
ScatterNet Hybrid Frameworks for
Deep Learning

Amarjot Singh

Department of Engineering
University of Cambridge

This is submitted for the
Doctor of Philosophy

Jesus College September 2018

I would like to dedicate this thesis to my loving parents, my brother and sister-in-law,
my niece (Banni) and my girlfriend, Samina!

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This dissertation is my own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and Acknowledgements.
This dissertation contains fewer than 65,000 words including appendices, bibliography,
footnotes, tables and equations and has fewer than 150 figures.

Amarjot Singh
September 2018

Acknowledgements

My time at the University of Cambridge has been a unique experience, and I had
the opportunity to meet and work with many outstanding people who supported and
inspired me throughout my studies, and to whom I would like to express my deepest
gratitude. First and foremost I would like to thank my supervisor Prof. Nick Kingsbury,
who has significantly altered my views on computer vision, deep learning, and research
in general. I also sincerely thank Cambridge Trust for providing me the scholarship for
my Ph.D., without which It would have been impossible for me to pursue this journey.
I joined Prof. Kingsbury’s group with the impression that there is no or very little deep
learning used in the lab and most of my working would be on designing handcrafted
feature detectors. However, it turns out that there is a lot of deep learning research in
our lab, although of a slightly different kind. It happens during the countless hours we
spend looking at data and trying to get an intuition about what is essential. It is our
intuition that we should develop first – that is the unwritten rule in our lab. Nick has
a unique teaching style: he doesn’t tell us the answers; he steers us towards them so
that we can build our intuition in the process. He doesn’t directly ask us to do work.
Instead, he uses his unbounded enthusiasm to motivate us, and it is quite infectious!
Nick has led me to conclude that the critical component in designing deep networks
is not to learn end-to-end in a supervised fashion but to create hybrid systems that
make use of mainly unlabelled data to learn invariant and discriminative representation
rapidly. This philosophy has led me to develop the ScatterNet Hybrid Deep Learning
Networks (SHDL) which I have presented throughout this thesis. I am grateful for
the countless hours he spent working with me on the SHDL ideas and teaching me so
much in the process.

I am also thankful to my advisor Dr. Joan Laseby who always motivated and
supported me throughout my PhD. She continuously provided many valuable inputs
on my work which have helped me significantly improve my research. I am also very
grateful for her help with several of my Postdoctoral fellowship applications.

Throughout my PhD, I was privileged to have worked with amazing engineers,
scientists, and friends. To begin with, my colleague, Fergal cotter, with whom I shared

viii

most of my experiences in the signal processing lab. I greatly enjoyed working with him,
and I am thankful for his friendship and support on several projects. I further would
like to thank my colleagues Oliver Bonner, Kuan Hsieh, Josias Van Der Westhuizen,
Dr. Pavan Koteshwar Srinath and Marina Riabiz for making my time in the signal
processing lab so enjoyable. I would also like to thank my peers Fabio Giardina,
Priyanka Joshi, Utkarsh Sharma, and Abhimanyu Sharma, for being both personally
and intellectually supportive to me.

This dissertation ties together a large body of work completed during my Ph.D.,
and below I detail the papers emanated from this work.

Chapter 4 presents two hand-crafted architectures presented at the:

• International Conference on Mathematics in Signal Processing (IMA), 2016, in
Birmingham, UK, and the

• IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2017, in New Orleans, USA.

Chapter 5 presents the work which uses the hand-crafted front-end proposed in
chapter 4 to accelerate the learning of deep supervised networks. This work presented
at the Compact and Efficient Feature Representation and Learning in Computer Vision
(CEFRL) workshop at IEEE International Conference on Computer Vision (ICCV),
2017, in Venice, Italy.

Chapter 6 presents two SHDL architectures for object recognition and semantic
image segmentation presented at the:

• IEEE International Workshop on Machine Learning for Signal Processing (MLSP),
2017, in Tokyo, Japan and the

• IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, in Calgary, Canada.

Abstract

Image understanding is the task of interpreting images by effectively solving the
individual tasks of object recognition and semantic image segmentation. An image
understanding system must have the capacity to distinguish between similar looking
image regions while being invariant in its response to regions that have been altered
by the appearance-altering transformation. The fundamental challenge for any such
system lies within this simultaneous requirement for both invariance and specificity.

Many image understanding systems have been proposed that capture geometric
properties such as shapes, textures, motion and 3D perspective projections using
filtering, non-linear modulus, and pooling operations. Deep learning networks ignore
these geometric considerations and compute descriptors having suitable invariance
and stability to geometric transformations using (end-to-end) learned multi-layered
network filters. These deep learning networks in recent years have come to dominate
the previously separate fields of research in machine learning, computer vision, natural
language understanding and speech recognition.

Despite the success of these deep networks, there remains a fundamental lack of
understanding in the design and optimization of these networks which makes it difficult
to develop them. Also, training of these networks requires large labeled datasets which
in numerous applications may not be available.

In this dissertation, we propose the ScatterNet Hybrid Framework for Deep Learning
that is inspired by the circuitry of the visual cortex. The framework uses a hand-
crafted front-end, an unsupervised learning based middle-section, and a supervised
back-end to rapidly learn hierarchical features from unlabelled data. Each layer in the
proposed framework is automatically optimized to produce the desired computationally
efficient architecture. The term ‘Hybrid’ is coined because the framework uses both
unsupervised as well as supervised learning.

We propose two hand-crafted front-ends that can extract locally invariant features
from the input signals. Next, two ScatterNet Hybrid Deep Learning (SHDL) networks
(a generative and a deterministic) were introduced by combining the proposed front-
ends with two unsupervised learning modules which learn hierarchical features. These

x

hierarchical features were finally used by a supervised learning module to solve the
task of either object recognition or semantic image segmentation. The proposed front-
ends have also been shown to improve the performance and learning of current Deep
Supervised Learning Networks (VGG, NIN, ResNet) with reduced computing overhead.

Table of contents

List of figures xv

List of tables xix

1 Introduction 1
1.1 Introduction . 1
1.2 Image Understanding Systems . 3
1.3 Contributions . 7
1.4 Thesis overview . 8

2 Literature Review 11
2.1 Handcrafted Architectures . 11

2.1.1 Scale-Invariant Feature Transform (SIFT) 12
2.1.2 Scatter Net . 14

2.2 End-to-end Learned Networks . 20
2.2.1 Convolutional Neural Network 21
2.2.2 AlexNet . 26
2.2.3 Network in Network (NIN) . 27
2.2.4 Visual Geometry Group (VGG) 28
2.2.5 Residual Networks . 29
2.2.6 Restricted Boltzmann Machine 30

2.3 Hybrid Architectures . 33
2.3.1 Bag of Features . 33
2.3.2 Deep Sparse Coding . 35
2.3.3 HMAX Model . 36

3 ScatterNet Hybrid Framework for Deep Learning 41
3.1 ScatterNet Hybrid Deep Learning Framework 44

3.1.1 ScatterNet Front-end . 45

xii Table of contents

3.1.2 Unsupervised Learning Mid-section Module 45
3.1.3 Supervised Learning Back-end 46

4 Hand-crafted Front-end 47
4.1 Multi-Resolution Region Pooling ScatterNet 49
4.2 Overview of Results . 52

4.2.1 US Postal Service Dataset . 53
4.2.2 The UCI Isolet Dataset . 54
4.2.3 The UCI Yeast Dataset . 55
4.2.4 The UCI Glass Dataset . 55

4.3 Computational Complexity . 56
4.4 Discussions . 56
4.5 Multi-resolution Parametric Log ScatterNet 57
4.6 Overview of Results . 61
4.7 Computational Complexity . 63
4.8 Discussions . 64
4.9 Comparison between the Proposed ScatterNets 64

5 Efficient Learning using ScatterNets 67
5.1 DTCWT ScatterNet Convolutional Neural

Network (DTSCNN) . 68
5.2 Experimental Results . 70

5.2.1 Datasets . 70
5.2.2 Evaluation and Comparison on Classification Error 71
5.2.3 Analysis on Computational Efficiency and Learning 73
5.2.4 Comparison with Pre-trained CNN First Layers 75
5.2.5 Comparison with the state-of-the-art 75

5.3 Discussions . 76

6 ScatterNet Hybrid Deep Learning (SHDL) Networks 79
6.1 Deterministic ScatterNet Hybrid Deep Learning (D-SHDL) network . . 82

6.1.1 ScatterNet Hand-crafted Descriptors 82
6.1.2 Unsupervised Learning Module: PCA-Net Layers 83
6.1.3 Supervised Learning Module: OLS and G-SVM 85

6.2 Overview of the D-SHDL Results . 87
6.2.1 ScatterNet feature extraction 87
6.2.2 PCA Layers: features and layer optimization 87

Table of contents xiii

6.2.3 Classification performance . 89
6.2.4 Comparison with the state-of-the-art 90
6.2.5 Advantage over supervised learning 91
6.2.6 Computational Complexity . 91

6.3 Discussions . 93
6.4 Generative ScatterNet Hybrid Deep Learning (G-SHDL) network . . . 94

6.4.1 ScatterNet Hand-crafted Descriptors 94
6.4.2 Unsupervised Learning: RBM with Priors 95
6.4.3 Supervised CRF Segmentation 97

6.5 Overview of the G-SHDL Results . 98
6.5.1 Handcrafted Front-end: ScatterNet 98
6.5.2 Unsupervised Mid-section: RBM with PCA priors 99
6.5.3 Classification performance . 99
6.5.4 Comparison with the state-of-the-art 100
6.5.5 Advantage over Deep Supervised Networks 101
6.5.6 Computational Complexity . 102
6.5.7 Discussions . 104

7 Conclusions 105
7.1 Summary of Key Results . 105
7.2 Future Work . 109

7.2.1 SHDL Back-end . 109
7.2.2 Artificial General Intelligence: Sequential Learning 110

7.3 Parting Note . 111

Appendix A Training of Convolutional Neural Networks 113
A.1 Back-propagation Algorithm . 113

Appendix B Feature Selection 115
B.1 Orthogonal Least Squares(OLS) . 115

Appendix C PCA Network (PCANet) 117

Appendix D Software 119
D.1 ScatterNet . 119
D.2 Deep Convolutional Networks . 119
D.3 PCA Network . 120
D.4 Convolutional RBM . 120

xiv Table of contents

Appendix E Datasets 121

Appendix F Learned Filters 125

Appendix G Publication List 127

References 129

List of figures

1.1 Illustration of the ideal case in which the distance measured by a trained
classifier between two feature vectors extracted from both same images
is zero . 2

1.2 Illustration presents the classifier which learns local and global regulari-
ties from the training set. 3

1.3 Illustration of real-world scenario in which the distance measured by a
trained classifier between feature vectors extracted from the image (x1)
and it’s corrupted version (xf), is significant. 5

2.1 SIFT Difference-of-Gaussians pyramid 13
2.2 SIFT descriptor . 14
2.3 Real and Imaginary parts of the complex Morlet wavelets at multiple

scales and orientations . 15
2.4 Scattering operations performed on a signal to extract filtered response

with translation invariance and to recover the lost frequency components. 16
2.5 Invariant scatter convolutional network. 17
2.6 Sparse and Deep autoencoder trained to car dataset. The filter weights

for each layer are visualized to present low, mid and high-level features
learned from the car class. 19

2.7 Comparison of earlier and convolutional architecture 20
2.8 Convolutional Neural Network Architecture 22
2.9 Filters applied on an Image to extract low level image features (edges) 23
2.10 Pooling performed within and across feature maps to achieve translation

and rotation invariance. 24
2.11 Convolutional Neural Network trained on car class of the ImageNet

dataset. The trained network is further applied on an image. 25
2.12 The architecture of the AlexNet . 26

xvi List of figures

2.13 The illustration presents the Low-Dimensional Embedding (LDE) of the
Network in Network (NIN) architecture 27

2.14 The illustration presents the architecture of the Visual Geometry Group
(VGG) . 28

2.15 The illustration presents the benifit of residual bloacks proposed in the
residual network over other deeper architectures. 29

2.16 Restricted Boltzmann Machine trained using contractive divergence on
MNIST dataset. 31

2.17 Bag of features model . 34
2.18 The illustration shows the three-layer deep sparse coding framework. . 35
2.19 Complex cells pooling responses from Simple cells at different locations

and scales (same orientation) to achieve translation and scale invariance. 37
2.20 HMAX Model . 38

3.1 Illustration of an image with two class objects mapped onto their re-
spective manifolds. 42

3.2 ScatterNet Hybrid Deep Learning (SHDL) framework inspired by the
circuitry of the visual pathway is presented. The front-end of the SHDL
network is a hand-crafted ScatterNet similar to the V1 of the pathway,
which decomposes the input signal into features at different scales and
orientations using complex wavelets [119, 155]. The mid-section then
uses unsupervised learning on these hand-crafted features to rapidly
encode invariant hierarchal feature similar to what is believed to be the
functions of V2 and V4 regions [149–152]. Finally, the back-end of the
framework uses supervised learning to assign class specific labels to the
features obtained from the last layer of the unsupervised module using
few labeled examples [120, 148]. 44

4.1 Multi-Resolution Region Pooling ScatterNet 51
4.2 Multi-resolution Parametric Log Scattering Network 58
4.3 Examples of features representations before and applying the parametric

Log non-linearity . 59

5.1 DTCWT ScatterNet Convolutional Neural Network (DTSCNN) 68
5.2 Graphs show the faster convergence and rate of learning of the DTSCNN

derived architectures (AS-1 to AS-4) compared to the CNN (A-1 to A-4)
architectures for a range of small and large training data sizes 72

List of figures xvii

5.3 Computational time of the DTSCNN derived architectures (AS-1 to
AS-4) compared to the CNN (A-1 to A-4) architectures for a range of
small and large training data sizes . 73

5.4 Graphs show the faster convergence and rate of learning of the DTSCNN
standard deep architectures (AS-5 to AS-7) compared to the CNN (A-5
to A-7) architectures for a small (5000) and large (50000) training dataset 74

6.1 Deterministic ScatterNet Hybrid Deep Learning (D-SHDL) network . . 81
6.2 Illustration shows the DTCWT real filters at two scales used at Layer

L1 and L2 along with the filters learned by the PCA-Net at L3 and L4
stage. 82

6.3 Illustration presents the optimization for the number of filters (KL3)
learned at L3 layer as well as the log non-linearity parameter kL3 applied
on the L3 layer feature representations using 5-CV classification 84

6.4 Illustration presents the optimization for the number of filters (KL4)
learned at L4 layer as well as the log non-linearity parameter kL4 applied
on the L4 layer feature representations using 5-CV classification 85

6.5 Illustration presents the effect of the parametric log transformation
applied to the features extracted at layers, L3 and L4 of the D-SHDL
network. 86

6.6 The illustration presents the computational time required to learn the
filters at Layers, L3 and L4 of the D-SHDL network 92

6.7 Generative ScatterNet Hybrid Deep Learning (G-SHDL) network . . . 95
6.8 The illustration presents the improvement in rate of learning for the

RBM with the use of PCA priors . 96
6.9 Figure shows two images from MSRC dataset with their ground truth

and segmentation obtained at L2 to L6 of G-SHDL 97
6.10 The illustration shows the L6 RBM features thresholded to the top 10,

20 and 30 activations and back-projected to the input image selected
from the Caltech-101 dataset. 98

6.11 The illustration presents the computational time required to learn the
PCA priors and RBM filters at different Layers of the G-SHDL network 103

7.1 The illustration presents the memory augmented ScatterNet Hybrid
Deep Learning Network for sequential learning. 111

E.1 The illustration presents a visualization of a randomly selected training
sample from each of the datasets. 122

xviii List of figures

E.2 Examples of images with class labels from the CIFAR and Caltech datasets.123
E.3 Example Images, Semantic Labels, and Regions from the a) Stanford

Background b) MSRC dataset. 123

F.1 The illustration presents the PCA filters learned at different layers of
the deterministic SHDL network presented in section 6.1. 125

F.2 The illustration presents the RBM filters at different Layers of the
G-SHDL network presented in section 6.4. 126

List of tables

4.1 Classification error (%) on different datasets for each part of the proposed
network . 53

4.2 Classification error (%) comparison on USPS Dataset 54

4.3 Classification error (%) comparison on Isolet Dataset 54

4.4 Classification error (%) comparison on Yeast Dataset 55

4.5 Classification error (%) comparison on Glass Dataset 56

4.6 Accuracy (%) on CIFAR-10 for both R1 and R2 for each scale (J) and
coefficients at m= 1, with and without applying log transformation . . 62

4.7 Accuracy (%) and comparison on both datasets. Pro.: Proposed, Sup:
Supervised and Unsup: Unsupervised, learning. 62

4.8 Arc.: Architectures, Pro.: Proposed, R1, R2: Resolution - 1,2 pipeline,
FVL: Feature vector length, SD: Selected dimensions using OLS, FR:
Feature richness (%) . 63

4.9 Comparison of Proposed (Pro.) network on accuracy (%) with two
supervised learning methods . 64

4.10 Accuracy (%) and comparison on both datasets for the the Multi-
Resolution Region Pooling ScatterNet and Multi-resolution Parametric
Log ScatterNet. 65

5.1 Experiments are performed with CNN architectures (derived from LeNet
designed for CIFAR-10 dataset that contain convolutional (CV) layers
(L1 to L5) . 69

5.2 Parameter values used by the architectures 69

5.3 Classification error (%) on the CIFAR-10 dataset for the original CNN
architectures and their corresponding DTSCNN architectures. 71

xx List of tables

5.4 Table shows the comparison on classification error (%) between the
DTCWT ScatterNet (DTS) front-end and the first convolutional layer
pre-trained on ImageNet for NIN [35] and VGG [36] architectures for
Caltech-101 and CIFAR-10 datasets.T-NIN: Transfer-NIN, T-VGG:
Transfer-VGG . 75

5.5 Table shows the comparison on classification error (%) between the
DTCWT ScatterNet ResNet (DTS-WResNet) Architecture with the
state of the art architectures on the CIFAR-10 dataset 76

5.6 Table shows the comparison on classification error (%) between the
DTCWT ScatterNet VGG (DTS-VGG) Architecture with the state of
the art architectures on the Caltech-101 dataset 76

6.1 Accuracy (%) on CIFAR-10 for features extracted at different layers and
resolutions. Srs[Layer], HC = S[L0, L1, L2] 88

6.2 5-CV Accuracy (%) on CIFAR-10 at L3 and L4. yL3, yL4 output, ŷL3,
ŷL4 optimal output and ŷL3,rs, yL4,rs relatively symmetric output, at L3
and L4. 88

6.3 Object classification accuracy (%) on CIFAR-10 and Caltech-101 for each
module computed with OLS and G-SVM. The increase in accuracy with
the addition of each layer is also shown. HC: Hand-crafted, PCA features
((Layer)filter−size): eg (L3)sL3=5 . 89

6.4 Object classification accuracy (%) and comparison with other approaches
on both datasets. Unsup: Unsupervised, Semi: Semi-supervised and
Sup: Supervised. 90

6.5 Comparison of SHDL network on accuracy (%) with two supervised
learning methods (VGG [36] and NIN [35] against different training
dataset sizes on CIFAR-10. 91

6.6 5 fold cross validation performed on the training dataset of Stanford
background (SB) ansd MSRC dataset to select the optimal numbers of
filters for L3 to L6 RBM layers. L(size) = No. of Filters (a,a represents
a×a) . 99

6.7 PA (%) on both dataset for each module computed with CRF. The
increase in accuracy with the addition of each layer is also shown. HC:
Hand-crafted. RBM Layers: L3, L4, L5 and L6. 100

6.8 PA (%) and comparison on both datasets. Unsup: Unsupervised, Semi:
Semi-supervised and Sup: Supervised. 100

List of tables xxi

6.9 Comparison of G-SHDL on PA (%) with DeepLab-CRF [192] against
different training dataset sizes on SB dataset. 102

Chapter 1

Introduction

1.1 Introduction

Imaging systems have become ubiquitous in our daily lives. These systems have been
widely used for numerous applications including Self-driving cars [189], Intelligent
Surveillance [190], Content-Based Image Retrieval (CBIR) [188], Human-Computer
Interaction [191], etc. In order for them to function effectively, intelligent techniques
are required to understand images.

Researchers have attempted to tackle the image understanding task by solving
either object recognition or semantic image segmentation. Object recognition aims
at classifying and localizing different objects present in the image. In the case of a
single object within the image, only the object label is assigned to the image without
localization. This is termed as object classification. Semantic image segmentation
aims to assign a semantic label to every single pixel contained in the image, but not
necessarily count the number of objects. In this thesis, we aim to solve both object
classification and semantic image segmentation tasks.

To best solve the image understanding task, one may construct a metric such as
Φ, that is applied to an image region x and the corresponding ground truth region
category x′, as shown:

D(x,x′) = ||Φ(x)−Φ(x′)|| (1.1)

where D(x,x′) is the distance between the representations. Smaller distance between
the region representation x and the ground truth region category x′ represents higher
similarity.

We discuss this in detail for the task of object recognition. In the ideal case, where
both objects (x, x′) appear the same, it is relatively easy to develop the representation

2 Introduction

Φ. For this simple case, the Euclidean distance measured by the trained classifier
between identical images is an ideal zero, as shown in Fig. 1.1.

Fig. 1.1 Illustration of the ideal case in which the distance measured by a trained
classifier between feature vectors extracted from both same images is zero. Black blocks
in the feature vector correspond to features from the constant background while red
blocks are features derived from the cat.

However, objects belonging to the same class can appear very different in complex
real-world images [40]. The variations introduced due to the position, orientation, and
scale of an object may change which can alter its appearance. The appearance can also
vary due to the lighting conditions or if the object undergoes any physical deformations.
Besides this, there can be different types of objects that represent a particular object
class which further can make it difficult to recognize an object [40]. One such example
is shown in Fig. 1.2, in which the airplanes have different decks and tails. This further
can limit the ability of the detector to recognize the object of interest accurately.

The appearance altering variations can co-occur in the real-world images as shown
in Fig. 1.3. The joint effect of these variations may result in a large distance between
the feature vectors of both objects. This will result in the classifier assigning different
class labels to both objects. An efficient image understanding system should be
invariant to these appearance altering transformations while being selective to the
aspects of the image that are important for discrimination. For example, an image
understanding system should extract features representative of the parts of the car

1.2 Image Understanding Systems 3

Fig. 1.2 Illustration presents the classifier which learns local and global regularities
from the training set. The figure depicts that the classifier fails to learn the whole
plane as a regularity due to the design variation in tail and deck of the planes.

(selective) irrespective of the position, orientation or scale (transformations) of the car.
The next section details several such systems.

1.2 Image Understanding Systems
Numerous Image Understanding systems have been proposed over the years that
capture the invariant and selective image representations to solve the individual
image understanding tasks of object recognition and semantic image segmentation.
These methods include architectures that: (i) encode handcrafted features extracted
from the input images into rich non-hierarchical [19, 32, 116, 118] and hierarchical
representations [3, 22, 27, 28, 86]; (ii) learn (end-to-end) feature hierarchies, directly
from the input data [24, 35, 36, 48, 107, 109]; (iii) make use of the ideas from both the
above-mentioned categories to develop Hybrid Networks that extract feature hierarchies
from hand-crafted features [31, 40].

Hand-crafted features such as SIFT [19], HOG [116] or ScatterNet [3, 26–28, 86]
represent the first class of architectures that incorporate the structural knowledge of
images to produce discriminative and invariant (translation, rotation or even scale)
representations. SIFT and HOG belong to the non-hierarchical class of architectures
while the ScatterNet is a multi-layer architecture. This class of methods are elementary
to design and cheap to evaluate but achieve only marginally good classification perfor-
mance on different benchmarks [117]. The single layer architectures achieve an object

4 Introduction

classification accuracy of around 70% [115] while the multi-layer ScatterNets perform
with roughly 80% [22] accuracy on Cifar-10 and Caltech-101 datasets. Semantic texton
forests were used to achieve a semantic segmentation accuracy of 67% on the MSRC
21 object class dataset [121].

End-to-end learned architectures represent the second category of networks which
can learn the hierarchy of invariant features directly from the input images. Many
such architectures have been proposed over the years including VGG [36], NIN [35],
ResNet [104, 107], LeNet [17], Deep Belief Networks [24], etc. These networks have
achieved the state-of-the-art performance on both object classification (95% [104]) and
semantic segmentation (85% [69]) on various datasets.

These models produce the state-of-the-art performance only for applications with
sizeable labeled training datasets and tend to overfit [97] on many other applications
where large datasets are not available. Also, their design and optimal configuration
are not well understood which it makes difficult to develop them. The design of
these networks requires expertise, and often a designer with limited experience may
produce a sizeable over-expressive network. The optimization of these large networks
involves the learning of a large number of redundant hyperparameters which can
lead to more optimal computationally efficient networks [145, 146]. However, the
optimization requires considerable computational resources and energy which can be
another challenge [110].

Hybrid models are the third class of networks that are formulated by combining
the concepts from both earlier explained techniques [19, 31, 39, 40, 117, 122]. These
models use the handcrafted descriptors extracted by the earlier layers to learn hierarchi-
cal features rapidly in a computationally efficient manner [31, 40]. These hierarchical
representations are then used by a Support Vector Machine (SVM) or a Conditional
Random Field (CRF) to perform the classification [40] or segmentation tasks [122]. The
architecture of these models is inspired by the different regions of the visual cortex [40]
which similarly learn hierarchical (from the primary visual cortex (V1) to inferior
temporal (IT)) invariant and discriminative representations [153, 154]. The primary
visual cortex (V1) learns [119, 155] sparse overcomplete representation of the visual
input, with receptive fields of neurons that are most responsive to low-level features
at different scales and orientations [147]. The handcrafted descriptors extracted by
the hybrid models in the earlier layers are similar low-level features. Similar to the
hierarchical features learned by the unsupervised learning section of the hybrid models,
the extrastriate visual areas such as V2 or V4 contains neurons that are tuned to
be selective for a multitude of complex shapes and are believed to be tuned in an

1.2 Image Understanding Systems 5

Fig. 1.3 Illustration of real-world scenario in which the distance measured by a trained
classifier between feature vectors extracted from the image (x1) and it’s altered version
(xf), is significant. The changes in position, orientation and scale can considerably
alter the object’s appearance. The variation in the lighting conditions and background
clutter can also change the object’s appearance. In order to present the effects of
the above-mentioned variations on object recognition, the original cat image (x1) (as
shown in Fig. 1.1) is translated (x2), rotated (x3), scaled (x4), deformed (x5) as well as
captured under, different illumination (x6) and complex background (x7). The effect
on the features corresponding to each variation is presented with a different color block
as follows: Magenta Blocks (x3): features extracted from the rotated object, Brown
Blocks (x4): features extracted from the rescaled object, Cyan Blocks (x5): features
extracted from the deformed parts of the object, Green Blocks (x6): features extracted
from the illuminated parts of the object, Yellow Blocks (x7): features extracted from
the background (i.e. Grass).

unsupervised manner as it is consistent with the physiological data [149–152]. Finally,
the neurons in inferior temporal (IT) are tuned to form semantic representations
corresponding to different object classes [120, 148]. This part of the visual cortex

6 Introduction

is believed to assign labels to the learned features. These models have produced a
promising performance on both object recognition (80% [19, 31, 41, 117]) and semantic
segmentation (75% [122]) tasks.

This dissertation proposes the ScatterNet Hybrid Deep Learning (SHDL) frame-
work that rapidly learns hierarchical features mainly from unlabelled data, in a compu-
tationally efficient manner. These features are similar to the representations encoded
by different regions of the visual cortex. The framework is composed of a hand-crafted
front-end, an unsupervised learning based middle-section, and a supervised back-end.
The handcrafted front-end is analogous to the primary visual cortex that extracts
low-level features at different scales and orientations [40, 119, 155]. The unsupervised
learning based middle-section learns hierarchical features similar to the extrastriate
visual areas of the visual cortex [149–152] while the supervised back-end assigns labels
to the hierarchical features same as the inferior temporal (IT) region of the visual
cortex [148]. The term ‘Hybrid’ is coined because the framework uses both unsupervised
as well as supervised learning. Each layer in the proposed framework is automatically
optimized to produce the desired computationally efficient architecture.

Two ScatterNet Hybrid Deep Learning (SHDL) networks have been constructed
using the ScatterNet hybrid framework. We proposed two hand-crafted front-ends
for the SHDL networks which extract invariant features from the input signals. Next,
the proposed front-ends are combined with two unsupervised learning modules to
learn hierarchical features. These hierarchical features were finally used either by a
Support Vector Machine (SVM) or a Conditional Random Field (CRF) to perform the
classification or segmentation tasks. The proposed front-ends have also been shown to
improve the performance and learning of current Deep Supervised Learning Networks
(VGG, NIN, ResNet) as shown in Chapter 5.

The SHDL networks derived from the proposed ScatterNet Hybrid framework have
the following attractive properties: (i) SHDL networks outperform the unsupervised and
semi-supervised architectures on object recognition and semantic image segmentation
tasks. The system also exceeds supervised deep networks on relatively small labeled
datasets but fails to outperform them on large datasets. This property can be beneficial
for applications where the amount of labeled data is limited. (ii) The SHDL network
can rapidly learn intricate structure from the unlabelled hand-crafted descriptors. The
speedy optimization of the reconstruction loss function for the unsupervised learning
mid-section module is obtained using structural priors or eigen-decomposition based
approximation. (iii) Each layer of the SHDL network is automatically designed as

1.3 Contributions 7

a specific optimization problem leading to a computationally efficient deep learning
architecture as compared to the more usual deep network architectures.

1.3 Contributions
The contributions made in this dissertation are mentioned below:

• SHDL Framework (chapter 3): This chapter proposes the ScatterNet Hybrid
Framework for Deep Learning (SHDL) which is inspired by the circuitry of the
visual cortex as detailed in the previous section. This framework is able to rapidly
learn hierarchical features from mainly unlabeled data in an computationally
efficient manner. These advantages make the proposed framework an attractive
choice over the standard deep learning architectures for a range of application
areas, where labeled data is difficult or expensive to generate.

• Hand-crafted front-end module (chapter 4): This chapter introduces two
hand-crafted scattering (shallow) networks that form the front-end of the Scatter-
Net Hybrid Deep Learning (SHDL) networks. These front-ends extract invariant
edge representations (due to the shallow architecture) that are densely spaced
over scale.

• Efficient learning of Deep Supervised Networks using the hand-crafted
front-end Module (chapter 5): The proposed hand-crafted front-end module
is used to accelerate the learning of different deep supervised convolutional
networks. Also, these networks are shown to improve the generalization of the
pruned deep convolutional networks for limited labeled datasets.

• SHDL Networks (chapter 6): This chapter introduces two ScatterNet Hybrid
Deep Learning (SHDL) Networks (generative and deterministic) to solve the
individual image understanding tasks of object recognition and semantic image
segmentation. These networks can rapidly learn the hierarchical features from
mostly unlabelled input signals and perform classification or segmentation with
only a few labeled examples. Both the networks are more computationally efficient
than other deep learning networks, making them a more desirable choice.

In order to avoid conflating the methods, we have presented each of these in isolation
in this dissertation. However, the techniques address different aspects of the SHDL
framework and complement each other.

8 Introduction

1.4 Thesis overview

Chapter 2 is on the prior work and briefly describes the relevant networks that
have been proposed over the years to solve the image understanding tasks of object
recognition and semantic image segmentation. These methods include the single layer
or multi-layer hand-crafted networks, end-to-end learned networks, and hybrid networks
formulated by borrowing ideas from the above two categories. The chapter presents
the features encoded by the methods from each class along with their performance on
both the tasks on various datasets.

Chapter 3 presents the proposed ScatterNet Hybrid Framework for Deep Learning
which is inspired by the circuitry of the visual cortex (as explained in Section 1.2).
This chapter details the different modules of the proposed framework and how they
relate to the various circuits of the visual cortex. The features encoded by each module
are also presented along with their advantages (rapid learning from unlabelled data in
a computationally efficient manner) over the conventional deep networks.

Chapter 4 presents two hand-crafted networks that form the front-end of the
ScatterNet Hybrid framework. These networks extract low-level representations at
different scales and orientations similar to the primary visual cortex (V1) [40, 119, 155].
This chapter introduces two variants of Mallat’s Scattering network [3] that extract
translation invariant low-level edge representations using the Dual-Tree Complex
Wavelet Transform (DTCWT) [15]. These representations are densely spaced over scale
as they are obtained from the multi-resolution signal derived from the input signal.
These variants have been shown to outperform Mallat’s Scattering network [3, 22, 27,
28, 86] on various classification tasks.

Chapter 5 proposes the use of hand-crafted front-end to improve the learning
and generalization of deep supervised networks. This chapter introduces the DTCWT
ScatterNet Convolutional Neural Network (DTSCNN) formed by replacing the first
convolutional, rectified linear unit (ReLu), and pooling layers of a Convolutional Neural
Network (CNN) with the proposed hand-crafted front-end. This formulation accelerates
the convergence of the deep supervised convolutional networks as it has fewer filter
weights to learn as compared to its corresponding CNN architecture. Besides, the
CNN layers can learn more complex patterns from the start of learning as it is not
necessary to wait for the first layer to learn edges because the ScatterNet already
extracts them. This is also shown to improve the generalization of the CNN for limited
labeled datasets.

Chapter 6: The handcrafted front-end module is shown to improve the learning
and generalization of the deep supervised networks, as shown in Chapter 5. Despite

1.4 Thesis overview 9

this, the training of deep networks is still slow and requires more than the desired
labeled training examples. This chapter proposes two ScatterNet Hybrid Deep Learning
(SHDL) Networks that are constructed from the proposed ScatterNet Hybrid framework.
These networks learn hierarchical representations rapidly from mainly unlabelled input
signals and few labeled examples to solve the individual image understanding tasks of
object recognition and semantic segmentation. The proposed SHDL networks are also
computationally efficient as opposed to other deep learning networks, making them a
more desirable choice.

Chapter 7: summarizes the contributions made in this dissertation, reviews the
results, and looks at research questions that arise from the work presented in this
dissertation. In particular, it shows the effectiveness of hybrid networks which extract
hierarchical features using computationally efficient modules that can be trained rapidly
utilizing mainly unlabelled and small labeled datasets. Proposals are made for future
research directions which are pertinent given our results.

Chapter 2

Literature Review

This chapter presents the relevant approaches that have been proposed in the past to
solve the image understanding tasks of object recognition and semantic segmentation.
These techniques are divided into three primary categories: (i) hand-crafted; (ii) end-
to-end learned, and; (iii) hybrid, networks. The networks for each category extract
features with different degree of invariance and discrimination using the elementary
operations of filtering, non-linearity, and pooling to achieve the image understanding
tasks. These operations are wrapped together as the feature extraction block which is
used by the architectures either once (shallow) or multiple times (deep).

The subsequent sections present the networks corresponding to each category along
with their performance on the image understanding tasks.

2.1 Handcrafted Architectures
This category of architectures use hand-encoded filters, non-linear modulus, and
pooling operators to extract invariant descriptors. Many such single-layer and multi-
layer networks have been proposed over the years including SIFT [19], HOG [116],
SURF [118] etc.

Scale-invariant feature transform or SIFT [19] is a single-layer hand-crafted network
that extracts a local feature descriptor from the important regions on the input image.
This descriptor is approximately invariant against rotation, scale, illumination changes,
etc. Speeded up robust feature (SURF) [118] is another local descriptor which is the
faster version of SIFT and can be more robust against certain image transformations.
The histogram of oriented gradients (HOG) [116] is another feature descriptor which is
similar to that of SIFT but differs in that it is computed on a dense grid of uniformly
spaced cells and uses overlapping local contrast normalization for improved accuracy.

12 Literature Review

In addition to the single-layer descriptors described above, there have been numerous
other descriptors that have been proposed.

More recently, multi-layer scattering networks were introduced by Mallat and his
colleagues [22, 27, 28, 86] which use a battery of complex wavelet filters, non-linear
modules, and pooling operations to extract invariant descriptors. The information
lost by the averaging is recovered by computing the next layer of invariant coefficients,
with the same wavelet convolutions, non-linear modulus, and poolings operations. A
wavelet scattering is thus a multi-layer convolutional network which cascades wavelet
transforms and modulus operators.

Since SIFT [19] (single layer) is the most popular and ScatterNet [86] (multi-layer)
is the most recent architecture, both of them are explained in detail below.

2.1.1 Scale-Invariant Feature Transform (SIFT)

Scale-invariant feature transform or SIFT [19] extracts local invariant descriptor by
first locating the key-points on the image. These potential interest points are invariant
to scale changes as they are identified by scanning the image over a range of scales.
This is implemented efficiently by constructing a Gaussian pyramid and searching for
local peaks (termed key points) in a series of difference-of-Gaussian (DoG) images.
Candidate keypoints are localized to sub-pixel accuracy and eliminated if found to
be unstable. Next, a neighborhood is selected around the key-point which is divided
into blocks of a certain size. For each sub-block, eight bin orientation histograms
are created which are further represented as a vector to form the descriptor. Several
measures are taken to achieve robustness against illumination changes, rotation, etc.

SIFT keypoint detector

A SIFT key-point is a circular image region, described by a geometric frame of four
parameters: the key-point center coordinates x and y, it’s scale (the radius of the
region), and its orientation (an angle expressed in radians). The SIFT detector searches
for "blobs" key-points at multiple scales and positions that are invariant (or, more
accurately, covariant) to translation, rotations, and rescaling of the image. The scale
space is just a collection of images obtained by progressively smoothing the input
image, which is analogous to gradually reducing the image resolution. Conventionally,
the smoothing level is called scale. Increasing the scale by an octave means doubling
the size of the smoothing kernel, whose effect is roughly equivalent to reducing the
image resolution by half.

2.1 Handcrafted Architectures 13

Fig. 2.1 Illustration of: a) Difference-of-Gaussians (DoG) procedure used to generate
approximations to the Laplacian-of-Gaussian at multiple scales and octaves. b) Key-
points detected from an image at multiple locations and scales using the SIFT keypoint
detector. Adapted from [19].

To search for image blobs at multiple scales, the SIFT detector construct a scale
space as shown in Fig. 2.1(a). Blobs are detected as local extrema of the Difference of
Gaussians (DoG) scale space, obtained by subtracting successive scales of the Gaussian
scale space (as shown in Fig. 2.1(a)). Once extracted, local extrema are obtained, they
are filtered to eliminate low-contrast responses, or responses close to edges and the
orientation(s) are assigned, as explained next. The keypoint detector, applied to an
image, detects keypoints at different locations and scales as shown in Fig. 2.1(b).

SIFT Descriptor

The final keypoint descriptor stage of the SIFT algorithm builds a representation for
each key point based on a patch of pixels in its local neighborhood. The goal is to create
a descriptor for the patch that is compact, highly distinctive and yet robust to changes
in illumination and camera viewpoint. The SIFT keypoint descriptor is generated by
sampling the magnitudes and orientations of the image gradient in the patch around
the keypoint, and building smoothed orientation histograms to capture the essential
aspects of the patch as shown in Fig. 2.2. The SIFT descriptor is suboptimal for
the object detection task due to its inability to accurately capture the shape of the
objects at the boundaries. The descriptor is created in a neighborhood around the
detected keypoint as explained above. The descriptor represents the properties of the
object well if the keypoint is within the object but for the keypoints which are on
the boundary, the descriptor is constructed by including parts of the object as well as
the background. Since SIFT fails to capture the boundary feature of the objects, this
limits the performance of the descriptor.

14 Literature Review

Fig. 2.2 The example illustrates the SIFT descriptor design. Left: Gradients within
each of the sub-arrays are pre-rotated by the dominant orientation of the keypoint and
weighted by a 2-D Gaussian weighting function (represented by the overlaid circle).
A 16 × 16 array of samples is used to generate 16 8-bin histograms. Reproduced
from [19].

2.1.2 Scatter Net

The Scattering network or ScatterNet, introduced by S. Mallat and Bruna in [3, 86], is
a multilayer handcrafted convolutional networks that build locally invariant, stable,
and informative signal representations by cascading wavelet modulus decompositions
followed by a pointwise non-linearity and local averaging. Wavelets are stable to
deformations and provide sparse image representations which makes them a good
filtering choice [20].

The scattering network extracts the multi-layer translation invariant descriptors
from the input signal x with a wavelet transform. Two-dimensional directional wavelets
are obtained by dilating and rotating a single band-pass filter ψ [20]. Multiscale
directional wavelet filters are defined for any j ∈ Z and rotation r ∈G by

ψλ(t) = 2−jψ(2−jrt) where λ= (2−j , r)
and ψ(t) = ψa(t)+ ιψb(t) t= (t1, t2) (2.1)

The real and imaginary parts of the complex Morlet wavelets at multiple scales and
orientations is shown in Fig. 2.3. A wavelet transform filters signal x using a family of

2.1 Handcrafted Architectures 15

Fig. 2.3 Illustration of the real and imaginary parts of the complex Morlet wavelets at
multiple scales and orientations.

wavelets ψλ1(t) (as shown in Fig. 2.4(a)) formulated as:

x?ψλ1(t) = x?ψa
λ1(t)+ ιx?ψb

λ1(t) (2.2)

A wavelet transform response commutes with translations and is therefore not transla-
tion invariant. To build a translation invariant representation, the wavelet coefficient
is first pooled using L2 non-linearity (as shown in Fig. 2.4(b)) as shown below:

|x?ψλ1(t)| =
√

|x?ψa
λ1

(t)|2 + |x?ψb
λ1

(t)|2 (2.3)

Next, a local average is computed on the pooled output |x?ψλ1|?φ(t) to get the desired
locally translation invariant representation as shown in Fig. 2.4(c). The averaging
by ψ2J at the output is an averaging operator which aggregates coefficients to build
an invariant. It has been argued [2] that an average pooling results in the loss of
higher frequency components. The high frequencies lost by the averaging are recovered
as wavelet coefficients in the next layers, which explains the importance of using a
multilayer network structure. As a result, it only loses the phase of these wavelet
coefficients. This phase may however be recovered from the modulus thanks to the
wavelet transform redundancy. These higher frequencies can be recovered by calculating
the wavelet coefficients

{
|x?ψλ1|?ψλ2(u)

}
λ2

of |x?ψλ1|, as shown in Fig. 2.4(d). The
recovered frequencies are converted into a translation invariant representation by again
taking a local average ||x?ψλ1 | ?ψλ2 | ?φ(t) ∨λ1,λ2. Their L1 norms define a much
larger family of invariants, for all λ1 and λ2.

For classification, it is often better to compute localized descriptors which are
invariant to translations smaller than a predefined scale 2J , while keeping the spatial
variability at scales larger than 2J . A scattering transform computes higher-order

16 Literature Review

Fig. 2.4 Illustration presents a) signal x convoluted with family of wavelets ψλ1(t) b)
The regular envelop |x?ψλ1(t)| of the filtered response is obtained using pooling with
L2 non-linearity c) A wavelet transform response commutes with translations, and is
therefore not translation invariant. To build a translation invariant representation,
the pooled response |x ?ψλ1(t)| is averaged as |x ? λ1| ? φ(t) to the support of φ d)
Average pooling results in the loss of non-zero frequency components. These non-zero
frequencies can be recovered by calculating the wavelet coefficients

{
|x?ψλ1|?ψλ2(u)

}
λ2

of |x?ψλ1 |.

coefficients by further iterating on wavelet transforms and modulus operators. At a
maximum scale 2J , wavelet coefficients are computed at frequencies 2j ≥ 2−J , and lower
frequencies are filtered by ψ2J (u) = 2−J/2ψ(2−Ju). The scattering coefficients SJx for
the network at different scales and orientation for multiple layers can be obtained using
the following:

SJx=



x?φ2J

|x?ψλ1|?φ2J

||x?ψλ1|?ψλ2|?φ2J

|||x?ψλ1 |?ψλ2 |?ψλ3 |?φ2J

...


λ1,λ2,λ3,...

(2.4)

As opposed to most convolution networks, a scattering network outputs coefficients
SJ [p]x(u) at all layers m≤mmax, and not just at the last layer mmax, as shown in Fig.
2.5. In the figure, the signal x is represented with f .

Trans-Roto-Scale Invariant ScatterNet

Sifre and Mallat [26–28] extended the scattering network to incorporate rotation
and scale invariant in addition to translation invariance. The proposed network first
processes the position (u), rotation (θ) and scale(j) variables separately to build first
a representation that is invariant to translations but covariant to rotations and scale.

2.1 Handcrafted Architectures 17

Fig. 2.5 A scattering propagator UJ applied to f computes each U
[
λ1
]
f = |f ?ψλ1|

and outputs SJ

[
�
]
f = f ?φ2J . Applying UJ to U

[
λ1
]
f computes all U

[
λ1,λ2

]
f and

outputs SJ

[
λ1
]
f = U

[
λ1
]
?φ2J . Applying UJ iteratively to U

[
p
]
f outputs SJ

[
p
]
f =

U
[
p
]
?φ2J . Reproduced from [86].

This representation is next appended on the rotations and scale dimensions to build
invariance towards them.

The proposed scattering network that extracts descriptors that are invariant to
translation, rotation and scale is detailed below. The wavelet-modulus operator applied
on the signal x to achieve translation invariance (as explained in Section 2.1.2) is given
by:

W̃1x= (x?φJ , |x?ψθ,j |θ,j) = (S0x,U1x) (2.5)

The locally invariant part of U1 is computed with an averaging over the spatial and
angle variables. It is implemented for each j1 fixed, with a roto-translation convolution
of Y (h) = U1x(h,j1) along the h = (u′, θ′) variable, with an averaging kernel ΦJ(h).
For p1 = (g1, j1) and g1 = (u,θ1), this is written as:

S1x(p1) = U1x(., j1)?ΦJ(g1) (2.6)

We choose ΦJ (u′, θ′) = (2π)−1Φj(u′) to perform an averaging over all angles θ and over
a spatial domain proportional to 2J .

18 Literature Review

The high frequencies lost by this averaging are recovered through roto-translation
convolutions with separable wavelets. Roto-translation wavelets are computed with
three separable products. Complex quadrature phase spatial wavelets ψθ2,j2(u) or
averaging filters ΦJ(u) are multiplied by complex 2π periodic wavelet ψ̄k(θ) or by
φ̄(θ) = (2π)−1

Ψθ2,j2,k2(u,θ) = ψθ2,j2(u)ψ̄k2(u) (2.7)

Ψ0,J,k2(u,θ) = ΦJ(u)ψ̄k2(u) (2.8)

Ψθ2,j2,0(u,θ) = ψθ2,j2(u)φ̄(θ) (2.9)

Finally, roto-translation wavelets for second layer are computed as W̃2U1x= (S1x,U2x)
where S1x is defined in (2.8) and

U2x(p2) = |U1x(., j1)?Ψθ2,j2,k2(g1)| (2.10)

with g1 = (u,θ1), p2 = (g1,p2), and p2 = (j1, θ2 − θ1, j2,k2). Since U2x(p2) is computed
with a roto-translation convolution, it remains covariant to the action of the roto-
translation group. Fast computations of roto-translation convolutions with separable
wavelet filters Ψθ2,j2,k2(u,θ) = ψθ2,j2(u)ψ̄k2(θ) are performed by factorizing

Y ?Ψθ2,j2,k2(u,θ) =
∑
θ′

(
∑
u′
Y (u′, θ′)ψθ2,j2(r−θ′(u−u′)))ψ̄k2(θ− θ′) (2.11)

It is thus computed with a two-dimensional convolution of Y (u,θ′) with ψθ2,j2(rθu)
along u = (u1,u2), followed by a convolution of the output and a one-dimensional
circular convolution of the result with k2 along θ. Fig. 2.6 illustrates this convolution
which rotates the spatial support ψθ2,j2(u) by θ while multiplying its amplitude by
ψ̄k2(u).

Applying W̃3 = W̃2 to U2x computes second order scattering coefficients as a
convolution of Y (g) = U2x(g, p̄2) with ΦJ(g), for p̄2 fixed is given as:

S2x(p2) = U1x(., p̄2)?ΦJ(g) (2.12)

The output roto-translation of a second order scattering representation is a vector of
coefficients:

Sx= (S0x(u),S1x(p1),S2x(p2)) (2.13)

2.1 Handcrafted Architectures 19

Fig. 2.6 Separable Scattering architecture. First spatial scattering layers in grey,
second scattering layers in black. Spatial wavelet-modulus operators (grey arrows) are
averaged (doted grey arrows), as in [86]. Outputs of the first scattering are reorganized
in different orbits (large black circles) of the action of the rotation on the representation.
The second cascade of wavelet-modulus operators along the orbits (black arrows) splits
the angular information in several paths that are averaged (doted black arrows) along
the rotation to achieve rotation invariance. Output nodes are colored concerning the
order m,

◦
m of their corresponding paths. Reproduced from [26].

with p1 = (u,θ1, j1) and p2 = (u,θ1, j1, θ2, j2,k2). The scale invariance is similarly
obtained by filtering jointly across the position (u), rotation (θ) and scale(j) variables
as detailed in [28].

This class of methods are elementary to design and cheap to evaluate but achieve
only marginally good performance on different benchmarks. SIFT is the best single
layer local descriptor which only reached a classification accuracy of approximately
73% and 65% on Caltech-101 and CIFAR-10 respectively [115] due to the reasons
detailed in Section 2.1.1. Multi-layer ScatterNets [22] descriptors have performed much
better than SIFT and even unsupervised as well as semi-supervised learning techniques,
achieving the classification accuracy of roughly 79% and 82% on Caltech-101 and
CIFAR-10 respectively. An ensemble of hand-crafted features was used with a random

20 Literature Review

Fig. 2.7 Illustration of Left: An earlier 3-layer Neural Network with two hidden
layers. Right: A convolutional neural network architecture arranges its neurons in
three dimensions (width, height, depth), as visualized in one of the layers. In this
architecture, the weights of the filters are locally connected within a layer and shared
between different locations, instead of full connectivity. Adapted from [18].

forest to produce a semantic segmentation accuracy of 67% on the MSRC 21 object
class dataset [121].

The next section presents the end-to-end learned networks which perform consider-
ably better as compared to the hand-crafted systems.

2.2 End-to-end Learned Networks

This class of networks has made significant advances towards the tasks of object
recognition and semantic segmentation. These networks learn invariant features by
training these network using backpropagation, in an end-to-end manner using supervised
or unsupervised learning directly from the input images. The features learned in the
earlier layers of these networks are responsive to the presence of edges at particular
orientations and scales. The middle layers usually detect motifs by spotting specific
arrangements of edges, regardless of small variations in the edge positions. The later
layer may assemble motifs into larger combinations that correspond to parts of familiar
objects, and subsequent layers would detect objects as combinations of these parts.

Several such supervised and unsupervised architectures have been proposed over
the years. The earlier architectures connected the neurons in a layer to every other
neuron in the subsequent layer. The optimization of these connection weights was slow
and required sizeable labelled training examples due to the large number of connections.
As an alternative, convolutional architectures were introduced that exploited weight-
sharing to accelerate the network training by significantly reducing the number of
free parameters to being learned. These constraints on the model also enabled the

2.2 End-to-end Learned Networks 21

convolutional networks to achieve better generalization. An example of the earlier and
the convolutional networks is shown in Fig. 2.7.

An exhaustive list of every new deep learning architecture would be infeasible, and
outside the scope of this dissertation. However, in the next sections, we have made an
effort to cover the elementary and modern convolutional architectures which have both
inspired our work and formed the basis of many of our results.

2.2.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is a subclass of neural networks introduced by
Yann LeCun et al. [17] that cascades filter banks with pooling and nonlinearities. These
filters are learned for each specific task using the backpropagation algorithm with the
gradient descent strategy. The network is designed to exploit spatially-local correlations
in images (weight sharing) which requires a much lower number of parameters to be
learned.

These networks learn the desired features from the input image by first performing
convolutions that compute the output of neurons connected to local regions in the
input images. During the forward pass, the dot product between the entries of the
filter and the input is computed. Intuitively, the network learns filters that activate for
a specific type of feature at some spatial position in the input. An activation function
thresholding at zero is applied in the Rectified Linear Units (ReLu) layer to increase
the nonlinear properties of the decision function. Next, the pooling layer performs a
max operation along the spatial dimensions to reduce translation dependence. Finally,
one or more fully connected layers compute the class scores resulting in a vector whose
length corresponds to some classes used. This type of layer is different from previous
layers in the sense that this layer is connected to all the neurons in the last layer.

A Convolutional Neural Network (CNN) architecture constructed using alternating
convolutional and max-pooling layers is shown in Fig. 2.8. The individual layers of the
network are described below.

• Input Layer: The input consists of images that are arranged in 3 dimensions:
width, height, depth (note that the word depth here refers to the third dimension
of an activation volume, not to the depth of a full Neural Network, which can
relate to the total number of layers in a network.) For example, the input
images in CIFAR-10 [16] are an input volume of activations, and the volume has
dimensions 32x32x3 (width, height, depth respectively). During the training, a
batch of images is often given as input to the network. In that case, the input

22 Literature Review

Fig. 2.8 Convolutional Neural Network (CNN) architecture constructed using alternat-
ing convolutional and max-pooling layers. Adapted from [21].

would be a 4D array where the fourth dimension will correspond to the number
of images in the batch.

• Filtering (Convolutional Layer): The end-to-end trained architectures learn
the weights of the filters to extract hierarchical (low, mid and high, level) features.
As explained earlier, the earlier layers learn low-level functions while the middle
and layer layers learn more complex features.

Each layer of these networks computes the output of neurons that are connected to
local regions in the input, by computing a dot product between their weights and
the area they are connected to in the input volume. Therefore, the convolutional
network can be thought of as the composition of the number of functions.

f(x) = fL(f2(f1(x;w1);w2),wL) (2.14)

Each function fl takes as input, data xl and a parameter vector, wl and produces
as output a data xl+1. While the type and sequence of functions is usually
handcrafted, the parameters w = (w1, ...,wL) are learned from data. Each xi is
a M ×N ×K real array of M ×N pixels and K channels per pixel. Hence, the
first two dimensions of the array span space, while the last one spans channels.
Note that only the input x = x1 of the network is an actual image, while the
remaining data are intermediate feature maps.

Few filters learned by the first layer of the network detailed in Fig. 2.8, on cifar-10
dataset [16], are shown in Fig. 2.9. An example image (class: frog) from the
dataset is chosen to show the activations obtained after applying few of the first
layer filters on that particular image.

2.2 End-to-end Learned Networks 23

Fig. 2.9 Illustration shows a set of filters learned by the first layer of the network on
cifar-10 dataset [16]. An example image (class: frog) from the dataset is chosen to show
the activations obtained after applying few of the first layer filters on that particular
image.

• Activation functions (Non Linearity Layer): Activation functions are a
critical component of the deep networks. They introduce non-linearity in the
model that allows it to learn complex decision boundaries. Several activation
functions have been proposed in the past including RELU [126], P-RELU [127],
etc. These functions are designed to overcome the problem of exploding/vanishing
gradients that is commonly encountered with traditional functions such as the
sigmoid [128]. This function is applied to increase the nonlinear properties of the
output obtained from the convolution layer.

The simplest non-linearity is obtained by following a linear filter by a non-linear
gating function, applied identically to each component (i.e. point-wise) of a
feature map. This is shown for the Rectified Linear Unit (ReLU), formulated as:

yijk =max
{
0,xijk

}
(2.15)

• Pooling Layer: Pooling is applied on the feature representation extracted
using filtering to introduce translation invariance. This is achieved by first
partitioning the feature maps into non-overlapping rectangular regions. Next,
every rectangular area is replaced by the pooled value using one of the several
pooling techniques [123–125] that have been proposed over the years. In addition
to pooling within each feature map, the same operation can be applied to feature
maps of different orientation and scale to achieve rotation and scale invariance
respectively. An example of pooling performed within and across feature maps is
shown in Fig. 2.10.

The max-pooling operator is given by:

yijk =max
{
yi′j′k : i≤ i′ < i+p,j ≤ j′ < j+p

}
(2.16)

24 Literature Review

Fig. 2.10 Illustration of pooling operation performed (top) within a feature map is
presented. The max and averaging pooling produce the resultant translation invariant
feature map, as shown on the top right. Next, pooling across feature maps at different
orientations is presented (below). An example of the rotation invariance achieved by
this cross-channel pooling is shown (lower left) by pooling a mid-level feature captured
at different orientations.

This operation also reduces the computation load for later layers as the spatial
size of the representations is reduced.

• Normalization Layer: Another important CNN building block is channel-wise
normalization [96, 144]. This operator normalizes the vector of feature channels
at each spatial location. The normalization operator is given as:

yijk = xijk

(κ+α
∑

k∈G(k′)x
2
ijk)β

(2.17)

where y is the output; κ, α, β are normalization parameters, G is a group of
consecutive feature channels in the input map xijk. This normalization layer
helps to ignore the effects of illumination.

Normalization can also be produced over a batch of images, termed as the batch
normalization. Ioffe and Szegedy [129] proposed that batch normalization can also
reduce the impacts of earlier layers by keeping the mean and variance fixed, which
makes the layers independent of each other, finally producing faster convergence.

2.2 End-to-end Learned Networks 25

Fig. 2.11 Illustration of Top: Image representations at low (edges), mid (motif) and
high (abstract shape) level learned by the filters during training on car class in the
ImageNet dataset [9]. Below: The trained Convolutional Neural Network is applied to
an input image of the car. The original volume stores the raw image pixels and the
last volume stores the class scores. Each volume of activations along the processing
path is shown as a column. Since it’s difficult to visualize 3D volumes, we lay out each
volume’s slices in rows. The last layer volume holds the scores for each class, but here
we only visualize the sorted top 5 scores and print the labels of each one. Adapted
from [18].

• Fully-connected Layer: Finally, after several convolutional, non-linearity,
and pooling layers, the high-level reasoning in the convolutional network is
performed using the fully connected layers. Neurons in a fully connected layer
have connections to all activations in the previous layer, as seen in regular neural
networks. Their activations can hence be computed with a matrix multiplication
followed by a bias offset.

Example of filter weights corresponding to different layers of a convolutional neural
network trained using back-propagation (see Appendix A) on the ImageNet dataset [9]
for the car class are shown in Fig. 2.11.

26 Literature Review

Fig. 2.12 An illustration of the architecture of our CNN, explicitly showing the
delineation of responsibilities between the two GPUs. One GPU runs the layer-
parts at the top of the figure while the other runs the layer-parts at the bottom.
The GPUs communicate only at specific layers. The network’s input is 150, 528-
dimensional, and the number of neurons in the network’s remaining layers is given by
253,440–186,624–64,896–64,896–43,264–4096–4096–1000. Adapted from [96].

The next sections present the modern architectures which have achieved the state-
of-the-art performance in different tasks.

2.2.2 AlexNet

Training DNNs, that is neural networks with many (i.e., two or more) hidden layers,
had proven difficult due to the high computational complexity, and the so-called
‘vanishing gradient’ problem [128]. Krizhevsky et al. [132] showed that a deep CNN
(the specific architecture since referred to as AlexNet) trained on a very large dataset [9],
with the appropriate initialization [130], weight decay ReLU activation functions [131]
and dropout [132] could beat state-of-the-art methods on large scale object class
recognition methods, based on hand-crafted features, by a large margin. This single
paper introduced or motivated many of the recent advances in training neural networks
such as Visual Geometry Group (VGG) [36], GoogLeNet [108], Residual Network
(ResNet) [107], etc.

AlexNet notably used training-time and test-time augmentation to achieve its state-
of-the-art accuracy. During training, random 224 × 224 crops of a 256 × 256 image
are used, along with random mirroring of these crops. Also relighting augmentation is
used, where the PCA component’s overall RGB pixels in the image are used to perturb
the “brightness” of the image and give some robustness to photometric variations in the
test images. At test time “10× oversampling” is used, that is for each 256 × 256 test
image, and its mirrored image, four corners, and one center crop are pushed through

2.2 End-to-end Learned Networks 27

Fig. 2.13 Introduced in the Network in Network (NIN) architecture, an LDE consists
of learning a 1 × 1 convolutional layer after a normal convolutional layer. The
pairing of 1×1 filters and a non-linearity (i.e., ReLU) can effectively learn a non-
linear transformation into a diferent space. If c3 <c2, then a transformation into
a lower-dimensional space is learned as a more compact embedding of the learned
representation. Adapted from [138].

the network, and the prediction is simply the average over these ten crops. AlexNet
produced the Top-5 classification error of 15.4% on the ImageNet dataset.

AlexNet uses two filter groups throughout most of the layers of the model to split
computation and model parameters across two GPUs, the motivation being that at
the time GPUs did not have enough memory to fit such a large model. The authors
observed that the filters on each GPU appeared to specialize in learning fundamentally
different features regardless of initialization [132]. This exciting observation has mostly
been ignored in subsequent networks where GPU memory has increased enough that
such a split of the network is not require. The architecture of AlexNet is presented in
Fig. 2.12.

2.2.3 Network in Network (NIN)

Lin et al. introduced NIN (Network in Network) [35], in which the main contribution
was the use of so-called ‘micro-networks,’ consisting of increased non-linearity between
convolutions using 1×1 convolutions. The authors claimed the extra non-linearities
allowed the network to capture more complex functions. These 1×1 convolutions,
illustrated in Fig. 2.13, have since been referred to as Low-Dimensional Embeddings
(LDE). If the number of 1×1 filters is lower than the number of regular convolutional
filters, then the 1×1 layer learns a non-linear transformation of the input feature
map into a smaller space, i.e., a reduction in the number of filters by a mapping of
a high-dimensional feature map onto a lower-dimensional feature map. This reduces

28 Literature Review

Fig. 2.14 The illustration presents the architecture of the Visual Geometry Group
(VGG) used to perform classifcation on the 1000 class ImageNet dataset. Reproduced
from [143].

the computation and parameters of convolutional layers significantly, while potentially
learning a more compact and efficient representation.

2.2.4 Visual Geometry Group (VGG)

Simonyan and Zisserman of the Visual Geometry Group (VGG) [36] at Oxford proposed
the VGG network [36] which is a 16 or 19 layer network. VGG is an evolution of the
AlexNet models, with the same number of max-pooling layers. However, this network
uses very small convolutional filters (3×3) in the convolutional layers with numerous
convolutional layers between pooling, instead of the relatively large single-layers of
convolutional filters in AlexNet (7×7). Also, VGG uses small non-overlapping max-
pooling (2×2), and the fully convolutional trick introduced by Sermanet et al. [133]. In
the fully convolutional trick, the fully connected layers in a stage are transformed into
convolutional layers which makes it possible to efficiently run the CNN on images of
any size. VGG also uses extensive training augmentation, extending the augmentation
used in AlexNet [96] by adding scale augmentation, where crops are taken from images
of different rescaled sizes. The architecture of the VGG network is shown in Fig. 2.14.

2.2 End-to-end Learned Networks 29

Fig. 2.15 Residual networks. (a) A convolutional network, where the mapping between
the final two layers is F (x), (b) learning an additional layer with the mapping H(x),
and (c) learning an additional residual layer with the mapping H(x) +x. Adapted
from [138].

2.2.5 Residual Networks

He et al. [107] introduced residual networks, which provide an important insight on
a problem with the training of very deep networks. While deeper networks have
been found to improve generalization, especially with large datasets; at a sufficiently
large depth training becomes difficult, even with batch normalization and the correct
initialization, and generalization begins to level off, or even decline.

The important insight of He et al. [107] into this problem can be summarized in Fig.
2.15. Having trained a deep network with good generalization (i.e., Fig. 2.15(a)), with
N layers, a training loss of L1 is observed. On adding a single-layer to the otherwise
identical deep network architecture (i.e., Fig. 2.15(b)), and re-training from random
initialization, the new training loss of the network with N + 1 layers is found to be
L2 > L1, i.e., the training loss has increased. From an optimization standpoint, it is
not clear why this should be so. We can observe that there is a trivial set of parameters
defining a transformation that will maintain the training loss of the shallower network,
i.e., L2 = L1 that is the identity transformation H(x) = x.

He et al. [107] proposed that to aid the optimization, a residual connection (as
in Fig. 2.15(c)) is added to the convolutional layers, allowing the trivial identity
solution to be easily learned. This residual connection can be thought of as a shortcut,

30 Literature Review

bypassing the previous layer. Assuming our desired, but difficult to optimize, mapping
from one layer to the next is H(x), the residual function learned is simply:

H(x)+x (2.18)

In practice, these residual layers greatly help the training of very deep networks and
have pushed state-of-the-art accuracy in many datasets. All current state-of-the-art
models for image classification use residual layers.

This class of architectures achieved the state-of-the-art performance for both the
object recognition [107] and semantic segmentation [192] tasks (in 2016). However,
due to the limited space, the performance of these networks is only discussed for the
ImageNet object recognition task.

AlexNet [96] is the pioneering deep convolutional network that won the ImageNet
(ILSVRC) competition in 2012 with a TOP-5 test accuracy of 84.6% while the closest
competitor, which made use of traditional techniques instead of deep architectures,
achieved a 73.8% accuracy in the same challenge. VGG [36] is a CNN model that was
introduced by the Visual Geometry Group (VGG) from the University of Oxford. This
model is composed of 16 layers and achieved TOP-5 test accuracy of 92.7% on the
ImageNet competition. Finally, Microsoft introduced the ResNet [107] architecture that
is composed of 152 layers. This network presented the residual blocks which address
the problem of training a deep architecture by introducing identity skip connections so
that the layers can copy their inputs to the next layer. This network defeated all the
other networks in the ImageNet competition with an accuracy of 96.4% in 2016.

2.2.6 Restricted Boltzmann Machine

Restricted Boltzmann Machine or RBM [24] is a generative stochastic artificial neural
network that is used to learn a probability distribution over the input images. These
RBMs can be stacked together to learn hierarchical features in an unsupervised manner.

The RBM model the probability distributions on high-dimensional binary vectors
v ∈ {0,1}D that can model distributions of exciting features in the training data using
symmetrically connected hidden stochastic binary units h ∈ {0,1}H , as shown in Fig.
2.16(a). The hidden units act as latent variables (features) that allow the Boltzmann
machine to model distributions over visible state vectors that cannot be modeled by
direct pairwise interactions between the visible units. The input vector layer v is
connected to the hidden layer h using weights w as shown in Fig. 2.16(a). The aim of

2.2 End-to-end Learned Networks 31

Fig. 2.16 Illustration of: a) The graphical model of Restricted Boltzmann as a fully-
connected bipartite graph. b) The contractive algorithm used to train an RBM with
three visible units and two hidden units. c) Visualization of the second layer bases
(filters) learned from MNIST dataset [17].

the algorithm is to learn the optimal weights w that can regenerate the training data
vectors with the highest probability.

The binary output zi of a hidden unit i is given by the sum of its own bias, bi , and
the weights on connections coming from other active units:

zi = bi +
∑

j

sjwij (2.19)

where wij is the weight on the connection between i and j , and sj is 1 if unit j is on
and 0 otherwise. Unit i then turns on with a probability given by the logistic function:

prob(si = 1) = 1
1+ e−zi

(2.20)

The network eventually reaches a Boltzmann distribution when updated sequentially in
any order that does not depend on their total inputs. The probability of a state vector,
v, is determined solely by the "energy" of that state vector relative to the energies of
all possible binary state vectors:

P (v;w) = e−E(v;w)∑
u e

−E(u;w) (2.21)

32 Literature Review

Given a training set of state vectors (the data), the aim is to find weights and biases
that define a Boltzmann distribution in which the training vectors have high probability.
This is done by minimizing the energy of the model given as:

E(v,h;w) = −vᵀwh− cᵀv− bᵀh (2.22)

By differentiating Eq. 2.22 and using the fact that ∂E(v)
∂wij

= −sv
i s

v
j it can be shown that

〈
∂logP (v)
∂wij

〉
data

= 〈sisi〉data −〈sisj〉model (2.23)

where 〈.〉data is an expected value in the data distribution and 〈.〉model is an expected
value when the Boltzmann machine is sampling state vectors from its equilibrium
distribution at a temperature of 1. Exact maximum likelihood learning in this model
is intractable because the exact computation of both data-dependent expectations and
the model’s expectations takes a time that is exponential in the number of hidden
terms. The expectations are computed using Contractive Divergence that uses Gibbs
sampling to approximate both expectations. For each iteration, a separate Markov
chain is run for each training data vector to approximate 〈sisj〉data and a separate
Markov chain is run to approximate 〈sisj〉model as shown in Fig. 2.16(b). The wij

parameters are updated using.

∆wij = α

(
〈sisj〉data −〈sisj〉model

)
(2.24)

Wnew
ij =Wij +∆wij (2.25)

while the learning rule for the bias, bi, is the same as Eq. 2.25, but with sj omitted.
An example of weights learned by performing training for 15 iterations on the MNIST
dataset [17] is shown in Fig. 2.16(c).

The unsupervised learning systems proposed over the years to solve the image
classification task on the ImageNet dataset have only attained a marginal accuracy of
around 65% [142]. However, the ability to learn hierachies features by using purely
unsupervised examples is of great interest to researchers due to the limited availbility
of large labelled datasets for many applications.

The next section presents the hybrid networks that are constructed by borrowing
ideas from the hand-crafted, end-to-end supervised and unsupervised categories.

2.3 Hybrid Architectures 33

2.3 Hybrid Architectures

Hybrid networks are single or multi layer architectures that combine the ideas from
both the above-explained approaches to obtain the low-level features using hand-crafted
filters while learning the filters at the later layers to obtain more complex features.
Many hybrid networks have been proposed in the past including the Bag of Features [33],
HMAX model [40], hierarchical LDA [39], deep sparse coding [31], etc.

Bag of Words (BoW) [33] represent the first class of single layer architectures that
encode handcrafted bag-of-visual-words (BOV) descriptors into rich feature represen-
tations using unsupervised coding and pooling [32]. The pipeline was improved by
encoding the local descriptor patches by a set of visual codewords with sparse coding
with a linear SPM kernel [117]. Hierarchical max (HMAX) [40] are the multi-layer
hybrid networks that use an RBF kernel to learn a single layer of high-level features
from descriptors captured with a battery of Gabor filters. He et al. [31] learned three
layers of sparse hierarchical features from SIFT descriptors using unsupervised learn-
ing. Sivic et al. [39], discovered object class hierarchies from visual codewords using
hierarchical LDA.

These models have several advantages over the hand-crafted and end-to-end learned
networks. The hybrid networks can learn useful hierarchical features using mainly
unlabelled data. Also, each layer of these models can be posed as an optimization
problem resulting in computationally efficient architectures [31]. This can be very
useful for applications with limited labelled training examples and for areas where
abundant computational resources are not available.

A few architectures from this category that extracts single layer (Bag of features
model [8]) and multi-layer hierarchical (DeepSC network [31] and HMAX network [40])
features are detailed below.

2.3.1 Bag of Features

Bag of features (BoF) model [8] has been a popular model that is frequently used
for object recognition. The BOF is extracted from an image first by selecting two-
dimensional interest points using the Harris or SIFT key point detector. After feature
detection, each image is abstracted by several local patches. Next, SIFT descriptor is
extracted for each key point due to its ability to handle the intensity, rotation, scale and
affine variations to some extent. The final step for the BoF model is to convert vector
represented patches to ’codewords’, which also produces a ’codebook’. A codeword
can be considered as a representative of several similar patches. One simple method is

34 Literature Review

Fig. 2.17 Illustration of different steps involved in the bag of features model. Step 1:
The features are extracted from 2-D image patches. Step: 2, 3 A visual codebook is
learned by clustering features and further replacing each cluster with a pooled value.
An example of the learned codebook is also presented. Step 4: At test time, each
feature extracted from the input test image patches are replaced by the most similar
codebook element. This steps reduced the design variance as mentioned in Section. 1.1.
Step 5: The feature vector generated is further given to the Support vector machine
for classification. Adapted from [42]

performing k-means clustering over all the vectors [23]. Codewords are then defined
as the centers of the learned clusters. The number of the clusters is the codebook
size. Thus, each patch in an image is mapped to a certain codeword through the
clustering process, and the histogram of the codewords can represent the image. The
whole process is described in Fig. 2.17. This model can eliminate exterior as well as
internal variabilities but still is unable to create discrimination between the object and
background.

2.3 Hybrid Architectures 35

Fig. 2.18 The illustration shows the three-layer deep sparse coding framework. Each of
the three layers contains three modules. The first module converts the input (image
patches at the first layer and sparse codes at other layers) to dense codes. The second
module is a sparse encoder converting the dense codes to sparse codes. The sparse
codes are then sent to the next layer, and simultaneously to a spatial pyramid pooling
module. The outputs of the spatial pyramid pooling modules can be used for further
tasks such as classification. Adapted from [31].

2.3.2 Deep Sparse Coding

This section presents the deep sparse coding (DeepSC) network [31] that learns a
hierarchy of rich feature representations using unsupervised learning to achieve better
performance on object recognition tasks. The DeepSc network combines the rich bag
of features representations with multiple layers of unsupervised sparse coding to learn
the feature hierarchies.

The first layer of the DeepSC framework is the same as the bag-of-visual-features
as explained in the Section 2.3.1. The subsequent layers of the framework use sparse-
to-dense module which converts the sparse codes obtained from the last layer to dense
codes, which is then followed by a sparse coding module. The sparse output code of
the sparse coding module is the input of the next layer. The sparse-to-dense module
is the key innovation of the DeepSC framework which uses a pooling function which
is the composition of a local spatial pooling step and a low-dimensional embedding
step [31]. Furthermore, the spatial pyramid pooling step is conducted at every layer

36 Literature Review

such that the sparse codes of current layer are converted to a single feature vector for
that layer. Finally, the feature vectors from all layers are concatenated and given as
the input to the classifier. We summarize the DeepSC framework in Fig. 2.18.

The proposed network learns feature hierarchies purely from unlabelled examples.
Also, each module of the architecture has a sound explanation and can be formulated
as explicit optimization problems with promising computational performance.

2.3.3 HMAX Model

Hierarchical Max or HMAX model [40] presents an object recognition architecture
inspired by the general organization of visual cortex in a series of layers from primary
visual cortex (V1) [5] to inferior temporal cortex (IT) [6] to prefrontal cortex (PFC) [7],
as detailed in section 1.2. The model achieves an excellent trade-off between invariance
and selectivity at the level of shape-tuned (S) and invariant cells (C) from which many
recognition tasks can be readily accomplished. The model uses the two key modules to
extracts visual features with the properties as mentioned earlier.

The first module extracts position and scale invariant features using simple units
(S1) tuned in a Gaussian-like way to a bar of a particular orientation. Next, pooling is
performed by complex cells (C1) over a group of simple cells (S1) through a maximum
operation (max). The pooling operation performed at the same preferred orientation
and position in space but at slightly different spatial frequency leads to scale invariance
as shown in Fig. 2.19(b). However, pooling over a group of simple cells at the same
preferred orientation and spatial frequency but at a slightly different position in space
would provide position invariance as shown in Fig. 2.19(a).

The second module learns selectivity to more complex patterns such as combinations
of oriented lines with different selectivities by pooling the activities of several complexes
(C1) using weights obtained using an unsupervised learning algorithm. Thus learning
at the S2 and the C2 level is efficiently learning correlations present in the training
data.The connectivity of complex units arises from learning associations over time,
e.g., that simple unit with the same orientation and nearby locations should be wired
together in a complex group because often such a pattern changes smoothly in time
(e.g., under translation).

The model alternates layers of units combining simple filters into more complex
ones to increase pattern selectivity followed by a max operation to build invariance to
position and scale as shown in Fig. 2.20. The layers of the network are explained in
detail below.

2.3 Hybrid Architectures 37

Fig. 2.19 Illustration of schematic that shows how size and shift tolerances are increased
at the (C1) level: A complex (C1) cell pools over S1 cells at the same orientation,
however, (left) centered at different location thus providing some translation invariance
and (right) at different scales providing some scale invariance to the complex cell.
Reproduced from [25]

.

• S1 Layer: In the model, the input image is first densely sampled by arrays of
two-dimensional Gaussian filters, called S1 units given by

F (x,y) = exp

(
− (x2

0 +γ2y2
0)

2σ2

)
× cos

(
2π
λ
x0

)
st.

x0 = xcosθ+ysinθ; y0 = −xsinθ+ycosθ (2.26)

For the filters, γ represents the aspect ratio, θ is the orientation, and σ decides
the effective width. Further, the wavelength is chosen with the parameter λ
while the size of the filter is selected by s. The filters respond to bars of different
orientations, thus roughly resembling properties of simple cells in the striate
cortex.

• C1 Layer: The next, C1, stage corresponds to cortical complex cells which show
some tolerance to shift and size. C1 units pool over the S1 units from the previous
layer with the same orientation and the same scale band. This pooling increases
the tolerance to 2D transformations from layer S1 to C1. The corresponding
pooling operation is a max operation. That is, the response r of a complex unit
corresponds to the response of the strongest of its m afferents x1,,xm from
the previous S1 layer such that:

r = max
j=1,....,m

xj (2.27)

38 Literature Review

Fig. 2.20 System overview: An array of S1 units first analyzes a gray-value input
image at four different orientations and 16 scales. At the next C1 layer, the image
is subsampled through a local MAX pooling operation over a neighborhood of S1
units in both space and scale, but with the same preferred orientation. In the next
stage, S2 units are essentially RBF units, each having a differently preferred stimulus.
Note that S2 units are tiled across all positions and scales. A MAX pooling operation
is performed over S2 units with the same selectivity to yield the C2 unit responses.
Adapted from [25]

From each grid cell, one single measurement is obtained by taking the maximum
of all the afferents. As the last stage, we take a max over the two scales from
within the same spatial neighborhood, by recording only the maximum value
from the two maps.

• S2 Layer: In the S2 layer, units pool over afferent C1 units from a local spatial
neighborhood across four orientations. Each S2 unit response depends in a
Gaussian-like way on the Euclidean distance between a new input and a stored
prototype. A set of N prototypes Pi (or features) for the S2 units are learned

2.3 Hybrid Architectures 39

in an unsupervised way from a target set of images using a simple sampling
process. This is roughly equivalent to learning a dictionary of patterns that
appear with high probability. For an image patch, X from the previous C1 layer
at a particular scale S, the response r of the corresponding S2 unit is given by:

r = exp(−β ‖X−Pi‖2) (2.28)

where β defines the sharpness of the TUNING and Pi is one of the N features
learned during training.

• C2 Layer: Our final set of shift and scale-invariant C2 responses is computed
by taking a global maximum max operation over all scales and positions for each
S2 type over the entire S2 lattice, i.e., the S2 measures the match between a
stored prototype Pi and the input image at every position and scale; we only
keep the value of the best match and discard the rest. The result is a vector of N
C2 values, where N corresponds to the number of prototypes extracted during
the learning stage.

This is an efficient model as it is capable of eliminating external variabilities and
create little discrimination between the object and background by connecting the edges
of the object using S2 (all the edges are still in the same manifold). The model is even
to an extent able to eliminate internal variabilities.

This class of models has produced promising performance (around 80%) on various
classification tasks [41, 42]. These models form the basis for the SHDL framework
proposed in this thesis due to the ability of these networks to learn hierarchical features
mainly from unlabelled examples in a computationally efficient way. The few labeled
training examples used by these models to solve the classification task was also a
significant motivator on which to base the proposed SHDL framework.

Chapter 3

ScatterNet Hybrid Framework for
Deep Learning

Deep Convolutional Neural Networks (DCNNs) were first proposed by Yann LeCun et
al. [17] that cascaded filter banks with pooling and nonlinearities to learn hierarchical
representations. The success of these models was limited until 2006 due to the lack
of available training sets and the shallower depth of the networks. The breakthrough
by Krizhevsky et al. [96] was made due to the supervised training of a vast network
with eight layers and millions of parameters on the ImageNet dataset with 1 million
training images. Since then, even larger and deeper networks have been trained [35, 36].
These networks have now made significant advances at numerous classification [96]
and regression [102] tasks in computer vision and speech applications. In addition
to their superior performance, these models are good candidates for models of the
visual ventral pathways as the hierarchical representations learned by them resemble
the representations learned by different regions of the visual cortex [157], as shown in
Fig. 3.1. Therefore, these models have been used to make strides in modeling neural
single-unit and population responses in higher visual cortical areas [157].

These models produce state-of-the-art results only for applications with sizeable
labeled training datasets and tend to overfit [97] on many other applications where
large datasets are not available such as the analysis of hyperspectral images [99], stock
market prediction [37], medical data analysis [38] etc. Obtaining labelled data for most
real-world applications is often difficult, expensive, and time-consuming, as tagging
the training data may require human annotators with specific domain experience and
training. Two methods have been suggested to aid the learning of these models for
applications with small training datasets: (i) Data augmentation and synthetic data
generation, and (ii) Transfer Learning. Training CNNs on synthetic datasets may

42 ScatterNet Hybrid Framework for Deep Learning

Fig. 3.1 Deep convolutional neural networks (DCNNs) as models of sensory cortex.
(a) The basic framework in which sensory cortex is studied is one of encoding—the
process by which stimuli are transformed into patterns of neural activity—and decoding,
the process by which neural activity generates behavior. DCNNs have been used to
make models of the encoding step; that is, they describe the mapping of stimuli to
neural responses as measured in the brain. (b) The ventral visual pathway is the most
comprehensively studied sensory cascade. It consists of a series of connected cortical
brain areas (macaque brain shown). PIT, posterior inferior temporal cortex; CIT,
central; AIT, anterior; RGC, retinal ganglion cell; LGN, lateral geniculate nucleus. DoG,
difference of Gaussians model; T(•), transformation. (c) DCNNs are multilayer neural
networks, each of whose layers are made up of a linear-nonlinear (LN) combination of
simple operations such as filtering, thresholding, pooling, and normalization. The filter
bank in each layer consists of a set of weights analogous to synaptic strengths. Each
filter in the filter bank corresponds to a distinct template, analogous to Gabor wavelets
with different frequencies and orientations; the image shows a model with four filters in
layer 1, eight in layer 2, and so on. The operations within a layer are applied locally to
spatial patches within the input, corresponding to simple, limited-size receptive fields
(red boxes). The composition of multiple layers leads to a complex nonlinear transform
of the original input stimulus. At each layer, retinopy decreases and effective receptive
field size increases. DCNNs are therefore good candidates for models of the ventral
visual pathway. Reproduced from [157].

not learn potentially useful patterns of real data as often the feature distribution of
synthetically generated data shifts away from the real data [106]. On the other hand,
transfer Learning aims to extract the knowledge from one or more source tasks and

43

applies the experience to a target task. The weights of the CNN are initialized with
those from a network trained for related tasks before fine-tuning them using the target
dataset [100]. These networks have been quite successful and generalize well to new
categories [101]. However, they fail to generalize to new domains which are significantly
different from the source [156].

Early Deep Learning architectures such as NIN [35] and VGG [36] net only used
convolution, fully connected, or pooling operations but still provided large improvements
over classical vision approaches. Recent advances in the field have improved performance
further by using several new and more complex building blocks that involve operations
such as branching (e.g. inception [108], ResNeXt [109] blocks) and skip connections (e.g.
residual [107], ResNeXt [109]). Despite the superior performance of these networks, the
design and optimal configuration of these networks are not well understood which it
makes difficult to develop these networks. Large over-expressive non-optimal network
architectures require optimization of several redundant hyperparameters which can lead
to computational and memory intensive networks. Training these large networks also
requires considerable energy to fetch the weights along with numerous dot products
computations [110].

Evolutionary [111, 112] and reinforcement learning [113, 114] algorithms have been
proposed over the past few years that aim to automate the architecture discovery
process. The objective of both methods is to search for a particular building block
which is then repeated many times to create the deep architecture. This increase
in the search space means that in addition to finding the optimal traditional Deep
network hyperparameters such as layer size and the number of filters, training a model
now includes searching for the various combinations involved in constructing a useful
building block. This increased complexity corresponds to increased training time and
often means that the process of finding the right architecture or configuration remains
the result of an extensive search [110].

Despite the proposed techniques to design optimal deep networks and reduce their
dependence on sizeable labeled training datasets, the current deep networks still mostly
require numerous labeled training examples along with considerable computational
resources and time to achieve effective learning. The next section introduces the
ScatterNet Hybrid Deep Learning (SHDL) framework which can be used to construct
networks which don’t suffer from the above-mentioned disadvantages.

44 ScatterNet Hybrid Framework for Deep Learning

Fig. 3.2 ScatterNet Hybrid Deep Learning (SHDL) framework inspired by the circuitry
of the visual pathway is presented. The front-end of the SHDL network is a hand-
crafted ScatterNet similar to the V1 of the pathway, which decomposes the input signal
into features at different scales and orientations using complex wavelets [119, 155]. The
mid-section then uses unsupervised learning on these hand-crafted features to rapidly
encode invariant hierarchal feature similar to what is believed to be the functions of
V2 and V4 regions [149–152]. Finally, the back-end of the framework uses supervised
learning to assign class specific labels to the features obtained from the last layer of
the unsupervised module using few labeled examples [120, 148].

3.1 ScatterNet Hybrid Deep Learning Framework

This section proposes the ScatterNet Hybrid Deep Learning (SHDL) framework that is
inspired by the pathways of the visual cortex. This framework can be used to design
SHDL networks that learn hierarchical representations that resemble the features
learned by different cortical areas of the ventral visual pathways [153, 154, 157].
The SHDL framework is motivated from the visual cortex similarly to the Deep
Convolutional Neural Networks (DCNNs). However, the proposed framework (unlike
the DCNNs) is able to rapidly learn meaningful representations mainly from unlabelled
data, in a computationally efficient manner.

The SHDL framework is composed of a hand-crafted front-end that extracts low-
level invariant features, an unsupervised learning based middle-section that extracts
hierarchical features, and a supervised back-end that assigns labels to the features,
as shown in Fig. 3.2. The handcrafted front-end captures low-level features similar
to that of the primary visual cortex as shown by the groundbreaking work of Hubel
and Wiesel [119] along with Blakemore and Cooper [155] in cats. The unsupervised
middle section captures hierarchical representations which are similar to the neurons
along the ventral stream in the extrastriate visual areas of V2 and V4. These neurons
show an increase in receptive field size as well as in the complexity of their preferred
stimuli [40]. The V2 and V4 visual regions are believed to encode a hierarchy of
increasingly complex features rapidly with unsupervised learning [149–152]. Finally,
the inferior temporal (IT), cells are tuned to complex object specific stimuli such as
faces [120, 148] similar to the supervised back-end of the SHDL framework. Each

3.1 ScatterNet Hybrid Deep Learning Framework 45

layer of the SHDL network is created and automatically optimized to produce the
desired computationally efficient architectures. The term ’Hybrid’ is coined because
the framework uses both unsupervised as well as supervised learning.

3.1.1 ScatterNet Front-end

The SHDL front-end module is required to decompose the input image into local
low-level edge feature representations using a hand-crafted network. Several single and
multi, layer networks have been proposed to extract these feature representations as
detailed in section 2.2.

Mallat and his collaborators [22, 27, 28, 86] has shown that ScatterNets incorpo-
rate geometric knowledge of images to produce discriminative and locally invariant
(translation and rotation) representations which can give superior performance to other
hand-crafted network and accuracy comparable to trained networks. The invariants
at the first layer of the system are obtained by filtering the image with multi-scale
and multi-directional complex Morlet wavelets followed by a point-wise nonlinearity
and local smoothing. The high frequencies lost due to smoothing are recovered at the
later layers using cascaded wavelet transformations, justifying the need for a multilayer
network.

Chapter 4 proposes two improved versions of Mallat’s scatternets. These enhanced
networks have also been shown to improve the performance and learning of current
Deep Supervised Learning Networks (VGG, NIN, ResNet) in chapter 5.

3.1.2 Unsupervised Learning Mid-section Module

The neurons in the V2 and V4 regions of the visual cortex are thought to learn high-
level features rapidly with minimal supervision [135]. The mid-section of the SHDL
framework is designed on the same principle as it applies unsupervised learning to
discover exciting structure from the input hand-crafted feature representations. This is
particularly useful as the labeled data can be expensive to obtain while unlabelled data
is cheap and available in abundance. If the unsupervised algorithms can exploit this
unlabelled data efficiently, then it might be possible to achieve better performance using
these unsupervised models than the pure hand-engineered or hand-labeling approaches.

Many deterministic and generative unsupervised learning approaches have been
proposed over the years detailed in section 2.3.5. These techniques have been successfully
used to achieve moderately good image understanding performance.

46 ScatterNet Hybrid Framework for Deep Learning

In chapter 6, a deterministic and a generative, unsupervised technique are used to
construct two proposed SHDL networks which can learn invariant hierarchical mid-level
features rapidly from unlabelled data.

3.1.3 Supervised Learning Back-end

The supervised backend of the SHDL network assigns labels to the features obtained
from the unsupervised mid-section similar to the IT region of the visual cortex [148].
In this thesis, we used the orthogonal least squares (OLS) method, detailed in section
2.2.2 to select the object class specific features which are then used by the SVM to
perform object classification. A conditional random field is used to process the features
extracted by the last layer of the unsupervised learning module to achieve semantic
image segmentation. This is shown by the two proposed SHDL networks presented in
chapter 6.

Next, the proposed hand-crafted networks are presented in chapter 4, the deep
learning networks improved with the hand-crafted networks in chapter 5, and the
two SHDL networks with unsupervised learning modules which can learn an invariant
hierarchy of features rapidly from unlabelled hand-crafted feature representations, in
chapter 6.

Chapter 4

Hand-crafted Front-end

This chapter introduces the front-ends of the of the ScatterNet Hybrid Deep Learning
(SHDL) networks. These front-ends correspond to the V1 of the visual cortex as detailed
by the experiments of Hubel and Wiesel [119] along with Blakemore and Cooper [155]
in cats and should capture low-level edge representations. Therefore the proposed front-
ends are composed of architectures (shallower that standard deep architectures) which
extract the desired descriptors. The proposed hand-crafted networks are the improved
versions of the scattering networks proposed by Mallat and his colleagues [20, 26–28, 86].
The performance of the features extracted by these networks is evaluated on numerous
classification tasks using the Support Vector Machine (SVM) [87]. The SVM creates
discrimination between different signal classes by learning weights that best summarize
the regularities (common coefficients) in the training data and simultaneously ignore
the coefficients arising due to the irregularities.

For both the networks, the input signal is first obtained at multi-resolution signal
representations which are then decomposed with the Dual-Tree Complex Wavelet
Transform (DTCWT) [15] to extract the feature representations that are dense over
the scale. The extracted feature representations are further improved by the proposed
networks by introducing the property of translational invariance, contrast normalization,
and symmetry to the distribution, of the feature representation.

The multi-resolution signal representations and DTCWT filtering operations are
first explained after which both the hand-crafted networks are presented.

The primary reasons for both the operations are explained below:

• Multi-scale Input Signal: The input signal is decomposed into representations
that are densely spaced on the scale using a DTCWT based decimated pyramid
of complex values [53]. The dense representations allow the classifier to learn
additional discriminatory features which can aid the classification.

48 Hand-crafted Front-end

The multi-resolution representation of the signal x is obtained at interleaved
scale (s) [53] using a DTCWT based decimated pyramid of complex values as
shown below:

[x,x′] = decimated(x) (4.1)

where x is the input signal while x′ is the rescaled signal by approx
√

0.5.

• Multi-Resolution DTCWT Filtering: The proposed network uses the DTCWT
bank for filtering as opposed to Morlet wavelets [86] due to its perfect reconstruc-
tion and computational efficiency [15]. Perfect reconstruction property allows
the DTCWT filter to extract features without any aliasing. They provide similar
rich features to Morlet wavelets but with less computation and somewhat lower
redundancy in the output vectors. Besides, dual-tree wavelets can be efficiently
implemented in the spatial domain, rather than requiring the complexities and
constraints of Fourier domain filtering.

The DTCWT filter bank is applied at each resolution (x,x′) to extract the feature
representations. For the sake of simplicity, the derivation is presented only for
the signal x.

The filtering is realized by arranging the DTCWT filters with numerous scales
(and orientations (for only 2D signal)) to extract stable and informative signal
representations. DTCWT wavelets are represented by ψ (with a real ψa and
imaginary ψb group). The complex band-pass filter ψ is decomposed into real
and imaginary groups as shown:

ψ(t) = ψa(t)+ ιψb(t) t= (t1, t2) (4.2)

The signal x is filtered using a family of DTCWT wavelets ψλ1(t) at different
scales and orientations (λ1), formulated as:

x?ψλ(t) = x?ψa
λ(t)+ ιx?ψb

λ(t) (4.3)

These convolutions are implemented efficiently via standard wavelet multi-resolution
filtering techniques [136].

4.1 Multi-Resolution Region Pooling ScatterNet 49

4.1 Multi-Resolution Region Pooling ScatterNet

This section presents the first out of the two proposed hand-crafted scattering network,
coined as, Multi-Resolution Region Pooling ScatterNet, that decomposes the input
signal with DTCWT filters to extract locally translation invariant multi-resolution
feature representations. Translation invariance is next introduced within each feature
representation by applying a non-linearity over a region followed by local averaging. The
region non-linearity selects the dominant feature within the region while simultaneously
suppressing features with lower magnitudes leading to invariance similar to the max
operator in CNNs. Finally, a log non-linearity is used to separate the multiplicative
low-frequency illumination components within the representations.

The formulation of the two-layer Multi-Resolution Region Pooling ScatterNet is
presented for a two-dimensional image signal, as shown in Fig. 4.1. However, this
formulation can be easily extended to process signals of other dimensions and design
ScatterNets with deeper layers.

The input image x is first decimated into different multi-resolution images which
are then filtered using the dual-tree complex wavelets as explained in the previous
section. The filtered feature representations extracted using the DTCWT transform
commute with translations and are therefore not translation invariant. To build a
translation invariant representation, a L2 smooth non-linearity is first applied over all
overlapping regions of size R (R×R for 2D signal) in feature representations, obtained
at a particular scale (and six orientation (θ) (for 2D signal)). The non-linearity applied
to one of the above-mentioned regions is shown below:

|x?ψλ1|R =
√

|Greal ?ψ
a
λ1

(t)|2 + |Gimag ?ψb
λ1

(t)|2 (4.4)

where R is the size of the region and G is a group of R (R×R for 2D signal) complex
scattering coefficients. L2 is a non-expansive non-linearity that makes it stable to
additive noise and deformations [86]. The region non-linearity selects the dominant
feature in the region while simultaneously suppressing features with lower magnitudes.
This creates translation invariance in a larger region similar to the max operator in
CNNs. The scattering coefficients obtained after applying the region non-linearity to
the outputs of every wavelet scales is given by |x?ψλ1|R.

50 Hand-crafted Front-end

Next, the desired translation invariant representation are obtained at the first layer
(L1) by applying a local average on |x?ψλ1 |R, as shown below:

(L1)R =
(

|x?ψλ1 |R
)
?φ2J (4.5)

The high frequencies coefficients lost by the averaging operator are recovered at the
second layer (L2) by calculating the wavelet coefficients of |x?ψλ1|R by the wavelet at
scale and orientation, λ2, given as (|x?ψλ1 |R)?ψλ2(t) [86]. The features extracted at
the first layer (L1) are filtered with the DTCWT filter at coarser scales (λ2) to recover
the high frequency components at the second layer (L2). The recovered frequencies
are converted into translation invariant representations by again taking a local average
over a larger locality as shown:

(L2)R =
(

|
(
|x?ψλ1|R

)
?ψλ2 |R

)
?φ2J (4.6)

The scattering coefficients SJx for the network at different scales and orientations for
two layers can be obtained using the following:

SJx[p] =



x?φ2J (L0)(
|x?ψλ1|R

)
?φ2J (L1)(

|
(
|x?ψλ1 |R

)
?ψλ2|R

)
?φ2J (L2)


λ=(2,3,4)

(4.7)

Next, the low (L0) and the high (L1, L2), frequency scattering features are concatenated.
A logarithm non-linearity proposed by Oyallon et al. [22], is applied to the concatenated
scattering coefficients to transform the low-frequency multiplicative components that
arise due to illuminations into additive components. The logarithm applied to the
scattering coefficients (Sx) extracted from a dataset with M training signals, where
the coefficients computed from a single signal has N dimensions, is given by:

ΦM×N = log(SxM×N +p) (4.8)

where Sx are the scattering coefficients, and p is (small) constant added to reduce the
effect of noise magnification at small signal levels. The transformation of multiplicative
components to the additive components allows the classifier to ignore the coefficients
arising due to illumination as noise. A p value of 1×10−6 is used for all the experiments

4.1 Multi-Resolution Region Pooling ScatterNet 51

Fig. 4.1 Illustration shows the input image (x) of size 64×64 is first resized to images
of resolution, x (64 × 64) and x′ (48 × 48) respectively. Image representations at
the first layer (m = 1) are obtained using dual-tree wavelets at different scales and
6 orientations. Then, L2 region non-linearity is applied on the representations to
obtain the regular envelope followed by local averaging to extract the local translation
invariant coefficients. Cascaded wavelet filtering recovers the information lost due to
averaging at the second layer. Translation invariance is introduced in the recovered
frequencies using L2 region non-linearity and local averaging. The high-frequency
features extracted at both layers (m= 1,2) and the low-frequency features at m= 0 are
concatenated. A log non-linearity with a small constant (p= 1×10−6) is applied to the
concatenated features to transform the low-frequency multiplicative components that
arise due to illuminations into additive components. Next, the features are standardized
before given as input to the Gaussian SVM for classification.

related to the proposed ScatterNet. ΦM×N obtained in Eq. 4.8 is similar to the metric
defined in Eq. 1.1.

The features obtained after applying the log non-linearity are standardized before
being given as input to the classifier. Standardization removes the scaling effects
caused by the use of features with different amplitude measurement scales [137]. The

52 Hand-crafted Front-end

standardization step transforms the raw scattering features into z-scores using the
mean and standard deviation of feature values over all the input samples, given by the
relationship:

zij = xij −µj

σj
(4.9)

where xij is the value for the ith sample and jth feature. µj is the average of all xij

for feature j, σj is the standard deviation of all xij over all the input samples for the
jth feature. The range and scale of the z-scores after standardization is similar, which
can aid the learning of the classifier.

Support vector machine with the Gaussian kernel is used for classification. The
optimization function of the SVM is parameterized with a cost parameter while the
kernel contains the hyperparameter gamma.

The cost parameter of the SVM represents the price of misclassification on the
training examples [140]. A large value of the parameter indicated a hefty price for
misclassification which forces the optimization to choose a hyperplane with a smaller
margin which should lead to lower classification error on the dataset. Such a model tends
to overfits the training set and exhibits poor generalization performance. Conversely, a
minimal value of the parameter will cause the optimizer to look for a larger-margin
separating hyperplane, even if that hyperplane misclassifies more training example.
This can result in numerous misclassified training examples, even if the data is linearly
separable.

The gamma hyperparameter controls the margin that produces the classifica-
tion [140]. For a substantial value of gamma, the SVM learns a model that captures
the complexity and shape of the data. This can lead to overfitting of the training
data and result in poor generalization. On the other hand, a small value for gamma
implies the SVM learns a simpler model which is less prone to overfitting but risks not
learning a decision boundary that appropriately captures the shape and complexity of
the training dataset.

The value of both the parameters that produced the optimal classification is obtained
using 5-fold cross-validation for all the experiments.

4.2 Overview of Results

Experiments were conducted on four real-world datasets selected from the image, audio,
biology and material modalities to evaluate the performance of the proposed DTCWT
multi-resolution scattering network. To test the generalization to different problems,

4.2 Overview of Results 53

Table 4.1 Classification error (%) on different datasets for each part of the proposed
network. DTCWT ScatNet: DSCAT, DTCWT ScatNet + Pooling: DSCATP, Multi-
Resolution DTCWT ScatNet: MDSCAT, Multi-Resolution DTCWT ScatNet + Pooling:
MDSCATP. The left result in / represent the without (left) and with log (right) non-
linearity classification erros (No Log/Log).

Dataset DSCAT DSCATP MDSCAT MDSCATP
USPS 3.31 / 3.38 3.24 / 3.33 2.89 / 3.11 2.54 / 2.49
Isolet 5.14 / 5.3 5.10 / 5.36 4.75 / 5.02 4.14 / 4.04
Yeast 41.65 / 41.17 45.86 / 45.85 37.04 / 34.62 39.77 / 39.04
Glass 31.78 / 29.16 31.77 / 33.68 27.82 / 24.32 30.05 / 26.06

a number of data sets from different domains with various sizes and dimensionality
are used for experimentation. Please see Table 4.1 for a detailed description of the
datasets used in our experiments.

The proposed multi-resolution DTCWT scattering network is applied to each
dataset to extract locally translation invariant multi-scale representations that are
further used for classification. Scattering coefficients for two-dimensional signals are
computed at six orientations (15◦, 45◦, 75◦, 105◦, 135◦, 165◦). The discrimination
between the signal classes is achieved using a Gaussian SVM. Before the SVM is trained
on the training set, each feature is standardized by the mean and standard deviation
of the training dataset. The advantages of the standardization are detailed in the
previous section.

The test set generalization error of each part the proposed scattering network, as
detailed in Table 4.1, is reported on each dataset. The performance of the proposed
method is compared with the scattering network proposed by Mallat et al [86] as well
as with other (shallow) machine learning approaches on the datasets presented in Table
4.1.

4.2.1 US Postal Service Dataset

The US postal service dataset consists of two-dimensional grayscale images with 7291
training observations and 2007 test observations [55]. This dataset was generated
by scanning the handwritten digits from envelopes by the U.S. Postal Service. The
recorded images are de-slanted, and size normalized to 16 x 16 (256) pixels images in
the dataset. The objective is to differentiate between the 10 digits, 0 to 9.

The proposed scattering network extracts the input signal at 6 resolution (s) (1, 0.85,
0.70, 0.6, 0.5, 0.35) and then extracts scattering coefficients from each resolution using
the dual-tree wavelets at 3 scales (J) and 6 orientations (θ). The region non-linearity

54 Hand-crafted Front-end

is applied to overlapping regions (R) of size 2× 2. The cost value of 5 and gamma
value of 0.00002 was selected for the SVM using 5-fold cross-validation on the training
dataset.

As noted from Table 4.1, the proposed network with region non-linearity and log
non-linearity (MDSCATP) results in the lowest classification error of 2.49%. The

Table 4.2 Classification error (%) comparison on USPS Dataset

Dataset Proposed ScatNet [86] FIC [56]
USPS 2.49 2.6 5.43

proposed network produces an improvement of around 3% over the FIC [56] method.
However, this improvement is only marginally better (<0.2%) than Mallat’s ScatNet [86]
as shown in Table 4.2.

4.2.2 The UCI Isolet Dataset

The Isolet dataset comprises of one-dimensional audio signals collected from 150
speakers uttering all characters in the English alphabet twice. Each speaker contributed
52 training examples with a total of 7797 recordings [88]. The recordings are represented
with 617 attributes such as spectral coefficients, contour, sonorant and post-sonorant
are provided to classify letter utterance.

The proposed scattering network decomposes the input signal, which is arranged
as a 1× 617 length vector to the network, at 4 resolution (s) (1, 0.70, 0.5, 0.35). The
translation invariant features are extracted the dual-tree wavelets at 6 scales (J) for the
input signal at every resolution. Regions (R) of size 1×4 is chosen for the application
of the region non-linearity. The cost value of 15 and a gamma value of 0.00015 was
chosen for the SVM. Again, the parameters are selected using 5-fold cross-validation.
The generalization error is reported on 10-fold cross validation for this dataset.

Table 4.1 shows that the multi-resolution scattering network with region non-
linearity and log non-linearity (MDSCATP) produces the lowest classification error of
4.04%. The proposed method outperformed ScatterNet [86] but was unable to surpass

Table 4.3 Classification error (%) comparison on Isolet Dataset

Dataset Proposed ScatNet [86] EEM [57]
Isolet 4.04 5.78 2.70

the performance of Extreme entropy machines [57] as shown in Table 4.3.

4.2 Overview of Results 55

4.2.3 The UCI Yeast Dataset

This is a highly imbalanced one-dimensional signal dataset that consists of 1484
yeast proteins with 10 cellular binding sites [88]. Each binding site is described with
8 attributes. The aim is to classify the most probable (1 among the 10) cellular
localization site of the proteins.

Each sample from the 1484 samples dataset is arranged as a 1×8 length vector
which is decomposed by the proposed scattering network at two resolution (s) (1, 0.70).
The translation invariant features are extracted the dual-tree wavelets at 2 scales (J)
for the input signal at every resolution. The Region (R) size of 1×2, a cost value of 15
and a gamma value of is chosen using 5-fold cross-validation. The generalization error
was reported on 10-fold cross validation for this dataset.

It is interesting to note that for this dataset the multi-resolution scattering network
with log non-linearity and no region non-linearity (MDSCAT) produces the lowest
classification error of 34.62% as shown in Table 4.1. The proposed method outperformed

Table 4.4 Classification error (%) comparison on Yeast Dataset

Dataset Proposed ScatNet [86] IS [58]
Yeast 34.62 35.89 33.0

ScatterNet [86] by more than 1% but was unable to outrank the instance selection
genetic algorithm [58] by the similar amount, as shown in Table 4.4.

4.2.4 The UCI Glass Dataset

This dataset consists of 214 one-dimensional signals that describe six types of glass
based on nine chemical fractions of the oxide content [88]. This dataset was motivated
by a criminological investigation where the correct classification of glass left on the
crime scene could be used for evidence. Hence, the aim is to classify between different
types of glass.

The proposed scattering network uses the same parameters as mentioned in Section
4.2.3 for feature extraction. The generalization error was reported on 10-fold cross
validation for this dataset.

Similar to the yeast dataset, MDSCAT network achieves the lowest classification
error of 24.32% as mentioned in Table 4.1. It was able to outperform the ScatterNet [86]
and the Kernelized Vector Quantization [59] by a large margin as shown in Table 4.5.

56 Hand-crafted Front-end

Table 4.5 Classification error (%) comparison on Glass Dataset

Dataset Proposed ScatNet [86] KVQ [59]
Glass 24.32 28.86 31.6

4.3 Computational Complexity
This section presents the computational time required to extract the features from the
one dimensional (Isolet, Yeast, Glass) and two dimensional (USPS), datasets using
the proposed ScatterNet with the NVIDIA GeForce 7800 GTX GPU. The proposed
ScatterNet extracts the features for a batch of 128 images, at 16 × 16 resolution,
(from the USPS dataset) in 0.01 seconds. The features for the whole dataset, at the
resolutions and scales mentioned in Section 4.2.1, are extracted in 2.8 minutes. This
computational time is less than 1 minute for the one-dimensional datasets.

4.4 Discussions
The proposed Multi-Resolution Region Pooling ScatterNet extracts locally translation
invariant features from an input signal that are equally spaced over the scale space. The
proposed algorithm was tested on four datasets and is shown to outperform Mallat’s
ScatterNet on all the datasets. The proposed network was able to outperform the
learning based algorithms only on two datasets. Hence, it is necessary to take learning
into account. The proposed scattering network can then provide the first two layers of
such learning networks. It eliminates local translation variability, which can help in
learning the next layers. Also, this network can replace simpler low-level features such
as SIFT vectors and can compute the features very quickly.

4.5 Multi-resolution Parametric Log ScatterNet 57

4.5 Multi-resolution Parametric Log ScatterNet

This section details the second hand-crafted scattering network or ScatterNet termed
as, the Multi-resolution Parametric Log Scattering Network that extracts translation
invariant multi-resolution feature representations, which possess approximately sym-
metric amplitude distributions, from the input signal. The scatternet first decomposes
the input signal using the dual-tree complex wavelet transform (DTCWT) [15]. The
parametric log transformation is applied to the extracted representations to introduce
relative symmetry to the distributions of the coefficient magnitudes. The transfor-
mation also de-correlates the multiplicative low-frequency components (illumination)
while simultaneously creating a form of contrast normalization which enhances weaker
features. Translation invariance is then introduced in the features by applying local
smoothing. The information that would have been lost due to local smoothing is
recovered at the second layer by filtering with coarse scale DTCWT wavelets, as well
as the lowpass smoothing filter. The OLS layer next selects a subset of signal-specific
components without undesired bias from outliers due to the introduced symmetry. The
formulation of the two-layer Multi-resolution Parametric Log Scattering Network is
presented for a two-dimensional image signal, as shown in Fig. 4.2. This formulation
can be easily extended to signal of other dimensions. The introduced network can also
be easily modified to design ScatterNets with deeper layers.

The input image x is first decimated into different multi-resolution images which
are then filtered using the dual-tree complex wavelets as detailed in the introduction
of this chapter. The filtered feature representations commute with translations and are
covariant with translations. To build a more translation invariant representation, a
point-wise L2 non-linearity is applied to the filtered signal, as described below:

U [λm=1] = |x?ψλ1| =
√

|x?ψa
λ1

|2 + |x?ψb
λ1

|2 (4.10)

This step produces the regular envelope of the filtered signal and reduces the redundancy
of each representation to 2:1. L2 is a good non-linearity as it is stable to deformations
and additive noise [86]. However, the representations may also contain outliers that
can hinder the performance of the orthogonal least squares based feature selection
layer (see Appendix B). Hence, the parametric log transformation layer is applied to all
the oriented representations (U [j]) extracted at a particular scale j with a parameter
kj , to reduce the effect of outliers by introducing relative symmetry to the feature

58 Hand-crafted Front-end

Fig. 4.2 Illustration shows the input image (x) of size 64 × 64 resized to images of
resolution, R1 (64×64 (x)) and R2 (48×48 (x1) respectively. Image representations
at m = 1 are obtained using DTCWT filters at 5 scales for R1, 4 scales for R2 and
6 orientations (x?ψλm=1). Next, L2 non-linearity (complex modulus) is applied on
the representations to obtain the regular envelope |x ?ψλm=1 |. Log transformation
U1[j] = log(U [j]+kj) with parameters kj is applied on the envelope for all scales j except
the coarsest scale. Next, local smoothing is applied to extract the translation invariant
coefficients U1[λm=1] ? φ2J . The information lost due to smoothing are recovered
by cascaded wavelet filtering at the second layer |U1[λm=1] ? ψλm=2|. Translation
invariance is introduced in the recovered frequencies using L2 non-linearity and local
smoothing U2[λm=1,λm=2]?φ2J . The contrast normalization effect of the parametric
log transformation is shown in the top right while the DTCWT filters at six fixed
orientations are shown in the bottom.

distributions, as shown below:

U1[j] = log(U [j]+kj), U [j] = |x?ψj |, (4.11)

4.5 Multi-resolution Parametric Log ScatterNet 59

Fig. 4.3 The illustration shows the feature representations extracted using the dual-tree
wavelets at the first scale (j = 1) and 6 orientations from images randomly chosen from
the Caltech-101 dataset. Log transformation U1[j = 1] = log(U [j = 1] + kj=1) with
parameters kj is next applied on the combined representation for all 6 orientations with
kj=1. kj=1 is obtained by minimizing the difference between the mean and median
of the combined representation. The illustration shows the feature representations
extracted at j = 1 and 15◦ orientation along their histogram distribution before (a, c)
and after (b, d) the application of the parametric log non-linearity. The non-linearity
also introduces contrast normalization as seen from above figures. It is also interesting
to note that after the application of the log non-linearity the amplitude range of the
features shrinks from around 0 to 100 to around -2 to 5. This can be seen from the
horizontal axis of the histograms.

Good symmetry is achieved for the distribution of oriented representations obtained
by selecting the parameter kj that minimizes the difference between the mean and
median of the distribution as shown in Fig. 4.3. The parametric log transformation also
de-correlates the low-frequency multiplicative components arising due to illumination
variation and noise [22] as well as normalizing the contrast of the representations by
elevating the weak features and suppressing the stronger as shown in Fig. 4.3.

60 Hand-crafted Front-end

Next, a local average is computed on the envelope |U1[λm=1]| that aggregates the
coefficients to build the desired local translation-invariant representation. This local
average is obtained using the scaling function lowpass filter as shown below:

S[λm=1] = |U1[λm=1]|?φ2J (4.12)

The high frequency components lost due to smoothing are retrieved by cascaded
wavelet filtering performed at the second layer. The retrieved components are again not
translation invariant. Translation invariance (over a relatively larger local region) is
achieved by first applying the L2 non-linearity of eq(2) to obtain the regular envelope:

U2[λm=1,λm=2] = |U1[λm=1]?ψλm=2 | (4.13)

A local-smoothing operator is then applied to the regular envelope (U2[λm=1,λm=2])
to extract the desired second layer (m= 2) translation invariant coefficients:

S[λm=1,λm=2] = U2[λm=1,λm=2]?φ2J (4.14)

The scattering coefficients obtained at each layer are:

S =


x?φ2J

U1[λm=1]?φ2J

U2[λm=1,λm=2]?φ2J


j=(2,3,4,5...)

(4.15)

The coefficients extracted from each layer are concatenated to generate a feature vector
for each of the images in the training dataset as shown in Fig. 4.2. The scattering
feature vectors are then normalized across each dimension and given as input to the
feature selection layer.

The feature selection layer is implemented using a supervised orthogonal least square
(OLS) regression [1] (see Appendix B) that greedily selects discriminative features
specific to class C with a one-versus-all linear regression using the following indicator
function:

fC(x) =

1 if x belongs to class C
0 otherwise

(4.16)

The regression is applied to a training set of scattering feature vectors where each
vector of N dimensions is reduced to N ′ selected dimensions (N ′ <<N) that belong
to a specific class C. Let (ΦM×N

t)C be the dictionary at the tth iteration for a specific
class C. The tth feature x is selected such that the linear regression of fC(x) has a

4.6 Overview of Results 61

minimum mean-squared error, computed on the training set corresponding to class C.
The reduced scattering features dataset represents the metric defined in Eq. 1.1. The
reduced training feature dataset is given as input to the G-SVM that learns the weights
that best discriminate the classes in the dataset. Feature selection makes training and
applying a classifier more efficient due to the decreased vector size. It also tends to
improve performance by eliminating unnecessary components of the input and their
associated noise.

4.6 Overview of Results

The performance of the proposed network is evaluated on CIFAR-10 and CIFAR-100
datasets with 10 and 100 classes respectively. Each dataset contains a total of 50000
training and 10000 test images of size 32×32 equally divided among the classes. The
evaluation is performed on the classification accuracy, computational efficiency, and
feature richness. A comparison with Mallat’s ScatterNet [22], unsupervised [62], [60]
and supervised methods [35, 36, 107] is also performed.

To extract the scattering representations, every 32×32 image is first upsampled
into two images of resolution 64×64 (R1) and 48×48 (R2). R1 and R2 are decomposed
using DTCWT filters with six fixed orientations at 5 and 4 scales respectively, followed
by L2 non-linearity, as shown in Fig. 4.2. Next, the log transformation is applied to
the representations (except the ones obtained at the coarsest scale) obtained from
both R1 and R2 pipeline with parameters k1 = 1.1, k2 =3.8, k3 =3.8 and k4 =7
chosen for scale j = 1, 2, 3 and 4 respectively. The transformation parameters for each
scale are obtained by averaging the parameter obtained for each image of the dataset
using the scheme explained in Section 4.4. A smoothing operator is then applied to
introduce translation invariance in the representations. The classification accuracy for
representations obtained at various scales (J), with and without the use of parametric
log transformation and the concatenated coefficients at m= 1 with G-SVM, are shown
for both R1 and R2 pipelines in Table 4.6. The G-SVM parameter (c) is selected
as 14 while gamma parameter is set to 0.00002 using 5-fold cross-validation on the
training feature set. We see that the parametric log transformation results in a small
improvement in classification accuracy. The information lost due to smoothing at the
first layer is retrieved at the next layer using cascaded filtering as shown in Fig. 4.2. The
retrieved information is made translation invariant by local smoothing. Representations
for the three color channels at m= 0,1,2 are concatenated to produce a 18768 (6256 ×
3) dimensional vector for R1 image and a vector of length 26028 (8676 × 3) for R2 as

62 Hand-crafted Front-end

Table 4.6 Accuracy (%) on CIFAR-10 for both R1 and R2 for each scale (J) and
coefficients at m= 1, with and without applying log transformation. The accuracy for
features selected from the final scattering vector at m1,2 using OLS is presented in the
last column.

J = 1 J = 2 J = 3 J = 4 m1 m1,2

R1: No-log 62.7 66.9 69.0 70.2 70.4 80.7
R1: log 65.6 69.9 71.5 72.4 72.5 81.6

R2: No-log 65.9 70.0 71.2 – 71.7 80.9
R2: log 68.0 71.5 72.6 – 73.4 81.8

shown in Fig. 4.2. OLS is then applied to the training dataset (50000×18768) to select
108 dimensions per class resulting in a total of 1080 discriminative dimensions for every
R1 image (50000×1080). Similarly, 1200 dimensions per image are chosen for the R2
image. This reduced feature dataset results in a classification accuracy of 81.6% (80.7%
without log transformation) for R1 images while accuracy of 81.8% (80.9% without log
transformation) is recorded for R2 images, using the above-mentioned SVM for the
CIFAR-10 datasets as shown in Table 4.6. Classification accuracy of 82.4% is obtained
by concatenating the selected dimensions of R1 and R2. A decrease in classification
accuracy is recorded on selecting more than the above-mentioned feature dimensions.

Next, scattering coefficients extracted using DTCWT ScatterNet with the above-
mentioned parameters result in a classification accuracy of 56.7% for the CIFAR-100
dataset, as shown in Table 4.7. The translation invariant coefficients extracted using
the proposed network outperform the translation as well as Roto-translation invariant
features of Mallat’s ScatterNet [22], on both datasets. The system also outperformed
state-of-the-art unsupervised methods [62], [60] but underperformed by nearly 10%
against supervised deep learning models [158], as shown in Table 4.7. The proposed

Table 4.7 Accuracy (%) and comparison on both datasets. Pro.: Proposed, Sup:
Supervised and Unsup: Unsupervised, learning.

Dataset Pro. ScatNet [22] Unsup Sup
CIFAR-10 82.4 81.6 82.2 [62] 93.56 [158]
CIFAR-100 56.7 55.8 54.2 [60] 70.48 [158]

network can be an attractive choice over Mallat’s ScatterNet due to its computational
efficiency and gain in classification accuracy. The proposed system extracts the
coefficients from both R1 and R2 images in almost three-quarters (0.78 (s)) of the
time needed by Mallat’s network (0.98 (s)) to decompose only the R1 image, as shown
in Table 4.8. This marginal difference is significant for large image datasets such as

4.7 Computational Complexity 63

Table 4.8 Arc.: Architectures, Pro.: Proposed, R1, R2: Resolution - 1,2 pipeline, FVL:
Feature vector length, SD: Selected dimensions using OLS, FR: Feature richness (%),
TS (s): Scattering time an image in seconds, T-OLS: Feature selection time using OLS
in hours.

Arch. FVL SD FR (%) TS (s) T-OLS (h)
ScatNet [22] 113712 2000 1.75 0.98 3.22

R1 18762 1100 5.86 0.46 1.07
R2 26028 1200 4.61 0.32 1.14

Pro. (R1+R2) 44796 2300 5.13 0.78 2.21

CIFAR. In addition, since the scattering vector produced by the proposed network is
smaller (44796) as compared to Mallat’s network (113712) (three-layer network) [22],
the OLS layer can select the desired feature dimensions (1080 and 1200) in almost 3/4
of the time (2.21(h) vs. 3.22(h)). The dimensions chosen with OLS from the scattering
vector are more for the proposed network (1080 + 1200 = 2300) as compared to Mallat’s
network (1080). This suggests that the features extracted by the proposed network are
significantly more abundant in information as compared to Mallat’s network as feature
richness is defined as the number of dimensions selected with OLS divided by the total
feature dimensions. The simulations are computed on a server with 32 Gb RAM per
node in normal conditions.

However, supervised models require large training datasets to learn which may not
exist for most application. Table 4.9 shows that DTCWT ScatterNet outperformed
LeNet [61] and Network in Network (NIN) [35] supervised learning networks on the
CIFAR-10 datasets with less than 10,000 images. The experiments were performed
by dividing the training dataset of 50,000 images into eight datasets of different sizes.
The images for each dataset are obtained by randomly selecting the required number
of images from the full 50,000 training dataset. It is made sure that an equal number
of images per object class are sampled from the training dataset. The whole test set
of 10000 images is used for all the experiments. Deeper models like NIN [35] and
VGG [36] result in low classification accuracy due to their inability to train on the
small training dataset.

4.7 Computational Complexity

This section presents the computational time required to extract the features from the
CIFAR-10 and CIFAR-100 images of size 64 × 64 × 3 (up-sampled from 32 × 32 × 3)
using the proposed ScatterNet (dual-tree wavelets at 5 scales and 6 orientations) with

64 Hand-crafted Front-end

Table 4.9 Comparison of Proposed (Pro.) network on accuracy (%) with two supervised
learning methods (LeNet [61], NIN: Network in Network [35] and VGG [36] against
different training dataset sizes on CIFAR-10.

Arch. 300 500 1K 2K 5K 10K 20K 50K
Pro. 39.3 48.8 55.9 61.8 67.0 72.9 76.8 82.4
LN 34.9 44.7 53.1 57.9 63.0 69.0 74.0 77.6
NIN 10.1 10.3 10.9 40.4 63.4 72.0 83.1 89.6
VGG 9.6 10.3 10.7 43.4 53.5 77.8 88.3 93.56

the NVIDIA GeForce 7800 GTX GPU. The proposed ScatterNet extracts the features
for a batch of 128 images in 0.41 seconds. The features for the whole dataset, at both
resolutions mentioned in Section 4.2.1, are extracted in 6 minutes. Another 2 hours
are taken by the orthogonal least squres algorithm to select the relevant features as
shown in Table 4.8. Finally, the support vector machine (SVM) with the Gaussian
kernel learns the discriminatory features in 36 minutes.

4.8 Discussions

The proposed Multi-resolution Parametric Log Scattering Network is an improved
version of Mallat’s Scatter-Net which uses dual-tree wavelets and parametric log
non-linearity to extract relatively symmetric translation invariant multi-resolution
representations from the input signal. The ScatterNet gives an enhanced performance on
classification accuracy and computational efficiency as compared to Mallat’s ScatterNet
on two image classification datasets. The network has also been shown to outperform
unsupervised learning methods while evidence of the advantage of DTCWT ScatterNet
over supervised learning (CNNs) methods is presented for applications with small
training datasets. In addition, these networks can extract features rapidly which is
advantageous as the time needed to train the unsupervised and supervised networks is
considerable.

4.9 Comparison between the Proposed ScatterNets

This section presents the comparison between the Multi-Resolution Region Pooling
ScatterNet and Multi-resolution Parametric Log ScatterNet introduced in Section 4.1
and Section 4.4. The performance is evaluated on the CIFAR-10 and Cifar-100 image
datasets.

4.9 Comparison between the Proposed ScatterNets 65

Table 4.10 Accuracy (%) and comparison on both datasets for the the Multi-Resolution
Region Pooling ScatterNet and Multi-resolution Parametric Log ScatterNet.

Dataset Region Pooling ScatterNet Parametric Log ScatterNet
CIFAR-10 81.9 82.4
CIFAR-100 56.1 56.7

For both the CIFAR datasets, every 32×32 images is upsampled into two images of
resolution 64×64 (R1) and 48×48 (R2) which are decomposed using dual-tree wavelets
with six fixed orientations at 5 and 4 scales respectively. For the Region Pooling
ScatterNet, the region non-linearity is applied to overlapping regions (R) of size 2×
2. As for the Parametric Log ScatterNet, the log transformation is applied to the
representations (except the ones obtained at the coarsest scale) obtained from both
R1 and R2 pipeline with parameters k1 = 1.1, k2 =3.8, k3 =3.8 and k4 =7 chosen
for scale j = 1, 2, 3 and 4 respectively. The Parametric Log ScatterNet marginally
outperforms the Region Pooling ScatterNet on both the datasets as shown in Table
4.10. It is therefore used as the front-end for the networks proposed in the rest of the
thesis.

Chapter 5

Efficient Learning using
ScatterNets

The training of deep convolutional neural networks (DCNNs) requires large training
datasets along with considerable computational resources and time. Data augmentation
and transfer learning have been proposed to improve the training of deep networks
for applications where sufficient labeled training data is not available. However, these
methods have their limitations as detailed in the introduction of chapter 3.

The hand-crafted descriptors extracted using the proposed hand-crafted scattering
networks layers can improve the learning and classification performance of the standard
deep networks (VGG, ResNet, NIN). This is shown by the proposed DTCWT ScatterNet
Convolutional Neural Network (DTSCNN) formed by replacing the first convolutional,
Relu and pooling layers of the CNN with the parametric log based DTCWT ScatterNet
proposed in Section 4.4. The translation invariant features with relatively symmetric
probability density functions (pdfs) are extracted by the hand-crafted network that
incorporate edge information similar to the first layers of the DCNNs trained on
ImageNet [105], [95]. These features are used by the middle and later CNN layers to
learn high-level features. This helps the proposed DTSCNN architecture to converge
faster as it has fewer filter weights to learn compared to its corresponding CNN
architecture (Section 5.2.3). Also, the CNN layers can learn more complex patterns
from the start of learning as it is not necessary to wait for the first layer to learn
low-level features as they are already extracted by the ScatterNet.

68 Efficient Learning using ScatterNets

Fig. 5.1 The proposed DTSCNN architecture, termed as AS-1, formed by replacing the
first convolutional, ReLu, and pooling layer of A-1 (Table. 1) CNN architecture with the
two-layer parametric log based DTCWT ScatterNet. The ScatterNet extracts relatively
symmetric translation invariant representations from a multi-resolution image that are
processed by the CNN architecture to learn complex representations. However, the
illustration shows the feature extraction only for a single image due to space constraints.
The invariant information (U [λm=1]) obtained for each R, G and B channel of an
image is combined into a single invariant feature by taking an L2 norm of them. Log
transformation is applied with parameter k1 = 1.1 for scale j = 1. The representations
at all the layers (m = 0(3), m = 1(12) and m = 2(36)) are concatenated to produce
51*2 (two resolutions) = 102 image representations that are given as input to the mid
and back layers of the CNN.

5.1 DTCWT ScatterNet Convolutional Neural
Network (DTSCNN)

This section details the proposed DTCWT ScatterNet Convolutional Neural Network
(DTSCNN) composed by combining the two-layer parametric log based DTCWT
ScatterNet, as described in Section 4.4, with the following layers (middle and back-end)
of the CNN to perform object classification. The parametric log based DTCWT
ScatterNet extracts feature maps that are denser over the scale from multi-resolution
images at 1.5 times and twice the size of the input image as detailed in Section 4.4.

Next, the proposed DTSCNN architectures (AS1 to AS4) were realized by replacing
the first convolutional layer of the A-1 to A-4 CNN architectures with the hand-crafted
multi-resolution parametric log ScatterNet, as shown in Fig. 5.1. The four CNN

5.1 DTCWT ScatterNet Convolutional Neural
Network (DTSCNN) 69

Table 5.1 Experiments are performed with CNN architectures (derived from LeNet [17])
designed for CIFAR-10 dataset that contain convolutional (CV) layers (L1 to L5) with
b number of filters of size a×a, denoted as L-F: a,b. The max pooling is performed
for a layer within a region of size c× c, denoted as PL-R: [c,c]. The network also
contains fully connected layers (FCN) that feed the final CNN outputs to a softmax
loss function. The architectures are: (i) A-1: 2CV-1FCN (ii) A-2: 3CV-2FCN (iii) A-3:
4CV-3FCN (iv) A-4: 5CV-3FCN.

Arch. Layers
L1-F PL1-R L2-F PL2-R L3-F PL3-R L4-F L5-F FCN1 FCN2 FCN3
a,b [c,c] a,b [c,c] a,b [c,c] a,b a,b a,b a,b a,b

A-1 5,32 [3,3] 5,64 [6,6] – – – – 1,10 – –
A-2 5,32 [3,3] 5,32 [6,6] 5,64 [4,4] – – 1,32 1,10 –
A-3 5,32 [3,3] 5,32 [3,3] 5,64 [3,3] 4,64 – 1,32 1,16 1,10
A-4 5,32 [3,3] 5,32 [3,3] 5,64 – 4,64 4,64 1,32 1,16 1,10

Table 5.2 Parameter values used by the architectures mentioned in Table. 1 for training
are: Learning rate = 0.001, Number of Epochs = 300, Weight Decay = 0.0005 and
Momentum = 0.9. The batch size is changed according to the number of training
samples as mentioned below.

Training Data Sample Size 300 500 1000 2000 5000 10000 25000 50000
Batch Size 5 5 10 20 50 100 100 100

architectures (A-1 to A-4, shown in Table 5.1) are derived from the LeNet [17] network
because they are relatively easy to design and train due to its small memory footprint.
Also, the LeNet [17] architecture is shallow which makes it easier to observe the
benefits (faster learning and better generalization) of replacing the earlier layers with
the ScatterNets. This effect of removing earlier layer is not easily visible in deep
networks. In addition to the derived architectures, the DTSCNN is also realized by
using ScatterNet as the front-end of three standard deep networks namely; Network in
Network (NIN) [35] (A-5), VGG [36] (A-6), and wide ResNet [104] (WResNet) (A-7).
The DTSCNN architectures (AS-5, AS-6, AS-7) for the standard architectures (NIN (A-
5), VGG (A-6), WResNet (A-7)) are again obtained by removing the first convolutional
layer of each network and replacing it with the ScatterNet. The architectures are
trained in an end-to-end manner by Stochastic Gradient Descent with softmax loss
until convergence. The trained network learns a metric similar to the one defined in
Eq. 1.1.

70 Efficient Learning using ScatterNets

5.2 Experimental Results

The performance of the DTSCNN architecture is demonstrated on CIFAR-10 and
Caltech-101 datasets with over 50 experiments performed with 14 CNN architectures
of increasing depth on (i) Classification error and, (ii) Computational efficiency and
the rate of learning. The generic nature of the features extracted by the DTCWT
ScatterNet is shown by an equivalent performance to the pre-trained CNN front-ends.
The details of the datasets and the results are presented below. The performance of the
DTSCNN architecture is evaluated on (i) Classification error and, (ii) Computational
efficiency and the rate of learning with over 50 experiments performed with 14 CNN
architectures. The efficient learning of the DSTCNN architectures is demonstrated by
their ability to train faster and with lower classification error on small as well as large
training datasets, generated from the CIFAR-10 dataset. The DTCWT ScatterNet
front-end is also shown to give similar performance to the first convolutional pre-trained
layers of CNNs which capture problem specific filter representations, on Caltech-101 as
well as CIFAR-10 datasets. A comparison with the state-of-the-art is also presented on
both datasets.

5.2.1 Datasets

The CIFAR-10 [16] dataset contains a total of 50000 training and 10000 test images
of size 32×32. The efficient learning of the proposed DTSCNN network is measured
on eight training datasets of sizes: 300, 500, 1000, 2000, 5000, 10000, 25000 and
50000 images generated randomly by selecting the required number of images from
the full 50000 training dataset. In each case, we made sure that an equal number of
images per object class were sampled from the full training dataset. For example, a
training dataset sample size of 300 included 30 images per class. The full test set of
10000 images was used for all the experiments. The ScatterNet extracts 102 features
maps of size 16 × 16 from the cifar images of both resolutions which are used by the
convolutional layers of the CNN to learn high-level features (Fig. 5.1).

Caltech-101 [94] dataset contains 9K images each of size 224×224 labeled into 101
object categories and a background class. The classification error on this dataset is
measured on three randomly generated splits of training and test data so that each split
contains 30 training images per class and up to 50 test images per class. In each split,
20% of training images were used as a validation set for hyper-parameter selection.
Networks trained on ImageNet dataset are used to initialize the filter weights for the
DTSCNN or other deep networks used to perform classification (Table 5.4 and 5.6) on

5.2 Experimental Results 71

Table 5.3 Classification error (%) on the CIFAR-10 dataset for the original CNN
architectures and their corresponding DTSCNN architectures.

Architectures Classification Error
Variants of LeNet [17] Training Data Sample Size

300 500 1000 2000 5000 10000 25000 50000
A-1: 2Conv-1FCon 77.8 73.2 70.3 66.7 61.3 54.9 45.3 38.1
AS-1: DTS-1Conv-1FCon 69.4 65.8 60.1 58.9 52.7 54.7 40.4 38.7
A-2: 3Conv-2FCon 66.8 62.0 57.5 52.8 46.1 40.1 32.7 27.3
AS-2: DTS-2Conv-2FCon 63.7 55.1 49.5 43.7 39.1 40.0 33.8 28.3
A-3: 4Conv-3FCon 62.2 57.4 51.0 46.8 40.1 35.1 29.2 24.2
AS-3:DTS-3Conv-3FCon 56.8 54.9 50.9 45.3 39.7 34.9 28.7 24.1
A-4: 5Conv-3FCon 58.4 54.4 47.4 41.8 35.0 32.2 25.7 22.1
AS-4: DTS-4Conv-3FCon 59.8 54.0 47.3 41.3 38.4 31.8 25.2 22.0

Deep Architectures Training Data Sample Size
A-5: NIN [35] 89.2 84.4 45.5 34.9 27.1 18.8 13.3 8.1
AS-5: DTS-NIN 83.2 80.1 41.0 32.2 25.3 18.4 13.4 8.2
A-6: VGG [36] 89.9 89.7 89.1 59.6 36.6 28 16.9 7.5
AS-6: DTS-VGG 83.5 82.8 81.6 56.7 34.9 27.2 16.9 7.6
A-7: WResNet [104] 87.2 53.2 43.2 31.1 18.8 13.6 10.1 3.6
AS-7: DTS-WResNet 81.2 49.8 41.2 30.1 18.6 13.5 9.9 3.6

this dataset as the number of training samples is not sufficient to train the networks
from a random start. The ScatterNet extracts 102 features maps of size 128 × 128
from the cifar images of both resolutions which are used by the convolutional layers of
the CNN to learn high-level features.

5.2.2 Evaluation and Comparison on Classification Error

The classification error is recorded for the proposed DTSCNN architectures and
compared with the derived (A-1 to A-4) as well as the standard (A-5 to A-7) CNN
architectures, for different training sample sizes, as shown in Table 5.3. The parameters
used to train the CNN architectures are shown in Table 5.2. The classification error
corresponds to the average error computed for five repetitions.

It can be observed from Table 5.3 that the difference in classification error for the
derived CNN architectures (A-1 to A-4) is from 3% to 10% for the small training
datasets with ≤ 1000 training images. This difference in error reduces with the increase
in the size of the training dataset and with an increase in the depth of the architectures
as shown in Table 5.3. In fact, the more deep CNN architectures such 5CV-3FCN
(A-4) outperformed their corresponding DTSCNN architectures by a small margin.

72 Efficient Learning using ScatterNets

(a) Training dataset sample size: 300 (b) Training dataset sample size: 1000

(c) Training dataset sample size: 10000 (d) Training dataset sample size: 50000

Fig. 5.2 Graphs show the faster convergence and rate of learning of the DTSCNN
derived architectures (AS-1 to AS-4) compared to the CNN (A-1 to A-4) architectures
for a range of small and large training data sizes. A network is considered to have
converged at a specific epoch when the error value for the subsequent epochs lies
within 2% of the error value at that specific epoch. The convergence is marked on the
epoch axis using an (vertical) orange dotted line for the DTSCNN architecture and a
(vertical) purple dotted line for the CNN architectures. The orange line has a lower
epochs value as compared to the purple line indicating the faster convergence.

A similar trend in classification error is also observed for the standard more deep
CNN architectures (A-5 to A-7). The difference in classification error is large between
the DTSCNN (AS-5 to AS-7) and the original (A-5 to A-7), architectures for small
training datasets while both types of networks produce a similar classification error for
datasets with large training size. In fact, the wide ResNet (WResNet) (A-7) and its
corresponding DTSCNN architecture (AS-7) result in the same classification error of
3.6%.

5.2 Experimental Results 73

(a) Computational time for convergence for
300 training size

(b) Computational time for convergence for
1000 training size

(c) Computational time for convergence for
10000 training size

(d) Computational time for convergence for
50000 training size

Fig. 5.3 Computational time the DTSCNN derived architectures (AS-1 to AS-4)
compared to the CNN (A-1 to A-4) architectures for a range of small and large training
data sizes. A network is considered to have converged at a specific epoch when the
error value for the subsequent epochs lies within 2% of the error value at that specific
epoch.

5.2.3 Analysis on Computational Efficiency and Learning

This section compares the speed of learning of the proposed DTSCNN architectures
against the CNN architectures (A-1 to A-4) derived from LeNet [17] as well as the
standard (A-5 to A-7) deep learning architectures for a range of small and large training
dataset sizes.

The DTSCNN architectures have a higher rate of learning or faster convergence
than the original CNN architectures because the numbers of filter weights required to
be learned are smaller. Also, the ScatterNet extracts edge representations that allow
the next CNN layers to learn high-level features from the first epoch onwards. The

74 Efficient Learning using ScatterNets

(a) Network in Network (NIN) (b) Visual Geometry Group (VGG) Network

(c) Wide Residual Network (WResNet)
(d) Computational time for convergence.

Fig. 5.4 Graphs show the faster convergence and rate of learning of the DTSCNN
standard deep architectures (AS-5 to AS-7) compared to the CNN (A-5 to A-7)
architectures for a small (5000) and large (50000) training dataset. A network is
considered to have converged at a specific epoch when the error value for the subsequent
epochs changes within 2% of the error value at that specific epoch. The convergence is
marked on the epoch axis using an orange dotted line for the DTSCNN architecture and
a purple dotted line for the CNN architectures. The orange line has a lower epochs value
as compared to the purple line indicating the faster convergence. Computational time
for convergence (hours) for NIN (A-5) and VGG (A-6) standard deep architectures and
corresponding DTSCNN architectures for a small (5000) and a large (50000) training
dataset is also presented.

faster convergence is shown for the derived (A-1 to A-4) for different training dataset
sizes in Fig. 5.2.

A network is considered to have converged at a specific epoch when the error value
for the subsequent epochs changes within 2% of the error value at that particular epoch.
The convergence is marked on the epoch axis (x-axis) using an orange vertical dotted
line for the DTSCNN architecture and a purple dotted line for the CNN architectures.
As observed from Fig. 5.2, the orange line has a lower epoch value as compared to the
purple line indicating the faster convergence.

The time required for training the original and their corresponding DSTCNN
architectures is presented for training datasets of different sizes for the derived (A-1
to A-4) in Fig. 5.3. The time for convergence is again measured to within 2% of the
final converged error value. As observed from the figure, the training time is higher for
the original networks than the DTSCNN networks because of the reasons mentioned
above.

5.2 Experimental Results 75

The faster convergence with lower training time is also presented for the standard
deep architectures (A-5 to A-7) for a small (5000) and a larger (50000) training dataset
sizes in Fig. 5.4.

The networks are trained using the MatConvNet [103] (see Appendix D) package
on a server with an NVIDIA GeForce 7800 GTX card.

5.2.4 Comparison with Pre-trained CNN First Layers

The classification performance of the DTCWT ScatterNet front-end is compared with
the first pre-trained convolutional layer for the Network in Network (NIN) [35] and the
Visual Geometry Group convolutional (VGG) [36] architectures, on Caltech-101 and
CIFAR-10 datasets. The filter weights for both the NIN and the VGG networks are
initialized with the weights obtained from their models pre-trained on ImageNet (found
here [89]). The first layers for both the architectures are fixed to be the ScatterNet
and the pre-trained convolutional layer, while the filter weights only in later layers are
fine-tuned using the training images of CIFAR-10 and Caltech-101. The ScatterNet
front-end gives similar performance to the pre-trained first convolutional layer on
classification error for both datasets as shown in Table 5.4. For this experiment,
dropout, batch normalization and data augmentation with crops and horizontal flips
were utilized [90]. The use of the NIN network is preferred as it gives similar performance
to the VGG network while being four times faster. The classification error for the
VGG network is lower as compared to the NIN network due to its significantly deeper
architecture which allows it to learn more complex features. However, the wide ResNet
network achieves the state-of-the-art accuracy as shown in [104].

Table 5.4 Table shows the comparison on classification error (%) between the DTCWT
ScatterNet (DTS) front-end and the first convolutional layer pre-trained on ImageNet
for NIN [35] and VGG [36] architectures for Caltech-101 and CIFAR-10 datasets.T-NIN:
Transfer-NIN, T-VGG: Transfer-VGG

Dataset State-of-the-art Architectures
T-NIN DTS-NIN T-VGG DTS-VGG

Caltech-101 12.3 12.26 8.78 9.23
CIFAR-10 8.25 8.34 8.31 9.02

5.2.5 Comparison with the state-of-the-art

This section compares the architectures that produced the best classification perfor-
mance with the state-of-the-art on CIFAR-10 and Caltech-101. The DTS-WResNet

76 Efficient Learning using ScatterNets

(AS-7) and DTS-VGG (AS-6) resulted in the best classification performance on CIFAR-
10 and Caltech-101 with 3.6% and 8.08% classification error, respectively.

The DTS-WResNet (AS-7) architecture is compared with various state-of-the-art
CNN architectures on CIFAR-10. DTS-WResNet (DW) outperformed these architec-
tures as shown in Table 5.5.

Table 5.5 Table shows the comparison on classification error (%) between the DTCWT
ScatterNet ResNet (DTS-WResNet) Architecture with the state of the art architectures
on the CIFAR-10 dataset. DW: DTS-WResNet, NIN: Network in Network [35],
VGG [36], DSN: Deeply Supervised Networks [61], MON: Max-Out Networks [93],
E-CNN: Exemplar CNN [92]

Dataset State-of-the-art Architectures
DW VGG E-CNN NIN DSN MON

Cifar-10 3.6 7.5 8.0 8.1 8.2 9.3

Next, the DTS-VGG (AS-6) architecture is compared against the state-of-the-
art CNN architectures for the Caltech-101 dataset. On this dataset, the DTS-VGG
outperformed some of the networks while produced a marginally lower classification
performance for others (Table 5.6).

Table 5.6 Table shows the comparison on classification error (%) between the DTCWT
ScatterNet VGG (DTS-VGG) Architecture with the state of the art architectures
on the Caltech-101 dataset. DV: DTS-VGG, SPP: Spatial Pyramid Pooling [123],
VGG [36], E-CNN: Exemplar CNN [92], EP: Epitomic Networks [98], ZF: Zieler and
Fergus [105]

Dataset State-of-the-art Architectures
DV SPP VGG E-CNN EP ZF

Caltech-101 8.78 6.6 7.3 8.5 12.2 13.5

5.3 Discussions
The proposed DTSCNN architectures, when trained from scratch, outperforms the
corresponding original CNN architectures on small datasets by a useful margin. For
larger training datasets, the proposed networks give similar error compared to the
original architectures. Faster rate of convergence is observed in both cases for shallow
as well as deep architectures.

The DTCWT scattering front-end is mathematically designed to deal with all
boundary orientations equally and with two or more scales, as required. The generic

5.3 Discussions 77

nature of the DTCWT scattering front-end is shown by its similar classification
performance to the front-end of learned networks, on two different datasets. The
generic features are likely to give it wide applicability to both small and large image
datasets as it provides lower (small dataset) or similar classification error (large dataset),
with faster rates of convergence.

Future work includes extending the DTCWT Scattering Network front-end for
other learning frameworks, with the aim of improving the learning rates further.

Chapter 6

ScatterNet Hybrid Deep Learning
(SHDL) Networks

We have shown that the hand-crafted ScatterNet features improve the learning and gen-
eralization of several deep networks in the previous chapter. Despite this, the training
of deep networks is still slow and requires more training samples than are available or
desired. This chapter proposes the ScatterNet Hybrid Deep Learning (SHDL) Networks
that are constructed using the ScatterNet Hybrid framework presented in Chapter 3.
These SHDL networks rapidly learn hierarchical features from mainly unlabelled input
signals. Also, the SHDL networks are computationally efficient as compared with other
deep learning networks, making them an attractive choice. We now propose two SHDL
networks to solve the individual image understanding tasks of object recognition and
semantic segmentation.

SHDL networks are composed of a hand-crafted front-end, an unsupervised learning
mid-section module, and a supervised learning based back-end as explained in Chapter
3. Both the proposed networks use the hand-crafted features extracted by the Multi-
resolution Parametric Log Scattering Network (as presented in Section 4.4) to learn
the mid-level features.

The first network, termed as the Deterministic ScatterNet Hybrid Deep Learning
(D-SHDL) network uses the hand-crafted features with the deterministic unsupervised
learning module to learn symmetrically distributed hierarchical mid-level features. The
unsupervised learning module is composed of two stacked PCA layers with parametric
log non-linearity. A supervised orthogonal least squares (OLS) layer [1, 43] is then
applied to the concatenated features obtained from the unsupervised layers to select
a subset of object-class-specific features. The features are chosen without undesired
bias from the outliers due to the introduced symmetry. The selected features are

80 ScatterNet Hybrid Deep Learning (SHDL) Networks

finally fed into a Gaussian-kernel support vector machine (G-SVM) to perform object
classification.

This network is fast to train as compared to other unsupervised learning modules
(autoencoders or RBMs) as the minimization of the loss function with the PCA layers
can be obtained in its simplistic form as the Eigen decomposition. Despite the favorable
increase in the rate of learning, we have found that the approximate solution of PCA loss
function may produce undesired checkerboard filters which can limit the performance
of these networks (section 6.1).

The second proposed network, coined as the Generative ScatterNet Hybrid Deep
Learning (G-SHDL) network uses the generative unsupervised learning module to learn
the features from the hand-crafted descriptors, and it turns out that these do not
produce checkerboard patterns (section 6.4). A conditional random field is applied to
the features obtained from the hierarchical features to accomplish the second image
understanding task of semantic segmentation.

Sparse coding and RBMs are the most effective unsupervised learning algorithms
that have been successfully used in developing powerful image representations. For
example, Zeiler et al. [166] and Kavukcuoglu et al. [165] developed algorithms for
convolutional sparse coding, which approximately solves the optimization problem
to minimize the reconstruction error between the data and the higher layer features
convolved with the filters. Compared to sparse coding, RBMs can compute posterior
probabilities in a feedforward way, which is usually orders of magnitude faster. This
computational efficiency provides a significant advantage over sparse coding since it
scales up to a much larger number of codes [167].

This motivated us to use the Restricted Boltzmann Machines (RBMs) as the
mid-level unsupervised learning module. RBMs have been successfully used to learn
high-level structure in a wide variety of domains, including hand- written digits [163] and
human motion capture data [164]. While RBMs were successful in controlled domains,
scaling them to realistic-sized images was challenging. Lee et al. [161] proposed stacked
convolutional RBMs which were demonstrated to learn hierarchical representations
for realistic-sized images. Therefore we use stacked layers of convolutional Restricted
Boltzmann Machine (cRBMs) as the unsupervised learning module to learn the desired
hierarchical features from the handcrafted descriptors.

Training of convolutional RBMs is slow as the partition function is approximated
by sampling using MCMC [161]. To accelerate the training, the filters in each RBM
layer are initialized with structural priors (filters) learned using PCA as opposed to
random initialization. We have shown that the structural priors accelerate the training

81

Fig. 6.1 D-SHDL: The illustration shows the input image (64×64 (x)) from the CIFAR-
10 dataset at resolution R1 decomposed to extract the translation invariant relatively
symmetric coefficients at L0 (Srs[L0]), L1 (Srs[L1]) and L2 (Srs[L2]). Features at the
higher level of abstraction are captured at L3 and L4 layers of the PCA-Net using
unsupervised learning. Parametric log transformation is applied on the output of each
PCA stage to introduce relative symmetry. The representations extracted at each
stage (L0, L1, L2, L3, L4) are concatenated and given to the supervised OLS layer
that select the object-specific features finally used for classification using the Gaussian
SVM (G-SVM).

of RBMs. Since it is extremely fast to learn the filters or the structural priors using
PCA (eigen-decomposition), the whole process is much quicker than training RBMs
with random weight initialization.

The number of filters in each layer of both of these unsupervised learning modules
are optimized as part of the automated design process. The optimization of the number
of filters in a layer leads to more efficient learning of the subsequent layer as the filters
are now learned from a smaller feature space. This results in improved computational
performance as compared to the more usual deep network architectures.

The next sections present the deterministic and generative SHDL networks. The
details of the experimentation performed with each network are also given along with
the discussions of their performance.

82 ScatterNet Hybrid Deep Learning (SHDL) Networks

Fig. 6.2 Illustration shows the DTCWT real filters at two scales used at Layer L1 and
L2. The filters learned by the PCA-Net at L3, and L4 stage are also shown.

6.1 Deterministic ScatterNet Hybrid Deep Learn-
ing (D-SHDL) network

The section introduces the Deterministic ScatterNet Hybrid Deep Learning (D-SHDL)
network for object classification. This framework first extracts the hand-crafted feature
descriptors from the input signal using the Multi-resolution Parametric Log Scattering
Network. These features are used by the layers of the PCA based unsupervised learning
module to learn hierarchical features that capture intricate structure between different
object classes. Next, from the concatenated unsupervised feature hierarchies, an
Orthogonal least squares (OLS) based supervised learning layer selects the features
specific to each object class which are finally used for classification. Each layer of
the network is designed and optimized using cross-validation so that it produces the
desired computationally efficient architectures. The architecture of the Deterministic
ScatterNet Hybrid Deep Learning (D-SHDL) network is shown in Fig. 6.1.

6.1.1 ScatterNet Hand-crafted Descriptors

The Multi-resolution Parametric Log Scattering Network extracts feature coefficients
from the input signal (x) which are typically formed from three layers: x?φ (Layer 0),
Srs[L1] (Layer 1) and Srs[L2] (Layer 2) for each of the two image resolutions R1 and
R2, as detailed in Section 4.4.

6.1 Deterministic ScatterNet Hybrid Deep Learning (D-SHDL) network 83

The scattering coefficients obtained at each layer are:

S =


x?φ2J (L0)

U1[λm=1]?φ2J (L1)
|U1[λm=1]|?ψλ2|?φ2J (L2)

 (6.1)

6.1.2 Unsupervised Learning Module: PCA-Net Layers

The hand-crafted descriptors extracted at L1 or L2 as explained in the previous section
are used by the stacked PCA [44] (see Appendix C) layers based unsupervised learning
module to learn symmetrically distributed hierarchical mid-level features at L3 and L4
of the D-SHDL network, as shown in Fig. 6.1.

The formulation is presented for the Srs[R1,L1] invariant features obtained for
R1 resolution image at layer L1. The same formulation can be similarly applied to
Srs[R1,L2] (features for R1 resolution at layer L2) as well as features extracted at the
R2 resolution at both layers (Srs[R2,L1] and Srs[R2,L2]).

The objective of the PCA layer is to minimize the reconstruction error by learning a
family of multi-channel orthonormal filters. In order to learn the filters, M overlapping
patches (which capture object sub-parts) of size z1 ×z2 are collected from each channel
of the input S[R1,L1] i.e., x1,x2, ...,xM ∈ Rz1z2×P where x is the sampled patch,
M represents the number of patches and P (12 and 36, Fig. 6.1) represents the
number of channels of the input. After this, the patch mean is subtracted to obtain
X̃ = [x̃1, x̃2, ..., x̃M], where x̃ is a mean-removed patch. Given N training images, we
get the unified matrix:

X = [X̃1, X̃2, ..., X̃N] ∈Rz1z2M×P N . (6.2)

This filters are learned by minimizing the following equation,

min
WL3∈RsL3sL3×P ×KL3

‖X−WL3W
T
L3 X‖2

F , s.t. W T
L3WL3 = IKL3 , (6.3)

where WL3 represents the learned filters at layer L3 with size sL3 × sL3 ×P ×KL3,
where KL3 represents the number of filters. These KL3 filters are learned by simply by
obtaining the top KL3 principal eigenvectors of XXT . These learned filters (Fig. 6.2)
capture the variance of the training dataset.

The output responses of the L3 layer can be obtained as:

yL3 = Srs[R1,L1]?W sL3×sL3×P ×KL3
L3 , i= 1,2,3,,N (6.4)

84 ScatterNet Hybrid Deep Learning (SHDL) Networks

Fig. 6.3 Illustration presents the optimization for the number of filters (KL3) learned at
L3 layer as well as the log non-linearity parameter kL3, applied on the L3 layer feature
representations, using 5-CV classification. The graph that shows the optimization of
the filters is shown in (a) while the graph that presents the selection of the optimal
non-linearity parameter is shown in (b). The number of filters (K̂L3) and the chosen
parameter value (k̂L3) that result in the highest accuracy are marked with dotted
yellow circles on the graphs.

Srs[R1,L1] is zero-padded before convolving with WL3 so as to make yL3 have the
same size as Srs[R1,L1].

Next, G-SVM is used at the output of the L3 layer, with the varying number of
filters (10,20,..,KL3), to select the optimal number (K̂L3) of learned filters that result
in the highest five-fold cross-validation accuracy (5-CV) on the training dataset (Fig.
6.3(a)). The optimum output at L3 layer (ŷL3) is computed using the optimum number
of filters (K̂L3). Next, parametric log transformation is applied on ŷL3 to introduce
relative symmetry to its amplitude distribution:

ŷL3,rs = log(ŷL3 + k̂L3) (6.5)

The optimal parameter (k̂L3) for the log non-lineairty is obtained by again computed
using 5 fold cross validation (5-CV) as shown in Fig. 6.3(b).

Next, KL4 filters with weights W4 at layer L4 can be learned similarly:

min
WL4∈RsL4sL4×K3×KL4

‖XL3 −WL4W
T
L4 X

L3‖2
F , s.t.

W T
L4WL4 = IKL4 ,

(6.6)

where XL3 represents the matrix computed by extracting patches from ŷL3,rs (L3
output (relatively symmetric (rs)) obtained using the optimal (K̂L3) number of filters).

6.1 Deterministic ScatterNet Hybrid Deep Learning (D-SHDL) network 85

Fig. 6.4 Illustration presents the optimization for the number of filters (KL4) learned at
L4 layer as well as the log non-linearity parameter kL4, applied on the L4 layer feature
representations, using 5-CV classification. The graph that shows the optimization of
the filters is shown in (a) while the graph that presents the selection of the optimal
non-linearity parameter is shown in (b). The number of filters (K̂L4) and the chosen
parameter value (k̂L4) that result in the highest accuracy are marked with dotted
yellow circles on the graphs.

The output response at Layer L4 can be computed as shown:

yL4 = ŷL3,rs ?W
sL4×sL4×KL3×KL4
L4 , i= 1,2,3,,N (6.7)

Here, ŷL3,rs is also zero padded before applying the convolutions as described above.
The optimal L4 output (ŷL4) is computed using K̂L4 filters, obtained using five-fold
cross-validation (5-CV) as shown in Fig. 6.4 (a). Parametric log transformation is
finally applied on ŷL4 to introduce relative symmetry:

ŷL4,rs = log(ŷL4 + k̂L4) (6.8)

k̂L4 is obtained using five-fold cross-validation (5-CV) (similar to k̂L3) as shown in Fig.
6.4(b).

The effect of parametric log transformation applied to the features extracted at
layers, L3 and L4 of the D-SHDL network are presented in Fig. 6.5.

6.1.3 Supervised Learning Module: OLS and G-SVM

The features obtained from each layer of the network (L0, L1, L2, L3, L4) for both
R1 and R2 images are concatenated, normalized across each dimension and fed to

86 ScatterNet Hybrid Deep Learning (SHDL) Networks

Fig. 6.5 Illustration shows the impact of the parametric log transformation used to
the features extracted at layers, L3 and L4 of the D-SHDL network. The feature map
extracted at j = 1 and 15◦ orientation at R1 resolution (with relatively symmetric
feature amplitudes) from L1 of the D-SHDL network is used to produce the L3 features.
The parametric log non-linearity is applied to the L3 features to introduce the symmetry
in the amplitudes as explained in Section 6.1.2. Similarly, the parametric log non-
linearity is applied to the L4 features to introduce the symmetry in the amplitudes.
The effect of the non-linearity is shown using three randomly selected images taken
from the Caltech-101 Dataset, similar to Fig. 4.3.

the OLS as shown in Fig. 6.1. Orthogonal least square (OLS) regression [?]selects
discriminative features specific to class C in a supervised way using one-versus-all linear
regression. The regression is applied to the training set of scattering features where
each vector of N (Cifar: N ≈ 176000, Caltech: N ≈ 474000) dimensions is reduced to
N ′ (Cifar: N’ ≈ 10300, Caltech: N’ ≈ 21000) selected dimensions. The dimensions are
selected using 5-fold cross validation on the training dataset. The reduced scattering
features dataset represents the metric defined in Eq. 1.1. The reduced training feature
dataset is utilized by the G-SVM to learn weights that best discriminate the classes in

6.2 Overview of the D-SHDL Results 87

the dataset. Feature selection results in limited dimensions that lead to more efficient
training of the G-SVM and improves generalization.

6.2 Overview of the D-SHDL Results

The performance of the SHDL network is evaluated on CIFAR-10 and Caltech-101
datasets. CIFAR-10 contains a total of 50000 training and 10000 test images each of
size 32 × 32. The Caltech-101 dataset is an unbalanced image dataset with images
of different sizes. In these experiments, 30 images (resized to 128 × 128) per class
(clutter class removed) are used for training, 10 for validation and the rest of the images
in each class are used for testing. Average per class classification results is reported
with an averaging over five random splits. A detailed comparison with unsupervised,
semi-supervised, and supervised methods is also presented.

6.2.1 ScatterNet feature extraction

The scattering representations are extracted by first obtaining multi-resolution images
of size (64 × 64 (R1) and 48 × 48 (R2)) for CIFAR-10 and (256 × 256 (R1) and 192
× 192 (R2)) for Caltech-101, as described in Section. 2.1. The images in the CIFAR
dataset are decomposed for each color channel separately using DTCWT filters at 5
(for R1), and 4 (for R2) scales respectively, while the images in the Caltech dataset
are decomposed at 6 and 5 scales for R1 and R2 resolutions respectively. Next, log
transformations are applied to the representations obtained (except at the coarsest
scale) for both the R1 and R2 pipeline with parameters kj=1 = 1.1, kj=2 = 3.8, kj=3

= 3.8, kj=4 = 7 and kj=5 = 6.8 for CIFAR-10 images. The parameters kj=1 = 1.05,
kj=2 = 1.34, kj=3 = 1.94, kj=4 = 2.79 and kj=5 = 3.3, are used for the Caltech-101
images. These parameters are obtained by averaging the individual k value for the
particular scale, for all the images in the training dataset as described in Section 4.4.
The classification accuracies for each layer (L0, L1, L2) and the concatenated features
(HC = S[L0, L1, L2]) are presented for both resolutions, using G-SVM in Table 6.1.
L2 features give a less good performance on their own than L1, probably due to their
lower energies, but still, give a useful improvement when combined with L1.

6.2.2 PCA Layers: features and layer optimization

The L3 PCA layer of the network is trained on Srs[R1L1], Srs[R1L2], Srs[R2L1] and
Srs[R2L2], to learn KL3=100 filters of size 5×5 (sL3 ×sL3) for the CIFAR-10 dataset.

88 ScatterNet Hybrid Deep Learning (SHDL) Networks

Table 6.1 Accuracy (%) on CIFAR-10 for features extracted at different layers and
resolutions. Srs[Layer], HC = S[L0, L1, L2]

S[L0] S [L1] Srs[L1] S[L2] Srs[L2] HC HCrs

R1 53.26 71.48 72.58 60.34 60.51 80.7 81.7
R2 55.14 72.04 73.39 60.12 60.39 80.9 81.9

The filter size (5 × 5) is same for the Caltech-101 dataset. Cross-validation is used
(as explained in Section 6.1.2) on the L3 layer output (yL3) to select the 40, 70, 50
and 80 optimal filters (K̂L3) for the four cases (selected from 100 learned filters), as
shown in Fig. 6.4(a). Next, the relatively symmetric L3 output (ŷL3,rs) is obtained by
applying a log transformation with k̂L3 = 1.8, 1.9, 1.7 and 7.0 on ŷL3, respectively (Fig.
6.4(b)). The L3 PCA layer filters for the Caltech-101 dataset are 115, 175, 125, and
190 optimal filters (K̂L3), selected from 200 learned filters, for Srs[R1L1], Srs[R1L2],
Srs[R2L1] and Srs[R2L2] respectively. The log non-linearity parameters are for the
four cases are (k̂L3) 0.9, 1.1, 1.34 and 2.9 respectively.

L4 PCA layer is trained on L3 layer outputs (ŷL3,rs) correspondingly to learn 200
(KL4) filters, of size 5×5 (sL4 ×sL4). The filter size (5×5) is same for the Caltech-101
dataset. Similarly, 150, 140, 120 and 130 optimal filters (K̂L4) are selected for the
four cases (Srs[R1L1], Srs[R1L2], Srs[R2L1] and Srs[R2L2]), as shown in Fig. 6.5(a).
Next, the relatively symmetric L4 outputs (ŷL4,rs) are obtained by applying a log
transformation with k̂L4 = 2.0, 1.3, 2.1 and 7.2 on ŷL4,rs, respectively, for the four
cases, as shown in Fig. 6.5(b). The L4 PCA layer filters for the Caltech-101 dataset
are 210, 235, 310, and 335 optimal filters (K̂L4), selected from 400 learned filters, for
Srs[R1L1], Srs[R1L2], Srs[R2L1] and Srs[R2L2] respectively. The log non-linearity
parameters are for the four cases are (k̂L4) 1.2, 1.38, 1.95 and 3.3 respectively. The
PCA layers are trained using the software presented in Appendix D.3.

The five-fold cross-validation (5-CV) classification accuracies on CIFAR-10, obtained
using G-SVM, at different stages of Layers L3 and L4 are presented in Table 6.2. There

Table 6.2 5-CV Accuracy (%) on CIFAR-10 at L3 and L4. yL3, yL4 output, ŷL3, ŷL4
optimal output and ŷL3,rs, yL4,rs relatively symmetric output, at L3 and L4.

yL3 ŷL3 ŷL3,rs yL4 ŷL4 ŷL4,rs

Srs[R1L1] 73.83 74.13 74.68 74.81 75.02 75.06
Srs[R1L2] 60.78 60.96 61.04 60.93 61.36 61.38
Srs[R2L1] 73.86 74.07 74.29 74.88 75.63 75.69
Srs[R2L2] 60.81 61.11 61.23 61.78 62.02 62.67

6.2 Overview of the D-SHDL Results 89

Table 6.3 Object classification accuracy (%) on CIFAR-10 and Caltech-101 for each module
computed with OLS and G-SVM. The increase in accuracy with the addition of each layer is
also shown. HC: Hand-crafted, PCA features ((Layer)filter−size): eg (L3)sL3=5

Accuracy HC HC,(L3)5 HC,(L3,L4)5 HC,(L3,L4)3,5
CIFAR-10 82.40 82.80 83.50 83.90

Caltech-101 76.30 78.10 80.88 81.46

are fewer optimal filters in (K̂L3, K̂L4) than the initially learned filters (KL3, KL4)
but produce an equal or higher cross-validation accuracy. This suggests that some of
the filters learn redundant information which can be removed. This results in efficient
learning of L4 layer (subsequently for OLS as well as SVM) as the L4 filters are learned
from a smaller feature space ŷL3,rs (obtained with K̂L3(40,70,50,80)<<KL3(100)).

6.2.3 Classification performance

This section evaluates the classification performance of each module of the D-SHDL
network. The classification accuracy of each module is presented by applying the
supervised OLS layer on the features to select the relevant features which are then fed
to the G-SVM to compute the accuracy. The accuracy of the handcrafted module (HC)
is computed on the concatenated symmetric features extracted at L0, L1, L2, for both
resolutions (R1, R2) using OLS for feature selection and then G-SVM for classification.

The hand-crafted module produced a classification accuracy of 82.4% (HC) on
CIFAR-10 as shown in Table 6.3. An increase of 0.4% is observed when the mid-level
features, learned at L3 with sL3=5 are concatenated with the features of the hand-
crafted module (HC,(L3)sL3=5), again for both R1 and R2. A further increase of 0.7%
(HC,(L3,L4)sL3,L4=5) is noticed when mid-level features from the L4 layer learned
with sL4=5 are concatenated to (HC,(L3)sL3=5) features. This suggests that the PCA
layers (L3 and L4) learn useful image representations as they improve the classification
performance. Finally, to test the optimality of the filter sizes, the L3 and L4 layers
were also trained with 3 × 3 (sL3 × sL3) and 3 × 3 (sL4 × sL4). A further increase of
around 0.4% (HC,(L3,L4)3,5) is observed by concatenating the features obtained at
L3 and L4 layers, with filters trained with the kernel sL3, sL4 of size 3 and 5, with the
hand-crafted module (HC). This suggests that filters of different sizes learn unique and
useful image representations.

Next, the classification accuracy is computed for the Caltech-101 dataset. As seen
from the Table 6.3, the accuracy increases from (76.30% to 81.46%) with the use of
representations obtained from the deeper layers of the D-SHDL network. The network

90 ScatterNet Hybrid Deep Learning (SHDL) Networks

results in an accuracy of 81.46% by using the concatenated features obtained at L3
and L4 layers, with filters trained with the kernel sL3, sL4 of size 3 and 5, with the
hand-crafted module (HC), as shown in Table 6.4.

6.2.4 Comparison with the state-of-the-art

This section presents the comparison of the D-SHDL network with the state-of-the-art
methods from the unsupervised, semi-supervised and supervised domains as shown in
Table 6.4.

Table 6.4 Object classification accuracy (%) and comparison with other approaches on
both datasets. Unsup: Unsupervised, Semi: Semi-supervised and Sup: Supervised.

Dataset SHDL Semi Unsup Sup
CIFAR-10 83.90 83.3 [47] 82.9 [41] 96.2 [48]

Caltech-101 81.46 81.5 [49] 81.0 [42] 92.7 [36]

The methods used for comparison are briefly described below.
Unsupervised Methods: Lin et al. [41] proposed an unsupervised method that

used multi-layer deep architecture for representation learning. The deep network made
use of K-means clustering for feature learning and the nonnegative variant of Orthogonal
matching pursuit (OMP) for representation encoding. These representations were finally
used to perform classification and produced a classification accuracy of 82%. The
unsupervised learning model proposed in [42] encoded the local visual features in
a codebook which were then pooled into histograms at several spatial granularities.
These histogram features were utilized for classification using a support vector machine
(SVM) and performed with an accuracy of 81% on Caltech-101.

Semi-Supervised Methods: Dei et al. [49] proposed a simple, yet effective feature
learning method to exploit the available, unlabeled data. By using two consistency
assumptions, they generated a diverse set of training data for surrogate classes to
learn visual attributes in a discriminative way. By doing so, images were classified and
linked to the surrogate classes. The images were represented with their affinities to
a rich set of discovered image attributes which finally resulted in 81% classification
performance. Salimans et al. [47] trained the Generative adversarial networks (GANs)
in a semi-supervised setting to learn rich features which were used for classification.
This method produced a classification accuracy of 83%.

Supervised Methods: Two very deep networks [36, 48] were trained end-to-end
using supervised learning to learn hierarchical features and produced classification

6.2 Overview of the D-SHDL Results 91

accuracy of more than 90% on both datasets. However, these networks require sizeable
computational resources to train along with large labeled training examples which may
not be available for most applications.

The D-SHDL outperformed the semi-supervised and unsupervised learning methods
on both datasets. However the network underperformed by nearly 13% against super-
vised deep learning models. However, the advantages over the end-to-end supervised
methods are detailed in the next section.

6.2.5 Advantage over supervised learning

The end-to-end training of supervised models requires large training datasets which may
not exist for most applications. Table 6.5 shows that D-SHDL network outperformed
VGG [36] and Network in Network (NIN) [35] on the CIFAR-10 datasets with less
than 2k images. The experiments were performed by dividing the training dataset
of 50000 images into eight datasets of different sizes. The images for each dataset
are obtained randomly from the full 50000 training dataset. We ensure that an equal
number of images per object class are sampled from the training dataset. The whole
test set of 10000 images is used for all the experiments. Deeper models like NIN [35]
and VGG [36] result in low classification accuracy due to their inability to train on the
small training dataset.

Table 6.5 Comparison of SHDL network on accuracy (%) with two supervised learning
methods (VGG [36] and NIN [35] against different training dataset sizes on CIFAR-10.

Arch. 500 1K 2K 5K 10K 20K 50K
SHDL 50.3 57.9 63.4 68.6 72.3 78.4 83.9
NIN 15.6 54.5 61.1 72.9 81.2 86.7 89.6
VGG 10.3 10.7 43.4 63.4 72.0 83.1 92.7

6.2.6 Computational Complexity

This section presents the computational complexity of different modules of the D-SHDL
network.

As mentioned in Section 4.7, the ScatterNet front-end extracts the features for a
batch of 128 images of size 64 × 64 × 3 and 48 × 48 × 3 of the CIFAR dataset (using
dual-tree wavelets at 5 scales and 6 orientations) with the Titan X Pascal GPU, in 0.41
seconds. The features for the complete CIFAR dataset of 60,000 images are extracted
in 6 minutes.

92 ScatterNet Hybrid Deep Learning (SHDL) Networks

Fig. 6.6 The illustration presents the computational time required to learn the filters
at Layers, L3 and L4, for the following four cases: Srs[R1L1], Srs[R1L2], Srs[R2L1]
and Srs[R2L2].

Next, we present the computational time required to learn the filters at Layers, L3
and L4, for the following four cases: Srs[R1L1], Srs[R1L2], Srs[R2L1] and Srs[R2L2].
The major time is spent on extracting the patches (at each pixel location) from the
hand-crafted feature representations obtained at layers L1 or L2. To speed up this
process, we used multiple cores to extract the patches in parallel which are then used
to learn the desired L3 and L4 filters using Eigen decomposition.

As observed from Fig. 6.6, the time required to learn the filters for the L4 layer is
higher for both resolutions (R1, R2) as the number of filters to be determined is more
than for layer L3. Also, the time required to learn the filters at resolution R2 is lower
than the R1 resolution as the number of patches to be extracted are fewer due to the
smaller size of the feature representations obtained for the R2 resolution at layers, L1
or L2.

The features extracted from the layers L0, L1, L2, L3, and L4 are concatenated
for both resolutions. These concatenated features are used by the orthogonal least
squares (OLS) for feature selection. The OLS module reduces the dimensions of the
feature vector from 176000 to 10300 in 33 minutes. The OLS performs feature selection
for class separately by using one vs. all regression. Multiple cores are used to assign
individual works to each regressor which significantly accelerates the feature selection
process. The selected features are given as input to the Gaussian SVM which takes
another 30 minutes to learn the desired classification model. The classifier is also
trained in a one vs. all manner to achieve faster training.

6.3 Discussions 93

The total taken by the D-SHDL network to learn the desired representations for
classification is around 1 hour on the CIFAR-10 dataset as opposed to the CNNs which
takes significantly larger [162] (3 hours (NIN), 4 hours (VGG), 9 hours (ResNet (110
layers)) to train for the reasons detailed in section 6.1. The time required to train our
(D-SHDL) model on the Caltech-101 dataset is around 3 hours because of the large
size of the input images.

6.3 Discussions
The D-SHDL network proposed in this work is inspired from the circuitry of the visual
cortex. The proposed network uses a hand-crafted front-end to extract invariant edge
features similar to the V1 of the cortex. These hand-crafted features are used by a
PCA-based unsupervised learning module to learn mid-level features while OLS-based
supervised learning is used to select features that aid the discriminative SVM learning.
It is shown that a straightforward PCA based network can learn useful features that
can be useful in improving the classification performance. The network has been shown
to outperform unsupervised and semi-supervised learning methods while evidence of
the advantages of D-SHDL network over supervised learning (CNNs) methods are
presented for small training datasets. The D-SHDL network is also significantly faster
(3x to 8x depending on the network) to train as the PCA layer filters can be obtained
simply by computing the Eigen decomposition of the patches extracted from the hand-
crafted features which is advantageous as training of deep CNNs requires extensive
computational resources.

94 ScatterNet Hybrid Deep Learning (SHDL) Networks

6.4 Generative ScatterNet Hybrid Deep Learning
(G-SHDL) network

This section presents the Generative ScatterNet Hybrid Deep Learning (G-SHDL)
network which is derived from the ScatterNet Hybrid framework presented in Chapter
3, similar to the D-SHDL network. This network is utilized to solve the task of semantic
image segmentation which is the second image understanding task. G-SHDL network
can also be used to address the task of object classification. However, G-SHDL is used
to solve the semantic segmentation task as it is more complicated which requires the
system to assign a label to each pixel of the images as opposed a label to the whole
image in case of object recognition.

The G-SHDL is constructed by using the ScatterNet front-end to extract the
translation invariant hand-crated features which are used by the four stacked layers of
convolutional Restricted Boltzmann Machine (RBM) with PCA structural priors to
rapidly learn an invariant hierarchy of features. The features obtained from the last
RBM layer are then used by a supervised conditional random field (CRF) to achieve
the semantic segmentation. The convolutional Restricted Boltzmann Machine (RBM)
is selected as the unsupervised learning module as it is a generative model.

The G-SHDL network can learn meaningful hierarchical representations rapidly
using mainly unlabelled data and produce the desired semantic segmentation using
smaller labeled datasets. This is especially advantageous for this task as it can be
expensive and time-consuming to generate pixel-wise annotations. The proposed
network is also computationally efficient as the number of filters in each RBM layer
are optimized using cross-validation. The filters in the subsequent layer are then also
learned from a smaller feature space. The above-mentioned advantages may make the
G-SHDL an attractive choice over the standard deep networks.

The Generative ScatterNet Hybrid Deep Learning (G-SHDL) network is shown in
Fig. 6.7 and detailed in the following section.

6.4.1 ScatterNet Hand-crafted Descriptors

The parametric log based DTCWT ScatterNet is used to extract the relatively symmet-
ric translation invariant hand-crafted features from the input signal x. This ScatterNet
is identical to hand-crafted network used for the D-SHDL network as presented in
Section 6.1.1 but extracts features only at the input resolution.

6.4 Generative ScatterNet Hybrid Deep Learning (G-SHDL) network 95

Fig. 6.7 The proposed G-SHDL network uses the ScatterNet front-end to extract
hand-crafted scatternet features from the input image at L0, L1 and L2 using DTCWT
filters at two scales and six fixed orientations (filters shown). The handcrafted features
extracted from the three layers are concatenated and given as input to the four stacked
convolutional RBM layers (L3, L4, L5, L6) with 200, 150, 100 and 50 filters to learn a
hierarchy of features. Each RBM layer is initialized with PCA based structural priors
with the same number of filters which improves their training as shown by L3 to L6
convergence graphs. The RBM layers are trained in a layer by layer greedy type fashion.
Once an RBM layer is trained the optimal number of filters are selected using five-fold
cross-validation that results in a computationally efficient architecture (Table. 1) as
the later layers can feature from a smaller feature space. The features learned from
the last RBM layer (L6) are used by the CRF for semantic image segmentation. PCA
layers can learn the undesired checkerboard filters (shown in red) which are avoided
and not used as the prior for the RBMs. To detect and remove the checkerboard filters
from the learned filter set, we used the method defined in [71].

6.4.2 Unsupervised Learning: RBM with Priors

The Scattering features extracted at (L0, L1, L2) are concatenated and given as input
to 4 stacked convolutional restricted Boltzmann machine (CRBM) [161] layers that
learn 200, 150, 100 and 50 filters respectively.

The Convolutional RBM (CRBM) [161] is similar to the regular RBM (presented
in section 2.2.6), but the weights between the hidden and visible layers are shared
among all locations in an image. The basic CRBM consists of two layers: an input

96 ScatterNet Hybrid Deep Learning (SHDL) Networks

Fig. 6.8 The illustration presents the improvement in rate of learning for the RBM
with the use of PCA priors as compared to using random initialisation.
.

layer V and a hidden layer H (corresponding to the lower two layers in Figure 1). The
input layer comprises of NV ×NV array of Gaussian units. The hidden layer consists
of M “groups (No. of filters),” where each group is an NH ×NH array of Gaussian
units, resulting in N2

H M hidden units. Each of the M groups is associated with an
NW ×NW filter; the filter weights are shared across all the hidden units within the
group. Also, each hidden group has a bias bk and all visible units share a single bias
c. Markov chain Monte Carlo (MCMC) sampling in the form of Gibbs sampling is
used to approximate the likelihood and its gradient. The estimation of the likelihood
of the RBM or its gradient for inference is computationally intensive [76]. However,
initializing RBMs with priors on the hidden layer instead of a random initialization
has been shown to improve the training [76].

We propose structural priors for each convolutional RBM layer (L3 to L6) which is
shown to improve the training of the RBMs (Fig. 6.8 Graphs). The Structural priors
are obtained using the PCA [44] layer that learns a family of orthonormal filters by
minimizing the following reconstruction error:

min
V ε Rz1z2×K

∥∥∥X−V V TX
∥∥∥2

F
, s.t. V V T = IK (6.9)

6.4 Generative ScatterNet Hybrid Deep Learning (G-SHDL) network 97

Fig. 6.9 Figure shows two images from MSRC dataset with their ground truth and
segmentation obtained at L2 to L6 of G-SHDL.

where X are patches sampled from N training images (concatenated handcrafted
features), IK is an identity matrix of size K ×K. The solution of Eq. 6.9 in its
simplified form represents K leading principal eigenvectors of XXT obtained using
Eigen decomposition. The PCA layers may learn undesired checkerboard filters. To
detect the checker-board filters from the learned filter set, we use the method defined
in [71]. These checkerboard filters are avoided as filter priors. Each RBM layer (L3,
L4, L5, L6) of the G-SHDL is trained individually in a greedy fashion (with structural
priors). Once the RBM layer is trained the filters that learn redundant information
are removed using five-fold cross-validation. (Table 6.6 and section 6.4.2).

The CRBM’s hidden units extract features from overlapping patches of visible units,
and features of neighboring patches complement each other and cooperate to model
the input. CRBM is trained on complete images or large regions of them to learn local
features and exploit spatial relationship of overlapping patches. Because the hidden
units of overlapping patches co-operate in a CRBM, an image pattern that is explained
by one hidden unit in one neighborhood does not demand to be explained again in
another overlapping patch. This reduces the redundancy of features.

6.4.3 Supervised CRF Segmentation

Conditional Random Field (CRF) is a probabilistic graphical model that uses the
features obtained from the L6 RBM along with edge potentials computed on four
pairwise connected grids [77] to perform the desired segmentation. L6 RBM features are
similar to the metric defined in Eq. 1.1. The segmentation is obtained by minimizing
the clique loss function with Tree-Reweighted [77] inference that uses the LBFGS
optimization algorithm. The pairwise potentials are computed on four adjacency grid

98 ScatterNet Hybrid Deep Learning (SHDL) Networks

Fig. 6.10 The illustration shows the L6 RBM features thresholded to the top 10, 20
and 30 activations and back-projected [105] to the input image selected from the
Caltech-101 dataset. The L6 RBM features are most responsive to the beaks of the
birds, then feet and wings.

because it is faster to perform the inference. However, this grid has limited expressive
power as it only models local interactions. Larger grids can be considered for more
accurate segmentation, yet, it may make the inference significantly slower.

6.5 Overview of the G-SHDL Results

G-SHDL was evaluated and compared with other segmentation frameworks on both
MSRC [73] and Stanford Background (SB) [74] datasets. The MSRC dataset contains
572 images with 21 classes while the SB dataset is formed of 715 images with eight
classes, where each image in both datasets has a resolution of 320×240. The quantitative
results are presented with the class pixel accuracy which represents the ratio of correct
pixels computed in a per-class (PA) [69] basis and then averaged over the total number
of classes. The results are presented for 5-fold cross-validation for both datasets
randomly split into 45% training, 15% validation and 40% test images for each fold.
We provide a quantitative comparison against the state-of-the-art to evaluate the
performance of G-SHDL.

6.5.1 Handcrafted Front-end: ScatterNet

ScatterNet features are extracted from the input RGB image using DTCWT filters at
two scales and six fixed orientations. Next, log transformation with parameter kj=1 =

6.5 Overview of the G-SHDL Results 99

1.1 is applied to the representations obtained at the finer scale to introduce relative
symmetry (Section 4.4). These parameters are used for both the datasets.

6.5.2 Unsupervised Mid-section: RBM with PCA priors

The four stacked convolutional RBM layers learn 200, 150, 100 and 50 filters respectively
with PCA structural priors (obtained by training on the handcrafted features) in a
greedy layer-wise fashion (Section 6.4.2). The convolutional RBM for each layer is
trained using the following parameters: (i) Batch Size: 10 images (ii) Learning Rate:
0.05 which is dropped to 0.001 (iii) Standard deviation of the Gaussians at the visible
units: 0.01 (iv) Number of Gibbs updates per weights update: 1. Once, each RBM
layer is trained, five-fold cross-validation (5-CV) is computed with filters randomly
selected from the trained filter set to evaluate the segmentation accuracies using CRF.
We were able to achieve similar PA accuracy on the 5-CV with the fewer number
of filters than the complete learned filter set. This suggests that some of the filters
learn redundant information which can be removed. This results in efficient learning
of subsequent layers as the filters are determined from a smaller feature space. The
numbers of selected filters are shown in Table 6.6. The PCA and RBM layers are
trained using the softwares presented in Appendix D.3 and D.4 respectively.

Table 6.6 5 fold cross validation performed on the training dataset of Stanford back-
ground (SB) ansd MSRC dataset to select the optimal numbers of filters for L3 to L6
RBM layers. L(size) = No. of Filters (a,a represents a×a)

Filters L3 (size) 43 (size) L5 (size) L6 (size)
PCA 200 (3,3) 150 (5,5) 100 (7,7) 50 (9,9)
RBM 200 (3,3) 150 (5,5) 100 (7,7) 50 (9,9)

Selected-SB 139 110 83 47
Selected-MSRC 163 136 92 48

6.5.3 Classification performance

This section presents the classification performance for each module of the G-SHDL
network. The accuracy of the hand-crafted module (HC) is computed on the con-
catenated features relatively with symmetric amplitudes extracted at L0, L1, L2, for
both resolutions (R1, R2) using CRF for segmentation on Stanford background (SB)
dataset. The hand-crafted module produced a classification accuracy of 68.4% (HC)
as shown in Table 6.7. An increase of approximate 4%, 2%, 2% and 2% is observed

100 ScatterNet Hybrid Deep Learning (SHDL) Networks

when the mid-level features, learned at L3, L4, L5, and L6 are used by the CRF. This
suggests that the RBM layers learn useful image representations as they improve the
segmentation performance finally producing an accuracy of 78.21%.

Table 6.7 PA (%) on both dataset for each module computed with CRF. The increase
in accuracy with the addition of each layer is also shown. HC: Hand-crafted. RBM
Layers: L3, L4, L5 and L6.

Accuracy HC L3 L4 L5 L6
SB [73] 68.43 72.38 74.82 76.79 78.21

MSRC [74] 73.12 77.95 80.4 81.95 83.90

Next, the performance of the G-SHDL network is evaluated on the MSRC dataset.
As seen from the Table 6.7, the accuracy increases from (73.12% to 83.90%) with the
use of representations obtained from the deeper layers of the network. The network
results in a segmentation accuracy of 83.90%. The segmentation results for two images
from the MSRC dataset are shown in Fig. 6.9. The network can also be used to
understand the features which are most important for the segmentation as shown in
Fig. 6.10.

6.5.4 Comparison with the state-of-the-art

This section presents the comparison of the G-SHDL network with the state-of-the-art
methods from the unsupervised, semi-supervised and supervised domains as shown in
Table 6.8.

Table 6.8 PA (%) and comparison on both datasets. Unsup: Unsupervised, Semi:
Semi-supervised and Sup: Supervised.

Dataset G-SHDL Semi Unsup Sup
SB [73] 78.21 77.76 [80] 68.1 [81] 80.2 [82] 87.2 [192]

MSRC [74] 83.90 83.6 [83] 74.7 [84] 89.0 [79] 91.4 [159]

The methods used for comparison are briefly described below.
Unsupervised Methods: Coates et al. [81] used K-means clustering for learning

large-scale representations from images which were then used to produce semantic
segmentation with a pixel accuracy of 68.1% on the SB dataset. Rubinstein et al. [84]
proposed a model which used dense correspondences between images to capture the
sparsity and visual variability of the common object over the entire image database.
The features learned by both the networks were finally used to perform 74.7% pixel
accuracy on the MSRC dataset.

6.5 Overview of the G-SHDL Results 101

Semi-Supervised Methods: Souly et al. [80] proposed a semi-supervised Gener-
ative Adversarial Networks (GANs) framework which generated extra weakly labeled
examples to train a multi-class classifier, acting as the discriminator. The features
learned by the framework were later used to produce the desired segmentation and
produced a pixel accuracy of 77% on the SB dataset. Liu et al. [83] proposed a
non-parametric Random Forest framework to obtain an accurate quality measure of
splitting by incorporating abundant unlabeled data. This framework was then used
to produce the desired semantic segmentation with 83% pixel accuracy on the MSRC
dataset.

Supervised Methods: Four supervised deep networks [79, 82, 159, 192] were
trained end-to-end using supervised learning to learn hierarchical features which were
used for semantic segmentation. Two earlier networks produced a pixel accuracy (PA) of
greater than 80% on SB and MSRC datasets. The networks outperformed the proposed
G-SHDL by a narrow margin on the SB dataset [79] while the performance difference
was significant on the MSRC dataset [82]. The recent deep networks, DeepLab-
CRF [192] and Deep Fully Connected Continuous CRFs method [159] outperformed
the G-SHDL network by more than 10% as compared both datasets. Despite their
superior performance, supervised networks require sizeable computational resources to
train along with large labeled training examples which may not be available for most
applications.

The G-SHDL outperformed the semi-supervised and unsupervised learning methods
on both datasets; however, the network underperformed against the end-to-end deep
learning models [79, 82, 159, 192], as shown in Table 6.8.

6.5.5 Advantage over Deep Supervised Networks

Deep Supervised models need large labeled datasets for training which may not exist
for many application. The proposed G-SHDL network is compared with DeepLab-
CRF [192] that combines ideas from deep convolutional neural networks and fully-
connected conditional random fields, yielding a novel method able to produce semanti-
cally accurate predictions and detailed segmentation maps, while being computationally
efficient. The comparison is performed between a DeepLab-CRF model whose deep
network is pretrained on the ImageNet [96] dataset and one with randomly initialized
weights. The training of the DeepLab-CRF method involves learning the weights
of both the deep network and the CRF. Table 6.9 shows that our G-SHDL network
outperformed the (pre-trained) DeepLab-CRF [192] on the SB dataset with 200 images
or less due to the poor ability of this method to finetune the weights of the deep

102 ScatterNet Hybrid Deep Learning (SHDL) Networks

network and learn the CRF parameters for limited training examples. The model
with random weights initialization underperforms several as merely 500 images are
insufficient to learn meaningful parameters for this model. The experiments were
performed by dividing the training dataset into eight datasets of different sizes. For
each size of the dataset, we ensured that an equal number of images per object class
were sampled from the training dataset. The full test set was used for all experiment.

Table 6.9 Comparison of G-SHDL on PA (%) with DeepLab-CRF [192] against different
training dataset sizes on SB dataset.

Arch. 50 100 200 300 400 500 572
G-SHDL 40.3 59.9 66.4 72.6 75.7 78.20 78.21

DeepLab-CRF 8.9 14.7 24.4 34.9 40.9 46.4 59.2
DeepLab-CRF (pre-trained) 17.9 44.7 60.4 77.9 80.9 86.4 87.2

6.5.6 Computational Complexity

This section presents the computational complexity of different modules of the G-SHDL
network.

The ScatterNet front-end extracts the features for a batch of 128 images of size
320 × 240 × 3 for both the Stanford Background (SB) and the MSRC datasets (using
dual-tree wavelets at 2 scales and 6 orientations) with the Titan X Pascal GPU, in
0.71 seconds. The features for the complete Stanford Background (SB) dataset of 572
images and the MSRC dataset of 715 images are extracted in less than 5 minutes.

Next, the features from the all the layers of the ScatterNet are combined and used
to learn the PCA priors at four layers. The PCA priors are learned for the L3, L4, L5
and L6 layers in approximately one and a half hours as shown in Fig. 6.11 top row.

The four CRBM layers at L3, L4, L5 and L6 layers are then learned using PCA
priors in around 3 hours as shown in Fig. 6.11 middle and lower rows. The CRF takes
another 13 minutes to compute the segmentation using the LBFGS algorithm (Titan
X Pascal GPU).

The total taken by the G-SHDL network to learn the desired representations for
segmentation is around 5 hours on both the Stanford Background (SB) dataset and
the MSRC dataset. This is relatively lower than recurrent CNN’s which require
approximately 11 hours of training to learn meaningful representations that produce
the desired segmentation.

6.5 Overview of the G-SHDL Results 103

6.5.7 Discussions

The G-SHDL network is a generative variant of the D-SHDL network proposed in
Section 6.1. The G-SHDL network similar to the D-SHDL network uses the ScatterNet
front-end to extract the low-level edge features which are used by the PCA layers
to learn filters which capture hierarchical features. These filters are used as priors
for the CRBM to learn refined filters using iterative contractive divergence learning.
It is shown that simple PCA based priors can be used to improve the learning of
CRBMs. The networks also outperform unsupervised and semi-supervised learning
methods while they fall short compared to the performance of the supervised networks.
However, this model is advantageous when the amount of labeled data is not available

Fig. 6.11 The illustration presents the computational time required to learn the PCA
priors and RBM filters at different Layers of the G-SHDL network. The figure also
presents the comparison between the time required to learn the RBM filters with and
without the use of PCA priors.

104 ScatterNet Hybrid Deep Learning (SHDL) Networks

in abundance which is necessary to train the supervised networks. Overall, the G-SHDL
can be an attractive choice due to its computationally efficient architecture and its
ability to learn meaningful representations quickly using mainly unlabelled examples
and a small set of labeled examples.

Chapter 7

Conclusions

In this dissertation, we proposed that deep networks that are carefully designed
by taking inspiration from the principles of visual cortex can learn invariant and
discriminative representations rapidly using mainly unlabeled data and limited labeled
examples with reduced computational complexity. The proposed ScatterNet hybrid
framework was used to derive such networks, termed as, the ScatterNet Hybrid Deep
Learning Networks. These networks have also been shown to improve the learning and
generalization of the deep end-to-end supervised networks.

7.1 Summary of Key Results
The circuitry of the visual cortex inspires the design of the different parts of the deep
network. While this philosophy defines our approach, there are many facets related to
the design of the different parts of the deep neural networks that warrant such analysis.
We have attempted to present each of these in detail below:

Chapter 3 proposed the ScatterNet Hybrid Framework for Deep Learning that was
inspired by different regions of the visual pathways. The ScatterNet Hybrid Framework
was formed of the hand-crafted front-end that captures low-level features similar to the
V1 of the cortex [40, 119, 155]. The mid-section of the framework encodes mid-level
features which are believed to be similar to the representations captured by the V2-V4
regions of the cortex [149–152]. This process seems to take place in an unsupervised
manner [149–152]. The supervised back-end of the framework assigns a label to the
features learned by the mid-section. The IT region is believed to be involved in a
similar process [148]. This framework can be used to derive networks which can learn
meaningful representations rapidly using mainly unlabelled dataset and a few labeled
examples. The derived networks are computationally efficient as each layer of the

106 Conclusions

network is optimized by minimizing an objective function. The ability of this framework
to learn informative representations rapidly using mainly unlabelled data and limited
labeled examples in a computationally efficient way makes this framework an attractive
choice over the standard deep learning networks.

Chapter 4 proposed two hand-crafted architectures that captures low-level repre-
sentations similar to the V1 of the visual cortex [40, 119, 155] and forms the front-end
of the ScatterNet Hybrid framework. This chapter proposed the Multi-Resolution
Region Pooling ScatterNet and the Multi-resolution Parametric Log ScatterNet which
are improved variants of Mallat’s Scattering networks [22, 27, 28, 86]. Both the
networks decompose the input signal to extract translation invariant low-level edge
representations that are densely spaced over the scale.

The proposed Multi-resolution Region Pooling ScatterNet was tested on four real-
world datasets selected from the image, audio, biology and material modalities and
compared with Mallat’s handcrafted ScatterNet [86] as well as the state-of-the-art
learned methods. The proposed network was able to outperform Mallat’s handcrafted
ScatterNet [86] on all four datasets by 2-3%. However, the proposed network was only
able to surpass the performance of learned algorithms on only two out of the four
datasets. The performance gain over the two learned algorithms was around 2-3% while
for the remaining two algorithms the network underperformed by about 5% (Table
4.2-4.5).

The proposed Multi-resolution Parametric Log ScatterNet was tested on more com-
plex CIFAR-10 and CIFAR-100 image datasets. The performance of the network was
compared with a later version of the ScatterNet proposed by Oyallon and Mallat [22]
as well as the state-of-the-art unsupervised and supervised methods. The proposed
network outperformed this variant of the ScatterNet and the state-of-the-art unsu-
pervised methods on both datasets by around 1-2% (Table 4.7) but underperformed
by nearly 10% (Table 4.7) against supervised deep learning models. However, the
proposed network was shown to outperform the supervised networks for the cases with
small training datasets.

Hence, it is necessary to take learning into account. The proposed scattering
network can then provide the first two layers of such learning networks. It eliminates
local translation variability, which can help in learning the next layers. Also, this
network can replace simpler low-level features such as SIFT vectors and can compute
the features very quickly. Both the proposed networks can extract the feature relatively
quickly which also makes these networks attractive as the time needed to train the
unsupervised and supervised networks is considerable.

7.1 Summary of Key Results 107

Chapter 5 proposed the DTCWT ScatterNet Convolutional Neural Network
(DTSCNN) formed by replacing the first convolutional, Relu and pooling layers of the
CNN with the parametric log based DTCWT ScatterNet. The DTCWT ScatterNet
captures low-level translation invariant edge representations similar to the represen-
tations learned by these earlier layers. This resulted in the faster convergence of the
DTSCNN network as it had fewer filter weights to learn compared to its corresponding
CNN architecture. Also, the middle and later CNN layers were able to learn more
complex patterns from the start of learning as it was not necessary to wait for the
first layer to learn edges as they were already extracted by the ScatterNet. The
DTSCNN was also able to produce better generalization as compared to the original
CNN architectures, for datasets with limited labeled examples because the number
of filter weights required to be learned were lower as explained above. The generic
nature of the DTCWT scattering front-end was also shown by its similar classification
performance to the earlier layers of the learned networks, on two different datasets.
The generic features are likely to give it wide applicability to both small and large
image datasets as it provides lower (small dataset) or similar classification error (large
dataset), with faster rates of convergence.

Chapter 6 introduced two ScatterNet Hybrid Deep Learning (SHDL) Networks
(deterministic and generative) that were derived from the ScatterNet Hybrid framework
proposed in Chapter 3. These SHDL networks were utilized to learn the hierarchical
representations from mostly unlabelled input signals rapidly. These representations
were used to solve the individual image understanding tasks of object recognition and
semantic segmentation with only a few labeled examples. Both the derived networks
are also computationally efficient due to their optimal architecture.

Both the deterministic and the generative SHDL networks employed the scatternet
as the front-end. The deterministic SHDL network or the D-SHDL network used
PCA layers based unsupervised learning module to learn hierarchical features from
the hand-crafted ScatterNet features. The hierarchical features were used by the OLS
based supervised learning layers to select the features that aided the discriminative
SVM learning. The D-SHDL network was used to perform classification on CIFAR-10
and Caltech-101 datasets. The network has been shown to outperform the unsupervised
and the semi-supervised learning methods by around 1% (Table 6.4) on both datasets
while underperforming by approximately 13% (Table 6.4) when compared to the
supervised methods. However, the proposed network has been shown to be more
accurate by 45% to 3% (Table 6.5) over supervised learning (CNNs) methods for
the cases with small training datasets. The D-SHDL network is also significantly

108 Conclusions

faster to train as the approximate minimization of the reconstruction loss function
of the PCA layers can be obtained simply by computing the Eigen decomposition of
the patches extracted from the hand-crafted features. It has been shown that the
D-SHDL network which used a straightforward PCA based network was able to learn
useful hierarchical representations rapidly using mainly unlabelled dataset and produce
reasonable classification performance using the learned hierarchical features with a
small labeled dataset.

Limitation of D-SHDL: The D-SHDL network is interesting due to its ability
to learn hierarchical representations rapidly in a computationally efficient manner.
However, the complexity of the representations that can be learned by the network is
restricted due to the limitation of the depth of the network (2 layers). The network
learns the representations by selecting feature dimensions (eigenvectors) with maximum
variations which represent the regularities of the training dataset. Due to this sampling,
the energy of the features learned after every layer reduces. This limits the depth of
this network and in effect, the complexity of the representations that can be learned as
after a certain number of layers the representations learned wouldn’t be meaningful.
This is responsible for the underperformance of this network as compared with very
deep supervised networks [35, 36]. This is also shown by Singh et al. [64] as they
extended the D-SHDL network to 4 layers and observed that the features learned after
the 4th layer were not sensible for the desired task of brain matter segmentation.

In order to improve performance further, the proposed generative SHDL network or
the G-SHDL network used stacked Restricted Boltzmann Machines (RBMs) with PCA
structural priors as the mid-section to learn hierarchical features. These features were
used by the conditional random field (CRF) with a small labeled dataset to produce
the semantic segmentation. The semantic segmentation performance of the G-SHDL
network was tested on the 9 class Stanford background and the 21 class MSRC datasets.
The network has been shown to outperform unsupervised methods by around 10% and
semi-supervised learning methods by approximately 2% (Table 6.8). The performance
of the network (78%) was comparable to the supervised methods (80%) and produced
significant gains (25% to 6%) for small training datasets (Table 6.9). The G-SHDL
network similar to the D-SHDL network extracts hierarchical features mainly from
unlabelled datasets and produces semantic segmentation with performance similar to
the state-of-the-art. The network used PCA based structural priors that accelerated
the training of (otherwise slow) RBMs. Each layer of the network is trained greedily
and optimized using 5-fold cross-validation which results in an optimal computationally
efficient architecture. G-SHDL network doesn’t suffer from the depth limitations as

7.2 Future Work 109

detailed above for the D-SHDL network as the features are learned using gradient
descent instead of PCA.

Both the deterministic and generative SHDL networks can be attractive choices over
the deep supervised networks due to their ability to learn meaningful representation by
utilizing mainly unlabelled and small labeled datasets. The computationally efficient
architecture of the networks along with their faster convergence and reliance on the
lower computational resources is also favourable.

7.2 Future Work

Research outcomes are often better evaluated by the questions born rather than the
questions answered. In this section, we detail the future directions for the research
presented in this dissertation which we are likely to have the most impact on the field.

7.2.1 SHDL Back-end

A single layer of the orthogonal least squares (OLS) [1, 43] has been used by the
D-SHDL network (section 6.1) to select the relevant features using supervised learning.
Active learning and Semi-supervised learning based models can also be used as they also
leverage unlabelled data in addition to the labelled data to accomplish a pre-defined
task (in this case feature selection). The advantage of such systems is that they often
result in dramatic reductions in the amount of labeling required to train the system
(and therefore cost and time).

Active Learning: Active learning is a framework where a model is trained on
a small amount of data (the initial training set) and an acquisition function (often
based on the model’s uncertainty) uses to decide which data points to ask an external
oracle for a label [177]. The acquisition function selects one or more points from a pool
of unlabeled data points, with the pool points lying outside of the training set. An
oracle (often a human expert) labels the selected data points which are added to the
training set and a new model is trained on the updated training set. This process is
then repeated, with the training set increasing in size over time. This results in fewer
labeled examples, cost, and time, to train the system.

Past attempts at active learning of image data have concentrated on kernel based
methods. Using ideas from previous research in active learning of low dimensional
data [178, 179] used “margin-based uncertainty” and extracted probabilistic outputs
from support vector machines (SVM) [180]. They used linear, polynomial, and Radial

110 Conclusions

Basis Function (RBF) kernels on the raw images, picking the kernel that gave best
classification accuracy. Analogously to SVM approaches, Li and Guo [181] used
Gaussian processes (GPs) with RBF kernels to get model uncertainty. Even though
existing techniques for active learning have proven themselves useful in a variety of
tasks, a major remaining challenge in active learning is its lack of scalability to high-
dimensional data [178], with only a handful of exceptions [179, 182, 183] relying on
kernel or graph-based approaches to handle high-dimensional data.

Semi-supervised Learning (SSL): Semi-supervised learning provide a powerful
framework for leveraging unlabeled data when labels are limited or expensive to
obtain [168]. In SSL, a model is given a fixed set of labelled data, and a fixed set of
unlabelled data. The model can use the unlabelled data to learn about the distribution
of the inputs, in the hopes that this information will aid in learning from the small
labelled set as well. SSL algorithms based on deep neural networks have recently
proven successful on standard benchmark tasks. Some recent results have shown that
in certain cases, SSL approaches the performance of purely supervised learning, even
when a substantial portion of the labels in a given dataset have been discarded [168].

There have been a wide variety of methods proposed to achieve this goal, in-
cluding “transductive” [169] variants of k-nearest neighbors [171] and support vector
machines [170], graph-based methods [172, 173] and algorithms based on learning
features (frequently via generative modeling) from unlabeled data [174–176].

7.2.2 Artificial General Intelligence: Sequential Learning

SHDL networks like other deep learning algorithms can learn one or more tasks (multi-
task learning) efficiently and produce the state-of-the-art performance. However, when
trained on multiple tasks sequentially, the performance of the SHDL models (and other
deep networks) degrades on earlier learned tasks. This phenomenon is referred to as
catastrophic forgetting [184].

McClelland et al. [184] suggested that the human brain has evolved to learn the
information related to numerous sequential tasks through the interactions of the
neocortex (learner: deep network) with the hippocampus (Memory). A number of
networks motivated by this idea have been proposed over the past few year [185–187]
that augmented the neural network with an external memory to achieve reasonable
performance on multiple sequential tasks. All the approaches follow the common theme
of training the deep network for task 1 while simultaneously storing the data or a part
of the data corresponding to the task in the augmented memory. This data is recalled
from the memory when the data from task 2 is presented to the neural network to

7.3 Parting Note 111

perform joint multi-task training. The idea to store the data for tasks being presented
to the networks sequentially can be inefficient due to the limited space in the memory
module.

Fig. 7.1 The illustration presents the memory augmented ScatterNet Hybrid Deep
Learning Network for sequential learning. The memory module stores low-dimensional
representations corresponding to the earlier learned tasks which should consume less
space in the memory module. These stored representations can also be used as priors
for the SHDL networks for joint training with new tasks which can lead to accelerated
training and can also reduce the dependence on large training datasets.

The aim is to store the low-dimensional representations corresponding to the earlier
learned tasks rather than the raw data which should consume less space in the memory
module. These stored representations can also be used as priors for the SHDL networks
for joint training with new tasks which can lead to accelerated training and can also
reduce the dependence on large training datasets. This idea is illustrated in Fig. 7.2.

7.3 Parting Note

In my doctorate, I have focused on understanding the functions of different regions
of the visual cortex to design optimal deep architectures which can learn meaningful
representations using principles of human learning. The proposed ScatterNet hybrid

112 Conclusions

framework is inspired by the visual cortex from which I derived several such optimal
architectures, termed as ScatterNet Hybrid Deep Learning (SHDL) networks. SHDL
networks presented in this dissertation can learn meaningful representations rapidly
from mainly unlabelled data and limited labeled examples with reduced computational
complexity, similar to the visual cortex. Designing Artificial Intelligence systems that
mimic human learning should lead to more powerful machines as well as more powerful
theoretical paradigms for understanding human cognition, which is my long-term future
goal.

Appendix A

Training of Convolutional Neural
Networks

A.1 Back-propagation Algorithm
The parameters of a Training of Convolutional Neural Networks (CNN) w = (w1, ..,wL)
should be learned in such a manner that the overall CNN function z = f(x;w) achieves
a desired goal. In some cases, the goal is to model the distribution of the data, which
leads to a generative objective. Here, however, we will use f as a regressor and obtain
it by minimizing a discriminative objective. In simple terms, we are given:

1. examples of the desired input-output relations (x1, z1), ...,(xn, zn) where xi are
input data and zi corresponding output values;

2. and a loss l(z, ẑ) that expresses the penalty for predicting ẑ instead of z.

We use those to write the empirical loss of the CNN f by averaging over the
examples:

L(w) = 1
n

n∑
i=1

l(zi,f(xi;w)) (A.1)

Note that the composition of the function f with the loss l can be though of as a
CNN with one more layer (called a loss layer). Hence, with a slight abuse of notation,
in the rest of this part we incorporate the loss in the function f (which therefore is a
map χ→R) and do not talk about it explicitly anymore.

The simplest algorithm to minimise L, and in fact one that is used in practice, is
gradient descent. The idea is simple: compute the gradient of the objective L at a

114 Training of Convolutional Neural Networks

current solution wt and then update the latter along the direction of fastest descent of
L:

wt+1 = wt −ηt
∂f

∂w
(wt) (A.2)

where ηt ∈R+ is the learning rate.
The basic computational problem to solve is the calculation of the gradient of

the function with respect to the parameter w. Since f is the composition of several
functions, the key ingredient is the chain rule:

∂f

∂wl
= ∂

∂wl
fL(...f2(f1(x;w1);w2)...),wL)

= ∂vecfL

∂vecxT
L

∂vecfL−1
∂vecxT

L−1
...
∂vecfl+1
∂vecxT

l+1

∂vecfl

∂vecwT
l

(A.3)

The notation requires some explanation. Recall that each function fl is a map
from a M ×N ×K array to a M ′ ×N ′ ×K ′ array. The operator vec vectorizes such
arrays by stacking their elements in a column vector (the stacking order is arbitrary
but conventionally column-major). The symbol ∂vecfl

∂vecxT
l

then denotes the derivative of a
column vector of output variables by a row vector of input variables. Note that wl is
already assumed to be a column vector so it does not require explicit vectorization.

To apply the chain rule we must be able to compute, for each function fl, its
derivative with respect to the parameters wl as well as its input xl. While this could
be done naively, a problem is the very high dimensionality of the matrices involved in
this calculation as these are M ′N ′K ′ ×MNK arrays. We will now introduce a “trick”
that allows this to be reduced to working with MNK numbers only and which will
yield the back-propagation algorithm.

The key observation is that we are not after ∂vecfl

∂wT
l

but after ∂f
∂wT

l

:
Unsupervised Pre-training: Training deep feed-forward neural networks can be

difficult because of their tendency to converge to local optimas. These complex models
are also prone to overfitting. The unsupervised layer-wise pre-training overcomes
these challenges by introducing a useful prior to the supervised fine-tuning training
procedure [134]. These priors can aid the learning of the deep networks.

Appendix B

Feature Selection

B.1 Orthogonal Least Squares(OLS)

This section presents the feature selection algorithm that is used to select the relevant
features from a high-dimensional feature set. The features which reside in a high dimen-
sional space make it especially important to reduce the dimensions before feeding them
to the support vector machine to avoid the curse of dimensionality [139]. Orthogonal
Least Squares (OLS) [1, 4] algorithm is used to select these relevant features. OLS
algorithm greedily selects coefficients with a regression algorithm. We are given a set
of training images

{
xi

}
i

with their class label. The orthogonal least square selects a
set of features adapted to each class C with a linear regression of the one-versus-all
indicator function.

fC(x) =

1 if x belongs to class C
0 otherwise

(B.1)

It iteratively selects a feature in the dictionary and updates the dictionary. Let
Φkx=

{
Φk

px
}

p
be the dictionary at the kth iteration. We select a feature φk

pk
x, and we

update the dictionary by decorrelating all dictionary vectors, relatively to this selected
vector, over the training set

{
xi

}
i
:

φ̃k+1
p = φk

p − (
∑

i

φk
pk
xiφ

k
px)φk

pk
x (B.2)

Each vector is then normalized.

φk+1
p = φ̃k+1

p (
∑

i

|φ̃k+1
p (xi)|2)−1 (B.3)

116 Feature Selection

The kth feature φk
pk
x is selected so that the linear regression of fC(x) on

{
φr

pr
x
}

1≤r≤k
has a minimum meansquare error, computed on the training set. This is equivalent to
finding φk

pk
in Φk which maximizes the correlation ∑i fC(xi)φk

pxi.
The orthogonal least square regression thus selects and computes K scattering

features
{
φpk

x
}

k<K
for each class C, which are linearly transformed into K decorrelated

and normalized features
{
φk

pk
x
}

k<K
. For a total of nC classes, the union of all these

feature defines a dictionary of size M = KnC . They are linear combinations of the
original log scattering coefficients

{
φpx

}
p
. This dimension reduction can thus be

interpreted as a last fully connected network layer, which outputs a vector of size M .
The parameter M governs the bias versus variance trade-off. It can be adjusted from
the decay of the regression error of each fC or fixed a priori.

Appendix C

PCA Network (PCANet)

This section presents the PCA network which learns filters at multiple layers or stages,
in an unsupervised manner, from an image dataset. Suppose that we are given N input
training images {Ii}N

i=1 of size m×n, and assume that the patch size (or 2D filter size)
is k1 ×k2 at all stages. The PCA filters that are needed to be learned from the input
images {Ii}N

i=1. The steps need to extract features at different stages of the hierarchy
are detailed below.

The first stage: PCA

Around each pixel, we take a k1 ×k2 patch, and we collect all (overlapping) patches
of the ith image; i.e., xi,1,xi,2, ...,xi,mn ∈ Rk1k2 where each xi,j denotes the jth vec-
torized patch in Ii. We then subtract patch mean from each patch and obtain
X̄i = [x̄i,1, x̄i,2, ..., x̄i,mn], where x̄i,j is a mean-removed patch. By constructing the
same matrix for all input images and putting them together, we get

X = [X̄1,X̄2, ...,X̄N] ∈ Rk1k2×Nmn. (C.1)

Assuming that the number of filters in layer i is Li, PCA minimizes the reconstruction
error within a family of orthonormal filters, i.e.,

min
V ∈Rk1k2×L1

‖X −V V T X‖2
F , s.t. V T V = IL1 , (C.2)

where ΥIL1 is identity matrix of size L1 ×L1. The solution is known as the L1 principal
eigenvectors of XXT . The PCA filters are therefore expressed as

W 1
l
.= matk1,k2(ql(XXT)) ∈ Rk1×k2 , l = 1,2, ...,L1, (C.3)

118 PCA Network (PCANet)

where matk1,k2(v) is a function that maps v ∈ Rk1k2 to a matrix W ∈ Rk1×k2 , and
ql(XXT) denotes the lth principal eigenvector of XXT . The leading principal
eigenvectors capture the main variation of all the mean-removed training patches. Of
course, similar to DNN or ScatNet, we can stack multiple stages of PCA filters to
extract higher level features.

The second stage: PCA

Almost repeating the same process as the first stage. Let the lth filter output of the
first stage be

I l
i
.= Ii ∗W 1

l , i= 1,2, ...,N, (C.4)

where ∗ denotes 2D convolution, and the boundary of Ii is zero-padded before convolving
with W 1

l so as to make I l
i having the same size of Ii. Like the first stage, we can collect

all the overlapping patches of I l
i , subtract patch mean from each patch, and form

Ȳ
l
i = [ȳi,l,1, ȳi,l,2, ..., ȳi,l,mn] ∈ Rk1k2×mn, where ȳi,l,j is the jth mean-removed patch in

I l
i . We further define Y l = [Ȳ l

1, Ȳ
1
2, ..., Ȳ

l
N] ∈ Rk1k2×Nmn for the matrix collecting all

mean-removed patches of the lth filter output, and concatenate Y l for all the filter
outputs as

Y = [Y 1,Y 2, ...,Y L1] ∈ Rk1k2×L1Nmn. (C.5)

The PCA filters of the second stage are then obtained as

W 2
`
.= matk1,k2(q`(Y Y T)) ∈ Rk1×k2 , `= 1,2, ...,L2. (C.6)

For each input I l
i of the second stage, we will have L2 outputs, each convolves I l

i with
W 2

` for `= 1,2, ...,L2:
Ol

i
.= {I l

i ∗W 2
`}L2

`=1. (C.7)

The number of outputs of the second stage is L1L2. One can simply repeat the above
process to build more (PCA) stages if a deeper architecture is found to be beneficial.

Appendix D

Software

This appendix presents the scripts written by other researchers which were used to
formulate the networks presented in this dissertation. The scripts used are presented
below:

D.1 ScatterNet

The ScatterNet code developed by Edouard Oyallon [22] was the motivation for the
code written to realize the ScatterNets proposed in Chapter 4. The ScatterNet code
can be found at this link: http://www.di.ens.fr/data/software/ [Last visited: 22nd of
April, 2018]

D.2 Deep Convolutional Networks

The DTCWT ScatterNet Convolutional Neural Network (DTSCNN) proposed in
Chapter 5 was realized by replacing the earlier layers of several deep networks with the
ScatterNets proposed in Chapter 4. The shallower deep networks were designed using
the MatConvNet framework which can be found here: www.vlfeat.org/matconvnet/
[Last visited: 22nd of April, 2018].

The deeper networks such as the Network in Network (NIN) and the Visual Geometry
Group (VGG) Network were also designed using the MatConvNet framework. The Wide
Residual Network (Wide ResNet) code used for our research was written by Zagoruyko
and Nikos Komodakis for their Wide Residual Networks paper at BMVC 2016 [104].
The code can be found here: https://github.com/szagoruyko/wide-residual-networks
[Last visited: 22nd of April, 2018]

http://www.di.ens.fr/data/software/
www.vlfeat.org/matconvnet/
https://github.com/szagoruyko/wide-residual-networks

120 Software

D.3 PCA Network
The deterministic SHDL network proposed in Chapter 6 uses the PCA layers to learn
hierarchical features. The code used to realize this was written by Tsung-Han Chan
and his collaborators for their PCANet paper [44]. The code can be found here:
http://mx.nthu.edu.tw/ tsunghan/Source.html [Last visited: 22nd of April, 2018]. We
used the tensorfloe version of this code so that it can be trained quickly. The code can
be found at this link: https://github.com/PeterMitrano/PCANet [Last visited: 22nd
of April, 2018].

D.4 Convolutional RBM
The generative SHDL network proposed in Chapter 6 uses stacked convolutional RBMs
to learn hierarchical features rapidly using structural priors. The convolutional RBM
code used for this research can be found at this link: https://github.com/OFAI/lrn2
[Last visited: 22nd of April, 2018]. The code that was used to learn the PCA priors is
presented in D.3.

https://github.com/PeterMitrano/PCANet
https://github.com/OFAI/lrn2

Appendix E

Datasets

This appendix presents the one and two, dimensional datasets used to evaluate the
performance of the proposed networks on the classification and segmentation tasks.
The datasets are presented below:

• One Dimensional Datasets: The classification performance of the proposed
handcrafted scattering networks is evaluated on Isolet, Yeast, and Glass one
dimensional datasets.

The Isolet dataset is composed of one-dimensional audio signals collected from
150 speakers uttering all characters in the English alphabet twice. Each speaker
contributed 52 training examples with a total of 7797 recordings [88]. The record-
ings are represented with 617 attributes such as spectral coefficients, contour,
sonorant, and post-sonorant are provided to classify letter utterance.

The weblink to the dataset can be found here: https://archive.ics.uci.edu/ml/
datasets/isolet

The Yeast dataset is a highly imbalanced one-dimensional signal dataset that
consists of 1484 yeast proteins with 10 cellular binding sites [88]. Each binding
site is described with 8 attributes. The aim is to classify the most probable (1
among the 10) cellular localization site of the proteins.

The weblink to the dataset can be found here: https://archive.ics.uci.edu/ml/
datasets/Yeast

The Glass dataset consists of 214 one-dimensional signals that describe six types
of glass based on nine chemical fractions of the oxide content [88].

The weblink to the dataset can be found here: https://archive.ics.uci.edu/ml/
datasets/glass+identification

https://archive.ics.uci.edu/ml/datasets/isolet
https://archive.ics.uci.edu/ml/datasets/isolet
https://archive.ics.uci.edu/ml/datasets/Yeast
https://archive.ics.uci.edu/ml/datasets/Yeast
https://archive.ics.uci.edu/ml/datasets/glass+identification
https://archive.ics.uci.edu/ml/datasets/glass+identification

122 Datasets

A visualization of a randomly selected training sample from each of the above-
explained datasets is presented in Fig. E.1.

Fig. E.1 The illustration presents a visualization of a randomly selected training sample
from each of the datasets.

• Object Classification: The CIFAR [16] and Caltech [94] datasets are used
to evaluate the object classification performance. The CIFAR dataset has two
variants with 10 and 100 classes while the Caltech dataset consists of two variants
with 101 and 256 classes.

Fig. E.2 presents examples of images with their classes for both CIFAR and
Caltech datasets.

The weblink to the datasets can be found here:

– CIFAR: https://www.cs.toronto.edu/~kriz/cifar.html

– Caltech: http://www.vision.caltech.edu/Image_Datasets/Caltech101/

• Semantic Image Segmentation: The Stanford Background [73] and MSRC [74]
datasets are used to evaluate the semantic segmentation performance. The Stan-
ford Background dataset has 9 classes while the MSRC dataset consists of 21
classes.

The weblink to the datasets can be found here:

https://www.cs.toronto.edu/~kriz/cifar.html
http://www.vision.caltech.edu/Image_Datasets/Caltech101/

123

Fig. E.2 Examples of images with class labels from the CIFAR and Caltech datasets.

Fig. E.3 Example Images, Semantic Labels, and Regions from the a) Stanford Back-
ground b) MSRC dataset.

– Stanford Background: http://dags.stanford.edu/projects/scenedataset.html

– MSRC: https://jamie.shotton.org/work/data.html

Fig. E.3 presents examples of images with their semantic labels and regions for
both Stanford Background and MSRC datasets.

http://dags.stanford.edu/projects/scenedataset.html
https://jamie.shotton.org/work/data.html

Appendix F

Learned Filters

This appendix presents the filters learned by the different PCA layers and the convo-
lutional RBM layers in the D-SHDL and G-SHDL networks introduced in Chapter
6.

Fig F.1 presents the filters learned by the PCA layers at different layers of the
D-SHDL network presented in section 6.1. The filters that are visualized are selected
randomly from the volume of filters learned at each layer of the network. It can be seen
from the filter set that the complexity of the features captured by the filters increases
for later layers of the D-SHDL network. Hence, the PCA unsupervised module captures
hierarchical features.

Fig. F.1 The illustration presents the filters learned at different layers of the D-SHDL
network presented in section 6.1. The filters that are visualized are selected randomly
from the volume of filters learned at each layer of the network.

126 Learned Filters

The complexity of the features captured by the learned convolutional RBM filters
of the G-SHDL network (presented in section 6.4) also increases as shown in Fig F.2.

Fig. F.2 The illustration presents the RBM filters at different Layers of the G-SHDL
network presented in section 6.4.

Appendix G

Publication List

We have explained the networks proposed in this dissertation in much detail. However,
we are also providing the links to the publications corresponding to the proposed
networks proposed if one intends to access them.

1. Multi-resolution Region Pooling ScatterNet: This network (proposed in
Section 4.1) was published in the International Conference on Mathematics
in Signal Processing (IMA), 2016, in Birmingham, UK, and the link for the
publication can be found here: https://arxiv.org/pdf/1702.03345.pdf [Last visited:
22nd of April, 2018]

2. Multi-resolution Parametric Log ScatterNet: This network was proposed
in Section 4.5 of this dissertation and was published in the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, in New
Orleans, USA. The publication can be accessed at this link: https://ieeexplore.
ieee.org/abstract/document/7952631/ [Last visited: 22nd of April, 2018]

3. DTCWT ScatterNet Convolutional Neural Network (DTSCNN): The
DTSCNN network, proposed in chapter 5, was published at the Compact and
Efficient Feature Representation and Learning in Computer Vision (CEFRL)
workshop at IEEE International Conference on Computer Vision (ICCV), 2017,
in Venice, Italy. The link to the publication is here: http://openaccess.thecvf.com/
content_ICCV_2017_workshops/papers/w18/Singh_Efficient_Convolutional_
Network_ICCV_2017_paper.pdf [Last visited: 22nd of April, 2018]

4. Deterministic ScatterNet Hybrid Deep Learning (D-SHDL): The D-
SHDL network that was proposed in section 6.1 was published at the IEEE
International Workshop on Machine Learning for Signal Processing (MLSP),

https://arxiv.org/pdf/1702.03345.pdf
https://ieeexplore.ieee.org/abstract/document/7952631/
https://ieeexplore.ieee.org/abstract/document/7952631/
http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w18/Singh_Efficient_Convolutional_Network_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w18/Singh_Efficient_Convolutional_Network_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w18/Singh_Efficient_Convolutional_Network_ICCV_2017_paper.pdf

128 Publication List

2017, in Tokyo, Japan. The link to the publication can be found here: https:
//ieeexplore.ieee.org/document/8168141/ [Last visited: 22nd of April, 2018]

5. Generative ScatterNet Hybrid Deep Learning (G-SHDL): The G-SHDL
work introduced in section was published at the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2018, in Calgary, Canada and
the link to the publication can be accessed here: https://arxiv.org/abs/1802.03374
[Last visited: 22nd of April, 2018]

https://ieeexplore.ieee.org/document/8168141/
https://ieeexplore.ieee.org/document/8168141/
https://arxiv.org/abs/1802.03374

References

[1] Thomas Blumensath and Mike E. Davies (2007). “On the difference between
orthogonal matching pursuit and orthogonal least squares”. Monograph (Project
Report), University of Southampton.

[2] Y-Lan Boureau, Francis Bach, Yann LeCun, and Jean Ponce (2010). “Learning
mid-level features for recognition”. Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2559-2566.

[3] Joan Bruna Estrach (2012). “Scattering representations for recognition”. Ph.D.
dissertation, CMAP, Ecole Polytechnique.

[4] S. Chen, C.F. Cowan, and P.M. Grant (1991). “Orthogonal least squares learning
algorithm for radial basis function networks”. IEEE Transactions on Neural Networks,
Vol. 2(2), pp. 302-309.

[5] Brian Wandell (1995). “Foundations of Vision”. Wiley, Color, Research and
Applications.

[6] Keiji Tanaka (1996). “Inferotemporal cortex and object vision”. Annual Review of
Neuroscience, Vol. 19, pp. 109-139.

[7] Leonardo Bianchi (1895). “The functions of the frontal lobes”. Brain, Vol. 18(4),
pp. 497-522.

[8] Oana Cula and Kristan Dana (2001). “Compact representation of bidirectional
texture functions”. Proc. of the Computer Vision and Pattern Recognition (CVPR).

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li (2009).
“Imagenet: A large-scale hierarchical image database”. Proc. of the Computer Vision
and Pattern Recognition (CVPR).

[10] James J. Dicarlo and David Cox (2007). “Untangling invariant object recognition”.
Trends in Cognitive Science, Vol. 11, pp. 333-341.

[11] Bin Fan, Fuchao Wu, and Zhanyi Hu (2012). “Rotationally invariant descriptors
using intensity order pooling”. IEEE Transaction on Pattern Analysis and Machine
Intelligence, Vol. 34(10), pp. 2031-2045.

[12] Josef Sivic (2009). “Efficient visual search of videos cast as text retrieval”. IEEE
Transaction on Pattern Analysis and Machine Intelligence, Vol. 31(4), pp. 591-605.

130 References

[13] Yunchao Gong, Liwei Wang, Ruiqi Guo, and Svetlana Lazebnik (2014). “Multi-
scale orderless pooling of deep convolutional activation features”. Proc. of the
European Conference on Computer Vision (ECCV), pp. 392-407.

[14] Geoffrey E. Hinton and Richard S. Zemel (1994). “Autoencoders, minimum
description length, and helmholtz free energy”. Advances in Neural Information
Processing Systems, Vol. 175, pp. 1-9.

[15] Nick Kingsbury (1998). “The dual-tree complex wavelet transform: a new technique
for shift invariance and directional filters”. IEEE Digital Signal Processing Workshop,
Vol. 86, pp. 120-131.

[16] Alex Krizhevsky (2009). “Learning multiple layers of features from tiny images”.
Technical Report, University of Toronto.

[17] Yan Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner (1998). “Gradient-
based learning applied to document recognition”. Proceedings of the IEEE, Vol.
86(11), pp. 2278-2324.

[18] Fei-Fei Li and Andrej Karpathy (2015). “CS231n: Convolutional neural networks
for visual recognition”. webpage: http://cs231n.stanford.edu/ .

[19] David Lowe (2004). “Distinctive image features from scale-invariant keypoints”.
International Journal of Computer Vision, Vol. 60(2), pp. 91-110.

[20] Stephane Mallat (2012). “Group invariant scattering”. Communication Pure and
Applied Mathematics, Vol. 65(10), pp. 1331-1398.

[21] Jawad Nagi, Frederick Ducatelle, Gianni A. Di Caro, Dan Cireşan, Ueli Meier,
Alessandro Giusti, Farrukh Nagi, Jürgen Schmidhuber, and Luca Maria Gambardella
(2011). “Max-pooling convolutional neural networks for vision-based hand ges-
ture recognition”. IEEE International Conference on Signal and Image Processing
Applications (ICSIPA), pp. 342-347.

[22] Edouard Oyallon and Stephane Mallat (2015). “Deep roto-translation scattering
for object classification”. Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2865-2873.

[23] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman
(2008). “Lost in quantization: Improving particular object retrieval in large scale
image databases”. Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1-8.

[24] Ruslan Salakhutdinov and Geoffrey E. Hinton (2009). “Deep boltzmann machines”.
Proc. of the 12th International Conference on Artificial Intelligence and Statistics
(AISTATS).

[25] Thomas Serre and Maximilian Riesenhuber (2004). “Realistic modeling of simple
and complex cell tuning in the hmax model, and implications for invariant object
recognition in cortex”. CBCL Memo 239, Massachusetts Institute of Technology,
Cambridge.

http://cs231n.stanford.edu/

References 131

[26] Laurent Sifre (2014) “Rigid-Motion Scattering For Image Classification”. PhD
thesis, ENS Paris.

[27] Laurent Sifre and Stephane Mallat (2012) “Combined scattering for rotation
invariant texture analysis”. European Symposium on Artificial Neural Networks
(ESANN), pp. 127-132.

[28] Laurent Sifre and Stephane Mallat (2013) “Rotation, scaling and deformation
invariant scattering for texture discrimination”. IEEE conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1233-1240.

[29] Yong Xu, Xiong Yang, Haibin Ling, and Hui Ji (2010). “A new texture descriptor
using multifractal analysis in multi-orientation wavelet pyramid”. Proc. of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 161-168.

[30] Guoying Zhao, Timo Ahonen, Jiri Matas, and Matti Pietikainen (2012). “Rotation
invariant image and video description with local binary pattern features”. IEEE
Transactions on Image Processing, Vol. 21(4), pp. 1465-1477.

[31] Yunlong He, Koray Kavukcuoglu, Yun Wang, Arthur Szlam, and Yanjun Qi
(2014). “Unsupervised feature learning by deep sparse coding”. Proc. of International
Conference on Data Mining (SDM), 2014.

[32] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce (2006) “Beyond bags of
features: Spatial pyramid matching for recognizing natural scene categories”. IEEE
conference on Computer Vision and Pattern Recognition (CVPR).

[33] Josef Sivic and Andrew Zisserman (2003). “Video google: A text retrieval approach
to object matching in videos”. IEEE conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1-8.

[34] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang (2009). “Linear spatial
pyramid matching using sparse coding for image classification”. IEEE conference on
Computer Vision and Pattern Recognition (CVPR).

[35] Min Lin, Qiang Chen, and Shuicheng Yan (2013). “Network in network”
arXiv:1312.4400.

[36] Karen Simonyan and Andrew Zisserman (2015). “Very deep convolutional networks
for large-scale image recognition”. Prof. of the International Conference for Learning
Representations (ICLR).

[37] Sukriti Jain, Samarth Gupta, and Amarjot Singh (2013). “A novel method to
improve model fitting for stock market prediction”. International Journal of Research
in Business and Technology, Vol. 3(1), pp. 78-83.

[38] Antonello Pasini (2015). “Artificial neural networks for small dataset analysis”.
Journal of Thoracic Disease, vol. 7(5), pp. 953–960.

[39] Josef Sivic, Bryan C. Russell, Andrew Zisserman, William T. Freeman, and Alexei
A. Efros (2008). “Unsupervised discovery of visual object class hierarchies”. IEEE
conference on Computer Vision and Pattern Recognition (CVPR).

132 References

[40] Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and Tomaso
Poggio (2007). “Robust object recognition with cortex-like mechanisms”. IEEE
Transaction on Pattern Analysis and Machine Intelligence, Vol. 29(3), pp. 411-426.

[41] Tsung-Han Lin and H. T. Kung (2014). “Stable and efficient representation
learning with non negativity constraints”. Proc. of the International Conference on
Machine Learning, Vol. 32(2), pp. 1323-1331.

[42] Sancho McCann and David G. Lowe (2012). “Spatially local coding for object
recognition”. Asian Conference on Computer Vision, pp. 204-217.

[43] Amarjot Singh and Nick Kingsbury (2017). “Dual-tree wavelet scattering network
with parametric log transformation for object classification”. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2622-2626.

[44] Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and Yi Ma (2014).
“Pcanet: A simple deep learning baseline for image classification?”. ArXiv:1404.3606.

[45] Amarjot Singh and Nick Kingsbury (2016). “Multi-resolution dual-tree wavelet
scattering network for signal classification”. International Conference on Mathematics
in Signal Processing.

[46] Sandeep Nadella, Amarjot Singh, and S.N. Omkar (2016). “Aerial scene un-
derstanding using deep wavelet scattering network and conditional random field”.
European Conference on Computer Vision (ECCV) Workshops, pp. 205-214.

[47] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen (2016). “Improved techniques for training gans”. Advances in Neural
Information Processing Systems, pp. 2234-2242.

[48] Sergey Zagoruyko and Nikos Komodakis (2016). “Wide residual networks”.
arXiv:1605.07146.

[49] Dengxin Dai and Luc Van Gool (2016). “Unsupervised high-level feature learning
by ensemble projection for semi-supervised image classification and image clustering”.
arXiv:1602.00955.

[50] Bernhard Schölkopf and Alexander J. Smola (2002). “Learning with kernels”. MIT
Press.

[51] Joakim Anden, Vincent Lostanlen, and Stephane Mallat (2015). “Joint time-
frequency scattering for audio classification”. Proceedings of IEEE International
Workshop on Machine Learning and Signal Processing (MLSP) Workshop, 2015.

[52] Vuk Milisic and Gilles Wainrib (2016). “Mathematical modeling of lymphocytes
selection in the germinal center”. Journal of Mathematical Biology, Vol. 74(4), pp.
933–979.

[53] Ryan Anderson, Nick Kingsbury, and Julien Fauqueur (2005). “Determining
multi-scale image feature angles from complex wavelet phases”. In Proc. of the
International Conference Image Analysis and Recognition, pp. 490-498.

References 133

[54] Jeffery C. Chan, Hui Ma, and Tapan K. Saha (2013). “Partial discharge pattern
recognition using multiscale feature extraction and support vector machine”. Proc.
of the IEEE Power and Energy Society General Meeting.

[55] J.J. Hull (1994), “A database for handwritten text recognition research”. Proc. of
the IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 16(5), pp.
550-554.

[56] Bilal Hadjadji, Youcef Chibani, and Hassiba Nemmour (2014). “Fuzzy integral com-
bination of one-class classifiers designed for multi-class classification”. International
Conference Image Analysis and Recognition, pp. 320–328.

[57] Wojciech Marian Czarnecki and Jacek Tabor (2015). “Extreme entropy machines:
robust information theoretic classification”. Pattern Analysis and Applications, Vol.
20(2), pp. 383-400.

[58] Zong-Yao Chen, Chih-Fong Tsai, William Eberle, Wei-Chao Lin, and Shih-Wen Ke
(2015). “Instance selection by genetic-based biological algorithm”. Soft Computing,
Vol. 19(8), pp. 1269–1282.

[59] Thomas Villmann, Sven Haase, and Marika Kaden (2015). “Kernelized vector
quantization in gradient-descent learning”. Neurocomputing, Vol. 147, pp. 83–95.

[60] Yangqing Jia, Chang Huang, Trevor Darrell (2012). “Beyond spatial pyramids:
Receptive field learning for pooled image features”. Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[61] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu
(2014). “Deeply-supervised nets”. arXiv:1409.5185.

[62] Kihyuk Sohn and Honglak Lee (2012). “Learning invariant representations with
local transformations”. International Conference on Machine Learning, pp. 1339-
1346.

[63] Abhinav Valada, Gabriel L. Oliveira, Thomas Brox, and Wolfram Burgard (2016).
“Deep multispectral semantic scene understanding of forested environments using
multimodal fusions”. International Symposium on Experimental Robotics.

[64] Amarjot Singh, Dev Hazarika, and A Bhattacharya (2017). “Texture and structure
incorporated scatternet hybrid deep learning network (TS-SHDL) for brain matter
segmentation”. IEEE International Conference on Computer Vision Workshop
(ICCVW), 2017.

[65] Ondrej Miksik, Vibhav Vineet, Morten Lidegaard, Ram Prasaath, Matthias
Nießner, Stuart Golodetz, Stephen L. Hicks, Patrick Pérez, Shahram Izadi, and
Philip H.S. Torr (2015) “The semantic paintbrush: Interactive 3d mapping and
recognition in large outdoor spaces”. Proc. of the Annual ACM Conference on Human
Factors in Computing Systems, pp. 3317-3326.

[66] Xuming He, R.S. Zemel, and M.A. Carreira-Perpinan (2004). “Multiscale condi-
tional random fields for image labeling”. Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

134 References

[67] Evan Shelhamer, Jonathan Long, and Trevor Darrell (2015). “Fully convolutional
networks for semantic segmentation”. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 39(4), pp. 640-651.

[68] Yong Li, Jing Liu, Yuhang Wang, Hanqing Lu, and Songde Ma (2015). “Weakly
supervised RBM for semantic segmentation”. International Conference on Artificial
Intelligence, pp. 1888-1898.

[69] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-
Martinez, and Jose Garcia-Rodriguez (2017). “A review on deep learning techniques
applied to semantic segmentation”. arXiv:1704.06857.

[70] Yu Jun, Huang Dia, and Wei Zhongliang (2018). “Unsupervised image segmen-
tation via stacked denoising auto-encoder and hierarchical patch indexing”. Signal
Processing, Vol. 143, pp. 346-353.

[71] Andreas Geiger, Frank Moosmann, Ömer Car, and Bernhard Schuster (2012). “Au-
tomatic camera and range sensor calibration using a single shot”. IEEE International
Conference on Robotics and Automation.

[72] Amarjot Singh and Nick Kingsbury (2017). “Scatternet Hybrid Deep learning
(SHDL) Network For Object Classification”. IEEE International Workshop on
Machine Learning for Signal Processing (MLSP), 2017.

[73] Jamie ShottonJohn WinnCarsten RotherAntonio Criminisi (2006). “Textonboost:
Joint appearance, shape and context modeling for multi-class object recognition and
segmentation”. European Conference on Computer Vision, pp 1-15.

[74] Stephen Gould, Richard Fulton, and Daphne Koller (2009). “Decomposing a scene
into geometric and semantically consistent regions”. IEEE International Conference
on Computer Vision (ICCV).

[75] N.G. Kingsbury (2001). “Complex wavelets for shift invariant analysis and filtering
of signals”. Applied and computational harmonic analysis, Vol. 10, pp. 234-253.

[76] Montavon, Grégoire, Geneviève, Müller, and Klaus-Robert (2012). “In neural
networks: Tricks of the trade”. Springer.

[77] Justin Domke (2013). “Learning graphical model parameters with approximate
marginal inference”. IEEE Transaction on Pattern Analysis and Machine Intelligence,
Vol. 35(10),pp. 2454-2467.

[78] Xiaojie Jin, Yunpeng Chen, Jiashi Feng, Zequn Jie, and Shuicheng Yan (2017).
“Multi-path feedback recurrent neural networks for scene parsing”. Proc. of the
Association for the Advancement of Artificial Intelligence (AAAI).

[79] Fayao Liu, Guosheng Lin, and Chunhua Shen (2017). “Discriminative training of
deep fully- connected continuous crfs with task-specific loss”. IEEE Transactions on
Image Processing, Vol. 26(5), pp. 2127-2136.

[80] Nasim Souly, Concetto Spampinato, and Mubarak Shah (2017). “Semi supervised
semantic segmentation using generative adversarial network”. arXiv:1703.09695.

References 135

[81] Adam Coates and Andrew Y. Ng (2012). “Learning feature representations with
k-means”. Advances in Neural Information Processing Systems, pp. 561-580.

[82] Pedro O. Pinheiro and Ronan Collobert (2013). “Recurrent convolutional neural
networks for scene parsing”. International Conference on International Conference
on Machine Learning, Vol. 32, pp. 82-90.

[83] Xiao Liu, Mingli Song, Dacheng Tao, Zicheng Liu, Luming Zhang, Chun Chen, and
Jiajun Bu (2013) “Semi-supervised node splitting for random forest construction”.
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[84] Michael Rubinstein, Armand Joulin, Johannes Kopf, and Ce Liu (2013). “Unsu-
pervised joint object discovery and segmentation in internet images” Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

[85] Amarjot Singh and Nick Kingsbury (2017). “Efficient Convolutional Network
Learning using Parametric Log based Dual-Tree Wavelet ScatterNet”. IEEE Inter-
national Conference on Computer Vision Workshop (ICCVW).

[86] Joan Bruna Estrach and Stéphane Mallat (2013). “Invariant scattering convolution
networks”. IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.
35, pp. 1872-1886.

[87] Thorsten Joachims (2002). “Optimizing search engines using clickthrough data”.
8th ACM SIGKDD international conference on Knowledge discovery and data mining.

[88] “UCI repository of machine learning databases”. webpage: https://archive.ics.uci.
edu/ml/ index.php.

[89] “Tensorflow Model Zoo”. webpage: https:// github.com/bvlc/ caffe/wiki/model-zoo.

[90] (2015). “Torch CIFAR classification blog”. webpage: http:// torch.ch/blog/2015/
07/30/cifar.html.

[91] Fergal Cotter and Nick Kingsbury (2017). “Visualizing and improving scattering
networks”. arXiv:1709.01355, 2017.

[92] Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springenberg, Martin Riedmiller,
and Thomas Brox (2016). “Discriminative unsupervised feature learning with
exemplar convolutional neural networks”. IEEE Transactions on Pattern Analysis
Machine Intelligence, Vol. 38(9), pp. 1734-1747.

[93] Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua
Bengio (2013). “Maxout networks”. Proc. of the International Conference on Machine
Learning, Vol. 28(3), pp. 1319-1327.

[94] Fei-Fei Li, Rob Fergus, and Peter Perona (2004). “Learning generative visual
models from few training examples: an incremental bayesian approach tested on 101
object categories”. Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshop on Generative-Model Based Vision, 2004.

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://github.com/bvlc/caffe/wiki/model-zoo
http://torch.ch/blog/2015/07/30/cifar.html
http://torch.ch/blog/2015/07/30/cifar.html

136 References

[95] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik (2014). “Rich
feature hierarchies for accurate object detection and semantic segmentation”. Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
580-587.

[96] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton (2012). “Imagenet classi-
fication with deep convolutional neural networks”. Advances in Neural Information
Processing Systems, pp. 1097-1105.

[97] Rongfu Mao, Haichao Zhu, Linke Zhang, and Aizhi Chen (2006). “A new method
to assist small data set neural network learning”. Proceeding of the sixth International
Conference on Intelligent Systems Design and Applications, pp. 17-22.

[98] George Papandreou (2014). “Deep epitomic convolutional neural networks”.
ArXiv:1406.6909.

[99] Javier Plaza, Antonio Plaza, Rosa Perez, Pablo Martinez (2009). “On the use
of small training sets for neural network-based characterization of mixed pixels
in remotely sensed hyperspectral images”. Pattern Recognition, Vol. 42(11), pp.
3032-3045.

[100] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng
(2007). “Self-taught learning: Transfer learning from unlabeled data”. International
Conference on Machine Learning, pp. 759-766.

[101] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson
(2014). “Cnn features off-the-shelf: an astounding baseline for recognition”. IEEE
conference on Computer Vision and Pattern Recognition, pp. 512-519.

[102] Alexander Toshev and Christian Szegedy (2013). “Deeppose: Human pose
estimation via deep neural networks”. arXiv:1312.4659.

[103] Andrea Vedaldi and Karel Lenc (2015). “Matconvnet”. University of Oxford.

[104] Sergey Zagoruyko and Nikos Komodakis (2016). “Wide residual networks”.
ArXiv:1605.07146.

[105] Matthew D. Zeiler and Rob Fergus (2014). “Visualizing and understanding
convolutional networks”. European Conference on Computer Vision, pp. 818-833.

[106] Xi Zhang, Yanwei Fu, Shanshan Jiang, Leonid Sigal, and Gady Agam
(2015). “Learning from synthetic data using a stacked multichannel autoencoder”.
Axiv:1509.05463.

[107] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep residual
learning for image recognition”. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[108] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich (2015).
“Going deeper with convolutions”. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

References 137

[109] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He (2016).
“Aggregated residual transformations for deep neural networks”. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

[110] Jayanta K Dutta, Jiayi Liu, Unmesh Kurup, and Mohak Shah (2018). “Effective
Building Block Design for Deep Convolutional Neural Networks using Search”.
arXiv:1801.08577

[111] Mohammad Javad Shafiee, Elnaz Barshan, Francis Li, Brendan Chwyl, Michelle
Karg, Christian Scharfenberger, and Alexander Wong (2017). “Learning Efficient
Deep Feature Representations via Transgenerational Genetic Transmission of En-
vironmental Information during Evolutionary Synthesis of Deep Neural Networks”.
IEEE International Conference on Computer Vision Workshop (ICCVW).

[112] Audrey Chung, Mohammad Javad Shafiee, Paul Fieguth, and Alexander Wong
(2017). “The Mating Rituals of Deep Neural Networks: Learning Compact Fea-
ture Representations through Sexual Evolutionary Synthesis”. IEEE International
Conference on Computer Vision Workshop (ICCVW).

[113] Barret Zoph and Quoc V. Le (2017). “Neural Architecture Search with Rein-
forcement Learning”. arXiv:1611.01578.

[114] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar (2017). “Designing
Neural Network Architectures using Reinforcement Learning”. arXiv:1611.02167 .

[115] Liefeng Bo, Xiaofeng Ren, and Dieter Fox (2010). “Kernel Descriptors for Visual
Recognition”. Advances in Neural Information Processing Systems.

[116] Navneet Dalal and Bill Triggs (2005). “Histograms of oriented gradients for
human detection”. Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[117] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang (2009). “Linear
spatial pyramid matching using sparse coding for image classification”. Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

[118] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool (2008). “Speeded
Up Robust Features”. Computer Vision and Image Understanding, Vol. 110(3), pp.
346-359.

[119] David H. Hubel and Torsten Wiesel (1962). “Receptive fields, binocular interac-
tion and functional architecture in the cat’s visual cortex”. Journal of Physiology,
Vol. 160(1), pp. 106–154.

[120] Robert Desimone, Thomas Albright, Charles G. Gross, and Charles Bruce (1984).
“Stimulus-selective properties of inferior temporal neurons in the macaque”. Journal
of Neuroscience, Vol. 4(8), pp. 2051-62.

[121] Jamie Shotton, Matthew Johnson, and Roberto Cipolla (2008). “Semantic Texton
Forests for Image Categorization and Segmentation”. Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

138 References

[122] Wenbin Zou, Kidiyo Kpalma, and Joseph Ronsin (2012). “Semantic segmentation
via sparse coding over hierarchical regions”. IEEE International Conference on Image
Processing (ICIP), pp. 2577-2580.

[123] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2014). “Spatial
Pyramid Pooling in Deep Convolutional Networks for Visual Recognition”. European
Conference on Computer Vision, pp. 346-361.

[124] Benjamin Graham (2014). “Fractional Max-Pooling”. arXiv:1412.6071.

[125] Matthew D. Zeiler and Rob Fergus (2013). “Stochastic Pooling for Regularization
of Deep Convolutional Neural Network”. Prof. of the International Conference for
Learning Representations (ICLR).

[126] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiterr (2016). “Fast
and accurate deep network learning by exponential linear units (elus)”. Prof. of the
International Conference for Learning Representations (ICLR).

[127] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification”. Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[128] Yoshua Bengio, Patrice Simard, and Paolo Frasconi (1994). “Learning Long-Term
Dependencies With Gradient Descent Is Difficult”. In: IEEE Transactions on Neural
Networks, Vol. 5(2), pp. 157–166.

[129] Sergey Ioffe and Christian Szegedy (2015). “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”. In the Proceedings of
the 32nd International Conference on Machine Learning.

[130] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton (2013). “On
the importance of initialization and momentum in deep learning”. In the Proc. of
the 30th International Conference on Machine Learning, Vol. 28(3), pp. 1139–1147.

[131] Vinod Nair and Geoffrey E. Hinton (2010). “Rectified Linear Units Improve
Restricted Boltzmann Machines”. In the Proc. of the 27th International Conference
on Machine Learning, pp. 807–814.

[132] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R. Salakhutdinov (2012). “Improving neural networks by preventing co-
adaptation of feature detectors”. arXiv:1207.0580 .

[133] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and
Yann LeCun (2014). “OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks”. Proc. of the International Conference for Learning
Representations (ICLR).

[134] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle (2006).
newblock “Greedy Layer-Wise Training of Deep Networks”. Advances in Neural
Information Processing Systems.

References 139

[135] Anne S. Hsu and Peter Dayan (2007). “An unsupervised learning model of neural
plasticity: Orientation selectivity in goggle-reared kittens”. Vision Research, Vol.
47(22), pp. 2868-2877.

[136] Stéphane Mallat (1999). “A wavelet tour of signal processing”. Academic press.

[137] Leif E. Peterson (2009). “K-nearest neighbor”. Scholarpedia, Vol. 4(2), pp.1883-
1889.

[138] Yani Andrew Ioannou (2017). “Structural Priors in Deep Neural Networks”. PhD
Thesis, University of Cambridge.

[139] Paul F. Evangelista, Mark J. Embrechts, and Boleslaw K. Szymanski (2006).
“Taming the curse of dimensionality in kernels and novelty detection”. Applied Soft
Computing Technologies: The Challenge of Complexity, Vol. 34, pp. 425-438.

[140] Alexandros Karatzoglou, David Meyer, and Kurt Hornik (2005). “Support Vector
Machines in R”. Report, Department of Statistics and Mathematics, WU Vienna
University of Economics and Business, Vienna.

[141] Piotr Bojanowski and Armand Joulin (2017). “Unsupervised Learning by Pre-
dicting Noise”. arXiv:1704.05310.

[142] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell (2017). “Adversarial
Feature Learning”. in Proc. of International Conference on Learning Representations
(ICLR).

[143] (2016) “Heuritech Blog”. weblink: https://blog.heuritech.com/2016/02/29/
a-brief-report-of-the-heuritech-deep-learning-meetup-5/ .

[144] Tomas Uktveris and Vacius Jusas (2017). “Application of Convolutional Neural-
Networks to Four-Class MotorImagery Classification Problem”. Proc. of the Journal
of Information Technology and Control, Vol. 46(2), pp. 260-273.

[145] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio
(2017). “Neural Combinatorial Optimization with Reinforcement Learning”. Proc.
of the 34th International Conference on Machine Learning, Vol. 70, pp. 459-468.

[146] Ke Li and Jitendra Malik (2017). “Learning to Optimize”. Proc. of the Interna-
tional Conference on Learning Representations (ICLR), Vol. 70, pp. 459-468.

[147] Thomas Serre, Aude Oliva, and Tomaso Poggio (2007). “A feedforward theory
of visual cortex accounts for human performance in rapid categorization”. Proc. of
the National Academy of Sciences of the United States of America, Vol. 104(15), pp.
6424-6429.

[148] Tolga Çukur, Shinji Nishimoto, Alexander G Huth, and Jack L Gallant (2013).
“Attention During Natural Vision Warps Semantic Representation Across the Human
Brain”. Nature Neuroscience, Vol. 16(6), pp. 763-770.

https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/

140 References

[149] Thomas Serre, Minjoon Kouh, Charles Cadieu, Ulf Knoblich, Gabriel Kreiman,
and Tomaso Poggio (2005). “A Theory of Object Recognition: Computations
and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual
Cortex”. Computer Science and Artificial Intelligence Laboratory, Technical Report,
MIT-CSAIL-TR-2005-082.

[150] Anitha Pasupathy and Charles Edward Connor (2001). “Shape representation in
area V4: position-specific tuning for boundary conformation”. Proc. of the Journal
of Neurophysiology, Vol. 86(5), pp. 2505-2519.

[151] John Reynolds, Leonardo Chelazzi, and Robert Desimone (1999). “Competitive
mechanisms subserve attention in macaque areas V2 and V4”. Proc. of the Journal
of Neuroscience, Vol. 19, pp. 1736-1753.

[152] Jack L. Gallant, Charles Edward Connor, Subrata Rakshit, James Lewis, and
David C. Van Essen (1996). “Neural responses to polar, hyperbolic, and cartesian
gratings in area V4 of the macaque monkey”. Proc. of the Journal of Neurophysiology,
Vol. 76, pp. 2718-2739.

[153] Antonio J. Rodríguez-Sánchez, Mazyar Fallah, and Aleš Leonardis (2015). “Hier-
archical Object Representations in the Visual Cortex and Computer Vision”. Proc.
of the Frontiers in Computational Neuroscience, Vol. 9(142).

[154] Stephan Tschechne and Heiko Neumann (2014). “Hierarchical representation of
shapes in visual cortex—from localized features to figural shape segregation”. Proc.
of the Frontiers in Computational Neuroscience, Vol. 8(93).

[155] Colin Blakemore Grahame F. Cooper (1970). “Development of the brain depends
on the visual environment”. Nature, Vol. 228, pp. 477-478.

[156] Annegreet van Opbroek, M. Arfan Ikram, Meike W. Vernooij, and Marleen
de Bruijne (2012). “Supervised Image Segmentation across Scanner Protocols: A
Transfer Learning Approach”. Machine Learning in Medical Imaging, Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, pp. 160-167.

[157] Daniel Yamins and James J DiCarlo (2016). “Using goal-driven deep learning
models to understand sensory cortex”. Nature Neuroscience, Vol. 19(3), pp. 356-365.

[158] Shuying Liu and Weihong Deng (2015). “Very deep convolutional neural network
based image classification using small training sample size”. IEEE IAPR Asian
Conference on Pattern Recognition (ACPR), pp. 730-734.

[159] Fayao Liu, Guosheng Lin, and Chunhua Shen (2017). “Discriminative Train-
ing of Deep Fully Connected Continuous CRFs With Task-Specific Loss”. IEEE
Transactions on Image Processing, Vol. 26(5), pp. 2127-2136.

[160] Heng Fan, Xue Mei, Danil Prokhorov, and Haibin Ling (2018). “Multi-Level
Contextual RNNs With Attention Model for Scene Labeling”. IEEE Transactions
on Intelligent Transportation Systems, Vol. 99, pp. 1-11.

References 141

[161] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng (2009).
“Convolutional deep belief networks for scalable unsupervised learning of hierarchical
representations”. Proc. of the International Conference on Machine Learning, pp.
609-616.

[162] “Learn Deep Learning with CIFAR Datasets”. weblink: https://github.com/
BIGBALLON/cifar-10-cnn.

[163] Geoffrey E. Hinton and Ruslan R. Salakhutdinov (2006). “Reducing the dimen-
sionality of data with neural networks”. Science, Vol. 313, pp. 504-507.

[164] Graham W. Taylor, Geoffrey E. Hinton, and Sam T. Roweis (2007). “Modeling
human motion using binary latent variables”. Advances in Neural Information
Processing Systems.

[165] Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor, Michaël
Mathieu, and Yann LeCun (2010). “Learning convolutional feature hierachies for
visual recognition”. Advances in Neural Information Processing Systems.

[166] Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus (2010).
“Deconvolutional networks”. Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2528-2535.

[167] Kihyuk Sohn, Dae Yon Jung, Honglak Lee, and Alfred O. Hero III (2011).
“Efficient learning of sparse, distributed, convolutional feature representations for
object recognition”. IEEE International Conference on Computer Vision (ICCV),
pp. 2643-2650.

[168] Avital Oliver, Augustus Odena, Colin Raffel, Ekin D. Cubuk, and Ian J. Good-
fellow (2018). “Realistic Evaluation of Deep Semi-Supervised Learning Algorithms”.
arXiv:1804.09170.

[169] Alexander Gammerman, Volodya Vovk, and Vladimir Vapnik (1998). “Learning
by transduction”. Proc. of the Fourteenth Conference on Uncertainty in Artificial
Intelligence.

[170] Thorsten Joachims (1999). “Transductive inference for text classification using
support vector machines”. Proc. of the International Conference on Machine Learning
(ICML).

[171] Thorsten Joachims (2003). “Transductive learning via spectral graph partitioning”.
Proc. of the International Conference on Machine Learning (ICML).

[172] Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux (2006). “Label Propaga-
tion and Quadratic Criterion”. Chapter 11, MIT Press.

[173] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty (2003). “Semi-supervised
learning using gaussian fields and harmonic functions”. Proc. of the International
Conference on Machine Learning (ICML).

https://github.com/BIGBALLON/cifar-10-cnn
https://github.com/BIGBALLON/cifar-10-cnn

142 References

[174] Adam Coates and Andrew Y. Ng (2011). “The importance of encoding versus
training with sparse coding and vector quantization”. Proc. of the International
Conference on Machine Learning (ICML).

[175] Ian J. Goodfellow, Aaron Courville, and Yoshua Bengio (2011). “Spike-and-slab
sparse coding for unsupervised feature discovery”. Advances in Neural Information
Processing Systems.

[176] Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, and Max Welling
(2014). “Semi-supervised learning with deep generative models”. Advances in Neural
Information Processing Systems.

[177] David A. Cohn, David A. Cohn, and David A. Cohn (1996). “Active learning
with statistical models”. Journal of artificial intelligence research.

[178] Simon Tong (2001). “Active Learning: Theory and Applications”. PhD thesis,
AAI3028187.

[179] Ajay J. Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos (2009). “Multi-
class active learning for image classification”. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2372–2379.

[180] Corinna Cortes and Vladimir Vapnik (1995). “Support-vector networks”. Machine
learning, Vol. 20(3), pp. 273–297.

[181] Xin Li and Yuhong Guo (2013). “Adaptive active learning for image classification”.
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 859-866.

[182] Alex Holub, Pietro Perona, and Michael C. Burl (2008). “Entropy-based active
learning for object recognition”. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) workshops, pp. 1-8.

[183] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani (2003). “Combining active
learning and semi-supervised learning using Gaussian fields and harmonic functions”.
Proc. of the International Conference on Machine Learning (ICML) workshops, pp.
58-65.

[184] James L McClelland, Bruce L McNaughton, and Randall C O’reilly (1995).
“Why there are complementary learning systems in the hippocampus and neocortex:
insights from the successes and failures of connectionist models of learning and
memory”. Psychological review, Vol. 102(3).

[185] Pablo Sprechmann, Siddhant M. Jayakumar, Jack W. Rae, Alexander Pritzel,
Adrià Puigdomènech Badia, Benigno Uria, Oriol Vinyals, Demis Hassabis, Razvan
Pascanu, and Charles Blundell (2018). “Memory-based Parameter Adaptation”. Prof.
of the International Conference for Learning Representations (ICLR).

[186] Pablo Sprechmann, Siddhant M. Jayakumar, Jack W. Rae, Alexander Pritzel,
Adrià Puigdomènech Badia, Benigno Uria, Oriol Vinyals, Demis Hassabis, Razvan
Pascanu, and Charles Blundell (2017). “Overcoming catastrophic forgetting in neural
networks”. Proceedings of the National Academy of Sciences.

References 143

[187] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timo-
thy Lillicrap (2016). “One-shot Learning with Memory-Augmented Neural Networks”.
arXiv:1605.06065 .

[188] Uzma Sharif, Zahid Mehmood, Toqeer Mahmood, Muhammad Arshad Javid,
Amjad Rehman, and Tanzila Saba (2018). “Scene analysis and search using local
features and support vector machine for effective content-based image retrieval”.
Artificial Intelligence Review, pp. 1–25.

[189] Qing Wang, Chenren Xu, Supeng Leng,and Sofie Pollin (2018). “When Au-
tonomous Drones Meet Driverless Cars”. Proc. of the 16th Annual International
Conference on Mobile Systems, Applications, and Services, pp. 514-514.

[190] Amarjot Singh, Devendra Patil, and SN Omkar (2018). “Eye in the Sky: Real-
time Drone Surveillance System (DSS) for Violent Individuals Identification using
ScatterNet Hybrid Deep Learning Network”. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) workshops, pp. 1629-1637.

[191] Amarjot Singh, Srikrishna Karanam, and Devinder Kumar (2013). “Constructive
learning for human-robot interaction”. IEEE Potentials, Vol. 32(4), pp. 13-19.

[192] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L. Yuille (2016). “DeepLab: Semantic Image Segmentation with Deep Convo-
lutional Nets, Atrous Convolution, and Fully Connected CRFs”. arXiv:1606.00915.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Introduction
	1.2 Image Understanding Systems
	1.3 Contributions
	1.4 Thesis overview

	2 Literature Review
	2.1 Handcrafted Architectures
	2.1.1 Scale-Invariant Feature Transform (SIFT)
	2.1.2 Scatter Net

	2.2 End-to-end Learned Networks
	2.2.1 Convolutional Neural Network
	2.2.2 AlexNet
	2.2.3 Network in Network (NIN)
	2.2.4 Visual Geometry Group (VGG)
	2.2.5 Residual Networks
	2.2.6 Restricted Boltzmann Machine

	2.3 Hybrid Architectures
	2.3.1 Bag of Features
	2.3.2 Deep Sparse Coding
	2.3.3 HMAX Model

	3 ScatterNet Hybrid Framework for Deep Learning
	3.1 ScatterNet Hybrid Deep Learning Framework
	3.1.1 ScatterNet Front-end
	3.1.2 Unsupervised Learning Mid-section Module
	3.1.3 Supervised Learning Back-end

	4 Hand-crafted Front-end
	4.1 Multi-Resolution Region Pooling ScatterNet
	4.2 Overview of Results
	4.2.1 US Postal Service Dataset
	4.2.2 The UCI Isolet Dataset
	4.2.3 The UCI Yeast Dataset
	4.2.4 The UCI Glass Dataset

	4.3 Computational Complexity
	4.4 Discussions
	4.5 Multi-resolution Parametric Log ScatterNet
	4.6 Overview of Results
	4.7 Computational Complexity
	4.8 Discussions
	4.9 Comparison between the Proposed ScatterNets

	5 Efficient Learning using ScatterNets
	5.1 DTCWT ScatterNet Convolutional Neural Network (DTSCNN)
	5.2 Experimental Results
	5.2.1 Datasets
	5.2.2 Evaluation and Comparison on Classification Error
	5.2.3 Analysis on Computational Efficiency and Learning
	5.2.4 Comparison with Pre-trained CNN First Layers
	5.2.5 Comparison with the state-of-the-art

	5.3 Discussions

	6 ScatterNet Hybrid Deep Learning (SHDL) Networks
	6.1 Deterministic ScatterNet Hybrid Deep Learning (D-SHDL) network
	6.1.1 ScatterNet Hand-crafted Descriptors
	6.1.2 Unsupervised Learning Module: PCA-Net Layers
	6.1.3 Supervised Learning Module: OLS and G-SVM

	6.2 Overview of the D-SHDL Results
	6.2.1 ScatterNet feature extraction
	6.2.2 PCA Layers: features and layer optimization
	6.2.3 Classification performance
	6.2.4 Comparison with the state-of-the-art
	6.2.5 Advantage over supervised learning
	6.2.6 Computational Complexity

	6.3 Discussions
	6.4 Generative ScatterNet Hybrid Deep Learning (G-SHDL) network
	6.4.1 ScatterNet Hand-crafted Descriptors
	6.4.2 Unsupervised Learning: RBM with Priors
	6.4.3 Supervised CRF Segmentation

	6.5 Overview of the G-SHDL Results
	6.5.1 Handcrafted Front-end: ScatterNet
	6.5.2 Unsupervised Mid-section: RBM with PCA priors
	6.5.3 Classification performance
	6.5.4 Comparison with the state-of-the-art
	6.5.5 Advantage over Deep Supervised Networks
	6.5.6 Computational Complexity
	6.5.7 Discussions

	7 Conclusions
	7.1 Summary of Key Results
	7.2 Future Work
	7.2.1 SHDL Back-end
	7.2.2 Artificial General Intelligence: Sequential Learning

	7.3 Parting Note

	Appendix A Training of Convolutional Neural Networks
	A.1 Back-propagation Algorithm

	Appendix B Feature Selection
	B.1 Orthogonal Least Squares(OLS)

	Appendix C PCA Network (PCANet)
	Appendix D Software
	D.1 ScatterNet
	D.2 Deep Convolutional Networks
	D.3 PCA Network
	D.4 Convolutional RBM

	Appendix E Datasets
	Appendix F Learned Filters
	Appendix G Publication List
	References

