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We study the qualitative properties of optimal regularisation parameters in 
variational models for image restoration. The parameters are solutions of bilevel 
optimisation problems with the image restoration problem as constraint. A general 
type of regulariser is considered, which encompasses total variation (TV), total 
generalised variation (TGV) and infimal-convolution total variation (ICTV). We 
prove that under certain conditions on the given data optimal parameters derived 
by bilevel optimisation problems exist. A crucial point in the existence proof turns 
out to be the boundedness of the optimal parameters away from 0 which we prove 
in this paper. The analysis is done on the original – in image restoration typically 
non-smooth variational problem – as well as on a smoothed approximation set 
in Hilbert space which is the one considered in numerical computations. For the 
smoothed bilevel problem we also prove that it Γ converges to the original problem 
as the smoothing vanishes. All analysis is done in function spaces rather than on 
the discretised learning problem.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper we consider the general variational image reconstruction problem that, given parameters 
α = (α1, . . . , αN ), N ≥ 1, aims to compute an image

uα ∈ arg min
u∈X

J(u;α).

The image depends on α and belongs in our setting to a generic function space X. Here J is a generic 
energy modelling our prior knowledge on the image uα. The quality of the solution uα of variational imaging 
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approaches like this one crucially relies on a good choice of the parameters α. We are particularly interested 
in the case

J(u;α) = Φ(Ku) +
N∑
j=1

αj‖Aju‖j ,

with K a generic bounded forward operator, Φ a fidelity function, and Aj linear operators acting on u. The 
values Aju are penalised in the total variation or Radon norm ‖μ‖j = ‖μ‖M(Ω;Rmj ), and combined constitute 
the image regulariser. In this context, α represents the regularisation parameter that balances the strength 
of regularisation against the fitness Φ of the solution to the idealised forward model K. The size of this 
parameter depends on the level of random noise and the properties of the forward operator. Choosing it too 
large results in over-regularisation of the solution and in turn may cause the loss of potentially important 
details in the image; choosing it too small under-regularises the solution and may result in a noisy and 
unstable output. In this work we will discuss and thoroughly analyse a bilevel optimisation approach that 
is able to determine the optimal choice of α in J(; α).

Recently, bilevel approaches for variational models have gained increasing attention in image processing 
and inverse problems in general. Based on prior knowledge of the problem in terms of a training set of 
image data and corresponding model solutions or knowledge of other model determinants such as the noise 
level, optimal reconstruction models are conceived by minimising a cost functional – called F in the sequel 
– constrained to the variational model in question. We will explain this approach in more detail in the next 
section. Before, let us give an account of the state of the art of bilevel optimisation for model learning. In 
machine learning bilevel optimisation is well established. It is a supervised learning method that optimally 
adapts itself to a given dataset of measurements and desirable solutions. In [41,42,28,29,18,19], for instance 
the authors consider bilevel optimisation for finite dimensional Markov random field (MRF) models. In 
inverse problems the optimal inversion and experimental acquisition setup is discussed in the context of 
optimal model design in works by Haber, Horesh and Tenorio [34,32,33], as well as Ghattas et al. [13,8]. 
Recently parameter learning in the context of functional variational regularisation models also entered the 
image processing community with works by the authors [23,14], Kunisch, Pock and co-workers [37,17] and 
Chung et al. [20]. A very interesting contribution can be found in a preprint by Fehrenbach et al. [31] where 
the authors determine an optimal regularisation procedure introducing particular knowledge of the noise 
distribution into the learning approach.

Apart from the work of the authors [23,14], all approaches for bilevel learning in image processing so far 
are formulated and optimised in the discrete setting. Our subsequent modelling, analysis and optimisation 
will be carried out in function space rather than on a discretisation of the variational model. In this context, 
a careful analysis of the bilevel problem is of great relevance for its application in image processing. The 
structure of optimal regularisers is important, among others, for the development of solution algorithms. 
In particular, if the parameters are bounded and lie in the interior of a closed connected set, then efficient 
optimisation methods can be used for solving the problem. Previous results on optimal parameters for 
inverse problems with partial differential equations have been obtained in, e.g., [16].

In this paper we study the qualitative structure of regularisation parameters arising as solutions from the 
bilevel optimisation of variational models. In our framework the variational models are typically convex but 
non-smooth and posed in Banach spaces. The total variation and total generalised variation regularisation 
models are particular instances. Alongside the optimisation of the non-smooth variational model, we also 
consider a smoothed approximation in Hilbert space which is typically the one considered in numerical 
computation. Under suitable conditions, we prove that – for both the original non-smooth optimisation 
problem as well as the regularised Hilbert space problem – the optimal regularisers are bounded and lie 
in the interior of the positive orthant. The conditions necessary to prove this turn out to be very natural 
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conditions on the given data in the case of an L2 cost functional F . Indeed, for the total variation regularisers 
with L2-squared cost and fidelity, we will merely require

TV(f) > TV(f0),

with f0 the ground-truth and f the noisy image. That is, the noisy image should oscillate more in terms of 
the total variation functional, than the ground-truth. For second-order total generalised variation [11], we 
obtain an analogous condition. Apart from the standard L2 costs, we also discuss costs that constitute a 
smoothed L1 norm of the gradient of the original data – we will call this the Huberised total variation cost 
in the sequel – typically resulting in optimal solutions superior to the ones minimising an L2 cost. For this 
case, however, the interior property of optimal parameters could be verified for a finite dimensional version 
of the cost only. Eventually, we also show that as the numerical smoothing vanishes the optimal parameters 
for the smoothed models tend to optimal parameters of the original model.

The results derived in this paper are motivated by problems in image processing. However, their applica-
bility goes well beyond that and can be generally applied to parameter estimation problems of variational 
inequalities of the second kind, for instance the parameter estimation problem in Bingham flow [22]. Previ-
ous analysis in this context either required box constraints on the parameters in order to prove existence of 
solutions or the addition of a parameter penalty to the cost functional [3,6,7,23]. In this paper, we require 
neither but rather prove that under certain conditions on the variational model and for reasonable data 
and cost functional, optimal parameters are indeed positive and guaranteed to be bounded away from 0
and ∞. As we will see later this is enough for proving existence of solutions and continuity of the solution 
map. The next step from our work in this here is deriving numerically useful characterisations of solutions 
to the ensuing bi-level programs. For the most basic problems considered herein this has been done in [23]
under numerical H1 regularisation. We will consider in the follow-up work [24] the optimality conditions 
for higher-order regularisers and the new cost functionals introduced in this work. For an extension charac-
terisation of optimality systems for bi-level optimisation in finite dimensions, we point the reader to [27] as 
a starting point.

Outline of the paper In Section 2 we introduce the general bilevel learning problem, stating assumptions on 
the setup of the cost functional F and the lower level problem given by a variational regularisation approach. 
The bilevel problem is discussed in its original non-smooth form (P) as well as in a smoothed form in a 
Hilbert space setting (Pγ,ε) in Section 2.2, that will be the one used in the numerical computations. The 
bilevel problem is put in context with parameter learning for non-smooth variational regularisation models, 
typical in image processing, by proving the validity of the assumptions for examples such as TV, TGV
and ICTV regularisation. The main results of the paper – existence of positive optimal parameters for L2, 
Huberised TV and L1 type costs and the convergence of the smoothed numerical problem to the original 
non-smooth problem – are stated in Section 3. Auxiliary results, such as coercivity, lower semicontinuity 
and compactness results for the involved functionals, is the topic of Section 4. Proofs for existence and 
convergence of optimal parameters are contained in Section 5. The paper finishes with a brief numerical 
discussion in Section 6.

2. The general problem setup

Let Ω ⊂ R
m be an open bounded domain with Lipschitz boundary. This will be our image domain. 

Usually Ω = (0, w) × (0, h) for w and h the width and height of a two-dimensional image, although no 
such assumptions are made in this work. Our noisy or corrupted data f is assumed to lie in a Banach 
space Y , which is the dual of Y∗, while our ground-truth f0 lies in a general Banach space Z. Usually, in 
our model, we choose Z = Y = L2(Ω; Rd). This holds for denoising or deblurring, for example, where the 
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data is just a corrupted version of the original image. Further d = 1 for grayscale images, and d = 3 for 
colour images in typical colour spaces. For sub-sampled reconstruction from Fourier samples, we might use 
a finite-dimensional space Y = C

n – there are however some subtleties with that, and we refer the interested 
reader to [1].

As our parameter space for regularisation functional weights we take

P∞
α := [0,∞]N ,

where N is the dimension of the parameter space, that is α = (α1, . . . , αN ), N ≥ 1. Observe that we allow 
infinite and zero values for α. The reason for the former is that in case of TGV2, it is not reasonable to 
expect that both α1 and α2 are bounded; such conditions would imply that TGV2 performs better than 
both TV2 and TV. But we want our learning algorithm to find out whether that is the case! Regarding 
zero values, one of our main tasks is proving that for reasonable data, optimal parameters in fact lie in the 
interior

intP∞
α = (0,∞]N .

This is required for the existence of solutions and the continuity of the solution map parametrised by 
additional regularisation parameters needed for the numerical realisation of the model. We also set

Pα := [0,∞)N

for some occasions when we need a bounded parameter.

Remark 1. In much of our treatment, we could allow for spatially dependent parameters α. However, the 
parameters would need to lie in a finite-dimensional subspace of C0(Ω; RN ) in our theory. Minding our 
general definition of the functional Jγ,0( · ; α) below, no generality is lost by taking α to be vectors in RN . 
We could simply replace the sum in the functional as a larger sum modelling integration over parameters 
with values in a finite-dimensional subspace of C0(Ω; RN ).

In our general learning problem, we look for α = (α1, . . . , αN ) solving for some convex, proper, weak* 
lower semicontinuous cost functional F : X → R the problem

min
α∈P∞

α

F (uα) (P)

subject to

uα ∈ arg min
u∈X

J(u;α), (Dα)

with

J(u;α) := Φ(Ku) +
N∑
j=1

αj‖Aju‖j .

Here we denote for short the total variation norm

‖μ‖j := ‖μ‖M(Ω;Rmj ), (μ ∈ M(Ω;Rmj )).

The following covers our assumptions with regard to A, K, and Φ. We discuss various specific examples in 
Section 2.1 immediately after stating the assumptions.
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Assumption A-KA (Operators A and K). We assume that Y is a Banach space, and X a normed linear 
space, both themselves duals of Y∗ and X∗, respectively. We then assume that the linear operators

Aj : X → M(Ω;Rmj ), (j = 1, . . . , N),

and

K : X → Y,

are bounded. Regarding K, we also assume the existence of a bounded a right-inverse K† : R(K) → X, 
where R(K) denotes the range of the operator K. That is, KK† = I on R(K). We further assume that

‖u‖′X :=
N∑
j=1

‖Aju‖j + ‖Ku‖Y (1)

is a norm on X, equivalent to the standard norm. In particular, by the Banach–Alaoglu theorem, any 
sequence {ui}∞i=1 ⊂ X with supi ‖ui‖′X < ∞ possesses a weakly* convergent subsequence.

Assumption A-Φ (The fidelity Φ). We suppose Φ : Y → (−∞, ∞] is convex, proper, weakly* lower semi-
continuous, and coercive in the sense that

Φ(v) → +∞ as ‖v‖Y → +∞. (2)

We assume that 0 ∈ dom Φ, and the existence of f ∈ arg minv∈Y Φ(v) such that f = Kf̄ for some f̄ ∈ X. 
Finally, we require that either K is compact, or Φ is continuous and strongly convex.

Remark 2. When f̄ exists, we can choose f̄ = K†f .

Remark 3. Instead of 0 ∈ dom Φ, it would suffice to assume, more generally, that dom Φ ∩
⋂N

j=1 kerAj 	= ∅.

We also require the following technical assumption on the relationship of the regularisation terms and the 
fidelity Φ. Roughly speaking, in most interesting cases, it says that for each �, we can closely approximate 
the noisy data f with functions fδ,� of “order �”. The order here is not directly in terms of derivatives, but 
as defined by the operators {Aj} through the conditions (3): fδ,j = 0 for j 	= �, so there is no information 
at other orders, while A�fδ,� is bounded, so the information at order � is bounded.

Assumption A-δ (Order reduction). We assume that for every � ∈ {1, . . . , N} and δ > 0, there exists f̄δ,� ∈ X

such that

Φ(Kf̄δ,�) < δ + inf Φ, (3a)

‖A�f̄δ,�‖� < ∞, and, (3b)∑
j �=�

‖Aj f̄δ,�‖j = 0. (3c)

Example 1 (Orders related to TGV2 and ICTV). For ICTV, as formulated in Example 6, “order 2” means 
that fδ,2 ∈ BV2(Ω), while “order 1” means fδ,1 ∈ BV(Ω). For the definition of BV2(Ω), we refer to [26]. 
For TGV2, as formulated in Example 5, “order 1” is likewise BV(Ω), but “order 2” is the space of functions 
fδ,2 ∈ W 1,1(Ω), such that ∇fδ,2 ∈ BD(Ω).
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2.1. Specific examples

We now discuss a few examples to motivate the abstract framework above.

Example 2 (Squared L2 fidelity). With Y = L2(Ω), f ∈ Y , and

Φ(v) = 1
2‖v − f‖2

Y ,

we recover the standard L2-squared fidelity, modelling Gaussian noise. On a bounded domain Ω, Assump-
tion A-Φ follows immediately.

With fidelity functionals as in Example 2, the operator K has a double-role in (Dα). It models any 
forward operator T , such as a blurring kernel or a sub-sampled Fourier transform, but also acts to extract 
the interesting components of u in the correct space. In its latter role, the operator is also required within F . 
We therefore introduce the operator K0 for that purpose. Then for denoising we want to take K = K0, but 
for other image processing tasks, we would combine this with the forward operator T , taking K = TK0.

Example 3 (Cost functionals). For the cost functional F , given noise-free data f0 ∈ Z = L2(Ω), we consider 
in particular the L2 cost

FL2
2
(u) := 1

2‖f0 −K0u‖2
L2(Ω),

as well as the Huberised total variation cost

FL1
η∇(u) := ‖D(f0 −K0u)‖γ

with noise-free data f0 ∈ Y := BV(Ω). For the definition of the Huberised total variation, we refer to 
Section 2.2 on the numerics of the bi-level framework (P). In the numerical counterpart [24] to the present 
paper, we have observed that the Huberised total variation cost produces improved results compared to the 
L2 cost when measured with the SSIM [46], while having the advantage of being convex unlike the SSIM.

Example 4 (Total variation denoising). We take K0 as the embedding of X = BV(Ω) ∩L2(Ω) into Z = L2(Ω), 
and A1 = D. We equip X with the norm

‖u‖X := ‖u‖L2(Ω) + ‖Du‖M(Ω;Rn).

This makes K0 a bounded linear operator. If the domain Ω has Lipschitz boundary, and the dimension 
satisfies n ∈ {1, 2}, the space BV(Ω) continuously embeds into L2(Ω) [2, Corollary 3.49]. Therefore, we may 
identify X with BV(Ω) as a normed space. Otherwise, if n ≥ 3, without going into the details of constructing 
X as a dual space,1 we define weak* convergence in X as combined weak* convergence in BV(Ω) and L2(Ω). 
Any bounded sequence in X will then have a weak* convergent subsequence. This is the only property we 
would use from X being a dual space.

Now, combined with Example 2 and the choice K = K0, Y = Z, we get total variation denoising for the 
sub-problem (Dα). Assumption A-KA holding is immediate from the previous discussion. Assumption A-δ
is also easily satisfied, as with f ∈ BV(Ω) ∩ L2(Ω), we may simply pick f̄δ,1 = f for the only possible 
case � = 1. Observe however that K is not compact unless n = 1, see [2, Corollary 3.49], so the strong 

1 This can be achieved by allowing φ0 ∈ L2(Ω) instead of the C0(Ω) in the construction of [2, Remark 3.12].
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convexity of Φ is crucial here. If the data f ∈ L∞(Ω), then it is well-known that solutions û to (Dα)
satisfy ‖û‖L∞(Ω) ≤ ‖f‖L∞(Ω). We could therefore construct a compact embedding by adding some artificial 
constraints to the data f . This changes in the next two examples, as boundedness of solutions for higher-order 
regularisers is unknown; see also [43].

Example 5 (Second order total generalised variation denoising). We take

X = (BV(Ω) ∩ L2(Ω)) × BD(Ω),

the first part with the same topology as in Example 4. We also take Z = L2(Ω), denote u = (v, w), and set

K0(v, w) = v, A1u = Dv − w, and A2u = Ew

for E the symmetrised differential. With K = K0 and Y = Z, this yields second-order total generalised 
variation (TGV2) denoising [11] for the sub-problem (Dα). Assuming for simplicity that α1, α2 > 0 are 
constants, to show Assumption A-KA, we recall from [12] the existence of a constant c = c(Ω) such that

c−1‖v‖BV(Ω) ≤ ‖v‖L1(Ω) + ‖Dv‖M(Ω;Rn) ≤ c‖v‖BV(Ω),

where the norm

‖v‖BV(Ω) := TGV2
(1,1)(v) + ‖v‖L1(Ω).

We may thus approximate

‖w‖L1(Ω;Rn) ≤ ‖Dv − w‖M(Ω;Rn) + ‖Dv‖M(Ω;Rn)

≤ ‖Dv − w‖M(Ω;Rn) + c
(
TGV2

(1,1)(v) + ‖u‖L1(Ω)
)

≤ (1 + c)
(
‖Dv − w‖M(Ω;Rn) + ‖Ew‖M(Ω;Rn×n)

)
+ c‖v‖L1(Ω).

For some C > 0, it follows

‖u‖X =
(
‖v‖L2(Ω) + ‖Dv‖M(Ω;Rn)

)
+
(
‖w‖L1(Ω;Rn) + ‖Ew‖M(Ω;Rn×n)

)
≤ C

(
‖Dv − w‖M(Ω;Rn) + ‖Ew‖M(Ω;Rn×n) + ‖v‖L2(Ω)

)
= C

(
N∑
i=1

‖Aju‖j + ‖Ku‖L2(Ω)

)
.

This shows ‖u‖X ≤ C‖u‖′X . The inequality ‖u‖X ≥ ‖u‖′X follows easily from the triangle inequality, namely

‖u‖X ≥ ‖v‖L2(Ω) + ‖Dv − w‖M(Ω;Rn) + ‖Ew‖M(Ω;Rn×n).

Thus ‖ · ‖′X is equivalent to ‖ · ‖X .
Next we observe that clearly Dvk−wk ∗⇀ Dv−w in M(Ω; Rn) and Ewk ∗⇀ Ew in M(Ω; Rn×n) if vk ∗⇀ v

in BV(Ω) and wk ∗⇀ w weakly* in BD(Ω). Thus A1 and A2 are weak* continuous. Assumption A-KA follows.
Consider then the satisfaction of Assumption A-δ. If � = 1, we may then pick f̄δ,1 = (f, 0), in which case 

A1fδ,1 = Df , and A2fδ,1 = 0. If � = 2, which is the only other case, we may pick a smooth approximate 
fδ,2 to f such that

1‖f − fδ,2‖2
L2(Ω) < δ.
2
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Then we set f̄δ,2 := (fδ,2, ∇fδ,2), yielding A1f̄δ,2 = 0 and A2f̄δ,2 = ∇2fδ,2. By fδ,2 being smooth we see that 
‖A2f̄δ,2‖M < ∞. Thus Assumption A-δ is satisfied for the squared L2 fidelity Φ(v) = ‖f − v‖2

L2(Ω).

Example 6 (Infimal convolution TV denoising). Let us take Z = L2(Ω), and X = (BV(Ω) ∩ L2(Ω)) ×X2, 
where

X2 := {v ∈ W 1,1(Ω) | ∇v ∈ BV(Ω;Rn)},

and BV(Ω) ∩ L2(Ω) again has the topology of Example 4. Setting u = (v, w), as well as

K0(v, w) = v + w, A1u = Dv, and A2u = D∇w,

we obtain for (Dα) with K = K0 and Y = Z the infimal convolution total variation denoising model of [15]. 
Assumptions A-KA, A-δ, and A-H are verified analogously to TGV2 in Example 5.

Example 7 (Deblurring and sub-sampled Fourier transforms for MRI). Let K0 and the Ajs be given by one 
of the regularisers of Example 4 to Example 6. Also take the cost F = FL2

2
or FL1

η∇ as in Example 3, and 
Φ as the squared L2 fidelity of Example 2. However, let us now take K = TK0 for some bounded linear 
operator T : Z → Y . The operator T could be, for example, a blurring kernel or a (sub-sampled) Fourier 
transform, in which case we obtain a model for learning the parameters for deblurring or reconstruction 
from Fourier samples. The latter would be important, for example for magnetic resonance imaging (MRI) 
[5,44,45]. Unfortunately, our theory does no extend to many of these cases because we will require, roughly, 
K∗

0K0 ≤ CK∗K for some constant C > 0. In other words, the cost functional cannot see what the fidelity 
does not.

Example 8 (Parameter estimation in Bingham flow). Bingham fluids are materials that behave as solids if 
the magnitude of the stress tensor stays below a plasticity threshold, and as liquids if that quantity surpasses 
the threshold. In a cross sectional pipe, of section Ω, the behaviour is modelled by the energy minimisation
functional

min
u∈H1

0 (Ω)

μ

2 ‖u‖
2
H1

0 (Ω) − (f |u)H−1(Ω),H1
0 (Ω) + α

∫
Ω

|∇u| dx, (4)

where μ > 0 stands for the viscosity coefficient, α > 0 for the plasticity threshold and f ∈ H−1(Ω). In 
many practical situations, the plasticity threshold is not known in advance and has to be estimated from 
experimental measurements. One then aims at minimising a least squares term

FL2
2

= 1
2‖u− f0‖2

L2(Ω)

subject to (4).
The bilevel optimisation problem can then be formulated as problem (P)–(Dα), with the choices X =

Y = H1
0 (Ω), K the identity, A1 = D and

φ(v) = μ

2 ‖v‖
2
H1

0 (Ω) − (f |u)H−1(Ω),H1
0 (Ω).

Concentrating in the rest of this paper primarily on image processing applications, we will however briefly 
return to Bingham flow in Example 13.
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2.2. Considerations for numerical implementation

For the numerical solution of the denoising sub-problem, we will in a follow-up work [24] expand upon the 
infeasible semi-smooth quasi-Newton approach taken in [35] for L2-TV image restoration problems. This 
depends on Huber-regularisation of the total variation measures, as well as enforcing smoothness through 
Hilbert spaces. This is usually done by a squared penalty on the gradient, i.e., H1 regularisation, but we 
formalise this more abstractly in order to simplify our notation and arguments later on. Therefore, we take 
a convex, proper, and weak* lower-semicontinuous smoothing functional H : X → [0, ∞], and generally 
expect it to satisfy the following.

Assumption A-H (Smoothing). We assume that 0 ∈ domH and for every δ ≥ 0, every α ∈ P∞
α , and every 

u ∈ X, the existence of uδ ∈ X satisfying

H(uδ) < ∞ and J(uδ;α) ≤ J(u;α) + δ. (5)

Example 9 (H1 smoothing in BV(Ω)). Usually, with H1(Ω; Rm) ∩X 	= ∅, we take

H(u) :=
{ 1

2‖∇u‖2
L2(Ω;Rm×n), u ∈ H1(Ω;Rm) ∩X,

∞, otherwise.

This is in particular the case with Example 4 (TV), where X = BV(Ω) ∩ L2(Ω) ⊃ H1(Ω), and Example 5
(TGV2), where X = (BV(Ω) ∩ L2(Ω)) × BD(Ω) ⊃ H1(Ω) × H1(Ω; Rn) on a bounded domain Ω. In both 
of these cases, weak* lower semicontinuity is apparent; for completeness we record this in Lemma 1 in 
Section 4.2. In case of Example 4, (5) is immediate from approximating u strictly by functions in C∞(Ω)
using standard strict approximation results in BV(Ω) [2]. In case of Example 5, this also follows by a simple 
generalisation of the same argument to TGV-strict approximation, as presented in [43,10].

For parameters ε ≥ 0 and γ ∈ (0, ∞], we then consider the problem

min
α∈P∞

α

F (uα,γ,ε) (Pγ,ε)

where uα,γ,ε ∈ X ∩ dom εH solves

min
u∈X

Jγ,ε(u;α) (Dγ,ε)

for

Jγ,ε(u;α) := εH(u) + Φ(Ku) +
N∑
j=1

αj‖Aju‖γ,j .

Here we denote for short the Huber-regularised total variation norm

‖μ‖γ,j := ‖μ‖γ,M(Ω;Rmj ), (μ ∈ M(Ω;Rmj )),

as given by the following definition. There we interpret γ = ∞ to give back the standard unregularised total 
variation measure. Clearly J∞,0 = J , and (Dα) corresponds to (Dγ,ε) and (P) to (Pγ,ε) with (γ, ε) = (∞, 0).
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Definition 1. Given γ ∈ (0, ∞], we define for the norm ‖ · ‖2 on Rm, the Huber regularisation

|g|γ =
{
‖g‖2 − 1

2γ , ‖g‖2 ≥ 1/γ,
γ
2 ‖g‖2

2, ‖g‖2 < 1/γ.

We observe that this can equivalently be written using convex conjugates as

α|g|γ = sup
{
〈q, g〉 − 1

2γα‖q‖2
2

∣∣∣ ‖q‖2 ≤ α
}
. (6)

Then if μ = fLn + μs is the Lebesgue decomposition of μ ∈ M(Ω; Rm) into the absolutely continuous part 
fLn and the singular part μs, we set

|μ|γ(V ) :=
∫
V

|f(x)|γ dx + |μs|(V ), (V ⊂ Ω Borel-measureable).

The measures |μ|γ is the Huber-regularisation of the total variation measures |μ|, and we define its Radon 
norm as the Huber regularisation of the Radon norm of μ, that is

‖μ‖γ,M(Ω;Rm) := ‖|μ|γ‖M(Ω;Rm).

Remark 4. The parameter γ varies in the literature. In this paper, we use the convention of [23], where 
large γ means small Huber regularisation. In [35], small γ means small Huber regularisation. That is, their 
regularisation parameter is 1/γ in our notation.

2.3. Shorthand notation

Writing for notational lightness

Au := (A1u, . . . , ANu),

and

Rγ(μ1, . . . , μN ;α) :=
N∑
j=1

αj‖μj‖γ,j , R( · ;α) := R∞( · ;α),

our problem (Pγ,ε) becomes

min
α∈P∞

α

F (uα) subject to uα ∈ arg min
u∈X

Jγ,ε(u;α)

for

Jγ,ε(u;α) := εH(u) + Φ(Ku) + Rγ(Au;α).

Further, given α ∈ Pα, we define the “marginalised” regularisation functional

T γ(v;α) := inf Rγ(Av̄;α), T ( · ; ᾱ) := T∞( · ; ᾱ). (7)

v̄∈K−1v
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Here K−1 stands for the preimage, so the constraint is v̄ ∈ X with v = Kv̄. Then in the case (γ, ε) = (∞, 0)
and F = F0 ◦K, our problem may also be written as

min
α∈P∞

α

F0(vα)

subject to

vα ∈ arg min
v∈Y

Φ(v) + T (v;α).

This gives the problem a much more conventional flair, as the following examples demonstrate.

Example 10 (TV as a marginal). Consider the total variation regularisation of Example 4. Then A1 = D, 
N = 1, and

T (v;α) = R(Av;α) = αTV(v).

Example 11 (TGV2 as a marginal). In case of the TGV2 regularisation of Example 5, we have K(v, w) = v

and K†v = (v, 0). Thus KK†f = f , etc., so

T (v;α) = inf
w∈BD(Ω)

R(Dv − w,Ew;α) = TGV2
α(v).

3. Main results

Our task now is to study the characteristics of optimal solutions, and their existence. Our results, based 
on natural assumptions on the data and the original problem (P), derive properties of the solutions to 
this problem and all numerically regularised problems (Pγ,ε) sufficiently close to the original problem: large 
γ > 0 and small ε > 0. We denote by uα,γ,ε any solution to (Dγ,ε) for any given α ∈ Pα, and by αγ,ε any 
solution to (Pγ,ε). Solutions to (Dα) and (P) we denote, respectively, by uα = uα,∞,0, and α̂ = α∞,0.

3.1. L2-squared cost and L2-squared fidelity

Our main existence result regarding L2-squared costs and L2-squared fidelities is the following.

Theorem 1. Let Y and Z be Hilbert spaces, F (u) = 1
2‖K0u − f0‖2

Z , and Φ(v) = 1
2‖f − v‖2

Y for some 
f ∈ R(K), f0 ∈ Z, and a bounded linear operator K0 : X → Z satisfying

‖K0u‖Z ≤ C0‖Ku‖Y , for all u ∈ X for some constant C0 > 0. (8)

Suppose Assumptions A-KA and A-δ hold. If for some ᾱ ∈ intPα and t ∈ (0, 1/C0] holds

T (f ; ᾱ) > T (f − t(K0K
†)∗(K0K

†f − f0); ᾱ), (9)

then problem (P) admits a solution α̂ ∈ intP∞
α .

If, moreover, Assumption A-H holds, then there exist γ̄ ∈ (0, ∞) and ε̄ ∈ (0, ∞) such that the problem 
(Pγ,ε) with (γ, ε) ∈ [γ̄, ∞] × [0, ̄ε] admits a solution αγ,ε ∈ intP∞

α , and the solution map

S(γ, ε) := arg min
α∈P∞

α

F (uα,γ,ε)

is outer semicontinuous within [γ̄, ∞] × [0, ̄ε].
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We prove this result in Section 5. Outer semicontinuity of a set-valued map S : Rk ⇒ R
m means [39]

that for any convergent sequence xk → x and S(xk) � yk → y, we have y ∈ S(x). In particular, the outer 
semicontinuity of S means that as the numerical regularisation vanishes, the optimal parameters for the 
regularised models (Pγ,ε) tend to optimal parameters of the original model (P).

Remark 5. Let Z = Y and K0 = K in Theorem 1. Then (9) reduces to

T (f ; ᾱ) > T (f0; ᾱ). (10)

Also observe that our result requires, Φ ◦K to measure all the data that F measures, in the more precise 
sense given by (8). If (8) did not hold, an oscillating solution uα for α ∈ ∂P∞

α , could largely pass through 
the nullspace of K, hence have low value for the objective J of the inner problem, yet have a large cost 
given by F .

Corollary 1 (Total variation Gaussian denoising). Suppose f, f0 ∈ BV(Ω) ∩ L2(Ω), and

TV(f) > TV(f0). (11)

Then there exist ε̄, ̄γ > 0 such that any optimal solution αγ,ε to the problem

αγ,ε ∈ arg min
α≥0

1
2‖f0 − uα,γ,ε‖2

L2(Ω)

with

uα,γ,ε ∈ arg min
u∈BV(Ω)

(1
2‖f − u‖2

L2(Ω) + α‖Du‖γ,M + ε

2‖∇v‖2
L2(Ω;Rn)

)
satisfies αγ,ε > 0 whenever ε ∈ [0, ̄ε], γ ∈ [γ̄, ∞].

That is, for the optimal parameter to be strictly positive, the noisy image f should, in terms of the total 
variation, oscillate more than the noise-free image f0. This is a very natural condition: if the noise somehow 
had smoothed out features from f0, then we should not smooth it anymore by TV regularisation!

Proof. Assumptions A-KA, A-δ, and A-H we have already verified in Example 4. We then observe that 
K0 = K, so we are in the setting of Remark 5. Following the mapping of the TV problem to the general 
framework using the construction in Example 4, we have K = I and K† = I embeddings with Y = L2(Ω). 
K† is bounded on R(K) = L2(Ω) ∩ BV(Ω). Moreover, by Example 10, T (v; ᾱ) = ᾱTV(v). Thus (10) with 
the choice t = 1 reduces to (11). �

For TGV2 we also have a very natural condition.

Corollary 2 (Second-order total generalised variation Gaussian denoising). Suppose that the data f, f0 ∈
L2(Ω) ∩ BV(Ω) satisfies for some α2 > 0 the condition

TGV2
(α2,1)(f) > TGV2

(α2,1)(f0). (12)

Then there exist ε̄, ̄γ > 0 such that any optimal solution αγ,ε = ((αγ,ε)1, (αγ,ε)2) to the problem

αγ,ε ∈ arg min 1
2‖f0 − vα,γ,ε‖2

L2(Ω)

α≥0
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with

(vα,γ,ε, wα,γ,ε) ∈ arg min
v∈BV(Ω)
w∈BD(Ω)

(1
2‖f − v‖2

L2(Ω) + α1‖Dv − w‖γ,M + α2‖Ew‖γ,M

+ ε

2‖(∇v,∇w)‖2
L2(Ω;Rn×Rn×n)

)

satisfies (αγ,ε)1, (αγ,ε)2 > 0 whenever ε ∈ [0, ̄ε], γ ∈ [γ̄, ∞].

Proof. Assumptions A-KA, A-δ, and A-H we have already verified in Example 5. We then observe that 
K0 = K, so we are in the setting of Remark 5. By Example 11, T (v; ᾱ) = TGV2

ᾱ(v). Finally, similarly to 
(11), we get for (10) with t = 1 the condition (12). �
Example 12 (Fourier reconstructions). Let K0 be given, for example as constructed in Example 4 or Ex-
ample 5. If we take K = FK0 for F the Fourier transform – or any other unitary transform – then (8) is 
satisfied and K† = K†

0F∗. Thus (9) becomes

T (f ; ᾱ) > T (f − t(K0K
†
0F∗)∗(K0K

†
0F∗f − f0); ᾱ).

With F∗f, f0 ∈ R(K0) and t = 1 this just reduces to

T (f ; ᾱ) > T (Ff0; ᾱ).

Unfortunately, our results do not cover parameter learning for reconstruction from partial Fourier samples 
exactly because of (8). What we can do is to find the optimal parameters if we only know a part of the 
ground-truth, but have full noisy data.

3.2. Huberised total variation and other L1-type costs with L2-squared fidelity

We now consider the alternative “Huberised total variation” cost functional from Example 3. Unfortu-
nately, we are unable to derive for FL1

η∇ easily interpretable conditions as for the FL2
2
. The workaround is 

to “discretise” the norm, in the sense of testing only with a finite number of test functions. To be precise, 
recall that

FL1
η∇(u) = ‖D(f0 −K0u)‖η,

where

‖μ‖η = sup
ξ∈C∞

c (Ω;Rn),
‖ξ‖≤1

(μ|ξ) − 1
2η ‖ξ‖L2(Ω;Rn).

The idea is to replace the set of test functions ξ by a finite set

V = {ξ1, . . . , ξM} ⊂ {ξ ∈ C∞
c (Ω;Rn) | ‖ξ‖ ≤ 1}.

That is, we approximate FL1
η∇ by

FV
L1

η∇(u) := sup(μ|ξ) − 1
2η ‖ξ‖L2(Ω;Rn), where μ = D(f0 −K0u).
ξ∈V
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Choosing V suitably, this amounts to taking the finite-dimensional Huberised 1-norm of a discretised gra-
dient of f0 −K0u.

To study bi-level optimisation problems with the cost FV
L1

η∇, we rewrite the functional using a generic 

Huberised L1-cost

FL1
η
(z) := sup

‖λ‖Z∗≤1
(λ|z − f̃0) −

1
2η ‖λ‖

2
Z∗

on a reflexive Banach space Z, for some f̃0 ∈ Z. Indeed, defining

DV v := {(− div ξ1|v), . . . , (− div ξM |v)}, (v ∈ BV(Ω)),

we have

FV
L1

η∇ := FL1
η
◦DV where f̃0 := DV f0 and Z = R

M with ∞-norm.

Our results on FV
L1

η∇
are then based on the following general result.

Theorem 2. Let Y be a Hilbert space, and Z a reflexive Banach space. Let F = FL1
η
◦ K0, and Φ(v) =

1
2‖f − v‖2

Y for some compact linear operator K0 : X → Z satisfying (8) and f ∈ R(K). Suppose Assump-
tions A-KA and A-δ hold. If for some ᾱ ∈ intPα and t > 0 holds

T (f ; ᾱ) > T (f − t(K0K
†)∗λ; ᾱ), λ ∈ ∂FL1

η
(K0K

†f), (13)

then the problem (P) admits a solution α̂ ∈ intP∞
α .

If, moreover, Assumption A-H holds, then there exist γ̄ ∈ (0, ∞) and ε̄ ∈ (0, ∞) such that the prob-
lem (Pγ,ε) with (γ, ε) ∈ [γ̄, ∞] × [0, ̄ε] admits a solution αγ,ε ∈ intP∞

α , and the solution map S is outer 
semicontinuous within [γ̄, ∞] × [0, ̄ε].

We prove this result in Section 5.

Remark 6. If K0 = K, the condition (13) has the much more legible form

T (f ; ᾱ) > T (f − tλ; ᾱ), λ ∈ ∂FL1
η
(f). (14)

Also if K is compact, then the compactness of K0 follows from (8). In the following applications, K is 
however not compact for typical domains Ω ⊂ R

2 or R3, so we have to make K0 compact by making the 
range finite-dimensional.

Corollary 3 (Total variation Gaussian denoising with discretised Huber-TV cost). Suppose that the data 
satisfies f, f0 ∈ BV(Ω) ∩ L2(Ω) and for some t > 0 and ξ ∈ V the condition

TV(f) > TV(f + t div ξ), − div ξ ∈ ∂FV
L1

η∇(f). (15)

Then there exist ε̄, ̄γ > 0 such any optimal solution αγ,ε to the problem

min
α≥0

FV
L1

η∇(f0 − vα)

with
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uα ∈ arg min
u∈BV(Ω)

(1
2‖f − u‖2

L2(Ω) + α‖Du‖γ,M + ε

2‖∇v‖2
L2(Ω;Rn)

)
satisfies αγ,ε > 0 whenever ε ∈ [0, ̄ε], γ ∈ [γ̄, ∞].

This says that for the optimal parameter to be strictly positive, the noisy image f should oscillate more 
than the image f + t div ξ in the direction of the (discrete) total variation flow. This is a very natural 
condition, and we observe that the non-discretised counterpart of (15) for γ = ∞ would be

TV(f) > TV(f + t div ξ), ξ ∈ Sgn(Df0 −Df),

where we define for a measure μ ∈ M(Ω; Rm) the sign

Sgn(μ) := {ξ ∈ L1(Ω;μ) | μ = ξ|μ|}.

That is, − div ξ is the total variation flow.

Proof. Analogous to Corollary 1 regarding the L2 cost. Note that in the application of Theorem 2, the 
operator DV is absorbed by K0. Precisely, we take K0 = DV , while K = I. �

For TGV2 we also have an analogous natural condition.

Corollary 4 (TGV2 Gaussian denoising with discretised Huber-TV cost). Suppose that the data f, f0 ∈ L2(Ω)
satisfies for some t, α2 > 0 and ξ ∈ V the condition

TGV2
(α2,1)(f) > TGV2

(α2,1)(f + t div ξ), − div ξ ∈ ∂FV
L1

η∇(f). (16)

Then there exist ε̄, ̄γ > 0 such any optimal solution αγ,ε = ((αγ,ε)1, (αγ,ε)2) to the problem

min
α≥0

FV
L1

η∇(f0 − vα)

with

(vα, wα) ∈ arg min
v∈BV(Ω)
w∈BD(Ω)

(1
2‖f − v‖2

L2(Ω) + α1‖Dv − w‖γ,M + α2‖Ew‖γ,M

+ ε

2‖(∇v,∇w)‖2
L2(Ω;Rn×Rn×n)

)

satisfies (αγ,ε)1, (αγ,ε)2 > 0 whenever ε ∈ [0, ̄ε], γ ∈ [γ̄, ∞].

Proof. Analogous to Corollary 2. Note that for the application of Theorem 2, where in the present setting 
u = (v, w), we take K0u = DV v, while Ku = v. �
4. A few auxiliary results

We record in this section some general results that will be useful in the proofs of the main results. 
These include the coercivity of the functional Jγ,0( · ; λ, α), recorded in Section 4.1. We then discuss some 
elementary lower semicontinuity facts in Section 4.2. We provide in Section 4.3 some new results for passing 
from strict convergence to strong convergence.
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4.1. Coercivity

Observe that

Rγ(μ1, . . . , μN ; ᾱ) = sup
ψj∈C∞

c (Ω;Rmj×R
n)

supx∈Ω ‖ψj(x)‖2
2≤1

N∑
j=1

ᾱj

(
μj(ψj) −

1
2γ ‖ψj‖2

L2(Ω;Rn)

)
.

Thus

R(μ;α) ≥ Rγ(μ;α) ≥ R(μ;α) − C ′

2γL
n(Ω)

for some C ′ = C ′(ᾱ). Since Ω is bounded, it follows that given δ > 0, for large enough γ > 0 and every 
ε ≥ 0 holds

J(u;α) − δ ≤ Jγ,0(u;α) ≤ Jγ,ε(u;α) ≤ J0,ε(u;α). (17)

We will use these properties frequently. Based on the coercivity and norm equivalence properties in As-
sumptions A-KA and A-Φ, the following proposition states the important fact that Jγ,0 is coercive with 
respect to ‖ · ‖′X and thus also the standard norm of X.

Proposition 1. Suppose Assumptions A-KA and A-Φ hold, and that α ∈ intP∞
α . Let ε ≥ 0 and γ ∈ (0, ∞]. 

Then

Jγ,ε(u;α) → +∞ as ‖u‖X → +∞. (18)

Proof. Let {ui}∞i=1 ⊂ X, and suppose supi J
γ,ε(ui; α) < ∞. Then in particular supi Φ(Kui) < ∞. By 

Assumption A-Φ then supi ‖Kui‖Y < ∞. But Assumption A-KA says

‖ui‖′X =
N∑
j=1

‖Aju
i‖j + ‖Kui‖Y ≤ Jγ,ε(ui;α) + ‖Kui‖Y .

This implies supi ‖ui‖′X < ∞. By the equivalence of norms in Assumption A-KA, we immediately obtain 
(18). �
4.2. Lower semicontinuity

We record the following elementary lower semicontinuity facts that we have already used to justify our 
examples.

Lemma 1. The following functionals are lower semicontinuous.

(i) μ �→ ‖ν − μ‖γ,M with respect to weak* convergence in M(Ω; Rd).
(ii) v �→ ‖f − v‖2

L2(Ω;Rd) with respect to weak convergence in Lp(Ω; Rd) for any 1 < p ≤ 2 on a bounded 
domain Ω.

(iii) v �→ ‖∇(f − v)‖2
L2(Ω;Rd×n) with respect to strong convergence in L1(Ω; Rd).
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Proof. In each case, let {vi}∞i=1 converge to v. Denoting by G the involved functional, we write it as a 
convex conjugate, G(v) = sup{〈v, ϕ〉 −G∗(ϕ)}. Taking a supremising sequence {ϕj}∞j=1 for this functional 
at any point v, we easily see lower semicontinuity by considering the sequences {〈vi, ϕj〉 − G∗(ϕj)}∞i=1 for 
each j. In case (ii) we use the fact that ϕj ∈ L2(Ω; Rd) ⊂ [Lp(Ω; Rd)]∗ when Ω is bounded.

In case (i), how exactly we write G(μ) = ‖ν − μ‖γ,M as a convex conjugate demands explanation. We 
first of all recall that for g ∈ R

n, the Huber-regularised norm may be written in dual form as

|g|γ = sup
{
〈q, g〉 − γ

2 ‖q‖
2
2

∣∣∣ ‖q‖2 ≤ 1
}
.

Therefore, we find that

G(μ) = sup

⎧⎨⎩μ(ϕ) −
∫
Ω

γ

2 ‖ϕ(x)‖2
2 dx

∣∣∣∣∣∣ϕ ∈ C∞
c (Ω), sup

x∈Ω
‖ϕ(x)‖2 ≤ α

⎫⎬⎭ .

This has the required form. �
We also show here that the marginal regularisation functional T γ( · ; ᾱ) is weakly* lower semicontinuous 

on Y . Choosing K as in Example 4 and Example 5, this provides in particular a proof that TV and TGV2

are lower semicontinuous with respect to weak convergence in L2(Ω) when n = 1, 2.

Lemma 2. Suppose ᾱ ∈ intP∞
α , and Assumption A-KA holds. Then T γ( · ; ᾱ) is lower semicontinuous with 

respect to weak* convergence in Y , and continuous with respect to strong convergence in R(K).

Proof. Let vk ∗⇀ v weakly* in Y. By the Banach–Steinhaus theorem, the sequence is bounded in Y . From 
the definition

T γ(v; ᾱ) := inf
v̄∈K−1v

Rγ(Av̄; ᾱ).

Therefore, if we pick ε > 0 and v̄k ∈ K−1vk such that

Rγ(Av̄k; ᾱ) ≤ T γ(vk; ᾱ) + ε,

then referral to Assumption A-KA, yields for some constant c > 0 the bound

c‖v̄k‖X ≤ ‖vk‖ + Rγ(Av̄k; ᾱ) ≤ ‖vk‖ + T γ(vk; ᾱ) + ε.

Without loss of generality, we may assume that

lim inf
k→∞

T γ(vk; ᾱ) < ∞,

because otherwise there is nothing to prove. Then {v̄k}∞k=1 is bounded in X, and therefore admits a weakly* 
convergent subsequence. Let v̄ be the limit of this, unrelabelled, sequence. Since K is continuous, we find 
that Kv̄ = v. But Rγ( · ; ᾱ) is clearly weak* lower semicontinuous in X; see Lemma 1. Thus

T γ(v; ᾱ) ≤ Rγ(Av̄; ᾱ) ≤ lim inf
k→∞

Rγ(Av̄k; ᾱ) ≤ lim inf
k→∞

T γ(vk; ᾱ) + ε.

Since ε > 0 was arbitrary, this proves weak* lower semicontinuity.
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To see continuity with respect to strong convergence in R(K), we observe that if v = Ku ∈ R(K), then 
by the boundedness of the operators {Aj}Nj=1 we get

T γ(v; ᾱ) ≤ Rγ(u; ᾱ) ≤ R(u; ᾱ) ≤ C‖u‖,

for some constant C > 0. So we know that T γ( · ; ᾱ)|R(K) is finite-valued and convex. Therefore it is 
continuous [30, Lemma I.2.1]. �
4.3. From Φ-strict to strong convergence

In Proposition 3, forming part of the proof of our main theorems, we will need to pass from “Φ-strict 
convergence” of Kuk to v to strong convergence, using the following lemmas. The former means that 
Φ(Kuk) → Φ(v) and Kuk ⇀ v weakly* in Y . By strong convexity in a Banach space Y , we mean the 
existence of γ > 0 such that for every y ∈ Y and z ∈ ∂Φ(y) ⊂ Y ∗ holds

Φ(y′) − Φ(y) ≥ (z|y′ − y) + γ

2 ‖y
′ − y‖2

Y , (y′ ∈ Y ),

where (z|y) denotes the dual product, and the subdifferential ∂Φ(y) is defined by z satisfying the same 
expression with γ = 0. With regard to more advanced strict convergence results, we point the reader to 
[25,38,36].

Lemma 3. Suppose Y is a Banach space, and Φ : Y → (−∞, ∞] strongly convex. If vk ⇀ v̂ ∈ dom ∂Φ
weakly* in Y and Φ(vk) → Φ(v̂), then vk → v̂ strongly in Y .

Remark 7. By standard convex analysis [30], v ∈ dom ∂Φ if Φ has a finite-valued point of continuity and 
v ∈ int dom Φ.

Proof. We first of all note that −∞ < Φ(v̂) < ∞ because v ∈ dom ∂Φ implies v ∈ dom Φ. Let us pick 
z ∈ ∂Φ(v̂). From the strong convexity of Φ, for some γ > 0 then

Φ(vk) − Φ(v̂) ≥ (z|vk − v̂) + γ

2 ‖v
k − v̂‖2

Y .

Taking the limit infimum, we observe

0 = Φ(v̂) − Φ(v̂)d ≥ lim inf
k→∞

γ

2 ‖v
k − v̂‖2

Y .

This proves strong convergence. �
We now use the lemma to show strong convergence of minimising sequences.

Lemma 4. Suppose Φ is strongly convex, satisfies Assumption A-Φ, and that C ⊂ Y is non-empty, closed, 
and convex with intC ∩ dom Φ 	= ∅. Let

v̂ := arg min
v∈C

Φ(v).

If {vk}∞k=1 ⊂ Y with limk→∞ Φ(vk) = Φ(v̂), then vk → v̂ strongly in Y .
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Proof. By the strict convexity of Φ, implied by strong convexity, and the assumptions on C, v̂ is unique and 
well-defined. Moreover v̂ ∈ dom ∂Φ. Indeed, our assumptions show the existence of a point v ∈ intC∩dom Φ. 
The indicator function δC is then continuous at v, and so standard subdifferential calculus (see, e.g., [30, 
Proposition I.5.6]) implies that ∂(Φ + δC)(v̂) = ∂Φ(v̂) + ∂δC(v̂). But 0 ∈ ∂(Φ + δC)(v̂) because v̂ ∈
arg minv∈Y Φ(v) + δC(v). This implies that ∂Φ(v̂) 	= ∅. Consequently also v̂ ∈ dom Φ, and Φ(v̂) ∈ R.

Using the coercivity of Φ in Assumption A-Φ we then find that {vk}∞k=1 is bounded in Y , at least after 
moving to an unrelabelled tail of the sequence with Φ(vk) ≤ Φ(v̂) + 1. Since Y is a dual space, the unit ball 
is weak* compact, and we deduce the existence of a subsequence, unrelabelled, and v ∈ Y such that vk ⇀ v

weakly* in Y . By the weak* lower semicontinuity (Assumption A-Φ), we deduce

Φ(v) ≤ lim inf
k→∞

Φ(vk) = Φ(v̂).

Since each vk ∈ C, and C is closed, also v ∈ C. Therefore, by the strict convexity and the definition of v̂, 
necessarily v = v̂. Therefore vk ⇀ v̂ weakly* in Y , and Φ(vk) → Φ(v̂). Lemma 3 now shows that vk → v̂

strongly in Y . �
5. Proofs of the main results

We now prove the existence, continuity, and non-degeneracy (interior solution) results of Section 3 through 
a series of lemmas and propositions, starting from general ones that are then specialised to provide the 
natural conditions presented in Section 3.

5.1. Existence and lower semicontinuity under lower bounds

Our principal tool for proving existence is the following proposition. We will in the rest of this section 
concentrate on proving the existence of the set K in the statement. We base this on the natural conditions 
of Section 3.

Proposition 2 (Existence on compact parameter domain). Suppose Assumptions A-KA and A-Φ hold. With 
ε ≥ 0 and γ ∈ (0, ∞] fixed, if there exists a compact set K ⊂ intP∞

α with

inf
α∈P∞

α \K
F (uα,γ,ε) > inf

α∈P∞
α

F (uα,γ,ε), (19)

then there exists a solution αγ,ε ∈ intP∞
α to (Pγ,ε). Moreover, the mapping

Iγ,ε(α) := F (uα,γ,ε),

is lower semicontinuous within intP∞
α .

The proof depends on the following two lemmas that will be useful later on as well.

Lemma 5 (Lower semicontinuity of the fidelity with varying parameters). Suppose Assumptions A-KA, A-Φ, 
and A-H hold. Let uk ∗⇀ u weakly* in X, and (αk, γk, εk) → (α, γ, ε) ∈ intP∞

α × (0, ∞] × (0, ∞). Then

Jγ,ε(u;α) ≤ lim inf
k→∞

Jγk,εk(uk;αk).
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Proof. Let ε̂ > 0 be such that αj ≥ ε̂, (j = 1, . . . , N). We then deduce for large k and some C = C(Ω, γ)
that

lim sup
k

Jγ,εk(uk; ε̂, . . . , ε̂) ≤ lim sup
k

Jγk,εk(uk; ε̂, . . . , ε̂) + C

≤ lim sup
k

Jγk,εk(uk;αk) + C < ∞. (20)

Here we have assumed the final inequality to hold. This comes without loss of generality, because otherwise 
there is nothing to prove. Observe that this holds even if {αk}∞k=1 is not bounded. In particular, if ε > 0, 
restricting k to be large, we may assume that

C1 := H(uk) < ∞. (21)

We recall that

Jγ,ε(u;α) := εH(u) + Φ(Ku) +
N∑
j=1

αj‖Aju‖γ,j . (22)

We want to show lower semicontinuity of each of the terms in turn. We start with the smoothing term. If 
ε > 0, using (21), we write

εkH(uk) = (εk − ε)H(uk) + εH(uk) ≤ (εk − ε)C1

2 + εH(uk).

By the convergence εk → ε, and the weak* lower semicontinuity of H, we find that

εH(u) ≤ lim inf
k→∞

εkH(uk). (23)

If ε = 0, we have

εH(u) = 0 · ∞ = 0,

while still

0 ≤ sup
k

εkH(uk) < ∞.

Thus (23) follows.
The fidelity term Φ ◦ K is weak* lower semicontinuous by the continuity of K and the weak* lower 

semicontinuity of Φ. It therefore remains to consider the terms in (22) involving both the regularisation pa-
rameters α, as well as the Huberisation parameter γ. Indeed using the dual formulation (6) of the Huberised 
norm, we have for some constant C ′ = C ′(ε̂, Ω) that

‖Aju
k‖γk,j = sup

‖ϕ(x)‖≤1

∫
ϕdAju

k − 1
2γk

‖ϕ‖2 dx

≥ sup
‖ϕ(x)‖≤1

∫
Ω

ϕdAju
k + 1

2γ ‖ϕ‖
2 dx− C ′|γ−1 − (γk)−1|

= ‖Aju
k‖γ,j − C ′|γ−1 − (γk)−1|.
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Thus, if α ∈ Pα, we get

αk
j ‖Aju

k‖γk,j = αj‖Aju
k‖γk,j + (αk

j − αj)‖Aju
k‖γk,j

≥ αj‖Aju
k‖γk,j − |αk

j − αj |‖Aju
k‖γk,j

≥ αj‖Aju
k‖γ,j − C ′|γ−1 − (γk)−1| − |αk

j − αj |‖Aju
k‖γk,j .

It follows from (20) that the sequence {‖Aju
k‖γk,j}∞k=1 is bounded in M(Ω; Rmj ) for each j = 1, . . . , N . 

Thus

lim inf
k→∞

αk
j ‖Aju

k‖γk,j ≥ lim inf
k→∞

αj‖Aju
k‖γ,j ≥ αj‖Aju‖γ,j ,

where the final step follows from Lemma 1.
It remains to consider the case that α ∈ P∞

α \ Pα, i.e., when α� = ∞ for some �. We may pick sequences 
{β�

j}∞�=1, (j = 1, . . . , N), such that β�
j ↗ αj . Further, we may find {βk,�

j }∞�=1 such that βk,�
j ≤ αk

j with 

αk
j = lim�→∞ βk,�

j and β�
j = limk→∞ βk,�

j . Then, by the bounded case studied above

lim inf
k→∞

αk
j ‖Aju

k‖γk,j ≥ lim inf
k→∞

βk,�
j ‖Aju

k‖γk,j ≥ β�
j‖Aju‖γ,j .

But {αk
j ‖Aju

k‖γk,j}∞k=1 is bounded by (20), and

lim inf
�→∞

β�
j‖Aju‖γ,j ≥ αj‖Aju‖γ,j .

Thus lower semicontinuity follows. �
Lemma 6 (Convergence of reconstructions away from boundary). Suppose Assumptions A-KA, A-Φ, and 
A-H hold. Let (αk, γk, εk) → (α, γ, ε) in intP∞

α ×(0, ∞] ×[0, ∞). Then we can find uα,γ,ε ∈ arg min Jγ,ε( · ; α)
and extract a subsequence satisfying

Jγk,εk(uαk,γk,εk ;αk) → Jγ,ε(uα,γ,ε;α), (24a)

uαk,γk,εk
∗⇀ uα,γ,ε weakly* X, and (24b)

Kuαk,γk,εk → Kuα,γ,ε strongly in Y. (24c)

Proof. By Lemma 5, we have

lim inf
k→∞

Jγk,εk(uαk,γk,εk ;αk) ≥ Jγ,ε(uα,γ,ε;α) = min
u∈X

Jγ,ε(u;α).

We also want the opposite inequality

lim sup
k→∞

Jγk,εk(uαk,γk,εk ;αk) ≤ Jγ,ε(uα,γ,ε;α). (25)

Let δ > 0. If ε = 0, we use Assumption A-H on u = uα,γ,ε, to produce uδ. Otherwise, we set uδ = uα,γ,ε. In 
either case

Jγ,ε(uδ;α) ≤ Jγ,ε(uα,γ,ε;α) + δ.
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In particular Aju
δ = 0 if αj = ∞. Then for large enough k we obtain

Jγk,εk(uαk,γk,εk ;αk) ≤ Jγk,εk(uδ;αk)

≤ Jγ,ε(uδ;α) + δ

≤ Jγ,ε(uα,γ,ε;α) + 2δ. (26)

Since δ > 0 was arbitrary, this proves (25) and consequently (24a), that is

lim
k→∞

Jγk,εk(uαk,γk,εk ;αk) = min
u∈X

Jγ,ε(u;α) = J(uα,γ,ε;α)

≤ Jγ,ε(0;α) = εH(0) + Φ(0) < ∞. (27)

Minding Proposition 1, this allows us to extract a subsequence of {uα,γkεk}∞k=1, unrelabelled, and convergent 
weakly* in X to some

ũ ∈ arg min
u∈X

J(u;α).

We may choose uα,γ,ε := ũ. This shows (24b).
If K is compact, we may further assume that Kuαk,γk,εk → Kuα,γ,ε strongly in Y , showing (24c). If K is 

not compact, Φ is continuous and strongly convex by Assumption A-Φ, and we still have Φ(Kuαk,γk,εk) →
Φ(Kuα,γ,ε). The assumptions of Lemma 3 are therefore satisfied. This shows (24c). �

From the lower semicontinuity Lemma 5, we immediately obtain the following standard result.

Theorem 3 (Existence of solutions to the reconstruction sub-problem). Let Ω ⊂ R
n be a bounded open 

domain. Suppose Assumptions A-KA and A-Φ hold, and that α ∈ intP∞
α , ε ≥ 0, and γ ∈ (0, ∞]. Then 

(Dγ,ε) admits a minimiser uα,γ,ε ∈ X ∩ dom εH.

Proof. By Lemma 5, fixing (αk, γk, εk) = (α, γ, ε), the functional Jγ,ε( · ; α) is lower semicontinuous with 
respect to weak* convergence in X. So we just have to establish a weak* convergent minimising sequence. 
Towards this end, we let {uk}∞k=1 ⊂ dom εH be a minimising sequence for (Dγ,ε). We may assume without 
loss of generality that supk J

γ,ε(uk; α) < ∞. By Proposition 1 and the inequality Jγ,0 ≤ Jγ,ε, we deduce 
supk ‖uk‖X < ∞. After possibly switching to a subsequence, unrelabelled, we may therefore assume {uk}∞k=1
weakly* convergent in X to some û ∈ X. This proves the claim. �
Proof of Proposition 2. Let us take a sequence {αk}∞k=1 convergent to α ∈ intP∞

α . Application of Lemma 6
with γk = γ and εk = ε and the weak* lower semicontinuity of F immediately show the lower semicontinuity 
of Iγ,ε within intP∞

α .
Finally, if {αk}∞k=1 is a minimising sequence for (Pγ,ε), by assumption we may take it to lie in K. By the 

compactness of K, we may assume the sequence convergent to some α ∈ K. By the lower semicontinuity 
established above, û = uα,γ,ε is a solution to (Pγ,ε). �
5.2. Towards Γ-convergence and continuity of the solution map

The next lemma, immediate from the previous one, will form the first part of the proof of continuity of 
the solution map. As its condition, we introduce a stronger form of (19) that is uniform over a range of ε
and γ.
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Lemma 7 (Γ-lower limit of the cost map in terms of regularisation). Suppose Assumptions A-KA, A-Φ, and 
A-H hold. Let K ⊂ intP∞

α be compact. Then

Iγ,ε(α) ≤ lim inf
(α′,γ′,ε′)→(α,γ,ε)

Iγ′,ε′(α′), (28)

when the convergence is within K× [γ̄, ∞] × [0, ̄ε].

Proof. Consequence of (24b) of Lemma 6 and the weak* lower semicontinuity of F . �
The next lemma will be used to get partial strong convergence of minimisers as we approach ∂Pα. This 

will then be used to derive simplified conditions for this not happening. This result is the counterpart 
of Lemma 6 that studied convergence of reconstructions away from the boundary, and depends on the 
additional Assumption A-δ. This is the only place where we use the assumption, and replacing this lemma 
by one with different assumptions would allow us to remove Assumption A-δ.

Lemma 8 (Convergence of reconstructions at the boundary). Suppose Assumptions A-KA, A-Φ, and A-δ hold, 
and that Φ is strongly convex. Suppose {(αk, γk, εk)}∞k=1 ∈ intP∞

α × (0, ∞] × [0, ̄ε] satisfies αk → α ∈ ∂P∞
α . 

If ε̄ = 0 or Assumption A-H holds and ε̄ > 0 is small enough, then Kuαk,γk,εk → f strongly in Y .

Proof. We denote for short uk := uαk,γk,εk , and note that f is unique by the strong convexity of Φ. Since 
ᾱ ∈ ∂P∞

α , there exists an index � ∈ {1, . . . , N} such that αk
� → 0. We let � be the first such index, and pick 

arbitrary δ > 0. We take f̄δ,� as given by Assumption A-δ, observing that the construction still holds with 
Huberisation, that is, for any γ ∈ (0, ∞] and in particular any γ = γk, we have

Φ(Kf̄δ,�) < δ + Φ(f),

‖A�f̄δ,�‖γ,� ≤ ‖A�f̄δ,�‖� < ∞, and,∑
j �=�

‖Aj f̄δ,�‖γ,j = 0.

If we are aiming for ε̄ > 0, let us also pick f̃δ,� by application of Assumption A-H to u = f̄δ,�. Otherwise, 
with ε̄ = 0, let us just set f̃δ,� = f̄δ,�. Since

uk ∈ arg min
u∈X

Jγk,εk(u;αk),

we have

Φ(Kuk) ≤ Jγk,εk(uk;αk) ≤ Jγk,εk(f̃δ,�;αk) ≤ Jγk,εk(f̄δ,�;αk) + δ

= εkH(f̄δ,�) + Φ(Kf̄δ,�) + Rγk

(Af̄δ,�;αk) + δ

≤ εkH(f̄δ,�) + Φ(f) + αk
� ‖A�f̄δ,�‖� + 2δ.

Observe that it is no problem if some index αk
j = ∞, because by definition as a minimiser uk achieves 

smaller value than f̄δ,� above, and for the latter ‖Aj f̄δ,�‖γk,j = 0. Choosing ε̄ > 0 small enough, it follows 
for ε ∈ [0, ̄ε] that

0 ≤ Φ(Kuk) − Φ(f) ≤ 2δ + αk
� ‖A�f̄δ,�‖�.
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Choosing k large enough, we thus see that

0 ≤ Φ(Kuk) − Φ(f) ≤ (2 + α�)δ.

Letting δ ↘ 0, we see that Φ(Kuk) → Φ(f). Lemma 4 with C = Y therefore shows that Kuk → f strongly 
in Y . �
5.3. Minimality and co-coercivity

Our remaining task is to show the existence of K for (19), and of a uniform K – see (33) below – for the 
application of Lemma 7. When the fidelity and cost functionals satisfy some additional conditions, we will 
now reduce this to the existence of α̃ ∈ intPα satisfying F (uα̃) < F (f̄) for a specific f̄ ∈ K−1f . So far, we 
have made no reference to the data, the ground-truth f0 or the corrupted measurement data f . We now 
assume this in an abstract way, and need a type of source condition, called minimality, relating the ground 
truth f0 to the noisy data f . We will get back to how this is obtained later.

Definition 2. Let p > 0. We say that v̄ ∈ X is (K, p)-minimal if there exists C ≥ 0 and ϕv̄ ∈ Y ∗ such that

F (u) − F (v̄) ≥ (ϕv̄|K(u− v̄)) − C

p
‖K(u− v̄)‖pY .

Remark 8. If we can take C = 0, then the final condition just says that K∗ϕv̄ ∈ ∂F (v̄). This is a rather 
strong property. Also, instead of t �→ tp, we could in the following proofs use any strictly increasing energy 
ψ : [0, ∞) → [0, ∞), ψ(0) = 0.

To deal with the smoothing term εH with ε > 0, we also need co-coercivity; for the justification of the 
term for the condition in (29) below, more often seen in the context of monotone operators, we refer to the 
equivalences in [4, Theorem 18.15].

Definition 3. We say that F is (K, p)-co-coercive at (u∗, λ∗) ∈ X ×X∗, λ∗ ∈ ∂F (u∗), if

F (u) − F (u∗) ≤ (λ∗|u− u∗) + C

p
‖K(u− u∗)‖pY , (u ∈ X). (29)

If F is (K, p)-co-coercive at (u, λ) for every u ∈ X and λ ∈ ∂F (u), we say that F is (K, p)-co-coercive. If 
p = 2, we say that F is simply K-co-coercive.

Remark 9. In essence, K-co-coercivity requires F = F0 ◦K and usual (I-)co-coercivity of F0.

Lemma 9. Suppose v̄ ∈ X is (K, p)-minimal. If {uk}∞k=1 ⊂ X satisfies Kuk → Kv in Y , then

F (v̄) ≤ lim inf
k→∞

F (uk). (30)

If, moreover, F is (K, p)-co-coercive at (v̄, K∗ϕv̄), then

F (v̄) = lim
k→∞

F (uk). (31)

Proof. For (30), we use the (K, p)-minimality of v̄ to obtain

F (uk) − F (v̄) ≥ (ϕv̄|Kuk − v) − C ‖Kuk − v‖pY , (k = 1, 2, 3, . . .).

p
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Taking the limit, it follows that

lim inf
k→∞

F (uk) ≥ F (v̄).

If we additionally have the (K, p)-co-coercivity at (v̄, K∗ϕv̄), then, likewise

F (uk) − F (v̄) ≤ (ϕv̄|Kuk − v) + C

2 ‖Kuk − v‖pY , (k = 1, 2, 3, . . .).

From this we immediately get

lim sup
k→∞

F (uk) ≤ F (v̄). �
Proposition 3 (One-point conditions under co-coercivity). Suppose Assumptions A-KA, A-Φ and A-δ hold, 
and that Φ is strongly convex. If f̄ is (K, q)-minimal and

some α̃ ∈ intPα and
uα̃ ∈ arg minu∈X J(u; α̃) satisfy

{
F (uα̃) < F (f̄), and
uα is (K, p)-minimal,

(32)

then there exist γ̄, ̄ε > 0 such that the following hold.

(i) For each ε ∈ [0, ̂ε] and γ ∈ [γ̄, ∞] there exists a compact set K ⊂ intP∞
α such that (19) holds.

(ii) If, moreover, Assumption A-H holds and F is (K, p)-co-coercive for any p > 0, then there exists a 
compact set K ⊂ intP∞

α such that

inf
α∈P∞

α \K
F (uα,γ,ε) > inf

α∈P∞
α

F (uα,γ,ε), (γ ∈ [γ̄,∞], ε ∈ [0, ε̄]). (33)

In both cases, the existence of K says that every solution ᾱ to (Pγ,ε) satisfies ᾱ ∈ K.

Proof. We note that f is unique by the strong convexity of Φ. Let us first prove (i). In fact, let us pick 
¯̄γ, ̄̄ε > 0 and assume with α̃ fixed that

uα̃,γ,ε ∈ arg min
u∈X

Jγ,ε(u; α̃) satisfy F (uα̃,γ,ε) < F (f̄), (γ ∈ [¯̄γ,∞], ε ∈ [0, ¯̄ε]). (34)

We want to show the existence of a compact set K ⊂ P∞
α such that solutions α̂ to (Pγ,ε) satisfy α̂ ∈ K

whenever (γ, ε) ∈ [γ̄, ∞] × [0, ̄ε] for γ̄ ∈ [¯̄γ, ∞) and ε̄ ∈ (0, ̄̄ε] to be determined during the course of the proof. 
We thus let (αk, γk, εk) ∈ P∞

α × [γ̄, ∞] × [0, ̄ε]. Since this set is compact, we may assume that αk → α̂ ∈ P∞
α , 

and εk → ε̂, and γk → γ̂. Suppose α̂ ∈ ∂P∞
α . By Lemma 8 then Kuk → f strongly in Y for small enough ε̄, 

with no conditions on γ̄. Further by the (K, q)-minimality of f̄ and Lemma 9 then

F (f̄) ≤ lim inf
k→∞

F (Kuk). (35)

If we fix γk := γ and εk, and pick {αk}∞k=1 is a minimising sequence for (Pγ,ε), we find that (35) is in 
contradiction to (32). Necessarily then α̂ ∈ intP∞

α . By the lower semicontinuity result of Proposition 2, 
α̂ therefore has to solve (Pγ,ε). We have proved (i), because, if K did not exist, we could choose αk → α̂ ∈
∂Pα.

If γk → γ̂, εk → ε̂, and αk solves (Pγ,ε) for (γ, ε) = (γk, εk), then αk ∈ intP∞
α by (i). Now (35) is in 

contradiction to (34). Therefore (ii) holds if (34) holds.
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It remains to verify (34) for ¯̄ε > 0 small enough and ¯̄γ > 0 large enough. By Lemma 6, we may find a 
sequence εk ↘ 0 and γk ↗ ∞ such that Kuα̃,γk,εk → Kũα̃ for some ũα̃ ∈ arg min J( · ; α̃). Since Φ is strictly 
convex, and both uα̃, ̃uα̃ ∈ arg minu∈X J(u; α̃), we find that Kũα̃ = Kuα̃. Recalling the (K, p)-minimality 
and -co-coercivity at (uα̃, K∗ϕuα̃

), Lemma 9 and (32) now yield

lim sup
k→∞

F (uα̃,γk,εk) = F (uα̃) < F (f̄).

Since we may repeat the above arguments on arbitrary sequences (γk, εk) → (∞, 0), we conclude that (34)
holds for small enough ε̄ > 0 and large enough γ̄ > 0. �

We now show the Γ-convergence of the cost map, and as a consequence the outer semicontinuity of the 
solution map. For an introduction to Γ-convergence, we refer to [9,21].

Proposition 4 (Γ-convergence of the cost map and continuity of the solution map). Suppose Assump-
tions A-KA, A-Φ, and A-H hold along with (33). Suppose, moreover, that F is (K, p)-co-coercive, and 
every solution uα,γ,ε to (Dγ,ε) is (K, p)-minimal with α ∈ K and (γ, ε) ∈ [γ̄, ∞] × [0, ̄ε]. Then

Iγ′,ε′ |K Γ→ Iγ,ε|K (36)

when (γ′, ε′), (γ, ε) ∈ [γ̄, ∞] × [0, ̄ε] and K is as in (33). Moreover, the solution map

S(γ, ε) = arg min
α∈P∞

α

Iγ,ε(α)

is outer semicontinuous within [γ̄, ∞] × [0, ̄ε].

Proof. Lemma 7 shows the Γ-lower limit (28). We still have to show the Γ-upper limit. This means that given 
α̂ ∈ K and (γk, εk) → (γ, ε) within [0, ̄ε] × [γ̄, ∞], we have to show the existence of a sequence {αk}∞k=1 ⊂ K
such that

Iγ,ε(α̂) ≥ lim sup
k→∞

Iγk,εk(αk).

We claim that we can take αk = α̂. With uk := uαk,γk,εk , Lemma 6 gives a subsequence satisfying 
Kuk → Kû strongly with û a minimiser of Jγ,ε( · ; α). We just have to show that

F (û) = lim
k→∞

F (uk). (37)

Since F is (K, p)-co-coercive, and û by assumption (K, p)-minimal, this follows from Lemma 9.
We have therefore established the Γ-convergence of Iγ′,ε′ |K to Iγ,ε|K as (γ′, ε′) → (γ, ε) within [γ̄, ∞] ×

[0, ̄ε]. Our assumption (33) says that the family {Iγ′,ε′ | (γ′, ε′) ∈ [γ̄, ∞] × [0, ̄ε]} is equi-mildly coercive in 
the sense of [9]. Therefore, by the properties of Γ-convergence, see [9, Theorem 1.12], the solution map is 
outer semicontinuous. �
5.4. The L2-squared fidelity with (K, 2)-co-coercive cost

In what follows, we seek to prove (32) for the L2-squared fidelity with (K, 2)-co-coercive cost functionals 
by imposing more natural conditions derived from (38) in the next lemma.
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Lemma 10 (Natural conditions for L2-squared 2-co-coercive case). Suppose Assumptions A-KA and A-δ
hold. Let Y be a Hilbert space, f ∈ R(K), and

Φ(v) = 1
2‖f − v‖2

Y .

Then (32) holds if f̄ is (K, 2)-minimal, F is (K, 2)-co-coercive at (f̄ , K∗ϕf̄ ) with K∗ϕf̄ ∈ ∂F (f̄), and

T (f ; ᾱ) > T (f − tϕf̄ ; ᾱ) (38)

for some ᾱ ∈ intPα and t ∈ (0, 1/C], where C is the co-coercivity constant.

Here we recall the definition of T ( · ; ᾱ) from (7).

Proof. Let α ∈ intPα. We have from the co-coercivity (29) that

F (f̄) − F (uα) ≥ −(K∗ϕf̄ |uα − f̄) − C

2 ‖Kuα − f‖2
Y .

Using the definition of the subdifferential,

F (u) − F (f̄) ≥ (K∗ϕf̄ |u− f̄), (u ∈ X).

Summing, therefore

F (u) − F (uα) ≥ (K∗ϕf̄ |u− uα) − C

2 ‖Kuα − f‖2
Y , (u ∈ X). (39)

Setting u = f̄ , we deduce

F (f̄) − F (uα) ≥ (ϕf̄ |f −Kuα) − C

2 ‖Kuα − f‖2
Y . (40)

Let α = tᾱ for some t > 0. Since Φ ◦K is continuous with dom(Φ ◦K) = X, the optimality conditions 
for uα solving (Dγ,ε) state [30, Proposition I.5.6]

0 ∈ K∗(Kutᾱ − f) + tA∗[∂R( · ; ᾱ)](Autᾱ). (41)

Because utᾱ solves (Dγ,ε), we have R(Autᾱ; ᾱ) = T (Kutᾱ; ᾱ). By Lemma 11 below, therefore

0 ∈ K∗(Kutᾱ − f) + tψt, ψt ∈ [∂T (K · ; ᾱ)](utᾱ). (42)

Multiplying by (K†)∗ we deduce f−Kutᾱ = t(K†)∗ψt, so that referring back to (40), and using the definition 
of the subdifferential, we get for any t > 0 the estimate

F (f̄) − F (utᾱ) ≥ (tK†ϕf̄ |ψt) −
C

2 ‖Kutᾱ − f‖2
Y

= (utᾱ − (f̄ − tK†ϕf̄ )|ψt) + (f̄ − utᾱ|ψt) −
C

2 ‖Kutᾱ − f‖2
Y

≥ T (Kutᾱ; ᾱ) − T (K(f̄ − tK†ϕf̄ ); ᾱ)

+ (f̄ − utᾱ|ψt) −
C ‖Kutᾱ − f‖2

Y .
2
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Since utᾱ solves (Dγ,ε) for α = tᾱ, using (42), we have

(f̄ − utᾱ|ψt) = 1
t
‖Kutᾱ − f‖2

Y ≥ 2 (T (f ; ᾱ) − T (Kutᾱ; ᾱ)) .

It follows

F (f̄) − F (utᾱ) ≥ T (Kf̄ ; ᾱ) − T (K(f̄ − tK†ϕf̄ ); ᾱ) + t−1 − C

2 ‖Kutᾱ − f‖2
Y . (43)

We see that (38) implies (32) if 0 < t ≤ C−1. �
Lemma 11. Suppose ψ ∈ [∂R( · ; ᾱ)](Au) with A∗ψ ∈ R(K∗), and that we obtain R(Au; ᾱ) = T (Ku; ᾱ). 
Then A∗ψ ∈ [∂T (K · ; ᾱ)](u).

Proof. Let λ ∈ Y be such that K∗λ = A∗ψ. By the definition of the subdifferential, we have

R(Au′′; ᾱ) −R(Au; ᾱ) ≥ 〈λ,K(u′ − u)〉, (u′′ ∈ X).

Minimising over u′′ ∈ X with Ku′′ = Ku′ for some u′ ∈ X, and using R(Au; ᾱ) = T (Ku; ᾱ), we deduce

T (Ku′; ᾱ) − T (Ku; ᾱ) ≥ 〈λ,K(u′ − u)〉, (u′ ∈ X).

Thus

T (Ku′; ᾱ) − T (Ku; ᾱ) ≥ 〈A∗ψ, u′ − u〉, (u′ ∈ X).

This proves the claim. �
Summarising the developments so far, we may state:

Proposition 5. Suppose Assumption A-KA holds Assumption A-δ. Let Y be a Hilbert space, f ∈ Y ∩R(K), 
and

Φ(v) = 1
2‖f − v‖2

Y .

If f̄ is (K, 2)-minimal, F is (K, 2)-co-coercive at (f̄ , K∗ϕf̄ ), and

T (f ; ᾱ) > T (f − tϕf̄ ; ᾱ) (44)

for some ᾱ ∈ intPα and t ∈ (0, 1/C], then the claims of Proposition 3 hold.

Proof. It is easily checked that Assumption A-Φ holds. Lemma 10 then verifies the remaining conditions of 
Proposition 3, which shows the existence of K in both cases. Finally, Proposition 2 shows the existence of 
α̂ ∈ intP∞

α solving (Pγ,ε). For the continuity of the solution map, we refer to Proposition 4. �
5.5. L2-squared fidelity with L2-squared cost

We may finally finish the proof of our main result on the L2 fidelity Φ(v) := 1
2‖f − v‖2

Y , Y = L2(Ω; Rd), 
with the L2-squared cost functional F (u) = 1‖K0u − f0‖2

Z .
2
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Proof of Theorem 1. We have to verify the conditions of Proposition 5, primarily the (K, 2)-minimality 
of f̄ , the K-cocoercivity of F , and (44). Regarding minimality and co-coercivity, we write F = F0 ◦ K0, 
where F0(v) = 1

2‖v − f0‖2
Z . Then for any v, v′ ∈ Z, we have

F0(v′) − F0(v) = 〈v′ − v, v − f0〉 + 1
2‖v

′ − v‖2
L2(Ω).

From this (I, 2)-co-coercivity of F0 with C = 1 is clear, as is the (I, 2)-minimality with regard to F0 of every 
v ∈ Y . By extension, F is easily seen to be (K0, 2)-co-coercive, and every u ∈ X (K0, 2)-minimal. Using (8), 
(K, 2)-co-coercivity of F with C = C0 is immediate, as is the (K, 2)-minimality of every u ∈ X.

Regarding (44), we need to find ϕf̄ such that K∗ϕf̄ = ∇F (f̄). We have

K∗
0 (K0f̄ − f0) = ∇F (f̄).

From this we observe that ϕf̄ exists, because (8) implies N (K) ⊂ N (K0), and hence R(K∗) ⊂ R(K∗
0 ). 

Here N and R stand for the nullspace and range, respectively. Setting K∗ϕf̄ = K∗
0 (K0f̄ − f0) and using 

KK† = I on R(K), we thus find that

ϕf̄ = (K0K
†)∗(K0f̄ − f0).

Observe that since N (K) ⊂ N (K0), this expression does not depend on the choice of f̄ ∈ K−1f . Following 
Remark 2, we can replace f̄ = K†f . It follows that (10) implies (44). �
Remark 10. Provided that Φ satisfies Assumptions A-Φ, A-δ, and A-H, it is easy to extend Lemma 10 and 
consequently Theorem 1 to the case

Φ(v) = 1
2‖v‖

2
Ŷ
− (f |v)Y ∗,Y , (v ∈ Y ),

where Ŷ ⊃ Y is a Hilbert space, f ∈ Y ∗, and Y still a reflexive Banach space. As Y ⊂ Ŷ = Ŷ ∗ ⊂ Y ∗, in 
this case, we still have

∇Φ(v) = v − f ∈ Y ∗.

In particular

∇Φ(Ku) = K∗(Ku− f) ∈ X∗.

Therefore the expression (41) still holds, which is the only place where we needed the specific form of Φ.

Example 13 (Bingham flow). As a particular case of this remark, we take Ŷ = Y = H1
0 (Ω). Then Y ∗ =

H−1(Ω). With f ∈ L2(Ω), the Riesz representation theorem allows us to write∫
Ω

fv dx = (f̃ |v)H−1(Ω),H1
0 (Ω),

for some f̃ ∈ H−1(Ω), which we may identify with f . Therefore, Theorem 1 can be extended to cover the 
Bingham flow of Example 8. In particular, we get the same condition for interior solutions as in Corollary 1, 
namely

TV(f) > TV(f0).
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5.6. A more general technique for the L2-squared fidelity

We now study another technique that does not require (K, 2)-minimality and (K, 2)-co-coercivity at f̄. 
We still however require Φ to be the L2-squared fidelity, and u ¯̄α to be (K, p)-minimal.

Lemma 12 (Natural conditions for the general L2-squared case). Suppose Assumptions A-KA and A-δ hold. 
Let Y a Hilbert space, f ∈ Y ∩R(K), and

Φ(v) = 1
2‖f − v‖2

Y .

The claims of Proposition 3 hold if for some ᾱ ∈ intPα and t > 0 both f̄ and the solution uᾱ are 
(K, p)-minimal and

T (Kuᾱ; ᾱ) > T (f − tϕuᾱ
; ᾱ). (45)

Remark 11. Setting ᾱ = s ¯̄α in (45), we see employing the lower semicontinuity Lemma 2 that the former is 
implied by

T (f ; ᾱ) > lim sup
s↘0

T (f − tϕs ¯̄α; ᾱ). (46)

Here we use the shorthand ϕs ¯̄α := ϕus ¯̄α . The difficulty is going to the limit, because we do not generally 
have any reasonable form of convergence of {ϕs ¯̄α}s>0. If we did indeed have ϕs ¯̄α → ϕ ¯̄f , then (46) and 
consequently (50) would be implied by the condition (44) we derived using (K, 2)-co-coercivity. We will in 
the next subsection go to the limit with finite-dimensional functionals that are not (K, 2)-co-coercive and 
hence the earlier theory does not apply.

Proof. Let us observe that (32) holds if for some ᾱ > 0 and C > 0, we can find a (K, p)-minimal

uᾱ ∈ arg min
u∈X

J(u; ᾱ),

satisfying

(ϕᾱ|f −Kuᾱ) > 0. (47)

Here we denote for short ϕᾱ := ϕuᾱ
, recalling that K∗ϕᾱ ∈ ∂F (uᾱ). Indeed, by the definition of the 

subdifferential, the minimality of uᾱ, and (47), we deduce

F (f̄) ≥ F (uᾱ) + (ϕᾱ|f −Kuᾱ) > F (uᾱ). (48)

This shows (32).
We need to show that (45) implies (47). As in the proof of Lemma 10, we deduce by application of 

Lemma 11 that

0 ∈ K∗(Kuᾱ − f) + ψᾱ, for some ψᾱ ∈ [∂T (K · ; ᾱ)](uᾱ). (49)

Then

(f̄ − uᾱ|ψᾱ) = (f̄ − uᾱ|K∗(f −Kuᾱ)) = ‖f −Kuᾱ‖2
Y ≥ 0.
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Multiplying (49) by (K†)∗ and using this estimate, we deduce for any t > 0 that

(ϕᾱ|f −Kuᾱ) ≥ t−1(uᾱ − (uᾱ − tK†ϕᾱ)|ψᾱ)

= t−1(uᾱ − (f̄ − tK†ϕᾱ)|ψᾱ) + t−1(f̄ − uᾱ|ψᾱ)

≥ t−1(uᾱ − (f̄ − tK†ϕᾱ)|ψᾱ)

≥ t−1ᾱ
(
T (Kuᾱ; ᾱ) − T (K(f̄ − tK†ϕᾱ); ᾱ)

)
.

The last step follows from the definition of ∂T (K · ; ᾱ). This proves that (45) implies (47). �
Summing up the developments so far, we may in contrast to Proposition 5 that depended on f̄ and 

co-coercivity, state:

Proposition 6. Suppose Assumptions A-KA and A-δ hold. Let Y be a Hilbert space, f ∈ Y ∩R(K), and

Φ(v) = 1
2‖f − v‖2

Y .

If for some ¯̄α ∈ intPα, t > 0, the solution u ¯̄α is (K, p)-minimal with

T (Ku ¯̄α; ¯̄α) > T (f − tϕu ¯̄α ; ¯̄α), (50)

then there exist γ̄ > 0 and ε̄ > 0 such that the following hold.

(i) For each ε ∈ [0, ̄ε] and γ ∈ [γ̄, ∞] there exists a compact set K ⊂ intP∞
α such that (19) holds. In 

particular there exists a solution α̂ ∈ intP∞
α to (Pγ,ε).

(ii) If, moreover, Assumption A-H holds, there exists a compact set K ⊂ intP∞
α such that (33) holds and 

the solution map S is outer semicontinuous within [γ̄, ∞] × [0, ̄ε].

Proof. It is easily checked that Assumption A-Φ holds. Lemma 12 then verifies the remaining conditions of 
Proposition 3, which shows the existence of K in both cases. Finally, Proposition 2 shows the existence of 
α̂ ∈ intP∞

α solving (Pγ,ε). For the continuity of the solution map, we refer to Proposition 4. �
5.7. L2-squared fidelity with Huberised L1-type cost

We now study the Huberised total variation cost functional. We cannot in general prove that solutions 
uα for small α are better than f . Consider, for example f0 a step function, and f a noisy version without 
the edge destroyed. The solution uα might smooth out the edge, and then we might have ‖Duα −Df‖M ≈
‖Duα‖M + ‖Df‖M > ‖Df0 −Df‖M ≈ 0. This destroys all hope of verifying the conditions of Lemma 12
in the general case. If we however modify the set of test functions in the definition of L1

η∇ to be discrete 
we can prove this bound. Alternatively, we could assume uniformly bounded divergence from the family 
of test functions. We have left this case out for simplicity, and prove our results for general L1 costs with 
finite-dimensional Z.

Lemma 13 (Conditions for L1
η cost). Suppose Z is a reflexive Banach space, and K0 : X → Z is linear 

and bounded, and satisfies (8). Then, whenever (44) holds, F (u) := FL1
η
(K0u) is (K, 1)-co-coercive and (50)

holds for some ¯̄α ∈ intPα with both u ¯̄α and f̄ being (K, 1)-minimal.
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Proof. Denote

B := {λ ∈ Z∗ | ‖λ‖Z∗ ≤ 1}.

We first verify (I, 1)-co-coercivity of FL1
η
. Let v, v∗ ∈ Z, and λ∗ ∈ B be such that λ∗ ∈ ∂FL1

η
(v∗). Clearly 

λ∗ achieves the maximum for FL1
η
(v∗). Let λ ∈ B achieve the maximum for FL1

η
(v). Then

FL1
η
(v) − FL1

η
(v∗) ≤ (λ|v − f0) − (λ|v∗ − f0)

= (λ∗|v − v∗) + (λ− λ∗|v − v∗)

≤ (λ∗|v − v∗) + 2 sup
λ′∈B

‖λ′‖‖v − v∗‖

≤ (λ∗|v − v∗) + 2‖v − v∗‖. (51)

This proves (I, 1)-co-coercivity of FL1
η
. (K, 1)-co-coercivity of F now follows similarly to the argument in 

the proof of Theorem 1, using (8).
Analogously, taking the triangle inequality in (51) in the opposite direction, we show that every u ∈ X

is (K, 1)-minimal. Therefore, in particular both f̄ and u ¯̄α are (K, 1)-minimal
To verify (50), it is enough to verify (46). Similarly to the proof of Theorem 1, using (8), we verify that 

K∗ϕsᾱ ∈ ∂F (usᾱ) exists, and

ϕsᾱ ∈ (K†)∗∂F (usᾱ) = (K0K
†)∗λsᾱ,

where λsᾱ ∈ B achieves the maximum for F0(K0usᾱ − f0). In fact, ϕsᾱ ∈ R(K). If this would not hold, we 
could find v ⊥ R(K) such that

0 < (v|ϕsᾱ) = (K0K
†v|λsᾱ) ≤ ‖K0K

†v‖‖λsᾱ‖ ≤ C‖KK†v‖‖λsᾱ‖.

But, for any v′ ∈ R(K),

(v′|KK†v) = ((KK†)∗v′|v) = (v′|v) = 0.

Therefore ‖KK†v‖ = 0, and we reach a contradiction unless λsᾱ = 0, that is ϕsᾱ = 0 ∈ R(K).
As is easily verified, ∂FL1

η
is outer semicontinuous with respect to strong convergence in the domain Z

and weak* convergence in the codomain Z∗. That is, given vk → v and zk ∗⇀ z with zk ∈ ∂FL1
η
(uk), we 

have z ∈ ∂FL1
η
(v). By Lemma 8 and (8), we have K0u

k → K0f̄ strongly in Z. Since B is bounded, we 

may therefore find a sequence sk ↘ 0 with λskᾱ
∗⇀ λ0 ∈ ∂F (f̄) weakly* in Z∗. Since by assumption K0 is 

compact, then also K∗
0 is compact [40, Theorem 4.19]. Consequently ϕskᾱ → ϕ0 := (K0K

†)∗λ0 strongly in 
Y after possibly moving to an unrelabelled subsequence. Let us now consider the right hand side of (50) for 
¯̄α = skᾱ. Since f = Kf̄ , and we have proved that ϕu

skᾱ
∈ R(K), Lemma 2 shows that

lim
k→0

T (f − tϕu
skᾱ

; ᾱ) = T (f − tϕ0; ᾱ).

Minding the discussion surrounding (46), we observe that choosing ¯̄α = skᾱ for large enough k > 0, (46) is 
implied by (44). �
Proof of Theorem 2. From the proof of Lemma 13, we observe that (44), can be expanded as

T (f ; ᾱ) > T (f − t(K0K
†)∗λ0; ᾱ),
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Fig. 1. Parrot test image.

where λ0 ∈ V with λ0 ∈ ∂FL1
η
(K0f̄). As in the proof of Theorem 1, this is in fact independent of the choice 

of f̄ , so may replace f̄ = K†f . Thus λ0 ∈ ∂FL1
η
(K0K

†f). By Lemma 13, the conditions of Proposition 6
are satisfied, so we may apply it together with Proposition 2 to conclude the proof. �
Remark 12. The considerations of Remark 10 also apply to Lemma 12 and consequently Theorem 2. That 
is, the results hold for the cost

Φ(v) = 1
2‖v‖

2
Ŷ
− (f |v)Y ∗,Y , (v ∈ Y ), (52)

where Ŷ ⊃ Y is a Hilbert space, f ∈ Y ∗, and Y a reflexive Banach space. Indeed, again the specific form of 
Φ was only used for the optimality condition (49), which is also satisfied by the form (52).

6. Numerical verification and insight

In order to verify the above theoretical results, and to gain further insight into the cost map Iγ,ε, we 
computed the values for a grid of values of �α, for both TV and TGV2 denoising, and L2

2 and L1
η∇ cost 

functionals. This we did for two different images, the parrot image depicted in Fig. 1 and the Scottish 
southern uplands image depicted in Fig. 2. The results are visualised in Figs. 3 and 4, respectively. For TV, 
the parameter range was

α ∈ U := {0.001, 0.01, 0.02, . . . 0.5}/n

(altogether 51 values), where n = 256 is the edge length of the rectangular test image. For TGV2 the 
parameter range was �α ∈ U × (U/n). We set γ = 100, ε = 1e−10, and computed the denoised image uα,γ,ε

by the SSN denoising algorithm that we report separately in [24] with more extensive numerical comparisons 
and further applications.

As we can see, the optimal �α clearly seems to lie away from the boundary of the parameter domain Pα, 
confirming the theoretical studies for the squared L2 cost L2

2, and the discrete version of the Huberised TV
cost L1

η∇. The question remains: do these results hold for the full Huberised TV?
We further observe from the numerical landscapes that the cost map Iγ,ε is roughly quasiconvex in the 

variable α for both TV and TGV2. In the β variable of TGV2 the same does not seem to hold, as around 
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Fig. 2. Uplands test image.

Fig. 3. Cost functional value versus α for TV denoising, for both the parrot and uplands test images, for both L2
2 and L1

η∇ cost 
functionals. For the parrot image, optimal α from [24] for the initialisation 0.1/n, resp. (1/n2, 0.1/n), is indicated by an asterisk. 
For the landscape image, optimal α from [24] for the initialisation 0.01/n, resp. (0.1/n2, 0.01/n), is indicated by an asterisk.

the optimal solution the level sets tend to expand along α as β increases, until starting to reach their limit 
along β. However, the level sets around the optimal solution also tend to be very elongated on the β axes. 
This suggests that TGV2 is reasonably robust with respect to choice of β, as long as it is in the right range.

7. A data statement for the EPSRC

This is a theoretical mathematics paper, and any data used merely serves as a demonstration of mathe-
matically proven results. Moreover, photographs that are for all intents and purposes statistically comparable 
to the ones used for the final experiments, can easily be produced with a digital camera, or downloaded 
from the internet. This will provide a better evaluation of the results than the use of exactly the same data 
as we used.
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Fig. 4. Cost functional value versus α for TGV2 denoising, for both the parrot and uplands test images, for both L2
2 and L1

η∇
cost functionals. The illustrations are contour plots of function value versus 
α = (β, α). For the parrot image, optimal 
α from [24]
for the initialisation 0.1/n, resp. (1/n2, 0.1/n), is indicated by an asterisk. For the landscape image, optimal 
α from [24] for the 
initialisation 0.01/n, resp. (0.1/n2, 0.01/n), is indicated by an asterisk.
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