
1 
 

Split & mix assembly of DNA libraries for ultrahigh 
throughput on-bead screening of functional proteins 

Laurens Lindenburg1, Tuomas Huovinen1,2, Kayleigh van de Wiel1, Michael Herger1,3, Michael R. 

Snaith3 & Florian Hollfelder1* 

1Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge, CB2 1GA, 

UK 
2Present address:  Department of Biochemistry and Food Chemistry, University of Turku, Turku, 

Finland 
3AstraZeneca Medimmune Cambridge, Antibody Discovery and Protein Engineering, 
Cambridge, UK 

 

* To whom correspondence should be addressed. Tel: +44 (0)1223 766048 Email: fh111@cam.ac.uk. 
 

• Balanced site-saturation libraries for protein directed evolution 
• Efficient and accurate library synthesis through split & mix-based, solid-phase ligation 
• Microbeads, densely coated in monoclonal DNA, amenable to protein screening 

 
ABSTRACT 

Site-saturation libraries reduce protein screening effort in directed evolution campaigns by focusing on 

a limited number of rationally chosen residues. However, uneven library synthesis efficiency leads to 
amino acid bias, remedied at high cost by expensive custom synthesis of oligonucleotides, or through 

use of proprietary library synthesis platforms. To address these shortcomings, we have devised a 

method where DNA libraries are constructed on the surface of microbeads by ligating dsDNA fragments 

onto growing, surface-immobilised DNA, in iterative split-and-mix cycles. This method – termed 

SpliMLiB for Split-and-Mix Library on Beads – was applied towards the directed evolution of an anti-

IgE Affibody (ZIgE), generating a 160,000-membered, 4-site, saturation library on the surface of 8 million 

monoclonal beads. Deep sequencing confirmed excellent library balance (5.1%±0.77 per amino acid) 

and coverage (99.3%). As SpliMLiB beads are monoclonal, they were amenable to direct functional 
screening in water-in-oil emulsion droplets with cell-free expression. A FACS-based sorting of the library 

beads allowed recovery of hits improved in Kd over wild-type ZIgE by up to 3.5-fold, while a consensus 

mutant of the best hits provided a 10-fold improvement. With SpliMLib, directed evolution workflows are 

accelerated by integrating high-quality DNA library generation with an ultra-high throughput protein 

screening platform. 

 

 

INTRODUCTION 
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Site-selective combinatorial DNA libraries increase the efficiency of protein screening campaigns by 

focusing on the randomisation of amino acids most likely to yield improvements (1). The design of such 

‘smart’ libraries, targeting one or more pre-selected positions has been greatly facilitated by mechanistic 

and structural insight (2, 3) and can outperform random mutagenesis methods (4). Targeting each 
additional site for saturation increases library size exponentially so that, unless the amino acid ‘alphabet’ 

is reduced to keep variant numbers manageable (5), highly efficient screening assays are called for. 

The effective diversity of the library is reduced, if library members are duplicated, e.g. due to biased 

introduction of nucleotides leading to redundancy. Maximal diversity is achieved in balanced libraries in 

which ideally each alternative codon is represented in equal measure, so that none of the potentially 

beneficial mutations introduced in the ‘smart’ library design are missed during screening. 

A common method for creating combinatorial libraries is to use oligonucleotides that introduce 

codons synthesised as mixed bases (e.g. NNK) (6–8). Such oligonucleotides are relatively inexpensive 
and multiple mixed-based codons can be combined on the same oligonucleotide but the quality of DNA 

libraries is compromised as they  introduce degeneracy and encode unequal proportions of amino acids 

(9). The degeneracy problem has been partially addressed through the development of ‘small-intelligent 

libraries’, using a blend of different mixed-base codon-containing oligonucleotides (e.g. ‘22c-trick’), 

although such approaches cannot deliver custom codon ratios and the targeting of multiple sites in 

close proximity is still challenging (10, 11).  TRIM technology, where defined blocks of nucleotide trimers 

are incorporated during phosphoramidite synthesis, enables full control over codon balance but remains 

relatively expensive  (12–14). Furthermore, robotic techniques such as Slonomics and Colibra have 
been developed to deliver highly customized 3-nucleotide additions (using ligation), but these 

techniques remain essentially proprietary and inaccessible to the wider research community (15, 16). 

The use of site saturation libraries generally entails a cellular transformation step, implying a 

potential bottlenecking of the population, unless significant resources (in the form of labour or capital) 

are allocated to transforming a sufficiently large number of cells. Furthermore, without a suitable ultra-

high throughput assay to screen the transformants, only a limited fraction of the total library size might 

be practically accessible (17). Seminal work by Griffiths & Tawfik (18) first demonstrated the use of 
emulsion droplets in enzyme evolution, where proteins were expressed from single molecules of DNA 

in droplets containing in vitro transcription/translation (IVTT) mixture. Protein expression from a single 

DNA molecule in the droplet guarantees the correct genotype-phenotype linkage in a ‘monoclonal 

droplet’. The use of microbeads with moieties to pull-down expressed proteins within droplets has 

further aided selection schemes, by allowing many monoclonal protein copies to be interrogated 

simultaneously using well-established flow-cytometry-based sorting, improving signal-to-noise ratio in 

the assay (19, 20). Furthermore, beads have allowed separation of the mutually incompatible DNA 

amplification and cell-free expression reactions, typically by use of an initial emulsion PCR step (21–
27). Despite these latter examples, several difficulties remain with the DNA amplification step and 

beads: i) the Poisson distribution dictates that ~80% of beads be left not carrying any DNA if the majority 

of beads that do carry DNA are to be monoclonal; ii) emulsion PCR has been found to steadily decrease 

in yield with increasing length of template (25); iii) the high temperature of PCR conditions place 

stringent demands on the DNA surface attachment chemistry (28). 
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We sought therefore to develop a fully non-degenerate site-saturation mutagenesis method that 

would be user-friendly (by avoiding the need for robotics, specialist reagents or multiple PCR work-up 

steps), free of cellular transformations (to maintain maximal library diversity) and interfacing directly with 

ultrahigh throughput screens in the powerful format of emulsion microdroplets (29). We devised a DNA 
assembly method based on ligation of oligonucleotide duplexes directly on a microbead surface, 

resulting in a ‘one-bead-one-protein’ library in which every bead of the library is densely coated in DNA, 

representing a single ‘genotype’ and encoding a single protein-of-interest (PoI) variant. Combinatorial 

diversity of the ligated fragments is introduced by a split & mix approach, reminiscent of the peptide 

synthesis scheme first employed by Knapp and co-workers, who pioneered the ‘one bead, one 

compound’ approach (30) as well as by ‘encoded combinatorial chemistry’, where chemical steps are 

encoded through linked DNA modifications, invented by Brenner (31). SpliMLib (Split-and-Mix Library 

on Beads) was directly applied to screening for protein-binder functionality, by compartmentalising 
single beads into the droplets of a polydisperse water-in-oil emulsion, together with IVTT mix. Flow 

cytometric sorting of these display beads after incubation with a fluorescently labelled antigen led to 

successful isolation of protein binders, Affibody molecules with enhanced affinity. 

 

MATERIALS AND METHODS 

General paramagnetic bead handling 

Tween-20 was always included at 0.02 - 0.05% (v/v) in all solutions coming into contact with 

paramagnetic beads. This applies both to beads used for solid-phase library build up and protein display 

and beads in the slurry used for SPRI-based DNA purification. It includes all enzymatic reactions 

(ligations and restrictions). In absence of Tween-20, severe bead clumping and a detrimental effect on 

results was noticed. The only exceptions were the IVTT reaction, and the KBBK bind & wash buffers 

(see below for details): these solutions were not supplemented with Tween-20 as they were not found 

to cause clumping in absence of supplemental Tween-20. Beads were washed with phosphate buffered 
saline with Tween-20 (PBST, consisting of 8 mM Na2HPO4, 150 mM NaCl, 2 mM KH2PO4, 3 mM KCl, 

0.05 % (v/v) Tween-20, pH7.4).  Supernatant was aspirated while magnetically fixing beads in 1.5 – 2 

mL-sized Eppendorf tubes on a bar magnet (DynaMag-2 Magnet, ThermoFisher Scientific) or in 0.2 mL 

PCR tubes on a 96-well magnet (DynaMag-96 Side Magnet, ThermoFisher Scientific). Beads were 

routinely counted using disposable cell-counting chambers and a transmitted light microscope. 

Preparation of beads with modified surface for DNA library build-up and protein display 

Tamavidin-2-HOT-SpyTag was covalently coupled to paramagnetic carboxy beads (Ø 5 µm; S1964, 

microParticles, Berlin). Beads (100 mg) were washed with water, then resuspended in 1 mL water. To 

the bead suspension was added 0.5 mL of 750 mM of N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC, Sigma-Aldrich, 1 in Supplementary Figure S1A) in water with 0.02% (v/v) Tween-
20 and the mixture was incubated for 20 minutes. The supernatant was removed, the beads were 

washed once with water (with 0.05% (v/v) Tween-20), before they were resuspended in 5 mL of 25 mM 
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sodium phosphate buffer (pH 5.8), with 0.05% (v/v) Tween-20. Subsequently, Tamavidin-2-HOT-

SpyTag fusion protein (1.5 mL of 10 mg/mL in PBST) was added and the tube was left on a roller at 

room temperature for four hours. Finally, the beads were washed with and incubated for 10 minutes in 

0.5 M Tris-HCl (pH 8), followed by washing with PBST. To functionalize the coupled protein with Azido-
PEG4-NHS, 100 mg of Tamavidin-SpyTag-coupled beads in 400 µL of PBST was mixed with 400 µL 

of Azido-PEG4-NHS ester (50 mM in DMSO, Jena Biosciences, 2 in Supplementary Figure S1B), for a 

final 50% (v/v) DMSO concentration. The beads were incubated at room temperature for two hours with 

vigorous shaking, followed by washing with PBST. Successful azido functionalisation was tested for as 

set out in Supplementary Figure S1C&D. SpyTag functionality was confirmed as set out in Figure S1E. 

Beads incubated with GFP-SpyCatcher displayed a median fluorescence in flow cytometry that was 

400-fold higher than observed with beads incubated with GFP, indicating dense, functional coating of 

SpyTag on the beads. 

Oligonucleotides used in this study 

Commercially obtained oligonucleotide sequences, 5’-modifications, synthesis scales and purification 
method are set out, both for common oligonucleotides used in this study (Supplementary Table S1) and 

for variation-encoding oligonucleotides used for the ZIgE SpliMLib library (Supplementary Table S2), 

with codons used for site saturation indicated separately (Supplementary Table S3). 

Molecular cloning of individual constructs and of selected hits from screening 

ZIgEwild-type and ZIgEnonbinder-1 were synthesised as DNA fragments (GeneArt Strings, ThermoFisher 

Scientific) and cloned into a modified pIVEX-2.3d vector (biotechrabbit GmbH) that carried a 

SpyCatcher-encoding sequence, resulting in vectors pIVEX-ZIgEwild-type-SpyCatcher and pIVEX-

ZIgEnonbinder-1-SpyCatcher (Supplementary Figure S2A, B). To generate the construct pIVEX-CaBoFDH, 

a synthetic DNA fragment was ordered (GeneArt Strings, ThermoFisher Scientific), restricted with NdeI 

and NotI and ligated into a modified version of pIVEX2.4d that had been digested with the same 

restriction enzymes (Supplementary Figure S2C). To allow bacterial expression of the ZIgE-SpyCatcher 
constructs, the pIVEX-ZIgEwild-type-SpyCatcher and pIVEX-ZIgEnonbinder-1-SpyCatcher vectors were 

restricted with NdeI and BamHI and the resulting inserts were ligated into pET28a cut with the same 

restriction enzymes, resulting in the constructs pET28a-ZIgEwild-type-SpyCatcher and pET28a-ZIgEnonbinder-

1-SpyCatcher, containing both an N- and a C-terminal His-tag (Supplementary Figure S2D). To recover 

DNA after FACS selection of beads, PCR reactions (conditions as described below for SpliMLiB input 

fragments) were performed using the sorted beads as template and with primers SfiI_F and SfiI_R 

(Supplementary Table S1). The PCR reactions were purified using the Solid Phase Reversible 
Immobilisation (SPRI) bead protocol (as described below) and subsequently 1 µg of amplicon was 

treated with 10 units of SfiI restriction enzyme (ThermoFisher) in a 20 µL reaction at 50 °C. The 

restriction reactions were purified over silica columns (Clean & Concentrate, Zymo, Irvine, Ca) and 

ligated into pET28a-ZIgEnonbinder-1-SpyCatcher also cut with SfiI. This ensured the 223 bp amplicon 

incorporating all four targeted mutational saturation sites in the library was subcloned into the bacterial 

expression vector. The individual constructs pET28a-ZIgEnonbinder-2-SpyCatcher and pET28a-ZIgEconsensus-

SpyCatcher were generated from separately assembled solid-phase ligation fragments, omitting the 
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splitting steps, but using instead only the appropriate fragments, following the protocols described 

below. The fragments were SfiI digested, allowing ligation with the backbone from SfiI-digested pET28a-

ZIgEnonbinder-1-SpyCatcher. For Kd determination by biolayer interferometry, several ZIgE-SpyCatcher 

variants were furnished with an N-terminal Avi-tag fusion for site-specific biotinylation. The plasmids 
pET28a-ZIgEwild-type-SpyCatcher and pET28a-ZIgEconsensus- SpyCatcher were digested with NcoI and NotI 

and the resulting fragments were ligated into a derivative of a pHAT vector with an N-terminal Avi tag 

that had been digested with the same restriction enzymes, resulting in pHAT-Avi- ZIgEwild-type-SpyCatcher 

(see Supplementary Figure S2E for partial plasmid DNA sequence) and pHAT-Avi-ZIgEconsensus-

SpyCatcher. To generate pHAT-Avi- ZIgEnonbinder-2-SpyCatcher, pHAT-Avi- ZIgE33-SpyCatcher and pHAT-

Avi-ZIgE44-SpyCatcher, NcoI/NotI restriction fragments from pET28a-ZIgEnonbinder-2-SpyCatcher, pET28a-

ZIgE33-SpyCatcher and pET28a-ZIgE44-SpyCatcher, respectively, were ligated into a backbone generated 

through digestion of pHAT-Avi- ZIgEconsensus-SpyCatcher with NcoI and NotI. The construct pET28a-
Tamavidin-2-HOT-SpyTag is described elsewhere (Huovinen et al 2020, to be submitted). 

Bacterial protein expression & purification 

Expression of pET28a-based constructs was carried out in volumes of 250 mL (pET28a-ZIgE-

SpyCatcher) to 0.5 L (pET28a-Tamavidin-2-HOT-SpyTag) LB culture media (containing 50 µg/mL 

kanamycin). These were started using E. coli BL21(DE3) colonies scraped from agar plate. E. coli were 

grown in a shaking incubator to an OD600 of 0.5 at 37 °C, 100 µM IPTG was added and the cultures 

grown further overnight at 25 °C. For the expression of pHAT-Avi-based constructs, BirA-expressing E. 

coli BL21(DE3) (250 mL) of the pHAT-Avi-ZIgE-SpyCatcher constructs were inoculated through the 

scraping of bacterial colonies from agar plates. LB cultures (with 100 µg/mL carbenicillin and 20 µg/mL 

chloramphenicol) were grown to an OD600 of 0.5 at which time the cultures were induced through the 
addition of 100 µM IPTG, while 40 µg/mL biotin was added to allow for BirA to catalyse the addition of 

biotin to the lysine in the BirA tag. Cultures were then incubated overnight at 25 °C.  Following protein 

over-expression, cells were pelleted, lysed with 10 mL of BugBuster with 2500 units of Benzonase 

endonuclease (Novagen) before the lysate was clarified by centrifugation and applied to a Ni-NTA 

gravity flow column (1 mL bed volume, Ni-NTA agarose, Qiagen). The column was washed with 20 

column volumes of wash buffer (20 mM Tris-HCl (pH 8), 500 mM NaCl, 30 mM imidazole) and eluted 

with elution buffer (20 mM Tris-HCl (pH 8), 500 mM NaCl, 500 mM imidazole). The eluate was 

concentrated by centrifugation through tubes containing filters with molecular weight cut offs (MWCO) 
of 3 kDa (ZIgE-SpyCatcher constructs) or 10 kDa (Tamavidin-2-HOT-SpyTag), before being desalted 

using PD-10 columns (GE) equilibrated with PBS. Both Tamavidin-2-HOT-SpyTag and ZIgE-SpyCatcher 

variants were obtained in good yield (both ~80 mg/L LB) and purity. 
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PCR fragment generation 

PCR fragments were required for SpliMLib, both for the optimisation experiments set out in Figure 2 
and the preparation of fragments for the ZIgE library.  PCR fragments were prepared using 500 µL 

reactions consisting of 0.5 µM of each forward and reverse primer, 1x BIOTAQ NH4 buffer, 3 mM MgCl2, 

1 mM dNTPs, 0.5 ng/µL plasmid template and 0.05 units/µL BIOTAQ DNA polymerase (BIOTAQ 

polymerase and buffer were from Bioline, London, England).  Reaction setup (in terms of primers & 

template) is set out in Supplementary Table S4. Thermocycling was performed starting with 2 minutes 

at 96 °C, followed by 30 cycles of 15 seconds at 96 °C, 15 seconds at 55 °C, 45 seconds at 72 °C, 

followed by a final extension step at 72 °C for 1 minute.    

Solid Phase Reversible Immobilisation (SPRI)-based purification of PCR reactions 

PCR reactions were purified by SPRI beads (32). The SPRI slurry was prepared with 1 mL of 50 mg/mL 

bead stock (SpeedBeads magnetic carboxylate modified particles, 1 µm ø, GE Healthcare), suspended 
in a 49 mL solution of 20% (w/v) PEG-8000, 2.5 M NaCl, 0.05% (v/v) Tween-20. One volume of PCR 

reaction was mixed with two volumes of SPRI slurry, incubated for 5 minutes, before the supernatant 

was removed on a magnet stand and the beads were washed twice with 70% (v/v) ethanol and 0.05% 

(v/v) Tween-20. Elution of DNA from the SPRI beads was carried out with water with 0.02% (v/v) Tween-

20. 

PCR fragment restriction in solution 

PCR fragments that were to be ligated to bead-immobilised DNA, required cohesive ends. For the 

assembly set out in Figure 2C, a 5’-overhang in PCR product ‘frag1’ (Supplementary Table S4) was 

introduced by restriction with BspQI: a 30 µL reaction consisting of 150 pM DNA, 1x buffer 3.1 (NEB) 

and 30 units of BspQI (NEB), was incubated at 50 °C for two hours, followed by inactivation of the 
restriction enzyme by heating to 80 °C for 20 minutes. 5’-overhangs in fragT10 PCR fragments for the 

final fragment ligation in the ZIgE SpliMLiB library (Figure 3C, step viii) were introduced by restriction 

with Esp3I, in 50 µL reactions consisting of 70-100 pM of purified PCR fragment, 50 units of Esp3I 

(ThermoFisher Scientific), 1x buffer Tango (ThermoFisher Scientific) supplemented with 1 mM DTT. 

The restriction reactions were incubated at 37 °C for two hours followed by 20 minutes at 65 °C to heat-

inactivate Esp3I. In both cases, the restricted DNA was purified using the SPRI bead protocol described 

above. 

Generation of oligonucleotide duplex fragments and their enzymatic 5’-phosphorylation 

In SpliMLib, bead surface-bound DNA was occasionally extended with pairs of hybridized 

oligonucleotides (e.g. as set out in steps iv and vi in Figure 3C). Oligonucleotide pairs used to generate 
the duplexes are set out in Supplementary Table S5. Oligonucleotides were first enzymatically 

phosphorylated at their 5’-ends in separate 30 µL reactions consisting of 450 pmol oligonucleotide, 15 

units of T4 polynucleotide kinase (NEB), 1xT4 DNA ligase reaction buffer (NEB), that were incubated 

at 37 °C for 30 minutes, followed by heat inactivation of the kinase at 65 °C for 20 minutes. To hybridize 

complementary oligonucleotide pairs, the phosphorylated oligonucleotides were mixed at 25 µL and 15 
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each, then subjected to heating for 2 minutes at 95 °C, followed by 10 minutes at 52 °C and a final 

cooling down to 4 °C. These duplexes were used for solid-phase ligation without further purification. 

Covalent coupling of DNA to bead surface 

To effect covalent immobilisation of either full-length constructs or the set of 20 initial SpliMLiB 

fragments on Tamavidin-SpyTag and azido-functionalised paramagnetic microbeads (e.g. for step i in 

Figure 3C), the Dynabeads kilobaseBINDER Kit (KBBK, ThermoFisher Scientific) was used. This kit is 

designed to enhance the efficiency of immobilisation of biotinylated DNA on streptavidin beads through 
provision of molecular crowding conditions and we found it to equally enhance the efficiency of the 

copper-free click reaction between DBCO on DNA and azide on bead. Tamavidin-SpyTag and azide 

functionalised paramagnetic microbeads were washed once in 40 µL of the Binding Solution from the 

KBBK, then resuspended in a mixture of 40 µL of Binding Solution and 40 µL of DBCO-functionalised 

DNA fragment in water. DNA was added at a ratio of at least 20 million copies DNA per bead, while 

reactions contained 1 to 3 million beads in total. The beads were incubated at 37 °C with shaking at 

1200 RPM for 1 hour, after which supernatant was removed on the bar magnet, the beads were washed 
once with 40 µL KBBK Wash Solution and then washed three times with PBST. We found that providing 

20 million copies (as determined by absorbance spectroscopy) of DNA per bead resulted in a readily 

detectable fluorescent signal (Supplementary Figure S1D); adding fewer DNA molecules made 

following the efficiency of subsequent reactions difficult (not shown). 

Solid-phase DNA restriction 

To restrict bead-surface-immobilised DNA, beads were washed once in 1x Tango restriction buffer 

(ThermoFisher Scientific) supplemented with 1 mM DTT and 0.02% (v/v) Tween-20 (for Esp3I) or in 1x 

Buffer 3.1 with 0.02% (v/v) Tween-20 (for BspQI). To effect Esp3I-digestion (e.g. for step iii in Figure 

3C), beads were then incubated for 2 hours at 37 °C, while shaking at 1200 RPM, in a solution of 200 

units of Esp3I, 1 mM DTT, in 1x Tango buffer (ThermoFisher Scientific, in a total volume of 120 µL. 

Alternatively, to effect BspQI-digestion (i.e. for restriction after ligation of Frag2 in Figure 2C), beads 
were incubated for 2 hours at 50 °C in a non-shaking thermocycler with heated lid, in a solution of 40 

units of BspQI, in 1x Buffer 3.1 (NEB), in a total volume of 120 µL. Both digestions were followed by the 

three washes with PBST.  

Solid-phase DNA ligation 

Ligation of soluble DNA to bead-bound DNA is integral to the SpliMLib method (e.g. see steps iv, vi and 

viii in Figure 3C). To prepare beads for ligation of an incoming DNA fragment, the beads were washed 

once in 1xT4 DNA ligase reaction buffer (NEB), supplemented with 0.02% (v/v) Tween-20. To ligate 

oligonucleotide duplex fragments, beads (1 million per tube split) were incubated with 45 µL 

phosphorylated oligonucleotide duplex (338 pmol), 5.5 µL 10x T4 DNA ligase reaction buffer (NEB), 5 

µL T4 DNA ligase (2000 units, NEB), 4.5 µL 100 mM DTT, 1.5 µL 30 mM ATP, 38.5 µL water with 0.02% 
(v/v) Tween-20. This reaction setup accounted for salts contributed by the unpurified phosphorylated 

oligonucleotide duplex and supplemented it with possibly depleted ATP and DTT. Beads were 
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incubated at 16 °C for 1 hour and then washed three times with PBST. To ligate incoming, solution-

phase, Esp3I or BspQI-treated PCR fragments to DNA with cohesive end immobilised on beads, the 

beads (1 million per tube split) were incubated with 35-50 pmol of DNA fragment, 1x T4 DNA ligase 

reaction buffer and 1200 units of T4 DNA ligase in a total reaction volume of 50 µL, with 0.02% (v/v) 
Tween-20. Beads were incubated at 16 °C for 1 hour and then washed three times with PBST. 

Next generation sequencing by Illumina MiSeq 

NGS sequencing of the 160,000-member SpliMLib library was carried out by Illumina MiSeq with 
TruSeq-based amplicon preparation. The Library amplicons was prepared by carrying out a PCR with 

oligonucleotides MiSeq_F & MiSeq_R (Supplementary Table S1) with 2 million beads divided over  

three 100 µL reactions, consisting each of 1x HF buffer (NEB), 50 pmol of each primer, 20 nmol dNTPs 

and 2 units Phusion High-Fidelity DNA polymerase (NEB). The PCR reactions were pooled, loaded 

onto an agarose gel (1.5%), gel extracted and purified by silica columns (Zymoclean Gel DNA 

Recovery, Zymo Research, Irvine, CA). The amplicon was further processed by the University of 

Cambridge Department of Biochemistry’s Sequencing Facility using the TruSeq kit (Illumina), spiked 
with 20% PhiX DNA and subjected to MiSeq sequencing (150 base reads, single end). 

NGS analysis 

An overview of the analysis approach is provided in Supplementary Figure S7 and accompanying 
Supplementary Text 1. All software, except IGV (run on Windows 10) and Enrich2 (run as a GUI within 

Linux Ubuntu), was run from the command line of Linux Ubuntu running within a virtual computer (Oracle 

VM Virtual Box). Contaminating PhiX sequences and low-quality sequences were filtered from the fastq 

file using FaQCs version 2.08 (33). Indels and off-target substitution frequency and location was 

assessed by aligning a reference sequence (corresponding to the sequenced fragment of ZIgE) to all 

reads using a Burrows Wheeler Aligner, BWA-MEM version 0.7.17 (34), with the output SAM file 

converted to a BAM file, sorted and indexed using SAMtools version 1.7 (35). The location and 

frequency of off-target substitution and InDels were then determined by IGV version 2.4.14 (36). To 
prepare for the analysis of codon frequencies in non-InDel containing reads, reads not aligning to the 

full length of the reference sequence were filtered out by using an AWK command on the BAM file. The 

filtered BAM file was converted back to fastq format using Bedtools version 2.26.0 (37). To obtain counts 

of targeted mutations, we used Enrich2 version 1.2.0 (38), while final statistics were prepared with the 

help of Microsoft Excel. Further details, including command lines, are included in Supplementary Text 

1. 

Coupling of ZIgE-SpyCatcher to SpyTag-functionalised beads by cell-free expression in emulsion 
or by using purified ZIgE-SpyCatcher protein 

Polydisperse water-in-oil emulsions of SpyTag-functionalised, DNA-decorated beads and IVTT were 

made by pipetting the oil and aqueous phases repeatedly through a 20 µm filter device, until the 
emulsion appeared homogenous. The filter device was constructed by extracting the filter membrane 

from a CellTrics cell filtering unit (Sysmex-Partec GmbH, Görlitz, Germany) and fixing this filter between 
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two segments of a 200 µL pipette tip (TipOne, STARLAB UK, Milton Keynes, England), as previously 

described (25, 39). The IVTT-containing aqueous phase (PURExpress, NEB; 12.5 µL, consisting of 5 

µL solution A, 3.75 µL solution B, 0.5 µL RNase inhibitor murine (NEB) and 3.25 µL water) and 1 to 2 

million microbeads, were mixed with 8 volumes of oil phase, consisting of a solution of 1% (w/v) 
fluorinated surfactant RAN (RAN Biotechnologies, Beverly, MA) in HFE7500 oil (3M). The emulsion 

IVTT was incubated for 1 hour at 37 °C. To break the emulsion and recover the beads, excess oil phase 

was removed from the bottom of the tube using a gel saver tip, 100 µL of PBST was pipetted on top of 

the emulsion, followed by 18 µL of perfluorooctanol (PFO, Alfa Aesar, Heysham, England). This was 

followed by mixing through vigorous pipetting before the top aqueous layer was transferred to a clean 

tube on a magnetic rack. To obtain any beads remaining in emulsion, the entire procedure was repeated 

and the second aqueous fraction was pooled with the first in the tube on the magnet rack. To couple 

purified ZIgE-SpyCatcher protein to SpyTag-functionalised beads, 10 µM of SpyCatcher fusion protein 
was mixed with 100,000 beads in a total volume of 100 µL for 1 hour at 22 °C, in PBS. After incubation, 

beads were washed three times with PBST. 

Binding of IgE-Cy5 to ZIgE-SpyCatcher fusion proteins on bead 

IgE (native human monoclonal, as provided by Abcam, ab65866) was labelled with Cy5 dye using the 

Lightning-Link Rapid Kit (Innova Biosciences, Cambridge, UK). As the IgE-Cy5 conjugate was found to 

be of limited stability at 4 °C, care was taken to freeze aliquots of IgE-Cy5 at -80 °C, immediately after 

preparation. IgE-Cy5 labelling of beads was performed in PBST and 30 mg/mL dried skimmed milk 

powder (Marvel, Premier International Foods, Spalding, Lincs, UK) for 1 hour. Beads were washed once 

with PBST immediately preceding analysis by flow cytometry. 

Flow cytometry-based bead screening & sorting 

Flow cytometric analysis was carried out on a FACSSCAN Cytek machine, while flow cytometric sorting 

of beads was performed on a BD FACSAria Fusion, with four-way sorting into different tubes according 

to Cy5 fluorescence intensity. The forward and side scatter profile of the beads was used to ensure that 
sorting was restricted to single beads. Lasers and emission filters for both machines are summarized 

in Supplementary Table S6. The full-length DNA used to couple to beads to carry out the two separate 

Affibody screening control experiments presented in Supplementary Figure S9, Figure S10A-B and 

Figure 5C, is listed in Supplementary Table S4. 

Bio-layer interferometry measurements 

Streptavidin Octet tips were equilibrated in PBST with 0.1% BSA. The tips were then loaded with ligand 

by dipping into a solution of 2.5 µg/mL Avi-tag-ZIgE-SpyCatcher for 60 seconds. The tips were then 

dipped into a solution of PBST with milk, prepared by mixing skimmed milk powder (to 30 mg/mL, 

Marvel) in PBST, followed by centrifugation to remove insoluble matter, before the tips were moved into 

the IgE-analyte containing PBST/milk solution for a 300 second association phase. A dissociation phase 
(400 seconds) was subsequently recorded by moving the tips back into the PBS/milk-only solution. To 

take signal drift into account, data was processed by subtracting the signal from tips which had been 
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loaded with ligand but were not exposed to any IgE during the association phase (one for each Avi-tag-

ZIgE-SpyCatcher variant, always on the same “Octet” of tips). The Y-axis zero-point was aligned to the 

start of the association phase. Data were fit to a 1:1 binding model in the Octet Data Analysis Software, 

assuming only partial dissociation (as we observed in all cases less than complete dissociation, even 
with the very weak-binding control Avi-tag-ZIgEnonbinder-2-SpyCatcher). 

 

 

RESULTS 

Design and optimisation of SpliMLiB for solid-phase cloning of site saturation libraries 

Strategy overview. Our aim was to create a non-degenerate site saturation library, where DNA was 

densely coated on paramagnetic microbeads, both as a stand-alone method for library generation and 

as part of microemulsion-enabled bead display of protein variants. Our use of split-and-mix solid-phase 

cloning achieved both combinatorial diversity and ensured all DNA on any one bead was identical, 

allowing direct screening of library-encoded protein function. SpliMLib entails the immobilisation of DNA 
fragments to split portions of beads, followed by mixing of all beads and addition of a next set of 

fragments in the subsequent split, extending the bead surface-bound DNA (Figure 1A). Each of the 

DNA fragments carried a pre-determined, single-variant codon and was added in isolation in each split 

to a subset of beads. SpliMLib resulted in a site saturation library represented by beads each densely 

coated in identical, i.e. ‘monoclonal’, DNA (Figure 1B). Through iteration of the process, a DNA library 

was generated, the diversity of which corresponded to nm, where n is the number of splits per 

attachment-round and m is the number of SpliMLiB attachment-rounds. 

To implement this strategy a number of practical challenges had to be met that are addressed in the 

following paragraphs:  

(i) Preparation of bead surface for stable DNA and protein attachments. DNA immobilisation on beads 

was required to be of sufficient stability to guarantee the integrity of the library from its build-up, through 
to microemulsion-enabled bead display screening and recovery of hits.  Conventionally, biotinylated 

DNA is immobilised onto streptavidin-coated beads, although the limited  stability of the biotin-

streptavidin complex  after chemical conjugation to streptavidin and in different solvent conditions is 

increasingly recognised (40). We discovered that the linkage between biotinylated DNA and streptavidin 

beads was perturbed by the in vitro expression mixture used in our bead screening stage 

(Supplementary Figure S3A), consistent with an earlier observation of weakened interaction between 

biotinylated DNA and streptavidin beads in transcription experiments (41). Therefore, we designed a 
custom surface coating of the beads with azide, allowing covalent coupling of DNA to beads using 

strain-promoted copper-free click chemistry (42). We also included SpyTag on the bead surface, to 

support the attachment of protein variants (fused to SpyCatcher) via isopeptide bond formation (43), 

during later droplet screening of SpliMLib. To produce azide and SpyTag-functionalised beads (Figure 

2A), a soluble, tetrameric carrier protein (Tamavidin-2-HOT (44)), fused to SpyTag peptide, was 
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chemically crosslinked to the bead surface (Supplementary Figure S1A). Remaining free lysine side 

chains of bead-immobilised carrier protein were functionalised with azido-PEG4-NHS (Supplementary 
Figure S1B), allowing dibenzocyclooctyne (DBCO)-functionalised DNA immobilisation through a 

covalent linkage (a triazole) between the DNA and the beads (Supplementary Figure S1C).The bead-
surface immobilisation of a dsDNA fragment that was functionalised with DBCO at one 5’-end and 

fluorescein at the other 5’-end was found to occur with high efficiency and specificity, as monitored by 

flow cytometry (Supplementary Figure S1D & Figure 2B, top histogram). Importantly, while biotinylated 

DNA was rapidly lost from beads upon exposure to IVTT (92% loss after 1 hour in IVTT), DBCO-

functionalised DNA displayed increased stability (41% loss after 1 hour in IVTT) (Supplementary Figure 

S3). At the protein level, immobilisation of GFP-SpyCatcher proceeded with excellent efficiency and 

specificity (Supplementary Figure S1E). 

(ii) Cohesive end generation. Next to stable DNA immobilisation, a second factor affecting the final yield 

of SpliMLiB was the efficiency of restriction. To avoid introducing any undesired sequence into the final 

library, we used Type IIs restriction enzymes Esp3I and BspQI, allowing scar-free cloning as the 

digestion takes place outside of the enzyme’s recognition site. We initially faced the ‘suicidal’ terminal 

end problem: DNA fragments that extend a growing chain on the solid surface irreversibly end further 

extension if they do not carry a 5’-overhang at their far end. This problem, previously described by 
others (45), was solved with a simple tweak to the protocol: treatment of the entire bead pool with 

restriction enzyme, rather than digesting DNA off-bead. Treatment with Esp3I was found to lead to 

digestion of 94% of DNA, as monitored by loss of bead-immobilised DNA terminally labelled with 

fluorescein (Figure 2B, middle histogram). 

(iii) Ligation efficiency. An important factor for SpliMLiB yield was the efficiency of the solid-phase 
ligation step. During an early phase in the optimisation of the SpliMLib protocol, we faced low yields of 

solid-phase ligation (not shown) and erroneously ascribed that to poor ligation efficiency. However, we 

soon realised that this situation was a consequence of poor efficiency of the upstream step in the 

protocol, the solid-phase restriction (see above). Fortunately, we found solid-phase ligation not to 

require any optimisation, as long as i) DNA carried appropriate overhangs (assured through solid-phase 

digestion) and ii) sufficient solution-phase DNA was provided (20 million DNA molecules per bead). 

Ligation efficiency was monitored using a fluorescein-labelled dsDNA with a 5’-overhang 

complementary to the 5’-overhang of DNA immobilised on the beads. In the presence of T4 DNA ligase, 
such beads displayed the same fluorescence intensity as beads to which fluorescein-labelled DNA had 

been attached directly via click chemistry (Figure 2B, bottom histogram), suggesting efficient ligation. 

Unspecific binding of DNA to beads during the ligation reaction was excluded by the observation of a 

lack of increase in fluorescence in beads receiving fluorescein-labelled DNA with correct 

complementary 5’-overhang, but no T4 DNA ligase (Figure 2B, bottom histogram). 

(iv) Saturation of proximal codons. Finally, we assessed SpliMLib’s suitability for the saturation of 

codons in close proximity (i.e. separated by less bases than found in even a short, 20-mer 

oligonucleotide) in a non-degenerate manner, where mutant codons are carried on separate input 

fragments. Combining for instance three codons on the same input fragment, generated by 
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conventional, phosphoramidite monomer-based synthesis and in a non-degenerate manner, would 

have required the use of 8000 oligonucleotides, an impractical prospect. We introduced a key design 

feature, the incorporation of a terminal ‘stability stuffer’ element in the incoming DNA duplex, to ensure 

the stability of the incoming DNA duplex and thus its acceptance by T4 DNA ligase (46). Type IIs 
recognition sites allowed scarless removal of the stuffer and introduction of a ssDNA overhang for the 

next SpliMLib attachment-round. To test this approach, we designed a scheme for the potential 

saturation (only a single split per fragment was carried out) of three closely situated codons, where DNA 

was split into two longer, flanking, PCR-generated fragments (Frag1 & Frag3) and a central fragment 

prepared by duplex formation of two oligonucleotides (Frag2, Figure 2C & Supplementary Figure S5). 

The central fragment was 40 bp in length but contributed just 3 bp (i.e the targeted codon) and 7 bases 

(the 4 & 3 nt-ssDNA cohesive ends). Using this strategy, the DNA assembled with high efficiency (Figure 

2D) and DNA directly amplified and sequenced from the 3-codon SpliMLiB beads showed a perfect 
Sanger chromatogram (Figure 2E). Thus, SpliMLib permits the targeting of codons separated by only a 

single, intervening, constant codon. 

Taken together, our approach thus permits the assembly of DNA on beads, where the DNA-surface 

attachment is highly stable, where each addition of DNA fragment proceeds with excellent efficiency 

and where codons in close proximity can be individually targeted. By exploiting the combinatorial 
diversification arising out of a split & mix approach during the rounds of DNA appendage, DNA libraries 

can be constructed, which benefit from being represented by ‘clonal beads’. 

Construction of a 160,000-membered library for ZIgE affinity maturation and validation of library 
diversity by NGS 

Library assembly. The utility of the SpliMLiB system was probed by building a library for the affinity 

maturation of an Affibody protein binder recognising the IgE antibody. Affibody molecules are small, 

three-helix bundle antibody mimetics with improved stability and expression compared to classical 

antibodies (47). Affibody ZIgE had been selected by phage display, based on a degenerate codon (VNN) 

library targeting 13 different positions, with a reported Kd of 0.5 μM (48). We reasoned that the original 

phage display library must have undersampled the theoretical amino acid sequence space implied by 
the randomisation scheme (1613), encouraging us to seek to improve the affinity of this binder by a more 

targeted and balanced mutagenesis library using SpliMLiB. Out of the 13 sites originally randomised, 

four were chosen as SpliMLiB targets: T10, M18, G28 and M35 (Figure 3A). Each of these sites were 

to be fully saturated, resulting in a theoretical diversity of 204, i.e. a 160,000-membered SpliMLiB library. 

The design of the library entailed four different DNA fragments, each of which was generated in sets of 

twenty different variations, for each of 20 different codons at the targeted sites. A first set of DBCO-

modified fragments (fragM35, for direct immobilisation to the bead surface) was generated by PCR, 

varying at the M35 position and encoding a C-terminal SpyCatcher sequence, to support later covalent 
linkage of expressed protein variants to the SpyTag-functionalised beads. The two sets of central 

fragments (fragG28 and fragM18) were generated though hybridisation of partially complementary 

oligonucleotides, varying at the G28 and M18 positions respectively. The fourth and final set of 

fragments (fragT10) was generated via PCR, varying at the T10 position (Figure 3B & Supplementary 
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Figure S6), while also introducing a T7 promoter and ribosome binding site (RBS) for later in vitro 

expression (see below).  Library build-up was conducted in the antisense direction. Thus, any 

incompletely extended fragments would not contain the T7 promoter or ribosomal binding site, 

mitigating the risk of impairment of transcription and translation efficiency of full-length DNA during 
subsequent cell-free expression. The full workflow entailed the design of oligonucleotides, the 

preparation of PCR fragments and oligonucleotide duplexes and the split & mix-based processing of 

beads (Figure 3C). SpliMLiB library synthesis was started with 20 million beads, of which 8.2 million 

remained for NGS analysis, expression and screening after the final ligation step (accounted for by 

inevitable bead loss during washing steps). The efficiency of DNA library assembly on the beads was 

confirmed using flow cytometry by comparing the fluorescence signal obtained from beads coated with 

a fluorescein-labelled, full-length DNA fragment to the pooled library beads after ligating the final, 

fluorescein-labelled fragment (Figure 3D). 

Deep sequencing of library. To validate the quality of the library generated using the SpliMLiB 

technique, the ZIgE input library was sequenced on the Illumina MiSeq platform. A PCR fragment was 

produced from the input beads covering all four targeted sites on the amplicon for 150 base single-read 

sequencing, resulting in a sequencing depth of 89 times the theoretical library size (14.2 million reads, 

Supplementary Table S7). We first analysed those reads not containing InDels (86.2% of all reads). We 
found that the distribution of individual amino acids at each of the four positions indicated a balanced 

distribution, with a per amino acid frequency over all four targeted positions of 5.1% ± 0.77 (median ± 

standard deviation) (Figure 4A & Supplementary Table S9). Similarly, there was excellent coverage of 

the total theoretical library size, with 99.3% of the theoretical library members encountered in the NGS 

data (Figure 4B). Although there were two small subsets of theoretical variants that were either over-

represented or under-represented, 88% of all observed variants were found to vary by less than 2-fold 

in copy number from the average read number and 96% varied by less than 3-fold from that same value. 

Further quality control of the library was undertaken by analysing for the presence of off-target 
substitutions, deletions, insertions and truncations. We identified 2.0 million reads (13.8% of the total 

reads) that had insertions, deletions and/or truncations (Table S8). Of these indels, the majority 

concerned deletions (Figure 4C) and truncations (Supplementary Figure S8). Interestingly, InDels 

appeared to be more prevalent close to the sites targeted for saturation.  Similarly, off-target 

substitutions occurred more frequently close to targeted sites (Supplementary Table S8 & Figure 4D). 

There was a small but significant contamination by wild-type sequence, amounting to 0.25% of the 

sample. This sequence likely represented carry-through from the wild-type template used in PCR 
reactions to generate fragT10 and fragM35. In summary, sequence analysis strongly suggested the 

SpliMLiB ZIgE library was near-complete and unbiased.  

Instant protein screening platform 

Cell-free protein binder screening. A unique and powerful feature of SpliMLiB is the generation of 

monoclonal beads, each carrying many copies of a single library variant.  This feature allows direct 

expression and screening of the encoded proteins, generating one-bead-one-protein libraries. To put 

this into practice, a scheme was devised to screen ZIgE protein variants using the SpliMLiB library 
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described above. SpliMLiB beads were encapsulated in the droplets of a water-in-oil emulsion, with in 

vitro expression mix in the aqueous phase. As ZIgE was fused to SpyCatcher, the expressed protein 

variants became covalently attached to the SpyTag-functionalised SpliMLiB beads, via an isopeptide 

bond (49), leading to a highly stable genotype-phenotype linkage. Thus, upon de-emulsification of the 
beads and incubation with Cy5-labeled IgE, the genotypes of the sorted ZIgE molecules could be 

sequenced (Figure 5A). To ascertain that the ZIgE SpliMLiB library format could be integrated with 

screening experiments, we carried out control experiments (Supplementary Text 2), to confirm the 

stability and lack of cross-contamination of the emulsion IVTT (Supplementary Figure S9) and the 

successful enrichment of functional binders (Supplementary Figure S10). 

Screening of SpliMLiB ZIgE library. Having validated the instant bead screening protein selection 

platform, we screened the fully randomised, 160,000-member SpliMLiB ZIgE library. Four million 

SpliMLiB ZIgE beads were subjected to emulsion IVTT, exposed to 200 nM of IgE-Cy5 and FACS sorted 

into four different gates of increasing stringency (Figure 5B). DNA was recovered by PCR and cloned 

into an acceptor vector. Promisingly, pooled analysis of the sorting gates showed that increasing sorting 

stringency correlated with an increasing IgE-Cy5 signal (Figure 5C). To characterise individual hits, a 

subset of single clones was picked from the most stringent gate (containing ~800 beads), expressed in 

small scale E. coli BL21(DE3) cultures and purified with Ni2+-affinity chromatography. Most (45 out of 
48) clones resulted in ample soluble and pure protein (~0.15 – 1 mg protein from 20 mL culture), as 

analysed by SDS-PAGE (Supplementary Figure S11A). These protein variants were loaded on beads 

(via SpyTag-SpyCatcher bonding) and analysed for binding to Cy5-labeled IgE (Figure 5D & 

Supplementary Table S10). We found that despite  the presence of 15 (31%) false-positive, non-

functional clones (i.e. displaying less than 20% of the wild-type binding signal), 16 (33%) clones were 

found to be functional (i.e. displaying more than 20% of the wild-type binding signal) and 17 (35%) 

variants (including hits 33 and 44, marked) appeared to be better binders than the wild-type (Figure 

5D). When the same number of clones from the unsorted library was analysed, a strikingly different 
picture was revealed: 47 (98%) of clones were found to be non-functional, a single (2%) clone was 

found to be functional and no clones improved over wild-type were revealed (Figure 5E & 

Supplementary Table S11). Thus, a single round of bead display selection of the SpliMLib ZIgE beads 

was sufficient to enrich for functional and affinity-improved hits. To discern patterns of enrichment within 

the binding subset of selected protein variants, Sanger sequencing was carried out on all 48 

characterised clones (Supplementary Table S10), but we focused our analysis on the 17 variants that 

displayed a higher binding signal than wild-type (Figure 5F). At each position, one residue was 
encountered most frequently (9, 7, 9 and 7 times at positions T10, M18, G28 and M35, respectively, 

Supplementary Table S10). At position T10, aspartic acid was mainly found, while at position M18 

serine was favoured, with similarly small residues glycine and threonine were also allowed. The G28 

position was dominated by alanine, with serine as the second most commonly found residue. Finally, 

at position M35, methionine (i.e. the wild-type residue) represented the predominant amino acid 

encountered, with several more relatively hydrophobic residues also encountered. 

A tighter binding consensus mutant. The most commonly occurring mutation at each of the four 

positions was T10D, M18S, G28A and M35M, respectively (Figure 5F). Interestingly, we did not 
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encounter the combination of all four of these mutations in any of the 48 characterised variants, although 

inspection of the input NGS sequences confirmed that the consensus mutant had also been available 

in the original library. To investigate whether this consensus combination might represent a tighter 

binding variant, ZIgEconsensus-SpyCatcher was constructed using SpliMLib DNA fragments fragT10D, 
fragM18S, fragG28A and fragM35M and the same solid-phase DNA assembly method used in the 

construction of the ZIgE library. Biolayer interferometry (BLI) measurements of purified proteins 

(Supplementary Figure S12) confirmed that ZIgEconsensus-SpyCatcher was improved over ZIgEwild-type-

SpyCatcher, as well as over the two top hits from the bead display selection: ZIgE33-SpyCatcher and 

ZIgE44-SpyCatcher (Table 1). 

Table 1. 

 
ZIgE-SpyCatcher 
variant 

Mutations Kd (µM) 10 18 28 35 
ZIgEwild-type T M G M ~7.31 
ZIgE33  G S A M 2.1±0.5 
ZIgE44  D G S F 4.8±1.3 
ZIgEconsensus  D S A M 0.61±0.06 

 

DISCUSSION 

Straightforward generation of fully non-degenerate libraries with SpliMLib 

As a technique to generate site saturation libraries, SpliMLib offers several advantages over existing 

methods (Table 2). Library quality may be adversely affected by poorly controlled codon frequencies. 

SpliMLiB provides fully balanced and non-degenerate codons at each position, thereby maximising the 

chance of success in a screening campaign, by ensuring no part of sequence space is omitted, even 

small areas of which may encode the desired phenotype.  Our NGS analysis of the 160,000-membered 
ZIgE SpliMLiB library revealed well-balanced codons so that full inclusion of all 20 natural amino acids 

was reliably achieved. Had the same positions in our ZIgE target protein been saturated using the 

commonly employed NNK, it would have taken a greater effort to fully screen as there would have been  

6.5 times more theoretical variants and the library would have been less balanced in terms of amino 

acid representation. Thus, although a plethora of highly efficient techniques are available for straight-

forward library construction (6–8), such libraries may not offer the most economically sensible route (9), 

especially when the cost of screening is high. 

The codon bias problem has been partially addressed by the ‘22c-trick’ and other approaches 
towards small and smart libraries (10, 50), where blends of  several different oligonucleotides  provide 

near-equal distribution of all amino acids (11). Due to the need for multiple oligonucleotides per position, 

however, targeted positions must be at least mutagenic oligonucleotide-lengths apart, even though it is 

often desirable to target multiple, proximally located amino acids, e.g. in reshaping the active site of an 

enzyme. In contrast, SpliMLiB allows saturation of codons in close proximity of one another, separated 

by just a single constant codon. The practical solution provided by SpliMLiB is based on use of a Type 

IIs restriction enzyme that scarlessly cuts away a portion of DNA that initially provides the stability to a 
DNA duplex, necessary for T4 DNA ligase activity. 
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Other technologies have been developed that can deliver fully non-degenerate site saturation, even 

of successive, proximal codons (Table 2). TRIM technology, where defined blocks of trinucleotide 

phosphoramidites are incorporated during synthesis (12), enables fully non-degenerate site saturation 

but is expensive due to the additional challenges involved in working with the necessary protecting 
groups during the synthesis of the trinucleotide itself and during its subsequent use in phosphoramidite 

synthesis (51). The ‘split-resin’ approach achieves randomisation by carrying out split & mix 

phosphoramidite synthesis of oligonucleotides. This method is, however, difficult to automate, suffers 

from poor yield, requires facilities not generally available in most biochemistry laboratories (52, 53) and 

has thus seen only limited applications (54–56). Another strategy implemented at the oligonucleotide 

synthesis stage, involves the use of orthogonal protecting groups on monomer phosphoramidites, 

similarly giving full control over codon randomisation (57).  In SpliMLib on the other hand, the entire 

library may be built up from relatively inexpensive, desalted, chemically unmodified oligonucleotides, 
except for a single, common, modified oligonucleotide to allow library DNA immobilisation. The end-

user prepares SpliMLiB input fragments with routine manipulations such as enzymatic 5’-

phosphorylation, oligonucleotide duplex generation or PCR fragment generation. Thus expensive 

oligonucleotides with base modifications such as uracil (58) or trimer codon mixes are avoided. Like 

SpliMLib, MAX mutagenesis, where NNN-containing ‘template’ oligos are hybridised to oligonucleotides 

containing specific codons complementary to the NNN part, is straightforward to implement and does 

not require expensive reagents (59, 60). However, the MAX technique requires at least two constant 

codons between every saturated codon (59). 
A shared technical feature of the library-generating platforms ProxiMAX (61) and Slonomics (15) is 

the successive ligation of small portions of the gene. In the ProxiMAX technique, variant codon-

introducing oligo duplexes (or hairpins) are blunt-end ligated to a growing template, enabling fully non-

degenerate library synthesis  (61). The ProxiMAX method  requires a PCR workup step between every 

codon addition, as well as being subject to differences in codon-dependent ligation efficiency, 

necessitating careful adjustments of variant concentrations (16, 61). Although this technology has since 

been improved (and renamed as ‘Colibra’), it now requires specialist robotic pipetting equipment, 
limiting its widespread adoption in library-generating laboratories (16). Similarly, the Slonomics 

approach, while capable of providing high quality libraries through successive nucleotide triplet build-

up, is effectively a proprietary, robotics-based technique, requiring 4096 set of ‘splinkers’ as input 

material  (15, 62). By contrast, the SpliMLiB methodology is more straightforward to implement in any 

molecular biology lab, avoiding robotic equipment and requiring nothing more sophisticated than 

paramagnetic microbeads and a bar magnet.  More recently, oligonucleotides synthesised on 

microarrays have been used to assemble gene libraries, typically by polymerase cycling assembly (63). 

However, due to the need to synthesise the entire gene length, the price of gene synthesis, which 
remains stubbornly high for reasonably error-free DNA, means this technique is limited to the synthesis 

of maximally ~3x104 variants (63), including homologues (64), designed shuffling libraries (65) and short 

proteins (66, 67), while we demonstrate here that SpliMLiB gives access to a library size >105  and is 

limited by transformation efficiency only (rather than synthesis). 
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Table 2:. 

Codon diversification Mutagenic 
effect Advantages / limitations Implementation 

examples1 

NNK, NNS (7) 32 codons 
Simple, cheapest 
oligonucleotide synthesis 
/High degeneracy 

OmniChange (17) 

22C & other small-
intelligent approaches 
(10, 11, 50) 

Semi-non-
degenerate 

Simple oligonucleotide 
synthesis/ Unsuitable for 
proximal codons 

Darwin Assembly (7) 

TRIM technology (51) Fully non-
degenerate 

Proximal codons targetable/ 
Expensive & custom codon 
ratios not available 

Controlled 
randomisation (68) 

Phosphoramidite 
synthesis with 
orthogonal groups (53) 
or with Resin Splitting 
(52) 

Both non-and 
fully degenerate 

Control at the nucleotide 
level over randomisation / 
laborious, expensive and 
requiring large amounts of 
reagents 

Custom 
randomisation ratios 
at proximal codons 
(56) 

MAX randomisation 
(59) 

Fully non-
degenerate 

Cheap reagents, protocol 
and workflow / cannot target 
more than two proximal 
codons 

Zinc finger screening 
(60) 

Stepwise extension of 
gene by successive 
ligations with fully 
defined mixtures of 
codons 

Fully non-
degenerate 

Allows targeting of 
consecutive proximal sites 
/labour intensive or requires 
automation 

Slonomics (15), 
ProxiMAX (61) & 
Colibra (16) 

Solid-phase split & mix 
ligation of DNA 
duplexes and 
amplicons 

Fully non-
degenerate 

Directly screenable format / 
at least one constant codon 
required between two 
saturated residues 

SpliMLiB (this study) 

Microarray & full gene 
synthesis 

Fully non-
degenerate/entire 
homologues 

Full control over entire 
sequence / Currently limited 
to ~104 variants 

DropSynth (64), mini-
proteins (66, 67)  

 
We were reassured by the fact that previous work had established that solid-phase ligations can be 

very efficient (effectively 100%, as later shown by our flow cytometry experiments), from the addition of 

very short oligonucleotide duplexes (46), through to the ligation of multiple kilobase fragments of DNA 

(45, 69). Indeed, there is even a commercially exploited gene synthesis technique involving successive 

solid-phase ligations of oligonucleotide complexes (70).  We found that important parameters for optimal 
DNA solid-phase assembly included the amount of DNA immobilised onto beads (we recommend 107 

molecules of DNA per bead), the provision of a stabilised DNA duplex for ligation and carrying out of 

the restriction enzyme digestion on already immobilised DNA where possible. Furthermore, the 

occasional use of a fluorophore (via attachment at the 5’-end of an oligonucleotide) at the growing end 

of the DNA allows quantitative monitoring of assembly success during library build-up. The carefully 

documented SpliMLiB optimisation experiments will facilitate implementation of the technique in 

laboratory practise. Furthermore, the NGS revealed the library to provide good coverage of the total 
theoretical diversity: 99.3% of all theoretical variants were represented.  The SpliMLib library was by no 

means perfect, as we detected a significant number of errors, including off-target substitutions and 

deletions (13%). Nevertheless, this error rate was an acceptable price to pay in return for a well-

balanced, non-degenerate library with a reasonably straightforward method to generate it.  
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The limits of SpliMLiB are defined by the maximum number of targeted sites and the number of splits 

per site in DNA attachment rounds. Given the efficiency with which four fragments were immobilised 

and ligated in the ZIgE SpliMLiB library, ligation of twice the number of fragments would seem 

conceivable, leading to library sizes approaching 2.5x1010. Libraries can also be constructed to have 
maximal functional diversity by allocating available diversity over different positions (e.g. ~160,000 

variants used either for full site saturation at four sites or by allocating 11 different amino acids at five 

sites). Although we have found it useful to follow SpliMLib library synthesis by flow cytometry, especially 

as doing so helped us to identify several critical factors requiring optimisation (e.g carrying out restriction 

on pre-immobilised DNA), it may be more convenient and economical to use amounts of DNA (we 

typically supplied 5 million molecules of DNA per bead) that are no longer sufficient to be monitored 

directly by flow cytometry of beads (i.e. less than 107 molecules of DNA per bead) but that could still be 

followed by real time or end point PCR. 

SpliMLib compared to ‘DNA-encoded libraries’ 

‘DNA-encoded libraries’ (DELs)  can be considered conceptually similar to the SpliMLib approach we 
introduce here: successive additions of building blocks by synthetic chemistry are encoded by parallel 

additions of known DNA sequence, in combinatorial split & mix fashion, to create diverse collections of 

small molecules that can be identified by sequencing the attached DNA (31, 71). Encoding DNA may 

be attached to library molecules through a small chemical linker (72). Alternatively, both may be 

attached to a bead, resulting in a combination of the ‘one-bead, one-compound’ approach (30, 73) with 

the DEL approach, leading to many copies of DNA per bead (and thus per hit), improving the chance 

that viable, PCR-amplifiable templates remain after the chemical synthesis steps (74).  As in SpliMLib, 

DNA may be added as oligonucleotide duplexes, using T4 DNA ligase to create stretches of PCR-
amplifiable DNA (74). DELs allow screening of compound libraries, generated using building blocks and 

synthesis schemes inaccessible through ribosomal protein synthesis, for binding to a protein target (75–

78). Certain DEL formats can be screened using a water-in-oil emulsion-based compartmentalization 

strategy called ‘binder trap enrichment’.  A protein target and a small molecule ligand are tagged with 

DNA barcodes and initially mixed in a free solution. Subsequently, individual, bound complexes are 

brought into emulsion, allowing any binding events to be permanently ‘recorded’ through ligation of the 

DNA associated with both binding partners (79). An interesting feature used in bead-based DELs is 

enhanced stability of immobilized DNA by tethering dsDNA at both the 5’ and the 3’-end, such that even 
under harsh, denaturing conditions, e.g.  as typically encountered during peptide synthesis, both strands 

of DNA remain firmly attached to the bead (74). We speculate that such an arrangement might also 

benefit long-term stability of the SpliMLib DNA. A further interesting innovation in this field is the use of 

DNA ‘barcodes’ that – when read in combination with the synthesis-scheme-encoding DNA – render 

almost all beads entirely unique and thus allow discrimination during sequencing analysis between truly 

replicated hits and replicated hits that merely derive from PCR amplification of the DNA on a single 

bead (75). In our SpliMLib ZIgE campaign, the sequence diversity (160,000) was lower than the total of 
number of beads screened (4 million) and thus this scheme could also benefit in future from a non-

protein-coding DNA barcode to help identify true replicate hits. 
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Role of SpliMLiB with in vitro compartmentalised selections 

We have shown that SpliMLib is not only an efficient means of generating a fully non-degenerate site 
saturation library (which can, for example, be transformed to an expression host of choice), it can also 

be used in a directly screenable directed evolution platform using beads, cell-free expression mixture 

and compartmentalising emulsion droplets. The use of beads in droplets as clonal entities instead of 

cells is a well-established technique (19, 20). The key advantages of the bead display approach are the 

avoidance of the cellular transformation bottleneck (thereby supporting large and bias-free selections 

in vitro), allowing easy delivery to the expressed protein of antigen (for protein binder selection) or of 

substrate (for enzyme selections), all the while exploiting the powerful features of the flow cytometer, 
including multiple, simultaneously operational fluorescence excitation and emission spectral bands. Our 

use of the SpyTag/SpyCatcher system allowed straightforward coupling of expressed protein-of-

interest-SpyCatcher fusions to beads that had been modified with SpyTag, via a isopeptide bond formed 

between the two components (49). As both components are genetically encoded, we found the system 

easier to setup than the previously used SNAP display system on beads (25, 27), while protein-to-bead 

coupling remained efficient. Due to the split & mix effect resulting in clonal clustering, we speculate that 

each bead should be dominated by the correct assembly, despite the indels and off-target substitutions 

documented by NGS analysis. Moreover, we reasoned the influence of InDels on the final screening 
campaign would be limited by the fact that in most cases, the C-terminally located SpyCatcher domain 

would have been out of frame, preventing any aberrant protein from immobilizing to beads and favouring 

the immobilisation of full-length, intact protein in the droplet. 

A significant challenge in bead display has always been achieving a sufficient amount of clonal DNA 

on the bead with which to program IVTT and also allowing for easy recovery of DNA after sorting (25). 

Notwithstanding the 8000 (80) to 30,000  (81) copies of protein that have been estimated to form from 

a single molecule of DNA by in vitro expression in a droplet, single DNA-in-droplet selections have 

tended to be applied in panning-type (a.k.a. ‘pull-down’) assays for protein binders (82–94), for DNA-
manipulating enzymes (95–101) – where modification of the encoding nucleic acid is a powerful means 

of selection – and much more rarely for  other enzymes (102–104). Although emulsion PCR with beads 

starting from single molecules of template in droplets is well-established in diagnostics (105) and in 

preparing for Ion-Torrent sequencing, the yield with lengths typical of proteins such as enzymes remain 

very low (25). SpliMLib obviated the need for an emulsion PCR step, as the technique produces 

expression-ready beads coated in multiple monoclonal copies of the library variants. 

Here the utility of SpliMLib was demonstrated through the screening at ultra-high throughput of 
160,000 different ZIgE variants, in a bid to affinity mature this Affibody molecule. We demonstrated robust 

enrichment for binding variants within the library (0 out of 48 improved variants before sorting, 17 out of 

48 improved after sorting). Single mutants showed ~2-fold improvements in binding constant, and a 

consensus mutant resulted in a further improvement, by up to an order of magnitude. The fact that the 

consensus mutant was not encountered directly in the 48 characterised hits, prompted us to return to 

the NGS data. It was indeed present in the SpliMLib library, at a frequency of 9.1x10-6, and thus could 

have been expected to be represented by 36 physical beads in the 4 million beads sampled.  We ruled 

out reduced protein solubility as a contributory factor to the ‘missed’ consensus sequence, as soluble, 
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purified yield for ZIgEconsensus was 2-fold that of ZIgE33 and ZIgE44 (data not shown). We speculate that the 

relatively broad gate used to sort beads (ranging in Cy5 intensity from 1.7x103 to 2.0x106 AU) resulted 

in a wider distribution of binding functionalities being sorted. Future optimisation of the sorting process 

should thus focus on use of a narrower, more stringent sorting gate. In addition, the 48 output clones 
characterized here are a relatively small sample compared to other studies (e.g. the 100 – 200 clones 

characterized in a typical phage display experiment (106) or >300 clones reported to be carried out for 

Affibody molecules in particular (107, 108)). Future implementations of SpliMLib would benefit from 

characterization of a larger number of output clones. 

It is interesting to consider the limits of SpliMLib for in vitro screening. The remaining bottleneck in 

the selection will likely be the throughput of the FACS, which at around 1,400 (109) - 30,000 (110) 

events/sec (depending on desired purity and yield) limits the practical throughput to 0.5x107 - 108 events 

(assuming a 1-hour FACS session). To allow for sufficient oversampling (10-fold) to ensure complete 
coverage, this throughput implies a library maximum diversity of ~107 members for screening. 

Future prospects of SpliMLiB 

Beyond point substitution saturation libraries, SpliMLiB will find applications in libraries that include any 

alteration: e.g. site-directed insertion or deletion libraries (111), shuffled libraries (65, 112) and - on a 

larger scale - enzyme pathway libraries (113), by ligation of fragments that vary larger sequence motifs 

instead of single codons. Site-directed deletion libraries would be useful in for instance the development 

of genetically encoded fluorescent sensors, where deletions between domains can often result in 

dramatic improvements in dynamic range  (114).  Furthermore, we expect that developments in 

massively parallelised and de novo enzymatic synthesis of DNA (115–117) will lead to a significant drop 

in the price of oligonucleotides, rendering SpliMLib ever more economical. 
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Figure 1. Design of SpliMLiB for solid-phase cloning of site saturation libraries. (A) SpliMLiB consists 

of a number of DNA attachment-rounds, where DNA is immobilised to the bead surface (first attachment 

-round) or immobilised DNA is extended by ligation (subsequent attachment -rounds). Beads are split 

into different tubes, with the number of vessels corresponding to the desired number of different amino 

acid variants at a position of interest within the encoded protein. Beads are mixed between DNA 

additions, ensuring all combinations of positional variants are achieved. This process may be continued 

for several attachment-rounds, resulting in a final diversity of nm where n is the number of splits per 

attachment-round and m is the number of attachment-rounds. Each tube within a split receives a DNA 
fragment carrying a single codon variant, as indicated by the lower dash-lined box shown for the second 

SpliMLib round only. (B) SpliMLib results in a site saturation library represented by beads each densely 

coated in identical DNA. 
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Figure 2.  Design of bead surface and solid-phase manipulations of DNA. (A) Beads were designed to 

display both azide (labeled “N3”) and SpyTag (labeled “ST”) moieties (surface modification described in 

Supplementary Figure S1).  (B) Flow cytometric analysis of beads for fluorescein-derived fluorescence 

intensity before (grey) and after (black) immobilisation of fluorescein and DBCO-functionalised DNA 

(top histogram), after Esp3I treatment (2 hours at 37 °C) of the DNA-coated beads (middle histogram) 

and after exposure of Esp3I-treated beads to a fluorescein-labeled DNA duplex that had a 5’-overhang 

complementary to the 5’-overhang of bead-immobilised DNA, in T4 DNA ligase buffer, with (black) or 
without (grey) T4 DNA ligase (bottom histogram). Details of the DNA sequences used for the generation 

of this panel are set out in Supplementary Figure S4.  (C) Schematic overview of on-bead assembly 

allowing potential saturation of three codons in close proximity. The final, bead-attached DNA assembly 

is shown at the top of the panel, with the three DNA fragments used in the construction are shown 

below. Restriction sites are depicted in red, target codons in green and sequences used for hybridization 
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during ligation in blue. The first, PCR-generated amplicon (frag3) was attached to bead (via copper-free 

click chemistry) and digested by Esp3I. DNA on the bead was extended using an oligonucleotide duplex 

(frag2) carrying a 5’-phosphorylated cohesive end; the sequence used to ensure stability of the duplex 

(stability stuffer) prior to ligation is indicated in a diagonal pattern. Once this duplex had been appended 
to the bead by ligation, a new cohesive end was generated (and stability stuffer removed) through BspQI 

digestion. Finally, another PCR amplicon (frag1), separately prepared with a cohesive end (using BspQI) 

was ligated to the bead-immobilised DNA. Details of the DNA sequences used for the generation of this 

panel are set out in Supplementary Figure S5. (D) Flow cytometric analysis of untreated beads (top 

trace), beads carrying full length starting template (i.e. with FAM at one end and DBCO at the other, 

middle trace) and beads having gone through the 3-codon SpliMLiB process described in C. (E) Sanger 

sequencing chromatogram (templated by a PCR amplicon obtained directly from beads) of the 

exemplary bead-surface assembled construct shown in panel C where codons to be mutated were 
designed to be in close proximity (bottom). As in panel C, the green coloring refers to mutated positions, 

while the blue coloring refers to sequences used for ligations. 
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Figure 3. Design and workflow of a SpliMLiB library for ZIgE. (A) Model structure for ZIgE (modelled by 

Swissmodel (118), based on a template with PDB ID 2m5a (119), indicating the locations of the four 

positions targeted in the SpliMLiB library. (B) Schematic overview of the final ZIgE expression construct 

that was assembled in four SpliMLiB attachment-rounds. The ZIgE sequence was divided into four sets 

of fragments, each of which carried one of the targeted positions.  These SpliMLiB input fragments were 

generated either by PCR (fragment sets fragT10 & fragM35) or through annealing of partially 

complementary oligonucleotides (fragment sets fragM18 & fragG28). The first set of fragments to be 
immobilised, fragM35, was functionalised with DBCO, allowing immobilisation of fragments through 

copper-free click chemistry to azide-functionalised beads. The last set of fragments to be ligated, fragT10, 

was functionalised with FAM, allowing monitoring of the efficiency of total SpliMLiB library assembly 

efficiency. The Esp3I type IIs sites included on the ends of the PCR-generated fragments supported 

seamless ligations to the oligonucleotide duplexes which had 5’-overhangs by design and which had 

been enzymatically 5’-phosphorylated. (C) The SpliMLiB workflow is schematically depicted. In a first 

attachment-round, DNA was immobilised on split populations of beads using copper-free click chemistry 

(i), before beads were mixed (ii) and subjected to an on-bead restriction reaction (iii) in order to 
generate a 5’-overhang. Next, beads were split again and 5’-phosphorylated synthetic duplex DNA with 

a 5’-overhang complementary to the 5’-overhang (generated in step iii) was ligated to the bead-

immobilised DNA. After subsequent mixing (v) and splitting of the beads, the bead-bound DNA was 

ready for extension by yet another 5’-phosphorylated synthetic duplex DNA fragment (vi). Beads were 

then mixed (vii) and split for the final ligation (viii) to add a PCR fragment carrying a 5’-overhang 

(generated by off-bead type IIs restriction), complementary to the penultimate fragment, the 5’-

phosphorylated synthetic duplex DNA. Each PCR amplicon from this last set of fragments was labelled 
with a 5’-FAM at the far end, for flow cytometric analysis of the mixed final library (ix).  (D) The efficiency 

of SpliMLiB library construction was analysed by flow cytometry. The positive control (PC) was prepared 

by immobilizing the full length ZIgE DNA fragment by click chemistry on the beads (identically end-

labelled with fluorescein as the library bead DNA). Untreated beads that did not contain any DNA served 

as the negative control (NC). 
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Figure 4. Analysis of ZIgE SpliMLiB library by NGS. (A) Box and whiskers plots for the frequency of all 

20 amino acids at each of the four target sites. As per convention, the Tukey whiskers are extended 

along 1.5 times the interquartile distance or to the highest/lowest point, whichever is shorter. The sole 

data point outside the range of the whiskers (for T10P) is indicated by a black dot. (B) Frequency 

distribution of all theoretical library variants arranged in order of frequency with which they were 

observed in NGS. (C) Frequency of insertions and deletions occurring at each position of the sequenced 

fragment from the SpliMLib library. (D) Frequency of off-target substitutions occurring at each position 

of the sequenced fragment from the SpliMLib library. In panels C & D, shaded bars represent the 
positions of the four targeted codons (from left to right, T10, M18, G28 and M35). 
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Figure 5. Microemulsion-based bead display screening of the ZIgE SpliMLiB library. (A) Schematic 

overview of a round of SpliMLiB-enabled directed evolution of ZIgE. SpliMLiB beads (i) were singly 

encapsulated in emulsion IVTT at 37 °C for 1 hour (ii), sufficient time to allow for both ZIgE-SpyCatcher 

variants’ expression as well as for their SpyTag-SpyCatcher-mediated immobilisation on the bead 

surface, after which the emulsion was broken, and the washed beads were exposed to Cy5-labeled IgE 

(iii), followed by flow cytometric sorting of beads based on Cy5 signal (iv). (B) Representative histogram 

recorded during the flow cytometric sorting of SpliMLib ZIgE library beads. The range of fluorescence 
intensity used for each of the sorting gates 1-4 is indicated. (C) Analysis of pooled, recovered and 

subcloned DNA from the sorting gates set out in panel B. DNA was used to express protein in IVTT 

under bulk, i.e. non-emulsion conditions, in the presence of SpyTag-functionalised microbeads. The 

microbeads, having captured the SpyCatcher fusion proteins, were then incubated with 200 nM IgE-

Cy5 and analyzed by flow cytometry. Cy5 fluorescence intensity was normalized to a sample prepared 

from beads exposed to purified ZIgEwild-type-SpyCatcher protein (WT, grey bar).  Negative control (NC) 
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was beads not exposed to any ZIgE-SpyCatcher protein. (D) Analysis of bacterially expressed & purified 

variants derived from the stringently sorted library output from FACS sorting gate 4. Beads that had 

been bound with ZIgE-SpyCatcher variants were incubated with 200 nM IgE-Cy5 and analyzed by flow 

cytometry. ZIgEwild-type-SpyCatcher (labeled WT) was included as control and was used to normalize all 
fluorescent values. The variant showing the highest Cy5 median signal (variant 33, marked by a single 

asterisk) and second highest (variant 44, marked by a double asterisk) signal were taken forward for 

further analysis. (E) As panel D, except for 48 randomly picked clones derived from the unsorted 

SpliMLiB input library beads. (F) Frequencies of amino acids encountered in selected variants 

displaying a higher binding signal than ZIgEwild-type-SpyCatcher (17 in total). The most frequent amino 

acid at each position is indicated in bold to emphasize it.  
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Table 1. Affinity characterization of selected ZIgE-SpyCatcher variants by biolayer interferometry (BLI). 
To prepare for biolayer interferometry (BLI) measurements, these four variants (in addition to a variant 

with alanine mutations at all four SpliMLib-targeted sites, ZIgEnonbinder-2-SpyCatcher) were sub-cloned to 

an expression vector allowing site-specific biotinylation of a lysine on the short N-terminally fused BirA 

tag (Supplementary Figure S2E). Binding constants were estimated by fitting of the obtained BLI data 

to a 1:1 binding model assuming only partial dissociation (Supplementary Figure S12). Provided are 

the mean Kd values from measurements at three different ligand (IgE) concentrations, together with the 

standard error. 1A fit could be obtained only for the highest concentration of IgE, precluding an accurate 
estimation of ZIgEwild-type-SpyCatcher affinity.  Similar difficulties with Affibody affinity determination using 

surface plasmon resonance have been noted elsewhere (120). 

Table 2. Examples of codon diversification approaches, advantages and limitation as wells as specific 

implementations and embodiments. 1These are not intended to be exhaustive and the reader is referred 

to excellent, comprehensive reviews such as (121). 


