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Abstract: Recent works have shown that an instance of a Brownian surface (such as
the Brownian map or Brownian disk) a.s. has a canonical conformal structure under
which it is equivalent to a

√
8/3-Liouville quantum gravity (LQG) surface. In particular,

Brownian motion on a Brownian surface is well-defined. The construction in these
works is indirect, however, and leaves open a basic question: is Brownian motion on a
Brownian surface the limit of simple randomwalk on increasingly fine discretizations of
that surface, the way Brownian motion on R2 is the ε → 0 limit of simple random walk
on εZ2? We answer this question affirmatively by showing that Brownian motion on a
Brownian surface is (up to time change) the λ → ∞ limit of simple random walk on
the Voronoi tessellation induced by a Poisson point process whose intensity is λ times
the associated area measure. Among other things, this implies that as λ → ∞ the Tutte
embedding (a.k.a. harmonic embedding) of the discretized Brownian disk converges
to the canonical conformal embedding of the continuum Brownian disk, which in turn
corresponds to

√
8/3-LQG. Along the way, we obtain other independently interesting

facts about conformal embeddings of Brownian surfaces, including information about
the Euclidean shapes of embeddedmetric balls andVoronoi cells. For example, we derive
moment estimates that imply, in a certain precise sense, that these shapes are unlikely
to be very long and thin.
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1. Main Results

1.1. Overview. This paper concerns relationships between several different topics, includ-
ing Liouville quantum gravity and the Brownian map. Let us begin by briefly reviewing
the objects under consideration.

Aplanarmap is a graph togetherwith an embedding into the plane so that no two edges
cross. Two planar maps are considered to be equivalent if they differ by an orientation
preserving homeomorphism of the plane. The study of planar maps goes back to work of
Tutte [Tut68] andMullin [Mul67] from the 1960s.Aplanarmap canbe viewed as ametric
measure space by equipping it with the graph distance and assigning each vertex one unit
of mass. In recent years, there has been considerable progress in studying the large scale
metric behavior of planar maps chosen uniformly at random. Of particular relevance to
the present article are the scaling limit results which give the convergence of uniformly
random planar maps towards a continuous object in the Gromov–Hausdorff–Prokhorov
topology. The first results of this type were due to Le Gall [Le13] andMiermont [Mie13]
which are both focused on random planar maps with the sphere topology. In this case,
the limiting object is a random metric measure space with the topology of the sphere
[LP08,Mie08] called the Brownian map, which was first defined (in different forms)
in [MM06,Le07], buildingon [CV81,Sch97,CS04]. Theworks [Le13,Mie13] have since
been extended to uniformly random planar maps with several other topologies, including
the disk [BM17,GM19d], the plane [CL14], and the half-plane [BMR16,GM17b]. The
limiting objects that one obtains are collectively known as Brownian surfaces.

The aforementioned limit theorems are concerned with the metric measure space
structure of large uniformly random planar maps, but not how they are embedded into
the plane. However, it is an important problem to understand scaling limits for canonical
embeddings of random planar maps. This is motivated in part by a desire to better
understand the relationship between statistical mechanics models (e.g., percolation, self-
avoidingwalks, the Isingmodel) on random planarmaps and their counterparts on planar
lattices. It has long been believed that if the embedding is of a conformal type (e.g.,
Riemann uniformization, circle packing, or the Tutte embedding we consider here), then
the large scale geometry of the statistical mechanics model should be the same as if it
were considered on a planar lattice. This idea underlies the famousKPZ relation [KPZ88,
DS11], which serves to convert critical exponents computed on a random geometry to
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the corresponding exponents on a deterministic geometry, and has been used numerous
times to give predictions for exponents for critical latticemodelswhichwere later verified
using SLE techniques (e.g., [Dup98,LSW01a,LSW01b,LSW02]).

Liouville quantum gravity (LQG) is another theory of random surfaces which was
introduced by Polyakov [Pol81a,Pol81b] in the 1980s in the context of string theory. To
define LQG, one starts with a (form of) the Gaussian free field (GFF) h on a domain
D and then considers the random two-dimensional Riemannian manifold with metric
tensor

eγ h(z)(dx2 + dy2) (1.1)

where γ ∈ (0, 2] is a parameter. This definition does not make rigorous mathematical
sense since h is a distribution and not a function. Making rigorous sense of various
aspects of LQG has been a major topic of research in recent years. Some of this work
builds on [DS11], which constructs the volume form associated with (1.1), which is
a random measure μh on D (see [Kah85,RV14] for a more general construction of
random measures of this type). One can construct various kinds of LQG surfaces by
varying the precise definition of h (what domain it lives on, how boundary conditions
are chosen, whether one “weights” the law of h in some locally absolutely continuous
way). Generally, one writes γ -LQG to refer to LQG surfaces with parameter γ . The
special case γ = √

8/3 has long been known to be special:
√
8/3-LQG surfaces, like

Brownian surfaces, are related to “undecorated” planar maps, and are also called pure
LQG surfaces.

In fact, a recent series ofworks by the second two authors has shown that theBrownian
map and the so-called

√
8/3-LQG sphere are in some sense equivalent (and similar

statements can be made for disk, whole-plane, or half-plane variants) [MS15b,MS16a,
MS16b]. Although both

√
8/3-LQG spheres and Brownian maps come with a natural

measure, they also have additional structure: a Brownian surface has a metric, and a√
8/3-LQG surface has a conformal structure (i.e., an embedding into a flat domain,

defined up to conformal automorphism of that domain). The works [MS15b,MS16a,
MS16b] show that each of these objects can be canonically endowed with the other
one’s structure, and that once this is done the objects agree in law.

We have made the present work as self-contained as possible, which in particular
means that the reader is not required to have read the series [MS15b,MS16a,MS16b]
relating Brownian and

√
8/3-LQG surfaces, or any papers about quantum Loewner

evolution. The results we do need will be recalled and restated.
Very roughly, the argument in [MS15b,MS16a,MS16b] proceeds as follows. First,

[MS15b] uses h to construct a metric Dh on D using a growth process called quantum
Loewner evolution (QLE) [MS16d]. We will not need to recall the precise construction
of Dh or the definition of QLE here. Section 2.4 contains all of the background on Dh
that is necessary to understand this paper. Second, [MS16a] shows that in the case of
the

√
8/3-LQG sphere the corresponding metric measure space agrees in law with the

Brownianmap. Thus, by sampling h (which determines the
√
8/3-LQGsphere), and then

generating the corresponding Brownian map, one obtains a coupling of the
√
8/3-LQG

sphere and the Brownian map. Finally, [MS16b] uses certain “welding and resampling”
arguments to show that in this coupling, the latter object almost surely determines the
former. In other words, one can recover the

√
8/3-LQG instance (i.e., the distribution

h) as a measurable function of the corresponding Brownian surface instance.
This measurable function is obtained in a remarkably non-explicit way. Although the

argument tells us that an instance of a Brownian map (or disk, plane, or half-plane) has
a canonical conformal structure, i.e., a canonical embedding intoC (or a domain inC)
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defined up toMöbius transformation, it gives us no way to compute or even approximate
that embedding using only information about the “metric measure space” structure of
the Brownian surface. Similarly, since a Brownian surface has a canonical conformal
structure, we know that Brownian motion on a Brownian surface is well-defined, at
least modulo a monotone reparameterization of time.1 But the argument tells us nothing
about how to construct that Brownian motion: in particular, it does not tell us whether
Brownian motion on a Brownian surface is the limit of simple random walk on some
natural increasingly fine discretizations of that surface, the way Brownian motion onR2

is the ε → 0 limit of simple random walk on εZ2.
The purpose of the present work is to construct the conformal structure of a Brownian

surface in an explicit manner. To this end, we will start with an instance of a Brownian
surface and then approximate it with the graph of cells associated with the Poisson–
Voronoi tessellation. More precisely, we will fix λ > 0 and then pick a Poisson point
process with intensity measure given by λ times the area measure on the Brownian
surface. The cell corresponding to a given point x in the Poisson point process consists
of those points that are at least as close to x as they are to any other point of the Poisson
point process (w.r.t. the metric on the Brownian surface). Cells are considered to be
adjacent if they have non-empty intersection.

Ourmain result (Theorem1.1) says that asλ → ∞, the randomwalk on the adjacency
graph of Voronoi cells converges modulo parameterization to a limiting continuous
path. Moreover, this path is a Brownian motion (modulo parameterization) when it is
embedded into C using the identification of Brownian surfaces with

√
8/3-LQG. This

gives an intrinsic way of constructing Brownian motion (modulo time parameterization)
on a Brownian surface without any reference to LQG: indeed, the Brownian motion on
the surface is simply the λ → ∞ limit of the random walk on the Voronoi cells.

One can define the Tutte embedding of the adjacency graph of cells in terms of hitting
probabilities for the simple random walk (in the same way that Riemann uniformiza-
tion can be defined using the hitting probabilities for Brownian motion, i.e., harmonic
measure). Our results show that this Tutte embedding converges to

√
8/3-LQG in an

appropriate sense as λ → ∞ (Theorem 1.2). This in particular gives a new, more
explicit, proof of the main result of [MS16b], which says that a

√
8/3-LQG surface is

a.s. determined by its metric measure space structure.
Finally, we remark on some relatedworks. Voronoi tessellations of Brownian surfaces

have also been considered in other contexts: see, e.g., [Cha16,Gui17]. These papers raise
interesting questions about the lawof the partitioning of volume among theVoronoi cells,
but they do not consider the adjacency graph of cells as we do here.

The first two authors in [GM19b], building on [DDDF19,DFG+19,GM19c,GM19a],
recently constructed a metric on a γ -LQG surface for general γ ∈ (0, 2) using a com-
pletely different construction from the one in [MS15b,MS16a,MS16b]. It was shown
in [GM19b] that the two constructions give the same metric. This paper will make no
use of [GM19b], but many of our estimates for the

√
8/3-LQG metric also work for

general γ ∈ (0, 2); see the discussion just after Theorem 1.2 and also Remark 2.5.

1.2. Main results. Let (X , D, μ) be an instance of the Brownian map, disk, plane, or
half-plane, equipped with its metric D and its natural area measure μ. Conditional on

1 We will not consider the time parameterization in this paper, but we note that there is a canonical way to
parameterize Brownian motion on a

√
8/3-LQG surface, called Liouville Brownian motion [Ber15,GRV16].

We expect, but do not prove, that Liouville Brownian motion is the scaling limit of the parameterized walk in
the setting of Theorem 1.1; see Problem 5.2.
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(X , D, μ), letPλ for λ > 0 be a Poisson point process onX with intensity measure λμ.
In the case of the Brownian map or disk (when μ is a finite measure) with area equal to
A we can equivalently define Pλ as follows: sample N ∼ Poisson(λA), independently
from (X , D, μ), and then conditional on N and (X , D, μ) sample N points uniformly
and independently from μ.

For z ∈ Pλ, let Hλ
z be the Voronoi cell which is the closure of the set of points in X

which are D-closer to z than to any other point of Pλ. There is a natural graph structure
on Pλ whereby z, w ∈ Pλ are connected by an edge if and only if the cells Hλ

z and Hλ
w

intersect along their boundaries. Equivalently, z, w ∈ Pλ are joined by an edge if and
only if there exists u ∈ X such that D(u, z) = D(u, w) and D(u, x) ≥ D(u, z) for each
x ∈ Pλ\{z, w}. In the case of the Brownian disk or half-plane, we define ∂Pλ to be the
set of z ∈ Pλ for which the corresponding cell intersects ∂X .

Our first main result (from which all of our other main results will follow) says that
the simple random walk on Pλ converges modulo time parameterization and that the
limiting process coincides with Brownian motion under the embedding of X into C
which arises from its identification with a

√
8/3-LQG surface. In fact, the convergence

is uniform over all choices of starting point in any given compact set K ⊂ X (in the
case of the Brownian map or disk, we can just take K = X ). This gives us an explicit,
intrinsic definition of Brownian motion on a Brownian surface which coincides with the
definition which comes from LQG theory.

For z ∈ X , let Y z,λ be the simple random walk on Pλ started from the point of Pλ

whose corresponding cell contains z (if there is more than one such point, we choose
one in an arbitrary manner). We extend Y z,λ from the integers to [0,∞) by declaring
that for each j ∈ N, the path Y z,λ|[ j−1, j] traverses the D-geodesic from Y z,λ

j−1 to Y
z,λ
j at

constant speed.2 In the case of the Brownian disk or half-plane, we stop Y z,λ at the first
time it hits a point of ∂Pλ.

Theorem 1.1 (Brownian motion on a Brownian surface). If K ⊂ X is a compact set
chosen in a manner which is measurable with respect to (X , D, μ), then as λ → ∞ the
conditional law of the walk Y z,λ given (X , D, μ) converges in probability as λ → 0,
uniformly over all z ∈ K, with respect to the topology on curves viewed modulo time
parameterization (see Sect. 2.1.3 for a review of this topology). If we identifyX with the
Riemann sphere, unit disk, complex plane, or upper half-plane using the correspondence
between Brownian and

√
8/3-LQG surfaces, then the limit of the conditional law of Y z,λ

given (X , D, μ) is standard planar Brownian motion started from z (and stopped upon
hitting the domain boundary in the case of a surface with boundary), viewed modulo
time parameterization.

In light of Theorem 1.1, one can define Brownian motion on X to be the limit of the
processes Y z,λ as λ → ∞. See Theorem 3.3 for a more general version of Theorem 1.1
which also applies to other

√
8/3-LQG surfaces. Theorem 1.1 allows us to give intrinsic

2 It is easy to see that for any compact set K ⊂ X , the following is true. The supremum over all j such that
Y z,λ
j ∈ K of the D-diameter and the Euclidean diameter of Y z,λ|[ j−1, j] converges to zero in probability as

λ → ∞. This is the only property of the continuous extension of the walk which is needed for our purposes.
To see why this property holds, we observe that the D-diameter of Y z,λ|[ j−1, j] equals D(Y z,λ

j−1, Y
z,λ
j ). Since

Y z,λ
j−1 and Y

z,λ
j are contained in adjacent Voronoi cells and the maximum D-diameter of all of the cells which

intersect K tends to zero in probability as λ → ∞ (by Lemma A.3), we get the desired statement for the
D-diameters. The desired property for Euclidean diameters follows since D induces the same topology as the
Euclidean metric.
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constructions of other objects on Brownian surfaces which can be derived from random
walk. For example, by combining it with themain result of [YY11] we obtain an intrinsic
definition of SLE2 on a Brownian surface as the limit of the loop-erased random walk
on Poisson–Voronoi tessellations. Our techniques also imply variants of Theorem 1.1 in
which the edges of Pλ are assigned random conductances in a sufficiently nice way. For
example, Theorem 1.1 is still true if the conductances are i.i.d. and the conductances and
their reciprocals have finite expectation. Essentially, this is because the key step in the
proof of Theorem 1.1 uses themain result of [GMS18], and the result in [GMS18] allows
for variable conductances.Wewill not state a general variable conductance theoremhere,
but we remark that if the reader wants to extend Theorem 1.1 to a particular variable
conductancemodel, the key stepwill be checking that the hypotheses of [GMS18] remain
satisfied.

Theorem 1.1 also gives us an explicit construction of the embedding of a Brownian
surface intoC. More precisely, one can define an explicit way of embedding the graphs
Pλ into C—called the Tutte embedding—under which the metric and area measure
on Pλ inherited from (X , D, μ) converge to the

√
8/3-LQG metric and area measure,

respectively, as λ → ∞. For concreteness, let us focus on the case when (X , D, μ) is
the Brownian disk (we do this since our embedding has a simpler definition when our
surface has a boundary).

Wewill now define the Tutte embedding�λ into the closed unit diskD of the Poisson
point process Pλ (equipped with the graph structure discussed above). Recall that ∂Pλ

denotes the points in Pλ whose corresponding cells intersect ∂X . We first specify the
points which will be sent (approximately) to 0 and 1. Let z be sampled uniformly from
μ and let z0 be the a.s. unique (see Lemma A.5) element of Pλ such that z ∈ Hλ

z0 . Also
let x be sampled uniformly from the canonical length measure on ∂X (which can be
defined, e.g., by taking a limit of the re-scaled μ-mass of D-neighborhoods of boundary
arcs [LG19]) and let x0 be the a.s. unique element of ∂Pλ for whichx ∈ Hλ

x0 . Enumerate
the other points in ∂Pλ as x1, . . . , xm so that if j, k ∈ {0, . . . ,m}, then j < k if and only
if we hit the cell Hλ

x j before the cell H
λ
xk when we traverse ∂X in the counterclockwise

direction started from x.
For j ∈ {0, . . . ,m}, we declare that �λ(x j ) = e2π i p j ∈ ∂D, where p j is the

probability that a simple random walk on Pλ started from z0 first hits ∂Pλ at one of the
points x0, . . . , x j . Note that this makes it so that the harmonic measure as seen from z0
approximates the uniform measure on ∂D. This defines an embedding of ∂Pλ. We then
extend this embedding to be discrete harmonic on the rest ofPλ, equivalently we require
that the position of each interior vertex of Pλ under our embedding is the average of the
positions of its neighbors.

Note that under this embedding, the center point of the cell x0 containing x maps to
e0 = 1. Moreover, the Pλ-harmonic measure on ∂Pλ as viewed from z0 approximates
the uniform measure on ∂D, the average of which is zero. So, �λ(z0) is close to zero
(but not necessarily exactly equal to zero) when λ is large.

Theorem 1.2 (Tutte embedding convergence). Let (X , D, μ) be a Brownian disk (with
any fixed positive choice of area and boundary length) and let h be the GFF-type distri-
bution onD which parameterizes the

√
8/3-LQG surface3 corresponding to (X , D, μ)

under the correspondence of [MS15b,MS16a,MS16b]. Also letμh and Dh be the
√
8/3-

Liouville quantum gravity area measure and metric, respectively, induced by h, so that

3 In particular, this surface is a quantum disk with a marked interior point at 0 and a marked boundary point
at 1; see Sect. 2.4.
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Fig. 1. Simulation of the Poisson–Voronoi tessellation of
√
8/3-LQG. Although the cells differ greatly in

Euclidean size, they appear to have moderate “length-to-width ratios” in the sense that a typical cell contains
a Euclidean disk of diameter comparable to its own diameter. A mathematical version of this observation (see
Propositions 4.4 and 4.5) plays a role in the proof that simple random walk on the adjacency graph of cells
approximates Brownian motion

(X , D, μ) = (D, Dh, μh) as metric measure spaces. If we identify Pλ with its image
under the Tutte embedding, then we have the following convergence in probability as
λ → ∞.

• The measure which assigns to each vertex of Pλ a mass equal to the μ-mass of its
corresponding cell converges to μh. The same is true of the counting measure on
vertices of Pλ, scaled by the factor λ−1.
• The maximum over all pairs of embedded vertices z, w ∈ Pλ of the quantity
|Dh(z, w) − D(z, w)| converges to zero.
• The simple random walk on vertices of Pλ started from z0 converges modulo time
parameterization to Brownian motion started from 0 and stopped upon hitting ∂D
in the quenched sense (i.e., its conditional law given Pλ and (X , D, μ) converges
weakly in probability as λ → ∞).

As we will explain in Sect. 3.3, Theorem 1.2 is a consequence of Theorem 1.1.
Indeed, to prove Theorem 1.2 we just need to show that when λ is large, the Tutte
embedding ofPλ is close to the image ofPλ under the a priori embedding of (X , D, μ)

which comes from its identification with (D, Dh, μh). Due to the manner in which the
Tutte embedding is defined, this, in turn, follows from the statement that under the a
priori embedding, the random walk on Pλ converges to Brownian motion modulo time
parameterization, as asserted in Theorem 1.1.

We now briefly outline the proof of Theorem 1.1. We want to show that under the a
priori embedding, the random walk on Pλ converges to Brownian motion modulo time
parameterization. This is a random walk in random environment (RWRE) problem: we
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have a random walk on Pλ—viewed as a random graph drawn in D—and we want to
show that it approximates Brownian motion. However, this problem falls outside of the
usual RWRE or random conductance model framework (as surveyed, e.g., in [BAF16,
Bis11]) because the Euclidean sizes of the Voronoi cells under the a priori embedding
vary dramatically from one location to another, so the environment is highly spatially
inhomogeneous (see Fig. 1) and in particular its law is not stationary with respect to
spatial translations.

Nevertheless, as explained in Sect. 3, if we consider a certain special
√
8/3-LQG

surface called a 0-quantum cone (which does not correspond to one of the “standard”
Brownian surfaces) then the associated adjacency graph of Poisson–Voronoi cells is in
a certain sense “translation invariant modulo a global rescaling.” The paper [GMS18]
gives conditions under which random walk converges to Brownian motion modulo time
parameterization in a random environment which is only required to satisfy this weaker
form of translation invariance. We re-state the particular theorem from [GMS18] which
we will use as Theorem 2.2. Once certain properties of our Voronoi cells have been
established, this theorem shows that random walk on the Poisson–Voronoi tessellation
of the 0-quantum cone converges to Brownian motion modulo time parameterization.
One can then transfer to other

√
8/3-LQG surfaces (such as the ones corresponding to the

Brownian map, disk, plane, and half-plane) via local absolute continuity considerations.
The key quantitative condition needed to apply the above RWRE theorem is that the

quantity diam(H0)
2deg(H0)/area(H0) has finite expectation, where H0 is the Voronoi

cell containing the origin for the γ -quantum cone with λ = 1 and diam, deg, and
area denote its Euclidean diameter, degree (in the adjacency graph of Voronoi cells),
and Lebesgue measure, respectively. We will show in Sect. 3.4, using a mass-transport
principle, that in fact it suffices to prove that

E

⎡
⎣ ∑

H∈H:0∈BH

diam(H)2deg(H)

area(BH )

⎤
⎦ < ∞, (1.2)

where BH is the smallest Dh-metric ball centered at the center point of H (i.e., the point
of P which is in H ) which contains H . This will be important for our purposes since it
is easier to lower-bound the Lebesgue measure of an LQG metric ball than a Voronoi
cell. In order to verify (1.2), we need to establish a number of estimates for

√
8/3-LQG

metric balls and Voronoi cells which are of independent interest (see Sect. 4).
In particular, we show in Proposition 4.4 that a

√
8/3-LQG metric ball is extremely

unlikely to be “long and skinny” in the sense that it typically contains a Euclidean ball of
radius comparable to its Euclidean diameter. This is done using a percolation argument
for the GFF, similar to ones in [DD19,DG16,DZZ18,DG18,DF18,DD18,DDDF19].
We also show in Proposition 4.8 that the

√
8/3-LQG mass of an LQG metric ball is

highly concentrated around the fourth power of its
√
8/3-LQG radius. This is done by

starting with estimates for the Brownian map [Le10], then using the local independence
properties of the GFF to establish a suitable concentration bound.

The high-level strategy used in this paper (especially, the application of [GMS18])
is similar to the strategy used in [GMS17] to prove the convergence to LQG of the
Tutte embedding of the so-called mated-CRT map. The mated-CRT map is a random
planar map built by mating a pair of continuum random trees, which has an a priori
embedding into C due to the results of [DMS14]. However, the proof of the needed
bound for diam(H0)

2deg(H0)/area(H0) in this paper, including the reduction to (1.2)
and the estimates for

√
8/3-LQG metric balls, is very different from the proof of the
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analogous bound in [GMS17]. The proof of this estimate comprises most of the technical
work in this paper.

All of the arguments in this paper carry over verbatim to the γ -LQGmetric for general
γ ∈ (0, 2), as defined in [GM19b], except for the proof of the ball volume concentration
bound in Proposition 4.8 (which uses estimates for the Brownian map, so only works
for γ = √

8/3). If we had an analog of Proposition 4.8 for general γ ∈ (0, 2), we could
immediately extend our results to Poisson–Voronoi tessellations of γ -LQG surfaces for
all γ ∈ (0, 2).

Remark 1.3 (Embeddings of random planar maps). Theorem 1.2 implies a scaling limit
result for certain “coarse-grained” embeddings of random planar maps toward

√
8/3-

LQG, as we now explain. Suppose {Mn}n∈N is a sequence of random planar maps with
boundary which converge in law to the Brownian disk in the following sense. There
are scaling constants an, bn, cn > 0 such that if we view the planar maps as curve-
decorated metric measure spaces equipped with a−1

n times the graph distance, b−1
n times

the counting measure on vertices, and the path which traces the boundary according to
the natural ordering in such a way that each edge is traversed in c−1

n units of time, then
the maps converge in law w.r.t. the Gromov–Hausdorff–Prokhorov-uniform (GHPU)
topology, the analog of the Gromov–Hausdorff topology for curve-decorated metric
measure spaces introduced in [GM17b].

For λ > 0, we can define a Poisson–Voronoi tessellation of Mn using a Poisson
point process with respect to λb−1

n times the counting measure on vertices of Mn . We
can then define a “coarse-grained” Tutte embedding of Mn using this Poisson–Voronoi
tessellation in exactly the samemanner as in Theorem 1.2. It can be seen from the GHPU
convergence of Mn to the Brownian disk that for each fixed λ > 0, the adjacency graph
of Voronoi cells on Mn converges in the total variation sense to the adjacency graph Pλ

defined above (here we emphasize that for fixed λ the typical number of Voronoi cells
is a tight random variable as n → ∞). Hence if we send λn → ∞ sufficiently slowly as
n → ∞, we get an analog of Theorem 1.2 for the λn-coarse-grained Tutte embedding
of Mn .

More details regarding the above appeared in an earlier arXiv version of this paper,
but were cut from the current version for brevity.

1.3. Outline. The remainder of this article is structured as follows. In Sect. 2, we will
fix some notation, state the scaling limit result from [GMS18] which is used in the proof
of our main results, and recall some facts about metric spaces and

√
8/3-LQG surfaces.

In Sect. 3, we prove Theorems 1.1 and 1.2 assuming that a certain moment bound for
Voronoi cells is satisfied. In Sect. 4 we will prove the required moment bound, along
with a number of estimates for

√
8/3-LQG metric balls which are intermediate steps.

Section 5 discusses several open problems related to the results of this paper. “Appendix
A” contains the proofs of several elementary properties of Voronoi cells which follow
from basic properties of Brownian surfaces and the GFF.

2. Preliminaries

2.1. Basic notation. We write N = {1, 2, 3, . . . } and N0 = N ∪ {0}. For a < b, we
define the discrete interval [a, b]Z := [a, b] ∩ Z.
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For z ∈ C and r > 0, we write Br (0) for the open Euclidean ball of radius r centered
at z. We write diam(·) and area(·) for Euclidean diameter and Lebesgue measure onC,
respectively.

For a metric space (X, d), x ∈ X , and r > 0, we write Br (x; d) for the open d-metric
ball of radius r centered at x .

2.1.1. Asymptotics If f : (0,∞) → R and g : (0,∞) → (0,∞), we say that f (ε) =
Oε(g(ε)) (resp. f (ε) = oε(g(ε))) as ε → 0 if f (ε)/g(ε) remains bounded (resp. tends
to zero) as ε → 0. We similarly define O(·) and o(·) errors as a parameter goes to
infinity.

If f, g : (0,∞) → [0,∞), we say that f (ε) � g(ε) if there is a constant C > 0
(independent from ε and possibly from other parameters of interest) such that f (ε) ≤
Cg(ε). We write f (ε) 
 g(ε) if f (ε) � g(ε) and g(ε) � f (ε).

Let {Eε}ε>0 be a one-parameter family of events. We say that Eε occurs with

• polynomially high probability as ε → 0 if there is a p > 0 (independent from ε and
possibly from other parameters of interest) such that P[Eε] = 1 − Oε(ε

p).
• superpolynomially high probability as ε → 0 if P[Eε] = 1 − Oε(ε

p) for every
p > 0.

• exponentially high probability as ε → 0 if there exists c > 0 (independent from ε

and possibly from other parameters of interest) P[Eε] = 1 − Oε(e−c/ε).

We similarly define eventswhich occurwith polynomially, superpolynomially, and expo-
nentially high probability as a parameter tends to ∞.

We will often specify any requirements on the dependencies on rates of conver-
gence in O(·) and o(·) errors, implicit constants in �, etc., in the statements of lemmas/
propositions/theorems, inwhich casewe implicitly require that errors, implicit constants,
etc., appearing in the proof satisfy the same dependencies.

2.1.2. Metric spaces Let (X, d) be a metric space. For a curve γ : [a, b] → X , the
d-length of γ is defined by

len (γ ; d) := sup
P

#P∑
i=1

d(γ (ti ), γ (ti−1)) (2.1)

where the supremum is over all partitions P : a = t0 < · · · < t#P = b of [a, b]. Note
that the d-length of a curve may be infinite.
A d-geodesic between two points x, y ∈ X is a path from x to y of minimal d-length.
A metric space (X, d) is called a length space if for each z, w ∈ X , the distance d(z, w)

is the infimum of the d-lengths of paths joining z and w.

2.1.3. Metric on curves modulo time parameterization. Our scaling limit results for
random walk on embedded planar maps are with respect to the topology on curves
modulo time parameterization, which we now recall. If β1 : [0, Tβ1 ] → C and β2 :
[0, Tβ2 ] → C are continuous curves defined on possibly different time intervals, we set

dCMP (β1, β2) := inf
φ

sup
t∈[0,Tβ1 ]

|β1(t) − β2(φ(t))| (2.2)

where the infimum is over all increasing homeomorphisms φ : [0, Tβ1 ] → [0, Tβ2 ] (the
CMP stands for “curves modulo parameterization”). It is shown in [AB99, Lemma 2.1]
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that dCMP induces a complete metric on the set of curves viewed modulo time parame-
terization.

In the case of curves defined for infinite time, it is convenient to have a local variant
of the metric dCMP. Suppose β1 : [0,∞) → C and β2 : [0,∞) → C are two such
curves. For r > 0, let T1,r (resp. T2,r ) be the first exit time of β1 (resp. β2) from the ball
Br (0) (or 0 if the curve starts outside Br (0)). We define

dCMP
loc (β1, β2) :=

∫ ∞

1
e−r

(
1 ∧ dCMP (β1|[0,T1,r ], β2|[0,T2,r ]

))
dr, (2.3)

so thatdCMP
loc (βn, β) → 0 if and only if for Lebesgue a.e. r > 0,βn stopped at its first exit

time from Br (0) converges to β stopped at its first exit time from Br (0) with respect to
themetric (2.2).Note that the definition (2.2) ofdCMP

(
β1|[0,T1,r ], β2|[0,T2,r ]

)
makes sense

even if oneor bothofT1,r orT2,r is infinite, providedweallowdCMP
(
β1|[0,T1,r ], β2|[0,T2,r ]

)
= ∞ (this does not pose a problem due to the definition of the integrand in (2.3)).

If (X, d, x0) is a general metric space with a marked point, one can similarly define
the metric on curves modulo time parameterization on X but with d-distances in place
of Euclidean distances and d-metric balls centered at x0 in place of Euclidean balls
centered at 0.

2.2. Scaling limit for random walk on graphs of cells. In this subsection we state a
version of the main result of [GMS18] which gives general conditions under which
random walk on the adjacency graph of a random collection of cells (e.g., Voronoi
cells) on C converges to Brownian motion. This same result is also used in [GMS17]
to prove an embedding convergence result for a different discretization of LQG. Let us
first describe what we mean by an “adjacency graph of cells”.

Definition 2.1. A cell configuration on C consists of the following objects.

1. A locally finite collection H of compact connected subsets of C (“cells”) with non-
empty interiors whose union is all of C and such that the intersection of any two
elements ofH has zero Lebesgue measure.

2. A symmetric relation∼ onH×H (“adjacency”) such that if H ∼ H ′, then H∩H ′ �=
∅ and H �= H ′.

We will typically slightly abuse notation by making the relation ∼ implicit, so we
writeH instead of (H,∼). We viewH as a weighted graph whose vertices are the cells
of H and whose edge set is

EH := {{H, H ′} ∈ H × H : H ∼ H ′} , (2.4)

In [GMS18], one also allows for a conductance function on the edges ofH. Here we will
only consider cell configurations with unit conductances. We note that the intersections
of the cells ofH are required to have zeroLebesguemeasure.Wewill check this condition
for Voronoi cells in Lemma A.6.

We define a metric on the space of cell configurations by

dCC(H,H′) :=
∫ ∞

0
e−r ∧

(
inf
fr

sup
z∈C

|z − fr (z)|
)

dr (2.5)
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where each of the infima is over all homeomorphisms fr : C → C such that fr
takes each cell in H which intersects Br (0) to a cell in H′ which intersects Br (0) and
preserves the adjacency relation between these cells, and f −1

r does the same withH and
H′ reversed.

In [GMS18], we proved that the simple random walk on a random cell configuration
H which satisfies the following hypotheses converges to Brownian motion. Here, for
C > 0 and z ∈ C we write C(H − z) for the cell configuration obtained by translating
all of the cells by −z then scaling all of the cells by C .

1. Translation invariance modulo scaling. There is a (possibly random and H-
dependent) increasing sequence of open sets Uj ⊂ C, each of which is either a
square or a disk, whose union is all ofC such that the following is true. Conditional
onH andUj , let z j for j ∈ N be sampled uniformly from Lebesgue measure onUj .
Then the shifted cell configurationsH − z j converge in law toH modulo scaling as
j → ∞, i.e., there are random numbers C j > 0 (possibly depending on H and z j )
such that C j (H − z j ) → H in law with respect to the metric (2.5).

2. Ergodicity modulo scaling. Every real-valued measurable function F = F(H)

which is invariant under translation and scaling, i.e., F(C(H− z)) = F(H) for each
z ∈ C and C > 0, is a.s. equal to a deterministic constant.

3. Finite expectation. With H0 the cell in H containing 0,

E

[
diam(H0)

2

area(H0)
deg(H0)

]
< ∞ (2.6)

where diam, area, and deg denote Euclidean diameter, Lebesgue measure, and vertex
degree in H, respectively.

4. Connectedness along lines. Almost surely, for each horizontal or vertical line seg-
ment L ⊂ C, the subgraph of H induced by the set of cells which intersect L is
connected.

The combination of hypotheses 1 and 2 is referred to as ergodicity modulo scaling
in [GMS18]. Several equivalent formulations of hypothesis 1 are given in [GMS18, Def-
inition 1.2] (we will use a different formulation, in terms of a “mass transport principle”
in Sect. 3.4). The version of hypothesis 3 given here is slightly simpler than the version
in [GMS18] since we are assuming unit conductances. Hypothesis 4 is automatically
satisfied if any two cells which intersect are considered to be adjacent. This will always
be the case for cell configurations considered in this paper. The following is [GMS18,
Theorem 3.10].

Theorem 2.2 [GMS18]. LetH be a random cell configuration satisfying the above four
hypotheses. For z ∈ C, let Y z denote the simple randomwalk onH started from Hz (with
conductances c). For j ∈ N0, let Ŷ

z
j be an arbitrarily chosen point of the cell Y z

j and

extend Ŷ z fromN0 to [0,∞) by piecewise linear interpolation. There is a deterministic
covariance matrix 
 with det
 �= 0 such that the following is true. For each fixed
compact set A ⊂ C, it is a.s. the case that as ε → 0, the maximum over all z ∈ A of
the Prokhorov distance between the conditional law of εŶ z/ε given H and the law of
Brownian motion started from z with covariance matrix 
, with respect to the topology
on curves modulo time parameterization (as defined in Sect. 2.1.3), tends to 0.

2.3. Liouville quantum gravity surfaces. Fix γ ∈ (0, 2) (in fact, we will always take
γ = √

8/3). For k ∈ N0, a γ -Liouville quantum gravity surfacewith k marked points is
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an equivalence class of (k+2)-tuples (U, h, z1, . . . , zk)whereU ⊂ C is an open domain,
h is a distribution onU (which we will always take to be a realization of some variant of
the GFF onU ), and z1, . . . , zk ∈ U ∪∂U . Two such (k+2)-tuples (U, h, z1, . . . , zk) and
(Ũ , h̃, z̃1, . . . , z̃k) are declared to be equivalent if there is a conformal map φ : Ũ → U
such that

h̃ = h ◦φ + Q log |φ′| and φ(̃z j ) = z j , ∀ j ∈ [1, k]Z where Q = 2

γ
+

γ

2
. (2.7)

We think of two equivalent (k + 2)-tuples as above as corresponding to different param-
eterizations of the same surface. We refer to the distribution h corresponding to an LQG
surface as the embedding of the surface. The above definitions first appeared in [DS11],
and also play an important role, e.g., in [She16,DMS14].

If the law of the field h is locally absolutely continuous with respect to the law of the
Gaussian free field onU , then we can define the γ -LQG area measureμh onU , which is
the a.s. limit of regularized versions of eγ h(z) dz as well as the γ -LQG boundary length
measure νh on ∂U (in the case when U has a boundary). There are several equivalent
ways to construct thesemeasures: see, e.g., [Kah85,DS11,RV14].By [DS11, Proposition
2.1], if h and h̃ are related by a conformal map as in (2.7), then

μX̃ (X) = μh(φ(X))∀Borel set X ⊂ Ũ and νh̃(Y ) = νh(φ(Y ))∀Borel set Y ⊂ ∂U.

This means that μh and νh can be viewed as measures on the LQG surface.
In the special case when γ = √

8/3, an LQG surface also admits a metric Dh ,
as shown in [MS15b,MS16a,MS16b], and this metric is compatible with coordinate
changes of the form (2.7). We will review the basic properties of this metric in Sect. 2.4.

Henceforth we fix γ = √
8/3. We now discuss several different types of

√
8/3-LQG

surfaces which are introduced in [DMS14].

2.3.1. Quantum cones The LQG surface which we will work with must frequently is
the α-quantum cone for α ∈ (−∞, Q), which is defined in [DMS14, Definition 4.10].
The α-quantum cone is a doubly marked surface (C, h, 0,∞) whose γ -LQG measure
μh has infinite total mass, but assigns finite mass to every bounded subset of C. One
way to obtain an α-quantum cone is to start with a whole-plane GFF plus α log(1/| · |)
then “zoom in” near the origin and re-scale (i.e., add a constant to the field) so that the
LQG area of a fixed set remains of constant order. See [DMS14, Proposition 4.13(i)] for
a precise statement.

Quantum cones with parameter α ∈ {0,√8/3} are especially natural, and these will
be the main types of quantum cones which we will consider. The case α = √

8/3
is special since a GFF a.s. has a −√

8/3-log singularity at a point sampled from its√
8/3-LQGmeasure [DS11, Section 3.3], so this surface can be thought of as describing

the behavior of a general
√
8/3-LQG surface near such a point. Moreover, the

√
8/3-

quantum cone, equipped with its
√
8/3-LQG metric and area measure, is equivalent

to the Brownian plane as defined in [CL14] (see Sect. 2.4). In a similar vein, the 0-
quantum cone describes the local behavior of a

√
8/3-LQG surface near a Lebesgue

typical point. The 0-quantum cone can be used to construct cell configurations which
satisfy the translation invariance modulo scaling condition of Theorem 2.2, which says
that the origin is in some sense “Lebesgue typical”.

We will need some properties of quantum cones which follow from the definition
in [DMS14, Definition 4.10], so we now recall this definition. Let α < Q and let
A : R → R be the process such that At = Bt + αt for t ≥ 0, where B is a standard
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linear Brownian motion; and for t < 0, let At = B̂−t + αt , where B̂ is a standard
linear Brownian motion conditioned so that B̂t + (Q − α)t > 0 for all t > 0 and taken
to be independent of B. We define h to be the random distribution such that if hr (0)
denotes the average of h on ∂Br (0) (see [DS11, Section 3.1] for the definition and basic
properties of the circle average), then t �→ he−t (0) has the same law as the process A;
and h−h|·|(0) is independent from h|·|(0) and has the same law as the analogous process
for a whole-plane GFF.

Since a quantum cone has only two marked points, one can get a different choice of
h corresponding to the same LQG surface (i.e., a different embedding of the quantum
cone) by re-scaling space and applying the LQG coordinate change formula (2.7). We
will almost always consider the particular choice of distribution h defined just above.
This choice of h is called the circle average embedding, and is characterized by the
fact that 1 = sup{r > 0 : hr (0) + Q log r = 0}. If h is the circle-average embedding
of an α-quantum cone, then h|D agrees in law with the corresponding restriction of a
whole-plane GFF plus −α log | · |, normalized so that its average over ∂D is 0.

The α-quantum cone possesses a certain special scale invariance property, which we
now describe. Let α < Q, let h be the circle-average embedding of an α-quantum cone,
and let {hr (z) : r > 0, z ∈ C} be its circle average process. We define

Rb := sup

{
r > 0 : hr (0) + Q log r = 1√

8/3
log b

}
, ∀b > 0, (2.8)

where here Q is as in (2.7). That is, Rb gives the largest radius r > 0 so that if we scale
spatially by the factor r and apply the change of coordinates formula (2.7), then the
average of the resulting field on ∂D is equal to 1√

8/3
log b. Note that R0 = 0 in the case

of the circle average embedding. It is easy to see from the above definition of h (and is
shown in [DMS14, Proposition 4.13(i)]) that for each fixed b > 0,

h
d= h(Rb·) + Q log Rb − 1√

8/3
log b. (2.9)

It is immediate from the definitions of μh and the
√
8/3-LQG metric Dh that adding

1√
8/3

log b to the field scales
√
8/3-LQG areas by b and

√
8/3-LQG distances by b1/4

(in the case of the metric, see [MS16a, Lemma 2.2] or Lemma 2.3). By the
√
8/3-LQG

coordinate change formulas for μh and Dh , we therefore see that (2.9) implies that

(C, Dh, μh)
d=
(
C, b1/4Dh, bμh

)
, ∀b > 0, (2.10)

where here we mean equality in law as metric measure spaces. We note that the prop-
erty (2.10) is not true with, say, a whole-plane GFF in place of a quantum cone. This
property is a major reason for considering quantum cones.

2.3.2. Quantum disks, spheres, and wedges. We will also have occasion to consider
other special quantum surfaces besides just quantum cones. We will not need as many
properties of these, so we just briefly mention their definitions and refer to the cited
references for more details.

A quantum disk is a quantum surface (D, h) defined in [DMS14, Definition 4.21]
which behaves locally like a free-boundaryGFFonD, but is defined in a slightly different
way. Its

√
8/3-LQG area measure and boundary length measure each have finite total

mass, and one can consider quantum disks with specified boundary length (and random
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area) or with specified boundary length and area. One can also define a quantum disk
with any number of marked boundary points and interior points sampled uniformly from
its

√
8/3-LQG boundary length and area measures, respectively.

A quantum sphere is a quantum surface (C, h) introduced in [DMS14, Defini-
tion 4.21] with μh(C) < ∞. Typically one considers a unit-area quantum sphere,
which means we fix μh(C) = 1. Quantum spheres with other areas are obtained by
re-scaling (equivalently, adding a constant to h). As in the case of the quantum disk, one
can consider quantum spheres with one or more marked points sampled uniformly from
the

√
8/3-LQG area measure.

Forα ≤ Q, anα-quantumwedge is a quantumsurface (H, h, 0,∞)defined in [DMS14,
Definition 4.5] which has finite mass in every neighborhood of 0 but infinite total mass.
It is the half-plane analog of the α-quantum cone considered above and satisfies the
same scaling property (2.10) as the α-quantum cone.

2.4. The
√
8/3-Liouville quantum gravity metric. Suppose that U ⊂ C is a connected

open set and h is a random distribution onU which is locally absolutely continuous with
respect to the GFF on U , in the sense that for every z ∈ U , there is a neighborhood V
of z such that the law of h|V is absolutely continuous with respect to the corresponding
restriction of the GFF. The papers [MS15b,MS16a,MS16b] show that one can define a√
8/3-LQG metric Dh associated with h. We will not need the precise definition of this

metric here. Rather, we will only use a small number of basic properties of Dh , which
we now record.

1. Bi-Hölder with respect to Euclidean metric. The identity map from U , equipped
with the Euclidean metric, to (U, Dh) and its inverse are each a.s. locally Hölder
continuous with a (non-explicit) Hölder exponent. In particular, Dh induces the same
topology on U as the Euclidean metric.

2. Existence of geodesics.Almost surely, for any z, w ∈ U withDh(z, w) < Dh(z, ∂U )

there is a Dh-geodesic from z to w, i.e., a path from z to w of minimal Dh-length. If
the law of h is absolutely continuous with respect to that of a free-boundary GFF in
a neighborhood of every point of ∂U , then Dh extends to a metric on U and a.s. for
each z, w ∈ U , there is a Dh-geodesic in U from z to w.

3. LQG coordinate change formula. If U, Ũ ⊂ C and φ : Ũ → U is a conformal
map, then

Dh◦φ+Q log |φ′|(z, w) = Dh(φ(z), φ(w)), ∀z, w ∈ Ũ , (2.11)

for Q = 2/
√
8/3 +

√
8/3/2 = 5/

√
6.

4. Locality. If V ⊂ U and z, w ∈ V , then Dh|V (z, w) is the infimum of the Dh-lengths
of paths in V from z to w. In particular, metric balls are locally determined by h.

Property 1 and the first statement of property 2 follow from [MS16a, Theorems 1.2 and
1.3], respectively, and local absolute continuity. The second statement of 1 follows from
the equivalence of the quantum disk and the Brownian disk, the existence of geodesics
in the latter (see, e.g., [BM17]), and local absolute continuity. Properties 3 and 4 are easy
consequences of the construction of Dh in [MS15b,MS16a,MS16b]; see, e.g., [GM16b,
Lemmas 2.3 and 2.5].

We will also use the fact that certain special LQG surfaces (U, h) are equivalent to
Brownian surfaces, in the sense that the metric measure space (U , Dh, μh) agrees in law
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with a Brownian surface.4 See [MS16a, Corollary 1.5] for the sphere, disk, and plane
cases and [GM17b, Proposition 1.10] for the half-plane case.

• The quantum sphere is equivalent to the Brownian map.
• The quantum disk is equivalent to the Brownian disk.
• The

√
8/3-quantum cone is equivalent to the Brownian plane.

• The
√
8/3-quantum wedge is equivalent to the Brownian half-plane.

We will now explain another elementary property of Dh which allows us to define
Dh+ f whenever f : U → R is a random continuous function coupled with h, even if
the law of h + f is not locally absolutely continuous with respect to the GFF.

Lemma 2.3. Suppose h is a random distribution on a connected open set U ⊂ C and
let f : U → R be a random continuous function (not necessarily independent from h).
If the laws of h and h + f are both locally absolutely continuous with respect to the GFF
on U, then a.s.

exp

(
1√
6
min
x∈U f (x)

)
Dh(z, w) ≤ Dh+ f (z, w)

≤ exp

(
1√
6
max
x∈U f (x)

)
Dh(z, w), ∀z, w ∈ U. (2.12)

In fact, it is a.s. the case that for each z, w ∈ U,

Dh+ f (z, w) = inf
γ :z→w

∫ len(γ ;Dh)

0
e f (γ (t))/

√
6 dt (2.13)

where the infimum is over all simple paths from z tow parameterized by their Dh-length.

Proof. If f ≡ c is constant, then by [MS16a, Lemma 2.2], one has Dh+ f = ec/
√
6Dh .

In fact, the proof of [MS16a, Lemma 2.2] shows that a.s. (2.12) holds. We will now
deduce (2.13) from (2.12). To this end, fix ε > 0. Since f is continuous, we can find a
(possibly random) δ > 0 such that | f (z) − f (w)| ≤ ε whenever |z − w| ≤ δ.

Now fix z, w ∈ U and let γ : [0, T ] → U be a path from z to w whose Dh+ f -length
is at most Dh+ f (z, w)+ε. Choose finitely many times 0 = t0 < t1 < · · · < tn = T such
thatmax j∈[1,n]Z maxt∈[t j−1,t j ] |γ (t)−γ (t j−1)| ≤ δ. By (2.12) (appliedwith Bδ(γ (t j−1))

in place of U ) and our choice of δ, we have (in the notation (2.1))

exp

(
f (t j−1) − ε√

6

)
len

(
γ |[t j−1,t j ]; Dh

) ≤ len
(
γ |[t j−1,t j ]; Dh+ f

)

≤ exp

(
f (t j−1) + ε√

6

)
len

(
γ |[t j−1,t j ]; Dh

)
.

This shows that the Dh-length of γ is finite and, if γ is parameterized by Dh-length,
that the Dh+ f -length of γ and the integral

∫ len(γ ;Dh)

0 e f (γ (t))/
√
6 dt differ by a factor of

at most eε/
√
6. Sending ε → 0 shows that Dh+ f (z, w) is at least the right side of (2.13).

We similarly get the reverse inequality. ��
4 The agreement between

√
8/3-LQG surfaces and Brownian surfaces is only up to two unknown positive,

deterministic scaling constants which relate the metrics and measures. In this paper, we will always assume
that we have re-scaled the metric and area measure on the Brownian surface by this scaling factor so that one
has exact agreement.
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Let h be a random distribution on a connected open set U ⊂ C whose law is locally
absolutely continuous with respect to the GFF on U and let f : U → R be a random
continuous function (not necessarily independent from h). If Dh is defined, we define
Dh+ f by the formula (2.13). We need to make sure that Dh+ f is well-defined (i.e., we
get the same metric if we make a different choice of h and f with h′ + f ′ = h + f ) and
that it is a measurable function of h+ f (a priori we only know that Dh+ f is a measurable
function of (h, f )). The following lemma is an easy consequence of Lemma 2.3. We
will give the proof just below.

Lemma 2.4. Let h and f be as above and define Dh+ f by the formula (2.13). Then
Dh+ f is a.s. determined by h + f . Moreover, if (h′, f ′) is another pair consisting of a
random distribution on a connected open set U ⊂ C whose law is locally absolutely
continuous with respect to the GFF on U and a random continuous function such that

h + f
d= h′ + f ′. Then (h + f, Dh+ f )

d= (h′ + f ′, Dh′+ f ′).

Once Lemma 2.4 is established, it follows from the above properties of Dh that
Dh+ f is locally bi-Hölder continuous with respect to the Euclidean metric in the sense
of property 1 above (so induces the same topology on U as the Euclidean metric) and
satisfies the LQG coordinate change formula (2.7) and the locality property 4. We also
note that Lemma 2.4 implies that for a given choice of h, a.s. Dh+ f can be defined via
the formula (2.12) simultaneously for every choice of continuous function f : U → R.
Indeed, this follows by considering a countable collection of functions f which is dense
in the space of all continuous functions U → R w.r.t. the local uniform topology.

Proof of Lemma 2.4. For a lengthmetric D onU and a continuous function f : U → R,
write e f/

√
6 ·D for the metric defined by the formula (2.13) with D in place of Dh . From

the definition (2.13), one immediately gets the following additivity property: for every
metric D onU which induces the Euclidean topology and any two continuous functions
f, g : U → R,

eg/
√
6 · (e f/

√
6 · D) = e( f +g)/

√
6 · D. (2.14)

Indeed, this follows since the two metrics in (2.14) induce the same length measure on
each path in U .

Suppose now that we are given two couplings (h, f ) and (h′, f ′) of a distribution
whose law is locally absolutely continuous w.r.t. the GFF and a random continuous

function such that h + f
d= h′ + f ′. We can couple (h, f, h′, f ′) in such a way that

h + f = h′ + f ′ and (h, f ) and (h′, f ′) are conditionally independent given h + f .
By (2.14) applied to the functions f and f ′ − f together with Lemma 2.3 applied to the
distributions h′ and h = h′ + f ′ − f , we get that a.s.

Dh′+ f ′ = e f ′/
√
6 · Dh′ = e f/

√
6 ·
(
e( f ′− f )/

√
6 · Dh′

)
= e f/

√
6 · Dh = Dh+ f . (2.15)

Hence (h + f, Dh+ f )
d= (h′ + f ′, Dh′+ f ′). Moreover, since Dh+ f and Dh′+ f ′ are con-

ditionally independent given h + f (by our choice of coupling), it follows that Dh+ f is
a.s. determined by h + f . ��
Remark 2.5. All of the properties of Dh discussed in this section also hold for the γ -
LQG metric for general γ ∈ (0, 2) from [GM19b], except that 1/

√
6 is replaced by

γ /dγ , where dγ is the Hausdorff dimension of the γ -LQG metric (which is not known
explicitly). In fact, [GM19b] shows that a list of properties similar to the ones discussed in
this section uniquely characterize the γ -LQGmetric up to a deterministic multiplicative
constant.
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3. Proof of Main Results, Assuming Finite Expectation Hypothesis

For a GFF-type distribution h on a connected open domainD ⊂ C, we write Dh and μh
for its

√
8/3-LQG metric and area measure, respectively. Conditional on h, for λ > 0

we let Pλ
h be a Poisson point process on D with intensity measure λμh . For z ∈ Pλ

h , let
Hλ
h,z ⊂ D be the Voronoi cell which is the closed set of points inC which are (weakly)

Dh-closer to z than to any other point of Pλ
h . We view Pλ

h as a graph with two points
z, w ∈ Pλ

h joined by an edge if and only if Hλ
h,z ∩ Hλ

h,w �= ∅, equivalently, if and only if

∃u ∈ D such that Dh(u, z) = Dh(u, w) and Dh(u, z) ≤ Dh(u, x), ∀x ∈ Pλ
h \{z, w}.

(3.1)
Extending the notation above, for w ∈ D we write Hλ

h,w for the (a.s. unique for w

deterministic, by Lemma A.6) Voronoi cell which contains w. We define

Hλ
h := {

Hλ
h,z : z ∈ Pλ

h

}
. (3.2)

We will often omit the subscript h and/or the superscript λ when these objects are clear
from the context.

In this subsection, we will prove all of our main results conditional on the following
proposition.

Proposition 3.1. Suppose (C, h, 0,∞) is a 0-quantum cone. Define the Voronoi cell
configuration H = H1

h as above with λ = 1 and let H0 be the cell which contains the
origin. Then

E

[
diam(H0)

2deg(H0)

area(H0)

]
< ∞, (3.3)

where here deg(H0) denotes the degree of H0 as a vertex of H.

Proposition 3.1 is used in Sect. 3.1 to check the finite expectation hypotheses of
Theorem 2.2 for the Voronoi cell configuration associated with 0-quantum cone. The
proof of Proposition 3.1 is given in Sect. 4. This proof is the most difficult step in the
proofs of our main results, and requires us to establish several estimates for

√
8/3-LQG

metric balls which are of independent interest.
The rest of this section is structured as follows. In Sect. 3.1, we explain why Propo-

sition 3.1 together with Theorem 2.2 implies a scaling limit result for random walk on
the adjacency graph of Voronoi cells associated with a 0-quantum cone. In Sect. 3.2,
we transfer this result to random walk on Voronoi cells on other types of

√
8/3-LQG

surfaces (including the ones corresponding to the Brownian map, disk, plane, and half-
plane) using local absolute continuity and thereby prove Theorem 1.1. In Sect. 3.3, we
deduce Theorem 1.2 from our scaling limit result for random walk. The arguments in
these three subsections are similar to the analogous arguments in [GMS17, Section 3].
In Sect. 3.4, we give a re-formulation of Proposition 3.1 which involves bounds for√
8/3-LQG metric balls instead of Voronoi cells, and which turns out to be easier to

prove than Proposition 3.1 itself.
Throughout this section, we will use several elementary properties of Voronoi cells

whose proofs are collected in “Appendix A” to avoid interrupting the main argument.



The Tutte Embedding of the Poisson–Voronoi Tessellation 753

3.1. Cell configuration corresponding to a 0-quantum cone. Let (C, h, 0,∞) be a 0-
quantum cone and write P = P1

h and H = H1
h for its associated Poisson point process

and collection of Voronoi cells with λ = 1.

Proposition 3.2. The conclusion of Theorem 2.2 holds for the cell configuration H
above. Moreover, the covariance matrix 
 of the limiting Brownian motion is a pos-
itive scalar multiple of the identity matrix.

Proof. By Lemma A.4, the cells of H are a.s. compact with non-empty interior and H
is locally finite. By Lemma A.6, a.s. the intersection of any two cells of H has zero
Lebesgue measure, and by definition any two cells which are adjacent in H intersect.
ThereforeH satisfies the conditions of Definition 2.1. We will now check the conditions
of Theorem 2.2.

Translation invariance modulo scaling. For j ∈ N, let R j be the largest r > 0
for which hr (0) + Q log r = γ −1 log j , where hr (0) denotes the circle average, as
in (2.8). We will check the needed resampling property for Uj = BRj (0). By (2.9),
the field h j := h(R j ·) + Q log R j − γ −1 log j agrees in law with h. In particular,
by the discussion just after [DMS14, Definition 4.10], h j |D agrees in law with the
corresponding restriction of awhole-planeGFF, normalized so that its circle average over
∂D is 0. Consequently, if we sample z j uniformly from Lebesgue measure on BRj (0),
then the proof of [DMS14, Proposition 4.13(ii)] along with the translation invariance
of the law of the whole-plane GFF, modulo additive constant, shows that the there is a
sequence of random constants C j → ∞ such that the law of h(C j (· − z j )) + Q logC j ,
restricted to any compact subset K ⊂ C, converges to the law of h|K in the total variation
sense as j → ∞. By the LQG coordinate change formula, this implies that the joint law
of μh(C j (· − z j ))|K and Dh(C j (· − z j ),C j (· − z j ))|K converges in the total variation
sense to the joint law ofμh |K and Dh |K as j → ∞. This implies that C j (H− z j ) → H
in law as j → ∞.

Ergodicity modulo scaling. It is easily checked that
⋂

R>0 σ
(
h|C\BR(0)

)
is the trivial

σ -algebra (see, e.g., [HS18, Lemma 2.2] for the case of the whole-plane GFF; the case
of h can be treated in an identical manner due to [DMS14, Definition 4.10]). From this, it
follows that also the intersection over all R > 0 of the σ -algebra generated by h|C\BR(0)
and the set of points of P which are contained in C\BR(0) is trivial. For any R > 0,
there is an R′ = R′(R) > 0 such that each cell of H which intersects C\BR(0) is
contained in C\BR′(0), and we have R′ → ∞ as R → ∞. It therefore follows that⋂

R>0 σ (H(BR(0))) is the trivial σ -algebra.
Todeduce condition 2 from this, consider a real-valued function F = F(H) satisfying

F(C(H− z)) = F(H) for each C > 0 and z ∈ C. If F is determined byH(BR(0)) for
any R > 0, then F is equal to a deterministic constant a.s. since F = F(BR(0) − z) for
every z ∈ C so F is measurable with respect to the σ -algebra

⋂
R>0 σ (H(BR(0))). In

general, the conditional law of F givenH(BR(0))must be deterministic by the preceding
sentence, so F is independent from H(BR(0)), whence the above claim implies that F
is equal to a deterministic constant a.s.

Finite expectation. This is the content of Proposition 3.1, which will be proven in
Sect. 4.

Connectedness along lines.This follows since bydefinition two cells ofH are connected
by an edge of EH if and only if they intersect and the collection of cells is locally finite.
The covariance matrix 
 is a scalar multiple of the identity since the law of h, and
therefore the law of H, is invariant under rotations around the origin. ��
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3.2. Random walk on cells converges to Brownian motion. The following theorem is a
generalization of Theorem 1.1 (recall the correspondence between Brownian and

√
8/3-

LQG surfaces as described in Sect. 2.4).

Theorem 3.3. Suppose that we are in one of the following situations.

• D = C, α < Q, and (C, h, 0,∞) is an α-quantum cone.
• D = C and (C, h, 0,∞) is a doubly marked quantum sphere, e.g., with fixed area.
• D = H, α < Q, and (H, h, 0,∞) is an α-quantum wedge.
• D = D and (D, h) is a quantum disk with fixed boundary length or fixed boundary
length and area.

For z ∈ D and λ > 0, let Y z,λ be the simple random walk on the adjacency graph of
the Voronoi cell configuration Hλ

h. Let Ŷ
z,λ be the image of Y z,λ under the map which

sends each Voronoi cell to its center point and extend Ŷ z,λ to a function from [0,∞) to
D by piecewise linear interpolation at constant speed.

For each deterministic compact set K ⊂ D, the supremum over all z ∈ K of the
Prokhorov distance between the conditional law of Ŷ z,λ given (h,Pλ

h ) and the law of
a standard two-dimensional Brownian motion started from z (and stopped when it hits
the boundary in the case of a quantum wedge or quantum disk), with respect to the
metric on curves viewed modulo time parameterization (i.e., the metric (2.2) in the disk
or half-plane case or the metric (2.3) in sphere or whole-plane case) converges to 0 in
probability as λ → ∞.

We note that in Theorem 3.3, the walk is extended by piecewise linear interpolation
whereas in Theorem 1.1 it follows D-geodesics between the points of Pλ. This does
not affect the conclusion of the theorem: indeed, by Lemma A.3 and the fact that Dh

induces the Euclidean topology, for any fixed compact set K ⊂ D, the maximum over all
adjacent pairs of vertices z, w ∈ Pλ

h ∩K of the Euclidean diameter of every Dh-geodesic
from z tow tends to zero in law as λ → ∞. The same is true with Dh-diameters in place
of Euclidean diameters and/or line segments in place of Dh-geodesics.

We first prove Theorem 3.3 in the case of the 0-quantum cone, using Proposition 3.2.
This is the step in the proofwherewego froma.s. converges to convergence in probability.

Lemma 3.4. Theorem 3.3 is true with a 0-quantum cone in place of a γ -quantum cone.

Proof. By Brownian scaling the statement of the lemma is invariant under the operation
of changing the embedding h (i.e., replacing h by h(r ·) + Q log r for some possibly
random r > 0), so we can assume without loss of generality that h has the circle-
average embedding, as described in Sect. 2.3 and [DMS14, Definition 4.10] (we could
also, e.g., embed so that μh(D) = 1).

Proposition 3.2 together with Theorem 2.2 tells us that a.s. the conditional law given
H1

h of the random walk on εH1
h converges in law as ε → 0 to standard two-dimensional

Brownian motion modulo time parameterization, and the convergence is uniform over
all starting points in any fixed compact subset of C.

For λ > 1, we typically do not haveHλ
h = εH1

h for any ε > 0 sinceHλ
h is defined by

scaling the intensity measure of the Poisson point process rather than by scaling space.

Nevertheless, we have εH1
h

d= Hλ
h for a certain random choice of ε, as we now explain.

For b > 0, let Rb > 0 be as in (2.8) and let hb := h(Rb·)+ Q log Rb − 1√
8/3

log b, so

that by (2.9), hb
d= h. By the LQG coordinate change formula [DS11, Proposition 2.1],
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μhb (·) = bμh(R
−1
b ·). Hence if P1

hb
is a Poisson point process with intensity measure

μhb , then R−1
b P1

hb
is a Poisson point process with intensity measure bμh . Therefore, for

λ > 0,

H1
hλ

d= H1
h and Hλ

h
d= R−1

λ H1
hλ . (3.4)

Since Rλ → ∞ as λ → ∞, we now get the desired convergence in probability from
Proposition 3.2 and Theorem 2.2. ��

Using local absolute continuity, we can now transfer to other quantum surfaces,
starting with the case of quantum cones.

Lemma 3.5. Theorem 3.3 is true in the case of the α-quantum cone for α < Q.

Proof. As in the proof of Lemma 3.4, we work with the circle-average embedding of the
α-quantum cone, which has the property that h|D agrees in law with the corresponding
restriction of a whole-plane GFF plus −α log | · |, normalized so that its circle average
over ∂D is 0. We also let h̃ be the circle-average embedding of a 0-quantum cone in

(C, 0,∞), so that h̃|D d= (h + α log | · |)|D.
The statement of the lemma is essentially a consequence of Lemma 3.4 and local

absolute continuity (in the form of [MS16c, Proposition 3.4]), but a little care is needed
since we only have local absolute continuity between the laws of a h and h̃ on domains
at positive distance from 0 (due to the α-log singularity of h) and from ∂D (due to our
choice of embedding). Throughout the proof, the Prokhorov distance is always taken
with respect to the metric on curves viewed modulo time parameterization.

For ρ > 0 and z ∈ Bρ(0), let J z,λρ for n ∈ N be the exit time from Bρ(0) of
the embedded walk Ŷ z,λ on Hλ

h . Also let Bz be a standard two-dimensional Brownian
motion started from z and let τ z

ρ be its exit time from Bρ(0). We need to show that
for each ρ > 0, the supremum over all z ∈ Bρ(0) of the Prokhorov distance between
the conditional laws of Ŷ z,n|[0,J z,nρ ] and Bz|[0,τ zρ ] given

(
h,Pλ

h

)
converges to zero in

probability as λ → ∞.
We first consider a radius ρ ∈ (0, 1) and deal with the log singularity at 0. For δ ∈

(0, ρ), choose ζ = ζ(δ) ∈ (0, δ) such that the probability that a Brownianmotion started
from any point ofD\Bδ(0) hits Bζ (0) before leavingD is at most δ. By Lemma 3.4 and
local absolute continuity it holds with probability tending to 1 as λ → ∞ that for each
z ∈ Bρ(0)\Bδ(0), the Prokhorov distance between the conditional laws of Ŷ z,λ|[0,J z,λρ ]
and Bz |[0,τ zρ ] given h is at most δ. Since the law of Bz|[0,τ zρ ] depends continuously on z,
the Prokhorov-distance diameter of the set of laws of the curves Bz |[0,τ zρ ] for z ∈ Bδ(0)
tends to 0 as δ → 0.

By the last two sentences of the preceding paragraph and the strongMarkov property
ofY z,λ and ofBz , it holdswith probability tending to 1 asλ → ∞ that for each z ∈ Bδ(0),
the Prokhorov distance between the conditional laws ofY z,λ|[J z,λδ ,J z,λρ ] andBz |[0,τ zρ ] given
(h,Pλ

h ) is oδ(1), at a deterministic rate depending only on ρ. The distance between the
curves Y z,λ|[J z,λδ ,J z,λρ ] and Y

z,λ|[0,J z,λρ ], viewed modulo time parameterization, is at most

2δ. Sending δ → 0 now gives the theorem statement in the case ρ < 1.
The case when ρ ≥ 1 follows from the case when ρ ∈ (0, 1) and the scale invariance

property of the α-quantum cone [DMS14, Proposition 4.13(i)], applied similarly as in
Proposition 3.2. ��
Lemma 3.6. Theorem 3.3 is true in the case of the quantum sphere.
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Proof. This is immediate from Lemma 3.5 and local absolute continuity. ��
Lemma 3.7. Theorem 3.3 is true in the case of the quantum disk.

Proof. Let (C, h, 0,∞) be a doubly marked quantum sphere conditioned on the event
that the Dh-distance from 0 to ∞ is at least 1 and let U be the connected component
of C\B1(∞; Dh) which contains 0. Then the conditional law of the quantum surface
(U, h|U , 0) given νh(∂U ) is that of a quantum disk with one marked point in its interior,
with given boundary length (this follows, e.g., from the construction of Dh using QLE
in [MS15b]).

If we let Pλ
h be a Poisson point process with intensity measure λμh , then Pλ

h ∩U is a
Poisson point process onU with intensity measure λμh|U . LetHλ

h|U be the configuration

of Voronoi cells defined using the set of points Pλ
h ∩U and the metric Dh|U . Then each

cell of Hλ
h|U which does not intersect ∂U is identical to the corresponding cell of Hλ

h
with the same center point. It therefore follows from Lemma 3.6 that the maximum over
all z ∈ U of Prokhorov distance between the following two laws, with respect to the
topology on curves viewed modulo time parameterization, tends to 0 as λ → ∞:

• The conditional law given (h,Hλ
h) of the random walk on Hλ

h|U stopped upon
hitting a cell which intersects ∂U , embedded into U and linearly interpolated as in
Theorem 3.3.

• The law of Brownian motion a started from 0 and stopped upon hitting ∂U .

By the conformal invariance of Brownian motion and the first paragraph, this gives the
statement of the lemma for the quantum disk with random boundary length νh(∂U ).
By scale invariance, this implies the statement of Theorem 3.3 for a doubly marked
quantum disk with any fixed boundary length. By conditioning on the area of such a
quantum disk, we also get the statement for a quantum disk with fixed area and boundary
length. ��
Proof of Theorem 3.3. Lemmas 3.5, 3.6, and 3.7 give the theorem statement in the quan-
tumcone, quantumsphere, andquantumdisk cases, respectively. The case of the quantum
wedge follows from the case of the quantum disk and the same argument as in the proof
of Lemma 3.5. ��

3.3. Proof of Tutte embedding convergence result.

Proof of Theorem 1.2. Let (D, h, 0, 1) be a quantum disk with fixed boundary length
and area, with one marked boundary point and one marked interior point. Let Dh and
μh be the

√
8/3-LQG metric and area measure and let ξh be the path which traverses

∂D counterclockwise from 1 to 1 in such a way that it traverses one unit of
√
8/3-LQG

length in one unit of time. By [MS16a, Corollary 1.5], we know that the curve-decorated
metric measure space (D, Dh, μh, ξh) is a Brownian disk with unit area and boundary
length. Furthermore, by the definition of a marked quantum disk, if we condition on this
curve-decorated metric measure space then the marked point 0 is a uniform sample from
μh .

For λ > 0, define the Poisson point process Pλ, the Voronoi tessellationHλ, and the
Tutte embedding �λ : Pλ → D as in the discussion just above Theorem 1.2 for the
Brownian disk (X , D, μ, ξ) = (D, Dh, μh, ξh). Note that here the spaceX is identified
withD, so in particular Pλ ⊂ D.
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We will now argue that

max
z∈Pλ

|�λ(z) − z| → 0, in probability as λ → ∞. (3.5)

Indeed, Theorem 3.3 implies that themaximumover all vertices z ∈ Pλ
h of the Prokhorov

distance between the Euclidean harmonic measure on ∂D as viewed from z and the Pλ-
harmonic measure on ∂Pλ as viewed from z tends to zero in probability as n → ∞.
From this and the definition of �λ, we get (3.5).

Thefirst twoconvergence statements in the theoremstatement are immediate from (3.5)
(for the convergence of re-scaled counting measure, we use that λ−1 times the count-
ing measure on Pλ converges in probability to μh since the intensity measure of Pλ is
λμh). The convergence statement for the random walk on Pλ follows from (3.5) and
Theorem 3.3. ��

3.4. A reformulation of the finite expectation hypothesis. As inSect. 3.1, let (C, h, 0,∞)

be a 0-quantum cone and write P = P1
h and H = H1

h for its associated Poisson point
process and collection of Voronoi cells with λ = 1. Proving Proposition 3.1 (i.e., the
finite expectation hypothesis in Theorem 2.2 for H) directly turns out to be difficult
since Voronoi cells depend on the field in a rather delicate way, so it is not clear how
to lower-bound the Lebesgue measure of the origin-containing cell H0. Instead, we will
use the following lemma which allows us to lower-bound the Lebesgue measure of an
LQG metric ball instead.

Lemma 3.8. For a Voronoi cell H ∈ H, we write BH for the smallest Dh-metric ball
centered at the center point of H (i.e., the point of P which is in H) which contains H.
We have

E

[
diam(H0)

2

area(H0)
deg(H0)

]
= E

⎡
⎣ ∑

H∈H:0∈BH

diam(H)2deg(H)

area(BH )

⎤
⎦ . (3.6)

Lemma 3.8 is essentially a consequence of the “mass transport” definition of transla-
tion invariance modulo scaling in [GMS18, Definition 1.2]. However, the balls BH are
not functions of the cell configuration H itself (they depend on additional randomness
from the field) so we will need a trivial reformulation of the mass transport condition
which allows for this.

A decorated cell configuration is a cell configurationH together with a compact set
KH ⊂ C associated with each cell H ∈ H. We can define a topology on the space of
decorated cell configurations by the obvious extension of (2.5):

dDCC ((H, {KH }H∈H), (H′, {K ′
H ′ }H ′∈H′)

)

:=
∫ ∞

0
e−r ∧ inf

fr

{
max
z∈C

|z − fr (z)| + max
H∈H(Br (0))

dHaus(KH , K ′
fr (H))

}
dr (3.7)

where dHaus denotes the Hausdorff distance and each of the infima is over all homeo-
morphisms fr : C → C such that fr takes each cell inH(Br (0)) to a cell inH′(Br (0))
and preserves the adjacency relation, and f −1

r does the same with H and H′ reversed.
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Definition 3.9. We say that a random decorated cell configuration (H, {KH }H∈H) is
translation invariant modulo scaling if it satisfies the following obvious extension of
the definition of translation invariance modulo scaling for cell configurations. There is
a (possibly random and (H, {KH }H∈H)-dependent) increasing sequence of open sets
Uj ⊂ C, each of which is either a square or a disk, whose union is all ofC such that the
following is true. Conditional on (H, {KH }H∈H) and Uj , let z j for j ∈ N be sampled
uniformly from Lebesgue measure on Uj . Then there are random numbers C j > 0
(possibly depending on (H, {KH }H∈H) and z j ) such that

(
C j (H − z j ), {C j (KH − z j )}H∈H

) → (H, {KH }H∈H)

in law with respect to the metric (3.7).

Exactly as in [GMS18, Definition 1.2], one can formulate various equivalent defini-
tions of translation invariancemodulo scaling for cell configurations and prove that these
definitions are equivalent via exactly the same arguments as in [GMS18, Appendix A].
For our purposes, wewill need the “mass transport” formulation of translation invariance
modulo scaling for decorated cell configurations.

Lemma 3.10. (Mass transport condition) A random decorated cell configuration is
(H, {KH }H∈H) is translation invariant modulo scaling in the sense of Definition 3.9
if and only if it satisfies the following condition. Suppose that F(H, {KH }H∈H, x, y) is
a non-negative measurable function on the space of decorated cell configurations with
twomarked points inC such that F is covariant with respect to dilations and translations
of the plane in the sense that for each C > 0 and z ∈ C,

F (C(H − z), {C(KH − z)}H∈H,C(x − z),C(y − z))) = C−2F (H, {KH }H∈H, x, y) .

(3.8)
Then

E

[∫
C
F (H, {KH }H∈H, x, 0) dx

]
= E

[∫
C
F (H, {KH }H∈H, 0, y) dy

]
. (3.9)

Proof. This follows from exactly the same argument used for undecorated cell config-
urations in [GMS18, Appendix A]. ��
Proof of Lemma 3.8. For a decorated cell configuration (H, {KH }H∈H) and x, y ∈ C,
define

F (H, {KH }H∈H, x, y) := diam(Hy)
2deg(Hy)

area(Hy)area(KHy )
1x∈KHy

.

Obviously, this choice of F satisfies the condition (3.8).
Now let H be the particular cell configuration consisting of Voronoi cells on the

0-quantum cone. It is easily verified that, with BH as in the statement of the lemma, the
decorated cell configuration (H, {BH }H∈H) is translation invariant modulo scaling in
the sense of Definition 3.9. By Lemma 3.10, we therefore have

E

[∫
C
F (H, {BH }H∈H, x, 0) dx

]
= E

[∫
C
F (H, {BH }H∈H, 0, y) dy

]
. (3.10)

Clearly, ∫
C
F (H, {BH }H∈H, x, 0) dx = diam(H0)

2

area(H0)
deg(H0). (3.11)
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By breaking up the integral into a sum of the integrals over each of the cells H ∈ H, we
get

∫
C
F (H, {BH }H∈H, 0, y) dy =

∑
H∈H:0∈BH

diam(H)2deg(H)

area(BH )
. (3.12)

Plugging (3.11) and (3.12) into (3.10) gives (3.6) ��
In light of Lemma 3.8, we only need to prove that the expectation on the right side

of (3.6) is finite. Actually, we will prove the following much stronger statement.

Proposition 3.11. For each p > 0, we have

E

⎡
⎣
⎛
⎝ ∑

H∈H:0∈BH

diam(H)2deg(H)

area(BH )

⎞
⎠

p⎤
⎦ < ∞. (3.13)

We emphasize that Proposition 3.11 does not imply that diam(H0)
2

area(H0)
deg(H0) has finite

moments of all positive orders (rather, we only get that it has a finite first moment) since
Lemma 3.8 does not allow us to compare moments of order greater than 1. The rest of
the paper is devoted to the proof of Proposition 3.11.

4. Estimates for LQG Metric Balls

The goal of this section is to establish Proposition 3.11, which together with Lemma 3.8
will conclude the proof of our main results. Along the way, we will establish a number
of estimates for LQG metric balls which are of independent interest (see in particular
Propositions 4.3, 4.4, 4.5 and 4.8).

We start out in Sect. 4.1 by introducing two random distributions on C which are
defined using the white noise decomposition of the GFF and which have certain nice
properties that the GFF itself does not. The first of these distributions, which we call ĥ,
possesses exact scale and translation invariance properties (not just scale and translation
invariance modulo additive constant, like the whole-plane GFF). The second, which we
call ĥtr , has the property that its restrictions to two sets at distance at least 1/5 from each
other are independent. We then state a general lemma (Lemma 4.1) which allows us to
compare ĥ, ĥtr , and the whole-plane GFF.

In Sect. 4.2, we prove an upper bound for the LQG distance across a Euclidean
annulus (Proposition 4.3) as well as estimates to the effect that an LQG metric ball
B typically contains a Euclidean ball of radius comparable to the Euclidean diameter
of B (Propositions 4.4, 4.5). These are proven using percolation arguments which rely
crucially on the local independence property of ĥtr . In Sect. 4.3, we prove that the
LQG area of an LQG metric ball of radius r is tightly concentrated around r4+or (1)

(Proposition 4.8). This is proven by starting with known estimates for metric balls in the
Brownian map, then transferring to the GFF using the equivalence of Brownian surfaces
and LQG surfaces [MS16a], and finally using the local independent property of ĥtr to
go from events of high probability to events of superpolynomially high probability.

In Sect. 4.4, we transfer the estimates of the preceding subsections from the whole-
planeGFF to the 0-quantumcone. In Sect. 4.5,we conclude the proof of Proposition 3.11.
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4.1. White-noise approximation of the Gaussian free field. In this subsection we will
introduce various white-noise approximations of the GFF which are often more conve-
nient to work with than the GFF itself. Similar approximations to the ones used here
were also studied in [DG16,DZZ18,DG18]. Let W be a space–time white noise on
C × [0,∞), i.e., {(W, f ) : f ∈ L2(C × [0,∞))} is a centered Gaussian process with
covariancesE[(W, f )(W, g)] = ∫

C

∫∞
0 f (z, s)g(z, s) ds dz. For f ∈ L2(C×[0,∞))

and Borel measurable sets A ⊂ C and I ⊂ [0,∞), we slightly abuse notation by writing
∫
B

∫
I
f (z, s)W (ds, dz) := (W, f 1A×I ).

For an open set U ⊂ C, we write pU (s; z, w) for the transition density of Brownian
motion killed upon exiting U , so that for s ≥ 0, z ∈ C, and A ⊂ U , the integral∫
A pU (s; z, w) dw gives the probability that a standard planarBrownianmotionB started

from z satisfies B([0, s]) ⊂ U and Bs ∈ A. We also write

p(s; z, w) := pC(s; z, w) = 1

2πs
exp

(
−|z − w|2

2s

)
.

We define the centered Gaussian process

ĥt (z) := √
π

∫
C

∫ 1

t2
p(s/2; z, w)W (ds, dw), ∀t ∈ [0, 1], ∀z ∈ C. (4.1)

We set ĥ := ĥ0. By [DG16, Lemma 3.1] and Kolmogorov’s criterion, each ĥt for
t ∈ (0, 1] admits a continuous modification. Henceforth whenever we work with ĥt we
will assume that it has been replaced by such amodification. The process ĥ does not admit
a continuous modification, but its integral against any smooth compactly supported test
function has finite variance, so it makes sense as a distribution. We record for reference
the formula

Var
(̂
ht̃ (z) − ĥt (z)

) = log(̃t/t), ∀z ∈ C, ∀0 < t < t̃ < 1, (4.2)

which is immediate from (4.1).
The distribution ĥ is often more convenient to work with than the GFF thanks to the

following symmetries, which are immediate from the definition.

• Rotation/translation/reflection invariance. The law of ĥ is invariant with respect to
rotation, translation, and reflection of the plane.

• Scale invariance. For δ ∈ (0, 1], one has ĥ(δ·) − ĥδ(δ·) d= ĥ.
• Independent increments. For δ ∈ (0, 1), ĥ − ĥδ is independent from ĥδ .

One property which ĥ does not possess is spatial independence. To get around this,
we will sometimes work with a truncated variant of ĥ where we only integrate over a
ball of finite radius. We define

ĥtr(z) := √
π

∫ 1

0

∫
C

pB1/10(z)(s/2; z, w)W (dw, dt) (4.3)

and we interpret ĥtr as a random distribution. The key property enjoyed by ĥtr is spatial
independence: if A, B ⊂ Cwith dist(A, B) ≥ 1/5, then ĥtr|A and ĥtr|B are independent.
Indeed, this is because ĥtr|A and ĥtr|B are determined by the restrictions of the white
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noise W to the disjoint sets B1/10(A) × R+ and B1/10(B) × R+, respectively. Unlike
ĥ, the distribution ĥtr does not possess any sort of scale invariance but its law is still
invariant with respect to rotations, translations, and reflections of C.

The following lemma is proven using elementary calculations for the transition den-
sity pU (t; z, w) together with the Kolmogorov continuity theorem (see, e.g., [DG18,
Lemma 3.1]). It will allow us to use ĥtr or ĥ in place of the GFF in many of our argu-
ments.

Lemma 4.1. For any compact set K ⊂ C, there is a coupling (h, ĥ, ĥtr) of a whole-
plane GFF normalized so that h1(0) = 0 and the distributions from (4.1) and (4.3)
such that the following is true. For h1, h2 ∈ {h, ĥ, ĥtr}, the distribution (h1 − h2)|K a.s.
admits a continuous modification and there are constants c0, c1 > 0 depending only on
K such that for A > 1,

P

[
max
z∈K |(h1 − h2)(z)| ≤ A

]
≥ 1 − c0e

−c1A2
. (4.4)

In fact, in this coupling one can arrange so that ĥ and ĥtr are defined using the same
white noise W.

The existence of continuous modifications in Lemma 4.1 allows us to define the√
8/3-LQG metrics Dĥ and Dĥtr . Indeed, this is because we know how to define Dh+ f

when h is a GFF and f is a continuous function (see the discussion just after Lemma 2.3).
Moreover, we get that Dĥ and Dĥtr each a.s. induces the Euclidean topology onC. Due
to Lemma 2.3, the estimate (4.4) will allow us to compare Dĥ and Dĥtr to the

√
8/3-LQG

metrics induced by a GFF.
The following lemma will be used when we apply the scaling property of ĥ.

Lemma 4.2. For each bounded domain U ⊂ C, there are constants c0, c1 > 0 depend-
ing only on U such that for δ ∈ (0, 1) and C > 0,

P

[
max

z,w∈U :|z−w|≤δ
|̂hδ(z) − ĥδ(w)| ≤ C

]
≥ 1 − c0δ

−2e−c1C2
. (4.5)

Proof. It is easily seen (see [DG16, Lemma 3.1]) that for δ > 0, Var(̂hδ(z) − ĥδ(w)) ≤
|z − w|2/δ2, which is of course smaller than |z − w|/δ whenever |z − w| ≤ δ. By
Fernique’s criterion [Fer75] (see [Adl90, Theorem 4.1] or [DZZ18, Lemma 2.3] for the
version we use here), we find that for each square S ⊂ C with side length δ/2,

E

[
max
z,w∈S |̂hδ(z) − ĥδ(w)|

]
≤ A,

for a universal constant A > 0. Combining this with the Borell-TIS inequality [Bor75,
SCs74] (see, e.g., [AT07, Theorem 2.1.1]), we get that for each such square S,

P

[
max
z,w∈S |̂hδ(z) − ĥδ(w)| ≤ C

]
≥ 1 − c0e

−c1C2

for universal constants c0, c1 > 0. A union bound over Oδ(δ
−2) such squares whose

union contains U concludes the proof. ��



762 E. Gwynne, J. Miller, S. Sheffield

4.2. Comparing LQGmetric balls and Euclidean balls. Throughout this subsection, we
let h be a whole-plane GFF normalized so that h1(0) = 0. We will prove the following
three propositions, which relate Dh-metric balls and Euclidean balls. Our first estimate
implies in particular that a Dh-metric ball is extremely unlikely to have an unusually
large Euclidean diameter. This estimate is related to the fact that μh(D) has negative
moments of all orders (see [DS11, Lemma 4.5] or [RV14, Theorem 2.12]) but is proven
in a very different way.

Proposition 4.3. For each fixed ρ ∈ (0, 1), it holds with superpolynomially high prob-
ability as ε → 0 that

Dh
(
Bρ(0), ∂D

) ≥ ε. (4.6)

We next state two closely related estimates to the effect that a Dh-metric ball typi-
cally contains a Euclidean ball of radius comparable to its Euclidean diameter. These are
analogs for Dh-metric balls of estimates for space-filling SLE cells from [GHM15, Sec-
tion3] and [GMS17,Section4], andwill be used to control the ratio diam(H0)

2/area(BH0)

appearing in Proposition 3.11.

Proposition 4.4. With superpolynomially high probability as ε → 0, each Dh-metric
ball which intersects both ∂Bρ(0) and ∂D contains a Euclidean ball of radius at least
ε.

Proposition 4.5. Fix ζ ∈ (0, 1). With superpolynomially high probability as δ → 0,
each Dh-metric ball B ⊂ D with diam(B) ≤ δ contains a Euclidean ball of radius at
least diam(B)1+ζ .

We will prove Propositions 4.3 and 4.4 simultaneously using a percolation argument
which is similar to ones from [DD19,DG16,DZZ18,DG18,DF18,DD18,DDDF19].
Proposition 4.5 will be deduced from Proposition 4.4 and a union bound.

For ρ > 0, define the square annulus Aρ and its inner and outer boundaries by

Aρ := [−2ρ, 2ρ]2\(−ρ, ρ)2, ∂inAρ := ∂([−ρ, ρ]2),
and ∂outAρ := ∂([−2ρ, 2ρ]2). (4.7)

The main step in the proof of the above propositions is Lemma 4.6. For n ∈ N, we
consider the restriction to An of the truncated white noise field ĥtr of (4.3). The reason
for considering An instead of A1, say, is that two sets need to be at Euclidean distance
at least 1/5 from each other for the restrictions of ĥtr to be independent and we want to
define lots of independent events.

Basic properties of the
√
8/3-LQGmetric show that for each 1×1 square S ⊂ An , it

holds with probability tending to 1 as C → ∞ that the Dĥtr -distance from the boundary
of the 1/2-neighborhood ∂B1/2(S) to S is at least 1/C and each Euclidean ball of radius

e−Cn2/3 which intersects S has Dĥtr -diameter at most e−n2/3 (this last condition would

also hold with e−Cn2/3 and e−n2/3 replaced by, e.g., n−C and n−1 or 1 and 1/C , but
we use e−n2/3 since we will get an error of order en

1/2
in Lemma 4.7). The restrictions

of ĥtr to squares which lie at distance at least 1/5 from one another are independent,
so the adjacency graph of “good” squares which satisfy the above properties looks
like a very supercritical percolation on Z2 when C is large. Hence with exponentially
high probability in n, there is path of such good squares which separates the inner and
outer boundaries of An . This implies analogs of Propositions 4.3 and 4.4 for ĥtr|An . In
Lemma 4.7, we set n 
 (log ε−1)3/2 and transfer from ĥtr|An to ĥ|Aρ

(and thereby to
h|Aρ

) using Lemma 4.1 and the scale invariance properties of the field ĥ.
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∂outAn∂inAn

Fig. 2. The square annulus An of (4.7) is shown in light green. To prove Lemma 4.6, we use a percolation
argument (based on the local independence property of ĥtr ) to show that with extremely high probability, we
can find a collection of 1 × 1 squares S (light blue) whose union disconnects the inner and outer boundaries
of An and such that each path which crosses one of these squares has to have Dĥtr -length at least 1/C and

has to hit a Euclidean ball of radius e−Cn2/3 and Dĥtr -diameter at most e−n2/3 . After re-scaling by 1/n, this
statement is used to prove Propositions 4.3, 4.4 and 4.5

Lemma 4.6. Define An for n ∈ N as in (4.7). There are universal constants a0, a1 > 0
and C > 1 such that for each n ∈ N, it holds with probability at least 1 − a0e−a1n that
the following is true.

1. The Dĥtr -distance from ∂inAn to ∂outAn is at least 1/C.
2. Each path from ∂inAn to ∂outAn intersects a Euclidean ball with Euclidean radius

e−Cn2/3 and Dĥtr -diameter at most e
−n2/3 .

See Fig. 2 for an illustration of the statement and proof of Lemma 4.6. We will
eventually apply the lemma with n 
 (log ε−1)3/2, so that e−n is smaller than any
power of ε and e−n2/3 ≈ ε.

Proof of Lemma 4.6. Let p ∈ (0, 1) be a small universal constant to be chosen later, in
a universal manner. For n ∈ N, let S(An) be the set of unit side length squares with
corners in Z2 whose Euclidean 1-neighborhood satisfies B1(S) ⊂ An . For S ∈ S(An)

and C > 1, let ES(C) be the event that the following is true.

1. Dĥtr
(
S, ∂B1/2(S)

) ≥ 1/C .

2. Each Euclidean ball of radius e−Cn2/3 which intersects S has Dĥtr |B1/2(S)
-diameter at

most e−n2/3 .

Then ES(C) is a.s. determined by ĥtr|B1/2(S). By [MS16a, Theorem 1.2] and Lemma 4.1
(see the discussion at the end of Sect. 2.4), the identity map from B1/2(S), equipped with
the Euclideanmetric, to B1/2(S), equippedwith Dĥtr |B1/2(S)

, and its inverse are a.s. locally

Hölder continuous. In particular, Dĥtr |B1/2(S)
induces the same topology on B1/2(S) as
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the Euclidean metric. Since the law of ĥtr is invariant under spatial translation, it follows
that there exists C = C(p) > 1 such that P[ES(C)] ≥ 1 − p for every S ∈ S(An).
Henceforth fix such a C .

View S(An) as a graph with two squares considered to be adjacent if they share
an edge. We claim that if p is chosen sufficiently small, then for appropriate constants
a0, a1 > 0 as in the statement of the lemma, it holds for each n ∈ N that with probability
at least 1− a0e−a1n , we can find a path P of squares in S(An) which disconnects ∂inAn
from ∂outAn such that ES(C) occurs for each S ∈ P .

Assume the claim for the moment. If a path P as in the claim exists, then each
Euclidean path from ∂inAn to ∂outAn must pass through one of the squares S ∈ P . Since
ES(C) occurs for each such square, each such path must hit a Euclidean ball of radius
e−Cn2/3 centered at a point of S which has Dĥtr ≤ Dĥtr |B1/2(S)

-diameter at most e−n2/3 ,

i.e., condition 2 in the lemma statement holds. Furthermore, since B1/2(S) ⊂ An for
each S ∈ S(An), any path from ∂inAn to ∂outAn must cross one of the annuli B1/2(S)\S
for some S ∈ P . Since ES(C) occurs for each such S, condition 1 in the lemma statement
holds.

It remains only to prove the claim. Let S∗(An) be the graph whose squares are the
same as the squares of S(An), but with two squares considered to be adjacent if they
share a corner or an edge, instead of only considering squares to be adjacent if they
share an edge. We define the inner and outer boundaries of S∗(An) to be the set of
squares which lie at Euclidean distance 1 from ∂inAn and ∂outAn , respectively (recall
that squares in S(An) satisfy B1(S) ⊂ An). By planar duality, it suffices to show that
if p, a0, a1 are chosen appropriately, then it holds with probability at least 1 − a0e−a1n

that there does not exist a simple path in S∗(Rn) from the inner boundary of An to the
outer boundary of An consisting of squares for which ES(C) does not occur. This will
be proven by a standard argument for subcritical percolation.

By the definition (4.3) of ĥtr , the event ES(C) is a.s. determined by the restriction
of the white noise W to B1(S) × R+. In particular, ES(C) and ES̃(C) are independent
whenever B1(S) ∩ B1(S̃) = ∅. For each fixed deterministic simple path P in S∗(Rn),
we can find a set of at least |P|/100 squares hit by P for which the neighborhoods B1(S)

are disjoint. Since the events ES(C) for these |P|/100 squares are independent and each
has probability at least 1− p, the probability that ES(C) fails to occur for every square
in P is at most p|P|/100.

We now take a union bound over all simple paths P in S∗(An) connecting the inner
and outer boundaries. For k ∈ [n, 16n2]Z, the number of such paths with |P| = k is at
most 4n8k since there are 4n possible initial squares along the inner boundary ofAn and
8 choices for each step of the path. Combining this with the estimate in the preceding
paragraph, we find that the probability of an inner–outer crossing in S∗(An) consisting
of squares for which ES(C) does not occur is at most

4n
16n2∑
k=n

pk/1008k+1,

which is bounded above by an exponential function of n provided we take
p < 8−100. ��

We now transfer from ĥtr|An to ĥ|Aρ
.

Lemma 4.7. There is a universal constant C > 1 such that for each ρ ∈ (0, 1), it holds
with superpolynomially high probability as ε → 0 that the following is true.
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1. The Dĥ-distance from ∂inAρ to ∂outAρ is at least ε1/2.
2. Each path from ∂inAρ to ∂outAρ intersects a Euclidean ball with Euclidean radius

at least εC and Dĥ-diameter at most ε.

Proof. We will apply Lemma 4.6 with n 
 (log ε−1)3/2 together with a scaling argu-
ment. We first establish an estimate for Dĥ-distances inAn . By Lemma 4.1 and a union
bound over On(n2) Euclidean balls of unit radius which coverAn , we can find constants
c0, c1 > 0 and a coupling of ĥ and ĥtr such that

P

[
max
z∈An

|(̂h − ĥtr)(z)| ≤ A

]
≥ 1 − c0n

2e−c1A2
, ∀A > 0.

Ifmaxz∈An |(̂h−ĥtr)(z)| ≤ A, thenby the scalingproperty ofLQGdistances (Lemma2.3),

e−A/
√
6Dĥtr (z, w) ≤ Dĥ(z, w) ≤ eA/

√
6Dĥtr (z, w), ∀z, w ∈ An .

Setting A = √
6n1/2 and applying Lemma 4.6, we see that there is a universal constant

C > 1 such that with exponentially high probability as n → ∞, the following is true.

1. The Dĥ-distance from ∂inAn to ∂outAn is at least C−1e−n1/2 .
2. Each path from ∂inAn to ∂outAn intersects a Euclidean ball with Euclidean radius

e−Cn2/3 and Dĥ-diameter at most e−n2/3+On(n1/2),

with the rate of the On(n1/2) universal.
We now use a scaling argument to transfer from An to Aρ . Recall that (̂h

− ĥρ/n)((ρ/n)·) d= ĥ. By the LQG coordinate change formula (2.11) and Lemma 2.3,

(ρ/n)−Q/
√
6 exp

(
− 1√

6
max
x∈An

ĥρ/n(x)

)
Dĥ(z, w)

≤ D(̂h−ĥρ/n)((ρ/n)·)((n/ρ)z, (n/ρ)w)

≤ (ρ/n)−Q/
√
6 exp

(
− 1√

6
min
x∈An

ĥρ/n(x)

)
Dĥ(z, w), ∀z, w ∈ Aρ.

Choose a finite set Zn of On(n4) points z ∈ An such that An ⊂ ⋃
z∈Zn

Bρ/n(z). By
Lemma 4.2 (applied with δ = ρ/n andC = (1/2)n1/2), the Gaussian tail bound applied
to the On(n4) centered Gaussian random variables ĥρ/n(z) for z ∈ Zn , each of which
has variance log(ρ/n), and a union bound, we can find constants c′

0, c
′
1 > 0, depending

only on ρ, such that

P

[
max
x∈An

|̂hρ/n(x)| ≤ n1/2
]

≥ 1 − c′
0n

4e−c′
1n/ log n .

Hence, with probability at least 1 − c′
0n

4e−c′
1n/ log n ,

e−On(n1/2)Dĥ(z, w) ≤ D(̂h−ĥρ/n)((ρ/n)·)((n/ρ)z, (n/ρ)w)

≤ eOn(n1/2)Dĥ(z, w), ∀z, w ∈ Aρ, (4.8)

with the rate of the On(n1/2) deterministic and depending only on ρ.
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We know that (̂h − ĥρ/n)((ρ/n)·) d= ĥ, so by combining (4.8) and the conclusion
of the first paragraph with (̂h − ĥρ/n)((ρ/n)·) in place of h, we get that (after possibly
shrinking c′

0 and c′
1) it holds with probability at least 1 − c′

0n
4e−c′

1n that the following
is true.

1. The Dĥ-distance from ∂inAρ to ∂outAρ is at least e−On(n1/2).
2. Each path from ∂inAρ to ∂outAρ intersects a Euclidean ball with Euclidean radius

(ρ/n)e−Cn2/3 and Dĥ-diameter at most e−n2/3+On(n1/2).

We now choose n = �(log ε−1)3/2�. This makes it so that n4e−c′
1n/ log n decays faster

than any positive power of ε, e−n1/2 decays slower than any positive power of ε,
(ρ/n)e−Cn2/3 = εC+oε (1), and e−n2/3+On(n1/2) = ε1+oε (1). Making this choice of n and
possibly slightly adjusting C and ε concludes the proof. ��
Proof of Proposition 4.3. By Lemma 4.1, we can couple h and ĥ in such a way that
(h− ĥ)|D is a continuous function and with superpolynomially high probability as ε →
0, one has maxz∈D |(h− ĥ)(z)| ≤ (log ε−1)2/3. Combining this with Lemma 4.7 and the
scaling property of LQG distances shows that for each fixed square annulus A ⊂ D such
that the ratio of its inner and outer side lengths is 4, it holds with superpolynomially high
probability as ε → 0 (at a rate depending on A) that the Dh-distance between the inner
and outer boundaries of A is at least ε. We can find finitely many such square annuli
contained inD\Bρ(0) such that the union of their inner boundaries disconnects the inner
and outer boundaries of D\Bρ(0). Each path between the inner and outer boundaries
of D\Bρ(0) must cross between the inner and outer boundaries of one of these square
annuli, so applying the preceding estimate once to each such annulus and taking a union
bound concludes the proof. ��
Proof of Proposition 4.4. Via the same argument as in the proof of Proposition 4.3,
Lemma 4.7 implies that there is a universal constant C > 1 such that with superpoly-
nomially high probability as ε → 0, each path from Bρ(0) to ∂B(1+ρ)/2(0) intersects
a Euclidean ball with Euclidean radius at least εC and Dh-diameter at most ε. In par-
ticular, each Dh-ball B which intersects both ∂Bρ(0) and ∂D intersects a Euclidean
ball of radius at least εC and Dh-diameter at most ε which is contained in B(1+ρ)/2(0).
On the other hand, Proposition 4.3 shows that with superpolynomially high probability
as ε → 0, the Dh-distance from B(1+ρ)/2(0) to ∂D is at least 2ε, in which case the
aforementioned Euclidean ball is contained in the Dh-metric ball B. Replacing εC by ε

concludes the proof. ��
Proof of Proposition 4.5. Observe that the conclusionofProposition4.4does not depend
on the choice of additive constant for h. By the scale and translation invariance of the
law of h, modulo additive constant, we see that Proposition 4.4 implies that for each
ρ ∈ (0, 1), r > 0, and z ∈ C, it holds with superpolynomially high probability as
ε → 0, at a rate which is uniform in r and z, that each Dh-metric ball which intersects
both ∂Bρr (z) and ∂Br (z) contains a Euclidean ball of radius at least εr .

By a union bound, with superpolynomially high probability as δ → 0 that the follow-
ing is true. For each k ∈ Nwith 2−k ≤ δ and each z ∈ D∩ (2−100kZ2), each Dh-metric
ball which intersects both ∂B2−k−1(z) and ∂B2−k (z) contains a Euclidean ball of radius
at least 2−(1+ζ/2)k . If B ⊂ D is a Dh-metric ball with diam(B) ≤ δ, then there exists
k ∈ N with 2−k ≤ diam(B) ≤ 2−k+1 and z ∈ D ∩ (2−100kZ2) such that B intersects
both ∂B2−k−1(z) and ∂B2−k (z). Therefore, B contains a Euclidean ball of radius at least
2−(1+ζ/2)k ≥ diam(B)1+ζ , as required. ��
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4.3. Volume estimates for LQG metric balls. The goal of this subsection is to establish
the following estimate for the LQG mass of LQG metric balls.

Proposition 4.8. Let h be a whole-plane GFF normalized so that h1(0) = 0. For each
ζ ∈ (0, 1), it holds with superpolynomially high probability as ε → 0 that

s4+ζ ≤ μh (Bs(z; Dh)) ≤ s4−ζ , ∀s ∈ (0, ε], ∀z ∈ D. (4.9)

We will extract Proposition 4.8 from known ball volume estimates for the Brownian
map, which say that a.s. the volume of every ball of radius s in the Brownian map
simultaneously is bounded above and below by constants times s4−ζ and s4+ζ (stated as
Lemma 4.9). These estimates together with the equivalence of the Brownianmap and the
quantum sphere do not immediately imply (4.9) sincewe areworkingwith awhole-plane
GFF instead of a quantum sphere. One could attempt to transfer the estimates using some
sort of quantitative local absolute continuity, but we instead take a different approach
which we find to be easier. We note that Proposition 4.8 has not previously appeared in
the Brownian map literature, although closely related results have been established (see
the proof of Lemma 4.9).

Local absolute continuity (without anyquantitativeRadon–Nikodymderivative bound)
shows that a.s. the μh-mass of every Dh-ball of radius s ∈ (0, 1) which is contained
in D is bounded above and below by constants times s4−ζ and s4+ζ . To turn this into
a bound which holds with superpolynomially high probability instead of just a.s., we
first use Lemma 4.1 and scale invariance considerations to transfer from h|D to the
restriction of the truncated white-noise field ĥtr of (4.3) to BR(0) for a large value of
R (Lemma 4.10). The restrictions of ĥtr to radius-1 Euclidean balls contained in BR(0)
which lie at distance at least 1/5 from one another are independent. Hence, the fact that
an event (in our setting, bounds for the μh-mass of Dh-balls contained in the Euclidean
ball) holds simultaneously for all such Euclidean balls with high probability shows that
in fact the event for a single Euclidean ball has to hold with extremely high probability
(Lemma 4.11). We then transfer back to h to conclude the proof.

Let us first record what we get from Brownian map estimates.

Lemma 4.9. If h is a whole-plane GFF normalized so that h1(0) = 0, then a.s.

sup
s∈(0,1)

sup
z∈D

μh(Bs(z; Dh)

s4−ζ
< ∞ and inf

s∈(0,1)
inf
z∈D

μh(Bs(z; Dh)

s4+ζ
> 0. (4.10)

The same is true with the field ĥ of (4.1) in place of h.

Proof. Wewill use estimates for the Brownian map, so we need to work with a quantum
sphere due to the equivalence of the Brownian map and quantum sphere [MS16a, Corol-
lary 1.4]. Let hSph be an embedding into C of the quantum sphere (say, conditioned to
have LQG area at least 1), normalized so that two marked points sampled uniformly
from μhSph are sent to 0 and ∞ and so that 1 = sup{r > 0 : hSphr (0) + Q log r = 0},
provided hSphr (0) + Q log r = 0 for some r > 0. This choice of normalization makes it
so that the laws of hSph|D\B1/2(0) and h|D\B1/2(0) are mutually absolutely continuous on

the event {hSphr (0) = 0} (the laws of the restrictions of the fields toD are not absolutely
continuous since hSph has a γ -log singularity at 0).

By [Le10, Corollary 6.2] and the equivalence of the Brownian map and the quantum
sphere,

sup
s>0

sup
z∈C

μhSph(Bs(z; DhSph)

s4−ζ
< ∞.
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Furthermore, since the continuum label process (the “head of the Brownian snake”) used
to define the Brownian map is a.s. Hölder continuous with any exponent less than 1/4,
a.s.

inf
s>0

inf
z∈C

μhSph(Bs(z; DhSph)

s4+ζ
> 0.

By the local absolute continuity between h and hSph, we obtain (4.10) with D\B1/2(0)
in place of D. By the translation invariance of the law of h, modulo additive constant,
we get (4.10). By Lemma 4.1, the same is true with ĥ in place of h. ��

We will now transfer to an estimate for ĥtr restricted to a large ball.

Lemma 4.10. Fix p > 1 and ζ ∈ (0, 1). There is a universal constant c > 0 and
a random set Zr p ⊂ Br p (0) ∩ (3Z2) independent from ĥtr such that with probability
tending to 1 as r → ∞, one has #Zr p ≥ cr2p and for each z ∈ Zr p ,

s4+ζ ≤μĥtr
(
Bs(z; Dĥtr )

)≤s4−ζ , ∀s ≤ r−ζ min
{
1, Dĥtr (w, ∂B1(z))

}
, ∀w∈ B1(z).

(4.11)

The reason why we need to restrict to the set Zr p in Lemma 4.10, instead of looking
at all points in Br p (0) ∩ (3Z2), is as follows. To transfer from an estimate on D to an
estimate on Br p (0), we will use the scale invariance property of the white noise field ĥ,
which says that ĥ(r−p·)−ĥr−p (r−p·)has the same lawas ĥ and is independent from ĥr−p .
We will restrict attention to the set of points where ĥr−p is not unusually large, which
is independent from ĥ(r−p·) − ĥr−p (r−p·), then couple ĥtr with ĥ(r−p·) − ĥr−p (r−p·)
using Lemma 4.1.

Proof of Lemma 4.10. Step 1: re-scaling from D to Br p (0). We will re-scale with the
eventual aim of transferring Lemma 4.9 to an estimate with Br p (0) in place ofD and ĥ
in place of h. This will lead to the definition of Zr p . If we set ĥr

p := (̂h − ĥr−p )(r−p·),
then ĥr

p d= ĥ and ĥr
p
is independent from ĥr−p . Let

Zr p :=
{
z ∈ Br p (0) ∩ (3Z2) : sup

w∈B1(z)
|̂hr−p (r−pw)| ≤ ζ 2 log r

}
. (4.12)

We emphasize that Zr p is determined by ĥr−p , so is independent from ĥr
p
.

We will now argue that there is a universal constant c > 0 such that

P
[
#Zr p ≥ cr2p

]
→ 1 as r → ∞. (4.13)

To see this, we observe that each ĥr−p (r−pz) for z ∈ 3Z2 is Gaussian with variance

log r p. By the Gaussian tail bound, P[|̂hr−p (r−pz)| ≤ ζ 2

2 log r ] tends to 1 as r → ∞,
uniformly over all z ∈ 3Z2. By Markov’s inequality, it holds with probability tending to

1 as r → ∞ that the number of z ∈ Br p (0) ∩ (3Z2) for which |̂hr−p (r−pz)| ≤ ζ 2

2 log r
is at least 1

2#
[
Br p (0) ∩ (3Z2)

]
, say. This last quantity is at least cr2p for some universal

constant c > 0. By Lemma 4.2, it holds with probability tending to 1 as r → ∞ that

sup
z∈Br p (0)∩(3Z2)

sup
w∈B1(z)

|̂hr−p (r−pw) − ĥr−p (r−pz)| ≤ ζ 2

2
log r.

By combining these estimates, we get (4.13).
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Step 2: estimate for LQG balls centered at points of Zr p . By the LQG coordinate change
formula (2.11) and Lemma 2.3, for each z ∈ Zr p and each x, y ∈ B1(z),

r (pQ−ζ 2)/
√
6Dĥ|r−p B1(z)

(r−px, r−p y) ≤ Dĥr p |B1(z)
(x, y)

≤ r (pQ+ζ 2)/
√
6Dĥ|r−p B1(z)

(r−px, r−p y)

Moreover, the analogous properties for the LQG measure show that

r
√
8/3(pQ−ζ 2)μĥ(r

−p A) ≤ μĥr p (A) ≤ r
√
8/3(pQ+ζ 2)μĥ(r

−p A), ∀A ⊂ B1(z) Borel.

Combining this with Lemma 4.9 (with ĥ in place of h) shows that with probability
tending to 1 as r → ∞, it holds for each z ∈ Zr p that

s4+aζ ≤ μĥ(Bs(w; Dĥ)) ≤ s4−aζ , ∀s ≤ r−ζ min{1, Dĥ(w, ∂B1(z))}, ∀w ∈ B1(z),
(4.14)

where here a > 0 is a universal constant. Note that we used that 4/
√
6 = √

8/3 to
cancel two large powers of r and we used that r ζ 2 ≤ s−ζ for s ≤ r−ζ to absorb a small
power of r into a power of s.
Step 3: transferring from ĥ to ĥtr . By Lemma 4.1 and a union bound over Or p (r2p)
Euclidean balls of radius 1 which cover Br p (0), we can couple ĥr

p
and ĥtr in such a way

that with probability tending to 1 as r → ∞, we have maxz∈Br p+1(0) |(̂hr p − ĥtr)(z)| ≤
(log r)2/3. Since ĥr

p
is independent from Zr p , we can take ĥtr to be independent from

Zr p in this coupling. Our choice of coupling together with (4.13) and (4.14) shows that
with probability tending to 1 as r → ∞, it holds for each z ∈ Zr p , each w ∈ B1(z), and

each s ≤ r−ζ e
− 1√

6
(log r)2/3

min
{
1, Dĥtr (w, ∂B1(z))

}
that

e
− 1√

6
(log r)2/3

s4−aζ ≤ μĥtr (Bs(w; Dĥtr )) ≤ e
1√
6
(log r)2/3

s4−aζ .

After adjusting ζ appropriately, this gives (4.11). ��
We can now go from events with probability tending to 1 to events with superpoly-

nomially high probability.

Lemma 4.11. For each ζ ∈ (0, 1), it holds with superpolynomially high probability as
ε → 0 that

s4+ζ ≤ μĥtr
(
Bs(w; Dĥtr )

) ≤ s4−ζ , ∀s ≤ ε min
{
1, Dĥtr (w, ∂D)

}
, ∀w ∈ D.

(4.15)

Proof. Fix p > 1, which we will eventually send to ∞. For z ∈ 3Z2 and r > 1, let

Er (z) :=
{
s4+ζ ≤ μĥtr

(
Bs(w; Dĥtr )

) ≤ s4−ζ , ∀s ≤ r−ζ

min
{
1, Dĥtr (w, ∂B1(z))

}
, ∀w ∈ B1(z)

}
.

Note that the event in (4.15) is the same as Eε−1/ζ (0). Furthermore, if we let Zr p ⊂
Br p (0) ∩ (3Z2) be the random set independent from ĥtr from Lemma 4.10, then that
lemma tells us that with probability tending to 1 as r → ∞, we have #Zr p ≥ cr2p and
Er (z) occurs for every z ∈ Zr p .
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The fields ĥtr|B1(z) for different choices of z ∈ 3Z2 are independent and the law of
ĥtr is invariant with respect to spatial translations. Consequently, the events Er (z) for
different choices of z ∈ 3Z2 are independent. Since ĥtr is independent fromZr p , we get
that

1 − or (1) ≤ P
[
Er (z), ∀z ∈ Zr |Zr ≥ cr2p

]
≤ P [Er (0)]

cr2p . (4.16)

If r is large enough that this 1 − or (1) is at least e−c, then re-arranging gives

P[Er (0)] ≥ e−1/r2p ≥ 1 − r−2p

where here we have used the elementary inequality 1 − e−x ≤ x . Since p > 1 can be
made arbitrarily large, we get that Er (0) occurs with superpolynomially high probability
as r → ∞. Setting r = ε−1/ζ now concludes the proof. ��
Proof of Proposition 4.8. By Lemmas 4.1 and 4.11 together with the scale invariance
of the law of h, modulo additive constant, and the fact that the law of h2(0) is Gaussian
with constant-order variance, it holds with superpolynomially high probability as ε → 0
that

s4+ζ ≤ μh (Bs(w; Dh)) ≤ s4−ζ , ∀s ≤ ε1/2 min {1, Dh(w, ∂B2(0))} , ∀w ∈ B2(0).

By Proposition 4.3, it holds with superpolynomially high probability as ε → 0 that
Dh(∂D, ∂B2(0)) ≥ ε1/2. Combining these estimates gives (4.9). ��

4.4. Estimates for the 0-quantum cone. We now want to shift attention from the whole-
plane GFF to the 0-quantum cone, with a view toward proving Proposition 3.11. To
this end, we will transfer the main results of the preceding subsections to the case of a
0-quantum cone. We start with estimates for the LQG areas of LQG metric balls which
follows from Proposition 4.8.

Proposition 4.12. Let (C, h, 0,∞) be a 0-quantum cone.

1. With superpolynomially highprobability asC → ∞, onehasC−1 ≤ μh(B1(0; Dh)) ≤
C.

2. For ζ ∈ (0, 1), it holds with superpolynomially high probability as C → ∞ that
C−ζ ≤ μh(B1(z; Dh)) ≤ Cζ for each z ∈ BC (0; Dh).

By the scaling property (2.10) of the 0-quantum cone, the law of (C, Dh, μh) as a
metric measure space is invariant under scaling distances by b1/4 and areas by b, for
any b > 0. We will often use this fact in conjunction with Proposition 4.12 without
comment.

Proof of Proposition 4.12. The proposition statement does not depend on the choice
of embedding for h, so we can assume without loss of generality that h is given the
circle-average embedding. Recall that h|D agrees in law with the corresponding restric-
tion of a whole-plane GFF normalized so that its circle average over ∂D is zero. By
Proposition 4.3, it holds with superpolynomially high probability as C → ∞ that
BC−1(0; Dh) ⊂ D. Hence Proposition 4.8 (applied with ζ = 1, say) shows that with
superpolynomially high probability as C → ∞,

C−5 ≤ μh(BC−1(0; Dh)) ≤ C−3. (4.17)
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By the scale invariance property of the 0-quantum cone (2.10), we have (C, Dh, μh)
d=

(C,CDh,C4μh) as metric measure spaces. Therefore, (4.17) implies that with super-
polynomially high probability as C → ∞, one has C−1 ≤ μh(B1(0; Dh)) ≤ C , which
is assertion 1.

We now prove assertion 2 via a similar argument. By Proposition 4.8 and our above
description of the law of h|D, it holds with superpolynomially high probability as C →
∞ that

C−8−ζ ≤ μh(BC−2(z; Dh)) ≤ C−8+ζ , ∀z ∈ D.

Furthermore, by Proposition 4.3, it holds with superpolynomially high probability as
C → ∞ that BC−1(0; Dh) ⊂ D. Hence with superpolynomially high probability as
C → ∞,

C−8−ζ ≤ μh(BC−2(z; Dh)) ≤ C−8+ζ , ∀z ∈ BC−1(0; Dh). (4.18)

We now scale distances by C2 and areas by C8 and apply (2.10) as above to deduce
assertion 2 from (4.18). ��

Wenext record an estimate to the effect that Dh-metric balls have to contain Euclidean
metric balls of radius comparable to their Euclidean diameters.

Proposition 4.13. Let (C, h, 0,∞) be a 0-quantum cone and let ζ ∈ (0, 1). With super-
polynomially high probability as C → ∞, each Dh-ball B which is contained in BC (0)
and which has Dh-radius at least C−1 contains a Euclidean ball of radius at least
C−ζdiam(B).

Wewill deduce Proposition 4.13 from Propositions 4.3 and 4.5. Before we can do so,
however, we need some basic polynomial tail estimates for the minimal and maximal
radii of Euclidean balls. This is because Proposition 4.13 only holds for LQG balls with
sufficiently small Euclidean diameter and because diam(B)1+ζ can bemuch smaller than
C−ζdiam(B) if diam(B) is tiny.

Lemma 4.14. Let h be a whole-plane GFF normalized so that h1(0) = 0. For each
q > 8

(2−√
8/3)2

and each ε ∈ (0, 1),

P
[
diam (Bε(z; Dh)) ≥ εq , ∀z ∈ D

] ≥ 1 − εα(q)+oε (1), (4.19)

where the rate of the oε(1) depends only on q and

α(q) := 3q

16

(
10

3
− 4

q

)2

− 2q. (4.20)

Proof. By standard estimates for the
√
8/3-LQGmeasure (see, e.g., the proof of [DG18,

Lemma 3.7] with γ = √
8/3), for p > 2

√
8/3, it holds with probability at least 1 −

δ3p
2/16−2 that each Euclidean ball centered at a point of D with radius at least δ has

μh-mass at most δ10/3−p. We now fix ζ ∈ (0, 1), which we will eventually send to 0.
Applying the above estimate with p = 10/3 − (4 + ζ )/q and δ = εq = ε(4+ζ )/(10/3−p)

and shows that with probability at least 1−εα(q)+oζ (1)+oε (1) (with the oζ (1) deterministic
and independent of ε), each Euclidean ball centered at a point of D with radius εq has
μh-mass at most ε4+ζ .

ByProposition4.8,with superpolynomially highprobability as ε → 0,μh(Bε(z; Dh)) >

ε4+ζ for each z ∈ D. In particular, no such ball Bε(z; Dh) can be contained in a Euclidean
ball with μh-mass at most ε4+ζ . Combining this with the preceding paragraph and send-
ing ζ → 0 concludes the proof. ��



772 E. Gwynne, J. Miller, S. Sheffield

Lemma 4.15. Let h be a whole-plane GFF normalized so that h1(0) = 0. For each

q ∈
(
0, 8

(2+
√
8/3)2

)
and each ε ∈ (0, 1),

P
[
diam (Bε(z; Dh)) ≤ εq , ∀z ∈ D

] ≥ 1 − εβ(q)+oε (1), (4.21)

where the rate of the oε(1) depends only on q and

β(q) := 3q

16

(
10

3
+
4

q

)2

− 2q.

Proof. Fix q̃ ∈
(
q, 8

(2+
√
8/3)2

)
, whichwewill eventually send toq, and ζ ∈ (0, 1), which

we will eventually send to 0. By standard estimates for the
√
8/3-LQG measure (see,

e.g., [GMS19, Lemma 2.5] with γ = √
8/3), for p > 2

√
8/3 it holds with probability at

least 1− δ3p
2/16−2 that each Euclidean ball centered at a point ofD with radius at least

δ has μh-mass at least δ10/3+p. Applying the above estimate with p = (4− ζ )/q̃ −10/3
and δ = εq̃ = ε(4−ζ )/(10/3+p) and shows that with probability at least 1−εβ(q̃)+oζ (1)+oε (1)

(with the oζ (1) deterministic and independent of ε), each Euclidean ball centered at a
point of D with radius at least εq̃ has μh-mass at least ε4−ζ .

By Proposition 4.8 (applied with B2(0) in place of D and ε1/2 in place of ε), we
see that with superpolynomially high probability as ε → 0, μh(Bε(z; Dh)) < ε4−ζ

for each z ∈ D. By Proposition 4.5, it holds with superpolynomially high probability
as ε → 0 that each Dh-ball centered at a point of D which has Euclidean diameter at
least εq contains a Euclidean ball of radius at least εq̃ . By the preceding estimates, with
probability at least 1 − εβ(q̃)+oζ (1)+oε (1), each such Dh-ball has μh-mass at least ε4−ζ

and hence Dh-radius strictly larger than ε. Sending ζ → 0 and then q̃ → q concludes
the proof. ��
Proof of Proposition 4.13. Let q ∈

(
0, 8

(2+
√
8/3)2

)
and q > 8

(2−√
8/3)2

. We will even-

tually send q to 0 and q to ∞. By Lemmas 4.14 and 4.15, it holds with probability

at least 1 − C−(3α(q))∧β(q)+oC (1) that each Dh-ball contained in D with Dh-diameter
between C−3 and C−1 has Euclidean diameter between C−3q and C−q . By Proposi-
tion 4.5, it holds with superpolynomially high probability as C → ∞ that each Dh-ball
contained in D with Euclidean diameter at most C−q contains a Euclidean ball of
radius at least diam(B)1+ζ/(2q). By Proposition 4.3, it holds with superpolynomially
high probability as C → ∞ that BC−1(0; Dh) ⊂ D. Hence with probability at least
1 − C−(3α(q))∧β(q)+oC (1), each Dh-ball contained in BC−1(0; Dh) with Dh-diameter in
[C−3,C−1] contains a Euclidean ball of radius at least diam(B)1+ζ/(3q) ≥ C−ζdiam(B).
This statement does not depend on the choice of embedding h, so we can add 2√

6
logC

to h (i.e., scale distances by C2) to get that the event in the statement of the lemma holds
with probability at least 1 − C−(3α(q))∧β(q)+oC (1). Since α(q), β(q) → ∞ as q → ∞
and q → 0, this concludes the proof. ��

4.5. Proof of the moment estimate. Throughout this subsection, we let h be the circle-
average embedding of a 0-quantum cone in (C, 0,∞). We also fix λ = 1 and define the
Poisson point process P := P1

h and the collection of Voronoi cells H = H1
h . We recall

that H0 is the a.s. unique cell inH which contains 0.
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To prove Proposition 3.11 (and thereby Proposition 3.1), we first establish an upper
bound for the Dh-diameter of a Voronoi cell (Lemma 4.17) by building a “wall” of
Voronoi cells in the annulus between two concentric Dh-balls (Lemma 4.18). Using this
and Proposition 4.13 allows us to simultaneously bound diam(BH )2/area(BH ) for all of
the Voronoi cells H with 0 ∈ BH , where here we recall that BH is the smallest Dh-ball
centered at the center point of H which contains H (Lemma 4.19). We will then prove
an upper bound for the number of cells with 0 ∈ BH and for the maximal degree of
these cells (Lemma 4.20) and combine these estimates to get Proposition 3.11.

Lemma 4.16. Let ζ ∈ (0, 1). With superpolynomially high probability as C → ∞, the
ball BC (0; Dh) is contained in the union of at most C4+ζ Dh-metric balls of radius 1.

Proof. Let Z be a maximal collection of points in BC (0; Dh) such that the balls
B1/2(z; Dh) for z ∈ Z are disjoint. By Proposition 4.12, it holds with superpoly-
nomially high probability as C → ∞ that minz∈Z μh(B1/2(z; Dh)) ≥ C−ζ/2 and
μh(BC (z; Dh)) ≤ C4+ζ/2, which implies that #Z ≤ C4+ζ . By the maximality of Z ,
each point of BC (0; Dh) is contained in B1(z; Dh) for some z ∈ Z . ��

The following lemma shows that Voronoi cells are extremely unlikely to have a larger
quantum diameter than one would expect.

Lemma 4.17. Fix ζ ∈ (0, 1). With superpolynomially high probability as C → ∞, each
cell inH which intersects BC (0; Dh) has Dh-diameter at most Cζ .

To prove Lemma 4.17, we will use the following lemma to build a “wall” of Voronoi
cells which separate the boundaries of two concentric Dh-balls.

Lemma 4.18. For ζ ∈ (0, 1), it holds with superpolynomially high probability as C →
∞ that the following is true. For each z ∈ BC (0; Dh), we can find a finite collection of
at most Cζ Dh-metric balls of radius 1/2 which are contained in B3(z; Dh)\B1(z; Dh)

and whose union disconnects B1(z; Dh) from C\B3(z; Dh).

Proof. ByProposition 4.12, it holdswith superpolynomially high probability asC → ∞
that

μh(B3(z; Dh)) ≤ Cζ/2 and μh(B1/4(z; Dh)) ≥ C−ζ/2, ∀z ∈ BC (0; Dh). (4.22)

Henceforth assume that (4.22) holds and fix z ∈ BC (0; Dh). We will construct a collec-
tion of Dh-balls as in the statement of the lemma.

Let C be amaximal collection of points in ∂B2(z; Dh) such that the balls B1/4(w; Dh)

forw ∈ C are disjoint. The union of the balls B1/2(w; Dh) forw ∈ C covers ∂B2(z; Dh)

(otherwise, we could find a point in ∂B2(z; Dh) which lies at distance at least 1/2 from
each w ∈ C, which contradicts the maximality of C). Consequently,⋃w∈C B1/2(w; Dh)

disconnects B1(z; Dh) fromC\B3(z; Dh). Furthermore, each of the balls B1/2(w; Dh)

for w ∈ C is centered at a point of ∂B2(z; Dh), so is contained in B3(z; Dh)\B1(z; Dh).
Finally, since the balls B1/4(w; Dh) for w ∈ C are disjoint and contained in B3(z; Dh),
we see from (4.22) that #C ≤ Cζ . ��
Proof of Lemma 4.17. By Lemma 4.16, with superpolynomially high probability as
C → ∞, we can find a collection ZC of at most C4+ζ points of BC (0; Dh) such
that the union of the balls B1(z; Dh) for z ∈ ZC covers BC (0; Dh). By Lemma 4.18
and the scaling property (2.10) of the 0-quantum cone, with superpolynomially high
probability as C → ∞ we can find for each z ∈ ZC a finite collection C(z) of at most
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Cζ Dh-balls of radius 1
2C

ζ which are contained in B3Cζ (z; Dh)\BCζ (z; Dh) and whose
union disconnects BCζ (z; Dh) fromC\B3Cζ (z; Dh). By Proposition 4.12, it holds with
superpolynomially high probability as C → ∞ that the μh-mass of each ball in each of
the collections C(z) is at least C4ζ(1−ζ )

By the formula for the Poisson distribution, if this is the case then the conditional
probability given h that each of the balls in

⋃
z∈ZC

C(z) contains a point of P is at least

1 − exp
(−C4ζ(1−ζ )

)
. By a union bound over the at most C4+2ζ balls in

⋃
z∈ZC

C(z),
we find that with superpolynomially high probability as C → ∞, each of the balls
this collection contains a point of P . Similarly, it holds with superpolynomially high
probability as C → ∞ that BCζ /4(z; Dh) contains a point wz ∈ P for each z ∈ ZC .
Since each point of B1(z; Dh) lies within Dh-distance Cζ /4 + 1 of wz , this means
that the center point of each Voronoi cell which intersects B1(z; Dh) is contained in
BCζ /4+2(z; Dh) ⊂ BCζ /2(z; Dh).

If the events described in the preceding paragraph are satisfied, then for z ∈ ZC ,
each point of C\B3Cζ (z; Dh) is Dh-closer to a point of P which is contained in one
of the balls in C(z) than it is to any point of BCζ /2(z; Dh). This means that no such
point can be contained in a cell whose center point is in BCζ /2(z; Dh), hence no such
point can be contained in a cell which intersects B1(z; Dh). Hence each Voronoi cell
which intersects B1(z; Dh) is contained in B3Cζ (z; Dh) with superpolynomially high
probability as C → ∞. Since the union of the balls B1(z; Dh) for z ∈ ZC covers
BC (0; Dh), this gives the statement of the lemma with 3Cζ in place of Cζ , which is
sufficient. ��

We can now prove our main moment estimates. Recall that BH denotes the smallest
Dh-metric ball containing the cell H which is centered at the center point of H .

Lemma 4.19. With superpolynomially high probability as C → ∞,

max
H∈H:0∈BH

diam(BH )2

area(BH )
≤ C. (4.23)

Proof. Fix ζ ∈ (0, 1), which we will eventually send to 0. Lemma 4.17 shows that
with superpolynomially high probability as C → ∞, each H ∈ H with 0 ∈ BH has
Dh-diameter at most Cζ , so is contained in B2Cζ (0; Dh). We will now argue that with
probability at least 1−OC (C−4/ζ+ζ ), the Dh-radius of BH for each such cell H is at least
C−1/ζ . Indeed, Proposition 4.12 shows that with superpolynomially high probability as
C → ∞, we have μh(B2C−1/ζ (0; Dh)) ≤ C−4/ζ+ζ . Since the number of points of P
which belong to B2C−1/ζ (0; Dh) is Poisson with mean μh(B2C−1/ζ (0; Dh)) conditional
on h, it follows that with probability at least 1−OC (C−4/ζ+ζ ), no point ofP is contained
in B2C−1/ζ (0). In particular, no cell H ∈ H is contained in B2C−1/ζ (0), so if 0 ∈ BH
then the Dh-radius of BH must be at least C−1/ζ , as required.

By Proposition 4.13, it holds with superpolynomially high probability as C → ∞
that each Dh-ball B centered at a point of BC (0; Dh) with Dh-radius at least C−1/ζ

contains a Euclidean ball of radius at least C−1/2diam(B). Combining this with the
preceding paragraph shows that (4.23) holds with probability at least 1−OC (C−4/ζ+ζ ).
Sending ζ → 0 concludes the proof. ��

To bound the number of cells with 0 ∈ BH and their degrees, we will need the
following lemma.



The Tutte Embedding of the Poisson–Voronoi Tessellation 775

Lemma 4.20. For each ζ ∈ (0, 1), it holds with superpolynomially high probability as
C → ∞ that

# {H ∈ H : BH ∩ BC (0; Dh) �= ∅} ≤ C4+ζ (4.24)

and the Dh-diameter of each of the balls Bh which intersects BC (0; Dh) is at most Cζ .

Proof. Fix ζ ∈ (0, 1). By Lemma 4.17 and a union bound over dyadic values of C , it
holds with superpolynomially high probability as C → ∞ that for each k ∈ N with
2k ≥ C/2, each cell H ∈ H which intersects B2k (0; Dh) has Dh-diameter at most
2ζk−1. Henceforth assume that this is the case.

For a cell H ∈ H, let kH ∈ N be the smallest integer forwhich H∩B2kH (0; Dh) �= ∅.
If 2kH ≥ 4C , then the Dh-diameter of H is at most 2ζkH−1, so the ball BH has Dh-
diameter at most 2ζkH < 2kH−2. Since this ball intersects C\B2kH (0; Dh) (by the min-
imality of kH ), it cannot intersect B2kH−2(0; Dh), so must be disjoint from BC (0; Dh).

Consequently, each H ∈ H with BH ∩ BC (0; Dh) �= ∅ must intersect B4C (0; Dh)

and hence must each have Dh-diameter at most 4Cζ . In particular, each such cell is
contained in B5C (0; Dh). We are thus left to bound the number of cells contained in
B5C (0; Dh). By Proposition 4.12, it holds with superpolynomially high probability as
C → ∞ that μh(B5C (0; Dh)) ≤ C4+ζ/2. Conditioned on this event, the number of
points of P which belong to B5C (0; Dh) is Poisson with mean at most C4+ζ/2. By the
elementary estimate

P [X > x] ≤ e−λλx

xx
, for x ∼ Poisson(λ),

we see that the probability that B5C (0; Dh) contains more that C4+ζ points of P decays
superpolynomially in C . This gives (4.24). ��
Lemma 4.21. With superpolynomially high probability as C → ∞,

# {H ∈ H : 0 ∈ BH } ≤ C and max
H∈H:0∈BH

deg(H) ≤ C. (4.25)

Proof. By Lemma 4.20 (applied with any choice of ζ ∈ (0, 1)) it holds with superpoly-
nomially high probability as C → ∞ that each H ∈ H with 0 ∈ BH has Dh-diameter
at most C , so is contained in B2C (0; Dh). This means that each neighbor of each such
cell intersects B2C (0; Dh). Therefore, Lemma 4.20 implies that with superpolynomi-
ally high probability as C → ∞, the total number of cells such that either 0 ∈ BH or
H ∼ H ′ for some cell H ′ with 0 ∈ BH ′ is at mostC5. Replacing C withC1/5 concludes
the proof. ��
Proof of Proposition 3.11. By Lemmas 4.19 and 4.21, it holds with superpolynomially
high probability as C → ∞ that

∑
H∈H:0∈BH

diam(H)2deg(H)

area(BH )
≤ C3. (4.26)

Consequently, this sum has finite moments of all positive orders. ��
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5. Open Problems

Perhaps the most natural question to ask about Brownian motion on the Brownian map
is the following.

Problem 5.1. Show that random walk on uniform random planar maps (e.g., uniform
quadrangulations or triangulations) converges to Brownian motion on the Brownian
map with respect to the Gromov–Hausdorff–Prokhorov-uniform topology, the natural
topology for curve-decorated metric measure spaces [GM17b].

It is known that self-avoiding walk and percolation interfaces on uniform random
planar maps converge to SLE8/3 and SLE6, respectively [GM16a,GM17a]. In contrast
to the case ofZ2, however, randomwalk on a randomplanarmap seems harder to analyze
than SAW or percolation interfaces since the random walk can re-trace its past, so one
cannot explore the curve and the planar map simultaneously using peeling.

Our results only concern Brownian motion on Brownian surfaces viewed modulo
time parameterization. The natural way to parameterize Brownian motion on a

√
8/3-

LQG surface, equivalently a Brownian surface, is called Liouville Brownian motion and
is constructed in [Ber15,GRV16].

Problem 5.2. Show that in the setting of Theorem 1.1, the random walk onPλ, parame-
terized so that it traverses one edge in one unit of time, converges to Liouville Brownian
motion with respect to the uniform topology as λ → ∞.

There are other natural types of random walks that one can consider on Brownian
surfaces which one would expect to converge to Brownian motion in the scaling limit.
For example, one can generate a random walk which at each step moves to a point
sampled uniformly at random from the metric ball of radius ε centered at its current
position. As a second example, the Brownian snake construction of the Brownian map
involves describing the Brownian map as a gluing of the tree of geodesics back to the
root together with a dual tree (and instance of the CRT) rooted at the dual root. The
peanocurve which “snakes between these two trees” is a space-filling curve, which one
may use to give a graph approximation analogous to the mated-CRT map considered in
[GMS17,GMS19]. In particular, if (X , D, μ) denotes the unit-area Brownian map, the
Brownian snake construction gives a quotient map p : [0, 1] → X . We then fix ε > 0
and consider the random walk on the adjacency graph of μ-mass ε cells p([x − ε, x])
for x ∈ [0, 1] ∩ (εZ).

One of the appeals of this construction is that one can sample from it in linear time
(one just needs to generate an instance of the Brownian snake) and then compute its
Tutte embedding efficiently using a sparse matrix package (c.f. [GMS17, Remark 1.2]).

Problem 5.3. Show that Theorem 1.1 holds for random walk on other graph approxi-
mations of Brownian surfaces, such as the two mentioned just above.

Problem 5.4. Show that the complementary connected components of aBrownianmotion
on the Brownian map (run for a fixed amount of time) are independent Brownian disks
conditional on their boundary length.

The analog of the property of Problem 5.4 for Brownian motion on certain ran-
dom planar maps (like the UIPT or the UIPQ) follows from the so-called spatial Markov
property, a.k.a. peeling; see, e.g., [BC13]. It is known that the complementary connected
components of SLE6 on a Brownian surface are Brownian disks (this follows from the
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results of [DMS14,MS15c] and the equivalence of Brownian and
√
8/3-LQG surfaces),

so it may be possible to solve Problem 5.4 using the relationship between SLE6 and
Brownian motion. An alternative approach to Problem 5.4 is via Theorem 1.1. Indeed,
we know that the complementary connected components of a metric ball on the Brow-
nian map are Brownian disks conditional on their boundary lengths [MS15a,LG19].
Moreover, a Poisson–Voronoi cell is determined by the metric ball centered at its center
point whose radius equals twice the distance from the center point to the boundary of
the cell, together with the points of the Poisson point process which intersect this ball.
It is possible that one could apply this property at the cells hit by the walk to solve
Problem 5.4.

Problem 5.4 might have some relevance to Problem 5.1. Indeed, if one can show that
Brownianmotion on theBrownianmap is uniquely characterized by theMarkov property
of Problem 5.4 together with the law of the boundary lengths of the complementary
connected components, then potentially this could be used to identify a subsequential
scaling limit of random walk on random planar maps (one would also have to establish
tightness). A similar strategy is used to prove the convergence of percolation on random
planar maps to SLE6 in [GM17a].

Theorem 1.1 together with the result of Yadin and Yehudayoff [YY11] allow us to
give an intrinsic definition of SLE2 on a Brownian surface as the limit of the loop-erased
random walk on Poisson–Voronoi tessellations.

Problem 5.5. Does the perspective of this paper lead to any insights about SLE2 on a
Brownian surface (concerning, e.g., the law of the surface parameterized by its comple-
ment or its relationship to random planar maps)?

Problem 5.5 would be very interesting to solve since currently very little is known
about the behavior of SLEκ curves on a γ -LQG surface for κ /∈ {γ 2, 16/γ 2}.

“Appendix A” includes several basic properties of Voronoi cells which are needed
in the proofs of our main results. However, there are many questions about such cells
which have not been answered, for example the following.

Problem 5.6. Is the boundary of a Voronoi cell a.s. given by the union of finitely many
disjoint simple curves? What is the Hausdorff dimension of this boundary (with respect
to the Euclidean or

√
8/3-LQGmetric)? Is the collection of Voronoi cell boundaries a.s.

conformally removable?

The simulation in Fig. 1 seems to suggest that the answer to the first part of Prob-
lem 5.6 is affirmative. Although we will not explain this in detail here, we expect that
the Hausdorff dimension w.r.t. the

√
8/3-LQG metric should be 2. (Roughly speaking,

this is because one expects that on a Brownian surface, the set of points equidistant to
generic points z1 and z2 should be a curve that has the same local structure as a branch of
the dual of the tree of geodesics drawn toward a fixed root.) We do not have a conjecture
for the Euclidean Hausdorff dimension of the cell boundaries.
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A. Basic Properties of Voronoi Cells

In this section we will prove a number of a.s. properties of Voronoi cells which are
intuitively obvious from, e.g., the simulations (see Fig. 1). In particular, wewill show that
such cells are connected (LemmaA.2), they are compact and locally finite (LemmaA.4),
and their boundaries have zero LQGmeasure and zero Lebesgue measure (Lemmas A.5,
A.6). Throughout, we will consider the setup described at the beginning of Sect. 3, so
that for a GFF-type distribution h and λ > 0, Pλ

h andHλ
h denote the associated Poisson

point process and collection of Voronoi cells, respectively. The arguments in this section
do not use any of the results of Sects. 3 and 4, so can be read independently of those
sections.

Remark A.1. We will often consider the Voronoi tessellationsHλ
h for fields h for which

there is a choice in the way that the additive constant is fixed. Different choices scale
μh , and hence the intensity measure for Pλ

h , by a constant factor. However, for any fixed
choice of additive constant for h, the conditional law of Pλ

h given h is well-defined.
Furthermore, if μh is a.s. finite and we condition on h and the event {#Pλ

h = n} for
n ∈ N, then the conditional law of Pλ

h is that of a collection of n i.i.d. samples from μh ,
so this conditional law does not depend on the choice of additive constant for h (or on λ).
If μh is only locally finite, one can apply the preceding sentence with h replaced by its
restriction to a compact set. As a particular consequence of this, the a.s. statements for
Voronoi cells which we consider in this section do not depend on the choice of additive
constant, so we will not specify it.

We start with the following elementary deterministic fact.

Lemma A.2. Suppose h is a whole-plane GFF. For each z ∈ Pλ
h and each u in the

corresponding cell Hz (resp. each u in the interior of Hz), each Dh-geodesic from z
to u is contained in Hz (resp. the interior of Hz). In particular, Hz and its interior are
both connected. The same is true with h replaced by a free-boundary GFF on a Jordan
domain or an embedding of a quantum cone, sphere, disk, or wedge.

Proof. Suppose z ∈ Pλ
h and u ∈ Hz (resp. u is in the interior of Hz). Let γu,z be a

Dh-geodesic from u to z. If γu,z were not contained in Hz (resp. its interior), then there
would be a t ∈ [0, Dh(u, z)] and a z′ ∈ Pλ

h , z
′ �= z, such that γu,z(t) is strictly (resp.

weakly) Dh-closer to z′ than to z. This implies that u is strictly (resp. weakly) Dh-closer
to z′ than to z, which contradicts that u ∈ Hz (resp. u is in the interior of Hz). ��
Lemma A.3. Suppose h is a whole-plane GFF. For each compact set K ⊂ C,

sup
H∈Hλ

h , H∩K �=∅
sup

z,w∈H
Dh(z, w) → 0, in law as λ → ∞. (A.1)

The same is true with h replaced by a free-boundary GFF on a Jordan domain or an
embedding of a quantum cone, sphere, disk, or wedge. In the case of a free-boundary
GFF or a quantum sphere or wedge, the compact set K is only required to lie in the
closure of the domain for h.
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Proof. For each ε > 0, a.s. K can be covered by finitely many Dh-balls of radius at
most ε and each of these balls has positive μh-mass. The conditional probability given
h that each such ball contains a point of Pλ

h tends to 1 as λ → ∞. On this event, each
cell which intersects K has Dh-diameter at most 2ε. ��
Lemma A.4. Suppose h is a whole-plane GFF and λ > 0. Almost surely, each cell
in Hλ

h has non-empty interior and is compact. Furthermore, a.s. each compact subset
of C intersects only finitely many cells of Hλ

h. The same is true with h replaced by a
free-boundary GFF on a Jordan domain or an embedding of a quantum cone, sphere,
disk, or wedge.

The proof may seem harder than the reader expects. This is because we need to rule
out cells which have extremely long (perhaps even infinitely long) “tentacles” which
could make the cell unbounded or cause the cell to intersect a compact set very far from
its center point (which may cause difficulties with local finiteness). This requires some
basic control on how “spread out” the points of Hλ

h can be. We will prove much more
quantitative estimates for cells in Sect. 4.

Proof of Lemma A.4. Since μh is a.s. a locally finite measure, a.s. we can find a Dh-ball
centered at any given point of Pλ

h which does not contain any other points of Pλ
h . Since

Dh induces the Euclidean topology on the domain of h a.s. each Dh-ball contains a
Euclidean neighborhood of its center point. Hence a.s. every cell in Hλ

h has non-empty
interior. By the continuity of (z, w) �→ Dh(z, w)with respect to the Euclidean topology
(which follows from the fact that Dh induces the Euclidean topology on its domain), we
see that the cells of Hλ

h are a.s. closed.
We will now argue that a.s. all of the cells of Hλ

h are bounded and that a.s. each
compact subset of C intersects only finitely many cells of Hλ

h in the case when h is a
whole-plane GFF normalized so that its circle average over ∂D is zero. We first claim
that a.s. for each large enough k ∈ N, there is a point of Pλ

h in B2k (0)\B2k−1(0). To
see this, we first observe that by standard estimates for the

√
8/3-LQG measure [DS11,

Lemma 4.6], the LQG coordinate change formula, and the fact that h(2k ·)−h2k (0)
d= h,

it holds except an event of probability decaying faster than any power of 2−k that

μh
(
B2k (0)\B2k−1(0)

) ≥ 2

(
Q

√
8/3− 1

100

)
k
e
√
8/3h2k (0).

Since t �→ het (0) evolves as a standard linear Brownian motion [DS11, Section 3.1], by
the Borel–Cantelli lemma it follows that a.s.μh

(
B2k (0)\B2k−1(0)

)
grows exponentially

in k as k → ∞. Since Pλ
h is a Poisson point process with intensity measure λμh , our

claim now follows.
For k ∈ N, let Ek be the event that

(
max

z,w∈B2k (0)\B2k−1 (0)
Dh(z, w)

)
∨
(

max
z,w∈B2k−2 (0)\B2k−3 (0)

Dh(z, w)

)

< Dh
(
∂B2k−1(0), ∂B2k−2(0)

) ∧ Dh
(
∂B2k−3(0), ∂B2k−4(0)

)

i.e., the Dh-diameters of the two dyadic annuli on either side of B2k−1(0)\B2k−2(0) are
each strictly smaller than the Dh-distance across this annulus and the Dh-distance across
∂B2k−3(0)\B2k−4(0). We claim that a.s. Ek occurs for arbitrarily large values of k ∈ N. It
is easily seen from the local absolute continuity properties of theGFF (see, e.g., [GM16b,
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Lemma 4.2]) that P[E1] > 0. By the scale invariance of the law of h, viewed modulo
additive constant, we see that there is a universal constant p > 0 such that P[Ek] ≥ p
for each k ∈ N. The event Ek is determined by h|C\B2k−2 (0), so since the tail σ -algebra⋂

r>0 σ
(
h|C\B2k−2 (0)

)
is trivial (see, e.g., [HS18, Lemma 2.2]), we obtain our claim.

Combining the preceding two paragraphs shows that a.s. there exists arbitrarily large
values of k ∈ N for which Ek occurs and B2k (0)\B2k−1(0) and B2k−2(0)\B2k−3(0) each
contain a point of Pλ

h . If k is one of these values, then each point of C\B2k−1(0) is Dh-
closer to one of the points ofPλ

h in B2k (0)\B2k−1(0) than it is to any point of B2k−2(0), so
cannot be contained in a cell centered at a point of B2k−2(0). Hence every cell centered
at a point of B2k−2(0) is contained in B2k−1(0), so in particular is bounded. Furthermore,
each point of B2k−2(0) is Dh-closer to a point of Pλ

h which is in B2k−2(0)\B2k−3(0) than
it is to any point of C\B2k−1(0). Hence each cell which intersects B2k−2(0) must be
centered at a point in B2k−2(0). Since μh(B2k−2(0)) < ∞, a.s. B2k−2(0) contains at most
finitely many points of Pλ

h , so B2k−3(0) intersects only finitely many cells ofHλ
h . Since

this happens for arbitrarily large values of k, we conclude the proof in the case of the
whole-plane GFF.

The case when h is a quantum cone or a quantum wedge can be deduced from the
case of a whole-plane GFF using local absolute continuity, or alternatively be treated
similarly to the case of a whole-plane GFF using the radii Rb of (2.8) with b = 2k and
the relation (2.9). ��

From basic properties of the Brownian disk, we get the following.

Lemma A.5. Suppose h is a whole-plane GFF (with some choice of additive constant).
Almost surely, the boundary of each of the cells inHλ

h has zero
√
8/3-LQG areameasure.

In fact, it is a.s. the case that for any z, w ∈ Pλ
h , the set of u ∈ C for which Dh(u, z) =

Dh(u, w) has zero
√
8/3-LQG measure. The same is true with h replaced by a free-

boundary GFF on a Jordan domain or an embedding of a quantum cone, sphere, disk,
or wedge.

Proof. Wewill prove the lemma in the case of the quantumdisk. The general case follows
from this and the local absolute continuity of the fields mentioned in the lemma with
respect to an embedding of the quantum disk (this local absolute continuity holds away
from the boundary of the domain in the case of thewhole-planeGFF or the quantum cone
or sphere and up the domain boundary in the case of a free-boundary GFF or quantum
wedge). Since the quantum disk is equivalent to the Brownian disk, general Brownian
disk theory shows that if v is sampled uniformly from μh , then a.s. for each r > 0 one
has μh(∂Br (v; Dh)) = 0: indeed, this follows, e.g., from the fact that the set of times
for which the head of the Brownian snake takes any particular value r > 0 has zero
Lebesgue measure. SincePλ

h is a Poisson point process with intensity measure λμh , this
shows that the probability that two points of Pλ

h lie on the boundary of the same Dh-ball
centered at v is zero. That is, the probability that Dh(u, v) = Dh(u, w) is zero. Since v

is sampled uniformly from μh , the statement of the lemma follows. ��
We next check that cell boundaries have zero Lebesgue measure. The basic idea of

the proof is as follows. If φ is a smooth bump function and a ∈ R, then the laws of h+aφ

and h are mutually absolutely continuous. Furthermore, a certain “good” generic event
for h + aφ occurs for Lebesgue-a.e. choice of a. By taking a to be random according to
a distribution with a density with respect to Lebesgue measure (e.g., sampled from the
standard Gaussian distribution) this implies that the desired generic behavior holds with
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probability 1, which will then allow us to conclude that the cells have zero Lebesgue
measure. Similar arguments can be used to obtain that cells of Hλ a.s. have “generic”
behavior in certain senses. Some results to this affect appeared in an earlier arXiv version
of this paper.

Lemma A.6. Suppose h is a whole-plane GFF (with some choice of additive constant).
Almost surely, the boundary of each of the cells inHλ

h has zero Lebesguemeasure. In fact,
it is a.s. the case that for any z, w ∈ Pλ

h , the set of u ∈ C for which Dh(u, z) = Dh(u, w)

has zero Lebesgue measure. The same is true with h replaced by a free-boundary GFF
on a Jordan domain or an embedding of a quantum cone, sphere, disk, or wedge.

Proof. We will prove the lemma in the case when h is a free-boundary GFF onD. This
implies the lemma in general by local absolute continuity. Note that the lemma statement
does not depend on the choice of additive constant for h by Remark A.1 and since adding
a constant to h scales Dh by a constant factor. If we condition on h and the total number
of points in Pλ

h , then the elements of Pλ
h are i.i.d. samples from μh , normalized to be

a probability measure. It therefore suffices to show that if z, w ∈ D are independent
samples from μh , normalized to be a probability measure, then a.s. the set of u ∈ D
with Dh(u, z) = Dh(u, w) has zero Lebesgue measure. For this purpose, it suffices to
show that for any fixed u ∈ D, we have P[Dh(u, z) = Dh(u, w)] = 0.
Step 1: reducing to an event with deterministic sets. Henceforth fix u ∈ D and for open
sets V ⊂ V ′ ⊂ D with V ⊂ V ′ and V

′ �= D, let Eh = Eh(u, V, V ′) be the event that
the following is true.

1. z ∈ V and Dh(u, z) = Dh(u, w).
2. There is a Dh-geodesic from w to u which does not enter V

′
.

Since Dh-geodesics have zeroμh-mass, the probability that every Dh-geodesic from z to
u passes throughw is zero, and the same is truewith z andw interchanged. Consequently,
on the event {Dh(u, z) = Dh(u, w)} there a.s. exists deterministic open sets V ⊂ V ′ ⊂
D with V ⊂ V ′ such that Eh(u, V, V ′) occurs, and we can take V and V ′ to be finite
unions of Euclidean balls with rational centers and radii.

It therefore suffices to show that for any fixed deterministic choice of V and V ′ as
above, one hasP[Eh] = 0. Henceforth fix such a deterministic choice of V and V ′. Since
adding a constant to h does not effect the occurrence of the event Eh , we can assume
without loss of generality that the additive constant for h is fixed so that μh(U ) = 0 for
some deterministic open set U ⊂ C which is disjoint from V

′
.

Step 2: randomly perturbing the field.Consider a smooth bump function φ : D → [0, 1]
with φ|V ≡ 1 and φ|D\V ′ ≡ 0. For a ∈ R, the laws of the fields h + aφ and h are
mutually absolutely continuous (this follows from, e.g., [MS16c, Lemma 3.4] and the
fact that φ|U ≡ 0, so adding aφ does not affect the choice of normalization for the
field). It follows from this that the joint laws of (h, z, w) and (h +aφ, z, w) are mutually
absolutely continuous. We emphasize that this still holds even though we are always
sampling z and w from μh , rather than from μh+aφ , since adding a smooth function to
h results in an LQG measure which is absolutely continuous with respect to μh .

Let Eh+aφ be defined in the same manner as above but with (Dh+aφ, z, w) in place of
(Dh, z, w). Also let A be a standard Gaussian random variable, independent from every-
thing else. The laws of (h + Aφ, z, w) and (h, z, w) are mutually absolutely continuous,
so it suffices to show that P[Eh+Aφ] = 0. For this purpose, it is enough to show that if
Eh+aφ occurs for some a ∈ R, then Eh+bφ does not occur for any b ∈ R\{a} (since this
implies that P[Eh+Aφ |(h, z, w)] = 0).
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Let us therefore suppose that Eh+aφ occurs and b �= a. We seek to show that Eh+bφ
does not occur, so we can assume that all of the conditions in the definition of Eh+bφ
occur except possibly for the condition that Dh+bφ(u, z) = Dh+bφ(u, w). We seek to
show that Dh+bφ(u, z) �= Dh+bφ(u, w). Since there is a Dh+aφ-geodesic and a Dh+bφ-

geodesic from w to u which do not enter V
′
and φ is supported on V

′
, we see that

Dh+aφ(u, w) = Dh+bφ(u, w). On the other hand, since z ∈ V Lemma 2.3 implies that
Dh+aφ(u, z) < Dh+bφ(u, z) if b > a, and one has the reverse inequality if b < a. This
shows that Dh+bφ(u, z) �= Dh+bφ(u, w), as required. ��
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