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The crystallographic diffraction experiment measures Bragg intensities;

crystallographic electron-density maps and other crystallographic calculations

in phasing require structure-factor amplitudes. If data were measured with no

errors, the structure-factor amplitudes would be trivially proportional to the

square roots of the intensities. When the experimental errors are large, and

especially when random errors yield negative net intensities, the conversion

of intensities and their error estimates into amplitudes and associated error

estimates becomes nontrivial. Although this problem has been addressed

intermittently in the history of crystallographic phasing, current approaches to

accounting for experimental errors in macromolecular crystallography have

numerous significant defects. These have been addressed with the formulation of

LLGI, a log-likelihood-gain function in terms of the Bragg intensities and their

associated experimental error estimates. LLGI has the correct asymptotic

behaviour for data with large experimental error, appropriately downweighting

these reflections without introducing bias. LLGI abrogates the need for the

conversion of intensity data to amplitudes, which is usually performed with the

French and Wilson method [French & Wilson (1978), Acta Cryst. A35, 517–525],

wherever likelihood target functions are required. It has general applicability

for a wide variety of algorithms in macromolecular crystallography, including

scaling, characterizing anisotropy and translational noncrystallographic

symmetry, detecting outliers, experimental phasing, molecular replacement

and refinement. Because it is impossible to reliably recover the original intensity

data from amplitudes, it is suggested that crystallographers should always

deposit the intensity data in the Protein Data Bank.

1. Introduction

For macromolecular crystallography, maximum-likelihood

functions are required in order to account for the large model

errors that are present during phasing. In this way, macro-

molecular crystallography differs from small-molecule crys-

tallography, where the model errors are small and the most

widely used and successful program for refinement, SHELXL

(Sheldrick, 2015), uses a least-squares (intensity) target.

Compared with the model errors, the relatively smaller data

errors have not been the focus of the development of

macromolecular likelihood functions, but recent advances

have raised the importance of dealing properly with both large

model and large data errors. Most prominently, it has been

demonstrated that useful information can be extracted from

very weak diffraction data (Ling et al., 1998; Karplus &
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Diederichs, 2012). This has coincided with the uptake

of photon-counting area detectors for macromolecular

crystallography, on which data are frequently integrated

beyond traditional resolution limits [for example, where the

merged I/�(I) > 2]. Lastly, structure solution is increasingly

being attempted with pathologies such as twinning, high

anisotropy and translational NCS (Read et al., 2013). In the

last two of these cases, weak data with high error cannot be

excluded because they form an essential part of the analysis.

The sources of error in the measurement of intensities are

reasonably well understood, and there are good arguments for

assuming that these errors can be considered to be drawn from

Gaussian probability distributions (even though the size of the

errors can be hard to calibrate). Photon counting gives rise to

Poisson distributions, which can be approximated reasonably

well by Gaussian distributions, even for a few tens of counts.

The estimation of peak intensities involves taking the differ-

ence between the counts in the peak area and the counts

arising from background scattering, and the distribution of the

difference between two random numbers drawn from Poisson

distributions is approximated even better by a Gaussian. In

addition, there are other sources of error, arising for instance

from beam instability and uncertainties in detector calibration

or the estimation of scale factors. As more sources of error

accumulate, the central limit theorem tells us that the distri-

bution of errors will tend more towards a Gaussian.

There are currently two conceptually disparate methods

implemented for the incorporation of experimental errors into

maximum-likelihood targets. The most widely used method is

referred to here as ‘inflating the Rice variance’ (Green, 1979),

while the other, far less frequently used method is the MLI

target in CNS (Brünger et al., 1998), originally called MLF2

(Pannu & Read, 1996). Both have strengths and serious

deficiencies. In this work, we have aimed to remedy these

deficiencies while preserving the strengths of both methods.

Leaving aside the effect of measurement error for the

moment, current likelihood targets account for the model

errors by considering that the phased differences between

calculated and true structure factors arise from the sum of

many small differences in the calculated and true contribu-

tions of the atoms making up the structure. By virtue of the

central limit theorem, the relationship between the calculated

and true phased structure factors can be approximated well

with the complex normal distribution for acentric reflections

or the real normal distribution for centric reflections. Since the

phases are not measured in the diffraction experiment, like-

lihood targets require integrating over all possible phase

choices for the acentric case, yielding the Rice function

[equation 1a, derived first in the crystallographic context by

Luzzati (1952), Sim (1959) and Srinivasan & Ramachandran

(1965)] or summing over the two phase choices for the centric

case (equation 1b; Woolfson, 1956).

paðE; ECÞ ¼
2E

1� �2
A

exp �
E2 þ ð�AECÞ

2

1� �2
A

� �
I0

2�AEEC

1� �2
A

� �
; ð1aÞ

pcðE; ECÞ ¼
2

�ð1� �2
AÞ

� �1=2

exp �
E2 þ ð�AECÞ

2

2ð1� �2
AÞ

� �

� cosh
�AEEC

1� �2
A

� �
: ð1bÞ

These equations are expressed in terms of normalized

structure-factor amplitudes or E values for convenience in

most of what follows. (The important terms used in the

equations are summarized in Table 1.) �A is essentially the

fraction of a calculated E value that is correlated with the true

E value. Note that effects such as anisotropy or translational

noncrystallographic symmetry can be accounted for in the

computation of E values.

It is usual to express the likelihood in terms of a likelihood

ratio, or a log-likelihood gain, which is the improvement (or

otherwise) of the current model with respect to the null

hypothesis (a random-atom or uninformative model). This is

shown in (2), where the probability given an uninformative

model, or no model, is the Wilson (1949) distribution, which

can be obtained by setting �A in (1) to zero,

LLG ¼ ln
pðE; ECÞ

pðEÞ

� �
¼ ln½pðE; ECÞ� � ln½pðEÞ�: ð2Þ

1.1. Inflating the Rice variance

The ‘inflated-variance Rice’ method was originally intro-

duced in the context of experimental phasing by single

isomorphous replacement (Green, 1979), and it has subse-

quently been applied to both experimental phasing (de La

Fortelle & Bricogne, 1997; McCoy et al., 2004) and structure

refinement (Murshudov et al., 1997; Bricogne & Irwin, 1996).

This approximation, given in (3a) for the acentric case and in

(3b) for the centric case, is obtained from (1) by inflating the

variance term (1 � �A
2 ) in the Rice functions.
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Table 1
Terms used in this paper.

E True normalized structure-factor amplitude
EO Observed normalized structure-factor amplitude
EC Calculated normalized structure-factor amplitude
Ee ‘Effective’ E, used in the Rice-function approximation to the

intensity probability distribution
Dobs Luzzati-style D factor, encoding correlation between true and

‘effective’ E values in the Rice-function approximation to
the intensity probability distribution

�A Parameter describing the correlation between the true and
calculated E values

Iobs Observed intensity
hEn
iFW,a Expected value of En in the French and Wilson distribution,

acentric case
hEn
iFW,c Expected value of En in the French and Wilson distribution,

centric case
hEn
iRice,a Expected value of En in the Rice distribution, acentric case

hEn
iRice,c Expected value of En in the Rice distribution, centric case

D�(x) Parabolic cylinder function of order �
Erf(x) Error function
Erfc(x) Complement of the error function
In(x) Modified Bessel function of order n
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There are serious problems with the inflated-variance Rice-

function approximation. Firstly, the derivation requires a

chained series of approximations in which one statistical

model is transformed into another. Inflating the Rice-function

variance corresponds to a statistical model in which structure-

factor errors are drawn (in the acentric case) from a complex

Gaussian distribution. The resulting functional form is used

to approximate the effect of Gaussian errors in the observed

amplitudes. In turn, estimates of Gaussian errors in the

observed amplitudes have to be obtained in some way from

estimates of Gaussian errors in the observed intensities. While

it is appropriate to assume that measurement errors for the

intensities are drawn from a Gaussian distribution, the error

distribution does not remain Gaussian after the transforma-

tion of intensities to amplitudes. Secondly, the inflated-

variance Rice-function approximation requires a normalized

amplitude EO to be derived from the observed intensity, even

when taking the difference between the peak measurement

and the background may yield a negative net intensity. Thirdly,

it requires a standard deviation for the normalized amplitude

(�EO
) and a scale factor appropriate for the inflation of the

variance (two in equation 3a and one in equation 3b, as

discussed below). Fourthly, the inflation of the variance breaks

the normalization of the expected structure factors.

Embedded in the attempts to solve these problems are a

further series of complications.

When likelihood targets are formulated in terms of the

structure-factor amplitudes rather than the intensities, the

simplest approach for converting the intensities to amplitudes

is to take the square root, after either discarding negative net

intensities or setting them to zero, and to set the experimental

amplitude errors using the first-order approximate formula

2Fobs�Fobs
= �Iobs

. To avoid the asymptotic case as Fobs tends to

zero, various improved functional forms have been proposed.

Perhaps the most common is (4); this approximation is used in

the program ADDREF (George Davenport & Syd Hall; http://

www.iucr.org/__data/iucr/cif/software/xtal/xtal372htmlman/

html/addref-desc.html), is implemented in the cctbx library

(Grosse-Kunstleve et al., 2002) and is equivalent to an option

in the CCP4 program TRUNCATE.

�Fobs
¼ �Iobs

=½Fobs þ ðF
2
obs þ �Iobs

Þ
1=2
�: ð4Þ

In a classic paper, French & Wilson (1978) introduced a

Bayesian approach to the problem of structure-factor

estimation from weak and even negative net intensity

measurements, in which prior knowledge about the scattering

power is combined with the experimental data to yield

posterior distributions for the true amplitudes or intensities.

From these posterior distributions, expected values and esti-

mated standard deviations can be obtained for the true

intensities or amplitudes. This approach is particularly valu-

able for one of its original purposes, i.e. to provide amplitudes

that can be combined with phase information to compute

electron-density maps and estimates of the experimental

standard deviations for use in the least-squares refinement

target functions that were available at the time.

The behaviour of the French and Wilson approach becomes

problematic when the errors are large. As the intensity-

measurement errors become larger, the posterior distributions

come to be dominated by the prior Wilson distribution; in the

limit of a measurement with no information content (infinite

standard deviation for the intensity measurement), the

posterior distribution is simply the Wilson distribution, which

has a finite standard deviation. Thus, if the posterior distri-

bution is interpreted as the result of an experimental

measurement, an uninformative ‘measurement’ that should

carry no weight in determining the details of the model ends

up exercising significant influence on that model. Likelihood

functions that account for experimental error should have the

correct asymptotic behaviour as the integrated data fade to

insignificance in the outer resolution shells. Ideally, including

data with insignificant signal should just waste CPU time but

should not affect the results.

In whatever way the scalar error in measuring an amplitude

is derived from the intensity data, further errors are intro-

duced in deriving the inflated-variance Rice distribution. For

acentric reflections, the scalar error in measuring an amplitude

is approximated as a complex error in the true structure factor,

which is then used to increment the variance term in the Rice

function (equation 1a). For relatively small errors, only the

parallel component of the complex measurement-error term

will have a large influence on the amplitude. For this reason,

the measurement variance for the normalized amplitude is

doubled when inflating the variance (equation 3a; Murshudov

et al., 1997), because only half of the complex variance is in

this parallel direction. On the other hand, although the

perpendicular component has a small influence on the

amplitude, it consistently leads to an increase. Thus, the

perpendicular component of the complex error increases the

expected amplitude in the probability distribution, even

though a random measurement error should not change the

expected value of the measurement. Note that when �A is

zero, (3a) reduces to a Wilson distribution for which the

expected value of EO
2 is 1þ 2�2

EO
. Consequently, the inflated-

variance Rice function breaks the link between the down-

weighting by �A of the calculated normalized structure factor

and the variance that is required to reinstate the total scat-

tering. It is not obvious what function of the scalar error in

amplitude should be used to inflate the variance to strike a

balance between the competing problems of inflating to

account for measurement error and deflating to reduce the

errors thereby introduced into normalization. It is possible
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that some form of renormalization might improve the quality

of this approximation, although we have not implemented this.

Note that for centric reflections the distribution is one-

dimensional, so the variance factor is 1 (3b), but there is still a

problem with data normalization.

1.2. MLI function

Formulating likelihood functions in terms of intensities

avoids a number of the problems described above. A change

of variables provides the probability of the true normalized

intensity given a model (equations 5a and 5b for the acentric

and centric cases, respectively):
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The MLI function is based on the simple statistical model

that the observed intensity arises from the addition of a

Gaussian measurement error to the true intensity. The effects

of model and measurement errors can thus be combined by

performing the convolution of the Rice function (expressed

in terms of intensities; equation 5) and a Gaussian intensity-

measurement error (6a), yielding (6b) and (6c) for the acentric

and centric cases, respectively:
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Fig. 1 shows, for the acentric case, the form of this prob-

ability distribution, which intrinsically allows the possibility of

negative net intensities.

Unfortunately, there appears to be no analytical solution to

the convolution integral for either the centric or acentric case.

Calculation via numerical integration is prohibitively expen-

sive for practical implementations, with many such integral

evaluations for the likelihood function and its derivatives

needed per reflection in the course of normal phasing. To

circumvent this problem, the integrand can be rendered as a

series approximation where the terms in the series can be

integrated analytically. This numerical technique was used to

develop the MLI target (also called MLF2 in Pannu & Read,

1996) for use in structure refinement in CNS (Brünger et al.,

1998). It is a viable approach when the series converges

rapidly; however, as shown in Fig. 2, the MLI target has the

serious disadvantage that it can be necessary to compute tens

of terms in the series for convergence.
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Figure 1
An example of the exact intensity likelihood function for the acentric case
(6b), with EC = 1.5, �A = 0.8 and �E2

O
= 0.2. All figures were prepared using

the program Mathematica (Wolfram Research, 2015).

Figure 2
Illustration of the convergence of the MLI approximation (Pannu &
Read, 1996) to the exact intensity likelihood function for the acentric case
(6b). Approximations with increasing numbers of terms are shown as
dashed magenta lines, while the exact function is shown in black. In both
examples, the approximation with the largest number of terms is almost
indistinguishable from the exact function. (a) Example with EC = 2.0, �A

= 0.4 and �E2
O

= 0.3. The dashed magenta curves show approximations
with terms to order 0, 1, 2 and 3. (b) Example with EC = 3.5, �A = 0.9 and
�E2

O
= 0.3. The dashed magenta curves show approximations with terms to

order 40, 50, 60 and 70.



A more fundamental problem with the MLI target is that

it does not lend itself to generalization to higher dimensions,

which would be needed to develop likelihood targets for

experimental phasing, since each correlation between struc-

ture factors included in the analysis requires another inte-

gration over the unknown phases and, in principle, over the

measurement-error distribution. Only one of the phase inte-

grals can be solved analytically so, in the acentric case, the

Bessel-function term used in the series approximation is only

present for one observation. Performing multi-dimensional

numerical integration to deal with the other observations

would lead to severe numerical instabilities and intractable

computing requirements.

2. Intensity-based LLG function

As described above, the deficiencies in the current treatments

of experimental errors are numerous and varied. However,

it is clear that working directly with intensities avoids the

problems associated with conversion to amplitudes and has

the advantage of keeping the target function closer to the

actual observations. This is the strength of the MLI target. On

the other hand, given the utility of the multivariate complex

normal distribution (relating phased structure factors) in

deriving crystallographic likelihood targets (Read, 2001, 2003;

McCoy et al., 2004), there are significant advantages in an

approach that approximates intensity errors in some way as

complex structure-factor errors, thus yielding targets based on

Rice functions. Combining the strengths of the MLI target

with the strengths of a target based on the Rice function would

be ideal.

The inflated-variance Rice-function approximation was

derived by starting from a Rice function for the probability of

the true amplitude given the model and then adding the

uncertainty arising from measurement error by increasing the

size of the variance term in the Rice function. It is useful to

consider a different approach in which the measurement error

and the model error are treated as independent complex

deviations from the true structure factor (treated as a dummy

variable that connects the calculated and observed structure

factors), instead of being added up in turn. In this approach,

we deal separately with the model error and the measurement

error and then combine their effects through their common

relationship with the true structure factor.

The effects of model error are already well understood

(equations 1 and 5), which leaves only the measurement error

to be studied separately.

2.1. Log-likelihood-gain target function

The mean-value theorem for integrals can be used to gain

some insight into the properties of a Rice-function approx-

imation for the effect of intensity-measurement error. The

exact likelihood target is defined as the convolution integral

of (6), which integrates over all possible values of the true

(possibly normalized) structure-factor amplitude. The mean-

value theorem tells us that there will be some value for E (or

for E2) in its range of integration (i.e. non-negative) that will

allow a Rice function to be factored out of the integral, leaving

the value of the integral unchanged. We will refer to this value

of E as ÊE, as shown in (7),

pðE2
O; ECÞ ¼

R1
0

pðE2; ECÞpðE
2
O; E2Þ dE2

¼ pðÊE
2
; ECÞ

R1
0

pðE2
O; E2Þ dE2: ð7Þ

What we learn from (7) is that if the intensity-based like-

lihood is approximated by a Rice-function likelihood with

some amplitude (ÊE) standing in for the observation, the Rice

function itself will be at best proportional to the true intensity-

based likelihood.

The proportionality constant given by the integral depends

only on the observed intensity, not the calculated structure

factor, so it will cancel out in either a likelihood ratio or a log-

likelihood-gain (LLG) value. So what we might be able to

approximate successfully using a Rice-function formula is the

LLG and not the likelihood itself. The mean-value theorem, as

expressed in (7), would provide a value for ÊE that corresponds

to an exact solution in a particular circumstance, i.e. for

particular values of EC and �A. For a practical treatment, we

need an approximation that is good for a variety of EC and �A

values encountered throughout model optimization, but the

goal should be an approximation for the LLG. An additional

advantage of the LLG is that it is invariant to any transfor-

mation of the observations, as the Jacobian terms of such a

transformation will cancel out in a likelihood ratio, so LLG

scores for intensities and amplitudes are equivalent. The LLG

also avoids the problem of dealing with reflections with an

amplitude estimated as zero; the amplitudes in equations

related to (1a) cancel out, so that the logarithm of zero does

not appear in the calculations.

2.2. Modelling measurement error

To develop a new approach to modelling the effect of

measurement error as a complex error in the true structure

factor, we start with the probability of the true normalized

intensity given the observed normalized intensity: this is the

French & Wilson (1978) posterior distribution for intensities

and is obtained by using Bayes’ theorem (8) to manipulate

distributions that we have determined.

pðE2; E2
OÞ ¼

pðE2
O; E2ÞpðE2Þ

pðE2
OÞ

¼
pðE2

O;E2Þ

pðE2
OÞ

; ð8Þ

The probability of the observed normalized intensity in the

denominator, which depends on the size of the experimental

errors, is obtained by integrating the numerator over all

possible values of the true normalized intensity, yielding (9a)

and (9b) for the acentric and centric cases, respectively,
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In these equations, Erfc is the complement of the error

function and D is a parabolic cylinder function (Whittaker &

Watson, 1990). These integrals, and most other new integrals

in this work, were evaluated using the program Mathematica

(Wolfram Research, 2015). The posterior probability for the

true E value is obtained by a change of variable, giving (10a).

In the Rice function defined in terms of normalized ampli-

tudes, the conditional probability of one E value (the true E

value in equation 1) given another E value (the calculated E

value in equation 1) depends on the parameter �A, which is

the complex correlation between the two E values. To obtain

Rice-function approximations to the probability of the true E

value in (10a), we have to find values for two parameters that

play roles analogous to EC and �A in (1a) and (1b), which we

will refer to as the effective E value (Ee), representing infor-

mation derived from the observed normalized intensity, and

Dobs, representing the reduction in correlation between

observation and truth arising from experimental error. The

form of these approximations is shown in (10b) for the acen-

tric case and in (10c) for the centric case.
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One could imagine many ways to find Ee and Dobs in (10b)

and (10c) so that they approximate the function in (10a); for

example, least-squares fitting. Ideally, the method should be

analytical so that it is fast. Our approach is to match two

moments of the distributions given by (10a) and by (10b) and

(10c) to obtain values for these two variables by solving two

simultaneous equations. Either the first and second moments

can be matched or the second and fourth moments (which are

the first and second moments of the normalized intensity).

The first two moments of (10a) are simply the posterior

expected (normalized) amplitude and intensity defined by

French & Wilson (1978). These expected values are obtained

by integrating the product of the amplitude (or intensity) and

its probability over all possible values from zero to infinity.

Although French and Wilson proposed to determine these

quantities by numerical integration, there are in fact analytical

solutions to the expected value integrals, as there are for all of

the other moments needed for this approach. For the acentric

case, the first, second and fourth moments of the distribution

in (10a) are given in equations (11a), (11b) and (11c),

hEiFW;a ¼
ð�E2

O
=2Þ1=2

D�3
2
ð�UÞ

exp
U2

4

� �
Erfc �

U

21=2

� � ; ð11aÞ

hE2
iFW;a ¼ �E2

O

ð2=�Þ1=2

Erfcx �
U

21=2

� �þ U

2
664

3
775; ð11bÞ

hE4iFW;a ¼ �
2
E2

O

ð2=�Þ1=2
U

Erfcx �
U

21=2

� �þ 1þ U2

2
664

3
775; ð11cÞ

where

U ¼
E2

O

�E2
O

� �E2
O

and

ErfcxðxÞ ¼ expðx2ÞErfcðxÞ:

For the centric case, the first, second and fourth moments of

the distribution in (10a) are given in (12a), (12b) and (12c), the

integrals for which were evaluated based on equation #3.462.1

of Gradshteyn & Ryzhik (1980),

hEiFW;c ¼
�E2

O

�

� �1=2
D�1ðVÞ

D�1
2
ðVÞ

; ð12aÞ

hE2
iFW;c ¼

�E2
O

D�3
2
ðVÞ

2D�1
2
ðVÞ

; ð12bÞ

hE4iFW;c ¼
3�2

E2
O

D�5
2
ðVÞ

4D�1
2
ðVÞ

; ð12cÞ

where

research papers

380 Read & McCoy � Log-likelihood-gain intensity target for crystallographic phasing Acta Cryst. (2016). D72, 375–387



V ¼ �
E2

O

�E2
O

þ
�E2

O

2
:

The first, second and fourth moments of the acentric Rice

distribution (10b) are given in (13a), (13b) and (13c),

hEiRice;a ¼
1

2

�

1�D2
obs

� �1=2

expð�WÞ½ð1�D2
obs þD2

obsE
2
eÞI0ðWÞ

þ D2
obsE

2
eI1ðWÞ�; ð13aÞ

where

W ¼
D2

obsE
2
e

2ð1�D2
obsÞ

;

hE2iRice;a ¼ 1�D2
obs þD2

obsE
2
e; ð13bÞ

hE4iRice;a ¼ 2þ 4D2
obsðE

2
e � 1Þ þD4

obsðE
4
e � 4E2

e þ 2Þ: ð13cÞ

The first, second and fourth moments of the centric ‘Rice’

(Woolfson) distribution (10c) are given in (14a), (14b) and

(14c),

hEiRice;c ¼
2ð1�D2

obsÞ

�

� �1=2

expð�WÞ þDobsEeErfðW1=2
Þ;

ð14aÞ

where

W ¼
D2

obsE
2
e

2ð1�D2
obsÞ

;

hE2
iRice;c ¼ 1�D2

obs þD2
obsE

2
e; ð14bÞ

hE4
iRice;c ¼ 3þ 6D2

obsðE
2
e � 1Þ þD4

obsðE
4
e � 6E2

e þ 3Þ: ð14cÞ

Appendix A describes the algorithms used to determine the

values of Ee and Dobs that match two pairs of moments. The

results are very similar, whether the first and second or the

second and fourth moments are matched, but the simplicity of

the second-moment and fourth-moment equations for Rice

distributions makes it easier to match these pairs of moments,

with the additional advantage that there are analytical solu-

tions. Appendix B discusses solutions to numerical issues that

arise in evaluating the parabolic cylinder functions required

for these calculations.

3. Combining measurement and model errors

To obtain a Rice-function-based LLG target that uses Ee and

Dobs to represent the intensity measurement and its experi-

mental error, what is needed is the probability of Ee given the

calculated structure factor EC. We can obtain this by first

constructing a joint probability distribution, in the form of a

multivariate complex normal distribution, involving the

phased structure factors Ee and EC, as well as the unknown

true structure factor E as a dummy variable. For normalized

structure factors, the covariance matrix is a correlation matrix

with ones along the diagonal. The off-diagonal elements

involving the true E are �A (for EC) and Dobs (for Ee). For two

random variables that differ in independent ways from a

common variable, the correlation term is the product of their

individual correlations to the common variable. This can be

seen in the correlation matrix presented in (15), in which a

superscript asterisk indicates the complex conjugate,

hEeE�ei hEeE�i hEeE�Ci

hE�eEi hEE�i hEE�Ci

hE�eECi hE
�ECi hECE�Ci

0
@

1
A ¼ 1 Dobs Dobs�A

Dobs 1 �A

Dobs�A �A 1

0
@

1
A:
ð15Þ

To obtain a correlation matrix describing the relationship

between Ee and EC, the terms involving the dummy true E can

simply be omitted to give (16),

hEeE�ei hEeE�Ci

hE�eECi hECE�Ci

� �
¼

1 Dobs�A

Dobs�A 1

� �
: ð16Þ

A probability distribution conditional on EC can be defined

based on the correlation matrix in (16); then, after a change of

variables from complex Ee to amplitude and phase followed

by integration over the unknown phase, likelihood functions

can be defined in terms of Ee and Dobs. These are shown for

the acentric and centric cases in (17a) and (17b), analogous to

(1a) and (1b),

paðEe; ECÞ ¼
2Ee

1�D2
obs�

2
A

exp �
E2

e þ ðDobs�AECÞ
2

1�D2
obs�

2
A

� �

� I0

2Dobs�AEeEC

1�D2
obs�

2
A

� �
; ð17aÞ

pcðEe; ECÞ ¼
2

�ð1�D2
obs�

2
AÞ
�

� �1=2

exp �
E2

e þ ðDobs�AECÞ
2

2ð1�D2
obs�

2
AÞ

� �

� cosh
Dobs�AEeEC

1�D2
obs�

2
A

� �
: ð17bÞ

Taking account of the argument based on the mean-value

theorem in (7), these equations are not expected to provide

good approximations for the variation with EC of the like-

lihood functions in (6b) and (6c). However, the corresponding

LLG functions of (2) should provide much better approx-

imations. The exact LLGs are obtained by dividing (6b) and

(6c) by the likelihood for a null hypothesis (random-atom or

uninformative model), given in (9a) and (9b), and then taking

the logarithms of the ratios (or equivalently taking the

differences of the logarithms), as shown in (18a) and (18b).

LLGaðE
2
O; ECÞ ¼ ln

paðE
2
O; ECÞ

paðE
2
OÞ

� �
¼ ln½paðE

2
O; ECÞ� � ln½paðE

2
OÞ�; ð18aÞ

LLGcðE
2
O; ECÞ ¼ ln

pcðE
2
O; ECÞ

pcðE
2
OÞ

� �
¼ ln½pcðE

2
O; ECÞ� � ln½pcðE

2
OÞ�: ð18bÞ

The LLGs for the Rice-function approximations, termed

LLGI, are obtained by similar manipulations, with the results

given in (19a) and (19b). Note that the likelihood for the null

hypothesis is the Wilson distribution for Ee, which can be
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obtained by setting �A to zero in the conditional distributions

in (5).

LLGIaðEe; ECÞ ¼ ln
paðEe; ECÞ

paðEeÞ

� �
¼ ln½paðEe; ECÞ� � ln½paðEeÞ�; ð19aÞ

where

paðEeÞ ¼ 2Ee expð�E2
eÞ;

LLGIcðEe; ECÞ ¼ ln
pcðEe; ECÞ

pcðEeÞ

� �
¼ ln½pcðEe; ECÞ� � ln½pcðEeÞ�; ð19bÞ

where

pcðEeÞ ¼
2

�

� �1=2

exp �
E2

e

2

� �
:

4. Implementation of log-likelihood-gain intensity
targets

Starting from observed diffraction data, there are a number of

steps that must be carried out to use the new log-likelihood-

gain intensity targets. When adapting programs that already

use Rice-function likelihood targets, much of the underlying

machinery can be preserved. The following discusses the

changes that have been introduced in Phaser (McCoy et al.,

2007) to use intensity data for molecular-replacement calcu-

lations.

4.1. Normalization

Even for data from crystals that diffract isotropically and do

not possess translational NCS (tNCS), the uncertainty in the

mean intensity introduced by measurement error can become

significant at the resolution limit, which leads to imprecision in

data normalization and in the application of the LLGI to

measurement error.

In Phaser, the characterization of both anisotropy (McCoy

et al., 2007) and tNCS (Read et al., 2013) has used likelihood

functions based on the Wilson distribution, in which adjus-

table parameters describe the modulation of the expected

intensity or Wilson variance, �N. However, the Wilson

distribution does not account for the effect of intensity-

measurement errors, which will broaden the distribution of

observed intensities. It is therefore better to characterize

anisotropy and tNCS with a likelihood target based on the

probability distribution of observed intensities, including the

effect of measurement errors. Such a likelihood target is

derived from (9a) and (9b) by a change of variables based on

EO
2 = Iobs/("�N), yielding (20a) and (20b),

paðIobsÞ ¼
1

2"�N

exp
�2

Iobs
� 2Iobs"�N

2"2�2
N

� �
Erfc

�2
Iobs
� Iobs"�N

21=2�Iobs
"�N

 !
;

ð20aÞ

pcðIobsÞ ¼
1

2ð��Iobs
"�NÞ

1=2
exp

1

16

�2
Iobs

"2�2
N

�
4Iobs

"�N

�
4I2

obs

�2
Iobs

 !" #

�D�1
2

�Iobs

2"�N

�
Iobs

�Iobs

 !
: ð20bÞ

In the presence of extremely large measurement errors, the

Wilson variance �N and the parameters describing its modu-

lation can be poorly determined. The refinement of these

parameters can be stabilized by adding prior information in

the form of restraints to the BEST curve (Popov & Bour-

enkov, 2003). For instance, a data set prepared from diffrac-

tion patterns simulated by MLFSOM (James Holton, personal

communication), which was used in testing new methods for

SAD substructure determination (Bunkóczi et al., 2015), was

integrated to such a high resolution that the average intensity

in some of the resolution shells is negative (although not

significantly negative compared with the estimated errors). By

using BEST curve restraints, even these data can be accom-

modated, although they contribute only minimally to like-

lihood targets.

4.2. Outliers

Likelihood targets, including those used to characterize the

intensity distribution, are very sensitive to the presence of

outliers. An outlier test, similar in concept to one that ignores

measurement errors (Read, 1999), can be based on a cumu-

lative distribution function, defined generally in (21a). The

cumulative distribution function for the acentric case, derived

using (9a), is given in (21b).

pðE2
O � E2

O;measÞ ¼
RE2

O;meas

�1

pðE2
OÞ dE2

O; ð21aÞ

paðE
2
O � E2

O;measÞ ¼
1

2

�
Erfc �

E2
O;meas

21=2�E2
O

 !
� exp

�E2
O
� 2E2

O;meas

2

 !

� Erfc
�E2

O
� E2

O;meas

21=2�E2
O

 !�
: ð21bÞ

For the centric case, the cumulative distribution function is

determined by numerical integration using the probability

distribution defined in (9b). If the cumulative distribution

function is less than some outlier probability threshold (such

as 10�6), this implies that the observed net intensity is too

negative to be consistent with the estimated measurement

errors. On the other hand, if one minus the cumulative

distribution function is less than the outlier probability

threshold, this implies that the observed intensity is too large.

4.3. Dealing with data provided as amplitudes

The methods described here will work most reliably with

data provided as intensities. When data are provided in the

form of amplitudes it is not clear how the intensities have been

transformed to obtain them, so assumptions must then be

made about the form of the transformation. Firstly, there is the

question of whether the amplitudes have been processed using
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the French and Wilson algorithm. Such data can be detected

by the fact that the prior Wilson distribution of intensities

imposes an upper bound on the posterior standard deviations.

In the limit of infinite intensity-measurement error, both the

posterior amplitude and its standard deviation come from the

Wilson distribution for amplitudes. We would need to know

the variance for the Wilson distribution used in the prior for

the French and Wilson algorithm to determine their values

separately, but not their ratio. The minimum ratios of the

French and Wilson posterior amplitude and standard devia-

tion for acentric and centric data are given by (22a) and (22b).

hEia

ðE� hEiÞ2
� �1=2

a

¼
ð�=4Þ1=2

ð1� �=4Þ1=2
¼

�

4� �

� 	1=2

’ 1:913; ð22aÞ

hEic

ðE� hEiÞ
2

� �1=2

c

¼
ð2=�Þ1=2

ð1� 2=�Þ1=2
¼

2

�� 2

� �1=2

’ 1:324: ð22bÞ

If there are no reflections with ratios significantly below

these values (allowing for some rounding error in the storage

of the data), then it is reasonable to assume that the data have

been processed with the French and Wilson algorithm. For

example, for PDB entry 3wrh (from the random sample of 100

entries discussed below) the minimum ratio is 1.35 for centric

reflections and 1.97 for acentric reflections. Once the data

have been recognized as such, the first two moments of the

French and Wilson posterior distribution can be calculated

from the posterior amplitude and its standard deviation, and

these can then be used to compute Ee and Dobs. However, it

should be noted that this will only yield the same values that

would have been obtained from the intensity data if the

original French and Wilson treatment used the same Wilson

variance (expected intensity) values. This is particularly un-

likely to be true in the presence of translational noncrystallo-

graphic symmetry.

If lower values are found for the ratios of the amplitudes

and their standard deviations, then some transformation other

than the French and Wilson treatment must have been used. A

number of ways to transform intensities to amplitudes have

been proposed, and it is difficult to tell which has actually been

used. We assume that the transformation given in (4) has been

used and apply the inverse of this transformation to regen-

erate the intensities and their standard deviations. Note that

any negative net intensities will either have been discarded or

set to amplitudes of zero, so the information from these will

have been lost or degraded. If a transformation other than (4)

was used, then using the wrong inverse transformation will

also degrade the quality of the intensity standard deviation.

There is an additional complication when dealing with data

processed with the French and Wilson algorithm. An unbiased

estimate of the original intensities, as required for normal-

ization, cannot be obtained by squaring the amplitudes but

rather by recovering the posterior expected intensity value by

summing the squares of Fobs and �Fobs
.

4.4. Accounting for the effects of measurement errors in
likelihood targets

Once the data have been transformed to obtain Ee and Dobs

values, Rice likelihood functions such as those given in (3)

must be replaced by the LLGI target in (19a) and (19b).

Similarly, derivatives with respect to any refineable para-

meters must also be revised. Given the close relationship

between equations (3) and (19), this part of the implementa-

tion should be relatively straightforward.
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Figure 3
The central contour plot shows the correlation coefficient between the exact probability distribution for the true amplitude (10) with the effective E
Rice-function approximation for the acentric case as a function of the observed normalized intensity and its estimated standard deviation. The darkest
blue shading indicates regions where the correlation coefficient is greater than 0.990, and the contour lines are spaced by increments of 0.001, with the
yellow shaded region indicating correlation coefficients greater than 0.999. The four line plots show comparisons between the exact probability
distribution (black line) and the Rice-function approximation (dashed blue line) in four different regions of the space indicated by the tails of the arrows.



5. Results

Separate tests have been carried out to determine how well

the Rice-function approximations for measurement error

alone represent the exact probability distributions, and how

well the LLGI target approximates the exact LLG.

To test the quality of the Rice-function approximation for

measurement error, a range of values for EO
2 and �E2

O
were

explored and the exact probability distribution from (10) was

compared with the Rice-function approximations computed

by matching the second and fourth moments in (11) through

(14) by computing the correlation between the two distribu-

tions. Fig. 3 presents a contour plot of the correlation values

for the acentric case, along with comparisons of the exact and

approximate distributions for points from regions with the

highest and lowest correlations. The quality of the approx-

imation for the centric case (not shown) is slightly lower

overall, but is still acceptable.

In evaluating the quality of the LLGI, we wished to

compare it not only with the exact LLG but also with the

LLGs that would be obtained with the inflated-variance Rice-

function approximations in current crystallographic programs,

using different estimates for the observed amplitude and its

standard deviation. The LLGs for the inflated-variance Rice-

function approximations can be obtained as the log of the

ratio between the likelihood calculated with (3) and the null

hypothesis likelihood, obtained by setting �A to zero in (3).

When the measurement error is relatively small, all of the

approximations to the exact LLG are reasonably accurate (not

shown). Fig. 4 provides an example showing that when the

measurement error is relatively large, the LLG computed with

LLGI provides much better results than the other approx-

imations, particularly over the range of calculated structure

factors that will be encountered most frequently during

structure determination. Note that the French and Wilson

estimates of the amplitude and its standard deviation actually

give the worst results in the context of the inflated-variance

Rice-function approximation because the posterior standard

deviation is not an experimental error. As the experimental

errors increase in size, the exact LLG and LLGI curves

become very flat (because there is progressively less infor-

mation in the data), but the inflated-variance Rice-function

LLG continues to have a clear maximum, because the

posterior standard deviation is bounded by the standard

deviation of the Wilson distribution. This could provide an

explanation for reports that maximum-likelihood refinement

gives better results on pruned data, even applying ellipsoidal

truncation in the case of severe anisotropy (Strong et al.,

2006).

6. Discussion

In essence, the LLGI function for accounting for experimental

errors in log-likelihood-gain target functions starts by finding
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Figure 4
Comparisons of different approximations to the exact LLG for the acentric case as the quality of the model is varied. All four plots represent the case
shown in the upper left line plot of Fig. 3, in which EO

2 = 3.0 and �E2
O

= 1.6. The exact probability distribution as a function of EC
2 is shown as a black line,

the LLGI approximation as a dashed orange line, the inflated-variance Rice-function approximation with French and Wilson estimates of the amplitude
and its standard deviation as a dotted green line and the inflated-variance Rice-function approximation with estimates by simple variable transformation
of the amplitude and its standard deviation as a dashed–dotted red line. The values of �A across the plots are 0.3 on the upper left, 0.5 on the upper right,
0.7 on the lower left and 0.9 on the lower right.



values for two parameters, the effective E value (Ee) and Dobs,

which can stay constant throughout a phasing or refinement

calculation. Ee serves the role of the observed normalized

amplitude and, when the �A values characterizing the effects

of model error are multiplied by Dobs, the resulting Rice LLGI

function provides an excellent approximation to a true LLG

that could only be evaluated by numerical integration. Even

though LLGI is cast in terms of a function that (for the

acentric case) implies complex errors, it is developed as an

approximation to a log-likelihood gain based on the MLI

target. As a result, the underlying statistical model is shared

with the MLI target.

Note that if the observed intensity data are drawn from a

Wilson distribution, it would be possible to refine some model

of the observation errors (for example, a scale factor or a

linear transformation) to give better agreement with like-

lihood targets based on (20), using the fact that there is an

analytical relationship between the intensity errors and the Ee

and Dobs parameters. This could supplement existing methods

to adjust error models based on agreement among replicate

measurements (Evans & Murshudov, 2013); in principle,

better error models could be obtained as other information

improves, such as from an atomic model. However, such an

approach would have to be used with caution, as data from

crystals with pathologies such as twinning would not obey the

assumed Wilson distribution.

The LLGI function can be used to account for the effect of

measurement errors in any applications that use Rice like-

lihood functions by first analysing the intensity data to

produce Ee and Dobs values and then replacing the likelihood

targets based on (1) with the modified equations (17).

Applications include �A estimation (Read, 1986), which is

used to estimate phase probabilities, likelihood-based mole-

cular replacement (McCoy et al., 2007) and structure refine-

ment (Pannu & Read, 1996; Murshudov et al., 1997; Bricogne

& Irwin, 1996; Afonine et al., 2012). This approach can also be

generalized to the collections of structure factors required for

experimental phasing, and preliminary work has been carried

out on applying it to single-wavelength anomalous diffraction

(SAD) phasing.

In macromolecular crystallography it has become standard

practice to apply the French and Wilson algorithm to the

merged intensities and to use these amplitudes and standard

deviations in all downstream crystallographic calculations. For

example, in the CCP4 suite (Winn et al., 2011) this calculation

is performed by CTRUNCATE as a default procedure after

data scaling with AIMLESS (Evans & Murshudov, 2013)

through the CCP4i interface. The standard deviation obtained

by this approach is thus used as an estimate of the experi-

mental error throughout likelihood-based phasing and

refinement, a purpose for which it was not intended.

Unfortunately, the original intensity information is lost

more often than not on deposition in the worldwide Protein

Data Bank (Berman et al., 2003). A snapshot of current

practice by depositors was obtained by randomly selecting 100

of the 2769 X-ray structures released by the wwPDB in the

first four months of 2015. Of these, 39 contained intensity data

but 61 contained only amplitudes with no intensity data. Of

these 61, 54 contained amplitudes that had apparently been

produced by the French and Wilson algorithm, as detected by

the test described in x4.3. The remaining seven contained

amplitudes that had been produced by some other transfor-

mation. Given the inevitable loss of information by the

transformation to amplitudes, we recommend that all crys-

tallographers should include the original intensity data in

future depositions in the wwPDB, possibly in addition to

amplitudes if these were used for refinement.

The use of the French and Wilson algorithm depends on the

expected intensities, which can be estimated more precisely

when the anisotropy has been modelled and/or the expected

intensity factors from tNCS have been determined. Without

correction for non-isotropic systematic variations in intensity,

the posterior amplitudes and intensities that emerge from the

French and Wilson treatment are systematically overestimated

for the systematically weak data, because the prior expecta-

tion is for an intensity that is too large. As a result, measures of

anisotropy and tNCS tend to be damped when data processed

with the French and Wilson algorithm are analysed. The

French and Wilson estimates of F and �F should be updated

as knowledge of the anisotropy and tNCS improves in the

process of structure solution. Any conversion to amplitudes

using the French and Wilson algorithm should be carried out

as required, and not kept invariant for the entire structure-

solution process. In the same way, the calculation of Ee and

Dobs should be carried out when required and the results

should not be stored.

The LLGI function is the template for likelihood targets

working with intensities and their errors throughout the

structure-solution process. However, work needs to be

performed to investigate how one should account for

measurement errors in other methods based on structure-

factor probabilities. Although the Ee and Dobs parameters

provide an excellent approximation to likelihood targets, the

use of Dobs in phase probability equations would ascribe a role

to the perpendicular component of the assumed complex

measurement error, leading to a pessimistic view of phase

errors. In the limit of infinite measurement error, Dobs will be

zero, leading to a figure of merit of zero, even though the

accuracy of the calculated phase depends on the overall

accuracy of the model, not of a particular measurement.

The downweighting of structure factors for uninformative

measurements would fortuitously reduce potential model bias,

but further work will be needed to determine the optimal

procedures for map calculation.

In this work, we have assumed that the standard deviations

of the observed intensities have been estimated accurately, but

this is a difficult problem (Phil Evans, personal communica-

tion). By providing a method that will make good use of

measurement-error estimates, we hope to have provided a

further incentive to improve the accuracy of these estimates.

7. Availability

LLGI has been implemented and tested in Phaser. Releases

from v.2.5.7 will accept intensities in preference to amplitudes
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for molecular replacement, and a future version will

accept intensities in preference to amplitudes for SAD

phasing. Please refer to the documentation (http://www.

phaser.cimr.cam.ac.uk) for details.

All of the code required to compute Ee and Dobs for both

acentric and centric cases, given the observed intensity, its

estimated standard deviation and an estimate of the Wilson

variance for the scattering power, has been contributed to

the cctbx library (Grosse-Kunstleve et al., 2002), where it is

available in open-source form for use in other programs. The

ancillary code needed to compute the parabolic cylinder

functions was adapted, with permission, to C++ from the

Fortran program mpbdv.for (Zhang & Jin, 1996). This has

been contributed to the scitbx library distributed with cctbx.

APPENDIX A
Evaluation of Ee and Dobs by the method of moments

As discussed in x2.2, Rice-function approximations of the

probability distribution for the true normalized structure

factor given the observed intensity (10) can be obtained by

finding values of the parameters Ee and Dobs that make either

the first two moments or the second and fourth moments of

the two distributions equal by solving two simultaneous

equations. Note that the second and fourth moments are

the first two moments of the distribution of the normalized

intensity.

A1. Matching the first two moments

The two simultaneous equations can be set up by taking the

values from the first two moments for the exact distribution,

in (11) for the acentric case or (12) in the centric case, and

solving two simultaneous equations for the Rice-function

moments in (13) for the acentric case or (14) for the centric

case. We have not been able to find analytical solutions for the

equations defined by the first two moments. However, note

that the equation for the second moment (which is the same

for the Rice functions for both the acentric and centric cases)

can be solved for Ee
2,

E2
e ¼
hE2iFW þD2

obs � 1

D2
obs

: ð23Þ

This can be substituted into the equation for the first

moment to obtain single equations in one unknown for the

acentric case (24a) and the centric case (24b),

hEiFW;a ¼ ½�ð1�D2
obsÞ�

1=2 hE2iFW;a

2ð1�D2
obsÞ

eI0ðXÞ þ XeI1ðXÞ

� �
;

ð24aÞ

where

X ¼
hE2iFW;a þD2

obs � 1

2ð1�D2
obsÞ

and

eIn ¼ expð�xÞInðxÞ;

hEiFW;c ¼ expð�xÞ
2

�
ð1�D2

obsÞ

� �1=2

þ ðhE2
iFW;c þD2

obs � 1Þ1=2ErfðX1=2
Þ; ð24bÞ

where

X ¼
hE2iFW;c þD2

obs � 1

2ð1�D2
obsÞ

:

The exponential Bessel function (eIn) is used in (24a) to

avoid overflow for large arguments. Solutions to (24a) or (24b)

can be obtained by a line search. Because these equations are

defined in terms of the squares of Ee and Dobs, there are

generally four solutions. To find only the solution corre-

sponding to real values of both Ee and Dobs, the line search can

be constrained to positive values of D2
obs above the value

giving a minimum in either (24a) or (24b). The solution is well

defined for physically reasonable values of the normalized

intensity and its standard deviation, but it can be poorly

defined for improbable values. In such cases, the best

approximation of the Rice function will be similar to the

Wilson distribution; a solution of good quality can be obtained

simply by setting Dobs to 0.05 and determining Ee using (23).

Under some circumstances this will yield a very large value of

Ee, in which case Ee can be set to some maximum, such as 10,

and (23) can be solved for the corresponding Dobs. This simple

prescription has been validated over a very wide range of

input values in a plot similar to Fig. 3 (omitting points that

would be identified as clear outliers by equations 21).

A2. Matching the second and fourth moments

This approach is more straightforward because the simpli-

city of the fourth-moment equations compared with the first-

moment equations allows analytical solutions of the pairs of

equations. For both the acentric and centric cases, there are

two solutions in terms of Ee
2 and D2

obs, one of which yields

positive values for physically reasonable inputs. This solution

provides (25a) and (25b) for the acentric case and (26a) and

(26b) for the centric case.

E2
e ¼

ð2hE2i
2
FW;a � hE

4iFW;aÞ
1=2

1� hE2iFW;a þ ð2hE
2i

2
FW;a � hE

4iFW;aÞ
1=2
; ð25aÞ

D2
obs ¼ 1� hE2

iFW;a þ ð2hE
2
i

2
FW;a � hE

4
iFW;aÞ

1=2; ð25bÞ

E2
e ¼

½ð3hE2i
2
FW;c � hE

4iFW;cÞ=2�1=2

1� hE2iFW;c þ ½ð3hE
2i

2
FW;c � hE

4iFW;cÞ=2�1=2
; ð26aÞ

D2
obs ¼ 1� hE2

iFW;c þ ½ð3hE
2
i

2
FW;c � hE

4
iFW;cÞ=2�1=2: ð26bÞ

There are combinations of normalized intensity and stan-

dard deviation that generate second and fourth moments for

which these solutions yield negative values or excessively large

effective intensities. All such combinations correspond to

outliers or extremely large experimental errors. In such cases,

good Rice-function approximations can nonetheless be

obtained with moderate arguments by following the same

prescription as described in xA1.
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APPENDIX B
Computing parabolic cylinder functions for large
arguments

The parabolic cylinder functions are well behaved for

moderate arguments, but there are problems with underflow

and overflow for the large positive and negative arguments

that can be encountered with real data. In such cases, a ratio or

product of functions factored out of the overall function can

be well behaved. These ratios or products, in turn, can be

evaluated accurately with asymptotic approximations. One

example is the parabolic cylinder function of order minus

one-half. When this is appropriately scaled (using a scaling

function similar to those suggested by Gil et al., 2006), an

asymptotic approximation can be obtained for either large

negative arguments (equation 27a, applicable to x < �16) or

large positive arguments (equation 27b, applicable to x > 16),

exp �
x2

4

� �
�

x

2

� 	1=2

D�1
2
ðxÞ

’
675675þ x2f110880þ x2½26880þ x2ð12288 þ 32768x2Þ�g

32768x8
;

ð27aÞ

exp
x2

4

� �
ðx1=2
ÞD�1

2
ðxÞ

’
675675þ x2f�110880þ x2½26880þ x2ð�12288þ 32768x2Þ�g

32768x8
:

ð27bÞ

One more example is the ratio of parabolic cylinder func-

tions of order minus one and minus one-half. Asymptotic

approximations can be obtained for large negative arguments

(equation 28a, applicable for x < �17.5) or large positive

arguments (equation 28b, applicable for x > 17.5),

D�1ðxÞ

D�1
2
ðxÞ
’

1024ð��xÞ
1=2

x6

3465þ x2½840þ x2ð384þ 1024x2Þ�
; ð28aÞ

D�1ðxÞ

D�1
2
ðxÞ

’
3440640þ x2f�491520þ x2½98304þ x2ð�32768þ 32768x2Þ�g

675675þ x2f�110880þ x2½26880þ x2ð�12288þ 32768x2Þ�gð Þx
1=2 :

ð28bÞ

Other approximations can be found in the source code in

the cctbx library.
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