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A Compendium of Genetic Drivers for Oesophageal 
Adenocarcinoma defines Prognostic and Therapeutic 

Biomarkers for use in the Clinic 
 
 

 
Mr. Alexander M Frankell 

 
Background: Oesophageal adenocarcinoma (OAC) is a poor-prognosis cancer type with 

rapidly rising incidence. Understanding of the genetic events driving OAC development is 

limited, and there are few molecular biomarkers for prognostication or therapeutics. This 

study aimed to use a large cohort of genomically characterised OACs to determine the 

landscape of genetic driver events in OAC and their possible clinic uses.  

Methods: We have collated a cohort of 551 genomically characterized OACs (398 whole 

genome sequenced and 153 whole exome sequenced) with a sub-cohort matched to RNA 

sequencing data (116 cases). Strelka, Manta and ASCAT were used to call SNVs and indels, 

structural variants and copy number aberrations respectively. A suite of published tools was 

used to detect regions of the genome under positive selection for mutations in OAC including 

dNdScv, Mutsigcv, OncodriveFM and others. Copy number drivers were identified using 

GISTIC and correlations with matched expression data. Univariate and Multivariate cox 

regressions were used to identify prognostic biomarkers. Treatment of In vitro cultures of 

human OAC cell lines and organoids with a range of targeted therapeutics was used to 

calculate AUCs and GI50s for various drugs in OAC models. These sensitivities were matched 

to the genomic background in these cell lines, provided by whole genome sequencing.  
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Results: We discovered 77 putative OAC driver genes and 21 putative noncoding driver 

elements for OAC. We identified a mean of 4.4 driver events per tumour, which were derived 

more commonly from mutations than copy number alterations and compared the prevalence 

of these mutations to the exome-wide mutational excess calculated using non-synonymous 

to synonymous mutation ratios (dN/dS). We observed mutual exclusivity or co-occurrence of 

events within and between several dysregulated OAC pathways, a result suggestive of strong 

functional relationships. Indicators of poor prognosis (SMAD4 and GATA4) were verified in 

independent cohorts with significant predictive value. Over 50% of OACs contained 

sensitizing events for CDK4 and CDK6 inhibitors, which were highly correlated with clinically 

relevant sensitivity in a panel of OAC cell lines and organoids. In a smaller panel of OACs we 

also saw evidence for specificity of BET inhibitor efficacy to MYC amplified OACs, however did 

not observe responses to EZH2 inhibitors, designed to target SWI/SNF mutated cancers, even 

upon induction of these mutations using CRISPR-Cas9. 

Discussion: We have complied the most comprehensive analysis to date of positively selected 

genomic elements in OAC, significantly improving upon previous analyses. We use this to 

identify prognostic and therapeutic biomarkers with considerable potential clinical value.   

Limitation to this study include a lack of RNA sequencing on all samples, making it difficult to 

assess selection for low-frequency copy number events. Future directions include functional 

investigation of many of the novel driver genes identified and prospective validation of 

clinical biomarkers in the Oelixir trial, including use of CDK4/6 inhibitors in OAC patients.  
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Abstract 
 
Background: Oesophageal adenocarcinoma (OAC) is a poor-prognosis cancer type with 

rapidly rising incidence. Understanding of the genetic events driving OAC development is 

limited, and there are few molecular biomarkers for prognostication or therapeutics. This 

study aimed to use a large cohort of genomically characterised OACs to determine the 

landscape of genetic driver events in OAC and their possible clinic uses.  

Methods: We have collated a cohort of 551 genomically characterized OACs (398 whole 

genome sequenced and 153 whole exome sequenced) with a sub-cohort matched to RNA 

sequencing data (116 cases). Strelka, Manta and ASCAT were used to call SNVs and indels, 

structural variants and copy number aberrations respectively. A suite of published tools was 

used to detect regions of the genome under positive selection for mutations in OAC including 

dNdScv, Mutsigcv, OncodriveFM and others. Copy number drivers were identified using 

GISTIC and correlations with matched expression data. Univariate and Multivariate cox 

regressions were used to identify prognostic biomarkers. Treatment of In vitro cultures of 

human OAC cell lines and organoids with a range of targeted therapeutics was used to 

calculate AUCs and GI50s for various drugs in OAC models. These sensitivities were matched 

to the genomic background in these cell lines, provided by whole genome sequencing.  

Results: We discovered 77 putative OAC driver genes and 21 putative noncoding driver 

elements for OAC. We identified a mean of 4.4 driver events per tumour, which were derived 

more commonly from mutations than copy number alterations and compared the prevalence 

of these mutations to the exome-wide mutational excess calculated using non-synonymous 
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to synonymous mutation ratios (dN/dS). We observed mutual exclusivity or co-occurrence of 

events within and between several dysregulated OAC pathways, a result suggestive of strong 

functional relationships. Indicators of poor prognosis (SMAD4 and GATA4) were verified in 

independent cohorts with significant predictive value. Over 50% of OACs contained 

sensitizing events for CDK4 and CDK6 inhibitors, which were highly correlated with clinically 

relevant sensitivity in a panel of OAC cell lines and organoids. In a smaller panel of OACs we 

also saw evidence for specificity of BET inhibitor efficacy to MYC amplified OACs, however did 

not observe responses to EZH2 inhibitors, designed to target SWI/SNF mutated cancers, even 

upon induction of these mutations using CRISPR-Cas9. 

Discussion: We have complied the most comprehensive analysis to date of positively selected 

genomic elements in OAC, significantly improving upon previous analyses. We use this to 

identify prognostic and therapeutic biomarkers with considerable potential clinical value.   

Limitation to this study include a lack of RNA sequencing on all samples, making it difficult to 

assess selection for low-frequency copy number events. Future directions include functional 

investigation of many of the novel driver genes identified and prospective validation of 

clinical biomarkers in the Oelixir trial, including use of CDK4/6 inhibitors in OAC patients.  
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Introduction 
 
 
 
Principals of cancer evolution 
 

Cancer is an acquired genetic disease, as described in the somatic mutation theory, whereby 

gain of genetic alterations in tumour-suppressor or oncogenes leads to tumour development 

and contributes to the cancer phenotype, summarised famously in the ‘Hallmarks of Cancer’ 

Cell papers1,2. As a tumour expands from an initiating cell, genetic alterations become 

heterogeneous as new mutations are gained in different daughter cells. These daughter cells 

grow to become distinct clones and are subject to Darwinian selection as the population 

expands. Positive selection occurs in clones with a proliferative advantage over their 

neighbours due to gain of additional oncogenic gene aberrations, referred to as “drivers”, 

and such clones may come to dominate the tumour in a selective sweep. As this happens, 

heterogeneity and further selection occurs within this clone itself and additional oncogenic 

genetic aberrations are accrued. As well as driver mutations these positively selected clones 

will stochastically carry other genetic alterations, not involved in carcinogenesis, which we 

call “passengers”. Cells or clones with alterations deleterious to cell growth may also be 

negatively selected and removed from the population3. The number of selective sweeps and 

the strength of either positive or negative selection is the subject of considerable debate and 

seems to vary considerably between different tumour types4,5,6,7,8. In particular some 

investigators in the field have questioned the frequency of neutral evolution after the most 

recent common ancestor (i.e. within intra-tumour heterogeneity)5,7. Once a tumour is large 

enough to be detected clinically we can capture the heterogeneity which has accrued since 

the last selective sweep using clonal deconvolution of genome sequencing data from single 
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samples and from multi-region sampling across the tumour9,10. We can also decipher the 

ordering of mutations before the last selective sweep using clock-like mutational signatures 

and duplicated mutations at copy number amplification events11. This evolutionary process is 

thought to occur over a number of decades and in some tumours may commonly initiate in 

childhood despite being usually detected >50 years later12. Although all tumours seem to 

undergo this process of evolution to a greater or lesser extent, the events which are accrued 

in this process vary very significantly. Some tumours, such as acute myeloid leukaemia, seem 

to be highly dependent on single events such as gene fusions but do not accrue many other 

mutations at all, whereas many carcinomas will accrue a very large number of point 

mutations and structural events through the genome13. Carcinomas seem to be classifiable 

on a continuum between two classes depending on the types of alterations which they tend 

to accrue14. Some tumours seem to accumulate large numbers of structural changes but 

have relatively few recurrently mutated genes (i.e. genes under strong selection for single 

nucleotide variants (SNVs) and small insertions and deletions (Indels) – C class tumours) 

whereas for others the converse is the case (M class tumours). Tumours from particular 

tissues seem prone towards M or C classes, although there is still considerable heterogeneity 

within cancer types in this regard, for instance colorectal carcinomas are mostly M class 

tumours whereas ovarian carcinomas are usually C class. These classes also correlate with 

specific positively selected events such as TP53 mutations in C class tumours. These 

differences may be due to exposure to different types of mutagens at different anatomical 

locations, differences in epigenetic modifications in the cell of origin or specifically selected 

genetic events which may enable cells to tolerate different types of further mutation. Not 

only does the overall landscape of genetic alterations differ between tumours but specifically 

the events under strong positive selection also seem to vary greatly between and within 
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tumour types13. Events which are selected in almost every case in a given cancer type do 

occur (KRAS mutations in Pancreatic, TP53 mutations in ovarian for instance) but are the 

exception rather than the rule. Most driver alterations discovered thus far occur in less than 

10% of any given tumour type and form what is known as a ‘long tail’ distribution of driver 

genes mutated in only a small fraction of cases. This heterogeneity poses considerable 

challenges when distinguishing which genetic alterations have been selected for during 

cancer evolution.  

 

 

Detecting positive selection in cancer genomes 
 

Principals and coding mutations 

To understand the pathogenesis of a particular tumour it is important to determine 

which genetic aberrations have been positively selected through evolution, to differentiate 

its malignant cells from the normal cells from which they derived. Various methodologies 

exist to define driver mutations, but they all rely on the same underlying principal that across 

of large cohort of tumours, genes (or other regions of the genome) will appear more 

frequently mutated than otherwise expected if under positive selection. More precisely these 

mutations will be more clonal, more often, than we expect by chance given the positive 

selection and clonal expansion which they undergo. Hence these more clonal alterations will 

be more easily detected in our sequencing data. Luckily, most genes contain detectable 

variants in a very low frequency of cases by chance i.e. their background mutation rate is low, 

usually <1% of tumours, and hence we can differentiate genes which contain at least some 
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driver variants by looking for those which contain a significantly higher number of mutations 

than this expectation. However, this presents two significant challenges to overcome. The 

first is that to detect such an enrichment requires grouping of mutations, usually into those 

that fall in specific areas of the genome such as genes or other genetic elements, as this gives 

us information about how they may affect oncogenesis. However, there are an extremely 

large number of these elements in the genome (>20,000 genes and >100,000 other 

regulatory elements) making it only possible to detect very significant differences due to the 

high false discovery rate associated with such a large number of hypotheses. To detect 

significant differences a large number of cases is therefore required to increase statistical 

power, however even the largest cohorts in individual cancer types are mostly <1000 cases, 

significantly less than the number of genomic elements to be tested. The second significant 

challenge is accurately modelling the expected mutation rate against which the observed 

mutation rate is to be compared. The mutation rate is highly uneven across the genome, as is 

our ability to detect the true variants that occur. Much of the recent progress in the driver 

mutation detection field has come from discovering and accounting for the genomic features 

which modulate this background rate. The seminal paper in this regard was published in 

201315 and showed that replication timing, i.e. the time taken for a region of the genomic to 

replicate in S phase given its concentration of replication origins, transcriptional expression 

and chromatin organisation collectively determine a reasonable percentage of the variability 

in mutation rate across the genome. By taking these covariates into account several 

previously detected putative driver genes such as TTN (Titin) or Olfactory receptors, without 

likely involvement in cancer, are no longer found to be significantly mutated. An additional 

important contribution to the variation between background mutation rate in genes was the 
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trinucleotide context in which a mutation occurred. Certain trinucleotide contexts are more 

mutable due to preferences of specific endogenous or exogenous mutagens (these 

phenomena are known as “mutational signatures”) and hence you can more accurately 

model the expected mutation rate given the mutational context of the observed mutations4. 

Beyond these and other16  general determinants of background mutation rate, we can use 

the observed rate of mutations which we expect to be under no or relatively little selection, 

to more effectively model the expected rate of the other mutations where strong selection 

may be acting. There are two ways of identifying such neutral mutations, the first is by using 

mutations in coding regions which do not alter the coding sequence of the specified gene 

due to codon redundancy (synonymous mutations) and the second is using functional impact 

scores based on evolutionary sequence conversation or mutation types to determine which 

mutations are likely to have the least impact on the function of the gene. The first using 

synonymous mutations is the most commonly used, although it is only possible for coding 

regions of the genome, and allows us to adjust the background model of mutation rate based 

on the other mutation rate covariates we have discussed4. The second is used to assess 

genes for an enrichment of high impact vs low impact mutations, essentially modelling the 

expected number of high impact mutations, more likely to be under selection, based on the 

number of low impact mutations17. The impact of a mutation can be estimated using either 

the type of mutation (e.g. truncating or non-truncating) or the conservation of the altered 

amino acid across species. The final commonly used tool to help us in determining which 

mutations drive a particular tumour is to change the scale at which mutations are tested18. By 

looking more specifically at smaller regions of genes or even single amino acids we massively 

decrease the expected mutation rate, however selection often focuses on specific regions or 
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amino acids to dysregulate oncogenes in a specific manner. Methods of detecting mutational 

‘hotspots’ in genes can therefore be more sensitive to such oncogenes however less sensitive 

to genes in which driver mutations are spread evenly across the primary sequence, as is 

common in tumour suppressors, hence are complementary to previously described methods. 

However seemingly false positive hotspots can be common in highly powered datasets as this 

method is also more sensitive to occasions when factors unknown and not yet accounted for 

affect the background mutation rate, particular in non-coding regions. Hence hotspot 

methods have been excluded from non-coding analysis in recent multi-tool studies19. 

Collectively these various methods have been successfully employed on large data sets and 

confidently identify functionally validated driver mutations19,20.  

 

 
Structural variation 

 

The field of detecting driver alterations in other mutation types such as structural 

variants or copy number alterations (CNAs) is not as advanced. This is partly due to the 

nature of these events which make them more difficult to interrogate. Firstly, they are 

relatively rare in comparison to small mutations across the genome, although each individual 

event can affect many more genes, weakening our statistical power. Secondly, we have a 

poor understanding of the neutral mutational processes that lead to CNAs, making it difficult 

to build an accurate background model against which we could test the observed data. This is 

partly because it difficult to define a set of definitely neutral CNAs from which we could build 

such models. Finally, because CNAs arise across large regions of the genome it can be difficult 
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to define exactly which genes within copy number amplified or deleted regions provide the 

selective advantage to the cell upon dysregulation. Despite these limitations, recurrently 

amplified or deleted regions of the genome can be detected by deconvolving the copy 

number distribution of each tumour into a series of amplification and deletion events, then 

looking for regions of the genome in which these events are enriched21. This can identify very 

specific regions containing a clear canonical oncogene (e.g. ERBB2 or KRAS) but also identifies 

quite large regions as discussed, regions without clear drivers and regions which are 

recurrently copy number aberrant due to non-selection based mechanisms (e.g. fragile 

sites)19,22. Additional disruption at the RNA level is a sensitive marker for driver genes in CNAs 

however it is not very specific as expression modulation can also occur in passengers. 

Defining driver gene CNAs, has then ultimately relied on extracting known, canonical, CNA 

cancer genes from these regions or on thorough functional validation in vivo. This has limited 

our ability to discover novel CNA driver genes which have fallen significantly behind 

mutational drivers in recent years as shown by the relatively small number of CNA drivers 

currently in the cosmic cancer gene consensus23. CNAs are detected by calculating the Log 

ratio of coverage between tumour and normal (Log R) and the relative contribution of 

heterozygous SNPs (i.e. the maternal and paternal alleles) to this coverage (B-allele 

frequencies) which both shift distinctly in areas of the genome undergoing CNAs. However, 

these methods can miss small or allele specific balanced rearrangements and do not indicate 

the relative positions of variant segments of the genome, only their sequence original 

position in the reference to which they are aligned24. We can use paired end sequencing to 

define when two genomic regions have been brought together through a structural variant 

(SV) given that we know the expected fragment size in the prepared library. Hence, reads 
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that align to the reference genome a significantly different distance apart to the expected 

library fragment size, or in the incorrect orientation, must have been formed through 

structural variation25. We can precisely define the breakpoint point position in the genome by 

recovering split reads, covering the exact breakpoint, from the alignment procedure where 

both ends of a read can be correctly aligned to separate regions of the reference genome. 

This provides different opportunities to define positively selected structural variants beyond 

CNAs. This is a relatively new field because of the requirement for large whole genome 

sequenced data sets but the most recent work published by the PCAWG (Pan-Cancer Analysis 

of Whole Genomes)26 consortium takes two approaches. In the first, recurrent SVs that form 

clusters in the genome are defined across the genome and corrected for SV mutation rate 

covariates in a similar manner for small scale mutations defining genes falling into these 

clusters as possible SV drivers. In the second, instances where two regions of the genome are 

recurrently brought together though a structural variant, for example fusion genes in coding 

regions, are defined. There are several difficulties in this new field of investigation, first is a 

lack of known true positive genes that are selectively dysregulated specifically by SVs rather 

than simply CNAs, hence assessing the quality of output for these methods is difficult and 

secondly our understanding of the background mutational processes which govern the 

expected distribution of these events is also not as well studied. There are not, as yet, any 

well-established computational tools for detection of SV drivers.  
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Non-coding mutations 

 

Another field of driver gene detection which has emerged recently, also dependent 

on availability of large whole genome sequenced cancer cohorts, is detection of driver 

mutations in non-coding regions of the genome. This is associated with a number of 

challenges not presented by analysis of the exome. Firstly, non-coding elements are far more 

difficult to define given the unknown functionality of many putitive non-coding elements and 

their boundaries are often defined arbitrarily. The number of possible non-coding elements 

to assess is also high (greater than 100,000) presenting an even greater requirement for 

multiple hypothesis correction, and a weakening of statistical power, than with exonic genes 

alone. Most elements are also significantly smaller than genes, limiting the number of 

observations and again statistical power. Some regions of the non-coding genome sequence 

poorly, particularly promoters which are GC rich19 and given that wholes genomes are usually 

sequenced at a low depth (often 50X) this can prevent calling of even clonal homozygous 

mutations in low cellularity tumours. An additional complication is that many of the markers 

used to model expected mutation rate use codon structure to define neutral or low impact 

mutations (i.e. synonymous mutations or non-truncating mutations) which are hence 

unavailable to us in the non-coding genome. The PCAWG consortium however has used a 

suite of tools to assess positive selection in the non-coding genome19, calculating expected 

background mutation rate in a similar manner as discussed with coding genes. They have 

found a disappointing lack of strong signals for positive selection outside the previously 

established TERT promoter, in comparison to coding regions, however a number of 
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previously unidentified non-coding driver elements were identified and 50% of the analysed 

tumours contained at least 1 non-coding driver mutation.  
 
 
 
 
 
Oesophageal adenocarcinoma 
 
 

Oesophageal carcinoma is the eighth most common cancer type in the world and the sixth 

leading cause of cancer death. Oesophageal adenocarcinoma (OAC) is the most common 

oesophageal cancer subtype in the western world and its incidence has been rapidly rising 

over the past four decades27. This cancer is highly aggressive with the majority of patients 

surviving less than 1 year after diagnosis27. The pre-malignant lesion of OAC, Barrett’s 

Oesophagus (BO), is common but rarely progresses to an invasive lesion28. A greater 

understanding of OAC evolution from BO will be vital to both predict progression and treat 

patient afflicted with this condition.  

 
 
 
Pathology and Aetiology  

 
 
Oesophageal adenocarcinomas arise in and above the gastroesophageal junction (GOJ) at the 

lower end of the oesophagus and comprise histologically columnar rather than squamous 

cells, which would normally be found in the oesophagus. Such cancers seem to derive from 

lesions of BO metaplasia which consist of columnar cells which usually also contain intestinal 

metaplasia (IM) where crypts contain goblet cells, resembling intestinal epithelium are 
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found29. BO development is strongly associated with gastro-oesophageal reflux disease 

(GORD), which may contribute to the proliferation of columnar cells above the GOJ via 

inducing cell death and inflammation of the native squamous epithelium30. OAC is 

predisposed not only by GORD but also by central adiposity and male sex and is associated 

modestly with Tobacco smoking29. The origin of BO columnar cells, and hence OAC, is the 

subject of intense debate. The best supported theories include expansion of a sub-population 

of Keratin 7 positive cells at the squamo-columnar junction, which is supported strongly by 

mouse models31, and expansion of cells in the submucosal glands embedded at the distal end 

of the squamous esophagus, which supported by pathological and genetic evidence in 

humans32. The cells that form BO appear to have acid-resistant properties which enable them 

to dominate the distal esophagus in the context of GORD30.  

The transition from BO to OAC involves, at least in many cases, a series of dysplastic 

transitions. Dysplasia refers to an increase in histological disorganization of a tissue, in this 

case BO epithelium, including, but not exclusive to, loss of apical-basal polarity, changes in 

nuclear morphology and increases in cell volume33. BO can progress through low-grade 

dysplasia (LGD), the histological diagnosis of which is often inconsistent among pathologists, 

to high-grade dysplasia (HGD) which strongly predisposes to OAC development. Clinical 

intervention to remove such cells now occurs once dysplasia (low or high grade) develops 

given the significant risk of progression34. Despite this well-defined route of clinical 

progression and the opportunities for clinical intervention most OACs are diagnosed not only 

as malignant lesions, but at an advanced stage (78% are nodal positive at presentation35). 

This is due to our inability to capture all BO cases, estimated to occur in 5.6% of the US 

population36, and to properly risk stratify BO cases without dysplasia, given their low rate of 

overall progression (0.3% per year37). Minimally invasive screening devices such as the 
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CytospongeTM 38 along with molecular stratification biomarkers39 may allow a reduction in the 

number of late stage diagnoses and increased survival rates in OAC. However, more effective 

stratification may require a greater understanding of the molecular determinants of BO 

progression to OAC. More effective therapeutic strategies are also required to improve 

survival in the short term and for those who will escape even the most effective screening 

programmes in the long term.  

 

 

Driver events in oesophageal adenocarcinoma  

 

The work to describe genetic changes that occur in OAC development was pioneered 

in the late 80s and early 90s, mostly in the context of Barrett’s oesophagus (BO). BO 

screening programs, which began in the 80s, provided unique samples for the study of cancer 

evolution over time40. These studies were focused, due to the available technologies, on 

accumulation of chromosomal abnormalities, a very common event type in OAC, including 

common amplification of ERBB2 and EGFR, and mutation of a few well-known cancer genes 

such as TP53 and CDKN2A mutated in approximately 70% and 10% of OAC case41–46. Through 

the late 90s and early 2000s focused studies identified SMAD4 as recurrently mutated, again 

in around 10% of cases47, PIK3CA in 6% of cases48 and also identified mutations in other 

known cancer genes at a much lower rate such as KRAS49 and APC50.  

While these focused studies were highly informative, they did not attempt to 

estimate expected mutation rates in these genes and hence mutations in genes which were 

not very recurrently mutated (e.g. <5%) could have been occurring by chance rather than 
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due to selection. They also did not assess most genes in the genome. In 2012 a small cohort 

of 11 OACs were whole exome sequenced, assessing all genes for mutation rate, discovering 

a fifth gene mutated in >5% of cases, ARID1A, however expected mutation rates were still 

poorly defined in such a small cohort51. The same year Dulak et. al. published the first large 

genome scale study focusing of CNAs detected by single nucleotide polymorphism (SNP) 

arrays on 186 OACs using GISTIC to define recurrently deleted or amplified regions of the 

genome beyond expectation52. Possible genes within or nearby these regions which may be 

driving the CNAs were annotated including amplified genes: MET, FGFR2, MYC, CCNE1, 

CCND1, MDM2, PRKCI, MYB, CDK6, KRAS, GATA4, GATA6, EGFR, ERBB2, MCL1, VEGFA and 

deleted genes: CDKN2A, ATM, CASP3, RUNX1, PTPRD1, FHIT, FAMP190A, PDE4D, PARK2, 

WWOX, MACROD2 and SMAD4. An additional 19 regions were also significant but without a 

suggested driving gene. The following year the same group published a similarly sized, 

overlapping cohort comprising 149 exome sequenced OACs and 15 whole genome 

sequenced OACs53. The cohort size and recently developed statistical methods allowed 

assessment of the expected mutation rate for each gene, based on the mutational 

distribution of across most genes in the genome. This identified all five previously identified, 

frequently mutated genes (TP53, CDKN2A, SMAD4, PIK3CA and ARID1A), as mutated at a 

higher frequency than expected by chance along with an additional 21 genes, mostly 

mutated in <10% of OACs. Unfortunately, the methodology used in the paper was 

subsequently discredited and several of these genes identified are now thought of as classical 

‘false positives’ from this era (EYS, SYNE1, CNTNAP5 for example) however some genes have 

been subsequently verified as cancer genes in studies in OAC or other cancers (ARID2 and 

SMARCA4). The next large study of OACs profiled genome wide was in 2016 where Secrier et. 
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al. used a now well established method to define OAC driver genes, MutsigCV, on 129 whole 

genome sequenced, chemo naïve cases to identify 7 recurrently mutated genes, recovering 

the 4 most frequently mutated, established OAC drivers (TP53, CDKN2A, SMAD4 and ARID1A) 

along with three novel genes to cancer (KCNQ3, CCDC102B and CYP7B1) and many 

recurrently amplified or deleted regions as detected by GISTIC, without defining driver CNA 

genes within these regions54. In 2017 The cancer genome atlas published their oesophageal 

cancer manuscript comparing oesophageal squamous carcinomas to oesophageal 

adenocarcinoma cases55. They profiled 89 OACs with whole exome sequencing and RNA-seq 

and discovered the four established high frequency OAC drivers (TP53, CDKN2A, SMAD4 and 

ARID1A) as well as ERBB2, which was mutated at a higher frequency than in other studies 

(13%). They also noted amplified or deleted regions using GISTIC with very similar results to 

those in Dulak et. al. 201252, with a few differences including annotation of TERC and YEATS4 

as possible amplification drivers and PTEN and SMARCA4 as possible deletion drivers. Lastly 

in 2017 a larger study using a large of number of publicly available OACs (446) from Dulak et. 

al. 201353, Secrier et. al. 201654, Noorani et. al. 201756 and TCGA 201755 used MutsigCV and 

discovered 17 OAC driver genes including established OAC drivers (TP53, CDKN2A, SMAD4, 

ARID1A, PIK3CA and SMARCA4) several known cancer genes not previously associated with 

OAC with high confidence (KRAS, FBXW7, PBRM1 and CTNNB1) and several other genes 

(PCDH18, C6orf114, CHRNB1, SEMA5A, EPHA2, PGCP and DOCK2)57. Including known cancer 

genes from Dulak et. al. 2013, this brings the total number of thus far  
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confidently identified OAC mutational driver genes to 22 including 12 known cancer genes 

(TP53, CDKN2A, SMAD4, ARID1A, ARID2, PIK3CA, SMARCA4, ERBB2, KRAS, FBXW7, PBRM1 

and CTNNB1) and 10 genes not previously associated with cancer (PCDH18, C6orf114, 

CHRNB1, SEMA5A, EPHA2, PGCP, DOCK2, KCNQ3, CCDC102B and CYP7B1) and provides us 

with a long list of possible oncogenes and tumour suppressors in or nearby recurrently copy 

number aberrant regions. The most well functionally characterised of these are ERBB2, EGFR,  

SMAD4 and CDKN2A. The PCAWG consortium also identified a single non-coding element 

under positive selection in OAC. This was an enhancer on chromosome 7 putatively linked to 

TP53TG1, a gene downstream of TP53 which is required for TP53 DNA damage response19. 

See Introduction table 1 for a summary of driver mutation publications in OAC.  
 
 
 

Introduction Table 1. Publications of oesophageal adenocarcinoma mutation drivers  
       

Year Journal Publication 
Novel Driver(s) 

observed in OAC 
Cohort 

size 

Methodology (detection, 
background rate 

estimation) 

Mutation 
frequency of 
Driver(s) in 
ICGC data 

1994 Gastorenterology Neshat et al TP53 14 Sanger sequencing, NA 73% 

1996 Onocgene Barrett et al CDKN2A 32 Sanger sequencing, NA 11% 

1996 Cancer research Barrett et al SMAD4 35 Sanger sequencing, NA 11% 

1996 
Eur J Gastroenterol 

Hepatol. 
Trautmann et 

al KRAS 11 RFLA*, NA 4% 

1997 J Clin Pathol Gonzalez et al APC 14 SSCP**, NA 8% 

2006 Int J Cancer Phillips et al PIK3CA 95 DHPLC***, NA 6% 

2012 Cancer discovery Agrawal et al ARID1A 11 WES, NA 13% 

2013 Nature Genetics Dulak et al ARID2, SMARCA4 149 WES, Mutsig 6%, 7% 

2016 Nature Genetics Secrier et al KCNQ3 126 WGS, MutsigCV 9% 

2017 Nature TCGA ERBB2 89 WES, MutsigCV 3% (13%****) 

2017 Gut Lin et al 
FBXW7, PBRM1, 

CTNNB1 446 WGS & WES, MutsigCV 3%, 4%, 3% 

       
*Restriction fragment length analysis, **Single strand confrimation polymorhism, ***Denaturing high pressure liquid 
chromatography ****13% in TCGA  
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Genetics of OAC evolution from BO 

 
 

BO lesions contain many genomic alterations which accumulate during progression through 

dysplasia to OAC58. In fact HGD lesions contain a similar number of mutations to many other 

carcinomas59. Many genes are recurrently mutated in Barrett’s including known cancer driver 

genes such as CDKN2A, SMARCA4, ARID1A, TP53 and others. In addition, known oncogenes 

are amplified including a plethora of receptor tyrosine kinases, transcriptions factors such as 

MYC and cell cycle components52,60. Whether such genomic alterations contribute to the 

abnormal non-dysplastic Barrett’s oesophagus (NDBO) phenotype we have described is 

unknown, however they are likely to be important in driving the transition to OAC.  

TP53 mutations arise commonly in BO and seem to be an important driver in the 

transition from NDBO to HGD. TP53 encodes a tetrameric transcription factor responsible for 

relaying stress signals to cause either cytostasis or if the damage is beyond repair, apoptosis. 

These signals include DNA damage and oxidative stress. It also appears to have roles in a 

large number of cellular processes, many of which are important in cancer including invasion, 

autophagy, stem-ness, angiogenesis and chromatin regulation61. Aberrant p53 expression has 

long been known to predict progression of BO to OAC, and sequencing data from the 

Fitzgerald lab on highly characterised patients with long-term follow-up showed that TP53 

mutations are found extremely rarely in non-dysplastic BO (NDBO) but in the majority of 

HGDs (72%) and OACs (68%)62. TP53 mutation may cause dysplasia by allowing genomic 

instability and a build-up of tumorigenic genomic alterations, in particular copy number 

changes.  
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Copy number changes are also predictors of progression in BO as evidenced by a 

study in 2014 which showed copy number changes can precede a histological diagnosis of 

cancer by two years58. Two paths have been suggested for the HGD- OAC transition. Stachler 

et. al. 201559 found TP53 mutations to be an early event in BO progression, relative to most 

tumour suppressor gene (TSG) mutations, and that whole genome doubling (WGD) was a 

common event in HGDs.  WGD was inversely correlated with many TSG mutations in OAC 

including SMAD4, chromatin modifiers and cell cycle components. This suggests that those 

genomically unstable TP53 mutant HGDs that undergo genome doubling gain the final drivers 

to transition to OAC most easily and quickly via oncogenic amplifications rather than via 

mutations. This may be because the doubling of WT gene copies makes loss of heterozygosity 

following TSG mutation more difficult or because amplification above a threshold number of 

copies, leading to over-expression, is much easier for the cell to achieve. Whereas it is 

proposed that those high-grade dysplasias that do not undergo genome doubling use a 

slower path to OAC, involving gain of further TSG mutations with some focal amplifications, 

to acquire these hallmarks. The specific amplifications and TSGs which are important in the 

HGD- OAC transition are largely unknown. 
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The best evidenced candidate HDG - OAC transition driver gene is SMAD4. SMAD4 is a 

core member of the transforming-growth factor ß pathway and is commonly mutated in 

other GI tumours, particularly in pancreatic cancer in >50% of tumours63. SMAD4 mutations 

are the only alterations thus far found to be enriched in OAC over HGD62 and copy number 

loss at the SMAD4 is the only single copy number change found to predict progression from 

BO to OAC58. Finally, a number of recent reports have suggested that clonal heterogeneity, 

independent of which precise molecular features these clones possess, can predict 

progression to OAC64,65.  

Introduction figure 1. Figure from Weaver et. al. Nature Genetics 2014 showing 
enrichment of TP53 mutation in High grade dysplasia (HGD) and SMAD4 mutation in 
Oesophageal adenocarcinoma (OAC) using targeted amplicon sequencing. A. A 
Stacked barplot showing the number of samples of each type and whether any 
mutations were found in each sample. B. A grouped barplot showing mutation rates of 
15 putative OAC drivers across sample types C. Shows the proposed model of 
progression based on these data.  
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Clinical pathway for OAC 
 
 
Patients presenting with symptoms such as dysphagia (difficulty swallowing), GI bleeding, 

vomiting, weight loss and loss of appetite are referred for an endoscopy where abnormal 

regions of the esophagus are biopsied and studied histologically to diagnose malignancy66. 

These symptoms are usually associated with late stage disease and the lack of symptoms in 

earlier stages of disease likely contributes to the common late diagnosis of OAC.  

Once patients are diagnosed clinicians use a variety of techniques to determine their 

TNM (Tumour - Node - Metastasis) stage66. In early disease (T1-2, N0, M0) surgical removal of 

the primary tumour is used, resulting in high cure rates. T1a tumours can be removed 

endoscopically without significant morbidity however larger tumours require 

esophagectomy, where at least part of the esophagus and stomach is removed and 

subsequently conjoined. This procedure is considered one of the most radical surgical 

interventions used and can be associated with significant morbidities such as anastomotic 

leakage. Patients with locally advanced disease (T3-4, N1-3, M0) are given more radical 

curative treatment including neoadjuvant, and sometimes additional adjuvant, 

chemotherapy or chemoradiotherapy. Metastatic OACs are usually considered palliative and 

can be treated with chemotherapy to extend lifespan.  

 

 
Biomarkers  
 
 
Molecular phenotyping of cancers has led to improvements in patient management in a 

variety of areas. Distinct molecular subtypes have been identified in a variety of tumour types 

and even subtypes that span anatomical classifications. These subtypes often have distinct 
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outcomes and predictable disease courses that require specific management and has 

enabled researchers to focus on areas of unmet clinical need. Understanding the molecular 

drivers of cancer has also inspired novel therapeutics targeted towards specific patients, 

based on their subtype. Breast cancer provides the canonical example of such clinical and 

molecular subtypes where hormone receptor and HER2 activation status defines prognosis 

and treatment opportunities67,68. 

 

Biomarkers for prognosis in oesophageal adenocarcinoma 

 
Unlike in breast cancer, assessing prognosis of OACs in the clinic does not currently use 

molecular features of OAC tumours but relies solely on anatomical and histological features 

of the tumour. The TNM system is used across cancer types to try and quantify the disease 

burden and extent of spread across the body in a patient, hence their likely prognosis, and is 

used to inform treatment discussions. Specifically, it is used to choose a treatment strategy 

which maximises survival while minimising the associated morbidity of treatment, which can 

be very significant for this cancer type. To assess disease burden and spread we quantify: the 

extent of tumour invasion into the underlying tissue (T1-4), the number of cancer infiltrated 

lymph nodes (N0-4+) and the presence or absence of distant metastases (M0-1). A variety of 

different methodologies can be used to do this, with varying accuracy. In the latest TNM 

classification for oesophageal cancer released last year69, patients are advised to undergo 

histological examination of a biopsy specimen, a chest CT scan, an oesophageal ultrasound 

and a PET scan with fine needle aspiration or biopsy of possible lymph node or distant 

metastases to assess histology. Histological differentiation of the tumour is also assessed and 

together these factors are used to subgroup patients into eight prognostic groups (Stages IA, 
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IB, IC, IIA, IIB, IIIA, IIIB and IVA). The most commonly deterministic feature of prognosis is 

whether or not a tumour has spread beyond the primary site (i.e. lymph node positivity). This 

is probably in large part due to the success of surgical intervention at these early stages. 

Staging is also reassessed at several points after treatment to account for differences in 

treatment effectiveness and to detect disease progression. These stages, particularly when 

assessed after treatment, correlate well with prognosis, however there remains significant 

heterogeneity in prognosis within these groups that causes some patients to undergo 

inappropriate treatment pathways. This is likely to be partly due to incomplete assessment of 

disease spread, for example missing positive lymph nodes on a CT or PET scan, but also 

reflects that intrinsic tumour aggressiveness and rate of progression vary significantly and are 

not entirely captured by histological differentiation. Molecular phenotyping can aid 

identification of hyper-aggressive or indolent tumours, the likely disease course and hence 

the most appropriate treatment plan.  

 A large variety of molecular markers for prognostication have been investigated in 

OAC, most using protein level expression in Immunohistochemistry70, however the validation 

of some of these markers, either independent cohorts or comparing to current clinical 

prognostication in multivariate analysis, has been inconsistent and hence none have gone on 

to prospective biomarker studies. Markers of particular promise which have been suitably 

verified include a three gene IHC panel consisting of EGFR, SIRT2 and TRIM44 which improves 

prognostication above clinical factors but with a relatively small Hazard ratio of 1.2 (95% CI 

1.03-1.40) for each additional positive marker. Another promising prognostic marker was 

identified this year in GLUT171, a membrane transport protein involved in fluorodeoxyglucose 

(the imaging reagent) transport in PET scans. Bright PET imaging had also been shown to be 

poorly prognostic72. GLUT1 overexpression occurs in 20% of cases however while the hazard 
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ratio was encouraging in the discovery cohort, 2.08 (95% CI 1.1-3.94), this only remained 

statistically significant in the validation set in chemotherapy treated rather than naïve cases 

in a multivariate regression model. A poor understanding of the underlying biology in OACs 

has caused investigation of a large number of different markers in various studies without 

much knowledge of how they are involved in OAC oncogenesis. Unsurprisingly this has 

caused many of the markers found to be strongly affected by discovery bias and hence have 

not validated well. We believe a more promising strategy to predict OAC prognosis will be to 

investigate markers which have strong evidence as genes important in driving OAC biology.   

 

 

Biomarkers for therapeutic intervention in oesophageal adenocarcinoma 

 

 OAC patients are triaged into different treatment pathways depending on their disease 

stage66. The very earliest stage tumours (T1a N0 M0, and some T1b N0 M0) can be 

successfully treated using endoscopic resection, other early stage tumours which penetrate 

the submucosa require esophagectomy. Patients that present with later stage disease (T3 

N1-3 M0) are treated with a neoadjuvant platinum-based chemotherapy regime sometimes 

including radiotherapy and then proceed to esophagectomy.  Some cases will also receive 

adjuvant chemotherapy after surgery. Cases with metastatic disease are usually considered 

palliative but are still treated with chemotherapy to extend survival in cases which are fit and 

consent. Although these standard treatment strategies have evolved over the past years, 

including radiotherapy and neoadjuvant treatment to improve survival rates, they are still 

fundamentally based on therapies conceived over half a century ago.  
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 Alternative strategies to these therapies are to use the molecular insights of recent 

decades to try and inform treatment based on the specific molecular features of each 

tumour. A small number of such targeted therapeutics are available in specific contexts 

already in OAC. The most well established is targeting of HER2 (ERBB2) with the monoclonal 

antibody, Trastuzumab, in HER2 amplified and/or overexpressing cases, as assessed by 

Fluorescence in-situ hybridisation (FISH) and Immunohistochemistry (IHC). However, this is 

only approved in the palliative setting and is not been shown to improve survival in the 

context of curative treatment73. The second treatment recently approved across 

gastroesophageal adenocarcinomas in the US is use of Immunotherapy (Pembrolizumab or 

Nivolumab) in microsatellite instable (MSI) cases74–76 where the treatment provides a 

significant survival advantage and some evidence suggests it may also be effective in EBV 

positive cases77, however these markers, while relatively common in gastric cancer, are 

present in very few (<3%) of OACs. This leaves the vast majority of OACs without curative 

options beyond standard chemoradiotherapy and surgery. A better understanding of the 

molecular drivers in OAC may reveal novel drug-able targets or drug repurposing 

opportunities to improve patient survival.  
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Hypothesis & Aims 
 

Our understanding of the genetic events which drive each OAC tumour is currently poor 

because only 12 well characterised driver genes have thus far been associated with OAC and, 

excluding TP53, these are all infrequently mutated (<14% of cases) hence each tumour on 

average contains only one well characterised driver, usually TP53. The infrequent nature of 

these OAC drivers is likely caused by the nature of OAC as a C type cancer. The low number of 

OAC drivers is likely due to a lack of statistical power in smaller OAC cohorts and reliance of 

the OAC research community on a single methodology (MutsigCV) to quantify selection.  

 The central hypothesis of this thesis is that by identifying the genetics causes for each 

OAC tumour we could significantly increase our understanding of this disease and may be 

able to identify clinical biomarkers for prognosis and targeted therapeutic to improve the 

current management of OAC patients and increase survival rates in this poor prognosis 

tumour type.  

 To investigate this hypothesis, we aimed to use a large variety of methodologies and a 

large cohort of 551 OACs to reveal the landscape of selected events in OAC in unprecedented 

detail. We then used this compendium of OAC drivers to look for novel biomarkers of 

prognosis and for opportunities in drug repurposing, which we could validate in vitro.  
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Methods 
 
 

Calling genomic aberrations in OAC 
 

 

Our Oesophageal ICGC project has involved setting up a pipeline of sample collection, DNA 

extraction, quality control, library preparation, whole genome sequencing, read alignment 

and mutation calling to allow genomic characterisation of hundreds of OAC tumours. This has 

involved the work of a large group of people with a large variety of expertise over a number 

of years. In this pipeline samples with a pathology-based estimate of cellularity >70% were 

selected, whole genome sequenced by Illumina to at least x50 coverage, reads aligned by 

BWA-MEM to the reference human genome hg19. A series of mutation types were then 

called; SNV and indel mutations using Strelka78, copy number calls by ASCAT24 and structural 

variant call by Manta25. Our methods were benchmarked against various other available 

methods and have among the best sensitivity and specificity for variant calling (ICGC 

benchmarking excerises79,80). In this analysis we’ve used 379 whole genome sequenced 

tumours from our ICGC pipeline. To enhance the analysis a larger cohort was constructed by 

adding 149 publicly available whole exome sequencing from Dulak et. al. 201353 performed at 

the Broad institute, Boston, US and 22 publicly available whole genomes from Nones et. al.81. 

The raw BAM files from these cases were requested and were ran through our alignment and 

mutation calling pipeline to ensure consistency with our calls. This gave us a total cohort of 

551 exomes, the largest cohort of OAC analysed to our knowledge. 
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RNA sequencing 
 

 

Total RNA was extracted using All Prep DNA/RNA kit from Qiagen and the quality was checked  

on Agilent 2100 Bioanalyzer using RNA 6000 nano kit (Agilent). Qubit High sensitivity RNA assay 

kit from thermo fisher was used for quantification. Libraries were prepared from 250ng RNA, 

using TruSeq Stranded Total RNA Library Prep Gold (Ribo-zero) kit and ribosomal RNA (nuclear, 

cytoplasmic and mitochondrial rRNA) was depleted, whereby biotinylated probes selectively 

bind to ribosomal RNA molecules forming probe-rRNA hybrids. These hybrids were pulled 

down using magnetic beads and rRNA depleted total RNA was reverse transcribed. The libraries 

were prepared according to Illumina protocol82. Paired end 75bp sequencing on HiSeq4000 

generated the paired end reads. For normal expression controls we chose gastric cardia tissue, 

from which some hypothesise Barrett’s may arise, and duodenum which contains intestinal 

histology, including goblet cells, which mimics that of Barrett’s. We did not use Barrett’s tissue 

itself as a normal control given the heterogeneous and plentiful phenotypic and genomic 

changes which it undergoes early in its pathogenesis. 

 

 

Analysing OAC mutations for selection 
 
 

To detect positively selected mutations in our OAC cohort, a multi-tool approach across 

various selection related ‘Features’ (recurrence, functional impact, clustering) was 

implemented in order to provide a comprehensive analysis. Method table 1 describes these 

tools and the advantages and limitations of each. This is broadly similar to several previous 
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approaches13,83; dNdScv4, MutsigCV15, e-Driver84, ActivedriverWGS85 and e-Driver3D86 were 

run using the default parameters. To run OncodriverFM87, Polyphen88 and SIFT89 were used 

to score the functional impact of each missense non-synonomous mutation (from 0, non-

impactful to 1 highly impactful), synonymous mutations were given a score of 0 impact and 

truncating mutations (non-sense and frameshift mutations) were given a score of 1. Only 

genes with greater than 7 mutations, likely to contain detectable drivers using this method, 

were considered to decrease the requirement for multiple hypothesis correction and 

increase statistical power. OncodriveClust90 was run using a minimum cluster distance of 3, 

minimum number of mutations for a gene to be considered of 7 and with a stringent 

probability cut off to find cluster seeds of p = Ex10-13 to prevent infiltration of large numbers 

of, likely, false positive genes. For all tool outputs we undertook quality control including Q-Q 

plots to ensure no tool produces inflated q-values and each tool produced at least 30% 

known cancer genes. Two tools were removed from the analysis due to failure for both of 

these parameters at quality control (Activedriver91 and Hotspot92). For three of the QC-

approved tools (dNdScv, OncodriveFM, MutsigCV), where this was possible, we also 

undertook an additional false discovery rate (fdr) reducing analysis by re-calculating q values 

based on analysis of known cancer genes only4,23,93, as has been previously implemented4,94. 

Significance cut offs were set at q<0.1 for coding genes. Tool outputs were then put through 

various filters to remove any further possible false positive genes. Specifically, genes where 

<50% of OAC cases had no expression (TPM (transcripts per million) < 0.1) in our matched 

RNA-seq cohort were removed and, using dNdScv, genes with no significant mutation excess 

(observed: expected ratio > 1.5:1) of any single mutation type were also removed. We also 

removed two (MT-MD2, MT-MD4) mitochondrial genes which were highly enriched for  
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Methods Table 1. A Description of Driver detection tools used    

     
Tool Name Reference Method Advantages Limitations 

MutsigCV Lawrence et al 2013 

Measuring recurrence of all 
mutations in a gene, 

estimating background using 
mutation covariates in the 
genome and synonymous 

mutations 

Good sensitivity for commonly 
mutated genes 

Poor sensitivity for infrequently 
mutated genes or driver genes 
where a large % of mutations 

are passengers 

dNdScv Martincorena et al 2017 

Measuring recurrence of all 
mutations in a gene, 

estimating background using 
mutation covariates in the 

genome, synonymous 
mutations and trinucleotide 

context 

Good sensitivity for commonly 
mutated genes 

Poor sensitivity for infrequently 
mutated genes or driver genes 
where a large % of mutations 

are passengers 

OncodriveFM Gonzalez-Perez  et al 
2012 

Measuring bias in mutation 
impact in a gene 

Particularly good sensitivity 
for tumour suppressor genes 
which accumulate obviously 

high impact mutations 
(truncating) 

Poorer sensitivity for 
infrequently mutated genes, 

genes that are never truncated 
(Oncogenes). Is dependent on 

accuracy of tools such as 
Polphen and SIFT to define 

impact which can be difficult 

OncodriveCLUST Tamborero et al 2013 
Measure recurrence in a small 
portion of a gene defined by 

the primary sequence  

Particularly good sensitivity 
for Oncogenes that commonly 

have mutational hotspots 

Poorer sensitivity for tumour 
suppressor or other genes 

where mutations occur across 
the primary sequence 

eDriver Porta-Pardo et al 2014 
Measure recurrence in a small 
portion of a gene defined by 

the primary sequence  

Particularly good sensitivity 
for Oncogenes that commonly 

have mutational hotspots 

Poorer sensitivity for tumour 
suppressor or other genes 

where mutations occur across 
the primary sequence 

eDriver3D Porta-Pardo et al 2015 
Measure recurrence in a small 
portion of a gene defined by 

the tertiary sequence  

Particularly good sensitivity 
for Oncogenes that commonly 

have mutational hotspots - 
will detect hotspots in tertiary 
rather than primary sequence 

Poorer sensitivity for tumour 
suppressor or other genes 

where mutations occur across 
the primary sequence 

GISTIC Mermel et al 2011 

Measures recurrence of CNAs 
and defines genomic regions 

recurrently deleted or 
amplified 

Good sensitivity for common 
and consistently positioned 

CNAs 

Can be difficult to define which 
genes in genomic regions driver 
a particular recurrent CNA and 

some are driven by non-
selection-based mechanisms 

(e.g. fragile sites). 

ActiveDriverWGS Wadi et al 2017 

Measures recurrence and 
mutation impact bias across 
the genome including non-

coding regions. Uses 
mutations in adjacent 

genomic sequence to define 
background rates 

Uses both recurrence and 
mutation impact in 

conjunction to increase 
sensitivity - enables detection 

in non-coding genome 

In the non-coding genome 
synonymous mutations cannot 

be taken advantage of to 
estimate background rate 

(hence adjacent sequence is 
used). There are also fewer 

canonical non-coding drivers 
making it more difficult to assess 
the accuracy of this technique.  
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truncating mutations and were frequently called in OncodriveFM as well as other tools. This 

may be due to the different mutational dynamics, caused by reactive oxygen species from 

the mitochondrial electron transport chain, and the high number of mitochondrial genomes 

per cell which leads to significantly more heterogeneity. These factors prevent the tools used 

from calculating an accurate null model for mitochondrial genes however these may be 

worthy of functional investigation. For non-coding elements called by ActivedriverWGS 

filtering for expression or dN/dS was not possible and despite recent benchmarking16 are not 

so well established. Hence, we took a more cautious approach with general significance cut 

offs of q < 0.001, and for previously identified elements in PCAWG q < 0.1. Q values were not 

recalculated for Driver elements only but q < 0.1 for known elements was based on all 

elements. To calculate exome-wide mutational excess hypermutated cases (>500 exonic 

mutations) were removed and the global non-synonymous dN/dS ratios were applied to all 

dndscv annotated mutations excluding “synonymous” and “no SNV” annotations as 

described in Martincorena et. al.4. 

 

 

Detecting selection in CNAs 
 
 

ASCAT raw CN values were used to detected frequently deleted or amplified regions of the 

genome using GISTIC2.021. To determine which genes in these regions confer a selective 

advantage, CNAs from each gene within a GISTIC identified loci were correlated with TPM 

from matched RNA-seq in a sub-cohort of 116 samples and with mutations across all 551 

samples. To call copy number in genes which spanned multiple copy number segments in 

ASCAT we considered the total number of full copies of the gene (i.e. the lowest total copy 
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number). Occasionally ASCAT is unable to confidently call the copy number in highly aberrant 

genomic regions. We found that the expression of genes in such regions matched what we 

would expect given the surrounding copy number and hence we used the mean of the two 

adjacent copy number fragments to call copy number for the gene in question. We found 

that amplification peak regions identified by GISTIC2.0 varied significantly in their precise 

location both in analysis of different sub-cohorts and when comparing to published GISTIC 

data from OACs52,55,60. A peak would often sit next to but not overlapping a well characterised 

oncogene or tumour suppressor. To account for this, we widened the amplification peak sizes 

upstream and downstream by twice the size of each peak to ensure we captured all possible 

drivers. Our expression analysis allows us to then remove false positives from this wider 

region and called drivers were still highly enriched for genes closer to the centre of GISTIC 

peak regions. 

 To detect genes in which amplification correlated with increased expression we 

compared expression of samples with a high copy number (CN) for that gene (above 10th 

percentile CN/Ploidy) with those which have a normal CN (median +/- 1) using the Wilcox 

rank-sum test and using the specific alternative hypothesis that high CN would lead to 

increased expression. Q-values were then generated based on Benjamini & Hochberg 

method, not considering genes without significant expression in amplified samples (at least 

75% of the amplified samples with TPM > 0.1) and considering q<0.001 as significant. We also 

included an additional known driver gene only fdr reduction analysis as previously described 

for mutational drivers with q<0.1 considered as significant given the additional evidence for 

these genes in other cancer types. We also included MYC despite its q= 0.11 for its 

expression correlation. This less significant correlation with expression is due to frequent 

non-amplification associated overexpression of MYC when compared to normal controls and 



 

 

 
 

45 

otherwise MYC is well evidence by a very close proximity to the peak centre (top 4 genes) 

and its high rate of amplification (19%). We took the same approach to detect genes in which 

homozygous deletion correlated with expression loss. Expression modulation was a highly 

specific marker for known CN driver genes and was not a widespread feature in most 

recurrently copy number variant genes. However, while expression modulation is a 

requirement for selection of CNA only drivers, it is not sufficient evidence alone and hence 

we grouped such genes into those which have been characterised as drivers previously in 

other cancer types (high confidence OAC CN drivers) and other genes (Candidate OAC CN 

drivers) which await functional validation. We used fragile site regions detected in Wala et. 

al.26. We also defined regions which may be recurrently heterozygous deleted, without any 

significant expression modulations, to allow loss of heterozygosity (LOH) of tumour 

suppressor gene mutations. To do this we analysed genes with at least 5 mutations in the 

matched RNA cohort for association between LOH (ASCAT minor allele = 0) and mutation 

using Fisher’s exact test and generated q values using the Benjamini & Hochberg method. 

The analysis was repeated on known cancer genes only for reduced FDR and q < 0.05 

considered significant for both analyses. For those high confidence drivers, we chose to 

define amplification as CN/ploidy (referred to as ploidy-adjusted copy number) this produces 

superior correlation with expression. We chose a cut off for amplification at CN/ploidy = 2 as 

has been previously used, and as causes a highly significant increase in expression in our CN-

driver genes.  
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Pathways and relative distributions of genomic events 
 
 

The relative distribution of driver events in each pathway was analysed using a Fisher’s exact 

test in the case of pair-wise comparisons including wild type (WT) cases. In the case of multi-

gene comparisons such as the cyclins we calculate the p value and odds ratio for each pair in 

the group by Fisher’s exact test and combine p values using the Fisher method, Genes 

without comparable odds ratios to the rest of the genes in question were removed. Two sets 

of analyses were performed to assess mutual exclusivity and co-occurrence. Given we 

expected to observe particular relationships in certain pairs or sets of related genes, we first 

undertook a small number of hypothesis driven tests between frequented altered genes with 

well-known functional relationships (those tests indicated in Figure 17). Secondly, we 

undertook a hypothesis-free approach where all drivers with driver alterations in >5% of 

cases were test against each other and BH multiple hypothesis correction was applied (Figure 

18). For both of these analyses we remove highly mutated cases (>500 exonic mutations, 

41/551) as they bias distribution of genes towards co-occurrence. While the mutation rate 

per gene in the remaining samples is far lower than the mutation rates in drivers tested and 

hence is unlikely to have a strong effect on the co-occurrence analysis there may still be weak 

effects to bias towards co-occurrence due to the remaining variance in overall mutation rate. 

Approaches to account for the overall mutation rate in each sample when performing such 

analyses do exist. However, these may bias towards mutual exclusivity of drivers due to the 

non-linear relationship between driver mutation rate and overall mutation rate, i.e. the 

number of drivers does increase as fast as the number of overall mutations increases. We 

validated these relationships in independent TGCA cohorts of other GI cancers where we 
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could find cohorts with reasonable numbers of the genomic events in question (not possible 

for GATA4/6 for instance) using the cBioportal web interface tool95.  

 

 

 
Correlating genomics with the clinical phenotype 
 
 

To find genomic markers for prognosis we undertook univariate Cox regression for those 

driver genes present in >5% of cases (16) along with Benjamini & Hochberg false discovery 

correction. We considered only these genes to reduce our false discover rate and because 

other genes were unlikely to impact on clinical practise given their low frequency in OAC. We 

validated SMAD4, in the TCGA gastroesophageal cohort which had a comparable frequency 

of these events, but notably is composed mainly of gastric cancers, and GATA4 in the TCGA 

pancreatic cohort using the cBioportal web interface tool. We also validated these markers as 

independent predictors of survival both in respect of each other and stage using a 

multivariate Cox regression in our 551 case cohort. When assessing for genomic correlates 

with differentiation phenotypes we found only very few cases with well differentiated 

phenotypes (<5% cases) and hence for statistical analyses we collapse these cases with 

moderate differentiation to allow a binary Fisher’s exact test to compare poorly 

differentiated with well-moderate differentiated phenotypes.  
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Therapeutics 
 
 

The cancer biomarker database was filtered for drugs linked to biomarkers found in OAC 

drivers. Ten OAC cell lines (SKGT4, OACP4C, OACM5.1, ESO26, ESO51, OE33, MFD, OE19, Flo-

1 and JHesoAD) and 3 BO high grade dysplasia cell lines (CP-B, CP-C and CP-D) with WGS 

(Whole genome sequencing) data were used in proliferation assays to determine drug 

sensitivity to CDK4/6 inhibitors, Palbociclib (Biovision) and Ribociclib (Selleckchem). Cell lines 

were grown in their normal growth media as specified by the ATCC and ECACC excluding the 

BO cell lines which were grown in keratinocyte media (Thermofisher) supplemented by EGF 

and Bovine pituitary extract as supplied and with 5% FCS . Proliferation was measured using 

the Incucyte live cell analysis system (Incucyte ZOOM Essen biosciences). Each cell line was 

plated at a starting confluency of 10% and growth rate measured across 4-7 days depending 

on basal proliferation rate. For each cell-line drug combination concentrations of 16, 64, 250, 

1000 and 4000 nanomolar were used each in 0.3% DMSO and compared to 0.3% DMSO only. 

Each condition was performed in at least triplicate. The time period of the exponential 

growth phase in the untreated (0.3% DMSO) condition was used to calculate GI50 and AUC. 

Accurate GI50s could not be calculated in cases where a cell line had >50% proliferation 

inhibition even with the highest drug concentration and hence AUC was used to compare cell 

line sensitivity. T47D had a highly similar GI50 for Palbociclib to that previously calculated in 

other studies (112 nM vs 127 nM). Primary organoid cultures were derived from OAC cases 

included in the OCCAMS/ICGC sequencing study. Detailed organoid culture and derivation 

method have been previously described96. Regarding the drug treatment, the seeding density 

for each line was optimised to ensure cell growth in the logarithmic growth phase. Cells were 
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seeded in complete medium for 24 hours then treated with compounds at a 5-point 4-fold 

serial dilutions for 6 days or 12 days. Cell viability was assessed using CellTiter-Glo (Promega) 

after drug incubation. 

 
 
 
 
Cell Passage 
 
 

Cell lines were grown in flasks (Nunclon, thermofisher) containing each lines’ respective 

media along with 10% FCS (fetal calf serum), for all lines excluding CP-B, CP-C and CP-D which 

were grown in 5% FCS, and 1% Penicillin and streptomycin solution (Sigma, 10,000 units 

Penicillin/5ml, 10 mg/ml Streptomycin). Between passages and experiments cells were kept 

at constant humidity, 37 °C and 5% CO2. All handling of cells requiring opening of their flasks 

was undertaken in a lamina flow hood to ensure sterility. 

Cells were allowed to grow to 70-90% confluency before passage at which point they 

were washed in sterile PBS and incubated at 37 °C in sufficient Trypsin + EDTA solution 

(Sigma, diluted to x1 in sterile PBS) to cover the bottom of the flask, for 5-10 minutes until 

cells were no longer adherent to the flask. An equal volume to that of the Trypsin + EDTA 

solution of each line’s respective media was then added to the flask and the solution was 

placed in a 15 ml tube and centrifuged for 5 minutes at 1000 rpm (600 g). The supernatant 

was discarded, and the cell pellet was suspended in its respective media (warmed at 37 °C) to 

a single cell suspension. 10-50% of that solution was seeded into a new flask of equal size. If 

cell counting was required, the Vi-Cell Coulter counter was used. This machine used Typhan 

blue staining along with image analysis software to consistently count cells.  
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Protein Extraction 
 
 

RIPA lysis buffer was used to extract protein lysates from each cell line.  One protease 

inhibitor tablet (Roche) was diluted into 50 ml RIPA Buffer and the buffer was stored at -80 

°C.  T75 flasks were grown to 70-90% confluency and washed in PBS. 1ml Lysis buffer was 

added and cells were scraped from the bottom of the dish on ice. Cells + buffer were then 

removed from flasks and spun down at 14,000 rpm (bench top centrifuge) for 20 minutes to 

remove large pieces of cellular debris. Supernatant was collected and stored at -80 °C.  

 

 
 
SDS PAGE and Western Blotting 
 
 

Protein lysates were thawed on ice, samples were mixed with 2x Lamellae buffer and 

incubated at 95 °C for 5 minutes in a heating block to denature the protein and break 

disulphide bridges. The resulting solution was loaded onto Biorad Mini-Protean pre-cast Gels 

and ran at 150V alongside PAGE-Ruler (Biorad) pre-stained protein ladder for 30-40 minutes 

until the lowest weight molecular marker had run close to the end of the gel, using a Biorad 

running tank. A PDVF transfer membrane was activated using immersion in methanol for 15 

seconds, washed in dH2O and then transferred to transfer buffer. The membrane was kept 

moist at all times post activation. Protein was transferred onto the Membrane at 200V for 1 

hour using a Biorad transfer Tank.  

 The membrane was then blocked to limit non-specific binding of antibody using 5% 

(w/v) Non Fat dry Milk in TBST (Tris-buffered saline + 0.1% Tween) at room temperature for 
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1hr. This block solution was also used to dilute primary antibodies. Anti-ARID1A mouse 

primary (1/1000). Primary antibody was incubated at the solution indicated either for 1hr at 

room temperature or overnight at 4 °C. Washes were then performed using incubation in 

TBST (0.1% tween) for 5 minutes (x3). Secondary antibodies, fused to the HRP (horse radish 

peroxidase) enzyme were diluted in block and incubated similarly for either 1 hr at room 

temperature or overnight at 4 °C. 3 washes in TBST for 5 minutes each were then repeated. 

Amersham ECL reagents (ECL prime) were allowed to reach room temperature, mixed (A+B), 

incubated for 5 minutes and then added to the membrane (approximately 50ul per 4 cm2) 

and excess was blotted off. Membranes were wrapped in Saran wrap, avoiding any air 

bubbles and then exposed in a Dark room to X ray film (Kodach, Sigma) with various lengths 

of exposure.  

 

 

DNA extraction 
 
 

DNA was extracted using the Qiagen DNeasy blood and tissue extract kit. 1-5 x 10^6 cells 

were centrifuged to a pellet and washed in PBS to remove excess media. Cell were 

resuspended in 200ul PBS and 20ul of Proteinase K solution, 200ul Lysis buffer AL was then 

added and the solution briefly vortexed. DNA was then precipitated via addition of 200ul of 

100% ethanol and the solution is briefly vortexed. The solution was then added to the 

DNeasy mini spin column and spun through at 16,000 rpm for 1 minute. The column was 

then washed with buffer AW1 and then AW2 via identical spins. Elution was then performed 

by adding 100ul of elution buffer, incubation for 2 minutes on the column and similar 
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centrifugation as above to elute DNA. DNA concentration was then determined using the 

Nanodrop. 

 

 

PCR 
 
 

For PCR of specific regions from genomic DNA primers were designed using primer blast so 

that product was between 300-1200 bps with 300 bps flanking the region of interest for 

further sequencing primer design. A Thermocycler was used with the program set as follows:  

 

• Denaturation 95 degrees for 120 minutes 

• Denaturation 95 degrees for 15s 

• Annealing 55 degrees for 15s 

• Extension 68 degrees for 45s 

• Repeat to step 2 x30 

• Final Extension 68 degrees for 120s 

 

 

Sanger sequencing  
 
 

Source biosciences Sanger sequencing service was used. PCR products were ran on 1% 

agarose gels to ensure a clean single bands for each reaction. The reactions were also 

nanodropped alongside control reactions that had not be placed on the thermocycler. The 
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difference in DNA concentration was presumed to be the concentration of product. At least 

5ul of 50 ng/ul of product was sent to Source bioscience where PCR clean up was performed 

to remove primers and any possible primer dimers.  For plasmid DNA a solution of 100 ng/ul 

(5ul) was sent. Primers in both cases were sent at 3 nM. four colour capillary sanger 

sequencing was performed and traces with predicted sequences sent back to the lab.  

 

 

Plasmid Manipulation in E.coli 
 
 

The DH5aplha strain of E.coli was used to grow and clone plasmids. These were grown in LB 

media or on LB Agar containing 100 ug/ml Amplicillin to which all our plasmids contained 

resistance markers. For transformation competent DH5aplha were bought from Invitrogen, 

thawed on ice for 30 minutes, mixed with either ligation mixture for cloning or 50ng of midi 

prepped plasmid DNA on ice for 20 minutes. For plasmid DNA this mixture was then added to 

pre-warmed LB-Agar plates and incubated o/n. For cloning the mixture was then heat 

shocked for 45 sec at 42 degrees then cooled on ice for 2 minutes before being added to pre-

warmed plates.  

 

 

Qiagen Midipreps 
 
 

For Midi preps Qiagen kits were used. 50ml of LB+Amp was inoculated from a transformation 

plate colony and incubate o/n for approximately 16 hrs. This E.coli broth was then 
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centrifuged at 4500 g  to form a pellet. The pellet was then resuspended in 6ml pre-cooled 

buffer P1. 6ml Lysis buffer (P2) was added and 6ml neutralization buffer (P3 – precooled) was 

then added causing precipitation. This mixture was then added to a Qiafilter cartridge and 

incubated for 10 minutes to allow the precipitate to rise to the top of the mixture. The lysate 

was then pushed through the filter to remove precipitate and added to a Hi-Speed Midi 

column pre-incubated in 4ml QBT buffer. The lysate moves through the column by gravity 

and the column is then washed with 20 ml QC buffer and eluted with 5ml QF buffer. The DNA 

from this elution is then precipitated with the addition of 3.5 ml 100% isopropanol, incubated 

for 5 minutes and added to the Qiaprecipitator. 2ml 70% ethanol is pushed through the 

precipitator and then the precipitator is dried via repeatedly pushing air through. 1 ml of 

Elution buffer is then added and pushed through the precipitator to elute plasmid DNA. The 

Nanodrop is then used to quantify the DNA yield which achieve between 50-100 ng/ul.    

 

 

Designing and Cloning sgRNA expressing plasmid  
 
 

The sgRNA sequence targeting the beginning of the SMAD4 coding region was designed using 

the CRISPR guide design tool of the Zhang lab – (http://crispr.mit.edu). The first 300 bps of the 

ARID1A exon 1 were inputted and a suitable sequence 3’ to a GCC PAM site was selected – 

“CTGCGGTAACGGAGCGGTTT” – (see methods figure 1).  

The Zhang lab CRISPR 2 step cloning protocol was used (available at https://www.a 

ddgene.org/crispr/zhang/) to clone the sequence into the lenti-viral sgRNA expression 

plasmid pKLV-U6gRNA(BbsI)-PGKHygro2ABFP. The plasmid is double cut by BbsI, which cuts 

outside its binding sequence hence can produce different overhangs depending on the 
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binding sequence context, producing specific overhangs. Oligos were designed with our anti-

ARID1A sequence and complementary overhangs for the BbsI cut pKLV plasmid to properly 

orientate itself relative to the promoter (see methods figure 1). Such oligos were ordered 

from sigma. They were phosphorylated and annealed as per the online protocol and then 

ligated into BbsI cut, gel extracted pKLV plasmid.  

 

 

Phenol-Chloroform DNA precipitation 
 
 

To concentrate and clean plasmid DNA for transfections Phenol-chloroform DNA 

precipitations was used. 1 volume of DNA was mixed with 1 volume of TE-saturated Phenol-

Chloroform-isoayml (25:24:1) (Sigma) and vortexed for 1 minute. The mixture was then 

centrifuged at 13,200 rpm for 2 minutes. The upper layer from this mixture was then 

removed and mixed with 1/10 volume of 3M sodium acetate and 3 volumes of 100% ethanol. 

This mixture is then incubated at either -20 degrees for 16 hours or -80 degrees for 1 hr to 

precipitate DNA. The mixture I then centrifuged at 16,000 rpm for 20 minutes to pellet DNA. 

The supernatant is then removed and the pellet dried overnight at 4 degrees. The pellet is 

then resuspended in 20-50ul of DNase free water for transfections. Concentrations of 1-10 

ug/ul are achieved and stored at -20 degrees.   
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Transfection, infection and selection to perform CRISPR-Cas9 

 
 

Second generation packing systems were used to make lenti-viral particles and infect Cas9 

and sgRNA DNA into target OAC cell lines. HEK293T packaging cells were used which express 

a limited number of envelope proteins required for lenti-viral packaging. These cells were 

transfected with further plasmids that are required for lenti-viral packaging (GAG and POL 

genes) along with the transducing plasmid of interest. Transfections were performed in T25s 

using 26ul Lipofectamine 2000 5.7 ug of psPAX2 (Gag) 2.2 ug of pMD2.1 (Envolope) and 3.8 

ug of the transduced plasmid. DNA and Lipodfectamine were pipetted into two different vials 

of 416 ul of Opti-MEM serum free media and incubated as room temperature for 5 minutes. 

The Lipofactamine mixture was then added to the DNA mixture dropwise and incubated at 

room temperature to allow Lipid-DNA complexes to form for 30 minutes. These mixtures 

were held in polypropylene tubes to prevent lipid and DNA plastic adhesion. This mixture was 

then slowly added to 2.6 ml of DMEM +10% FCS (antibiotic free) media in which HEK293Ts 

A 

B Methods Figure 1. Description of Cloning 
example sgRNA sequence into PKLV 
plasmid using BbsI. A. The first 300 bases of 
the target gene’s exon 1 used to generate 
the sgRNA target site. Highlighted in yellow 
is the selected site and in green is the Pam 
site B. BbsI cutting of PKLV. In Green in the 
BbsI binding site and in purple are the 
cutting sites for BbsI.  C The digested pKLV. 
D The annealed oligonucleotide to be 
cloned into pKLV.  

C 
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were 60% confluent. This media was removed and replaced by antibiotic containing media 

after 6 hours. The HEK293s were incubated for 24 hours at which point the first batch of 

Virus soup was harvested from the media and was replaced by fresh media. After a further 

24hrs a second batch of viral soup can be collected. This viral soup was filtered through 0.45 

um pore sized filters to remove any contaminating HEK293 cells that could allow further viral 

production. The soup was then added to a variety of OAC cancer cell lines and HaCaT 

keratinocytes in a 6 well plate format. 1 ml of appropriate media with 8 mg/ml polybrene was 

added to each well and then 200 ul of viral soup was added and incubated with target cells 

for 24 hours. Target cells were grown with extra wells for no virus controls and at infection 

were 50% confluent. After 24 hours the cells were treated with anti-biotic concentrations 

(either Hygromycin, Blastocidin or Puromycin from sigma) depending on their sensitivity 

determined using dose response kill curves. The concentrations of drug aimed to kill all 

control cells in 3-5 days and were used (1-2ug/ml). Once no virus controls were dead, 

remaining cells in virus treated wells remained in antibiotic for two further passages and then 

antibiotic was removed. Some cell lines were very easily transducable with no apparent 

death in virus treated conditions (such as OACP4C) and some left only small antibiotic 

resistant clones (OE33) which took days/weeks to grow out. This process was first performed 

with pCWCas9 (addgene plasmd #50661), lentiviral plasmid encoding a doxycycline inducible 

humanized S. pyogenes Cas9, using puromycin resistance then once Cas9 expression had 

been confirmed the process was repeated with both cloned pKLV (described in above in 

“Cloning”) and Empty vector pKLV using hygromycin. Once hygromycin resistant cells were 

isolated from this the cells were treated with 1 ug/ml Doxycycline for 5-7 days while they 

grew up to induce Cas9 expression and so genomic DNA cleavage in SMAD4. Protein and DNA 

were then isolated from these lines to confirm SMAD4 mutations and protein loss. These 
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lines were then mixtures of different SMAD4 mutations as different mutations occurred in 

every cell. To isolate clones single cells were sorted into 96 well plates and clones grown up 

with the same mutation(s) in every cell. Both EV and cloned pKLV lines were brought through 

this entire process and EV lines used as controls in functional assays.  
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Results Chapter 1: Detecting novel genetics 
drivers for OAC 

 
 
OAC driver detection using published tools and 551 cases 
 
 

To detect positively selected events in Oesophageal adenocarcinoma (OAC) we accumulated 

a cohort of 551 OACs with either whole genome (379) or whole exome sequencing (172) and 

with a number of whole genome matched RNA sequenced cases (116). The clinical 

characteristics of this cohort are shown in Table 1. As is expected of this disease, our cohort 

is male dominated and generally late stage97, however a greater proportion of our cases 

followed a curative pathway than would be expected due to the greater availability of 

samples in those cases that underwent surgery.  

In these 551 OACs we called a total of 11,813,333 single nucleotide variants (SNVs) 

and small insertions or deletions (Indels), with a median of 6.4 such mutations / Mb (figure 

1), and 286,965 copy number aberrations (CNAs). We also identified 134,697 structural 

variants (SVs) in WGS cases (355/case). This is broadly in line with what has been previously 

observed, for example whole genome sequencing of 22 WGS OACs in Nones et. al. identified 

8 mutations/Mb and 263 SVs per case53,54,81.  

Mutations or copy number abberations under selection were detected using a variety 

of methodologies which detect sets of mutations observed more frequently than we would 

expect by neutral chance, indicating that at least some are driving clonal expansions, and 

hence pushing these mutations into detectable variant allele frequencies (VAFs). Figure 2 

describes four classes of methodology to detect recurrence of different groups of genomic 
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Figure 1. Distribution of small scale mutations (SNVs and Indels) across the 551 OAC cohort.
Red line indicates the median mutations per case (6.4)

Item Full cohort (N=551)
Age Years (median, IQR) 67.3 (59.3-75.0) 70.0 (59.2-74.4)
Sex Female 81/551 55/380

Male 470/551 325/380
Barre�'s associated Posi�ve 252/469 161/324

Nega�ve 217/469 163/324
Siewert type Esophageal 127/417 56/300

GEJ (unspec.)** 46/117 NA
GEJ1 101/300 101/300
GEJ2 115/300 115/300
GEJ3 28/300 28/300

Histopatholigcal grading Well 22/482 10/310
Moderate 185/482 113/310
Poor 275/482 187/310

Pre-treatment Tumour Stage T0 5/483 5/311
T1 86/483 56/311
T2 68/483 39/311
T3 289/483 184/311
T4 35/483 27/311

Pretreatment nodal involvement Posi�ve 156/475 199/303
Nega�ve 319/475 104/303

Pretreatment distant metastases Posi�ve 27/322 10/150
Nega�ve 195/322 140/140

Treatment pathway*** Endoscopic Resec�on 8/358 8/358
Surgical Resec�on only 68/358 68/358
Chemoradiotherapy + Surgery 244/358 244/358
Defini�ve chemo-radiotherapy 6/358 6/358
Pallia�ve treatment 23/358 23/358
Pallia�ve support care 9/358 9/358

Overall Survival**** Weeks (median, IQR)  101 (54-161) 103 (55-166)
* Denominators smaller that total cohorts indicate missing data
** In publically availble studies tumour loca�on is reported as Esophageal vs GOJ only, the siewert type is not specified
***Not reported in publically availible studies
****Not reported in Dulak et al 2013 

ICGC cohort with full clinical 
anota�on used for 
Prognos�ca�on (n=379)

Table 1. Clincal Characteris�cs of OACs used in study
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abberations; “Recurrence” methods measure mutation rate in a whole gene and test against 

expected mutation rates (dNdScv4, ActivedriverWGS85, MutsigCV15), “Functional impact” 

methods essentially test the mutation rate of high functional impact mutations compared to 

expected rate calculated using the number of low impact mutations (OncodriveFM87, 

ActivedriverWGS), “Clustering” methods measure  mutational recurrence in only a small 

portion of a gene (OncodriveClust90, eDriver84 and eDriver3D86)  and our “Copy number 

driver” method measures recurrence of copy number amplifications or deletions to detection 

selectively aberrant regions of the genome (using GISTIC21) and then identifies driver genes 

within these regions using expression and copy number correlations (In house analyses, see 

methods page 41). We tested 8 different publicly available tools or in-house methods to 

detect mutations under positive selection as described and 6 of these could produce un-

inflated Q-Q plots (Figure 3) along with recovery of a reasonable number (>30%) of known 

cancer genes. Two methods were rejected due to a high rate of infiltration of likely false 

positive genes in our hands (Hotspot98 and ActiveDriver91). We also undertook filtering to 

remove any possible false positives from our driver list produced by these QC’ed tools which 

included filtering out genes that were not expressed (<50% of cases with <0.1 TPM) or had 

no evidence of enrichment in mutation rate (odds ratio < 1.5) in any specific mutation type 

using dNdScv, our best performing driver detection tool (measured by sensitivity and 

specificity for known cancer genes). None of those genes filtered were known drivers. This 

multi-tool approach has become the gold-standard in driver gene detection studies as has 

been exemplified by several driver detection efforts by large consortia such as the TCGA99, 

ICGC13 and others100.    

These complementary methods produced highly significant agreement in calling OAC 

driver genes, particularly within the same feature-type (Figure 4A) and on average more than  
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Figure 2.  Methodologies for detecting positive selection in cancer genomes. 

Figure 3.  Quality Control for published driver gene detection tools in our hands using Q-Q plots.
Q-Q plots were not appropriate for cluster based analysis due to high thesholds set for cluster discovery 
causing many fewer genes to be assessed which were more often significant than would otherwise be 
expected. These tools (OncodriveClust, eDriver and eDriver3D) passed the second QC step with 
>30% known cancer genes.  
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half of the genes identified by one feature were also identified by other features (Figure 4B). 

hierarchical clustering indicated the driver tools clustered as expected given the feature 

used, with strong relationships between functional impact and recurrence methods, as well 

as surprisingly large overlap between copy number and mutational drivers (Figure 4C). In 

total seventy-six putative OAC driver genes were discovered, 86% of which have not been 

detected in OAC previously and 69% are known drivers in independent pan-cancer analyses 

giving us confidence in our methods. To detect driver elements in the non-coding genome we 

used ActiveDriverWGS a recently benchmarked16 tool that uses recurrence and functional 

impact to detect selection across the genome (Figure 5). We discovered 21 putative non-

coding driver elements using this method which each contained driver mutation in 5% or less 

of cases, however in total they still contribute several hundred non-coding driver events in 

this cohort, consistent with the PCAWG analysis19. We have recovered several known non-

coding driver elements from the pan-cancer PCAWG analysis including an enhancer on chr7 

linked to TP53TG1, a gene required for TP53 action, the only non-coding driver found in OAC 

in PCAWG19 and the promoter/5’UTR regions of PTDSS1 and WRD74 which are novel in OAC 

but were found in other cancer types. We also identified completely novel non-coding cancer 

driver elements including in the 5’UTR of MMP24 and promoters of two related histones 

(HIST1H2BO and HIST1H2AM). 

 

 

Selection in copy number aberrations 
 
 

OAC is notable among cancer types for harbouring a high degree of chromosomal 

instability81. Using GISTIC we identified 149 recurrently deleted or amplified loci across the  
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Driver detection methodologies and their overlap.  b. Hierarchical clustering between tools based on genes 
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genome (Figure 6). To determine which genes within these loci confer a selective advantage 

when they undergo CNAs we used a subset of 116 cases with matched RNA-seq to detect 

genes within these loci in which homozygous deletion or amplification causes a significant 

under or over-expression respectively, a prerequisite for selection of CNA-only drivers. The 

majority of genes in these regions showed no significant CNA-associated expression change 

after false discovery rate correction (74%), although work in larger cohorts suggests we may 

be underpowered to detect small expression changes. We observed highly significant 

expression changes in 17 known cancer genes within GISTIC peaks such as ERBB2, KRAS and 

SMAD4 which we designate high-confidence OAC drivers (see Figure 10, page 69 for full list). 

We also found five tumour suppressor genes where copy number loss was not necessarily 

associated with expression modulation but tightly associated with presence of mutations 

leading to LOH; ARID1A, CDKN2A, SMAD4, APC and CDH11. CDH11 was not identified by our 

driver gene detection methods but this would suggest it may be a promising candidate for 

further validation. To determine whether copy number changes in genes not previously 

associated with cancer may contribute to oncogenesis we searched for genes with similar 

expression-CN profile as most of our high-confidence drivers (see methods). We found 140 

such cases which we designated “candidate copy number (CN) drivers”. Not all candidate 

drivers are likely to be true CN-drivers. However, several candidate drivers such as ZNF131, 

YES1 and PIBF1 are not accompanied by other drivers in their GISTIC peak and contain 

extrachromosomal-like events (referred to below), hence are promising candidates for 

further study. 

 In a subset of GISTIC loci, we observed extremely high copy number amplification, 

commonly greater than 100 copies, and we hypothesized, based on previous finding in OAC81 

and other cancer types101 that these were likely to be extrachromosomal events, such as  
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double minutes, which can allow rapid amplification of relatively small pieces of circular DNA. 

This process would leave specific hallmarks on the genome. Because amplification of the 

double minute chromosome does not require additional structural variants to cause 

amplification once in a circular form, this causes the copy number steps surrounding the 

circular region to be highly precipitous, rather than step-like as in other kinds of 

amplification. It would also cause the existing structural variants already contained within the 

circular DNA to be copied precisely, very many times giving them very high read support. 

Hence, we searched for these features within these ultra-high amplification events and 

consistent with previous data in OAC81 we found them to be common, accounting for the 

large majority of such ultra-high amplifications (examples shown in figure 7). In the first 

example circularisation and amplification occurred around MYC and also incorporated ERBB2 

from an entirely different chromosome and in the second an inversion has been followed by 

circularisation and amplification of KRAS. Hence, we defined these ultra-high amplifications 

(CN-adjusted ploidy >10) as “extrachromosomal-like” amplifications. Interestingly we found 

that the recurrently amplified loci with such extrachromosomal-like events were highly 

correlated with presence of CN-drivers (Ploidy adjusted Copy number >10, Wilcox test, 

P<Ex10-6) and such events were almost completely absent in GISTIC loci without a known CN 

driver (Figure 8). This high specificity for Driver containing regions suggests such events may 

be generally very rare but highly selected for and could possibly be used to detect copy 

number drivers in the future.  

We use copy number adjusted ploidy to define amplifications as it produces superior 

correlation with expression data than absolute CN alone. Ploidy of our samples varies from 

1.4-6.2 (median 2.8), and hence ploidy adjusted copy number of >10 cut off translates into  
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Figure 8. Frequency of Extrachromosomal-like events (CN-adjusted Ploidy 
>10) in GISTIC amplification loci using 551 OACs and showing the presence of any high 
confidence driver genes. Boxplots indicate median and interquartile range. 

Figure 7.  Examples of Extrachromosomal-like amplifications. Extra-chromosomal events 
suggested by very high read support SVs at the boundaries of highly amplified regions produced 
from a single copy number step. In the first example two populations of extrachromosomal DNA are 
apparent, one amplifying only MYC and the second also incorporating ERBB2 from a different chro-
mosome. In the second example an inversion has occurred before circularization and amplification 
around KRAS
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>14-62 absolute copies (on average 28 copies). For some cases we may have been unable to 

identify drivers in loci simply because the aberrations do not occur in the smaller RNA-seq 

matched cohort.  

We found extrachromosomal-like amplifications had an extreme and highly penetrant 

effects on expression while moderate amplification (ploidy adjusted copy number > 2) and 

homozygous deletion had highly significant (Wilcox test, P<Ex10-4 and P<Ex10-3 respectively) 

but less dramatic effects on expression with a lower penetrance (Figure 9). This lack of 

penetrance was associated with low cellularity (Fisher’s exact test, expression cut off = 2.5 

normalised FPKM, P<0.01) however many samples with moderate amplification but without 

overexpression were of good cellularity hence this also likely reflects that genetic 

mechanisms other than gene-dosage modulate expression in a rearranged genome. We also 

detected several cases of over expression or complete expression loss without associated CN 

changes which may reflect non-genetic mechanisms for driver dysregulation. For example, 

one case overexpressed ERBB2 at 28-fold median expression however had entirely diploid CN 

in and surrounding ERBB2 and a second case contained almost complete loss of SMAD4 

expression (0.008-fold median expression) despite possessing 5 copies of SMAD4.  
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95% CIs (grey) are also shown to describe the data. The dashed line indicates Ploidy adjusted CN 
= 2, the cut off for defining amplification.  
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Results chapter 2: Characterising OAC 
Drivers 

 
 
 

Landscape of driver Events in OAC 
 
 

The overall landscape of driver gene mutations and copy number alterations per case is 

depicted in Figure 10. These comprise both oncogenes and tumour suppressor genes which 

have been activated or repressed via different mechanisms. Occasionally different types of 

events are selected for in the same gene, such as KRAS and ERBB2 which both harbour 

activating mutations and amplifications in 19% and 18% of cases respectively. Passenger 

mutations occur by chance in most driver genes. To quantify this we have used the 

observed:expected mutation ratios (calculated by dNdScv) to estimate the percentage of 

driver mutations in each gene and in different mutation classes. For many genes, only specific 

mutation classes appear to be under selection. Many tumour suppressor genes; ARID2, 

RNF43, ARID1B for example, are only under selection for truncating mutations; i.e. splice site, 

nonsense and frameshift Indel mutations, but not missense mutations which are not under 

selection. However, oncogenes, like ERBB2, only contain missense drivers which form 

clusters to activate gene function in a specific manner. Where a mutation class is <100% 

driver mutations, mutational clustering can help us define the driver vs passenger status of a 

mutation (Figure 11). Clusters of mutations occurring in OAC or mutations on amino acids 

which are mutation hotspots in other cancer types98 are indicated in Figure 10. Novel OAC 

drivers of particular interest include B2M, a core component of the MHC (major  
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on amino acids known to be drivers in other cancer types (see Supplementary table 3, eg KRAS G12 
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Figure 12. A detailed breakdown of mutation and copy number types per case and the 
exome wide dnds excess for different mutation types in 551 OACs. Exome wide excess indel 
rates cannot be calculated as they have no synonymous mutation equivalent. However a null 
model based on indel rates in genes presumed to be under no selection is used in the per gene 
dn/ds method. Error bars indicate 95% confidence intervals for exome wide dnds mutation excess 
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histocompatibility complex) class I complex and resistance marker for Immunotherapy102, 

MUC6 a secreted glycoprotein involved in gastric acid resistance and ABCB1 a channel pump 

protein which is associated with multiple instances of drug resistance103. We note that 

several of these drivers have been previously associated with gastric and colorectal 

cancer104,105 (Table 2) .  

The identification of driver events provides a rich information about the molecular 

history of each OAC tumour. We detect a median of five events in driver genes per tumour 

(IQR = 3-7, Mean = 5.6) and only a very small fraction of cases have no such events detected 

(6 cases, 1%). When we remove the predicted percentage of passenger mutations using 

dN/dS ratios we find a mean of 4.4 true driver events per case which derive more commonly 

from mutations than CNAs (Figure 12). dNdScv, one of the driver gene detection methods 

used, also analyses the genome-wide excess of non-synonymous mutations based on 

expected mutation rates to assess the total number of driver mutations across the exome 

which is calculated at 5.4 (95% CIs: 3.5-7.3), in comparison to 2.7 driver mutations which we 

calculate in our gene-centric analysis after passenger removal. This suggests low frequency 

driver genes may be prevalent in the OAC mutational landscape (see discussion). Further 

analysis suggests these missing mutations are mostly missense mutations and our gene-

centric analysis captures almost all predicted splice and nonsense drivers (Figure 12). Some 

of our methods use enrichment of nonsense and splice mutations as a marker of driver genes 

and hence have a higher sensitivity for these mutations.  

To determine whether distinct subgroups of OAC, driven by specific sets of drivers, 

might exist we performed hierarchical clustering on a binary matrix of tumours and the 

presence or not of events in all 76 drivers. We did not find a very distinct structure in the 

resulting clustering, which seemed to be mostly determined by the number of drivers and  
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gene_name Muta�on_Frequency (%) edriver edriver3d dndscv OncodriveFM OncodriveClust Mutsig Tools_iden�fying Novel_Drivers? * Pan-cancer drivers** Gastric_Drivers? *** Colorectal_Drivers?****
TP53 72.23 0 0 0 0 0 0 6 FALSE TRUE TRUE TRUE
SMAD4 11.25 0 0 0 0 0 0 6 FALSE TRUE TRUE TRUE
PIK3CA 5.99 0 0 0 0.0348 0 0.0255 6 FALSE TRUE TRUE TRUE
KRAS 3.81 0.00528 0 0 0.459 0 0 5 FALSE TRUE TRUE TRUE
ARID1A 12.7 1 1 0 0 1 0 3 FALSE TRUE TRUE TRUE
CDKN2A 11.25 1 1 0 0 1 0 3 FALSE TRUE FALSE TRUE*****
APC 8.35 1 1 0 0 1 0 3 TRUE TRUE TRUE TRUE
SMARCA4 7.44 1 1 0.0000535 0.0000297 1 0.00275 3 FALSE TRUE FALSE FALSE
ARID2 5.81 1 1 0 0.0135 1 0.0906 3 FALSE TRUE FALSE FALSE
PBRM1 4.36 1 1 0.000629 0.00167 1 0.0737 3 TRUE TRUE FALSE FALSE
PTEN 3.45 1 1 0 0.002 1 0 3 TRUE TRUE FALSE TRUE
ACVR2A 3.09 1 1 0.0476 0 1 0.0188 3 TRUE TRUE FALSE TRUE
FBXW7 3.27 1 1 0.000323 0 1 0.00672 3 FALSE TRUE FALSE FALSE
SIN3A 2.9 1 1 0.0354 0.0198 1 0.0555 3 TRUE TRUE FALSE TRUE
CDKN1B 1.27 1 1 0.00557 0.0372 1 0.00275 3 TRUE TRUE FALSE FALSE
MUC6 9.8 1 1 0 1 1 0 2 TRUE TRUE TRUE FALSE
EPHA3 6.53 1 1 0.0837 0.037 1 0.292 2 TRUE TRUE FALSE FALSE
RNF43 5.26 1 1 0 0 1 0.451 2 TRUE TRUE TRUE TRUE
NOTCH1 4.54 1 1 0.0584 0.0745 1 1 2 TRUE TRUE FALSE FALSE
ARID1B 4.54 1 1 0.00495 0.0377 1 0.163 2 TRUE TRUE FALSE FALSE
CTNNB1 2.9 1 1 1 0.0325 0 0.209 2 TRUE TRUE TRUE TRUE
BRAF 2 1 1 0.0375 0.0182 1 1 2 TRUE TRUE FALSE TRUE
CDH1 2 1 1 0.0155 0.0387 1 1 2 TRUE TRUE TRUE FALSE
ACVR1B 1.63 1 1 0.0265 0.029 1 0.598 2 TRUE TRUE FALSE FALSE
AXIN1 1.63 1 1 0.00133 0.0815 1 0.494 2 TRUE TRUE FALSE FALSE
B2M 1.27 1 1 0 1 1 0.0274 2 TRUE TRUE FALSE FALSE
TGFBR2 1.63 1 1 0.0697 0.00571 1 1 2 TRUE TRUE FALSE FALSE
HIST1H3B 1.27 1 1 0.00517 1 1 0.0274 2 TRUE TRUE FALSE FALSE
RPL22 1.27 1 1 1 0.0372 1 0.0007 2 TRUE TRUE FALSE FALSE
DNAH7 10.71 1 1 1 0.0149 1 1 1 TRUE FALSE FALSE FALSE
LRRK2 10.89 1 1 0.059 0.336 1 1 1 TRUE TRUE FALSE FALSE
NAV3 9.8 1 1 1 0.0164 1 1 1 TRUE TRUE FALSE FALSE
KCNQ3 9.44 1 1 1 1 1 0 1 FALSE FALSE FALSE FALSE
PCDH17 8.17 1 1 1 1 0.000181 1 1 TRUE TRUE FALSE FALSE
SLIT2 7.8 1 1 1 1 1 0.00214 1 TRUE FALSE FALSE FALSE
TRPA1 7.44 1 1 1 1 1 0.00124 1 TRUE FALSE FALSE FALSE
TSHZ3 7.44 1 1 0.00387 0.378 1 1 1 TRUE TRUE FALSE FALSE
ABCB1 6.35 1 1 1 1 1 0.0123 1 TRUE FALSE FALSE FALSE
POLQ 5.08 1 1 1 0.037 1 1 1 TRUE TRUE FALSE FALSE
ZFHX3 5.44 1 1 0.0787 1 1 1 1 TRUE TRUE FALSE FALSE
CHL1 6.17 1 1 1 1 1 0.0352 1 TRUE FALSE FALSE FALSE
NIPBL 5.44 1 1 0.0354 1 1 0.2 1 TRUE TRUE FALSE FALSE
SCN3A 5.26 1 1 1 0.0135 1 1 1 TRUE FALSE FALSE FALSE
CRISPLD1 3.99 1 1 1 1 1 0.00248 1 TRUE FALSE FALSE FALSE
CCDC102B 3.99 1 1 1 1 1 0.0729 1 TRUE FALSE FALSE FALSE
CHD4 3.63 1 1 0.0646 1 1 1 1 TRUE TRUE FALSE TRUE
ERBB2 3.09 1 0.0000263 1 1 1 0.694 1 FALSE TRUE TRUE FALSE
RASA1 2.9 1 1 0.00114 1 1 1 1 TRUE TRUE TRUE FALSE
CD1A 3.27 1 1 1 1 0 1 1 TRUE FALSE FALSE FALSE
MSH3 2.9 1 1 1 1 1 0.0468 1 TRUE TRUE FALSE FALSE
MAP3K1 3.09 1 1 1 0.0542 1 1 1 TRUE TRUE FALSE FALSE
EPHA2 2.9 1 1 0.00991 1 1 1 1 TRUE TRUE FALSE FALSE
JAK1 2.54 1 1 0.0418 1 1 1 1 TRUE TRUE FALSE FALSE
COIL 2.36 1 1 1 0.0815 1 0.132 1 TRUE TRUE FALSE FALSE
PIK3R1 2.36 1 1 0.0787 0.135 1 1 1 TRUE TRUE FALSE FALSE
FAM196B 2.36 0.03 1 1 1 1 1 1 TRUE FALSE FALSE FALSE
LIN7A 2.36 1 1 1 1 0 0.118 1 TRUE FALSE FALSE FALSE
GPATCH8 2.18 0.0491 1 1 1 1 1 1 TRUE FALSE FALSE FALSE
MBD6 2.18 1 1 0.014 1 1 0.694 1 TRUE TRUE FALSE FALSE
KDM6A 2 1 1 1 0.0325 1 1 1 TRUE TRUE FALSE FALSE
MAP2K7 2 1 1 0.000149 1 1 0.117 1 TRUE TRUE FALSE FALSE
PPM1D 1.45 1 1 0.0924 1 1 0.817 1 TRUE TRUE FALSE FALSE
ELF3 1.27 1 1 0.0319 0.865 1 1 1 TRUE TRUE FALSE TRUE
GATAD1 0.91 1 1 1 1 1 0 1 TRUE FALSE FALSE FALSE
C3orf62 0.36 1 1 1 1 1 0 1 TRUE FALSE FALSE FALSE
STK11 0.91 1 1 1 0.0202 1 0.684 1 TRUE TRUE FALSE FALSE

* Known drivers from Dulak et al 2013 Nature gene�cs, Secrier et al 2016 Nature gene�cs, TCGA 2017 Nature and Lin et al 2017 Gut
** Defined as those called in Kandoth et al 2013 Nature and Mar�ncorena et al 2017 Cell and �er 1 Cancer gene consensus genes (exlcuding blood cancer associated transloca�on drivers). 
*** Gastric cancer drivers defined from TCGA 2014 Nature
**** Colorectal cacner drivers defined from Grasso et al 2018 Cancer Discovery

***** CDKN2A a known Gastric cancer driver (eg Huang et al 2015 Int J Clin Exp Med) but was not called in TCGA 2014. This may been been due to expression filtering which can remove highly deleted/truncated  tumour surpressor genes when these altera�ons lead to 
expression loss. 

Table 2. Q values for every tool across all muta�onal drivers. Driver Novelty in OAC, pan-cancer and 
in gastric and colorectal cancers. 
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singular presence or not of more frequent drivers, however we noted that TP53 mutant cases 

had significantly more CN drivers when inspecting the TP53 mutant dominated cluster 

(Wilcox test, p = 0.0032, Figure 13). 

To better understand the functional impact of driver mutations we analysed 

expression of driver genes with different mutation types and compared their expression to 

normal tissue RNA, which was sequenced alongside our tumour samples (Figure 14). Since 

surrounding squamous epithelium is a fundamentally different tissue, from which OAC does 

not directly arise, we have used duodenum and gastric cardia samples as gastrointestinal 

phenotype controls, likely to be similar to the, as yet unconfirmed, tissue of origin in OAC. A 

large number of driver genes have upregulated expression in comparison to normal controls, 

for example TP53 has upregulated RNA expression in WT tumour tissue and in cases with 

missense (see non-truncating, Figure 14) mutations but RNA expression is lost upon gene 

truncation. In depth analysis of different TP53 mutation types reveals significant 

heterogeneity within non-truncating mutations, for example R175H mutations correlate with 

low RNA expression (Figure 15). Normal tissue expression of CDKN2A suggests that CDKN2A 

is generally upregulated in OAC, likely due to genotoxic or other cancer-associated stresses106 

and returns to physiologically normal levels when deleted. High expression in CDKN2A 

mutated cases suggests this upregulation is sustained and the cancer cell escapes the effects 

of such expression by preventing CDKN2A function using mutations (either missense 

mutations, which are often clustered (figure 16), preventing protein function, or nonsense 

mutations preventing protein nuclear export and translation). Heterogeneous expression in 

WT CDKN2A cases suggest a different mechanism of inhibition such as methylation in some 

cases and CDKN2A independent mechanisms in cases with high CDKN2A expression, for 

example amplification and overexpression of CDK6 may allow proliferation even in the  
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Figure 14. Expression changes in OAC driver genes in comparison to normal intestinal tissues. 
Genes with expression changes of note are shown. WT = Wild type. 
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Figure 15. TP53 expression in different TP53 mutation types in comparison to TP53 
WT tumours, normal duodenum and gastric cardia tissues in 116 WGS OAC cases with matched 
RNAseq data. Boxplots represent the median and interquartile range. 
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Figure 16. Loolipop plot showing mutations in CDKN2A. Note Missense mutations (green) are commonly 
in hotspots - 12/21. Brown = inframe indels, black = truncating mutations (Nonsense or frameshift indel).  
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presence of CDKN2A upregulation. Overexpression of other genes in wild type tumours, such 

as SIN3A, may confer a selective advantage due to their oncogenic properties, in this case 

cooperating with MYC, which is also overexpressed in OACs (Figure 15). A smaller number of 

driver genes are downregulated in OAC tissue and 3/4 of these (GATA4, GATA6 and MUC6) 

are involved in the differentiated phenotype of gastrointestinal tissues and may be lost with 

tumour de-differentiation. Driving alterations in these genes have been observed in other GI 

cancers however their oncogenic mechanism is poorly understood.  

  

 

Dysregulation of specific pathways and processes in OAC 
 
 

It is known that selection preferentially dysregulates certain functionally related groups of 

genes and biological pathways in cancer107. This phenomenon is highly evident in OAC, as 

shown in Figure 17 which depicts the functional relationships between OAC drivers. This 

provides greater functional homogeneity to the landscape of driver events. 

 While TP53 is the dominant driver in OAC, 28% of cases remain TP53 wildtype. MDM2 

is a E3 ubiquitin ligase that targets TP53 for degradation. Its selective amplification and 

overexpression is mutually exclusive with TP53 mutation suggesting it can functionally 

substitute the effect of TP53 mutation via its degradation. Similar mutually exclusive 

relationships are observed between; KRAS and ERBB2, GATA4 and GATA6 and Cyclin genes 

(CCNE1, CCND1 and CCND3). Activation of the Wnt pathway occurs in 19% of cases either by 

mutation of phospho-residues at the N terminus of b-catenin, which prevent degradation, or 

loss of Wnt destruction complex components like APC. Many different chromatin modifying  
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Figure 17. Biological pathw
ays undergoing selective dysregulation in OAC. a. Biological Pathw

ays dysregulated by driver gene m
utation and/or CNVs in 551 cases. W

T cases for a 
pathw
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ay are annotated.  GATA4/GATA6 am
plifications have a m

utually exclusive relationship (ie 
GATA4 am

pification is m
ore com

m
on in GATA6 W

T cases) although this does not reach statistical significance (fisher’s exact test, tw
o sided, p=0.07 OR =0.52). 
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genes, often belonging to the SWI/SNF complex, are also selectively mutated (28% of cases). 

In contrast SWI/SNF genes are co-mutated significantly more often than we would expect by 

chance (Fisher’s exact test, P < 0.01 see methods page 43), suggesting an increased 

advantage to further mutations once one has been acquired. We also assessed mutual 

exclusivity and co-occurrence in genes in different pathways and between pathways 

themselves (Figure 18). Of particular note are co-occurring relationships between TP53 and 

MYC, GATA6 and SMAD4, Wnt and Immune pathways as well as mutually exclusive 

relationships between ARID1A and MYC, gastrointestinal (GI) differentiation and RTK 

pathways and SWI-SNF and DNA-Damage response pathways. Wnt dysregulation has been 

previously linked to immune escape and interestingly was also associated with hyper-

mutated cases (> 50,000 SNVs or Indels, fisher’s exact test, p = 0.021, OR= 2.4). We were able 

to confirm some of these relationships in independent cohorts in different cancer types 

(Table 3) suggesting some of these may be pan-cancer phenomenon.  As shown in Figure 17, 

all of these pathways interact to stimulate the G1 to S phase transition of the cell cycle via 

promoting phosphorylation of Rb, although many of these pathways have multiple oncogenic 

or tumour suppressive functions. 

A number of other driver genes have highly related functional roles including core 

transcriptional components (TAF1 and POLQ), drivers of immune escape (JAK1 and B2M), cell 

adhesion receptors (CDH1, CHDL and PCDH17), core ribosome components (ELF3 and 

RPL22), core RNA processing components (GPATCH8 and COIL), ion channels (KCNQ3 and 

TRPA1) and Ephrin type-A receptors (EPHA2 and EPHA3).  
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Figure 18. Pairwise assessment of mutual exclusivity 
and association in OAC driver genes and pathways. 

P values and ORs are calculated from Fisher's exact test (two tailed)

Cohort Gene A Gene B Neither A Not B B Not A Both Log OR OR p-Value Tendency
MSKCC pan-cancer cohort (n= 10,945) B2M* CTNNB1* 10443 130 358 14 1.145 13.964 <0.001 Co-occurrence
MSKCC pan-cancer cohort (n= 10,945) TP53 SMAD4 6097 4286 204 358 0.915 8.2224 <0.001 Co-occurrence
MSKCC pan-cancer cohort (n= 10,945) TP53 MYC 6130 4293 171 351 1.075 11.885 <0.001 Co-occurrence
MSKCC pan-cancer cohort (n= 10,945) TP53 MDM2 5913 4570 388 74 -1.399 0.0399 <0.001 Mutual exclusivity
MSKCC pan-cancer cohort (n= 10,945) ERBB2 KRAS 8478 661 1741 65 -0.736 0.1837 <0.001 Mutual exclusivity
MSKCC pan-cancer cohort (n= 10,945) EGFR KRAS 8336 803 1754 52 -1.178 0.0664 <0.001 Mutual exclusivity
Pancrea�c adenocarcinoma** SMAD4 GATA6 373 129 16 14 0.928 8.4723 0.013 Co-occurrence
Pancrea�c adenocarcinoma** GATA4 EGFR 522 8 1 1 >3 >1000 0.034 Co-occurrence

* Two genes from Immune and Wnt 
pathways which co-occur in our data

**Pancrea�c adenocarcinoma (TCGA + QCMG study 2016) used to assess 
GATA factors as not in MSKCC gene panel (n = 433)

 Table 3. Validation of mutual exclusivity and cooccurance of genes and pathways in independent 
cohorts. 
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Results chapter 3: Using OAC drivers as 
clinical biomarkers 

 
 
 

Clinical significance of driver variants 
 
 

Events undergoing selection during cancer evolution influence tumour biology and thus 

impact tumour aggressiveness, response to treatment and patient prognosis as well as other 

clinical parameters. Clinical-genomic correlations can provide useful biomarkers but also give 

insights into the biology of these events.  

 Univariate Cox regression was performed for events in each driver gene with driver 

events occurring in greater than 5% of OACs (i.e. after removal of predicted passengers, 16 

genes) to detect prognostic biomarkers (Figure 19). Events in two genes conferred 

significantly poorer prognosis after multiple hypothesis correction, GATA4 amplification (HR : 

0.54 , 95% CI : 0.38 – 0.78, P value = 0.0008) and SMAD4 mutation or homozygous deletion 

(HR : 0.60 , 95% CI : 0.42 – 0.84, P value = 0.003). Both genes remained significant in 

multivariate Cox regression including pathological TNM staging, resection margin, curative vs 

palliative treatment intent and differentiation status (GATA4 = HR adjusted : 0.47, 95% CIs 

adjusted : 0.29 - 0.76, P value = 0.002 and SMAD4 = HR adjusted : 0.61, 95% CI adjusted : 

0.40 – 0.94,  P value = 0.026, Figure 20) and were among the most predictive of the clinical 

variants with only N stage and positive circumferential margin also remaining significant. 31% 

of OACs contain either SMAD4 mutation or homozygous deletion or GATA4 amplification and 

cases with both genes altered had a poorer prognosis.  We validated the poor prognostic  
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Figure 19. Discovery of SMAD4 and GATA4 as prognostic indicators in OAC. a. Hazard ratios 
and 95% confidence intervals for Cox regression analysis across all driver genes with at least a 5% 
frequency of driver alterations * = q < 0.05 after BH adjustment. b. Kaplan-Meier curves for OACs 
with different status of significant prognostic indicators (GATA4 and SMAD4).
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impact of SMAD4 events in an independent TCGA gastroesophageal cohort (HR = 0.58, 95% 

CI = 0.37 – 0.90, P value =0.014) (Figure 20) and we also found GATA4 amplifications were 

prognostic in a cohort of TCGA pancreatic cancers (HR = 0.38 95% CI: 0.18 – 0.80, P value = 

0.011) (Figure 20), the only available cohort containing a feasible number of GATA4 

amplifications. The prognostic impact of GATA4 has been suggested in previously published 

independent OAC cohort60 although it did not reach statistical significance after FDR 

correction and SMAD4 expression loss has been previously linked to poor prognosis in 

OAC108. We also noted stark survival differences between cases with SMAD4 events and 

cases in which TGFb receptors were mutated (HR = 5.6, 95% CI : 1.7 – 18.2, P value = 0.005) 

in keeping with the biology of the TGFb pathway where non-SMAD TGFb signalling is known 

to be oncogenic109 (Figure 21). 

In additional to survival analyses we also assessed driver gene events for correlation 

with various other clinical factors including differentiation status, sex, age and treatment 

response. We generally did not find a strong correlation between OAC genomics and most 

clinical factors. However, we found Wnt pathway mutations had a strong association with 

well differentiated tumours (p=0.001, OR = 2.9, Fisher’s test, see methods, Figure 22) and we 

also noted interesting differences between female (n=81) and male (n=470) cases. Female 

cases were enriched for KRAS mutation (p = 0.001, Fisher’s exact test) and TP53 wildtype 

status (p = 0.006, Fisher’s exact test) (Figure 22). This is of particular interest given the male 

predominance of OAC.  

 

 

 



 

 

 
 

89 

 

+

+
++

+ +

+

++ +
+ ++

+++

+ +

+++ ++ + + +

++++++++
+++++++++++++

+++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ ++

0.00

0.25

0.50

0.75

1.00

0 75 150 225 300 375

Weeks from Diagnosis

Su
rv

iva
l p

ro
ba

bi
lity

+ + +SMAD4 TGFß Receptors Wild type

55 (100) 28 (51) 10 (18) 5 (9) 0 (0) 0 (0)

12 (100) 11 (92) 5 (42) 2 (17) 0 (0) 0 (0)

279 (100) 186 (67) 91 (33) 29 (10) 7 (3) 1 (0)Wild type

TGFß Receptors

SMAD4 
Number at risk: n (%)

Wnt WT

Wnt Activated

0 25 50 75 100
% Cases

Poorly DifferentiatedModerately DifferentiatedWell Differentiated

0.0

0.2

0.4

0.6

0.8

KRAS TP53

%
 M

ut
at

ed

Female

Male

P = 0.001

P = 0.006

P
 =

 0
.0

0
1

Figure 21. Kaplan-Meier curves for different altera-
tions in the TGF-β pathway; SMAD4 mutations or 
deletions and mutations in TGF-β pathway receptor 
drivers in OAC (TGFBR2, ACVR2A and ACVR1B). 

Figure 22. Correlations between Drivers and Clinical Factors a. Differentiation bias in 
tumours containing events in Wnt pathway driver genes. b. Relative frequency of KRAS 
mutations and TP53 mutations driver gene events in females vs males (Fisher’s exact test).
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Targeted therapeutics using OAC driver events 
 
 

The biological distinctions between normal and cancer cells provided by driver events can be 

used to derive clinical strategies for selective cancer cell killing.  To investigate whether the 

driver events in particular genes and/or pathways might sensitise OAC cells 

to certain targeted therapeutic agents we used the Cancer 

Biomarkers database110. We calculated the percentage of our cases which contain OAC-driver 

biomarkers of response to each drug class in the database (Figure 23). Aside from TP53, 

which has been problematic to target clinically so far, we found a number of drugs with 

predicted sensitivity in >10% of OACs including EZH2 inhibitors for SWI/SNF 

mutant cancers (23%, and 28% including other SWI/SNF OAC drivers), and BET inhibitors 

which target KRAS activated and MYC amplified cases (25%). However, by far the 

most significantly effective drug was predicted to be CDK4/6 inhibitors where in >50% of 

cases harboured sensitivity causing events in the receptor tyrosine kinase (RTK) and core cell 

cycle pathways (e.g. in CCND1, CCND3 and KRAS).  

 To verify that these driver events would also sensitise OAC tumours to such inhibitors 

we used a panel of thirteen OAC or Barrett’s HGD cell lines, which share similar genomic 

changes and driver events, which have undergone whole genome sequencing111 and 

assessed them for presence of OAC driver events (Figure 24). The mutational landscape of 

these lines was broadly representative of OAC tumours. We found that the presence of cell 

cycle and or RTK activating driver events was highly correlated with response to two FDA 

approved CDK4/6 inhibitors, Ribociclib and Palbociclib and several cell lines were sensitive 

below maximum tolerated blood concentrations in humans112 (Figure 24, Table 4, Figure 25). 

Such OAC cell lines had comparable sensitivity to T47D which is derived from an ER +ve  
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Figure 24. Drug responses to CDK4/6 inhibtors in OAC in vitro models. 
a. Area under the curve (AUC) of sensitivity is shown in a panel of 13 OAC 
and BO high grade dysplasia cell lines with associated WGS and their 
corresponding driver events, based on primary tumour analysis. Also AUC 
is shown for two control lines T47D, an ER +ve breast cancer line (+ve 
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CDK4/6 activity (see figure 4). b. Response of organoid cultures to three 
FDA approved CDK4/6 inhibitors and corresponding driver events.  
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Cell line Palbociclib Ribociclib
T47D (+ve Cntrl) 112 400

OACM5.1 82 497
SKGT4 217 458

OACp4C 149 1870
ESO26 823 6114
OE33 547 1166

ESO51 1132 2567
CP-B >4000 >4000
CP-C 2518 >4000
OE19 >4000 >4000
MFD 2773 >4000
Flo-1 5574 >8000
CP-D >8000 >8000

JHesoAD 5668 >8000
MDA-468 (-ve Cntrl) >8000 >8000

GI50 (nM)

Table 4. GI50s for Palociclib and Ribociclib accross all 
cell lines. GI50s were considered calculable whe at least 
one drug concentration provided 50% growth inhibition. 
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breast cancer where CDK4/6 inhibitors have been FDA approved.  We noted three cell lines 

without sensitising events which were highly resistant, with little drug effect even at 4000 

nanomolar concentrations, similar to a known Rb mutant resistant line breast cancer cell line 

(MDA-MB-468). Two of these three cell lines harbour amplification of CCNE1 which is known 

to drive resistance to CDK4/6 inhibitors by bypassing CDK4/6 and causing Rb phosphorylation 

via CDK2 activation113. To verify these effects in a more representative model of OAC we 

treated three whole genome sequenced OAC organoid cultures96 with Palbociclib and 

Ribociclib as well as a more recently approved CDK4/6 inhibitor, Abemaciclib. As was 

observed in cell lines, cell cycle and RTK driver events were present only in the more sensitive 

organoids and CCNE1 activation in the most resistant (Figure 24). We found Abemaciclib to 

be significantly more potent in comparison to both other CDK4/6 inhibitors, both in 

organoids and cell lines (Figure 25). We note that the maximum tolerated blood doses of 

Abermaciclib achieved in the clinic were also higher than the other CDK4/6 inhibitors, within 

the range of sensitivity achieved in several cell lines and organoids cultures.  

 
 

Investigation of other targeted therapeutic options for OAC 
 
 

Although CDK4/6 inhibitors were the most promising drugs given the genetics of OAC, several 

other drugs were predicted to be effective in reasonable proportions of tumours and could 

potentially be more potent. CDK4/6is have generally been most effective used in 

combination with Oestrogen receptor antagonists in breast cancer114, although they have 

also been approved as a monotherapy115 and hence we sought a possible combination 

therapy for CDK4/6i in OAC. In a series of small studies, designed and supervised  
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Figure 25. Growth inhibition responses of 15 OAC, high grade dysplasia BO and control 
cell lines  to CDK4/6 inhibitors Palbociclib, Ribociclib. A subset of cell lines also recieved treatment 
with Abemaciclib which shows efficacy in cell lines as well as organiods (fig 6C). Data pionts indicate the 
mean and error bars the standard error of the mean (SEM) accross technical replicates.
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by the PhD candidate and with experiments mostly undertaken by pre-doctoral students in 

the lab, we investigated the efficacy of some of the other most promising therapeutics in 

vitro.  

 

 

MEK inhibitors 

 

The activation of the oestrogen receptor promotes CCND1 expression and therefore CDK4/6 

activity to drive breast cancer cell proliferation116. This may explain the high efficacy of 

CDK4/6is in combination with oestrogen receptor antagonists in breast cancers where 

CDK4/6 is highly activated. To investigate a similar combinatorial approach in OAC we chose 

MEK inhibitors which have been FDA approved for various cancer types to inhibit the 

receptor tyrosine kinase pathway, most effectively for BRAF mutant melanoma117. The 

receptor tyrosine kinase pathway, similar to the oestrogen receptor, promotes cell 

proliferation in part via upregulation of CCND1 and activation of CDK4/6 and hence may be a 

similarly effective combination in OAC as with oestrogen receptor antagonists in breast 

cancer.  

 To test this hypothesis, we first investigated the effects of two different FDA 

approved MEK inhibitors (Trametinib and Selumetinib) as a monotherapy on OAC cell lines 

(Figure 26). We found that two cell lines (OACP4C and SKGT4) were highly sensitive to both 

MEK inhibitors while all other lines were highly resistant. These two lines contained the 

highest number of driver events in the cell cycle and receptor tyrosine kinase pathways as 

compared to other lines, however many other RTK or core cell cycle activated lines were 

insensitive. Most of these MEK resistant lines (all but OACM5.1) were only moderately  
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Cell line MDA-MD231 SKGT4 OACp4C OE33 JHesoAD Flo-1 OACM5.1 ESO26 CP-D BT474
GI50 (nM) 102 157 200 >4000 >4000 >4000 >4000 >4000 >4000 >4000

AUC 63.5 56.5 58 184 193 199 199 205 204 187
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GI50 (nM) 55 45 43 >4000 >4000 >4000 >4000 >4000 >4000 >4000

AUC 0 8.43 10.8 105 128 173 182 200 202 148
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Figure 26. Efficacy of two MEK inhibitors, Selumetinib and Trametinib, in OAC in vitro OAC 
models. a. Growth inhibition accross the range of Selumetinib concentrations in variosu OAC cell 
lines. b. Growth inhibition accross the range of Trametinib concentrations in variosu OAC cell lines. c. 
Relationship between genomic drivers and selumetinib response. d. Relationship between genomic 
drivers and Trametinib response.
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sensitive to or completely resistant to CDK4/6 inhibitors. We therefore hoped that by 

combining the two drugs we might observe synergy and cause a much larger number of cell 

lines to be highly sensitive in comparison to either drug alone. We chose to anchor our most 

effective MEK inhibitor, trametinib at a low concentration (15.6 nM) and and apply a range of 

Palcobiciclib, a CDK4/6i, concentrations. However, we did not observe synergy between the 

two drugs and the CDK4/6i sensitivity of those MEK inhibitors resistant cell lines was not 

altered by addition of MEK inhibitors (Figure 27).  

 

 

EZH2/HDAC inhibitors 

 

One of the most commonly dysregulated pathways we discovered was the SWI/SNF, 

chromatin remodelling complex in 28% of OACs. Using the cancer biomarker database we 

noted that several of these SWI/SNF mutants had been observed sensitive to EZH2 inhibitors 

in other cancer types. We also noted a recent publication which showed ARID1A mutants 

were sensitive to treatment by HDAC inhibitors118. Both HDAC and EZH2 are proteins 

involved in chromatin regulation, interacting with the SWI/SNF complex. Hence, we 

hypothesised in these cases that all SWI/SNF mutants may confer sensitivity.   

 We profiled sensitivity of seven, whole genome sequenced, OAC cell lines to an EZH2 

inhibtor (EPZ-6438) and HDAC inhibitor (SAHA) (Figure 28). OAC cell lines were all resistant to 

the EZH2 inhibitor at the concentrations applied, however some sensitivity to the HDAC 

inhibitor was observed. Despite this we did not observe particularly high sensitivity in the 

SWI/SNF mutated (in SMARA4) line Flo-1. Unfortunately, only a single endogenously SWI/SNF 

mutant OAC line is known and many other factors may determine the drug response of a  
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Figure 27. Effects of combining 
treatment of CDK4/6 inhibtors with 
MEK inhibtors in OAC cell lines. 
Palbociclib and Trametinib were 
chosen as an effective CDK4/6 and 
MEK inhibtors respectively. Trametinib 
was anchored at 15.6 nM. 
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Figure 28. Drug sensitivity to EZH2 (Vorinostat) and HDAC (Tazemeto-
stat) inhibtors accross a panel of OAC cell lines. 
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specific cell line, making it difficult in this case to rule out SWI/SNF mutant as possible 

biomarkers for EZH2i response. To overcome this problem, we engineered ARID1A deletions 

in a SWI/SNF wildtype cell lines, to compare the effect of SWI/SNF mutation on EZH2 

sensitivity in the same genetic background. To do this ARID1A knock out sgRNAs were 

designed and cloned into a lenti-viral vector (Figure 29A). This vector was then transduced 

into a tet-inducible Cas9 expressing OAC cell line, SKGT4 and Cas9 expression was induced for 

7 days. Sanger sequencing then identified large deletions in the ARID1A gene (Figure 29B), 

and we observed a loss of ARID1A expression in western blots (Figure 29C). Unfortunately, 

the ARID1A mutant OAC cell lines were no more sensitive to EZH2 inhibitors than non-

targeting control transduced control lines (Figure 30) confirming that this is not a promising 

further avenue of investigation for OAC therapeutics.  

 
 
 
 
BET inhibitors 

 

BET (Bromodomain and Extra-Terminal domain) proteins promote the expression of MYC and 

inhibitors of these proteins have been found to be effective against MYC amplified cancers. 

The cancer biomarker database also highlighted studies showing KRAS activated cancers 

were also often sensitive to BET inhibitors. This may be because activation of RTK pathway 

also leads to MYC upregulation. We applied BET inhibitors to seven whole genome 

sequenced OAC cell lines and found a correlation between sensitivity and MYC amplification 

and ERBB2 activation, although the KRAS mutant line was not particularly sensitive (Figure 

31). These results are suggestive of efficacy of BET inhibitors in MYC amplified OAC (almost 

1/5 of cases) and possibly in other MYC over expressed cases which are common in MYC  
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Figure 29. CRIPSR-mediated genome 
engineering of ARID1A deletions into 
SKGT4. a. Sanger sequencing confirming 
successful cloning in backbone, sgRNA vector. 
b. Sanger sequencing showing large deletions 
around the targeted PAM site indicated in red. 
Regions around the PAM site are highlighted 
in the ARID1A sequence and the sanger 
sequencing traces. c. Western blots in whole 
cell and nuclear extracts for ARID1A showing 
loss of expression in cell lines with ARID1A 
deletions as compared to controls with 
non-targeting (NT) sgRNA. 

SKGT4+Cas9+ARID1A-sgRNA Forward Primer SKGT4+Cas9+ARID1A-sgRNA Reverse Primer

Whole Cell Lysates Nuclear Extracts

ARID1A

GAPDH

a

b

c
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Figure 30. Sensitivity of SKGT4, an OAC cell line, to SAHA, a HDAC inhibtor 
with and without CRISPR-mediated ARID1A Knock out. 
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Figure 31. Drug sensitivity to BET inhibtor (JQ-1) accross a panel of OAC 
cell lines. 
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wildtype OACs (Figure 14). It is also suggestive that ERBB2 activated cases may also be 

sensitive but a larger panel of OAC model would be required to confirm these findings.  

 
 
 



 

 

 
 

106 

Discussion 
 
 
 

Identification and characterisation of OAC drivers 
 
 

We present here a detailed catalogue of putative coding and non-coding genomic events that 

have been selected for during the evolution of oesophageal adenocarcinoma. These events 

have been characterised in terms of their relative impact, related functions, mutual 

exclusivity and co-occurrence and expression in comparison to normal tissues, producing 

insights into OAC biology.  

 

 

Limitations to driver gene detection in this study 

 

While clinical annotation and matched RNA data is a strength of this study, in some 

cases we may have been unable to assess selected variants for survival associations or 

expression changes which were detected in the full 551 cohort, due to lack of representation 

in clinically annotated or RNA matched sub cohorts.  Despite rigorous analyses to detect 

selected events, assessment of the global excess of mutations by dNdScv suggests we are 

unable to detect all events selected in OAC, similar to many other cancer types. All driver 

gene detection methods which we have used ultimately rely on driver mutation re-

occurrence within some specific genomic region or mutation class. Many of these 

undetected driver mutations are hence likely to be spread across a large number of genes14 
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whereby each is mutated at low frequency across OAC patients. This tendency for low 

frequency OAC drivers may be responsible for the low yield of MutsigCV in previous cohorts 

and may suggests that C-type cancers such as OAC, are not less ‘mutation-driven’ than M-

type cancers but rather that their mutational drivers are spread across a larger number of 

genes. This is in fact apparent from the identified list of drivers where only 4/66 are predicted 

to contain driver variants in >5% of cases (i.e. after the predicted percentage of passengers 

has been removed in each gene, TP53, ARID1A, SMAD4 and CDKN2A), in significant contrast 

to other cancer types4. Many of these low frequency drivers are well evidenced however with 

highly significant q-values and identification by multiple driver detection tools (Table 2). The 

identification of extreme very low frequency mutations, perhaps unique in 1000s of tumours, 

will require substantially different detection techniques to those which are currently in wide 

spread use and such methods are in development119 although they require validation. 

Undoubtedly many copy number drivers are also left undiscovered and validation of 

candidates identified here is an important avenue of future work. 

In addition to false negative drivers it is likely that, despite our best endeavours, some 

identified drivers in this study may also be false positives. This is inevitable given an FDR cut 

off of 0.1 was used, hence there is a 1 in 10 probability that drivers identified just below this 

significance threshold are false positives. This is also amplified by our use of many different 

diver detection tools each with FDR thresholds of 0.1. However, it should be noted that only 

a small minority of drivers have an FDR close to this threshold. In addition to these false 

positives there may also be instances where, although a gene truly is mutated more 

commonly than we would expect given our model, our model is in fact incomplete and does 

not account for an as yet unknown mutational process or informatic artefact which would 

explain these additional mutations. This is particularly likely to occur when considering non-
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coding elements in which the background mutation rate becomes more difficult to model 

due to difficulties already discussed (see Introduction, page 20). Specifically, the PCWAG 

consortium has noted several artefacts that make specific non-coding elements suspicious. 

For instance, some non-coding elements can be subject to mapping artefacts, where due to 

high homology, reads derived from a different genomic region map repeatedly to a specific, 

incorrect site in the genome and small differences in sequence between the two sites are 

detected as SNVs. This is particularly common for elements frequently repeated in the 

genome. This is clearly identified in some instances where precisely the same mutations 

apparently arise in both cancer and in normal genomes. Occasionally higher than expected 

mutation rates can also be found over large genomic regions, rather than in specific non-

coding elements, suggesting our background mutation rate model is failing in these regions.  

 

 

Comparing detected drivers to those known in the literature 

 

Previous reports on OAC drivers have had a limited yield per case. The first such 

study53 used methods that, despite being well regarded at the time, were subsequently 

discredited15. Since then, several reports, including our own, using MutSigCV54,55,57 on 

medium and large cohort sizes, have detected only a small number of mutational driver 

genes (7, 5 and 15 in each study, respectively). By using both a large cohort and more 

comprehensive methodologies, we markedly increased this figure to 66 mutational driver 

genes (excluding copy number drivers). This includes all 12 previously detected OAC drivers 

that are known drivers in other cancer types and 3/10 previously detected OAC-unique 

drivers (KCNQ3, EPHA3 and CCDC102B). All those genes identified in other OAC studies but 
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not ours are mutated at a low frequency hence this discrepancy may be due to sampling, 

however it may also represent real biological differences between different OAC cohorts. 

Such differences are apparent in the ERBB2 mutation rate which is significantly higher in the 

TCGA55 (13%) as compared to this ICGC cohort (3%) which also contains a lower rate of 

ERBB2 amplification (15%) in comparison to the TCGA (28%). It may also be due to different 

cut offs used to remove unexpressed genes, a standard step to remove false positives, which 

is implemented in different ways and was not implemented in Secrier et. al.54 for instance. 

Table 2 indicates all identified genes and which are novel in OAC.   

Detection of driver CNAs has previously relied on GISTIC to detect recurrently 

mutated regions52,54,55,60 but no analyses have been performed to determine which genes in 

these large regions are true drivers. Many of the genes annotated by such papers are unlikely 

to be CNA-only drivers from this analysis due to; their lack of expression modulation with 

CNAs (e.g. YEATS4 and MCL1), the role of recurrent heterozygous losses to drive LOH in some 

mutational drivers (ARID1A and CDH11), which has not previously been noted in GISTIC loci 

to our knowledge, or their association with fragile sites (PDE4D, WWOX, FHIT). Conversely, 

we have been able to identify novel OAC copy number drivers (e.g. CCND3, AXIN1, PPM1D 

and APC). There still remains a very large number of recurrently amplified or deleted regions 

of the genome identified by GISTIC that lack an obvious driver event (133/149 without high 

confidence drivers). As has been described many of these recurrently amplified regions 

contain relatively low-level copy number gains in comparison to those which contain high 

confidence drivers, and some seem to be mostly driven by copy number gains too small to be 

even considered as “amplifications” by our definition (>2x Ploidy). It seems likely that at least 

many of these may be caused by random mutational processes, yet to be understood, rather 

than being under selection. Similarly, deletion peaks are also generally dominated by 
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heterozygous deletions excluding fragile site regions and there are only a few regions which 

contain clear deletion driver genes (CDKN2A and SMAD4 for instance). The functional effect 

of these heterozygous deletions is also unknown. Many heterozygous deletions do correlate 

with loss of expression however and a prominent recent example of heterozygous losses at 

the HLA locus appears to have been selected for in parallel across different clones within 

various tumours120. However, given the high frequency of such heterozygous deletion 

dominated GISTIC loci it seems likely that many are also the product of random mutational 

processes rather than selection. It will be important to better understand the mutational 

processes that underlie rates of amplification and deletion across the genome so as to better 

reveal low level or infrequent CNA drivers. Much progress has been made on this in the past 

decade with regard to mutational drivers4 but most of the field still relies on GISTIC2.0, 

released in 2011 for detection of CNA drivers.  

 

 

Opportunities for further investigations 

 

A number of discoveries made in this work require further investigation. Functional 

characterisation of many of the driver genes described is needed to understand why they are 

advantageous to OAC tumours and how they modify OAC biology. Particularly interesting are 

the GI specific genes GATA4, GATA6 and MUC6 of which GATA4 modulates prognosis and all 

have expression loss during the transition from normal to tumour tissue. Biological pathways 

and processes that are selectively dysregulated deserve particular attention in this regard as 

do the gene pairs or groups with mutually exclusive or co-occurring relationships such as 

MYC and TP53 or SWI/SNF factors, suggestive of particular functional relationships. We have 
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also noted known cancer-associated mutational hotspots, likely to be true driver mutations, 

some of which lie outside the 66 mutational driver genes identified with a significantly high 

mutation rate than expected. These mutations lie in genes; ATM, SF3B1, WT1, ERCC2, 

PIK3R1, ERBB3, GNAS and IL7R. Such genes, despite being mutated at very a low frequency 

can inform us about OAC biology, and may also warrant functional investigation, particularly 

if involved in wide OAC-associated pathways such as ATM (DNA damage) or ERBB3 and 

PIK3R1 (Receptor tyrosine kinase).  

We noted a three-way association among hypermutation, Wnt activation and loss of 

immune-signaling genes such as B2M. Microsatellite-instability-driven hypermutation has 

been associated with higher immune activity74,121. However, Wnt dysregulation and mutation 

of immune-pathway genes such as B2M102 have been linked to immunological escape122, thus 

suggesting that this may be an acquired mechanism to prevent immune surveillance caused 

by hypermutation, requiring further investigation.  

We found ultra-high amplifications to be prevalent in OAC, with a high specificity for 

driver gene containing recurrently amplified regions of the genome. We also found that 

many recurrently amplified regions without known drivers were dominated by low-level copy 

number gains with many regions never reaching 2x ploidy, our definition of amplification, in 

any one case. These observations suggest integration of the absolute levels of copy number 

amplification is of use, in addition to recurrence of events, in defining regions of the genome 

amplified by selection-based mechanisms, rather than random processes. We also found that 

these high-level amplification also had features of double minute chromosomes, as has 

previously been described in OAC81. It is possible these provide a distinct mechanism for 

selective amplification given the unlinking of such DNA from the mitotic apparatus. This could 

allow random segregation of double minutes between cells at cell division, producing a large 
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amount of variability in copy number in cell of a tumour. This could allow selection to act, 

continually increasing the copy number of oncogenic double minutes to significantly greater 

levels than would otherwise be likely to occur by chance. This effect could be studied in vitro 

by single cell cloning a cell line containing such a double minute event and then measuring 

the variability in double minute copy number across the resulting population. An additional 

question of interest would be how these double minutes are replicated in division given they 

are unlikely to contain replication origins.  

In summary this thesis provides a detailed compendium of mutations and copy 

number alterations undergoing selection in OAC which have functional impact on tumour 

behaviour. This comprehensive study provides us with useful insights into the nature of OAC 

tumours. 

 

 

Using novel OAC drivers and clinical biomarkers 
 

Genotype-clinical phenotype correlations 

 

Poor prognostic implications of SMAD4 mutation have been noted in several other cancer 

types from the GI tract where SMAD4 mutations are common123,124. This has been linked to 

what is known as the “TGF-b switch”, a phenomenon noted in mouse models125, whereby 

early stage tumours are growth inhibited by TGF-b pathway activation however in later stage 

tumours TGF-b pathway activation causes growth and a more aggressive phenotype. This 

dual nature of the pathway is most commonly explained by opposing oncogenic roles of 

canonical and non-canonical TGF-b signalling. Canonical TGF-b signalling, also known as the 
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SMAD pathway in which SMAD4 and several other tumour suppressors sit, promotes CDKN2A 

and inhibits MYC expression leading to cytostasis. In contrast Non-canonical signalling via 

non-SMAD proteins can promote invasion, EMT and resistance to apoptosis126,127. A tumour 

promoting role for TGF-b signalling has also been noted in the stroma128–130. SMAD4 

mutation occurs late in the progression of CRC and OAC and correlates with the invasive 

transition62,131, hence it is thought that SMAD4 mutations, and possibly other mechanisms to 

dampen the effects of the SMAD pathway, cause the TGF-b switch by inhibiting the tumour 

suppressive nature of the pathway and allowing the oncogenic components to continue. 

Consistent with this, many tumours secrete TGF-b ligands in an autocrine fashion. This also 

explains why TGF-b receptor mutations lead to a more promising prognosis as this 

mechanism of SMAD-pathway inhibition also inhibits the non-canonical, oncogenic 

components of the pathway.  

 Much less is known about the role in tumour biology of GATA4 amplification, the 

second poor prognostic indicator we found in our study. Both GATA4 and GATA6, another 

amplified driver gene in our study, are two of three zinc finger transcription factors involved 

in the early embryogenesis of the gut, the other being GATA5, and they are particularly 

expressed in the upper gastrointestinal tract as well as in Barrett’s Oesophagus132. In fact, 

GATA4 is thought to be the first transcription factor to specify endoderm in embryogenesis. 

As well as promoting differentiation these GATA factor also has a role in tissue regeneration 

and mucin secretion. Oncogenic pathways stimulated by specifically GATA4 not GATA6 must 

promote this aggressive phenotype, given GATA6 amplification showed no correlation with 

prognosis (Figure 19).  

 It is surprising, given the presumably important role of genetic drivers in 

carcinogenesis, and hence tumour aggressiveness, and the large sample size we have 
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accrued, that we did not detect significant correlations with survival with other genetic 

drivers. Several factors may have diluted our statistical power in this regard. Firstly there is 

heterogeneity in treatment and clinical course for our cohort (Table 1) which will modulate 

patient survival and confound the effects of innate tumour aggressiveness. Secondly many of 

the genetic drivers in OAC are found at a low frequency and hence although our cohort size is 

large (379 with high quality clinical data) some of the genes assessed were still found altered 

in less than 20 cases. Thirdly to maximise our sensitivity for clinically useful biomarkers we 

chose not to assess many of the very low frequency drivers (those with driving alterations in 

<5% of cases) because by assessing too many genes we would increase our false discovery 

rate. In these low frequency genes will would have a poor power to detect prognostic 

biomarkers and even if these were detected they would be of limited clinical use because of 

their low frequency of occurrence in OAC. Lastly, recent reports have noted that NOTCH1 

mutations, although under strong selection during the evolution of oesophageal squamous 

cell carcinoma (OSCC), are actually even more frequently abundant in histologically normal 

oesophageal squamous mucosa of apparently healthy individuals, particularly in older 

generations such that develop OSCC133. The mechanism of this selection is well understood134  

where NOTCH1 mutation allows for a differentiation imbalance in stem cells towards 

renewal, but does not directly promote proliferation or other hallmarks of cancer. Therefore, 

selection for NOTCH1 mutation does occur in the clonal ancestors of OSCCs but only in 

normal oesophageal mucosa and this does not necessarily indicate it has a role in driving 

OSCCs. In fact, the rate of NOTCH1 mutation in OSCCs is actually significantly lower than in 

normal oesophageal mucosa, suggesting it could even have a preventative effect. Alternative 

explanations to this phenomenon are also plausible. It is thus possible that highly frequent 

genes under selection in OAC have a role in non-neoplastic precursors, but not OAC, and 
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hence do not modulate prognosis. CDKN2A is commonly deleted or mutations in 

approximately 1/3 of OACs making it the second most common driver in OAC, however has 

the least indication of any correlation with prognosis of all the genes which we have assessed 

(Figure 19, HR = 1.00, P = 0.93). It is also known to occur very commonly in non-dysplastic 

Barrett’s oesophagus and it is also very commonly found in cases that never-progress to 

cancer, even after long follow up58. Formal assessments of CDKN2A mutation selection in 

Barret’s in comparison to OACs have not been yet been made. 

It is also of note that we were unable to find many correlations between clinical 

factors, for example with chemotherapy treatment, and genetic drivers. Clinical 

heterogeneity as has been discussed makes these comparisons difficult and the lack of 

correlation with chemotherapy treatment, may be due to the very low rate of chemotherapy 

response in our cancer type and is consistent with our previous reports56.  

 

 

Targeted therapeutics for OAC 

 

While we observed significant genotype specific sensitivity in our OAC in vitro models to 

CDK4/6 inhibitors, it has been observed in some cancer types that TP53 mutations correlate 

with resistance to these agents135. Almost all of our cell line models are TP53 mutant apart 

from one line (OE19) which was relatively resistant despite activating events in receptor 

tyrosine kinase and core cell cycle pathways, hence, due to the available models, we cannot 

properly assess the effect of TP53 mutation on drug sensitivity. Our data suggests that most 

cell lines without activating events in RTK or cell cycle pathways are resistant, perhaps due to 

TP53 mutations, but only with these activating events in these pathways is this basal 
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resistance overcome to achieve sensitivity. However, the numbers of available models makes 

this difficult to assess.   

In vivo work with CDK4/6i has been previously published using orthotopic Xenograft 

models with three OAC cell lines136, which showed efficacy of these drugs in vivo, however 

they did not use a large enough panel of models or genotyping to assess the genomic 

biomarkers we discover in this work. This in vivo evidence allows us to consider moving these 

inhibitors straight into human clinical trials and we are incorporating these inhibitors into an 

adaptive, multi-arm clinical trial, Oelixir, which will whole genome sequence OAC cases across 

the UK and match them to appropriate targeted therapeutics.  

 

 

 

Future directions 

 

 
While OAC is a poor prognosis cancer type, significant heterogeneity of survival 

outcome makes triaging patients in treatment groups an important part of clinic practice 

which could be improved using better prognostication. Prospective clinical work to verify and 

implement SMAD4 and GATA4 biomarkers in this study would be the next stage to move 

these markers into routine practice. Whole genome or whole exome sequencing may be 

impractical for use in the clinic, however targeted NGS panels to detect mutations and copy 

number alterations have been implemented to detect genomic biomarkers in a cost effective 

and sensitive manner for some cancer types. In OAC development of a customised panel is 

likely to be required on the basis of this analysis.  
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A number of targeted therapeutics may provide clinic benefit to OAC cases based on 

their individual genomic profile. In particular CDK4/6 inhibitors deserve considerable 

attention as an option for OAC treatment as they are, by a significant margin, the treatment 

to which the most OACs harbour sensitivity-causing driver events, excluding TP53 as an 

unlikely therapeutic biomarker. The in vitro validation of these biomarkers for CDK4/6 

inhibitors in OAC is also persuasive of possible clinical benefit using a targeted approach. The 

next phase of the OCCAMS/ICGC project, the Oelixir project, is currently in the planning 

stage. In Oelixir, oesophageal adenocarcinomas diagnosed across the UK will be recruited at 

diagnosis and whole genome sequenced, irrespective of pathological cellularity, to 70X as 

part of the ICGC-ARGO project. The cases will then be matched to various clinical trials based 

on the genomics of their specific tumour. Among other compounds, we will be including 

CDK4/6 inhibitors in one of these arms and we are in discussions with partners in the 

pharmaceutical industry to enable this. We will also be analysing circulating tumour DNA and 

variety of other aspects of each tumour to build a databank for research purposes along with 

their WGS and clinical information. We will also use the Oelixir trail as a platform to 

prospectively assess our prognostic biomarkers (SMAD4 mutation or deletion and GATA4 

amplification) for validation of their clinical utility.
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Esophageal cancer is the eighth most common form of cancer 
worldwide and the sixth most common cause of cancer-related 
death1. Esophageal adenocarcinoma (EAC) is the predominant 

subtype in the West, and its incidence has been rapidly rising2. EAC 
is a highly aggressive neoplasm that usually presents at a late stage 
and is generally resistant to chemotherapy, thus leading to an overall 
5-year survival of < 15% (refs. 1,3). In comparison to other cancer 
types, it is characterized by very high mutation rates4 but also, para-
doxically, by a paucity of recurrently mutated genes. EAC displays 
marked chromosomal instability and thus may be classified as a 
C-type neoplasm, which may be driven mainly by structural varia-
tion rather than mutations5,6. Currently, the understanding of pre-
cisely which genetic events drive the development of EAC is limited, 
and consequently there are few available molecular biomarkers for 
prognosis or targeted therapeutics.

Methods to differentiate driver mutations from passenger muta-
tions use features associated with known drivers to detect regions 
of the genome in which mutations are enriched in these features7. 
The simplest of these features is the tendency of a mutation to co-
occur with other mutations in the same gene at a high frequency, 
as detected by MutSigCV8. MutSigCV has identified 12 known 
cancer genes as EAC drivers (TP53, CDKN2A, SMAD4, ARID1A, 
ERBB2, KRAS, PIK3CA, SMARCA4, CTNNB1, ARID2, PBRM1 and 
FBXW7)6,9,10. The Pancancer Analysis of Whole Genomes (PCAWG) 
International Cancer Genome Consortium (ICGC) analysis has 
also identified a significantly mutated enhancer associated with 

TP53TG1 (ref. 11). However, these analyses leave most EAC cases 
with only one known driver mutation, usually TP53. Equivalent 
analyses in other cancer types have identified three or four driv-
ers per case12,13. Similarly, detection of copy number driver events 
in EAC has relied on identifying regions of the genome recurrently 
deleted or amplified by using GISTIC (genomic identification of 
signifcant targets in cancer)9,14–17. GISTIC often identifies relatively 
large regions of the genome, and there is little indication of which 
specific gene copy number aberrations (CNAs) actually confer a 
selective advantage. There are also several non-selection-based 
mechanisms that can cause recurrent CNAs, such as genomic fragile 
sites, which have not been well differentiated from selection-based 
CNAs18. Epigenetic events such as methylation may also be impor-
tant sources of driver events in EAC but are much more difficult to 
formally assess for selection.

To address these issues, by using our esophageal ICGC project, 
we accumulated a cohort of 551 genomically characterized EACs 
with high-quality clinical annotation and associated whole-genome 
sequencing (WGS) and RNA sequencing (RNA-seq) data on cases 
with sufficient material. We augmented our ICGC WGS cohort 
with publicly available whole-exome sequencing19 and WGS20 data 
and applied several complementary driver-detection methods 
to produce a comprehensive assessment of mutations and CNAs 
under selection in EAC. We used these events to define functional 
cell processes that have been selectively dysregulated in EAC and  
identified new, verifiable and clinically relevant biomarkers for 
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prognostication. Finally, we used this compendium of EAC driver 
events to provide an evidence base for targeted therapeutics, which 
we tested in vitro.

Results
Compendium of EAC driver events and their functional impact. 
In 551 EACs, we identified a total of 11,813,333 single-nucleotide 
variants (SNVs) and small insertions or deletions (indels), with a 
median of 6.4 such mutations per megabase (Supplementary Fig. 1),  
and 286,965 CNAs. We also identified 134,697 structural variants 
in WGS cases. We use several complementary driver-detection 
tools to detect driver-associated features in mutations and CNAs 
(Fig. 1a). Each tool underwent quality control to ensure the reli-
ability of the results (Methods). These features included highly 
recurrent mutations within a gene (dNdScv21, ActivedriverWGS22 
and MutSigCV2 (ref. 8)), high-functional-impact mutations within 
a gene (OncodriveFM23 and ActivedriverWGS22), mutation cluster-
ing (OncodriveClust24, eDriver25 and eDriver3D26) and recurrent 
amplification or deletion of genes (GISTIC14) undergoing concur-
rent over- or underexpression7 (Methods and Fig. 1a).

These complementary methods produced highly significant 
agreement in calling EAC driver genes, particularly within the same 
feature type (Supplementary Fig. 2); on average, more than half the 
genes identified by one feature were also identified by other features 
(Fig. 1b). In total, 76 EAC driver genes were discovered, 71% of 
which had not previously been detected in EAC9,10,15–17,19 and 69% of 
which are known drivers in pancancer analyses21,27,28. To detect driver 

elements in the noncoding genome, we used ActiveDriverWGS22, a 
recently benchmarked method29 using both functional impact and 
recurrence to determine driver status (Fig. 1c and Supplementary 
Fig. 3). We discovered 21 noncoding driver elements by using this 
method. We recovered several known noncoding driver elements 
from the pancancer PCAWG analysis11, including the enhancer on 
chromosome 7, which is linked to TP53TG1 and has been identi-
fied in EAC; the promoter and 5′  untranslated regions of PTDSS1; 
and WDR74. We also identified new noncoding cancer driver  
elements, including in the 5′  untranslated region of MMP24  
and promoters of two related histone-encoding genes (HIST1H2BO 
and HIST1H2AM).

EAC is notable among cancer types for its high degree of chro-
mosomal instability20. Using GISTIC, we identified 149 recur-
rently deleted or amplified loci across the genome (Fig. 2a and 
Supplementary Tables 1 and 2). To determine which genes within 
these loci confer a selective advantage when they undergo CNAs, 
we used a subset of 116 cases with matched RNA-seq to detect genes 
in which homozygous deletion or amplification caused significant 
under- or overexpression, respectively (Supplementary Note and 
Supplementary Tables 3–6). Most genes in these regions showed 
no significant copy-number-associated expression change (74%), 
although work in larger cohorts suggests that we might have lacked 
the power to detect small expression changes30. We observed highly 
significant expression changes in 17 known cancer genes within 
GISTIC loci, such as ERBB2, KRAS and SMAD4, which we desig-
nated high-confidence EAC drivers (Methods). We also found five 
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tumor-suppressor genes for which copy number loss was not neces-
sarily associated with expression modulation but was tightly associ-
ated with the presence of mutations leading to loss of heterozygosity 
(LOH), for example, ARID1A and CDH11.

In a subset of GISTIC loci, we observed extremely high copy 
number amplification, commonly > 100 copies, and these events 

were highly enriched in recurrently amplified regions containing 
driver genes rather than those that seemed to contain only pas-
sengers (ploidy-adjusted copy number > 10, two-sided Wilcoxon 
rank-sum test, P =  4.97 ×  10−8) (Supplementary Fig. 4). We used 
ploidy-adjusted copy number to define amplifications, because it 
produces superior correlation with expression data than absolute 
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copy number alone. The ploidy of our samples varied from 1.4 to 
6.2 (median 2.8), and hence a ploidy-adjusted copy number cut-
off of > 10 translated into > 14 to 62 absolute copies (on average 
28 copies). To discern a mechanism for these ultrahigh amplifica-
tions, we assessed structural variants associated with these events. 
For many of these events, the extreme amplification was pro-
duced largely from a single copy number step whose edges were 
linked by structural variants with ultrahigh read support. Two 
examples are in Fig. 2b, and further randomly selected examples 
are in Supplementary Fig. 5. In the first example, circularization 
and amplification initially occurred around MYC but subsequently 
incorporated ERBB2 from an entirely different chromosome, 
and in the second, an inversion was followed by circularization 
and amplification of KRAS. Such a pattern of extrachromosomal 
amplification via double minutes has been noted in EAC20 and 
other neoplasms31, and hence we refer to this amplification class 
with ultrahigh amplification (ploidy-adjusted copy number > 10) 
as extrachromosomal-like amplifications.

We found that extrachromosomal-like amplifications had 
extreme and highly penetrant effects on expression, whereas mod-
erate amplification (ploidy-adjusted copy number > 2 but < 10) and 
homozygous deletion had highly significant (two-sided Wilcoxon 
rank-sum test, P =  9.62 ×  10−16 and P =  7.64 ×  10−11, respectively) but 
less marked effects on expression with a lower penetrance (Fig. 2c). 
This lack of penetrance was associated with low cellularity, as cal-
culated by ASCAT (allele-specific copy number analysis of tumors) 
(two-sided Wilcoxon rank-sum test, overexpression cutoff of 2.5×  
normalized expression, P =  0.011) in nonextrachromosomal-like 
amplified cases, but also probably reflects that specific genetic rear-
rangements, not just gene dosage, can modulate expression. We also 
detected several cases of overexpression or complete expression loss 
without associated copy number changes, results reflecting nonge-
netic mechanisms for driver dysregulation. One case overexpressed 
ERBB2 at 28-fold median expression but had entirely diploid copy 
number in and surrounding ERBB2, and a second case lost SMAD4 
expression (0.008-fold median expression) despite having five  
copies of SMAD4.

Landscape of driver events in EAC. The overall landscape of 
driver-gene mutations and CNAs per case is depicted in Fig. 3a. 
These genes comprise both oncogenes and tumor-suppressor genes 
activated or repressed via different mechanisms. Passenger muta-
tions occur by chance in most driver genes. For quantification, we 
used the observed/expected mutation ratios (calculated by dNdScv) 
to estimate the percentage of driver mutations in each gene and in 
different mutation classes. For many drivers, only specific muta-
tion classes seemed to be under selection. Many tumor-suppressor 
genes (ARID2, RNF43 and ARID1B, for example) are under selec-
tion for only truncating mutations, that is, splice-site, nonsense 
and frameshift indel mutations, but not missense mutations, which 
are passengers. However, oncogenes such as ERBB2 contain only 
missense drivers that form clusters that activate gene function in 
a specific manner. When a mutation class is < 100% driver muta-
tions, mutational clustering can help to define the driver versus 
passenger status of a mutation (Supplementary Fig. 6). Mutational 
hotspots in EAC or other cancer types32 (Supplementary Table 7 and 
Supplementary Data) are indicated in Fig. 3a. Novel EAC drivers of 
particular interest include B2M, which encodes a core component 
of the MHC class I complex and is a marker of acquired resistance 
to immunotherapy33; MUC6, which encodes a secreted glycoprotein 
involved in gastric acid resistance; and ABCB1, which encodes a 
channel pump protein associated with multiple instances of drug 
resistance34. Notably, several of these drivers are associated with gas-
tric and colorectal cancer13,35 (Supplementary Table 8).

The identification of driver events provides rich information 
about the molecular history of each EAC tumor. We detected a 

median of five events in driver genes per tumor (interquartile range 
of 3–7; mean, 5.6), and only a very small fraction of cases had no such 
events detected (six cases, 1%). When we removed the predicted 
percentage of passenger mutations by using the observed/expected 
mutation ratios calculated by dNdScv, one of the driver-gene-detec-
tion methods used, we found a mean of 4.4 true driver events per 
case. These driver events were derived more commonly from muta-
tions than copy number events (Fig. 3b and Supplementary Table 9). 
Using hierarchal clustering of drivers, we noted that TP53-mutant 
cases had significantly more copy number drivers (two-sided 
Wilcoxon rank-sum test, P =  0.0032, Supplementary Figs. 7 and 8). 
dNdScv also analyzes the genome-wide excess of nonsynonymous 
mutations on the basis of nonsynymous/synonymous mutation 
ratios (dN/dS) to assess the mean number of exonic driver muta-
tions per case, which was calculated at 5.4 (95% confidence interval 
(CI) 3.5–7.3) in comparison to a mean excess of 2.7 driver muta-
tions in specific EAC driver genes, thus suggesting that additional 
low-frequency driver genes are yet to be discovered in EAC.

To better understand the functional impact of driver mutations, 
we analyzed the expression of driver genes with different muta-
tion types and compared their expression to normal tissue RNA  
(Fig. 3c and Supplementary Fig. 10). Because the surrounding squa-
mous epithelium is a fundamentally different tissue from which 
EAC does not directly arise, we used duodenum and gastric car-
dia samples as gastrointestinal phenotype controls, which also have 
a columnar phenotype similar to EAC and Barrett’s. Many driver 
genes had higher expression than that in normal controls; for exam-
ple, TP53 had upregulated RNA expression in wild-type tumor tis-
sue and in cases with nontruncating mutations, but RNA expression 
was lost after gene truncation. In-depth analysis of different TP53 
mutation types revealed substantial heterogeneity within nontrun-
cating mutations (Supplementary Fig. 9). The normal tissue expres-
sion of CDKN2A suggested that CDKN2A is generally activated in 
EAC, probably because of genotoxic or other cancer-associated cel-
lular stresses36, and returns to physiologically normal levels when 
deleted. Heterogeneous expression in wild-type CDKN2A cases 
suggested a different mechanism of inhibition, perhaps methyla-
tion, in some cases. Overexpression of some oncogenes occurs with-
out genomic aberrations, such as MYC, which was overexpressed 
in MYC-wild-type EACs relative to normal tissues (Fig. 3c). Fewer 
driver genes were downregulated in EACs without genomic aberra-
tions. Three-quarters of these genes (GATA4, GATA6 and MUC6) 
are involved in the differentiated phenotype of gastrointestinal  
tissues and may be lost with tumor dedifferentiation.

Dysregulation of specific pathways and processes in EAC. 
Selection preferentially dysregulates certain functionally related 
groups of genes and biological pathways in cancer37. This phenom-
enon is highly evident in EAC, as shown in Fig. 4, which depicts 
the functional relationships between EAC drivers (Supplementary 
Note). Whereas TP53 is the dominant driver in EAC, 28% of cases 
remain TP53 wild type. MDM2 is an E3 ubiquitin ligase that targets 
TP53 for degradation. Its selective amplification and overexpres-
sion is mutually exclusive with TP53 mutation, thus suggesting that 
its degradation can functionally substitute for the effect of TP53 
mutation. Similar mutually exclusive relationships were observed 
among KRAS and ERBB2, GATA4 and GATA6, and cyclin genes 
(CCNE1, CCND1 and CCND3). Activation of the Wnt pathway 
occurred in 19% of cases, either by mutation of phosphorylated 
residues at the N terminus of β -catenin, preventing degradation, 
or loss of Wnt destruction-complex components such as APC. 
Many different chromatin-modifying genes, often belonging to the 
SWI–SNF complex, were also selectively mutated (28% of cases). 
In contrast to genes involved in other pathways, SWI–SNF genes 
were comutated significantly more often than expected by chance 
(two-sided Fisher’s exact test, q <  0.05 for each gene; Methods), thus 

NATuRE GENETiCS | VOL 51 | MARCH 2019 | 506–516 | www.nature.com/naturegenetics 509

http://www.nature.com/naturegenetics


Articles NAtURE GENEtICs

M
is

se
ns

e

S
pl

ic
e 

no
ns

en
se

In
de

l

Alterations
Missense mutation
Truncating mutation
In frame indel
Hotspot

Other nonsynonymous
Amplification
Extrachromosomal
Deletion % drivers

0 20 40 60 8010
0

Event type Driver mutation
Driver mutation + amp
Passenger mutation
Passenger mutation + amp

Normal duodenum
Normal gastric
Wild-type tumor
Nontruncating mutation
Truncating mutation
Deleted tumor
Amplified tumor
Extrachromosomal-like
amplified tumor

Amplification
Extrachromosomal
Deletion

a

b c

72%
28%
19%
19%
18%
15%
14%
14%
15%
14%
13%
12%
10%
10%
10%
6%
9%
9%
7%
6%
6%
4%
5%
5%

10%
7%

10%
6%
9%
6%
7%
6%
5%
4%
3%
3%
3%
3%
3%
3%
3%
5%
2%
2%
2%
3%
3%
5%
5%
3%
3%
1%
2%
3%
5%
1%
2%
1%
2%
2%
2%
2%
3%
2%
1%
2%
1%
1%
1%
4%
5%
2%
8%
1%
2%

0.5%

TP53
CDKN2A
KRAS
MYC
ERBB2
GATA4
CCND1
GATA6
SMAD4
CDK6
ARID1A
EGFR
CCNE1
CCND3
MUC6
MDM2
KCNQ3
APC
SMARCA4
PIK3CA
ABCB1
PTEN
MET
RNF43
DNAH7
TSHZ3
LRRK2
TRPA1
NAV3
ARID2
SLIT2
EPHA3
SCN3A
CRISPLD1
AXIN1
FBXW7
PPM1D
ACVR2A
RASA1
CD1A
CCDC102B
CHL1
LIN7A
COIL
MAP2K7
EPHA2
PBRM1
POLQ
ARID1B
CTNNB1
SIN3A
RPL22
PIK3R1
MAP3K1
NIPBL
B2M
FAM196B
HIST1H3B
TGFBR2
MBD6
BRAF
MSH3
CHD4
CDH1
GATAD1
KDM6A
CDKN1B
ACVR1B
STK11
NOTCH1
ZFHX3
JAK1
PCDH17
ELF3
GPATCH8
C3orf62

0
5

10
15
20
25
30

0 20 40 60

0

100

F
P

K
M

10

1

0.1

0.01

TP53

CDKN2A

SM
ARCA4

PIK
3C

A

EPHA2

PBRM
1

SIN
3A

POLQ

CRIS
PLD

1

HIS
T1H

3B
ELF

3
M

YC

CCNE1

M
DM

2

GATA4

GATA6

M
UC6

SPG20

0

2

4

6

M
ea

n 
ev

en
ts

/c
as

e

All d
riv

er
 e

ve
nt

s

All c
op

y n
um

be
r

M
ut

at
ion

s

Exo
m

e-
wide

 m
ut

at
ion

 e
xc

es
s

Pas
se

ng
er

 m
ut

at
ion

s i
n 

dr
ive

r g
en

es

R
ecurrent m

utation

M
utation clustering

C
opy num

ber driver

F
unctional im

pact
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suggesting that these mutations are synergistic. We also assessed 
mutual exclusivity and co-occurrence in genes in different path-
ways and between pathways themselves (Fig. 4b). Of particular note 
were co-occurring relationships between TP53 and MYC, GATA6 
and SMAD4, and Wnt and immune pathways, as well as mutually 
exclusive relationships between ARID1A and MYC, gastrointesti-
nal differentiation and receptor tyrosine kinase (RTK) pathways, 

and SWI–SNF and DNA-damage-response pathways. We con-
firmed some of these relationships in independent cohorts in dif-
ferent cancer types (Supplementary Table 10), thus suggesting that 
some may represent pancancer phenomena. Wnt dysregulation was 
associated with hypermutated cases (> 500 exonic SNVs or indels, 
two-sided Fisher’s exact test, P =  2.98 ×  10−5, odds ratio (OR) =  9.3), 
as was mutation in immune-pathway genes (B2M and JAK1, > 500 
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exonic SNVs or indels, two-sided Fisher’s exact test, P =  6.27 ×  10−6, 
OR =  35.7).

EAC driver events are correlated with clinical phenotype. Events 
undergoing selection during cancer evolution influence tumor biol-
ogy and thus affect tumor aggressiveness, response to treatment and 
patient prognosis, and other clinical parameters.

To detect prognostic biomarkers, we performed univariate Cox 
regression for events in each driver gene with driver events occur-
ring in > 5% of EACs after passenger removal (Fig. 5a). Events in 
two genes were associated with significantly poorer prognosis after 
multiple-hypothesis correction: GATA4 amplification (hazard ratio 
(HR) =  0.54, 95% CI =  0.38–0.78, P =  0.0008) and SMAD4 mutation 
or homozygous deletion (HR =  0.60, 95% CI =  0.42–0.84, P =  0.003), 
which were present in 31% of EACs (Fig. 5b). Both genes remained 
significant in multivariate Cox regression, including pathological 
tumor node metastasis staging, resection margin, curative versus 
palliative treatment intent and differentiation status (GATA4, HR 
adjusted =  0.47, 95% CI adjusted =  0.29–0.76, P =  0.002; SMAD4, 
HR adjusted =  0.61, 95% CI adjusted =  0.40–0.94, P =  0.026) (Fig. 5b  
and Supplementary Fig. 11). We validated the poor-prognosis-
associated effects of SMAD4 events in an independent The Cancer 

Genome Atlas (TCGA) gastroesophageal cohort (HR =  0.58, 95% 
CI =  0.37–0.90, P =  0.014) (Fig. 5c), and we also found that GATA4 
amplifications were prognostic in a cohort of TCGA pancreatic can-
cers (HR =  0.38, 95% CI =  0.18–0.80, P =  0.011) (Fig. 5d), the only 
available cohort containing a feasible number of GATA4 amplifi-
cations. The prognostic effect of GATA4 has been suggested in a 
previously published independent EAC cohort16, although it did not 
reach statistical significance after false discovery rate (FDR) correc-
tion in that study, and SMAD4 expression loss has been linked to 
poor prognosis in EAC38. We also noted stark survival differences 
between cases with SMAD4 events and cases in which TGF-β  recep-
tors were mutated (Fig. 5e, HR =  5.6, 95% CI =  1.7–18.2, P =  0.005), 
in keeping with the biology of the TGF-β  pathway, in which non-
SMAD TGF-β  signaling is oncogenic39.

In additional to survival analyses, we also assessed driver-gene 
events for correlation with various other clinical factors, including 
differentiation status, sex, age and treatment response. We found 
that Wnt-pathway mutations had a strong association with well-
differentiated tumors (P =  0.001, OR =  2.9, two-sided Fisher’s exact 
test, Methods and Fig. 5f). Female cases (n =  81) were enriched in 
KRAS mutation (P =  0.001, two-sided Fisher’s exact test) and TP53 
wild-type status (P =  0.006, two-sided Fisher’s exact test) (Fig. 5g). 

a b

c

d

e

f

g

0.5 1.0 2.0

HR

F
re

qu
en

t d
riv

er
 g

en
es

Frequency (%)
20
40

60

0.002GATA4

0.003SMAD4

0.13KRAS

0.23CDK6

0.26MYC

0.41TP53

0.43MDM2

0.49CCNE1

0.53ARID1A

0.55GATA6

0.66MUC6

0.70EGFR

0.71CCND1

0.82CCND3

0.82ERBB2

0.93CDKN2A

0.03

0.03

0.69

0.83

0.83

0.87

0.87

0.87

0.87

0.87

0.87

0.87

0.87

0.87

0.87

0.93

0.56

0.59

0.77

1.30

0.83

1.15

1.28

0.83

0.91

1.12

0.91

0.91

0.91

0.91

1.04

1.00

0.00

0.25

0.50

0.75

1.00

0 75 150 225 300 375

Weeks after diagnosis

S
ur

vi
va

l p
ro

ba
bi

lit
y

GATA4 SMAD4 SMAD4 + GATA4 Wild type

5 (100) 1 (20) 0 (0) 0 (0) 0 (0) 0 (0)

55 (100) 32 (58) 12 (22) 5 (9) 0 (0) 0 (0)

45 (100) 27 (60) 8 (18) 3 (7) 2 (4) 0 (0)

246 (100) 170 (69) 88 (36) 28 (11) 5 (2) 1 (0)Wild type

SMAD4 + GATA4

SMAD4

GATA4

Number at risk: n (%)

0.00

0.25

0.50

0.75

1.00

0 75 150 225 300 375

Weeks after diagnosis

S
ur

vi
va

l p
ro

ba
bi

lit
y

SMAD4 TGF-β receptors Wild type

55 (100) 28 (51) 10 (18) 5 (9) 0 (0) 0 (0)

12 (100) 11 (92) 5 (42) 2 (17) 0 (0) 0 (0)

279 (100) 186 (67) 91 (33) 29 (10) 7 (3) 1 (0)Wild type

TGF-β receptors

SMAD4

Number at risk: n (%)

Wnt
wild type

Wnt
activated

0 25 50 75 100
% cases

Poorly differentiated
Moderately differentiatedWell differentiated

0.0

0.2

0.4

0.6

0.8

KRAS TP53

%
 m

ut
at

ed

Female
Male

P = 0.001

P = 0.006

*

*

P
 =

 0.001

P q HR

Gastroesophageal TCGA

Pancreatic TCGA

SMAD4 mutant

GATA4 amplified GATA4 wild type

S
ur

vi
va

l p
ro

ba
bi

lit
y 1.00

0.75

0.50

0.25

0.00

Log rank
P = 0.013

0 20 40 60 80 10
0

Months after diagnosis
12

0

SMAD4 wild type

S
ur

vi
va

l p
ro

ba
bi

lit
y 1.00

0.75

0.50

0.25

0.00

Log rank
P = 0.008

0 20 40 60 80
Months after diagnosis

Fig. 5 | Clinical importance of driver events in 379 clinically annotated EACs. a, HRs and 95% CIs for Cox regression analysis across all driver genes with 
at least a 5% frequency of driver alterations. *q <  0.05 after Benjamini–Hochberg adjustment. b, Kaplan–Meier curves for EACs with different status of 
significant prognostic indicators (GATA4 and SMAD4). c, Kaplan–Meier curves showing verification of GATA4 prognostic value in gastrointestinal cancers 
in a pancreatic TCGA cohort. d, Kaplan–Meier curves showing verification of SMAD4 prognostic value in gastroesophageal cancers in a gastroesophageal 
TCGA cohort. e, Kaplan–Meier curves for different alterations in the TGF-β  pathway. f, Differentiation bias in tumors containing events in Wnt-pathway 
driver genes. g, Relative frequency of KRAS-mutation and TP53-mutation driver-gene events in females versus males (two-sided Fisher’s exact test).

NATuRE GENETiCS | VOL 51 | MARCH 2019 | 506–516 | www.nature.com/naturegenetics512

http://www.nature.com/naturegenetics


ArticlesNAtURE GENEtICs

This finding is of particular interest, given the male predominance 
of EAC3.

Targeted therapeutics based on EAC driver events. To investigate 
whether driver events, particularly genes and/or pathways, might 
sensitize EAC cells to certain targeted therapeutic agents, we used 
the Cancer Biomarkers database40. We calculated the percentage of 
our cases that contained EAC-driver biomarkers of response to each 
drug class in the database (Fig. 6a and full data in Supplementary 
Table 11). Aside from TP53, which has been problematic to target 
clinically to date, we found several drugs with predicted sensitiv-
ity in > 10% of EACs, including EZH2 inhibitors for some SWI–
SNF-mutant cancers (23%, and 28% including all SWI–SNF EAC 
drivers), and BET inhibitors, which target KRAS-activated and 
MYC-amplified cases (23%). However, by far the most significantly 
effective class of drug was predicted to be inhibitors of CDK4 and 
CDK6 (CDK4/CDK6): > 50% of cases had sensitivity-causing events 
in the RTK and core cell-cycle pathways (for example, in CCND1, 
CCND3 and KRAS).

To verify that these driver events would also sensitize EAC 
tumors to such inhibitors, we used a panel of 13 EAC or Barrett’s 
high-grade dysplasia cell lines that had undergone WGS41 and 
assessed them for the presence of EAC driver events (Fig. 6b).  

The mutational landscape of these lines was broadly representative of 
EAC tumors. We found that the presence of cell-cycle and/or RTK-
activating driver events was highly correlated with the response to 
two US Food and Drug Administration (FDA)-approved CDK4/
CDK6 inhibitors, ribociclib and palbociclib, and several cell lines 
were sensitive below maximum tolerated blood concentrations in 
humans42 (Fig. 6b, Supplementary Table 12 and Supplementary  
Fig. 12). Such EAC cell lines had comparable sensitivity to T47D, 
which is derived from an estrogen-receptor-positive breast cancer 
in which CDK4/CDK6 inhibitors have been FDA approved. We 
noted three cell lines that were highly resistant, with little drug effect 
even at a concentration of 4,000 nM, similarly to a known retino-
blastoma-mutant resistant breast cancer cell line (MDA-MB-468). 
Two of these three cell lines have amplification of CCNE1, which 
is known to drive resistance to CDK4/CDK6 inhibitors by bypass-
ing CDK4/CDK6 and causing retinoblastoma phosphorylation via 
CDK2 activation43. To verify these effects in a more representative 
model of EAC, we treated three whole-genome-sequenced EAC 
organoid cultures44 with palbociclib and ribociclib, as well as a more 
recently approved CDK4/CDK6 inhibitor, abemaciclib. As observed 
in cell lines, cell-cycle and RTK driver events were present in only 
the more sensitive organoids, and CCNE1 activation was present in 
only the most resistant organoid (Fig. 6c).
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Discussion
We present a detailed catalog of coding and noncoding genomic 
events that have been selected for during the evolution of EAC. 
These events were characterized in terms of their relative impact, 
related functions, mutual exclusivity and co-occurrence and expres-
sion in comparison to those in normal tissues. We used this set of 
biologically important gene alterations to identify prognostic bio-
markers and actionable genomic events for personalized medicine.

Although the matched RNA-sequencing data are a strength of 
this study, we may not have been able to assess some uncommon 
variants for expression changes if these variants, detected in the full 
551-patient cohort, were not well represented in the RNA-matched 
subcohort of 116 cases. Despite rigorous analyses to detect selected 
events, assessment of the global excess of mutations by dNdScv sug-
gested that we could not detect all mutations selected in EAC, as in 
many other cancer types21. All driver-gene-detection methods that 
we used rely on driver-mutation recurrence in a genomic region to 
some degree. Many of these undetected driver mutations are hence 
probably spread across many genes, such that each is mutated at 
very low frequency across individuals with EAC. This tendency for 
low-frequency EAC drivers may be responsible for the low yield of 
MutSigCV in previous cohorts and may suggest that C-type cancers 
such as EAC are not less ‘mutation driven’ than M-type cancers but 
instead that their mutational drivers may be spread across a larger 
number of genes5. Copy number driver-gene identification is even 
more challenging because of the large size and lower frequency of 
these events, and hence many more EAC copy number drivers may 
remain to be discovered, some of which may have been identified as 
candidates here.

Although some previous reports have attempted to detect EAC 
drivers, they have had a limited yield per case. The first such study19 
used methods that, despite being well regarded at the time, were 
subsequently discredited8. Since then, several reports, including 
our own, using MutSigCV9,10,17 on medium and large cohort sizes, 
have detected only a small number of mutational driver genes (7, 
5 and 15 in each study, respectively). By using both a large cohort 
and more comprehensive methodologies, we markedly increased 
this figure to 66 mutational driver genes (excluding copy number 
drivers). Detection of driver CNAs has previously relied on GISTIC 
to detect regions with recurrent CNAs9,14–17, but no analyses have 
been performed to determine which genes in these large regions 
are true drivers. Many of the genes annotated by such papers are 
unlikely to be copy number drivers, owing to their lack of expres-
sion modulation with CNAs (for example, YEATS4 and MCL1), 
the role of recurrent heterozygous losses in driving LOH in some 
mutational drivers (ARID1A and CDH11) or their association with 
fragile sites (PDE4D, WWOX and FHIT). In contrast, we identi-
fied new EAC copy number drivers (for example, CCND3, AXIN1, 
PPM1D and APC).

We noted a three-way association among hypermutation, 
Wnt activation and loss of immune-signaling genes such as B2M. 
Microsatellite-instability-driven hypermutation has been associ-
ated with higher immune activity45,46. However, Wnt dysregulation 
and mutation of immune-pathway genes such as B2M33 have been 
linked to immunological escape47, thus suggesting that this may be 
an acquired mechanism to prevent immune surveillance caused by 
hypermutation.

Many of the driver genes that we described will require further 
functional characterisation to understand why they are advanta-
geous to EAC tumors and how they modify EAC biology. Biological 
pathways and processes that are selectively dysregulated deserve 
particular attention in this regard, as do the gene pairs or groups 
with mutually exclusive or co-occurring relationships, such as MYC 
and TP53 or SWI–SNF factors, which are suggestive of particular 
functional relationships. Prospective clinical work to verify and 
implement SMAD4 and GATA4 biomarkers in this study would be 

worthwhile. Although EAC is a poor-prognosis cancer type, sub-
stantial heterogeneity in survival outcomes makes triaging patients 
in treatment groups an important part of clinical practice that could 
be improved through better prognostication. Several targeted thera-
peutics may provide clinical benefit for EAC cases on the basis of 
individual genomic profiles. In particular, CDK4/CDK6 inhibi-
tors deserve considerable attention as an option for EAC treatment 
because they are, by a large margin, the treatment for which the most 
EACs have sensitivity-causing driver events, excluding TP53 as an 
unlikely therapeutic biomarker at the current time. Previous work 
has noted the activity of the CDK4/CDK6 inhibitor palbociclib in a 
small number of EAC cell lines48, but biomarkers were not investi-
gated. The extensive in vitro validation of identified biomarkers for 
CDK4/CDK6 inhibitors in EAC across 16 cell lines and organoids 
suggests possible clinical benefit through use of a targeted approach.

In summary, this work provides a detailed compendium of muta-
tions and copy number alterations undergoing selection in EAC 
that have clinically relevant effects on tumor behavior. This com-
prehensive study provides insights into the nature of EAC tumors 
and should pave the way for evidence-based clinical trials in this 
poor-prognosis disease.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41588-018-0331-5.

Received: 27 April 2018; Accepted: 10 December 2018;  
Published online: 4 February 2019

References
 1. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources,  

methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, 
E359–E386 (2015).

 2. Coleman, H. G., Xie, S. H. & Lagergren, J. The epidemiology of esophageal 
adenocarcinoma. Gastroenterology 154, 390–405 (2018).

 3. Smyth, E. C. et al. Oesophageal cancer. Nat. Rev. Dis. Primers 3,  
17048 (2017).

 4. Campbell, P.J., Getz, G., Stuart, J.M., Korbel, J.O. & Stein, L.D. Pan-cancer 
analysis of whole genomes. Preprint at https://www.biorxiv.org/content/
early/2017/07/12/162784 (2017).

 5. Ciriello, G. et al. Emerging landscape of oncogenic signatures across human 
cancers. Nat. Genet. 45, 1127–1133 (2013).

 6. Secrier, M. et al. Mutational signatures in esophageal adenocarcinoma define 
etiologically distinct subgroups with therapeutic relevance. Nat. Genet. 48, 
1131–1141 (2016).

 7. Tamborero, D. et al. Comprehensive identification of mutational cancer driver 
genes across 12 tumor types. Sci. Rep. 3, 2650 (2013).

 8. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for 
new cancer-associated genes. Nature 499, 214–218 (2013).

 9. Cancer Genome Atlas Research Network. et al. Integrated genomic 
characterization of oesophageal carcinoma. Nature 541, 169–175 (2017).

 10. Lin, D. C. et al. Identification of distinct mutational patterns and new  
driver genes in oesophageal squamous cell carcinomas and adenocarcinomas. 
Gut 67, 1769–1779 (2017).

 11. Rheinbay, E. et al. Discovery and characterization of coding and non-coding 
driver mutations in more than 2,500 whole cancer genomes. Preprint at 
https://www.biorxiv.org/content/early/2017/12/23/237313 (2017).

 12. Cancer Genome Atlas Research Network. Comprehensive molecular 
characterization of urothelial bladder carcinoma. Nature 507,  
315–322 (2014).

 13. Cancer Genome Atlas Research Network. Comprehensive molecular 
characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

 14. Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization 
of the targets of focal somatic copy-number alteration in human cancers. 
Genome Biol. 12, R41 (2011).

 15. Dulak, A. M. et al. Gastrointestinal adenocarcinomas of the esophagus, 
stomach, and colon exhibit distinct patterns of genome instability and 
oncogenesis. Cancer Res. 72, 4383–4393 (2012).

 16. Frankel, A. et al. Genome-wide analysis of esophageal adenocarcinoma  
yields specific copy number aberrations that correlate with prognosis.  
Genes Chromosom. Cancer 53, 324–338 (2014).

NATuRE GENETiCS | VOL 51 | MARCH 2019 | 506–516 | www.nature.com/naturegenetics514

https://doi.org/10.1038/s41588-018-0331-5
https://doi.org/10.1038/s41588-018-0331-5
https://www.biorxiv.org/content/early/2017/07/12/162784
https://www.biorxiv.org/content/early/2017/07/12/162784
https://www.biorxiv.org/content/early/2017/12/23/237313
http://www.nature.com/naturegenetics


ArticlesNAtURE GENEtICs

 17. Secrier, M. & Fitzgerald, R. C. Signatures of mutational processes and 
associated risk factors in esophageal squamous cell carcinoma: a 
geographically independent stratification strategy? Gastroenterology 150, 
1080–1083 (2016).

 18. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration.  
Nat. Genet. 45, 1134–1140 (2013).

 19. Dulak, A. M. et al. Exome and whole-genome sequencing of esophageal 
adenocarcinoma identifies recurrent driver events and mutational complexity. 
Nat. Genet. 45, 478–486 (2013).

 20. Nones, K. et al. Genomic catastrophes frequently arise in esophageal 
adenocarcinoma and drive tumorigenesis. Nat. Commun. 5, 5224 (2014).

 21. Martincorena I. et al. Universal patterns of selection in cancer and somatic 
tissues. Cell 171, 1029–1041.e21.

 22. Wadi, L. et al. Candidate cancer driver mutations in super-enhancers and 
long-range chromatin interaction networks. Preprint at https://www.biorxiv.
org/content/early/2017/12/19/236802 (2017).

 23. Gonzalez-Perez, A. & Lopez-Bigas, N. Functional impact bias reveals cancer 
drivers. Nucleic Acids Res. 40, e169 (2012).

 24. Tamborero, D., Gonzalez-Perez, A. & Lopez-Bigas, N. OncodriveCLUST: 
exploiting the positional clustering of somatic mutations to identify cancer 
genes. Bioinformatics 29, 2238–2244 (2013).

 25. Porta-Pardo, E. & Godzik, A. e-Driver: a novel method to identify protein 
regions driving cancer. Bioinformatics 30, 3109–3114 (2014).

 26. Porta-Pardo, E., Hrabe, T. & Godzik, A. Cancer3D: understanding cancer 
mutations through protein structures. Nucleic Acids Res. 43, D968–D973 (2015).

 27. Futreal, P. A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 
177–183 (2004).

 28. Kandoth, C. et al. Mutational landscape and significance across 12 major 
cancer types. Nature 502, 333–339 (2013).

 29. Shuai, S., Gallinger, S. & Stein, L.D. DriverPower: combined burden and 
functional impact tests for cancer driver discovery. Preprint at  
https://www.biorxiv.org/content/early/2017/11/06/215244 (2017).

 30. Taylor, A. M. et al. Genomic and functional approaches to understanding 
cancer aneuploidy. Cancer Cell 33, 676–689.e3 (2018).

 31. Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour 
evolution and genetic heterogeneity. Nature 543, 122–125 (2017).

 32. Chang, M. T. et al. Identifying recurrent mutations in cancer reveals 
widespread lineage diversity and mutational specificity. Nat. Biotechnol. 34, 
155–163 (2016).

 33. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 
blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

 34. Chen, Z. et al. Mammalian drug efflux transporters of the ATP binding 
cassette (ABC) family in multidrug resistance: a review of the past decade. 
Cancer Lett. 370, 153–164 (2016).

 35. Giannakis, M. et al. Genomic correlates of immune-cell infiltrates in 
colorectal carcinoma. Cell Rep. 17, 1206 (2016).

 36. Pei, X. H. & Xiong, Y. Biochemical and cellular mechanisms of mammalian 
CDK inhibitors: a few unresolved issues. Oncogene 24, 2787–2795 (2005).

 37. Leiserson, M. D. et al. Pan-cancer network analysis identifies combinations of 
rare somatic mutations across pathways and protein complexes. Nat. Genet. 
47, 106–114 (2015).

 38. Singhi, A. D. et al. Smad4 loss in esophageal adenocarcinoma is associated 
with an increased propensity for disease recurrence and poor survival.  
Am. J. Surg. Pathol. 39, 487–495 (2015).

 39. Levy, L. & Hill, C. S. Alterations in components of the TGF-beta superfamily 
signaling pathways in human cancer. Cytokine Growth Factor Rev. 17,  
41–58 (2006).

 40. Tamborero, D. et al. Cancer genome interpreter annotates the biological and 
clinical relevance of tumor alterations. Preprint at https://www.biorxiv.org/
content/early/2017/06/21/140475 (2017).

 41. Contino, G. et al. Whole-genome sequencing of nine esophageal 
adenocarcinoma cell lines. F1000Res. 5, 1336 (2016).

 42. Liston, D. R. & Davis, M. Clinically relevant concentrations of anticancer 
drugs: a guide for nonclinical studies. Clin. Cancer Res. 23, 3489–3498 (2017).

 43. Herrera-Abreu, M. T. et al. Early adaptation and acquired resistance to 
CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res. 
76, 2301–2313 (2016).

 44. Li, X. et al. Organoid cultures recapitulate esophageal adenocarcinoma 
heterogeneity providing a model for clonality studies and precision 
therapeutics. Nat. Commun. 9, 2983 (2018).

 45. Llosa, N. J. et al. The vigorous immune microenvironment of microsatellite 
instable colon cancer is balanced by multiple counter-inhibitory checkpoints. 
Cancer Discov. 5, 43–51 (2015).

 46. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency.  
N. Engl. J. Med. 372, 2509–2520 (2015).

 47. Grasso, C. S. et al. Genetic mechanisms of immune evasion in colorectal 
cancer. Cancer Discov. 8, 730–749 (2018).

 48. Ismail, A. et al. Early G1 cyclin-dependent kinases as prognostic markers and 
potential therapeutic targets in esophageal adenocarcinoma. Clin. Cancer Res. 
17, 4513–4522 (2011).

Acknowledgements
We thank A. J. Bass and N. Waddell for providing data in Dulak et al.19 and Nones et al.20,  
respectively, which were also included in our previous publication18. Inclusion of these 
data allowed for augmentation of our ICGC cohort and greater sensitivity for the 
detection of EAC driver variants. OCCAMS was funded by a Programme Grant from 
Cancer Research UK (RG66287), and the laboratory of R.C.F. is funded by a Core 
Programme Grant from the Medical Research Council. We thank the Human Research 
Tissue Bank, which is supported by the UK National Institute for Health Research 
(NIHR) Cambridge Biomedical Research Centre, from Addenbrooke’s Hospital. 
Additional infrastructure support was provided from the Cancer Research UK–funded 
Experimental Cancer Medicine Centre.

Author contributions
R.C.F. and A.M.F. conceived the overall study. A.M.F. and S.J. analyzed the genomic data 
and performed statistical analyses. R.C.F., A.M.F. and X.L. designed the experiments. 
A.M.F., X.L. and J.M. performed the experiments. G.C. contributed to the structural 
variant analysis and data visualization. S.K. helped compile the clinical data and aided in 
statistical analyses. J.P. and S.A. produced and performed quality control on the RNA-seq 
data. E.O. aided in WGS of EAC cell lines. S.M. and N.G. coordinated the clinical centers 
and were responsible for sample collection. M.D.E. benchmarked our mutation-calling 
pipelines. M.O. led the pathological sample quality control for sequencing. L.B. and G.D. 
constructed and managed the sequencing alignment and variant-calling pipelines. R.C.F. 
and S.T. supervised the research. R.C.F. and S.T. obtained funding. A.M.F. and R.C.F. 
wrote the manuscript. All authors approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41588-018-0331-5.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to R.C.F.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

NATuRE GENETiCS | VOL 51 | MARCH 2019 | 506–516 | www.nature.com/naturegenetics 515

https://www.biorxiv.org/content/early/2017/12/19/236802
https://www.biorxiv.org/content/early/2017/12/19/236802
https://www.biorxiv.org/content/early/2017/11/06/215244
https://www.biorxiv.org/content/early/2017/06/21/140475
https://www.biorxiv.org/content/early/2017/06/21/140475
https://doi.org/10.1038/s41588-018-0331-5
https://doi.org/10.1038/s41588-018-0331-5
http://www.nature.com/reprints
http://www.nature.com/naturegenetics


Articles NAtURE GENEtICs

the Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium

Rebecca C. Fitzgerald1, Ayesha Noorani1, Paul A. W. Edwards1,2, Nicola Grehan1, Barbara Nutzinger1, 
Caitriona Hughes1, Elwira Fidziukiewicz1, Shona MacRae1, Alex Northrop1, Gianmarco Contino1, 
Xiaodun Li1, Rachel de la Rue1, Annalise Katz-Summercorn1, Sujath Abbas1, Daniel Loureda1, 
Maria O’Donovan1,4, Ahmad Miremadi1,4, Shalini Malhotra1,4, Monika Tripathi1,4, Simon Tavaré2, 
Andy G. Lynch2, Matthew Eldridge2, Maria Secrier6, Ginny Devonshire2, Juliane Perner2, 
SriGanesh Jammula2, Jim Davies7, Charles Crichton7, Nick Carroll8, Peter Safranek8, 
Andrew Hindmarsh8, Vijayendran Sujendran8, Stephen J. Hayes9,10, Yeng Ang9,11,12, Andrew Sharrocks12, 
Shaun R. Preston13, Sarah Oakes13, izhar Bagwan13, Vicki Save14, Richard J. E. Skipworth14, 
Ted R. Hupp14, J. Robert O’Neill14,15, Olga Tucker16,17, Andrew Beggs16,18, Philippe Taniere16, Sonia Puig16, 
Timothy J. underwood19,20, Robert C. Walker19,20, Ben L. Grace19, Hugh Barr21, Neil Shepherd21, 
Oliver Old21, Jesper Lagergren22,23, James Gossage22,24, Andrew Davies22,24, Fuju Chang22,24, 
Janine Zylstra22,24, ula Mahadeva22, Vicky Goh24, Francesca D. Ciccarelli24, Grant Sanders25, 
Richard Berrisford25, Catherine Harden25, Mike Lewis26, Ed Cheong26, Bhaskar Kumar26, 
Simon L. Parsons27, irshad Soomro27, Philip Kaye27, John Saunders27, Laurence Lovat28, Rehan Haidry28, 
Laszlo igali29, Michael Scott30, Sharmila Sothi31, Sari Suortamo31, Suzy Lishman32, George B. Hanna33, 
Krishna Moorthy33, Christopher J. Peters33, Anna Grabowska34, Richard Turkington35, 
Damian McManus35, Helen Coleman35, David Khoo36 and Will Fickling36

6Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, UK. 7Department of Computer Science, 
University of Oxford, Oxford, UK. 8Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK. 9Salford Royal NHS Foundation Trust, Salford, 
UK. 10Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK. 11Wigan and Leigh NHS Foundation Trust, Wigan, Manchester, 
UK. 12GI Science Centre, University of Manchester, Manchester, UK. 13Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK. 14Edinburgh 
Royal Infirmary, Edinburgh, UK. 15Edinburgh University, Edinburgh, UK. 16University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK. 
17Heart of England NHS Foundation Trust, Birmingham, UK. 18Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK. 
19University Hospital Southampton NHS Foundation Trust, Southampton, UK. 20Cancer Sciences Division, University of Southampton, Southampton, UK. 
21Gloucester Royal Hospital, Gloucester, UK. 22Guy’s and St Thomas’s NHS Foundation Trust, London, UK. 23Karolinska Institutet, Stockholm, Sweden. 
24King’s College London, London, UK. 25Plymouth Hospitals NHS Trust, Plymouth, UK. 26Norfolk and Norwich University Hospital NHS Foundation Trust, 
Norwich, UK. 27Nottingham University Hospitals NHS Trust, Nottingham, UK. 28University College London, London, UK. 29Norfolk and Waveney Cellular 
Pathology Network, Norwich, UK. 30Wythenshawe Hospital, Manchester, UK. 31University Hospitals Coventry and Warwickshire NHS, Trust, Coventry, 
UK. 32Peterborough Hospitals NHS Trust, Peterborough City Hospital, Peterborough, UK. 33Department of Surgery and Cancer, Imperial College London, 
London, UK. 34Queen’s Medical Centre, University of Nottingham, Nottingham, UK. 35Centre for Cancer Research and Cell Biology, Queen’s University 
Belfast, Belfast, UK. 36Queen’s Hospital, Romford, UK. 

NATuRE GENETiCS | VOL 51 | MARCH 2019 | 506–516 | www.nature.com/naturegenetics516

http://www.nature.com/naturegenetics


ArticlesNAtURE GENEtICs

Methods
Cohort, sequencing and calling of genomic events. 379 cases (69%) of our EAC 
cohort were derived from the EAC WGS ICGC study, for which samples are 
collected through the UK-wide Oesophageal Cancer Classification and Molecular 
Stratification (OCCAMS) consortium. The procedures for obtaining the samples, 
quality-control processes, extractions and WGS were as previously described17. 
Strict pathology consensus review was observed for these samples, with a 70% 
cellularity requirement before inclusion. Comprehensive clinical information was 
available for the ICGC–OCCAMS cases (Supplementary Table 13). In addition, 
previously published samples were included in the analysis from Dulak et al.19 (149 
whole-exome sequencing samples; 27%) and Nones et al.20 (22 WGS samples; 4%), 
for a total of 551 genome-characterized EACs. RNA-seq data were available from 
our ICGC WGS samples (116 of 379 samples). BAM files for all samples (including 
those from Dulak et al.19 and Nones et al.20) were run through our alignment 
(BWA-MEM), mutation (Strelka), copy number (ASCAT) and structural-variant 
(Manta) calling pipelines, as described17. Our methods were benchmarked against 
various other available methods and have among the best sensitivity and specificity 
for variant calling (ICGC benchmarking exercise49,50). Cell lines were subjected 
to WGS at 30×  coverage with 150-bp paired-end reads on an Illumina Hiseq4000 
instrument. Copy number calling was performed by Freec as described41. 
Mutations were called by GATK as described41 and filtered for germline variants in 
the 1000 Genomes Project, and any known oncogenic hotspots32 were recovered. 
Amplifications were defined as genes with 2×  the median copy number of the host 
chromosome or greater.

Total RNA was extracted with an All Prep DNA/RNA kit from Qiagen, and 
the quality was checked on an Agilent 2100 Bioanalyzer with an RNA 6000 nano 
kit (Agilent). A Qubit High Sensitivity RNA assay kit from Thermo Fisher was 
used for quantification. Libraries were prepared from 250 ng RNA, with a TruSeq 
Stranded Total RNA Library Prep Gold (Ribo-zero) kit, and ribosomal RNA 
(nuclear, cytoplasmic and mitochondrial rRNA) was depleted with biotinylated 
probes that selectively bind rRNA molecules, forming probe–rRNA hybrids. These 
hybrids were pulled down with magnetic beads, and rRNA-depleted total RNA was 
reverse transcribed. The libraries were prepared according to Illumina’s protocol51. 
Paired-end 75-bp sequencing on a HiSeq4000 instrument generated the paired-end 
reads. For normal expression controls, we chose gastric cardia tissue, from which 
some hypothesize Barrett’s esophagus may arise, and duodenum with intestinal 
histology, including goblet cells, which mimics the histology of Barrett’s esophagus. 
We did not use Barrett’s esophagus tissue itself as a normal control, given the 
heterogeneous and plentiful phenotypic and genomic changes that it undergoes 
early in its pathogenesis.

Analyzing EAC mutations for selection. To detect positively selected mutations 
in our EAC cohort, a multitool approach across various selection-related ‘features’ 
(recurrence, functional impact and clustering) was implemented to provide a 
comprehensive analysis. This procedure is broadly similar to those of several 
previous approaches7,11. dNdScv21, MutSigCV8, e-Driver25, ActivedriverWGS22 
and e-Driver3D26 were run with the default parameters. To run OncodriverFM23, 
Polyphen52 and SIFT53 were used to score the functional impact of each missense 
nonsynonymous mutation (from 0, indicating nonimpactful, to 1, indicating highly 
impactful); synonymous mutations were given a score of 0 impact, and truncating 
mutations (nonsense and frameshift mutations) were given a score of 1. Any gene 
that had fewer than seven mutations and was unlikely to contain detectable drivers 
with this method was not considered to decrease the FDR. OncodriveClust was 
run with a minimum cluster distance of 3, a minimum number of mutations for a 
gene to be considered of 7 and a stringent probability cutoff to find cluster seeds 
of P =  1 ×  10−13 to prevent infiltration of large numbers of probable false-positive 
genes. For all tool outputs, we undertook quality control including quantile–
quantile plots to ensure that no tool produced inflated q values, and each tool 
produced at least 30% known cancer genes. Two tools were removed from the 
analysis, owing to the failure of both of these parameters in quality control in our 
hands (Activedriver54 and Hotspot32). For three of the quality-control-approved 
tools (dNdScv, OncodriveFM and MutSigCV) for which it was possible, we also 
undertook an additional FDR-reducing analysis by recalculating q values on the 
basis of analysis of known cancer genes only21,27,28, as previously implemented21,55. 
Significance cutoffs were set at q < 0.1 for coding genes. Tool outputs were then 
put through various filters to remove any further possible false-positive genes. 
Specifically, genes for which < 50% of EAC cases had no expression (transcripts 
per kilobase million (TPM) < 0.1) in our matched RNA-seq cohort were removed 
and, with dNdScv, genes with no or only a small mutation excess (observed/
expected ratio > 1.5:1) of any single mutation type were also removed. We also 
removed two mitochondrial genes (MT-MD2 and MT-MD4) that were highly 
enriched in truncating mutations and were frequently called in OncodriveFM as 
well as other tools, possibly because of the different mutational dynamics caused 
by reactive oxygen species from the mitochondrial electron-transport chain and 
the high number of mitochondrial genomes per cell, which enables significantly 
more heterogeneity. These factors prevent the tools used from calculating an 
accurate null model for these genes, but they may be worthy of functional 
investigation. ActiveDriverWGS calculates an expected background mutation rate 
on the basis of mutation rates of local, adjacent sequence for each tested element 

while correcting for the differential mutation rates within each trinucleotide 
context; it thus tests observed mutation rates against this predicted background 
for each element. ActiveDriverWGS also detects elements with mutations 
enriched in binding-site regions (high impact). For noncoding elements called by 
ActivedriverWGS, filtering for expression or dN/dS was not possible, and despite 
recent benchmarking29, such methods are not well established. Hence, we took a 
more cautious approach with general significance cutoffs of q < 0.001 and q < 0.1  
for previously identified elements in other cancer types11. q values were not 
recalculated for previously identified elements alone, as with coding genes, but  
the q < 0.1 cutoff was calculated on the basis of P values for all assessed elements. 
To calculate exome-wide mutational excess, we removed hypermutated cases  
(> 500 exonic mutations) and applied the global nonsynonymous dN/dS ratios 
to all dNdScv-annotated mutations, excluding ‘synonymous’ and ‘no SNV’ 
annotations, as described in Martincorena et al.21.

Detecting selection in copy number values. ASCAT raw copy number values 
(CNVs) were used to detect frequently deleted or amplified regions of the genome 
with GISTIC2.0 (ref. 14). To determine which genes in these regions confer a 
selective advantage, we examined the correlation of CNVs from each gene within 
GISTIC-identified loci with TPM from matched RNA-seq in a subcohort of 116 
samples and with mutations across all 551 samples. To call copy numbers in genes 
that spanned multiple copy number segments in ASCAT, we considered the total 
number of full copies of the gene (the lowest total copy number). Occasionally 
ASCAT is unable to confidently call the copy number in highly aberrant genomic 
regions. We found that the expression of genes in such regions matched well with 
what we would expect given the surrounding copy number, and hence we used the 
mean of the two adjacent copy number fragments to call copy number for the gene 
in question. We found that amplification peak regions identified by GISTIC2.0 
varied significantly in precise location both in analysis of different subcohorts and 
in comparison to published GISTIC data from EACs9,15,16. A peak would often sit 
next to, but not overlap, a well-characterized oncogene or tumor suppressor. To 
account for this tendency, we widened the amplification peak sizes upstream and 
downstream by twice the size of each peak to ensure that we captured all possible 
drivers. Our expression analysis allowed us to then remove false positives from this 
wider region, and called drivers were still highly enriched in genes closer to the 
centers of GISTIC peak regions.

To detect genes for which amplification was correlated with increased 
expression, we compared the expression of samples with a high copy number for 
that gene (above the tenth-percentile copy number/ploidy) with those that had a 
normal copy number (median ± 1), by using the Wilcoxon rank-sum test with the 
specific alternative hypothesis that a high copy number would lead to increased 
expression. q values were then generated with the Benjamini–Hochberg method, 
not considering genes without significant expression in amplified samples (at least 
75% amplified samples with TPM > 0.1) and considering q < 0.001 as significant. 
We also included an additional known driver-gene-only FDR-reduction analysis, 
as we previously described for mutational drivers, with q < 0.1 considered 
significant, given the additional evidence of these genes in other cancer types. We 
also included MYC despite its P =  0.11 for expression correlation resulting from 
frequent nonamplification-associated overexpression of MYC compared with the 
expression in normal controls. Otherwise, MYC was well evidenced for inclusion 
as an EAC driver by a proximity to the peak center (top four genes) and its high 
rate of amplification (19%). We used the same approach to detect genes for which 
homozygous deletion was correlated with expression loss, comparing cases with 
copy number =  0 to all others. Large expression modulation was a highly specific 
marker for known copy number driver genes and was not a widespread feature in 
most recurrently CNV genes. Whereas expression modulation is a requirement 
for selection of CNV-only drivers, it is not sufficient evidence alone, and hence 
we grouped such genes into those previously characterized as drivers in other 
cancer types (high-confidence EAC copy number drivers) and other genes 
(candidate EAC copy number drivers), which await functional validation. We 
used fragile-site regions detected in Wala et al.56. We also defined regions that 
might be recurrently heterozygously deleted, without any significant expression 
modulations, to allow for LOH of tumor-suppressor-gene mutations. To do so, we 
analyzed genes with at least five mutations for association between LOH (ASCAT 
minor allele =  0) and mutation with Fisher’s exact test and generated q values with 
the Benjamini–Hochberg method. The analysis was repeated on known cancer 
genes only for decreased FDR, and q < 0.1 was considered significant for both 
analyses. For those high-confidence drivers, we chose to define amplification as 
total copy number/ploidy (referred to as ploidy-adjusted copy number) because 
this procedure produces superior correlation with expression. We chose a cutoff 
for amplification at ploidy-adjusted copy number =  2, as has been previously used, 
thus resulting in a highly significant increase in expression in our copy number 
driver genes when amplified.

Pathways and relative distributions of genomic events. The relative distribution 
of driver events in each pathway was analyzed with Fisher’s exact test in the case 
of pairwise comparisons including wild-type cases. In the case of multigene 
comparisons, such as those for cyclins, we calculated the P value and OR for each 
gene compared to all other genes in the group with a two-sided Fisher’s exact test 
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with Benjamini–Hochberg correction, and combined the resulting q values with 
the Fisher method; genes without OR > 2 for co-occurrence and < 0.5 for mutual 
exclusivity were removed. For this analysis, we also removed highly mutated cases 
(> 500 exonic mutations, 41 of 551), because they bias the distribution of mutations 
toward co-occurrence. To ensure that a nonrandom distribution of mutations 
across samples did not affect the strong co-occurrence of SWI–SNF genes (all 
genes q < 0.05 before q values were combined), we repeated the analysis, randomly 
iterating 30,000 times over all the other eight driver-gene combinations (excluding 
SWI–SNF genes) and found that only 0.01% (4 of 30,000) of random combinations 
had all genes q < 0.05, as found in SWI–SNF genes. We then performed these 
analyses across all pairs of driver genes with two-sided Fisher’s exact tests and 
Benjamini–Hochberg multiple-hypothesis correction (q values < 0.1 are shown in 
Fig. 4b). We validated these relationships in independent TGCA cohorts of other 
gastrointestinal cancers in which we found cohorts with reasonable numbers of the 
genomic events in question (this procedure was not possible for GATA4/GATA6, 
for instance) with the cBioportal web interface tool57.

Correlation of genomics with clinical phenotype. To find genomic markers 
for prognosis, we performed univariate Cox regression for those driver genes 
present in > 5% of cases (n =  16) along with Benjamini–Hochberg false-discovery 
correction. We considered only these genes to reduce our FDR, because other 
genes were unlikely to affect clinical practice, given their low frequency in EAC. We 
validated SMAD4 in the TCGA gastroesophageal cohort, which has a comparable 
frequency of these events but notably is composed mainly of gastric cancers, and 
GATA4 in the TCGA pancreatic cohort with the cBioportal web interface tool. We 
also validated these markers as independent predictors of survival with respect 
to each other and to stage with a multivariate Cox regression in our 379 clinically 
annotated ICGC cohort. When assessing genomic correlates with differentiation 
phenotypes, we found only very few cases with well differentiated phenotypes 
(< 5% of cases), and hence for statistical analyses, we collapsed these cases with 
moderate differentiation to allow a binary Fisher’s exact test to compare poorly 
differentiated and well-differentiated or moderately differentiated phenotypes.

Therapeutics. The cancer-biomarker database was filtered for drugs linked to 
biomarkers found in EAC drivers, and Supplementary Table 8 was constructed 
with the cohort frequencies of EAC biomarkers. Ten EAC cell lines (SKGT4, 
OACP4C, OACM5.1, ESO26, ESO51, OE33, MFD, OE19, Flo-1 and JHesoAD) and 
three Barrett’s esophagus high-grade dysplasia cell lines (CP-B, CP-C and CP-D) 
with WGS data41 were used in proliferation assays to determine drug sensitivity 
to CDK4/CDK6 inhibitors, palbociclib (Biovision) and ribociclib (Selleckchem). 
Cell lines were grown in their normal growth media. Proliferation was measured 
with an Incucyte live-cell analysis system (Incucyte ZOOM Essen Biosciences). 
Each cell line was plated at a starting confluence of 10%, and the growth rate 
was measured over 4–7 d, depending on the basal proliferation rate (until 90% 
confluent in DMSO control). For each cell line–drug combination, concentrations 
of 16, 64, 250, 1,000 and 4,000 nM in 0.3% dimethylsulfoxide (DMSO) were 
used and compared to 0.3% DMSO only. Each condition was performed in at 
least triplicate (technical replicates) and for 12 of 12 randomly chosen cell lines, 
the drug combinations were successfully replicated with biological replicates 
(independent experiments). The time period of treatment to growth cessation in 
the control (0.3% DMSO) condition was used to calculate half-maximal growth 
inhibition (GI50) and area under the curve (AUC). Accurate GI50 values could not 
be calculated in cases in which a cell line had > 50% proliferation inhibition even 

with the highest drug concentration, and hence AUC was used to compare cell-
line sensitivity. T47D had a highly similar GI50 for palbociclib to that previously 
calculated in other studies (112 nM versus 127 nM)58. Primary organoid cultures 
were derived from EAC cases included in the OCCAMS–ICGC sequencing 
study. Detailed organoid culture and derivation methods have been described44. 
Regarding the drug treatment, the seeding density for each organoid line was 
optimized to ensure cell growth in the logarithmic growth phase. Cells were seeded 
in complete medium for 24 h and then treated with compounds at five-point four-
fold serial dilutions for 6 or 12 d. Cell viability was assessed with CellTiter-Glo 
(Promega) after drug incubation.

Ethics. The study was registered (UKCRNID 8880) and approved by the 
Institutional Ethics Committees (REC 07/H0305/52 and 10/H0305/1), and all 
subjects gave individual informed consent.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability
Code associated with the analysis is available upon request.

Data availability
The WGS and RNA expression data can be found at the European Genome-
phenome Archive under accession numbers EGAD00001004417 and 
EGAD00001004423, respectively.
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