European Physical Journal C , 72,

1–61. 9

Abbasnejad, M.E., Bonilla, E.V. & Sanner, S. (2013). Decision-theoretic spar-

sification for Gaussian process preference learning. In Machine Learning and Knowl-

edge Discovery in Databases, 515–530, Springer. 10, 122

Adamson, R.B.A. & Steinberg, A.M. (2010). Improving quantum state estimation

with mutually unbiased bases. Physical Review Letters, 105, 030406. 62, 68, 69

Ahn, H.J. (2008). A new similarity measure for collaborative filtering to alleviate the

new user cold-starting problem. Information Sciences, 178, 37–51. 124

Airoldi, E.M., Blei, D.M., Fienberg, S.E. & Xing, E.P. (2008). Mixed mem-

bership stochastic blockmodels. Journal of Machine Learning Research, 9, 3. 77

Amari, S.I. (1998). Natural gradient works efficiently in learning. Neural Computation,

10, 251–276. 84

Amselem, E. & Bourennane, M. (2009). Experimental four-qubit bound entangle-

ment. Nature Physics, 5, 748 – 752. 61

Andrich, D. (1978). A rating formulation for ordered response categories. Psychome-

trika, 43, 561–573. 150

Antoniuk, K., Franc, V. & Hlaváč, V. (2013). Mord: Multi-class classifier for

ordinal regression. In Machine Learning and Knowledge Discovery in Databases, 96–

111, Springer. 152

177



REFERENCES

Atkinson, A.C. (1988). Recent developments in the methods of optimum and re-

lated experimental designs. International Statistical Review/Revue Internationale de

Statistique, 99–115. 24

Atteia, O., Dubois, J.P. & Webster, R. (1994). Geostatistical analysis of soil

contamination in the Swiss Jura. Environmental Pollution, 86, 315 – 327. 116

Attias, H. (1999). Inferring parameters and structure of latent variable models by

variational Bayes. In Proceedings of the Fifteenth Conference on Uncertainty in Ar-

tificial Intelligence, 21–30. 108

Audenaert, K.M. & Scheel, S. (2009). Statistical inference from imperfect photon

detection. New Journal of Physics, 11, 113052. 72

Baker, F.B. (2001). The basics of item response theory . Education Resources Infor-

mation Center. 149

Baum, E. & Lang, K. (1992). Query learning can work poorly when a human oracle

is used. In International Joint Conference on Neural Networks. 9

Beal, M.J. & Ghahramani, Z. (2006). Variational Bayesian learning of directed

graphical models with hidden variables. Bayesian Analysis, 1, 793–831. 152

Bell, R.M., Koren, Y. & Volinsky, C. (2010). All together now: A perspective

on the netflix prize. Chance, 23, 24–29. 77

Bellman, R.E. (1961). Adaptive control processes - A guided tour . Princeton Univer-

sity Press, Princeton, New Jersey, U.S.A. 61

Bengtsson, I. & Zyczkowski, K. (2006). Geometry of quantum states: an introduc-

tion to quantum entanglement . Cambridge University Press. 61

Bennett, J. & Lanning, S. (2007). The netflix prize. In Proceedings of KDD cup

and workshop, vol. 2007, 35. 5, 76

Birlutiu, A., Groot, P. & Heskes, T. (2010). Multi-task preference learning with

an application to hearing aid personalization. Neurocomputing , 73, 1177 – 1185. 102,

103, 114, 115, 117

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinees

ability. Statistical Theories of Mental Test Scores, 395–479. 151

178



REFERENCES

Bishop, C.M. (2006). Pattern recognition and machine learning , vol. 1. Springer New

York. 34, 111

Blume-Kohout, R. (2010). Optimal, reliable estimation of quantum states. New Jour-

nal of Physics, 12, 043034. 62, 63

Blume-Kohout, R. & Hayden, P. (2006). Accurate quantum state estimation via

“keeping the experimentalist honest”. arXiv preprint quant-ph/0603116 . 63

Bogdanov, Y.I., Brida, G., Bukeev, I.D., Genovese, M., Kravtsov, K.S.,

Kulik, S.P., Moreva, E.V., Soloviev, A.A. & Shurupov, A.P. (2011). Sta-

tistical estimation of the quality of quantum-tomography protocols. Physical Review

A, 84, 042108. 62

Bonilla, E.V., Guo, S. & Sanner, S. (2010). Gaussian process preference elicita-

tion. In Advances in Neural Information Processing Systems 23 , 262–270. 103, 105,

114, 115, 116, 117, 122

Borsboom, D., Mellenbergh, G.J. & Van Heerden, J. (2003). The theoretical

status of latent variables. Psychological review , 110, 203. 171

Boutilier, C., Zemel, R.S. & Marlin, B. (2002). Active collaborative filtering.

In Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence,

98–106, Morgan Kaufmann Publishers Inc. 4, 134

Box, G.E. (1976). Science and statistics. Journal of the American Statistical Associ-

ation, 71, 791–799. 1

Box, G.E. (1980). Sampling and Bayes’ inference in scientific modelling and robust-

ness. Journal of the Royal Statistical Society. Series A (General), 383–430. 154

Braunstein, S.L. & Caves, C.M. (1994). Statistical distance and the geometry of

quantum states. Physical Review Letters, 72, 3439–3443. 61

Brier, G.W. (1950). Verification of forecasts expressed in terms of probability. Monthly

weather review , 78, 1–3. 25

Brijs, T., Swinnen, G., Vanhoof, K. & Wets, G. (1999). Using association rules

for product assortment decisions: a case study. In KDD , 254–260. 93

179



REFERENCES

Brin, S., Motwani, R., Ullman, J.D. & Tsur, S. (1997). Dynamic itemset count-

ing and implication rules for market basket data. In ACM SIGMOD Record , vol. 26,

255–264, ACM. 5

Brochu, E., de Freitas, N. & Ghosh, A. (2007). Active preference learning with

discrete choice data. Advances in Neural Information Processing Systems 20 , 20,

409–416. 102

Broderick, T., Boyd, N., Wibisono, A., Wilson, A.C. & Jordan, M. (2013).

Streaming variational Bayes. In Advances in Neural Information Processing Systems,

1727–1735. 101

Brozovsky, L. & Petricek, V. (2007). Recommender system for online dating

service. In Proceedings of Conference Znalosti 2007 , VSB, Ostrava. 135

Bryant, M. & Sudderth, E. (2012). Truly nonparametric online variational inference

for hierarchical Dirichlet processes. In Advances in Neural Information Processing

Systems, 2708–2716. 90

Burbidge, R., Rowland, J.J. & King, R.D. (2007). Active learning for regres-

sion based on query by committee. In Intelligent Data Engineering and Automated

Learning-IDEAL 2007 , 209–218, Springer. 31

Burges, C.J. (1998). A tutorial on support vector machines for pattern recognition.

Data mining and knowledge discovery , 2, 121–167. 30

Cai, L. (2010). High-dimensional exploratory item factor analysis byametropolishast-

ings robbinsmonro algorithm. Psychometrika, 75, 33–57. 152

Campbell, C., Cristianini, N. & Smola, A. (2000). Query learning with large

margin classifiers. In International Conference on Machine Learning , 111–118. 31

Caselton, W.F. & Zidek, J.V. (1984). Optimal monitoring network designs. Statis-

tics & Probability Letters, 2, 223–227. 15, 27

Chalmers, R.P. (2012). Mirt: a multidimensional item response theory package for

the r environment. Journal of Statistical Software, 48, 1–29. 151, 152, 166

Chaloner, K. & Verdinelli, I. (1995). Bayesian experimental design: A review.

Statistical Science, 273–304. 24, 25

180



REFERENCES

Chu, W. & Ghahramani, Z. (2005a). Gaussian processes for ordinal regression. In

Journal of Machine Learning Research, 1019–1041. 126

Chu, W. & Ghahramani, Z. (2005b). Preference learning with Gaussian processes.

In 22nd International Conference on Machine learning , 137–144. 33, 102, 103, 105

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D. & Sartin,

M. (1999). Combining content-based and collaborative filters in an online newspaper.

In SIGIR workshop on recommender systems, vol. 60, Citeseer. 124

Cohn, D.A., Ghahramani, Z. & Jordan, M.I. (1996). Active learning with statis-

tical models. Journal of Artificial Intellegence Research, 4, 129–145. 9, 20

Costa, P.T. & McCrae, R.R. (1992a). Neo PI-R professional manual . Odessa, FL:

Psychological assessment resources. 148

Costa, P.T. & McCrae, R.R. (1992b). Normal personality assessment in clinical

practice: the neo personality inventory. Psychological assessment , 4, 5. 148

Cover, T.M., Thomas, J.A. & Kieffer, J. (1994). Elements of information theory.

SIAM Review , 36, 509–510. 11, 21

Cox, R.T. (1946). Probability, frequency and reasonable expectation. American jour-

nal of physics, 14, 1. 2

Cramer, A.O., Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen,

S.H., Kendler, K.S. & Borsboom, D. (2012). Dimensions of normal personality

as networks in search of equilibrium: You can’t like parties if you don’t like people.

European Journal of Personality , 26, 414–431. 171

Dasgupta, S. (2005). Analysis of a greedy active learning strategy. vol. 17, 337–344.

21

Dawid, A. (2007). The geometry of proper scoring rules. Annals of the Institute of

Statistical Mathematics, 59, 77–93. 25, 43, 63, 153

de Burgh, M.D., Langford, N.K., Doherty, A.C. & Gilchrist, A. (2008).

Choice of measurement sets in qubit tomography. Physical Review A, 78, 052122. 62

De Gemmis, M., Iaquinta, L., Lops, P., Musto, C., Narducci, F. & Semer-

aro, G. (2009). Preference learning in recommender systems. In ECML/PKDD-09

Workshop on Preference Learning . 102

181



REFERENCES

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q.V., Mao,

M.Z., Ranzato, M., Senior, A.W. & Tucker, P.A. (2012). Large scale dis-

tributed deep networks. In Advances in Neural Information Processing Systems,

1232–1240. 100

Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society , 39,

1–38. 114, 151

Devarajan, K. (2008). Nonnegative matrix factorization: an analytical and interpre-

tive tool in computational biology. PLoS computational biology , 4, e1000029. 5

Digman, J.M. (1990). Personality structure: Emergence of the five-factor model. An-

nual review of psychology , 41, 417–440. 148

Dooms, S., De Pessemier, T. & Martens, L. (2013). Movietweetings: a movie

rating dataset collected from twitter. In Workshop on Crowdsourcing and Human

Computation for Recommender Systems, CrowdRec at RecSys 2013 . 135

Doucet, A., de Freitas, N. & Gordon, N. (2001). Sequential Monte Carlo in

Practice. Springer-Verlag. 64

Dror, G., Koenigstein, N., Koren, Y. & Weimer, M. (2012). The Yahoo! music

dataset and KDD-Cup’11. Journal of Machine Learning Research-Proceedings Track ,

18, 8–18. 93

Duvenaud, D., Nickisch, H. & Rasmussen, C.E. (2012). Additive Gaussian pro-

cesses. In Advances in Neural Information Processing Systems, 226–234, Granada,

Spain. 45

Ertin, E., Fisher, J.W. & Potter, L.C. (2003). Maximum mutual information

principle for dynamic sensor query problems. In Information Processing in Sensor

Networks, 405–416, Springer. 15, 27

Fedorov, V.V. (1972). Theory of optimal experiments. Elsevier. 23, 26

Fischer, D.G., Kienle, S.H. & Freyberger, M. (2000). Quantum-state estimation

by self-learning measurements. Physical Review A, 61, 032306. 62, 65

Friedman, N. & Koller, D. (2003). Being Bayesian about network structure. a

Bayesian approach to structure discovery in Bayesian networks. Machine Learning ,

50, 95–125. 172

182



REFERENCES

Fuhrmann, D.R. (2003). Active Testing Surveillance Systems, or, Playing Twenty

Questions with a Radar . Defense Technical Information Center. 27

Fürnkranz, J. & Hüllermeier, E. (2003). Pairwise preference learning and ranking.

In European Conference on Machine Learning , 145–156, Springer. 5

Fürnkranz, J. & Hüllermeier, E. (2010). Preference learning . Springer-Verlag

New York Inc. 102, 105

Fusi, N., Stegle, O. & Lawrence, N.D. (2012). Joint modelling of confounding

factors and prominent genetic regulators provides increased accuracy in genetical

genomics studies. PLoS computational biology , 8. 171

Garnett, R., Osborne, M.A., Reece, S., Rogers, A. & Roberts, S.J. (2010).

Sequential Bayesian prediction in the presence of changepoints and faults. The Com-

puter Journal , 53, 1430–1446. 33

Garnett, R., Osborne, M.A. & Hennig, P. (2013). Active learning of linear em-

beddings for Gaussian processes. arXiv preprint arXiv:1310.6740 . 34, 45, 47

Gelman, A., Meng, X.L. & Stern, H. (1996). Posterior predictive assessment of

model fitness via realized discrepancies. Statistica Sinica, 6, 733–760. 1, 154

Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. (2003). Bayesian Data

Analysis. Chapman and Hall/CRC. 2

Gershon, R.C. (2005). Computer adaptive testing. Journal of Applied Measurement .

168

Ghahramani, Z. & Beal, M.J. (2000). Graphical models and variational methods.

Advanced Mean Field Method — Theory and Practice, 37–50. 82, 108

Ghahramani, Z. & Rasmussen, C.E. (2002). Bayesian Monte Carlo. In Advances in

Neural Information Processing Systems, 489–496. 33

Girard, A., Rasmussen, C.E., Candela, J.Q. & Murray-Smith, R. (2003).

Gaussian process priors with uncertain inputs-application to multiple-step ahead

time series forecasting. Advances in Neural Information Processing Systems, 545–

552. 122

Gittins, J.C. (1979). Bandit processes and dynamic allocation indices. Journal of the

Royal Statistical Society. Series B (Methodological), 148–177. 176

183



REFERENCES

Goldberg, L.R. (1990). An alternative “description of personality”: the big-five factor

structure. Journal of Personality and Social Psychology , 59, 1216. 148

Goldberg, L.R. (1999). A broad-bandwidth, public domain, personality inventory

measuring the lower-level facets of several five-factor models. Personality psychology

in Europe, 7, 7–28. 5

Goldberg, L.R., Johnson, J.A., Eber, H.W., Hogan, R., Ashton, M.C.,

Cloninger, C.R. & Gough, H.G. (2006). The international personality item pool

and the future of public-domain personality measures. Journal of Research in Per-

sonality , 40, 84–96. 135, 148

Gopalan, P., Mimno, D., Gerrish, S., Freedman, M. & Blei, D. (2012). Scalable

inference of overlapping communities. In Advances in Neural Information Processing

Systems, 2258–2266. 92

Gunawardana, A. & Shani, G. (2009). A survey of accuracy evaluation metrics of

recommendation tasks. Journal of Machine Learning Research, 10, 2935–2962. 94

Hamaker, E.L., Dolan, C.V. & Molenaar, P.C. (2005). Statistical modeling

of the individual: Rationale and application of multivariate stationary time series

analysis. Multivariate behavioral research, 40, 207–233. 171

Hamaker, E.L., Nesselroade, J.R. & Molenaar, P. (2007). The integrated trait–

state model. Journal of Research in Personality , 41, 295–315. 171

Hannemann, T., Reiss, D., Balzer, C., Neuhauser, W., Toschek, P. & Wun-

derlich, C. (2002). Self-learning estimation of quantum states. Physical Review A,

65, 050303. 62, 65

Harpale, A.S. & Yang, Y. (2008). Personalized active learning for collaborative

filtering. In Special Interest Group on Information Retrieval , 91–98, ACM. 134, 145

Harvey, A.C. (1976). Estimating regression models with multiplicative heteroscedas-

ticity. Econometrica: Journal of the Econometric Society , 461–465. 175

Hawkins, D.M. (2004). The problem of overfitting. Journal of Chemical Information

and Computer Sciences, 44, 1–12. 62

Heckerman, D., Breese, J. & Rommelse, K. (1994). Troubleshooting under un-

certainty. Communications of the ACM , 121–130. 21

184



REFERENCES

Hennig, P. (2011). Approximate inference in graphical models. Ph.D. thesis, University

of Cambridge. 150

Hennig, P. & Kiefel, M. (2013). Quasi-newton methods: A new direction. Journal

of Machine Learning Research, 14, 843–865. 176

Hennig, P. & Schuler, C.J. (2012). Entropy search for information-efficient global

optimization. Journal of Machine Learning Research, 13, 1809–1837. 57

Herbrich, R., Lawrence, N.D. & Seeger, M. (2002). Fast sparse Gaussian pro-

cess methods: The informative vector machine. In Advances in Neural Information

Processing Systems, 609–616. 16, 28

Hernández-Lobato, D. (2007). Approximating Gaussian integrals by replacing a

Student distribution by a Gaussian distribution. 130

Hernández-Lobato, J.M. (2010). Balancing Flexibility and Robustness in Machine

Learning: Semi-parametric Methods and Sparse Linear Models. Ph.D. thesis, Uni-

versidad Autónoma de Madrid. 112

Hernández-Lobato, J.M., Houlsby, N.M.T. & Ghahramani, Z. (2014a). Prob-

abilistic matrix factorization with non-random missing data. In 31st International

Conference on Machine Learning , 379–387. iv, 146

Hernández-Lobato, J.M., Houlsby, N.M.T. & Ghahramani, Z. (2014b).

Stochastic inference for scalable probabilistic modeling of binary matrices. In 31st

International Conference on Machine Learning , 1512–1520. iii

Hoffman, M., Blei, D.M. & Bach, F. (2010). Online learning for latent dirichlet

allocation. Advances in Neural Information Processing Systems, 23, 856–864. 90

Hoffman, M.D., Blei, D.M., Wang, C. & Paisley, J. (2013). Stochastic varia-

tional inference. Journal of Machine Learning Research, 14, 1303–1347. 78, 82, 83,

90

Hofmann, T. (2003). Collaborative filtering via Gaussian probabilistic latent semantic

analysis. In Special Interest Group on Information Retrieval , 259–266, ACM, New

York, NY, USA. 134

Hofmann, T. (2004). Latent semantic models for collaborative filtering. ACM Trans.

Inf. Syst., 22, 89–115. 76

185



REFERENCES

Houlsby, N.M.T. & Blei, D.M. (2014). A filtering approach to stochastic variational

inference. In Advances in Neural Information Processing Systems. iv

Houlsby, N.M.T. & Ciaramita, M. (2014). A scalable Gibbs sampler for proba-

bilistic entity linking. European Conference on Information Retrieval . iv

Houlsby, N.M.T. & Houlsby, G.T. (2013). Statistical fitting of undrained strength

data. Geotechnique, 63, 1253–1263. iv

Houlsby, N.M.T., Huszár, F., Ghahramani, Z. & Lengyel, M. (2011).

Bayesian active learning for classification and preference learning. arXiv preprint

arXiv:1112.5745 . iii

Houlsby, N.M.T., Hernández-Lobato, J.M., Huszar, F. & Ghahramani, Z.

(2012). Collaborative Gaussian processes for preference learning. In Advances in Neu-

ral Information Processing Systems, 2105–2113. iii

Houlsby, N.M.T., Huszár, F., Ghassemi, M.M., Orbán, G., Wolpert, D.M.

& Lengyel, M. (2013). Cognitive tomography reveals complex task-independent

mental representations. Current Biology , 23, 2169–2175. iv

Houlsby, N.M.T., Hernández-Lobato, J.M. & Ghahramani, Z. (2014). Cold-

start active learning with robust ordinal matrix factorization. In 31st International

Conference on Machine Learning , 766–774. iii, 129

Hu, D., Van Der Maaten, L., Cho, Y., Saul, L.K. & Lerner, S. (2010). Latent

variable models for predicting file dependencies in large-scale software development.

In Advances in Neural Information Processing Systems, 865–873. 77

Huszár, F. (2013). Scoring Rules, Divergences and Information in Bayesian Machine

Learning . Ph.D. thesis, University of Cambridge. iii, 25

Huszár, F. & Houlsby, N.M.T. (2012). Adaptive Bayesian quantum tomography.

Physical Review A, 85, 052120. iii

Řeháček, J., Englert, B.G. & Kaszlikowski, D. (2004). Minimal qubit tomog-

raphy. Physical Review A, 70, 052321. 62

Ito, K. & Xiong, K. (2000). Gaussian filters for nonlinear filtering problems. Auto-

matic Control, IEEE Transactions on, 45, 910–927. 35

186



REFERENCES

Iwata, T., Houlsby, N.M.T. & Ghahramani, Z. (2013). Active learning for inter-

active visualization. In 16th International Conference on Aritificial Intelligence and

Statistics. iv, 5

Jaakkola, T. & Jordan, M. (1997). A variational approach to Bayesian logistic

regression models and their extensions. In Sixth International Workshop on Artificial

Intelligence and Statistics. 82

Jaynes, E.T. (2003). Probability theory: the logic of science. Cambridge University

Press. 3

Jin, R. & Si, L. (2004). A Bayesian approach toward active learning for collaborative

filtering. In Uncertainty in Artificial Intelligence, 278–285, AUAI Press. 9, 134

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Knowledge

Discovery and Data Mining , 133–142, ACM. 77, 102, 122

Jordan, M.I., Ghahramani, Z., Jaakkola, T.S. & Saul, L.K. (1998). An in-

troduction to variational methods for graphical models. In Learning in Graphical

Models, vol. 89, 105–161, Springer Netherlands. 81

Julier, S.J. & Uhlmann, J.K. (1997). New extension of the Kalman filter to non-

linear systems. In AeroSense’97 , 182–193, International Society for Optics and Pho-

tonics. 133

Kamishima, T., Kazawa, H. & Akaho, S. (2005). Supervised ordering - an empirical

survey. In Proceedings of the 5th IEEE International Conference on Data Mining

(ICDM 2005), 673–676. 117

Kapoor, A., Horvitz, E. & Basu, S. (2007). Selective supervision: Guiding super-

vised learning with decision-theoretic active learning. In International Joint Confer-

ence on Artificial Intellegence, vol. 7, 877–882. 11, 29, 44

Kass, R.E. & Raftery, A.E. (1995). Bayes factors. Journal of the American Statis-

tical Association, 90, 773–795. 26, 35

Kersting, K., Plagemann, C., Pfaff, P. & Burgard, W. (2007). Most likely

heteroscedastic Gaussian process regression. In 24th International Conference on

Machine learning , 393–400, ACM. 175

Ko, C.W., Lee, J. & Queyranne, M. (1995). An exact algorithm for maximum

entropy sampling. Operations Research, 43, 684–691. 13, 21

187



REFERENCES

Kohavi, R., Brodley, C.E., Frasca, B., Mason, L. & Zheng, Z. (2000). KDD-

Cup 2000 organizers’ report: peeling the onion. SIGKDD Explorations Newsletter ,

2, 86–93. 93

Korattikara, A., Chen, Y. & Welling, M. (2014). Austerity in MCMC land:

Cutting the Metropolis-Hastings budget. In Proceedings of the 31st International

Conference on Machine learning , 181–189. 176

Koren, Y., Bell, R. & Volinsky, C. (2009). Matrix factorization techniques for

recommender systems. Computer , 42, 30–37. 76

Kosinski, M., Stillwell, D. & Graepel, T. (2013). Private traits and attributes

are predictable from digital records of human behavior. Proceedings of the National

Academy of Sciences, 110, 5802–5805. 135, 149, 171

Kosut, R., Walmsley, I.A. & Rabitz, H. (2004). Optimal experiment design

for quantum state and process tomography and Hamiltonian parameter estimation.

arXiv preprint quant-ph/0411093 . 62

Krause, A. & Guestrin, C. (2005). Near-optimal value of information in graphical

models. In Uncertainty in Artificial Intelligence. 13, 21, 22

Krause, A., Singh, A. & Guestrin, C. (2008). Near-optimal sensor placements in

Gaussian processes: Theory, efficient algorithms and empirical studies. Journal of

Machine Learning Research, 9, 235–284. 15, 20, 21, 27

Kravtsov, K., Straupe, S., Radchenko, I., Houlsby, N., Huszár, F. & Ku-

lik, S. (2013). Experimental adaptive Bayesian tomography. Physical Review A, 87,

062122. iii

Krishnapuram, B., Williams, D., Xue, Y., Carin, L., Figueiredo, M. &

Hartemink, A.J. (2004). On semi-supervised classification. In Advances in Neu-

ral Information Processing Systems, 721–728. 16

Kuss, M. & Rasmussen, C.E. (2005). Assessing approximate inference for binary

Gaussian process classification. Journal of Machine Learning Research, 6, 1679–1704.

41

Lacoste-Julien, S., Huszár, F. & Ghahramani, Z. (2011). Approximate inference

for the loss-calibrated Bayesian. Artificial Intelligence and Statistics, 15, 416–424.

10

188



REFERENCES

Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C. &

OBrien, J.L. (2010). Quantum computers. Nature, 464, 45–53. 58

Lakshminarayanan, B., Bouchard, G. & Archambeau, C. (2011). Robust

Bayesian matrix factorisation. In International Conference on Artificial Intelligence

and Statistics, 425–433. 78, 88, 134, 136

Lawrence, N. (2004). Gaussian process latent variable models for visualisation of

high dimensional data. vol. 16, 329–336, of. 33

Lázaro Gredilla, M. (2010). Sparse Gaussian processes for large-scale machine

learning . Ph.D. thesis, Universidad Carlos III de Madrid. 113

Le, Q.T. & Tu, M.P. (2010). Active learning for co-clustering based collaborative

filtering. In Computing and Communication Technologies, Research, Innovation, and

Vision for the Future, 1–4, IEEE. 134

Lewi, J., Butera, R.J. & Paninski, L. (2007). Efficient active learning with gener-

alized linear models. In International Conference on Artificial Intelligence and Statis-

tics, 267–274. 16, 26

Lewi, J., Butera, R. & Paninski, L. (2009). Sequential optimal design of neuro-

physiology experiments. Neural Computation, 21, 619–687. 25

Lim, Y.J. & Teh, Y.W. (2007). Variational Bayesian approach to movie rating pre-

diction. In Proceedings of KDD Cup and Workshop, 15–21. 77, 92

Lindley, D.V. (1956). On a measure of the information provided by an experiment.

The Annals of Mathematical Statistics, 986–1005. 14, 15, 26

Liu, Y. (2004). Active learning with support vector machine applied to gene expres-

sion data for cancer classification. Journal of Chemical Information and Computer

Sciences, 44, 1936–1941. 9

Lvovsky, A., Hansen, H., Aichele, T., Benson, O., Mlynek, J. & Schiller,

S. (2001). Quantum state reconstruction of the single-photon fock state. Physical

review letters, 87, 50402. 72

MacKay, D.J.C. (1992a). The evidence framework applied to classification networks.

Neural Computation, 4, 720–736. 82

189



REFERENCES

MacKay, D.J.C. (1992b). Information-based objective functions for active data se-

lection. Neural Computation, 4, 590–604. 5, 14, 16, 20, 26, 49

MacKay, D.J.C. (2001). Local minima, symmetry-breaking,

and model pruning in variational free energy minimization,

http://www.inference.phy.cam.ac.uk/mackay/minima.pdf. 119, 153

Mahler, D.H., Rozema, L.A., Darabi, A., Ferrie, C., Blume-Kohout, R. &

Steinberg, A.M. (2013). Adaptive quantum state tomography improves accuracy

quadratically. Physical Review Letters, 111, 183601. 66

Makransky, G., Mortensen, E.L. & Glas, C.A. (2013). Improving personality

facet scores with multidimensional computer adaptive testing an illustration with the

neo pi-r. Assessment , 20, 3–13. 147, 168

Maltz, D. & Ehrlich, K. (1995). Pointing the way: active collaborative filtering. In

SIGCHI , 202–209, ACM Press/Addison-Wesley Publishing Co. 124

Marlin, B.M. & Zemel, R.S. (2007). Collaborative filtering and the missing at

random assumption. In Uncertainty in Artificial Intelligence. 134, 136, 145

Marlin, B.M. & Zemel, R.S. (2009). Collaborative prediction and ranking with

non-random missing data. In Third ACM conference on Recommender systems, 5–

12, ACM. 101

Masters, G.N. (1982). A rasch model for partial credit scoring. Psychometrika, 47,

149–174. 150

McCallum, A. & Nigam, K. (1998). Employing EM and pool-based active learning

for text classification. vol. 98, 350–358. 31

McCrae, R.R. & Costa, P.T. (1987). Validation of the five-factor model of person-

ality across instruments and observers. Journal of Personality and Social Psychology ,

52, 81. 148

Melville, P., Yang, S.M., Saar-Tsechansky, M. & Mooney, R. (2005). Active

learning for probability estimation using jensen-shannon divergence. In European

Conference on Machine Learning , 268–279, Springer. 31

Mika, S., Schölkopf, B., Smola, A.J., Müller, K.R., Scholz, M. & Rätsch,

G. (1998). Kernel PCA and de-noising in feature spaces. In Advances in Neural

Information Processing Systems, vol. 11, 536–542. 171

190



REFERENCES

Mild, A. & Reutterer, T. (2003). An improved collaborative filtering approach for

predicting cross-category purchases based on binary market basket data. Journal of

Retailing and Consumer Services, 10, 123–133. 77

Minka, T. (2001a). A family of algorithms for approximate Bayesian inference. Ph.D.

thesis, MIT. 35, 109

Minka, T. & Lafferty, J. (2002). Expectation-propagation for the generative as-

pect model. In Proceedings of the Eighteenth conference on Uncertainty in artificial

intelligence, 352–359. 112

Minka, T.P. (2001b). Expectation propagation for approximate Bayesian inference.

In Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence,

362–369, Morgan Kaufmann Publishers Inc. 29, 108

Muraki, E. (1992). A generalized partial credit model: Application of an em algo-

rithm. Applied Psychological Measurement , 16, 159–176. 150

Myung, J.I. & Pitt, M.A. (2009). Optimal experimental design for model discrimi-

nation. Psychological review , 116, 499. 4

Naish-Guzman, A. & Holden, S.B. (2007). The generalized FITC approximation.

In Advances in Neural Information Processing Systems. 35, 113

Nakajima, S., Sugiyama, M. & Tomioka, R. (2010). Global analytic solution for

variational Bayesian matrix factorization. Advances in Neural Information Processing

Systems, 23, 1759–1767. 77, 78, 79, 92, 93, 95

Nemhauser, G.L., Wolsey, L.A. & Fisher, M.L. (1978). An analysis of approxi-

mations for maximizing submodular set functions. Mathematical Programming , 14,

265–294. 21

Neri, P. & Levi, D.M. (2006). Receptive versus perceptive fields from the reverse-

correlation viewpoint. Vision research, 46, 2465–2474. 165

Ng, A.Y. & Jordan, A. (2002). On discriminative vs. generative classifiers: A com-

parison of logistic regression and naive Bayes. Advances in Neural Information Pro-

cessing Systems, 14, 841. 8

Nickisch, H. & Rasmussen, C.E. (2008). Approximations for binary Gaussian pro-

cess classification. Journal of Machine Learning Research, 9, 2035–2078. 109, 116

191



REFERENCES

Nunn, J., Smith, B.J., Puentes, G., Walmsley, I.A. & Lundeen, J.S. (2010).

Optimal experiment design for quantum state tomography: Fair, precise, and mini-

mal tomography. Physical Review A, 81, 042109. 62

Orr, G.B. & Müller, K.R., eds. (1998). Neural Networks: Tricks of the Trade,

Springer-Verlag. 79

Osborne, M., Duvenaud, D., Garnett, R., Rasmussen, C., Roberts, S. &

Ghahramani, Z. (2012). Active learning of model evidence using Bayesian quadra-

ture. In Advances in Neural Information Processing Systems, 46–54. 57

Osborne, M.A., Garnett, R. & Roberts, S.J. (2009). Gaussian processes for

global optimization. In International Conference on Learning and Intelligent Opti-

mization, 1–15. 33

Osborne, M.A., Garnett, R. & Roberts, S.J. (2010). Active data selection for

sensor networks with faults and changepoints. In Advanced Information Networking

and Applications, 2010 24th IEEE International Conference on, 533–540, IEEE. 4

Paninski, L. (2003). Estimation of entropy and mutual information. Neural Compu-

tation, 15, 1191–1253. 15

Panzeri, S., Senatore, R., Montemurro, M.A. & Petersen, R.S. (2007). Cor-

recting for the sampling bias problem in spike train information measures. Journal

of Neurophysiology , 98, 1064–1072. 16

Paquet, U. & Koenigstein, N. (2013). One-class collaborative filtering with random

graphs. World Wide Web, 999–1008. 79, 92, 96

Paquet, U., Thomson, B. & Winther, O. (2012). A hierarchical model for ordinal

matrix factorization. Statistics and Computing , 22, 945–957. 128, 133, 136

Paris, M. & Řeháček, J. (2004). Quantum state estimation, vol. 649. Springer. 58,

61

Park, S.T. & Chu, W. (2009). Pairwise preference regression for cold-start recom-

mendation. In RecSys, 21–28, ACM. 124

Park, S.T., Pennock, D., Madani, O., Good, N. & DeCoste, D. (2006). Näıve

filterbots for robust cold-start recommendations. In Knowledge Discovery and Data

Mining , 699–705, ACM. 124

192



REFERENCES

Patra, M.K. (2007). Quantum state determination: estimates for information gain

and some exact calculations. Journal of Physics A: Mathematical and Theoretical ,

40, 10887. 62, 65, 75

Pearl, J. (2000). Causality: models, reasoning and inference, vol. 29. Cambridge Univ

Press. 172

Petz, D. (2008). Quantum information theory and quantum statistics. Springer. 59

Puterman, M.L. (2009). Markov decision processes: discrete stochastic dynamic pro-

gramming , vol. 414. John Wiley & Sons. 176

Quiñonero-Candela, J. & Rasmussen, C.E. (2005). A unifying view of sparse

approximate Gaussian process regression. Journal of Machine Learning Research, 6,

1939–1959. 28

Raiko, T., Ilin, A. & Juha, K. (2007). Principal component analysis for large scale

problems with lots of missing values. In European Conference on Machine Learning ,

vol. 4701, 691–698, Springer Berlin / Heidelberg. 77, 79, 83, 92, 95, 112

Ranganath, R., Wang, C., Blei, D.M. & Xing, E.P. (2013). An adaptive learning

rate for stochastic variational inference. In International Conference on Machine

Learning , 298–306. 92

Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan,

J.A. & Riedl, J. (2002). Getting to know you: learning new user preferences in

recommender systems. In International Conference on Intelligent User Interfaces,

127–134, ACM. 134, 145

Rashid, A.M., Karypis, G. & Riedl, J. (2008). Learning preferences of new users

in recommender systems: an information theoretic approach. ACM SIGKDD Explo-

rations Newsletter , 10, 90–100. 134, 145

Rasmussen, C.E. & Williams, C.K.I. (2005). Gaussian Processes for Machine

Learning . The MIT Press. 5, 33, 34, 112, 130

Raynal, P., Lü, X. & Englert, B.G. (2011). Mutually unbiased bases in six di-

mensions: The four most distant bases. Physical Review A, 83, 062303. 62, 75

Reckase, M. (2009). Multidimensional Item Response Theory . Springer. 150

193



REFERENCES

Rendle, S., Freudenthaler, C., Gantner, Z. & Schmidt-Thieme, L. (2009).

Bpr: Bayesian personalized ranking from implicit feedback. In Uncertainty in Arti-

ficial Intelligence, 452–461, AUAI Press. 77, 79, 93, 96, 136

Robbins, H. & Monro, S. (1951). A stochastic approximation method. The Annals

of Mathematical Statistics, 22, 400–407. 83, 90

Ross, D.A. & Zemel, R.S. (2002). Multiple cause vector quantization. In Advances

in Neural Information Processing Systems, 1017–1024. 134

Roweis, S. & Ghahramani, Z. (1999). A unifying review of linear gaussian models.

Neural Computation, 11, 305–345. 151

Roy, N. & McCallum, A. (2001). Toward optimal active learning through Monte

Carlo estimation of error reduction. International Conference on Machine Learning .

10, 11, 29, 30

Rubin, D.B. (1984). Bayesianly justifiable and relevant frequency calculations for the

applies statistician. The Annals of Statistics, 12, 1151–1172. 154

Salakhutdinov, R. & Mnih, A. (2008). Probabilistic matrix factorization. In Ad-

vances in Neural Information Processing Systems, vol. 20. 6, 77

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded

scores. Psychometrika monograph supplement . 150

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. (2001). Item-based collab-

orative filtering recommendation algorithms. In World Wide Web, 285–295, ACM.

76

Schaul, T., Zhang, S. & LeCun, Y. (2012). No more pesky learning rates. arXiv

preprint arXiv:1206.1106 . 92

Schein, A.I., Popescul, A., Ungar, L.H. & Pennock, D.M. (2002). Methods and

metrics for cold-start recommendations. In Special Interest Group on Information

Retrieval , 253–260, ACM. 124

Schölkopf, B. & Smola, A.J. (2002). Learning with kernels. The MIT Press. 30

Seeger, M. & Bouchard, G. (2012). Fast variational Bayesian inference for non-

conjugate matrix factorization models. Journal of Machine Learning Research - Pro-

ceedings Track , 22, 1012–1018. 79, 93, 95

194



REFERENCES

Seeger, M., Williams, C.K. & Lawrence, N.D. (2003). Fast forward selection

to speed up sparse Gaussian process regression. In Workshop on AI and Statistics,

vol. 9, 2003. 29, 34

Segall, D.O. (2010). Principles of multidimensional adaptive testing. In Elements of

Adaptive Testing , 57–75, Springer. 168

Seo, S., Wallat, M., Graepel, T. & Obermayer, K. (2000). Gaussian process

regression: Active data selection and test point rejection. In Mustererkennung 2000 ,

27–34, Springer. 34

Settles, B. (2012). Active learning. Synthesis Lectures on Artificial Intelligence and

Machine Learning , 6, 1–114. 23

Seung, H.S., Opper, M. & Sompolinsky, H. (1992). Query by committee. In Fifth

annual workshop on Computational Learning Theory , 287–294, ACM. 30, 31

Shannon, C.E. (1948). A mathematical theory of communication. The Bell System

Technical Journal , 27, 379–423, 623–656. 11

Shewry, M.C. & Wynn, H.P. (1987). Maximum entropy sampling. Journal of Ap-

plied Statistics, 14, 165–170. 15, 26

Shor, P.W. (1994). Algorithms for quantum computation: discrete logarithms and

factoring. In Foundations of Computer Science, 124–134, IEEE. 58

Si, L. & Jin, R. (2003). Flexible mixture model for collaborative filtering. In Interna-

tional Conference on Machine Learning , vol. 3, 704–711. 134

Snelson, E. & Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-

inputs. In Advances in Neural Information Processing Systems 19 . 46, 113, 122

Snoek, J., Larochelle, H. & Adams, R.P. (2012). Practical Bayesian optimiza-

tion of machine learning algorithms. In Advances in Neural Information Processing

Systems, 2960–2968. 176

Srebro, N., Rennie, J.D. & Jaakkola, T. (2005). Maximum-margin matrix fac-

torization. In Advances in Neural Information Processing Systems, 1329–1336. 76

Stern, D.H., Herbrich, R. & Graepel, T. (2009). Matchbox: large scale online

Bayesian recommendations. In World Wide Web, 111–120, ACM. 77, 111, 112, 126,

130

195



REFERENCES

Thompson, B. (2005). Canonical correlation analysis. Encyclopedia of Statistics in

Behavioral Science. 163

Tong, S. (2001). Active learning: theory and applications. Ph.D. thesis, Stanford

University. 19

Tong, S. & Chang, E. (2001). Support vector machine active learning for image

retrieval. In Ninth ACM international conference on Multimedia, 107–118, ACM. 9

Tong, S. & Koller, D. (2002). Support vector machine active learning with appli-

cations to text classification. Journal of Machine Learning Research, 2, 45–66. 9, 30,

31

Tsochantaridis, I., Hofmann, T., Joachims, T. & Altun, Y. (2004). Support

vector machine learning for interdependent and structured output spaces. In Inter-

national Conference on Machine Learning , 104, ACM. 16

Tur, G., Hakkani-Tür, D. & Schapire, R.E. (2005). Combining active and semi-

supervised learning for spoken language understanding. Speech Communication, 45,

171–186. 9

Turner, R.D. (2011). Gaussian Processes for State Space Models and Change Point

Detection. Ph.D. thesis, University of Cambridge, Cambridge, UK. 122

Ungar, L.H. & Foster, D.P. (1998). Clustering methods for collaborative filtering.

In AAAI Workshop on Recommendation Systems, vol. 1. 76

Vapnik, V. (2000). The Nature of Statistical Learning Theory . Springer. 19

Wagstaff, K. (2012). Machine learning that matters. In International Conference on

Machine Learning . 2

Wang, C., Paisley, J. & Blei, D.M. (2011). Online variational inference for the

hierarchical Dirichlet process. In Artificial Intellegence and Statistics, 752–760. 90

Wang, W.C. & Chen, P.H. (2004). Implementation and measurement efficiency

of multidimensional computerized adaptive testing. Applied Psychological Measure-

ment , 28, 295–316. 168

Wootters, W. & Fields, B. (1989). Optimal state-determination by mutually un-

biased measurements. Annals of Physics, 191, 363 – 381. 62

196



REFERENCES

Yan, F., Yang, M. & Cao, Z.L. (2010). Optimal reconstruction of the states in

qutrit systems. Physical Review A, 82, 044102. 62

Yu, K., Bi, J. & Tresp, V. (2006). Active learning via transductive experimental

design. In International Conference on Machine Learning , 1081–1088, ACM. 19

Zheng, Z., Kohavi, R. & Mason, L. (2001). Real world performance of association

rule algorithms. In Knowledge Discovery and Data Mining , 401–406, ACM. 93

Zhou, K., Yang, S.H. & Zha, H. (2011). Functional matrix factorizations for cold-

start recommendation. In Proceedings of the 34th international ACM SIGIR confer-

ence on Research and development in Information Retrieval , 315–324, ACM. 134

Zhu, X. (2005). Semi-supervised Learning with Graphs. Ph.D. thesis, Carnegie Mellon

University. 4

Zhu, X., Lafferty, J. & Ghahramani, Z. (2003). Combining active learning and

semi-supervised learning using Gaussian fields and harmonic functions. In ICML

2003 workshop on the continuum from labeled to unlabeled data in machine learning

and data mining , 58–65. 29, 38, 44

Zimmerman, D.L. (2006). Optimal network design for spatial prediction, covariance

parameter estimation, and empirical prediction. Environmetrics, 17, 635–652. 27

197


	Contents
	1 Introduction
	1.1 Introduction to Bayesian Machine Learning 
	1.2 Active Learning
	1.3 Matrix Factorization

	2 Bayesian Active Learning
	2.1 Introduction to Active Learning 
	2.1.1 When Active Learning may be Applied
	2.1.2 Query Scenarios

	2.2 Information Theoretic Active Learning
	2.2.1 Motivation
	2.2.2 Information Theory
	2.2.3 The Information Gain Utility Function

	2.3 Bayesian Active Learning by Disagreement 
	2.3.1 Symmetry in the Objective 
	2.3.2 Computational Advantages 
	2.3.3 Simulation: Estimating the Utility from Samples
	2.3.4 Extension: Nuisance Parameters and Focused Active Learning 
	2.3.5 Inductive and Transductive Learning 
	2.3.6 Myopic Assumption and Submodularity 

	2.4 Literature Review
	2.4.1 Classical Optimal Experimental Design 
	2.4.2 Information Theoretic Methods
	2.4.3 Data Subsampling
	2.4.4 Decision Theoretic Methods
	2.4.5 Non-Probabilistic Methods
	2.4.6 Summary


	3 Active Gaussian Processes
	3.1 Primer on Gaussian Processes
	3.2 Active GP Classification 
	3.2.1 Experiments 
	3.2.2 Summary

	3.3 Active GP Regression with Unknown Hyperparameters
	3.3.1 Marginal Gaussian Process
	3.3.2 Focused Active Learning with the MGP
	3.3.3 Experiments 
	3.3.4 Summary

	3.4 Conclusions and Extensions

	4 Adaptive Quantum State Tomography
	4.1 Primer on Quantum Statistics 
	4.1.1 States and Density Matrices
	4.1.2 Measurements with Probabilistic Outcomes
	4.1.3 Infidelity
	4.1.4 Entanglement and The Curse of Dimensionality 

	4.2 Current Experimental Designs
	4.3 Bayesian Quantum Tomography
	4.3.1 Sequential Importance Sampling

	4.4 Adaptive Quantum Tomography
	4.5 Simulations
	4.5.1 Single Qubit Tomography
	4.5.2 Separable and MUB Tomography of Two Qubits

	4.6 Laboratory Experiment
	4.6.1 Setup and Apparatus
	4.6.2 Modelling Experimental Imperfections 
	4.6.3 Results 

	4.7 Conclusions

	5 Stochastic Inference for Large Binary Matrices
	5.1 Introduction to Probabilistic Matrix Modelling 
	5.2 Limitations of Batch Inference
	5.3 A Probabilistic Model for Binary Matrices
	5.4 Stochastic Variational Inference for Binary Matrices
	5.4.1 Primer on Variational Bayes
	5.4.2 VB for Binary Matrices
	5.4.3 SVI for Binary Matrices
	5.4.4 Natural Gradients
	5.4.5 Sampling Distributions for Sparse Imbalanced Matrices
	5.4.6 Learning the Minibatch Online
	5.4.7 The Full SIBM Algorithm
	5.4.8 Related Work

	5.5 Experiments 
	5.5.1 Sampling Strategies and Automatic Minibatch
	5.5.2 Comparison to Batch and Alternative Methods

	5.6 Conclusions and Extensions

	6 Collaborative Preference Learning
	6.1 The Preference Kernel
	6.1.1 Properties of the Preference Kernel

	6.2 Multi-User Preference Learning 
	6.2.1 Probabilistic Description of the Model
	6.2.2 The Predictive Distribution

	6.3 Hybrid EP-VB Inference 
	6.3.1 Primer on Expectation Propagation 
	6.3.2 Inference for Collaborative Preference Learning 
	6.3.3 Algorithmic Details 
	6.3.4 Sparse GPs for Linear Computational Time

	6.4 Active Preference Elicitation 
	6.5 Related Multi-User Models 
	6.6 Experiments and Discussion 
	6.6.1 Comparison to Other Multi-User Models
	6.6.2 Active Learning on Large Datasets
	6.6.3 Tuning the Kernel Lengthscale

	6.7 Conclusions and Extensions 

	7 Heteroscedastic Matrix Factorization for Cold-Start Learning
	7.1 A Robust Model for Ordinal Matrix Data
	7.1.1 Model Description 
	7.1.2 Inference
	7.1.3 Predictive Distribution

	7.2 Cold-Start Active Learning 
	7.2.1 Implementation of BALD 

	7.3 Related Work 
	7.3.1 Probabilistic Models for Rating Matrices
	7.3.2 Cold-Start Learning

	7.4 Experiments
	7.4.1 Comparison to Other Models for Rating Data 
	7.4.2 Cold-Start Active Learning 

	7.5 Conclusions and Extensions

	8 Bayesian Exploratory Psychometrics
	8.1 Background on Psychometrics
	8.1.1 The Big Five Personality Traits
	8.1.2 IPIP Questionnaires

	8.2 Models and Metrics
	8.2.1 Item Response Models 
	8.2.2 Unidimensional Models
	8.2.3 Factor Analysis
	8.2.4 Multidimensional Item Response Theory
	8.2.5 Evaluation of Model Fit 
	8.2.6 A Posterior Predictive Check 

	8.3 Experiments and Analysis
	8.3.1 Exploratory Analysis 
	8.3.2 Direct Model Comparisons 
	8.3.3 Computer Adaptive Testing

	8.4 Conclusions and Extensions

	9 Conclusions
	9.1 Summary
	9.2 Future Work
	9.2.1 Heteroscedastic Unsupervised Learning
	9.2.2 Optimizing Utility over a Horizon
	9.2.3 Meta-Learning


	References

