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Abstract—We revisit the statistical foundation of the celebrated
context tree weighting (CTW) algorithm, and we develop a
Bayesian modelling framework for the class of higher-order,
variable-memory Markov chains, along with an associated col-
lection of methodological tools for exact inference for discrete
time series. In addition to deterministic algorithms that learn the
a posteriori most likely models and compute their posterior prob-
abilities, we introduce a family of variable-dimension Markov
chain Monte Carlo samplers, facilitating further exploration of
the posterior. The performance of the proposed methods in model
selection, Markov order estimation and prediction is illustrated
through simulation experiments and real-world applications.
The full paper describing this work is available online [11].

I. INTRODUCTION

For the analysis of discrete time series with significant
temporal structure, higher-order Markov chains are frequently
the most natural modelling choice. But the description of a full
Markov chain of order d with values in a set of size m requires
the specification of md(m− 1) parameters, which makes the
use of full Markov chains problematic in practice: As has
been often noted [4, 15, 23], the dimension of the parameter
space grows exponentially with the memory length, and the
resulting model class lacks modelling wealth and flexibility.
This severely hinders the important goal of balancing the bias-
variance tradeoff between more complex models that fit the
data closely, and simpler models that generalize well.

To address these issues and to offer better solutions to
many related scientific and engineering problems, numerous
approaches have been developed. These include Raftery’s mix-
ture transition distribution (MTD) models [15, 16], Rissanen’s
tree sources [17, 18], probabilistic suffix tree (PST) models
[22], and variable-length Markov chains (VLMC) [4].

In this work we introduce a Bayesian framework for
variable-memory Markov models, and we develop algorithmic
tools that lead to very effective and efficient exact inference.

In Section II we define a class of models T (D) as, e.g., in
[25, 28], that admit natural representations as context trees. It
contains all variable-memory Markov chains with values in an
alphabet A, with memory no longer than D. A family of prior
distributions πD(T ;β) on models T ∈ T (D) is introduced,
which penalizes more complex models by an exponential
amount. Given a model T , we place independent Dirichlet
priors π(θ|T ) on the associated parameters θ. We refer to the
models in T (D) equipped with this prior structure as Bayesian
context trees (BCT).

In Section III-A we recall the context tree weighting
(CTW) algorithm [25, 28] and we show that it can be used
to not only evaluate the marginal likelihoods P (x|T ) =∫
P (x|θ, T )π(θ|T )dθ of observations x with respect to mod-

els T , but also the prior predictive likelihood [8] P ∗D(x),

P ∗D(x) =
∑

T∈T (D)

πD(T ;β)P (x|T ). (1)

Given that the most basic obstacle to performing effective
Bayesian inference is the inability to obtain the normalizing
factor P ∗D(x) of the posterior distribution [3, 8, 21], it is clear
that the exact nature of the results produced by the CTW al-
gorithm should facilitate the development of efficient methods
for numerous core statistical tasks and related applications.

In Section III-B we describe the Bayesian context tree
(BCT) algorithm, and we prove that it identifies the maximum
a posteriori probability (MAP) model. This is a generalization
of the “context tree maximizing” algorithm [27, 29]. And
in Section III-C we show that a new algorithm, the k-BCT
algorithm, can be used to identify the k a posteriori most
likely tree models, for any k ≥ 1. Despite the fact that T (D)
is vast, consisting of doubly-exponentially many models in the
memory length D, the complexity of all three algorithms is
only linear in D and in the length of the observations x. But
the complexity of k-BCT grows with k, so its applicability is
more limited; see the relevant comments in Section VII.

In order to enable broader exploration of the posterior dis-
tributions π(T |x) and π(θ, T |x), in Section III-D we develop
a new family of variable-dimension Markov chain Monte
Carlo (MCMC) algorithms, that obtain Metropolis-within-
Gibbs samples from π(θ, T |x), as illustrated in Section V.

In Section IV we compare the model selection performance
of the BCT framework with that of the corresponding VLMC
and MTD methods, on both real and simulated data. We find
that the BCT algorithm consistently performs at least as well
as VLMC and MTD, and usually gives a better model fit.

In Section VI we compare the natural predictor induced
by the BCT framework with the predictors provided by
the MTD, VLMC, SMC [10, 30] and CTF [23] method-
ologies. The BCT predictor has two significant advantages,
which lead to superior performance. The first is that the
posterior predictive distribution can be computed exactly, as
P ∗D(xn+1|x1, . . . , xn) = P ∗D(x1, . . . , xn+1)/P

∗
D(x1, . . . , xn),

via the CTW algorithm. This way, the induced predictor is



obtained by implicitly averaging over all models with respect
to their exact posterior probabilities, thus avoiding the need to
perform approximate model averaging via simulation or other
numerical integration methods. The second advantage is that,
because the CTW algorithm can be updated sequentially, so
can the BCT predictor, so that it continues to “learn” from the
data even past the training phase.

The Bayesian perspective adopted here is neither purely
subjective, interpreting the prior and posterior as subjective
descriptions of uncertainty pre- and post-data, respectively,
nor purely objective, treating the resulting methods as simple
black-box procedures [5]. For example, we think of the MAP
model as the most accurate, data-driven representation of the
regularities present in the data, but we also examine the
frequentist properties of the resulting inferential procedures
and evaluate them by simulation experiments.

Another point of view which naturally relates to the present
development is Rissanen’s celebrated Minimum Description
Length (MDL) principle [9, 19, 20]. The MDL principle pro-
vides a broad operational foundation for statistical inference,
as well as constructive tools and appealing metaphors for
selecting prior distributions [5]. In particular, MDL consid-
erations underpin much of the original work on the CTW
algorithm [25, 27, 28] and our own choice of priors.

II. BAYESIAN CONTEXT TREES

Let {Xn} be a dth order Markov chain, for some d ≥ 0,
with values in the alphabet A = {0, 1, . . . ,m−1}. The model
describing {Xn} as a variable-memory chain will always be
represented by a tree as in the example below.
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Let T be an m-ary tree of depth no greater than d, which is
proper, in that, if a node in T is not a leaf, then it has exactly
m children. For indices i ≤ j, we write Xj

i for the vector
of random variables (Xi, Xi+1, . . . , Xj) and xji ∈ Aj−i+1 for
a string (xi, xi+1, . . . , xj) representing a realization of these
random variables. The complete description of the distribution
of {Xn}, in addition to the model T , requires the specification
of a set of parameters θ = {θs ; s ∈ T}: Viewing T as the
collection of its leaves, to every context s ∈ T we associate a
probability vector, θs = (θs(0), θs(1), . . . , θs(m − 1)). Then
the likelihood induced by the model is,

P (xn1 |x0−d+1) =
∏
s∈T

∏
j∈A

θs(j)
as(j), (2)

where the count vectors as are given by,

as(j) = # times symbol j ∈ A follows context s in xn1. (3)

Model prior. For D ≥ 0 and A = {0, 1, . . . ,m − 1}, let
T (D) denote the collection of all (proper) tree models T on
A with depth no greater than D. Given an arbitrary β ∈ (0, 1),
we define the prior distribution,

π(T ) = πD(T ;β) = α|T |−1β|T |−LD(T ), (4)

where α = (1− β)1/(m−1), |T | is the number of leaves of T ,
and LD(T ) is the number of leaves T has at depth D.

Lemma 2.1: For any D ≥ 0 and any β ∈ (0, 1):∑
T∈T (D) πD(T ;β) = 1.

Prior on θ. Given a model T ∈ T (D), we place an in-
dependent Dirichlet prior with parameters (1/2, 1/2, . . . , 1/2)
on each θs. In order to avoid cumbersome notation, in what
follows we often write x for the entire time series xn1 and
suppress the dependence on its initial context x0−d+1.

Choice of β. Simple computation shows that πD(T ;β)
penalizes larger trees by an exponential amount as long as
β ≥ 1/2, and larger values of β make the penalization more
severe. Also, for larger alphabet sizes, α = (1− β)1/(m−1)
becomes very close to 1 and the second factor dominates,
an effect which is unintuitive and less desirable. Therefore, in
practice we will always take β ≈ 1−2−m+1, so that α ≈ 1/2.

A useful property of the BCT framework is that the pa-
rameters θ can easily be integrated out, so that the marginal
likelihoods P (x|T ) can be expressed in closed form.

Lemma 2.2: The marginal likelihood P (x|T ) of the obser-
vations x given a model T is,

P (x|T ) =
∫
P (x|θ, T )π(θ|T )dθ =

∏
s∈T

Pe(as),

where the count vectors as are defined in (3) and the estimated
probabilities Pe(as) are defined by,

Pe(as) =

∏m−1
j=0 [(1/2)(3/2) · · · (as(j)− 1/2)]

(m/2)(m/2 + 1) · · · (m/2 +Ms − 1)
, (5)

where Ms = as(0) + as(1) + · · · + as(m − 1), with the
convention that any empty product is taken to be equal to 1.

III. METHODOLOGY

A. CTW: The context tree weighting algorithm

Recall the general version of the CTW algorithm [25, 28],
where the weighted probabilities Pw,s are computed, starting
at the leaves and proceeding recursively towards the root, as,

Pw,s=

{
Pe(as), if s is a leaf,
βPe(as) + (1− β)

∏m−1
j=0 Pw,sj , otherwise,

where sj is the concatenation of context s and symbol j.
Theorem 3.1: The mixture probability Pw,λ at the root λ

computed by CTW is exactly the prior predictive likelihood
of the observations, Pw,λ = P ∗D(x) as in (1).



B. BCT: The Bayesian context tree algorithm

Like the CTW, the context tree maximizing (CTM) algo-
rithm of [27, 29] can be generalized to non-binary alphabets
and general β, with respect to the maximal probabilities,

Pm,s=


Pe(as), if s is a leaf at depth D,
β, if s is a leaf at depth < D,
max

{
βPe(as), (1− β)

∏m−1
j=0 Pm,sj

}
, otherwise.

Theorem 3.2: For all β ≥ 1/2, the tree T ∗1 produced by the
BCT algorithm is the MAP tree model.

C. k-BCT: The top-k Bayesian context trees algorithm

The k-BCT is one of the main novel contributions of this
work. Although it is conceptually a natural generalization of
BCT, its precise description is quite lengthy; it is given in the
full version [11] and in [12].

Theorem 3.3: For any β ≥ 1/2, the trees T ∗1 , T
∗
2 , . . . , T

∗
k

produced by the k-BCT algorithm are the k a posteriori most
likely tree models.

For a fixed maximal depth D ≥ 0 and a fixed β, we observe
that, for any model T ∈ T (D), the posterior probability
π(T |x) can easily be computed, using Lemma 2.2, π(T |x) =
P (x|T )π(T )/P ∗D(x). Also, conditional on a model T and
observations x, the distribution π(θ|x, T ) of the parameters
can easily be seen to be the product over all s ∈ T of
Dirichlet distributions with parameters (as(0) + 1/2, as(1) +
1/2, . . . , as(m− 1) + 1/2).

D. MCMC samplers

RW sampler. The random walk (RW) sampler for π(T |x) is
a Metropolis-Hastings algorithm [21]. At each iteration, given
the current model T , either a new branch of m leaves is added
to a uniformly chosen node where such an addition is possible,
with prob. 1/2, or a uniformly chosen existing branch of m
leaves is removed, again with prob. 1/2. If the current tree is
simply the root λ, then a branch is always added, and if it
is the complete tree, then a branch is always removed. The
corresponding proposal distribution is easy to compute. Then
a standard Metropolis-Hastings accept/reject step ensures that
the stationary distribution of this chain is indeed π(T |x).
Jump sampler. This is a modification of the RW sampler,
which, in addition to nearest neighbour moves, also allows
for jumps to any one of the k most likely models. The
computations of the proposal distribution and the accept/reject
probabilities are only slightly more complex. This way we
overcome the common difficulty of RW samplers to move be-
tween separated modes of multimodal posterior distributions.

Metropolis-within-Gibbs sampling. Being able to obtain
MCMC samples {T (t)} for π(T |x), and knowing the full
conditional density π(θ|x, T ) of the parameters explicitly as
mentioned earlier, it is simple to obtain a corresponding
sequence of Metropolis-within-Gibbs samples {(θ(t), T (t))}
for the posterior π(θ, T |x) jointly on models and parameters.
This can be done by drawing a conditionally independent
sample θ(t) ∼ π(θ|x, T (t)) at each MCMC iteration step t.

IV. MODEL SELECTION

We compare the model selection performance of the algo-
rithms of Section III with the VLMC and MTD approaches.
For VLMC we report results for the default value of its cut-off
parameter K (“default-VLMC”), as well as for the values of K
that optimize the BIC and the AIC score (“best-BIC-VLMC”
and “best-AIC-VLMC”). For MTD we examine the models
produced by both its ‘single-matrix’ version [15] MTD, and
the ‘multi-matrix’ version [2] MTDg. For each data set we
run the MTD algorithm for a range of possible depths D and
choose the value that minimizes the corresponding BIC or
AIC score. We refer to the resulting models as the best-BIC-
MTD and best-AIC-MTD models. Similarly, we obtain the
best-BIC-MTDg and best-AIC-MTDg models.
A. Simulated data. Consider n = 1000 samples generated
from a 5th order variable-memory chain {Xn} on the alphabet
A = {0, 1, 2} of m = 3 letters, with model given by the tree
T shown in the example of Section II. With D = 10, and
β = 1 − 2−m+1 = 3/4, the five a posteriori most likely
models produced by the k-BCT algorithm are described in
Figure 1. The MAP model is a depth-4 subtree of the true
underlying model, with prior probability π(T ∗1 ) ≈ 2.9× 10−4

and posterior π(T ∗1 |x) ≈ 0.2702. The true model appears
as T ∗4 , with posterior π(T ∗4 |x) ≈ 0.0213. The sum of the
posterior probabilities of the top 5 models is ≈ 0.4737.
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Fig. 1: The first, second, third, and fifth a posteriori most likely
models T ∗1 , T

∗
2 , T

∗
3 , T

∗
5 . The posterior odds π(T ∗1 |x)/π(T ∗i |x)

with respect to the MAP model T ∗1 are approximately 2.369,
5.358, 12.69, and 15.24, for i = 2, 3, 4, 5, respectively.

The default-VLMC model is the first tree shown in Figure 2;
only about half of its nodes appear in the true underlying
model. It has a worse BIC score and a better AIC score than
the MAP model. The best-BIC-VLMC produces the small tree
of depth 3 shown second in Figure 2, which is a subtree of
the true model; it has a good BIC score and a poor AIC score.
In sharp contrast, the best-AIC-VLMC produces a clearly
overfitted model of depth 6, shown third in Figure 2. Although
it has a poor BIC score, its AIC score is good, as expected.

Finally, the best-BIC-MTD and the best-BIC-MTDg both
give D = 0, whereas the the best-AIC-MTD gives D = 3 and
the best-AIC-MTDg gives D = 2. Their scores are generally
quite a bit worse than those of the MAP model or the models
produced by VLMC.

Overall, the BCT and the best-BIC-VLMC algorithms
achieve the best performance. Their BIC and AIC scores are
within < 1% of each other. More importantly, the BCT MAP



model T ∗1 has an additional full branch at depth 4 that reveals
more of the true underlying structure, and the k-BCT identifies
the true model as T ∗4 .

1

2

0

1

2

0

1

2

0

Fig. 2: The models produced by the default-VLMC, the best-
BIC-VLMC and the best-AIC-VLMC methods.

Similar conclusions are drawn from numerous other exam-
ples [11]. The BCT framework consistently gives the most
accurate model fit, with the best-BIC version of VLMC often
giving similar results. The BCT algorithm is more efficient
than either VLMC or MTD, typically by at least two orders of
magnitude. The BCT framework has the additional advantage
of identifying the top k a posteriori most likely models,
together with their exact prior and posterior probabilities.

B. SARS-CoV-2 genome. The severe acute respiratory syn-
drome coronavirus 2, SARS-CoV-2, is the novel coronavirus
responsible for the Covid-19 global pandemic. Here we exam-
ine the SARS-CoV-2 genome, which consists of n = 29, 903
base pairs. We translate the four-letter DNA alphabet to
{0, 1, 2, 3} via the map (A,C,G,T) 7→ (0, 1, 2, 3).

The top 3 models obtained by the k-BCT algorithm with
D = 10, β = 1 − 2−m+1 = 7/8 and k = 3 are shown as
the first three trees in Figure 3. The MAP model has posterior
π(T ∗1 |x) ≈ 0.963 and prior π(T ∗1 ) ≈ 4.3× 10−5. The sum of
the posterior probabilities of these three models is ≈ 0.9994.
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Fig. 3: First three trees: The a posteriori most likely models
T ∗1 , T

∗
2 , T

∗
3 obtained by the k-BCT algorithm on the SARS-

CoV-2 genome. The posterior odds π(T ∗1 |x)/π(T ∗2 |x) and
π(T ∗1 |x)/π(T ∗3 |x) are approximately 35.75 and 101.4, respec-
tively. Last tree: The best-BIC-VLMC model; its AIC and BIC
scores are both within 0.1% of those of T ∗1 .

The best-BIC-VLMC model is the depth-2 subtree of T ∗1
shown last in Figure 3, while both best-BIC-MTD and best-
BIC-MTDg give D = 1. The AIC and BIC scores of all mod-
els are within 0.3% of each other. An interesting observation
here is that k-BCT gives models of depth 3 with very high

confidence. This may be because BCT finds evidence of the
fact that DNA naturally gets encoded into triplets of bases to
form codons that specify particular amino acids.

V. POSTERIOR EXPLORATION

We consider the daily changes in Standard & Poor’s (S&P)
index, from January 2, 1928 until October 7, 2016, quantized
to m = 7 values. Based on the resulting n = 22900 points
xi, the top k = 5 a posteriori most likely models obtained
by the k-BCT algorithm with maximum tree depth D = 260
(corresponding to approximately one calendar year’s trading
days), are described in Figure 4.
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Fig. 4: The tree shown without the two dotted branches is the
MAP model T ∗1 . Its posterior π(T ∗1 |x) ≈ 0.0174 and its prior
π(T ∗1 ) ≈ 5.7 × 10−11. The whole tree shown is the fifth a
posteriori most likely model T ∗5 , and T ∗2 , T ∗3 and T ∗4 were
found to be small variations around T ∗1 and T ∗5 , all with depth
5. The corresponding posterior odds π(T ∗1 |x)/π(T ∗i |x), for
i = 2, 3, 4, 5, are 1.094, 1.367, 1.496 and 2.467, respectively.

The shape of the MAP model contains significant informa-
tion. Since its maximal depth is 5, in order to determine the
distribution of the next sample we never have to look back
more than five days, i.e., a week of trading days. The smaller
the changes in the most recent S&P values, the further back
we need to look in order to predict tomorrow’s value.

The sum of the posterior probabilities of the top 5 models
is less than 6.5%. But here the complexity of k-BCT grows
significantly for values much larger than k = 5. In order to
explore π(T |x) further, we ran the RW sampler with T (0) =
T ∗1 for N = 106 iterations. The MCMC frequencies of the
25 most visited models shown in Figure 5 indicate that the
sampler has converged after N = 106 iterations.

The MCMC output can also be used for Markov order
estimation, by providing an approximation to the posterior
distribution on model depth. The empirical distributions of
the model depths obtained in five repetitions of the same
experiment are shown in Figure 5.

VI. PREDICTION

Given a training sequence xt1 of length t, we wish to
sequentially predict the next n values of the test sequence
xt+nt+1 . At each step, we assume that the predictor provides a
probability distribution for the next value, and we evaluate its
performance by the normalized, cumulative log-loss.
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Fig. 5: Top: MCMC histogram of the empirical frequencies
of the 25 most frequently visited models, after 106 iterations.
The corresponding true posterior probabilities are marked with
a red ‘x’. Bottom: Markov order estimation: The histograms
show the empirical frequencies of the depths of the 1,000 most
visited models after 106 iterations, in five MCMC runs.

We compare the performance of the natural BCT predictor
in terms of the posterior predictive distribution, with that of
VLMC, MTD, the Sparse Markov Chain (SMC) methodology
[10, 30], and the Conditional Tensor Factorization (CTF)
models of [23]. Unlike BCT, all other methods first select a
model and associated parameters, and then perform prediction
according to those. Throughout our experiments, we take the
maximal depth to be D = 10 for BCT, MTD, SMC and CTF.
Following standard practice [1] in most cases we split the data
50-50 into a training set and a test set.
Simulated data. The experiments here are based on 1,000
samples from the 5th order chain in Section IV. The log-loss
achieved by all five predictors is shown in Figure 6.
SARS-CoV-2 gene. Here we examine the spike (S) gene,
in positions 21,563–25,384 of the SARS-CoV-2 genome. The
data consists of a 3,822 bp-long gene sequence. The last plot in
Figure 6 shows the prediction results obtained by all methods.
Remarks. Above and in numerous other experiments, the
BCT predictor was found to be consistently better than the
other four methods, achieving a log-loss between 1.2% and
4.8% better than that of the second best method in each case.
The method that performed the closest to BCT in most cases
was CTF, which usually identified the same Markov order
as the other methods. The VLMC and MTD predictors were
found to be consistently and significantly less effective.

VII. DISCUSSION
This work develops a new, broad and systematic Bayesian

framework for the analysis of discrete time series, based on
the class of variable-memory Markov models, along with a
collection of algorithmic tools for exact inference, posterior
exploration, and prediction. In addition to CTW and BCT,
one of our main novel contributions is the k-BCT algorithm,
which identifies the k a posteriori most likely models.
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Fig. 6: Top plots: Log-loss achieved on the simulated data
by all methods, as a function of the size of the test data.
Bottom left: Log-loss achieved on the simulated data by BCT,
VLMC, SMC and CTF on n = 500 test samples with t = 500
training samples, averaged over 100 independent repetitions
of the same experiment. One-standard-deviation error bars are
also plotted for BCT and SMC near the end of the test data.
Bottom right: Log-loss achieved on the SARS-CoV-2 gene (S).

Theorems 3.1–3.3 establish the validity of these algorithms;
their proofs are by induction on D and they exploit the specific
form of the priors and of the induced marginal likelihood.
The algorithms are implemented in the publicly available
R package BCT [13]; their complexities are of O(nmD),
O(nmD) and O(nmDkm), respectively (importantly, linear
in n for all three), but the compexity of k-BCT can be reduced
to O(nmD× (mk) log(mk)) by employing a best-first search
to find only the top-k combinations by using a priority queue
to maintain all possible candidates and efficiently pick the next
best. Two novel, variable-dimension MCMC algorithms were
also introduced, that allow for broad posterior exploration.

Although Bayesian approaches to the CTW have been
explored before [27, 28, 29], the present framework is based on
a new prior structure, accompanied by an extensive collection
of algorithms that not only provide a comprehensive picture
of the posterior, but also yield themselves to the development
of very effective techniques for numerous statistical tasks.
This was illustrated, e.g., by the superior performance of the
BCT predictor compared with other state-of-the-art methods.

Finally we briefly mention some of the many directions
of possible extensions and applications, some of which we
are currently investigating: worst-case bounds on the prior
predictive likelihood can be established, as outlined in [11];
better estimation and weighting in the CTW and BCT with
larger alphabet sizes may be obtained using techniques from
[14]; improvements to the local probability estimators are
possible using ideas in [24]; and effective algorithms are
straightforward to develop for a variety of other applications,
including Markov order estimation [6], entropy estimation [7],
and changepoint detection [26].
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