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Statement of translational relevance  

To determine whether early-stage ovarian high grade serous carcinoma (HGSC) represents a 

distinct genomic entity, we collected samples from 43 patients with stage IA-IIA HGSC to identify 

potential differences in short genomic variants and copy number aberrations, and compared them 

to a cohort of 52 late-stage (stage IIIC-IV) cases. We found no significant differences in somatic 

mutations or focal copy number alterations between early-stage and late-stage cohorts. There 

was, however, a significant difference in both ploidy and copy number signature exposure between 

early and late-stage samples, with higher ploidy and signature 4 exposure in late-stage cases. 

Unsupervised hierarchical clustering revealed three clusters, which were prognostic. Together, our 

data suggest that early and late-stage HGSC share fundamental genomic features, but that late-

stage disease appears distinct from early-stage, with evidence of whole genome duplication that 

may provide evolutionary benefit. 
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Abstract 

Purpose: Ovarian high grade serous carcinoma (HGSC) is usually diagnosed at late stage. We 

investigated whether late-stage HGSC has unique genomic characteristics consistent with 

acquisition of evolutionary advantage compared to early-stage tumours. 

Experimental Design: We performed targeted next generation sequencing and shallow whole 

genome sequencing (sWGS) on pre-treatment samples from 43 patients with FIGO stage I–IIA 

HGSC to investigate somatic mutations and copy number alterations (SCNA). We compared 

results to pre-treatment samples from 52 stage IIIC/IV HGSC patients from the BriTROC-1 study.  

Results: Age of diagnosis did not differ between early-stage and late-stage patients (median 61.3 

years vs 62.3 years respectively). TP53 mutations were near-universal in both cohorts (89% early-

stage, 100% late-stage) and there were no significant differences in the rates of other somatic 

mutations, including BRCA1 and BRCA2. We also did not observe cohort-specific focal SCNA that 

could explain biological behaviour. However, ploidy was higher in late-stage (median 3.0) than 

early-stage (median 1.9) samples. Copy number (CN) signature exposures were significantly 

different between cohorts, with greater relative signature 3 exposure in early-stage and greater 

signature 4 in late-stage. Unsupervised clustering based on CN signatures identified three clusters 

that were prognostic. 

Conclusions: Early stage and late stage HGSC have highly similar patterns of mutation and focal 

SCNA. However, copy number signature analysis showed that late-stage disease has distinct 

signature exposures consistent with whole genome duplication. Further analyses will be required 

to ascertain whether these differences reflect genuine biological differences between early and 

late-stage or simply time-related markers of evolutionary fitness.  
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Introduction 

High grade serous carcinoma (HGSC) accounts for approximately 70% of all ovarian cancer (OC) 

cases and approximately 80% of OC deaths. Most patients with HGSC present with advanced 

(FIGO stage III and IV) disease, where treatment is rarely curative. Despite the addition of anti-

angiogenic agents (1,2) and PARP inhibitor therapy (3,4), the majority of patients with advanced 

disease relapse within 24 months of completion of first-line chemotherapy. By contrast, the small 

proportion (10 - 15%) patients who present with early disease (stage I and II) have much better 

prognosis and are frequently cured with surgery and platinum-based chemotherapy alone (5).  

 

HGSC is marked by near-universal TP53 mutation (6,7) and arises from the fimbriae of the distal 

fallopian tube, evolving from p53 signatures (cytologically normal cells with mutant TP53), via 

serous intra-epithelial carcinomas (STIC) to invasive carcinomas (8) that metastasise to the ovary 

and throughout the peritoneal cavity. HGSC is marked by widespread copy number change and is 

the archetypal C class, copy number-driven malignancy (9). Although the genome of HGSC is 

highly complex, we recently described copy number signatures, recurrent patterns of genome-wide 

copy number change that were prognostic and were significantly associated with specific driver 

mutational processes (10).  

 

The large studies that defined the genomic landscape of HGSC, including those from The Cancer 

Genome Atlas consortium (TCGA) (7), the Australian Ovarian Cancer Study (11) and the 

International Cancer Genome Consortium (ICGC) (12), all analysed samples from patients almost 

exclusively with stage III or IV disease and there is little information about the genomics of early-

stage HGSC. Previous analyses of genomic alterations in matched p53 signatures, STIC, ovarian 

and metastatic lesions in patients with late-stage HGSC have shown clearly that there are common 

SNV/indel in all samples from each patient (13), and that SCNA are evident very early in disease 

development and are shared across samples, with an estimated seven years required to progress 

from first mutation to clinical presentation with advanced disease (14).  

 

However, it is unclear whether patients with early-stage HGSC have a distinct subtype of disease 

that fails to metastasise or whether these cases are genomically similar to late-stage disease but 

are identified essentially by chance before metastasising. To address this, we have undertaken 

genomic analysis, including shallow whole genome sequencing and deep sequencing of a target 

gene panel, of a cohort of early-stage HGSC patients identified at three large UK centres, with 

comparison to late-stage samples from the BriTROC-1 study.  
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Patients and Methods 

Study conduct, survival analyses and patient samples 

Details of the BriTROC-1 study have been reported previously (10,15) – the study was conducted 

in accordance with the principles of the Declaration of Helsinki. Ethics/IRB approval was given by 

Cambridge Central Research Ethics Committee (Reference 12/EE/0349) and all patients gave 

written informed consent to participate. For all other cases, formalin-fixed paraffin-embedded 

samples were obtained from the pathology archives of participating hospitals by specialist 

gynaecological pathologists (BK, NS, JMcD) and utilised under the auspices and ethical approval 

of the Imperial College Healthcare Tissue Bank (HTA licence 12275, Research Ethics Committee 

number 17/WA/0161, Project ID R18060). Inclusion criteria were stage IA, IB, IC or IIA ovarian or 

fallopian tube carcinomas of high-grade serous histology diagnosed in the previous 15 years, and 

patients identified through routine clinical practice. We utilised the FIGO staging criteria in use at 

the time of diagnosis. Exclusion criteria included non-high grade serous pathology and samples 

identified at risk-reducing surgery. All samples were obtained prior to any chemotherapy treatment 

– the BriTROC-1 samples were those obtained at the time of diagnosis rather than relapse. At 

Imperial, a database of 680 patients initially revealed 45 patients with stage I – IIA high grade 

serous carcinoma. However, only 20 patients fulfilled all inclusion/exclusion criteria. Overall 

survival was calculated from the date of diagnosis to the date of death or the last known clinical 

assessment. All cases, including the early-stage cases from BriTROC-1, underwent pathological 

review (CS, JMcD).  

Sequencing 

Details of the sequencing of BriTROC-1 samples are given elsewhere (10). For new samples, DNA 

was extracted from 10 × 10 µm sections using QIAmp DNA FFPE Tissue Kit (Qiagen, UK) 

according to the manufacturer's protocol. 50-200ng was sheared with a Covaris LE220 focused-

ultrasonicator (Covaris, Woburn, MA) to produce 100-200bp fragments. Libraries were generated 

using SureSelect XT standard protocol (Agilent Technologies, Santa Clara, CA) for low-input and 

FFPE samples. Analysis of PTEN, KRAS, RB1, BRCA2, RAD51B, FANCM, PALB2, RAD51D, 

TP53, RAD51C, BRIP1, CDK12, NF1, BRCA1, BARD1, PIK3CA was performed using a custom 

Ampliseq panel on a HiSeq4000 system (Illumina, Cambridge, UK), using paired-end 125 bp 

protocols. The mean coverage was >7000×. Nine samples were used as a panel of normal 

controls, 5 of them adjacent normal tissue and 4 samples whole blood. Shallow whole genome 

sequencing (sWGS) was performed on a HiSeq4000 system (Illumina Cambridge, UK), using 

paired-end 150 bp protocols, with 250-300 ng input DNA according to the manufacturer's 

instructions. The minimum number of reads per sample was set at 5-10 million (mean coverage of 

0.1×). Using our previous calculations (https://gmacintyre.shinyapps.io/sWGS_power/), 10 million 

https://gmacintyre.shinyapps.io/sWGS_power/
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reads with a bin size of 30kb had 80% power (a = 0.01) to detect CN change +/- 2 at 30% purity 

assuming ploidy of 2. 

Mutation calling  

FASTQ files were trimmed for adapters and aligned to reference human genome hg19 using 

Burrows-Wheeler Alignment (BWA-MEM) (16) and pre-processed using samtools and Picard to 

generate sorted BAM files (17). Somatic mutations were called using Mutect2 (GATK4.1.4.1) (18), 

Varscan2 (version 2.4.2) (19), Strelka2 (version 1.0.14) (20) and HaplotypeCaller (21) pipelines for 

single nucleotide variations (SNVs) and small insertions and deletions (indels) on tumour-only 

BAM files (new early stage samples) and tumour-normal pairs for the BriTROC-1 samples, where 

available, using default parameters. Where multiple samples existed for individual BriTROC-1 

patients, sample data in sorted BAM files were merged prior to mutation calling but individual 

sample identity was retained. Mutations were annotated using Variant Effect Predictor (VEP) 

(version 1.5.3) (22). Somatic mutations were filtered by clinical significance (ClinVar, October 

2020) with “benign” and “likely_benign” variants discarded. Variants were further checked for 

pathogenicity in the COSMIC database (GRCh37, February 2021). Germline mutations for 

BriTROC-1 samples were detected using similar criteria for pathogenicity using Strelka and 

HaplotypeCaller. 

 

Absolute copy number and copy number signature calling 

sWGS reads were aligned to reference human genome hg19. Relative copy numbers were 

obtained for predefined 30kb bins using a modified version of the QDNASeq package (23). We 

obtained absolute copy numbers using the sWGS-absoluteCN (swgs) pipeline - full details are 

given in Supplementary Information. Focal amplifications and deletions were defined according to 

the COSMIC definitions (see https://cancer.sanger.ac.uk/cosmic/help/cnv/overview): amplification 

was defined as total copy number ≥5 if average ploidy ≤2.7, or ≥9 if average ploidy >2.7. Loss was 

defined as total copy number 0 if average ploidy ≤2.7 or (ploidy minus 2.7) if average ploidy >2.7. 

Gain in Figure 3C was defined as total copy number >2.5 but <5.0. Copy number signatures were 

calculated using the R scripts as previously published (10). 

Copy number signature comparison 

To model the presence or absence of signatures, a fixed effects Bernoulli model was used with an 

intercept and a coefficient for the change between early and late-stage samples. The presence of 

a signature j in sample i is modelled by a Bernoulli with probability θij, where θ = x⊤β. x has two 

https://cancer.sanger.ac.uk/cosmic/help/cnv/overview
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rows – for the intercept and the difference between the groups – and as many rows as samples. β 

has two rows and as many columns as the number of signatures (d = 7). The change in the 

differential abundance of non-zero exposures has been modelled similarly. We used a multivariate 

normal model based on the isometric log ratio (ILR)-transformed exposures (also called a logistic-

normal model in the literature). The ILR transformation maps a d-dimensional compositional vector 

(the exposures) to a d−1 dimensional vector of real values. To account for absent signatures, the 

transformation (and subsequently the model) only used the subset of signatures that are present in 

each sample. Covariates are the same as those in Bernoulli model, but this time θ = x⊤β represents 

the ILR-transformed probabilities. Therefore, it has 6 columns instead of 7, and each row can be 

transformed back to a 7-dimensional vector of probabilities with the inverse ILR transformation. β 

continues to have two rows, but only 6 columns, which indicate changes in log-ratios of signature 

exposures. The R package TMB (24) was used for inference. The model was written in C++ and a 

full description of the analysis is given in Supplementary Methods. 

Unsupervised clustering of patients using signature exposures 

Hierarchical clustering of the copy number signature exposure vectors of all samples (early-stage 

and late-stage) used in the survival analysis was performed using the NbClust (25) package in R. 

The NbClust package contains 30 indices to determine the relevant number of clusters; the 

number of 3 clusters ranked the top clustering scheme from different results obtained by varying all 

combinations of number of clusters, distance measures and clustering methods. A Cox 

proportional hazards model was fitted using the cluster labels as covariates, using the R packages 

survival (26) and survminer (https://rpkgs.datanovia.com/survminer/index.html). For survival 

analyses based on cluster, patients with >1 sample were allocated into the cluster of the sample 

with highest purity. 

Data accessibility 

All sequencing data are available via the European Genome-phenome Archive at the European 

Bioinformatics Institute (https://ega-archive.org) with accession number EGAS00001005567.  

Statistical analyses 

Unless otherwise stated above, statistical analyses were performed using Prism (v9.0.3, 

GraphPad, CA) and a summary of analyses is included in the Supplementary material. 

  

https://rpkgs.datanovia.com/survminer/index.html
https://ega-archive.org/
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 Results 

Patients and samples 

We identified 54 patients with early-stage (defined as stage IA, IB, IC and IIA using the FIGO 

classification at the time of diagnosis) ovarian high grade serous carcinoma from the pathology 

archives of three large UK gynaecological cancer centres (Imperial College Healthcare, University 

College London and Barts Health NHS Trusts). A summary of the workflow is shown in Fig. 1 and 

clinical details are given in Table S1. Following pathology review, 21 samples from 13 patients 

were excluded, whilst two samples from one patient failed DNA extraction. Additionally, we 

identified a further cohort of three early-stage patients recruited into the BriTROC-1 study (15), 

giving a total early-stage population of 43. The comparison late-stage cohort consisted of 52 

patients with stage IIIC/IV disease recruited into the BriTROC-1 study (Table S1). The early-stage 

patients were diagnosed more recently than the late stage (early, median 68 months, range 24-

177, prior to analysis; late median 101 months, range 60-179; p=0.0009 Fig. S1). The median age 

at diagnosis for early and late-stage cohorts did not differ significantly (early 61.3 years, range 40-

84; late 62.3 years, range 34-76) but overall survival was, as expected, significantly longer in the 

early-stage cohort than for the late-stage (Hazard Ratio 0.13, 95%CI 0.07-0.26) (Fig. 2A, B).  

Mutational landscape of early-stage and late-stage cohorts 

Using targeted next generation sequencing, we analysed short variants (SNV, indels) in both 

cohorts (Table S2). Mutations in TP53 were near-universal (100% late-stage patients [52/52]. 89% 

[34/38] early-stage patients. Fig. 2C, Fig. S2). One early-stage case, patient ES_0007, contained 

two TP53 missense mutations (L139V, Y163C) at mutant allele frequencies of approximately 50% 

and 25% respectively. Although these could result from the presence of two separate clones, the 

CN state at the TP53 locus in this case was neutral (log2 ratio shift = -0.056), suggesting that these 

might be bi-allelic mutations, as we have previously identified in ovarian squamous cell carcinomas 

arising from mature cystic teratoma (27). The four early-stage samples in which TP53 mutations 

were not identified underwent pathology re-review; all were still considered to be HGSC. Two had 

copy number profiles consistent with HGSC, whilst two showed no CN abnormalities, suggesting 

very low tumour cellularity (Fig. S3). Overall, the frequency of four key TP53 hotspot mutations 

(R175, R273, R248, Y220) was significantly greater in the early-stage cohort compared to late 

(Fig. 2D, E. Fisher’s exact test; p=0.0029), but there was no difference in the rates of mutations in 

the other analysed genes (Fig. 2C). Specifically, rates of pathological mutations in BRCA1 and 

BRCA2 did not differ significantly between early- and late-stage patients: BRCA1 11% (4/38) early 

vs 17% (9/52) late; BRCA2 0% (0/38) early vs 2.0% (1/52) late.  
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Focal amplifications and deletions in early-stage and late-stage cohorts 

We used shallow whole genome sequencing to analyse genome-wide absolute copy number. 

There was no statistically significant difference in purity between the cohorts (Fig. 3A), but median 

ploidy was significantly greater in late-stage samples compared to early (Fig. 3B. Median early 1.9; 

median late 3.0; p<0.0001, Mann-Whitney test). Global copy number gains/losses are shown in 

Fig. 3C - there were generally more gains and amplifications in late-stage samples, and regions of 

CN loss in the early-stage samples, in keeping with the differential ploidy between the cohorts. 

Although there were several regions of differential gain in the late-stage cohort (e.g. chromosome 

4, 6, 9, 11,12) and losses in the early-stage cohort (e.g. chromosome 4, 9, 12, 17), we found no 

significant differences in rates of focal amplification and deletion of 17 genes that are frequently 

altered in HGSC (7,12) (Fig. 3D, Fig. S4, Table S3). The commonest amplifications were in MYC 

(25% in the early-stage and 19% in the late-stage) and MECOM (20% in the early-stage and 14% 

in the late-stage).  

Copy number signatures in early-stage and late-stage cohorts 

Next, we assessed the distribution of the six specific CN features - segment length, segment copy 

number, number of breakpoints per chromosome arm, number of breakpoints per 10Mb, copy 

number change point and length of chains of oscillating copy number (Fig. S5, 6) - and used these 

to generate CN signature exposures for both cohorts (Fig. 4A, B). We used a fixed-effects 

(Bernoulli) analysis to model the presence or absence of signatures and a fixed-effects multivariate 

normal distribution model, based on isometric log ratio (ILR)-transformation, to compare the two 

cohorts (see Supplementary Methods). Overall, in the ILR analysis, there was a highly significant 

difference between cohorts (generalised Wald test; p=7.234e−10), with greater signature 3 

exposure in the early-stage cohort and more signature 4 in the late-stage cohort (Fig. 4C). In 

keeping with this, the presence of signature 3 and the absence of signature 4 were both 

associated with improved overall survival across all patients (Fig. 4D).  

We then visualised CN signature exposures using simplex plots (Fig. 4E) comparing signature 3 

(S3), signature 4 (S4) and all other signatures (1-S3-S4). In the early cohort, the sample 

observations (red dots) cluster towards the top of the right side of the simplex, in keeping with low 

or zero signature 4 exposure. For the late group, although some of the observations remain in the 

same place, many are located towards the left of the simplex, indicating that they have non-zero 

exposure to signature 4, with a relative decrease in the amount of signature 3. The relative 

contribution of the other signatures does not change between early and late cohorts - the distance 

from the observations to the top apex of the plot remains similar. Together, this suggests that, 

overall, signature 3 decreases in relative intensity and signature 4 increases in relative intensity in 

the late-stage samples, whilst the rest of the signatures remain approximately constant. However, 

the observations that remain towards the top right of the simplex suggest that a subset of late-
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stage samples have genomic features more reminiscent of early-stage. In keeping with this, the 

presence of signature 3 remained significantly associated with improved overall survival in the late-

stage cases, whilst there was a trend for poorer survival with any exposure to signature 4 (Fig. 

S7). 

We then performed unsupervised hierarchical clustering of the copy number signature exposures 

across both cohorts and identified three clusters (Fig. 5A, Fig. S8). Cluster 1 had the highest 

exposure to CN signature 3, cluster 2 was dominated by genomes with high signature 1 exposure, 

whilst cluster 3 showed highest signature 4 exposure (Fig. 5B). There was a significant difference 

in sample distribution between clusters (p<0.0001, Chi-squared) with nearly all early-stage 

samples in clusters 1 and 2, whilst late-stage samples were spread across all three clusters, with 

the majority in cluster 3 (Fig. 5C). In the 12 patients with >1 sample, samples clustered within the 

same cluster group in 11 cases (Fig. S8). The clusters were prognostic, with a significant trend for 

reduced survival across the clusters (Fig. 5D), which remained significant by Cox proportional 

hazards (Fig. 5E).  

We next quantified ploidy by cluster and found highly significant differences across the whole 

cohort (Fig. 6A) with median ploidy of 1.9, 2.6 and 3.3 in clusters 1, 2 and 3 respectively. High 

ploidy can reflect whole genome duplication (WGD), which is frequent in HGSC (28). However, 

identifying WGD definitively requires assessment of allele-specific copy number, which is not 

possible using sWGS or the limited next generation sequencing panel that we utilised. 

Nonetheless, we previously identified a strong statistical association between CN signature 4 

exposure and WGD (10): here, we found a very strong correlation (Spearman rho = 0.73, 

p<0.0001) between ploidy and signature 4 exposure across both cohorts (Fig. 6B) implying that 

the high ploidy may indeed be driven by WGD. In addition, WGD is likely to generate high ploidy 

states across the entire genome and we found a significantly greater proportion of segments with 

ploidy >3.0 in clusters 2 and 3 compared to cluster 1 (Fig. 6C) as well as in late-stage compared to 

early-stage samples (Fig. S9). Analysis of copy number changepoint (the change in CN state 

between adjacent segments) also indicated that clusters 2 and 3 had a significantly greater fraction 

of segments with changepoint of at least +2 than cluster 1, again in keeping with WGD (29) (Fig. 

6D).  

Finally, it was previously shown that median ploidy for cancers with and without WGD were 3.3 

and 2.1 respectively (28). Using these delineators, we analysed overall survival of the whole cohort 

(Fig. 6E) and of late-stage patients (Fig. S10) and identified significant differences in both 

analyses. 
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Discussion  

Comparing genomic profiles between cancers with high levels of chromosomal instability is 

challenging. We have previously developed copy number (CN) signatures that deconvolute copy 

number features from whole genome analysis to identify the underlying mutational processes that 

shape the genome. In this manuscript, we have used novel methods to compare CN signature 

exposures and reveal significant genomic differences between early- and late-stage HGSC. This is 

clinically important because the large majority of patients with HGSC have advanced disease at 

the time of diagnosis, reflecting the ease with which HGSC disseminates from the fallopian tube 

throughout the peritoneal cavity. An important question is whether early-stage HGSC is identified 

fortuitously through early development of symptoms or whether they have discrete characteristics 

that reduce the likelihood of peritoneal dissemination, and whether late-stage samples have 

acquired evolutionary fitness that facilitates metastatic spread. 

  

As expected, we found that TP53 mutations were near-universal, although four early-stage 

samples were TP53 wild type, possibly due to a combination of low tumour cellularity and poor 

DNA quality from FFPE preservation. A previous study of 16 early-stage HGSC cases (30) also 

identified that TP53 mutations were very frequent but not universal, and two of our TP53 wild type 

samples certainly had CN profiles that were highly consistent with HGSC. Together, these data 

suggest that a small proportion of early stage HGSC cases may be truly TP53 wild type. The rate 

of missense TP53 mutations here was higher (75%) than in previous HGSC cohorts (7) and 

hotspot mutations (defined here as mutation at the four most commonly mutated codons, R248, 

R273, R175 and Y220) were more prevalent in our early-stage cohort than late-stage. However, a 

recent analysis of nearly 800 HGSC cases (78 stage I/II, 709 stage III/IV) has suggested no overall 

difference in mutation type between early and late samples (31). Crucially, we found no differences 

in rates of BRCA1/2 mutations between early and late cohorts. The absence of germline DNA from 

most of our early-stage cohort meant that we were unable to verify the germline mutation status 

but our BRCA1/2 mutation results are broadly in line with previous cohorts (32) and reflect the fact 

that these samples were obtained from routine practice rather than risk reducing surgery. When 

examining global copy number change, there were no regions uniquely lost or gained in either 

cohort, suggesting that the process of dissemination is not driven by specific amplifications or 

deletions, whilst we also found no significant difference in copy number of 17 key genes. Together, 

the SNV/indel and focal CNA data corroborate findings by Köbel et al that early and late-stage 

HGSC appear identical by immunohistochemistry (33). The previous WGS analysis of early stage 

HGSC (30) also identified high levels of genomic instability with few, if any, recurrent focal 

differences between early and late-stage HGSC, and no unique mutation or focal CN alterations in 

the early-stage patients.  
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Our most striking observation was the difference in overall ploidy between early and late cases, 

which was further reflected in CN signature exposures. Comparison of CN signatures between 

samples and cohorts is complex because signature exposures are compositional (i.e. they sum to 

1 in each sample) and are thus not independent variables: any decrease in one signature will, by 

definition, be mirrored by an increase in at least one other. In addition, classical statistical methods 

for analysing compositional data are poor at dealing with zero proportions and many samples have 

zero exposure to at least one signature. However, using isometric-log ratio analysis of non-zero 

signature exposures, we found a significant difference between the cohorts overall, driven by 

signatures 3 (higher in early-stage) and 4 (higher in late-stage). The features that define signature 

4 are high segment copy numbers and high copy number changes, both of which are greater in the 

late cohort. The simplex analysis indicates that the late-stage genomes overall have increased 

signature 4, although a proportion remains ‘early-like’ with prominent CN signature 3. The 

unsupervised hierarchical clustering identified three patterns in the signatures. Clusters 1 and 2 

contained most of the early-stage samples, whilst the late-stage samples were divided between 

the clusters. However, cluster 3 contained almost exclusively late-stage samples and was 

associated both with higher ploidy and worse survival. 

 

The higher copy number, greater overall ploidy and greater signature 4 exposure all suggest that a 

proportion of the late-stage tumours had undergone whole genome duplication (WGD). WGD has 

been described in many solid malignancies (28) and is generally associated with poor prognosis 

(34). It is thought to arise from aberrant cell division (35) and potentially may mitigate the effects of 

mutations that would otherwise be deleterious, thus preventing cancer cell attrition (36). In pan-

cancer analysis, HGSC has been shown to have one of the highest rates of WGD at approximately 

40% (28).  

 

Definitive demonstration of WGD is challenging and requires assessment of both ploidy and extent 

of LOH (29), which is not possible using sWGS and the targeted capture sequencing panel 

employed here. In practical terms, the analysis of early stage HGSC requires use of FFPE material 

that precludes deep WGS analysis. This is an important limitation of our findings. However, our 

original analysis using deep whole genome sequencing analysis of HGSC specimens showed that 

CN signature 4 was significantly associated with WGD (10) and here we observed a strong 

correlation between signature 4 and ploidy, suggesting that the high ploidy samples in cluster 3 

may have undergone WGD. We also confirmed other features suggestive of WGD, including that 

cluster 3 samples were more likely to have high CN across the whole genome and high CN 

changepoint between segments. Lastly, the median ploidy of early and late cohorts was similar to 

pan-cancer analyses showing that median ploidy of WGD tumours is 3.3, compared to 2.1 in those 

lacking WGD (28). The commonest genomic correlate of WGD in previous analyses was mutation 

in TP53, which usually precedes the duplication, as well as CCNE1 amplification and loss of RB1 
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(28). Although the rates of CCNE1 amplification here did not differ significantly between our early 

and late-stage cohorts, our data support the idea that high ploidy is associated with advanced 

HGSC and poorer prognosis, a concept first explored over twenty years ago (37). HGSC has 

profound levels of segregation error during cell division, an essential precursor of aneuploidy and 

WGD (38), and recent data suggest that WGD can emerge in hTERT-immortalised human 

fallopian tube epithelial cells with loss of wild-type p53 function in the presence of BRCA1 mutation 

and MYC over-expression, but not with TP53 mutation alone (39).  

 

Although this cohort represents one of the largest collections of early-stage HGSC samples that 

have been characterised with WGS, this project has potential shortcomings. Our cohort is small, 

reflecting the rarity of this patient population, which limits our statistical power, in particular the 

ability to compare early-stage cases that relapsed to those that did not. In addition, the samples 

were identified retrospectively from pathology archives; thus, the extent of surgery was not defined, 

and chemotherapy regime given was at the discretion of the treating oncologists. The early-stage 

cohort was diagnosed more recently, on average, than the late stage, although this difference is 

unlikely to have influenced clinical management, and nearly 80% were alive 10 years following 

diagnosis, in keeping with data from randomised clinical trials (5). This strongly suggests that our 

cohort did not contain large numbers of understaged patients with occult stage III disease. The 

samples were all formalin-fixed, paraffin-embedded (FFPE) and analysed up to 15 years following 

diagnosis, and it was not possible to estimate absolute copy number, and hence CN signatures, on 

several of the samples. Our previously developed methods allow reliable analysis of genome-wide 

changes in fixed material (40), but demand strict quality control criteria to ensure robust copy 

number determination. Our estimation of the number of reads required (see Methods) was clearly 

insufficient in some cases, especially those with low tumour cellularity. If sWGS is to be developed 

for use in clinical trials, it will be imperative to establish robust criteria for sequencing depth, 

especially in low cellularity samples or small core biopsies. We also did not perform whole exome 

sequencing or deep WGS, so are unable to comment upon small variants (SNV, indel) beyond our 

targeted panel nor on larger scale rearrangements (12,41).   

 

The critical outstanding question is whether the processes that generate high ploidy are the 

primary drivers of rapid dissemination in HGSC, or whether high ploidy/WGD are simply time-

related markers of evolutionary fitness and are thus more likely to be observed in late-stage than 

early-stage disease. The absence of an age difference between our two cohorts may suggest that 

the genomic differences are not time-related, consistent with the finding that WGD is an early 

event in colorectal (35) and non-small cell lung carcinomas (36). In addition, there was close 

clustering of samples in patients with >1 sample, again suggesting that WGD does not appear as a 

late event. However, definitive assessments of true rates of WGD in early HGSC compared to 

advanced disease will require WGS analysis of prospectively collected samples and detailed 
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comparison between fallopian tube primary site and multi-site examination of large cohorts of 

disseminated late-stage HGSC as well as in vitro models.  

  

In summary, our results indicate that early and late-stage HGSC are similar but also that there may 

be critical differences, potentially resulting from the appearance of whole genome duplication in a 

subset of late-stage disease, which is associated with poor outcome. However, our data, 

reinforced by the striking difference in overall survival in our cohorts, highlight once again the 

importance of improving strategies that will allow early detection of HGSC.   
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Figures Legends 

Figure 1. REMARK diagram for early-stage and late-stage cohorts 

Figure 2. Clinical features and mutational landscape of early-stage and late-

stage cohorts.  

(A) Diagnosis age. Median 61.3 year (early stage), 62.3 years (late stage). p=NS 

(B) Overall survival. Median 60.3 months for late stage, and not reached for early stage. Log-rank 

Hazard Ratio 0.13 (95%CI 0.07-0.26), p<0.0001 (Log-rank). 

(C) Short variants (SNV and indels) for each patient in early-stage and late-stage cohorts. The 

upper plot shows the number of mutations in each tumour sample.  

(D) Gene mutation mapper plot of TP53 in early-stage cohort and (E) late-stage cohort. Key 

hotspot residues are marked. The commonest residue mutations in each cohort are marked in red 

Figure 3. Focal gene amplifications and deletions in early-stage and late-

stage cohorts.  

(A) Purity comparison of early-stage and late-stage cohorts.  

(B) Ploidy comparison of early-stage and late-stage cohorts; Mann Whitney test. 

(C) Global copy number amplifications, gains and losses in early-stage and late-stage cohorts.  

(D) Estimation of focal amplifications and deletions in 17 genes of interest, determined by sWGS. 

The upper plot shows the number of amplifications and deletions in each tumour sample.  

  

Figure 4. Copy number signatures in early-stage and late-stage cohorts.  

(A) Copy number signature exposures in early-stage and late-stage patients. Note that signature 

exposures sum to 1 in each sample. Bars above signatures indicate adjacent samples derived 

from the same patient. 

(B) Mean signature exposure proportions across the early-stage and late-stage cohorts.  

(C) Comparison of signature exposures across early-stage and late-stage cohorts; Wald test. 

(D) Overall survival of combined early and late-stage cohorts by zero vs non-zero exposures to 

copy number signature 3 (left) and 4 (right). Log-rank (Mantel-Cox) analysis. 

(E) Simplex plots representing exposures for CN signature 3 (right axis), signature 4 (bottom axis) 

and the rest of the signatures (1 - S3 - S4) combined (left axis) in early (left) and late (right) stage 
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cohorts. Each red dot represents a single sample, and the contours represent the density of 

observed samples.  

Figure 5. Relationship between signature exposures and clinical factors.  

(A) Unsupervised hierarchical clustering in combined early-stage and late-stage cohorts.  

(B) Distributions of copy number signature exposures in three clusters  

(C) Early and late-stage samples by cluster; Chi-squared test. 

(D) Overall survival by cluster; Log-rank for trend 

(E) Forrest plot of hazard ratio estimates on overall survival (OS) for clusters. Cox proportional 

hazards. 

Figure 6. Cluster ploidy and whole genome duplication.  

(A) Ploidy distribution of late-stage samples in three clusters. Kruskal Wallis test. 

(B) Correlation between CN signature 4 exposure and ploidy across both cohorts. Spearman rank 

correlation. 

(C) Fraction of CN segments with absolute copy number ≥3 in three clusters. Kruskal Wallis test. 

(D) Copy number changepoint. Graphical depiction of CN changepoint (left); distribution of copy 

number changepoint ≥+2 in the three clusters. Kruskal Wallis test (centre); density distribution 

(right). 

(E) Overall survival of combined early and late-stage cohorts by ploidy. Log-rank for trend analysis. 
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