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Abstract 
Measuring the effectiveness of medical interventions faces three epistemological 
challenges: the choice of good measuring instruments, the use of appropriate analytic 
measures, and the use of a reliable method of extrapolating measures from an 
experimental context to a more general context. In practice each of these challenges 
contributes to overestimating the effectiveness of medical interventions. These challenges 
suggest the need for corrective normative principles. The instruments employed in 
clinical research should measure patient-relevant and disease-specific parameters, and 
should not be sensitive to parameters that are only indirectly relevant. Effectiveness 
always should be measured and reported in absolute terms (using measures such as 
‘absolute risk reduction’), and only sometimes should effectiveness also be measured and 
reported in relative terms (using measures such as ‘relative risk reduction’)—employment 
of relative measures promotes an informal fallacy akin to the base-rate fallacy, which can 
be exploited to exaggerate claims of effectiveness. Finally, extrapolating from research 
settings to clinical settings should more rigorously take into account possible ways in 
which the intervention in question can fail to be effective in a target population. 
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1  Introduction 
 
Much clinical research is designed to estimate the effectiveness of medical interventions. 
The details of this measurement procedure are interesting in their own right, and are 
perhaps more nuanced and complicated than many suppose. I describe some of these 
details in what follows, and argue that there are three widespread problems in measuring 
the effectiveness of medical interventions: the use of poor measuring instruments, the use 
of misleading analytic measures, and the assumption that measurements in an 
experimental setting are sufficient to infer properties of a general capacity of effectiveness. 
Each of these problems contributes to overestimating the effectiveness of medical 
interventions. The problems naturally suggest the need for corrective normative 
principles—medical research should use appropriate measuring instruments, truth-
conducive analytic measures, and reliable methods of extrapolation. The employment of 
such principles would generally lead to lower—yet more accurate—estimates of the 
effectiveness of medical interventions than is presently the case. 
 By far the most common method for measuring effectiveness of medical interventions 
is the clinical trial.1 A standard clinical trial involves administering a potential medical 
intervention at a particular dose to one group of subjects (the experimental group), 
administering a placebo or competitor intervention to another group of subjects (the 
control group), measuring one or more parameters of the subjects, comparing the values 
of those parameters between the two groups, and inferring a general effectiveness 
capacity from the difference in values of the parameters between the groups. Clinical 
trials usually have methodological safeguards to minimize systematic error, most 
prominently including the random allocation of subjects to groups, and concealment of 
the group assignment from both the investigators and the subjects. But these 
methodological details aside, the measurement of effectiveness itself involves three steps: 
the use of a measuring instrument (or a measuring technique more generally), the analysis 
of measured values, and the extrapolation of analyzed values to a target population.    
 Effectiveness of medical interventions is a causal capacity to modify properties of 
patients. This is not an intrinsic causal capacity; effectiveness is a relational property in 
which the relata are a causal capacity of the intervention and properties of a defined class 
of people. The properties that must be modulated by a medical intervention in order for 
that intervention to be deemed effective are either the constitutive causal basis of a disease 
or symptoms of a disease that cause harm to those with that disease. I defend this in the 
companion article to this one (‘Effectiveness of Medical Interventions’, published in this 

																																																								
1 As I argue below, the exclusion of evidence from other kinds of methods in the measurement of 
effectiveness is a significant epistemic limitation. But since this reliance on clinical trials (and only clinical 
trials) is so ubiquitous, I maintain, for now, a narrow focus on this method. 
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issue), in which I call these two individually sufficient conditions for effectiveness CAUSAL 

TARGET OF EFFECTIVENESS and NORMATIVE TARGET OF EFFECTIVENESS. In the companion 
article my aim is to articulate a defensible view of what effectiveness as a measurand is (a 
conceptual and metaphysical question), whereas in the present article my aim is to 
articulate limitations on how we measure that measurand—a distinct epistemic question. 
In the companion article I rely on the idealization that effectiveness is a binary notion; 
this allowed me to explore facets of effectiveness without undue complications. But of 
course, effectiveness is a property to measured.  

For any measurement one needs a measuring instrument. In clinical practice and 
clinical research various kinds of instruments are employed to measure various kinds of 
parameters, including subjective patient-reported parameters (such as reports of well-
being), physician-reported parameters (such as appearance of lethargy), institutional 
parameters (such as number of days in an intensive care unit), and physiological 
parameters (such as blood sugar concentrations). For example, the Hamilton Rating Scale 
for Depression (discussed in further detail below) measures several of these kinds of 
outcomes, including a patient’s report of sadness and quality of sleep, a physician’s 
assessment of the patient’s fidgetiness, and physiological correlates of anxiety. Sometimes 
the outcome of interest in a clinical trial is simple, like an event such as death, in which 
case the appropriate measuring instrument is whatever is required to determine that the 
event has occurred. I will use the term ‘instrument’ very broadly to include any tool or 
technique employed to estimate values of measurands. In §2 I describe various examples 
of measuring instruments, and argue that many such instruments in clinical research are 
not very good, because at best they measure proxies of the parameter of interest, or at 
worst are irrelevant to the parameter of interest.  
 Once parameters are chosen and instruments have been employed to assign values to 
those parameters among subjects in a clinical trial, those values must be interpreted in 
some way to assess whether, and if so to what extent, an intervention modifies the values 
of those parameters. Several descriptive statistics are widely employed in medical science 
as measures of effectiveness; these are called ‘outcome measures’, while the numerical 
outputs of outcome measures are often called ‘effect sizes’. In §3 I describe several basic 
outcome measures and argue that the most widely employed class of outcome measures is 
misleading. From the perspective of a patient or a physician who is deciding whether or 
not to use or prescribe a particular treatment, the best outcome measures are so-called 
‘absolute’ measures, or ‘difference’ measures, which, unlike ‘relative’ or ‘ratio’ measures, 
take into account the baseline value of whatever parameter is being measured.  

The aim of measuring the effectiveness of medical interventions is to aid in decisions 
regarding treatment, which involves predicting outcomes in target patient populations 
(§4). One method for making such predictions is simple extrapolation from the 
quantitative results of clinical trials to a target population. Simple extrapolation is often 
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implicitly employed in medical decision-making, and is sometimes explicitly defended as a 
reliable method for extrapolation. But I argue that simple extrapolation is unreliable, and 
it tends to overestimate the effectiveness of medical interventions in target populations. 
 Thus, clinical research involves a chain of measurands, in which the value of one 
measurand is used to infer the value of the next measurand in the chain. This is not a 
unique scenario for the epistemology of measurement—measuring the temperature in my 
backyard involves measuring the height of mercury in a glass tube; measuring the rate of 
expansion of the universe involves measuring Hubble’s Constant by measuring 
wavelengths of light undergoing redshift.2 The ultimate measurand of interest in clinical 
research is the effectiveness of a medical intervention. Estimating this measurand is based 
(at least in part) on a prior measurand: the capacity of the medical intervention, in a 
controlled experimental setting, to cause a difference in the value of the parameter of 
interest between the experimental group and the control group. This in turn involves 
measurement of the value of that very parameter in those subjects. At each of the three 
links of this chain of measurands there are methodological challenges that occupy the 
attention of clinical scientists and are often not adequately resolved in clinical research. 
 In short, the measurement of effectiveness of medical interventions faces three 
methodological challenges, associated with the choice of measuring instrument (§2), 
outcome measure (§3), and method of extrapolation (§4). I am not the first to note these 
challenges. But in what follows I argue that in practice these methodological challenges 
contribute to overestimating the effectiveness of medical interventions. If these challenges 
were better addressed, estimates of the effectiveness of medical interventions would be 
more accurate, and lower than they are now.  
 
 

2  Instruments 
  
To determine the values of parameters of subjects in the experimental and control groups 
of a clinical trial, one needs a measuring instrument. Such instruments can vary in a 
number of important respects. These instruments can be simple, particularly when the 
measurand is an event (such as death), or they can be multifaceted, particularly when the 
measurand is characterized by medical constructs (such as depression). Another 
dimension of these instruments is their inferential directness: some instruments involve 
relatively direct measures of the measurands of interest, in that the value determined by 
the instrument requires only a few (usually reliable) inferences to determine the value of 
the measurand of interest. Other instruments are inferentially indirect, in that they are 

																																																								
2 For recent work on the epistemology of measurement, see (Alexandrova, 2008), (Tal, 2011), (Tal, 
forthcoming), (Teller, 2013), and (van Fraassen, 2008). 
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measures of a proxy of the measurand of interest, and the measurement procedure 
requires more inferences (which are often less reliable) from the value of the measured 
parameter to the value of the measurand of interest. In the clinical literature such proxy 
parameters are called ‘surrogate outcomes’. As with all measuring instruments, two 
central desiderata are sensitivity and specificity: a measuring instrument should be 
sensitive to the true values of the measurand of interest, and should be sensitive only to 
such values. The employment of certain instruments, some of which are widely used in 
clinical research, contributes to frequent overestimations of the effectiveness of 
experimental medical interventions.  
 Here is an example of a relatively indirect instrument which, it turns out, is 
nonspecific to values of the measurand of interest. Some evidence suggests that certain 
interventions can reduce the ‘white lesions’ that are said to be physiological markers 
(‘biomarkers’) of multiple sclerosis (MS). White lesions are the result of the demyelination 
of the sheaths that surround the axons of neurons, and are not themselves the ultimate 
causes of MS (which remains unknown). The hope, however, is that if white lesions are a 
proximal cause of MS symptoms (below I note that this is doubtful, since white lesions are 
an effect of the demyelination of axon sheaths, and so could be just another symptom of 
MS, albeit at a cellular level), then mitigating white lesions will mitigate MS symptoms. 
Some trials on novel interventions for MS have employed, as a measured outcome, the 
amount of white lesions in subjects, and have showed that some novel interventions have 
the capacity to decrease the amount of white lesions. Since the ultimate goal is the 
mitigation of MS symptoms, the instruments in such trials measure a proxy of the 
measurand of interest: white lesions as a surrogate outcome of patient-level MS symptoms 
(see (Lavery, Verhey, & Waldman, 2014) for a discussion of various outcomes measured 
in trials of interventions for MS). Under the assumption that mitigating white lesions will 
mitigate patient-level MS symptoms, the results of this measurement procedure license an 
inference that the drugs under investigation are effective at mitigating MS symptoms. 
Unfortunately, the available evidence suggests that such drugs have little impact on MS 
symptoms. Thus, the use of white lesions as a proxy for patient-level MS symptoms is 
nonspecific, because it is sensitive to values of parameters that are only weakly correlated 
with the measurand of interest. The inferential assumption noted above is probably false: 
demyelination of axon sheaths is probably best construed as a common cause of white 
lesions and patient-level MS symptoms, and since the direction of causal relevance is not 
(as far as we can tell) from white lesions to patient-level MS symptoms, measuring a 
reduction in white lesions does not warrant an inference about the reduction of patient-
level MS symptoms. The measuring instrument in this case overestimates the true value 
of the measurand of interest.   
 Here is an example of a multifaceted instrument. The Hamilton Depression Rating 
Scale (HAMD), one of the most commonly employed instruments in clinical trials testing 
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the effectiveness of antidepressants, is a multifaceted instrument. It is a questionnaire 
composed of 17 questions, each of which has between three to five possible answers with 
a corresponding numerical score, which taken together are thought by some to measure 
the severity of depression (there are an additional four questions which do not contribute 
to the score).3 A total score can range from 0 to 52 points, and scores are interpreted in 
terms of severity of depression as follows: 0 - 7: normal; 8 - 13: mild; 14 - 18: moderate; 
19 - 22: severe; ≥ 23: very severe. HAMD scores are determined for subjects in a clinical 
trial, and if an antidepressant is effective one ought to observe a greater decrease in 
HAMD score for subjects in the experimental group of the trial compared with subjects in 
the control group.4 However, the HAMD is an nonspecific instrument with regard to the 
measurand of interest, namely, intensity of depression. That is because many of the 
questions included on the HAMD are largely irrelevant to this measurand.  
 Some of these questions probe core elements of depression, albeit at a coarse grain. 
For instance, the question on ‘suicidality’ is scored as follows: “0 = Absent. 1 = Feels life is 
not worth living. 2 = Wishes he were dead or any thoughts of possible death to self. 3 = 
Suicidal ideas or gesture. 4 = Attempts at suicide (any serious attempt rates 4).” Thus the 
greater the degree of suicidality of a subject, the greater the HAMD score.5 Other 
questions in the HAMD probe features of a person’s state that are less central to 
depression. For instance, there are three questions regarding insomnia, corresponding to 
three phases of night (early, mid, and late), and there are a possible six points available for 
these questions. Similarly, there are four possible points associated with fidgeting. Thus, if 
a novel alleged intervention for depression causes people to sleep better and fidget less, 
the corresponding HAMD reduction could be ten points (to put this in perspective, some 
clinical guidelines have held that a reduction of three points on the HAMD scale by an 
experimental intervention entails that the intervention is effective). A small improvement 
in sleep or a decrease in fidgeting caused by an experimental drug would warrant 
approval of this drug as an effective antidepressant (despite the fact that the drug might 

																																																								
3 There are various versions of the HAMD, but here I describe the original proposed by (Hamilton, 1960). 
This instrument has been hugely influential in clinical psychiatric research. Note that sometimes in the 
clinical literature alternative abbreviations are used for the scale, including HDRS and HRSD. 
4 (van Fraassen, 2008) argues that when measuring physical property x the questions ‘what is x?’ and ‘what 
is a good measurement of x?’ are fundamentally dependent on one another. (McClimans, 2013) argues that 
this is similarly true for the measurement of psychological phenomena, and notes the importance of this for 
the validity of outcome measures based on patient reports. The example of the HAMD scale for measuring 
severity of depression exemplifies this problem of measurement circularity. For a now canonical statement 
of the problem, see (Chang, 2004). 
5 However, the question is insensitive to relatively important differences in the degree of one’s possible 
suicidality; for instance, the difference between 0 points and 1 point is stipulated as the difference between a 
feeling of no suicidality at all to an unqualified feeling that life is not worth living—a phenomenological 
leap. 
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not mitigate any of the fundamental symptoms of depression, such as low mood, 
anhedonia, and feelings of worthlessness, guilt, and hopelessness). The HAMD is an 
example of a multifaceted instrument which could overestimate effectiveness of 
interventions due to the instrument not being sufficiently specific.6 
 A curious HAMD question is titled ‘Insight’, and is scored as follows: “0 = 
Acknowledges being depressed and ill. 1 = Acknowledges illness but attributes causes to 
bad food, climate, overwork, virus, need for rest, etc. 2 = Denies being ill at all.” Thus a 
tired patient who suspects that her illness is caused by a gluten allergy automatically gets 
an extra point on her HAMD score. Philosophical critics and rugged cowboys, beware! 
Denying one’s alleged depression earns you two extra points. A more prosaic way to state 
this measurement problem: if an experimental intervention causes a subject who initially 
denies being depressed to then claim that they are depressed—say, because the 
intervention itself causes symptoms of depression—then that subject’s HAMD score 
would go down by two points, thereby making the intervention appear to be an effective 
antidepressant, despite itself causing the symptoms of depression. 
 Instruments for measuring the effectiveness of medical interventions should be 
sensitive to a time-index relative to the characteristics of the particular disease being 
treated (the term of art in medicine is the ‘clinical course’ of the disease). Unfortunately 
such instruments are often insensitive to the clinical course of a disease. For instance, 
when researchers were testing high-dose chemotherapy for breast cancer, they assessed 
presence of cancer after 18 months of treatment (see (Brownlee, 2008) for a discussion of 
this episode). This temporal range was adopted from blood cancers, in which high-dose 
chemotherapy is effective. After 18 months it appeared that the high-dose chemotherapy 
had prevented recurrence of breast cancers. However, breast cancers grow slower than 
blood cancers, and so 18 months was an inappropriately short time to measure the 
outcome of the therapy. Later studies that used a longer temporal range found that high-
dose chemotherapy did more harm than good for breast cancers. The physiological 
difference in growth rates between cancer types explains why high-dose chemotherapy is 
more effective in blood cancers than in breast cancers: since chemotherapeutic drugs 
operate by interfering with mechanisms of cell division, cells that divide rapidly are more 
susceptible to chemotherapy (slower growing tumors are less susceptible to 
chemotherapy). The initial studies that suggested that high-dose chemotherapy is effective 
for breast cancer employed an instrument that was not sufficiently sensitive to the 
temporality of the disease. 

																																																								
6 One might hold that among patients with depression, their insomnia is likely to be caused by their disease, 
and thus if a drug causes a patient to sleep better then either the drug is (i) intervening in the 
pathophysiology of depression, or at least is (ii) offering relief of symptoms of depression. (i) strikes me as 
excessively optimistic, but (ii) is surely reasonable. Such a drug then should be considered a soporific rather 
than an ‘antidepressant’.  
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 Another example in which an inappropriate temporal range has been used to 
measure effectiveness are trials testing the effectiveness of methylphenidate (Ritalin) to 
treat attention deficit hyperactivity disorder (ADHD). The vast majority of such trials 
have only lasted a few weeks, and meta-analyses of these trials suggest that 
methylphenidate has a small but positive effect on ADHD symptoms in the short term 
(see, e.g. (Schachter, Pham, King, Langford, & Moher, 2001)). But in studies that follow-
up on patients from the longest trial performed thus far—the 14-month MTA trial of The 
National Institute of Mental Health (NIMH)—there is no beneficial difference in ADHD 
symptoms among children who had been on methylphenidate compared to children who 
had not. There are, however, apparent harms caused by methylphenidate in the long run, 
including a decrease in body height and mass. These follow-ups have been done at three 
years and eight years after the trial ((Jensen et al., 2007), (Molina et al., 2009)). Thus an 
inappropriately short temporal range of most studies of the effectiveness of 
methylphenidate contribute to an overestimation of the effectiveness of the drug (and an 
underestimation of its harm profile). 
 The use of indirect instruments also contributes to overestimation of effectiveness, 
since the causal link between the measurand used in indirect instruments and the 
measurand of interest is often not as tight as one might hope. For example, high 
cholesterol levels are thought by many to be a cause of heart disease, and so to avoid 
heart disease, cholesterol-lowering drugs are prescribed to many people. Clinical trials 
have shown that these drugs are effective at lowering cholesterol. With respect to the end 
of avoiding heart disease, these clinical trials employ an indirect instrument (measurement 
of cholesterol levels), and under the assumption that high cholesterol levels cause heart 
disease, the evidence from these trials warrants an inference that cholesterol-lowering 
drugs are effective at mitigating heart disease. Unfortunately, trials that employ the more 
direct instrument of measuring heart disease have shown that these drugs are barely 
effective at mitigating heart disease (see (Moynihan & Cassels, 2005)). To use the analysis 
from the companion article (Stegenga, forthcoming), the problem with using indirect 
instruments to measure surrogate outcomes is that an intervention that modulates a 
surrogate outcome might not satisfy CAUSAL TARGET OF EFFECTIVENESS, because the 
surrogate outcome is not the constitutive causal basis of the disease nor is likely to be 
causally prior to the constitutive causal basis of the disease, and similarly, an intervention 
that modulates a surrogate outcome might not satisfy NORMATIVE TARGET OF 

EFFECTIVENESS, because by definition surrogates are stand-ins for the patient-level 
outcomes that matter (the normative basis of the disease).  
 McClimans (2010) notes that there are thousands of such measuring instruments in 
medicine, and yet the theoretical underpinning of such instruments is often poorly 
understood, and clinical researchers often ignore the consequences of this. I have argued 
here that problems of measuring instruments in clinical research contribute to an 
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overestimation of the effectiveness of medical interventions. In principle, the 
measurement bias introduced by instruments in clinical research is symmetric with 
respect to estimating effectiveness: the above problems could lead to underestimation of 
effectiveness just as often as they lead to overestimation of effectiveness. For example, just 
as the temporal range of a study can be insufficiently short to observe ineffectiveness in 
the longer term, the temporal range of a study can be too short to observe effectiveness in 
the longer term. Similarly, clinical studies on experimental antidepressants could employ 
an instrument that is relatively insensitive to changes in a person’s core symptoms of 
depression, in which case such studies would tend to underestimate the effectiveness of 
the tested antidepressants. Trial designers, I assume, are well aware of the methodological 
details regarding their measuring instruments which generate a trade-off between the 
predilection of a trial to overestimate effectiveness and the predilection of a trial to 
underestimate effectiveness. Moreover, trial designers have strong motive to err on the 
side of overestimating rather than underestimating effectiveness—this is a contingent 
sociological point based on pressure to publish among academic scientists and pressure to 
develop profitable products among corporate scientists. Since trial designers have strong 
motive to err on the side of overestimating effectiveness, they tend to do so, as illustrated 
by the above examples.   
 Once evidence is gathered by the use of such measuring instruments, the evidence is 
often analyzed and presented in such a way as to make the experimental interventions 
appear more effective than they are—a problem I now turn to. 
  
 

3  Measures 
  
Many ‘outcome measures’ are employed in clinical research. An outcome measure is an 
abstract formal statement describing a relation between the value of the measurand in the 
control group and the value of the measurand in the experimental group. When 
particular substantive values for such measurands are substituted into an outcome 
measure, the result is a quantitative estimation of the strength of an alleged causal 
relation—this quantity is usually called an ‘effect size’.7 There are outcome measures for 
both continuous and dichotomous parameters.   
 If the measured parameters are continuous (such as blood sugar concentration), a 
common outcome measure is the standardized mean difference (SMD): 
 SMD = (µ1 - µ2)/σ  

																																																								
7 How an effect size relates to the strength of a causal relation is a tricky problem beyond the scope of the 
present article. See (Broadbent, 2013) for a discussion of what he calls, in the epidemiological context, 
‘puzzles of attributability’. 
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where µ1 is the mean value of a parameter of interest for the experimental group, µ2 is the 
mean value of the same parameter for the control group, and σ is a measure of the 
variance of the value of the parameter (for some statistics σ is measured in the control 
group and for other statistics the variance from both groups is pooled to determine σ). A 
ubiquitous practice in medical research is to use SMD as the basis of more complicated 
analytic statistics, such as the t-test, in the service of null hypothesis testing.8 The simple 
measure µ1 - µ2 is important because it measures the absolute difference between mean 
values of the parameter of interest.  
 For both continuous and dichotomous parameters, the choice of outcome measure is 
important and can have significant influence on the estimation of effectiveness. The basic 
issue I discuss below is salient for both kinds of parameters. However, the point can be 
made more simply by focusing on dichotomous parameters (similarly, for simplicity I 
ignore discrete non-binary parameters).  
 If the measured parameters are dichotomous (such as death), standard outcome 
measures include the odds ratio, relative risk (sometimes called risk ratio), relative risk 
reduction, risk difference (sometimes called absolute risk reduction), and number needed 
to treat. To define these, one constructs a two-by-two table for a study that has an 
experimental group (E) composed of subjects who receive the experimental intervention, 
and a control group (C) composed of subjects who do not receive the experimental 
intervention (perhaps they receive a placebo), in which a binary outcome is measured as 
present (Y) or absent (N), where the number of subjects with each outcome in each group 
is represented by letters (a-d), as follows: 
 

Group   Outcome 
     Y  N 
 E    a  b 
 C    c  d 
 
Relative risk (RR) is defined as: 
 RR = [a/(a+b)] / [c/(c+d)] 
Relative risk reduction (RRR) is defined as: 
 RRR = [[a/(a+b)] - [c/(c+d)]] / [c/(c+d)] 
Risk difference (RD) is defined as:  
 RD = a/(a+b) - c/(c+d) 
Number needed to treat (NNT) is defined as: 
 NNT = 1 / [[a/(a+b)] - [c/(c+d)]] 
																																																								
8 A problem with null hypothesis testing pertinent to the present discussion is that a null hypothesis test only 
reports the probability that the observed difference between parameter means in the two populations was 
due to chance, and does not provide any added information about the degree of effectiveness.  



	 11 

 
It also can be useful to define these in terms of conditional probabilities. The probability 
of a subject having a Y outcome given that the subject is in group E, P(Y|E), is a/(a+b), 
and likewise, the probability of having a Y outcome given that the subject is in group C, 
P(Y|C), is c/(c+d). Thus, for example, we have: 
 RR = P(Y|E)/P(Y|C) 
 RD = P(Y|E) - P(Y|C) 
A widespread and misguided practice is to report RR or RRR but not RD or NNT. The 
over-reliance on relative outcome measures in epidemiology is dubbed ‘risk relativism’ by 
Broadbent (2013). Broadbent canvasses several alleged justifications for the widespread 
use of relative measures like RR and finds them all wanting. He also notes that some 
epidemiologists have begun to urge more frequent use of absolute measures. My concern 
here is not with alleged justifications for risk relativism, but rather with a nefarious 
consequence of risk relativism. Employment of relative measures, such as RR or RRR, 
promotes the base-rate fallacy (Worrall, 2010). Both physicians and patients overestimate 
the effectiveness of medical interventions when presented with only relative measures, 
and their estimates are more accurate when they are presented with both relative and 
absolute measures or with absolute measures alone. This finding has been replicated 
many times in different contexts.9 
 To see that relative measures promote the base-rate fallacy, consider the following. 
Suppose Y is the beneficial outcome in question. The question of central concern for a 
patient is: to what extent would using this particular intervention change the probability 
of me having the outcome in question? Two epistemological notions are pertinent here: 
change and probability. A faithful way to represent this is to multiply two factors: a factor 
that represents the difference-making capacity of the intervention, and a factor that 
represents the baseline probability of the beneficial outcome in question. 
 By applying Bayes’ Theorem, RR is equivalent to: 
 RR  = [P(E|Y)P(Y)/P(E)] / [P(C|Y)P(Y)/P(C)] 
  = [P(E|Y)/P(E)] / [P(C|Y)/P(C)] 
The baseline probability of having outcome Y, P(Y), has fallen out of the equation. Thus 
RR is not sensitive to P(Y).  

In contrast, consider RD. By applying Bayes’ Theorem, RD is equivalent to: 
 RD = [P(E|Y)P(Y)/P(E)] - [P(C|Y)P(Y)/P(C)] 
  = P(Y)[[P(E|Y)/P(E)] - [P(C|Y)/P(C)]] 
The leftmost multiplicand just is the prior probability of Y. Thus RD is sensitive to P(Y). 
The rightmost multiplicand is a representation of the extent to which consuming the 
																																																								
9 See, as examples: (Nexøe, Gyrd-Hansen, Kragstrup, Kristiansen, & Nielsen, 2002), (Forrow, Taylor, & 
Arnold, 1992), (Naylor, Chen, & Strauss, 1992), (Sorensen, Gyrd-Hansen, Kristiansen, Nexoe, & Nielsen, 
2008), and (Bobbio, Demichelis, & Giustetto, 1994). 
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intervention changes the probability of Y.10 One can see this perhaps more clearly by 
applying Bayes’ Theorem once again, to the rightmost multiplicand: 
 RD = P(Y)[[P(Y|E)/P(Y)] - [P(Y|C)/P(Y)]] 
The terms in the rightmost multiplicand are intuitive representations of the difference 
making capacity of the experimental intervention and control intervention, respectively. 
Of course, these quantities are derived from the hypothetical study in question, and in §4 
I argue that care should be applied when extrapolating from the results of a study to 
making an inference about how beneficial an intervention will be for a particular patient. 
Nevertheless, as suggested above, to address the patient’s central question articulated 
above, we should have a measure that represents the capacity of an intervention to 
change the probability of the beneficial outcome in question. RR does not do this. RD 
does. 
 Here is a related, decision-theoretic argument in favor of RD over RR. (Worrall, 
2010) rightly notes that the choice of using a medical intervention is a decision that ought 
to be modeled with an expected utility calculation. I will formulate this insight. Let x be 
the intended beneficial effect of a drug—say, avoiding a heart attack—which brings utility 
U(x) to a patient, and let the harmful effects of the drug be yi, which brings utility U(yi) to 
a patient (these are negative). Decision theory holds that, when faced with a decision to 
take some action or not, in standard cases one should take that action if it would bring 
more utility than not taking that action, and if it would not, then do not. Of course, any of 
x and yi could have occurred without using the drug. Thus the expected utility (EU) of 
using the drug (D), compared with not using the drug (~D), is: 
 EUD = [P(x|D) - P(x|~D)]U(x) + ∀i∑[P(yi|D) - P(yi|~D)]U(yi)  
Note that, among the various outcome measures typically employed in clinical research 
and described above, the leftmost multiplicand in the leftmost term of EUD is best-
estimated by RD. Indeed, a naïve estimation of P(x|D) would just be based on the 
frequencies a/(a+b), and a naïve estimation of P(x|~D) would just be based on the 
frequencies c/(c+d), and since the difference between the former and the latter is just RD, 
a naïve estimation of  the leftmost multiplicand in the leftmost term of EUD would simply 
be based on RD. I call this approach naïve for reasons that will become clear in §4 
below.11 Nevertheless, RD is a close estimator of this term required for the expected 
																																																								
10 If P(E) and P(C) are very similar, say because the study was randomized, then the value of the rightmost 
multiplicand is entirely determined by the difference of likelihoods, and in (Stegenga, 2013) I argue that 
comparing likelihoods is the most compelling way to measure the extent to which purported means change 
the probability of an end—precisely the difference-making capacity that is in question here.  
11 The mere act of consuming a medical intervention can be thought of as a harmful cost, as can the 
financial cost of the medical intervention. Thus, if one consumes a medical intervention, some of the 
harmful effects are essentially guaranteed. Other harmful effects—the harmful physiological effects of the 
drug—have smaller probabilities. If [P(x|D) - P(x|~D)] is only 0.01, say, and for some i of yi, P(yi) = 1, and 
some of the harmful effects have a very large disutility U(i), it is not obvious that EUD is positive. I do not 
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utility calculation, and compared to relative outcome measures, RD is far superior 
(relative measures are simply not an option for this estimation).  
 To illustrate the problem that arises when not taking P(Y) into account with relative 
measures of effectiveness, consider the drug alendronate sodium (Fosamax), claimed to 
allegedly cause an increase in bone density in women, used with the aim of decreasing the 
frequency of bone fractures. A large trial compared the drug to placebo over a four year 
period (Black et al., 1996). The evidence from the trial was touted as showing that the 
drug reduces the risk of hip fractures by 50%—this was a relative measure of risk 
reduction (RRR). However, as Moynihan and Cassels (2005) note, only 2% of the women 
in the control group had hip fractures during the four years of the trial, while only 1% of 
the women in the experimental group had hip fractures. Thus the RD effect size was a 
mere 1%—the absolute difference in hip fracture rates between the experimental group 
and the control group was only 1%—after consuming the drug for four years. Moreover, 
it was only women at ‘high risk’ of hip fractures—namely, those who had already had hip 
fractures—who were included as subjects in the study, and thus the subjects in the study 
were not representative of the broader target population of patients for whom such an 
intervention is intended (which raises the problem of extrapolation, to which I turn in the 
following section).  
 If you are confused by the difference between the various outcome measures, then 
you might maintain the perplexed question: is alendronate sodium effective, or isn’t it? 
After all, we have two outcome measures reporting two effect sizes: 
 RRR = 50% 
 RD = 1% 
So, does alendronate sodium decrease the chance of hip fractures in the relevant 
population by 50% or 1%? The answer is that it does both, because the question is 
ambiguous. For a particular patient, the probability of having a hip fracture after taking 
alendronate sodium decreases from 2% to 1%, and so, since 2 – 1 = 1, the chance of 
having a hip fracture decreases by 1%. But since 1 (of anything) is 50% of 2 (of anything), 
the probability of having a hip fracture after taking alendronate sodium decreases by 
50%. Which effect size should a particular patient and her physician be impressed by? 
Perhaps both. At the very least, they need the absolute measure to make an informed 
treatment decision. Effectiveness of an intervention, from the first-person perspective of a 
patient, is, roughly, the degree to which the intervention increases the probability that the 
patient will experience the beneficial outcome in question. This difference-making notion 
is adequately represented by RD and is not adequately represented by RR. So, from an 

																																																																																																																																																																					
pretend that these numbers are straightforward to calculate. My point is that one ought not assume that the 
expected utility of using a medical intervention is positive, given only a large relative effect size. 
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individual patient’s perspective, the appropriate outcome measure in this example is RD: 
the probability of having a hip fracture after taking alendronate sodium decreases by 1%. 
In short, alendronate sodium is barely effective, even in the most at-risk patients. The use 
of a relative outcome measure makes the drug seem more effective than it in fact is. 
 Here is another example of a misleading reliance on relative outcome measures. The 
Helsinki Heart Study tested the capacity of gemfibrozil to decrease cholesterol levels and 
thereby decrease cardiac disease and death. After five years of taking the drug, the 
subjects in the experimental group had a reduced relative risk of cardiac disease of 34%, 
but since the baseline rate of cardiac disease is so low, this amounted to an absolute 
reduced risk (RD) of only 1.4% (Frick et al., 1987). Moreover, there was no difference 
between the groups in the death rate.  
 The reliance on relative outcome measures at the expense of absolute outcome 
measures is ubiquitous.12 This, together with the fact that people overestimate the 
effectiveness of medical interventions when provided with relative outcome measures, 
entails that on average people overestimate the effectiveness of medical interventions. 
Effectiveness always should be measured and reported in absolute terms (using measures 
such as RD), and only sometimes should effectiveness also be measured and reported in 
relative terms. This would have the result that estimates of the effectiveness of medical 
interventions would be more accurately deemed lower than they now are. 
 One might object that a medical intervention with a low absolute effect size could 
nevertheless be considered ‘effective’, because if the medical intervention were used by a 
large number of people, then a significant absolute number of those people would 
experience the beneficial outcome of the intervention. This is especially the case with 
those medical interventions that are widely used today as preventive medications, such as 
cholesterol-lowering drugs and blood pressure-lowering drugs. For example, if a 
cholesterol-lowering drug has a 1% absolute reduction in the risk of death, and ten 
million people consume the drug, then 100 000 lives are saved. That is a great outcome. 
However, it is not obviously great from the perspective of a particular typical patient. 
One rationale for the use of such interventions could be similar to the rationale for the use 
of vaccines: most people who are vaccinated against a certain disease would not have 
developed the disease in question had they not been vaccinated, and thus they do not 
directly receive a benefit from the intervention, but the widespread use of vaccines is 
nonetheless warranted because the practice decreases the overall number of people who 
develop the disease (thanks to so-called ‘herd immunity’). This way of conceiving of the 
benefits of vaccines requires thinking of the benefit accrued to a population rather than 
any particular individual. However, that is not how drugs with low effect sizes—those 

																																																								
12 I am not aware of a careful empirical survey that demonstrates this, but many commentators have noted 
that risk relativism is widespread. See, for discussion, (Moynihan & Cassels, 2005). 
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preventive drugs that lower cholesterol, say—should be thought of. An individual patient 
and her physician want to know that if they employ a particular medical intervention 
then there is a reasonably good chance that the intervention will be effective for this 
particular patient. For drugs with low absolute effect sizes like the ones I have been 
discussing above, that is almost never the case.  
 An objection related to the one above holds that interventions with high relative 
effect sizes but low absolute effect sizes are indeed effective—alendronate sodium cuts 
one’s risk of hip fractures in half, after all—it is just that there are relatively few people for 
whom the intervention can be effective, because the baseline probability of a woman 
having a hip fracture is so low. If a woman were among the 2% who were going to have a 
hip fracture, then alendronate sodium would cut that woman’s risk in half, which (this 
objection goes) is significant. There is no reason that a measure of effectiveness should be 
sensitive to the prevalence of the outcome in question, goes this response, and thus a 
relative measure is more appropriate than an absolute measure. The trouble with such a 
response is that one cannot tell in advance if one is in the class of people for whom an 
intervention might be effective—namely, the class of people who will experience the 
negative outcome in question. From a particular patient’s perspective—one who does not 
know in advance if she will have a hip fracture, say—a drug like alendronate sodium 
decreases her chance of having a hip fracture by a tiny amount. Another way of putting 
the point is: for a particular patient, an intervention with a low absolute effect size is very 
unlikely to provide any benefit at all. 
 To see this, consider the absolute outcome measure ‘number needed to treat’ (NTT). 
This is an intuitive outcome measure: it tells you how many people would have to use the 
intervention in question in order to achieve one of the outcomes of interest. If an 
intervention has an RD of 1%, then the NTT is 100. That is, one hundred people would 
need to use the intervention in order to achieve one positive outcome. In other words, 
only 1 of the 100 people who used the intervention would experience the beneficial 
outcome, while the other 99 would not. There may be other beneficial outcomes of the 
intervention—perhaps changes in a continuous parameter rather than a dichotomous 
parameter (but then again, there may be many harms of the drug as well)—but in any 
case the principle outcome of interest would not be experienced by the vast majority of 
the people that consume the drug. As above, when deciding whether or not to use a 
medical intervention, a patient or physician wants to know to what extent would using 
this particular intervention change the probability of the outcome in question. To 
determine this, measures like RD or NTT are needed.  
 As the above examples illustrate, when the base rate of a negative outcome is low, 
then an intervention employed to avoid that outcome could have a seemingly large 
relative effect size but a low absolute effect size. Schwartz and Meslin (2008) suggest that 
the use of absolute measures could cause patients to make irrational decisions (say, to 
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forgo treatment in cases similar to those above, in which the absolute effect sizes are tiny), 
and for at least some cases they seem to suggest that this is an argument in favor of the 
use of relative measures. Their argument is: for a patient to make an autonomous medical 
decision they must be informed about the extent to which a particular medical 
intervention is effective; since people display a low degree of numeracy, absolute outcome 
measures might hinder patients’ understanding of effectiveness; thus, employ relative 
measures. I hope to have shown that such a comparison between people’s comparative 
understanding of relative versus absolute outcome measures is dubious. Relative 
measures, by promoting the base rate fallacy, fundamentally mislead patients into 
overestimating effectiveness 
 The considerations here are concerned with the kinds of outcome measures that 
should be employed when summarizing data from clinical trials. The point of performing 
such experiments is to learn something about whether or not (and if so to what extent) a 
medical intervention will be effective for a broader target population and for a particular 
patient. Once a trial has been performed and the data from the trial has been analyzed 
with an appropriate outcome measure, thereby determining an effect size for the 
intervention, the effect size is used to make an inference about the effectiveness of the 
medical intervention in a target setting.  
   
 

4  Extrapolation 
 
A widely held assumption is that the results of clinical trials can be used to directly infer a 
general capacity of the medical intervention in question. Since the assumption is that the 
inferred capacity is general, one can infer that the medical intervention would manifest 
this capacity in a broader population and indeed in any particular patient. For instance, 
according to some of the leading medical scientists in the evidence-based medicine 
movement, in order to determine if one can extrapolate the results from clinical trials to a 
particular patient, one should “ask whether there is some compelling reason why the 
results should not be applied to the patient. A compelling reason usually won’t be found, 
and most often you can generalize the results to your patient with confidence” (Guyatt & 
Rennie, 2001) [p. 71]. This is slightly more refined than simple extrapolation—the 
application of results from a clinical trial to a broader population, and specifically to a 
particular patient—since the guidance holds that one should determine if there are 
reasons why one should not extrapolate. Nevertheless, in the same breath the guidance 
claims that such reasons are rare, and thus the guidance amounts to simple extrapolation, 
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most of the time, unless one is aware of a countervailing reason. I will call this 
methodological guidance ‘simple extrapolation, unless’ (SEU).13    
 Here is another expression of SEU, again from leaders in the evidence-based 
medicine community: “results of randomized trials apply to wide populations unless there 
is a compelling reason to believe the results would differ substantially as a function of 
particular characteristics of those patients” (Post, de Beer, & Guyatt, 2012). Similarly, an 
epidemiology textbook notes that “generalizing results obtained in one or more studies to 
different target or reference populations [is] the premier approach that public health 
professionals and policy makers use” (Szklo & Nieto, 2007). One of the highest profile 
guidance statements from methodologists in evidence-based medicine (the CONSORT 
group) re-iterates this view: “therapies (especially drugs) found to be beneficial in a 
narrow range of patients generally have broader application in actual practice” (Moher et 
al., 2010). The trouble with this claim is that, ironically, the ‘evidence base’ for it is 
extremely thin. Many of the articles that the CONSORT group cites in support of this 
claim are merely opinion pieces in medical journals; the more rigorous empirical studies 
that they cite conclude that SEU is in fact problematic. One such article argues that trial 
design principles “limit the ability to generalize study findings to the patient population” 
(Gurwitz, Col, & Avorn, 1992), and another claims that “researchers, funding agencies, 
ethics committees, the pharmaceutical industry, medical journals, and governmental 
regulators alike all neglect external validity” (Rothwell, 2005). The CONSORT defense 
of SEU is remarkable for its violation of its own evidence base.14 
 There are a number of problems with SEU. First, it assumes that the default position 
regarding extrapolation should be that extrapolation is warranted, based on the further 
assumption that relevant differences between trial subjects and target patients are rare. 
The ‘unless’ clause in SEU states a condition, which, if satisfied, overrides the warrant for 
extrapolation. Post et al. (2012) note several ways in which such an overriding condition 
could be satisfied, including: if there are pathophysiologic differences in the illness under 
investigation which could lead to variability in treatment response, if there are differences 
in a particular patient compared with the experimental subjects that could diminish the 
treatment response, and if there are differences in patient or physician compliance that 
could diminish the treatment response. In the passage cited above, Guyatt and Rennie 
claim that the overriding condition is rarely satisfied—they claim that a particular patient 

																																																								
13 (Steel, 2007) calls SEU ‘simple induction’, which he articulates as follows: “Assume that the causal 
generalization true of the base population also holds approximately in related populations, unless there is 
some specific reason to think otherwise.” My excuse for multiplying terms is that my concern is specifically 
about extrapolation, and Steel’s term is thus slightly misleading. Another bit of terminology: the term of art 
often used to describe those studies from which extrapolation is warranted is ‘external validity’. 
14 The discussion of extrapolation in (Howick, 2011b) seems to have accepted the CONSORT view at face 
value. 
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is usually similar in all important respects to the subjects of a trial from which one wishes 
to extrapolate. However, one of their exception criteria that overrides warrant for 
extrapolation is the presence of differences between the target patient and the 
experimental subjects that may diminish the treatment response in the patient. In 
principle almost any difference between an experimental group of subjects and a target 
patient may diminish the treatment response. 15  In practice there are always such 
differences.  
 Given the large number of criteria that many clinical trials employ which stipulate 
the properties that a potential subject must have (and other criteria which they cannot 
have) to be included in the trial, there are almost always differences between a particular 
real-world patient and the subjects in a clinical trial. Subjects in a clinical trial are 
virtually never drawn from a random sample of the broader population who have the 
disease in question, and the criteria that determine eligibility for a clinical trial often 
render subjects in a trial different in important respects from the broader population of 
people who have the disease.16 Some of these differences are liable to modulate the effect 
of the intervention in question. At the very least, the default assumption should not be 
that there are no such differences between trial subjects and target patients. For example, 
in the RECORD trial, which tested the safety of rosiglitazone, there were numerous 
inclusion and exclusion criteria applied to determine subject eligibility in the trial. The 
result was that 99% of the subjects in the trial were Caucasian (despite the fact that the 
trial was performed in dozens of countries), and the subjects in the trial were on average 
much healthier than the target population. The subjects in the trial had a heart attack 
frequency of 4.5 per 1000 people per year, which is about 40% of the relevant group 
(middle-aged people with type-2 diabetes) in the broader population.  
 The second major problem with SEU is that it is unreliable due to forms of bias that 
transcend concerns about internal and external validity, such as publication bias. Even if 
there were in fact no substantial relevant differences between the experimental subjects 
and target patients—and thus the overriding clause of SEU were not satisfied, and so 
extrapolation would be warranted according to SEU—the results of published trials from 
which one was extrapolating could be entirely misleading, because the published trials 
may represent only a fraction of the trials that were performed. The reason that 
publication bias is a problem for SEU is that the subset of studies that are published will 
report a degree of effectiveness which is higher than the degree of effectiveness measured 
in all relevant studies (including those that are not published).17 The subjects that are 

																																																								
15 One of many empirical demonstrations of this is given by Bartlett et al. (2005). 
16 For an insightful formulation of this argument against (Post et al., 2012) see (Fuller, 2013a). One might 
think that meta-analysis could resolve some of the problems articulated here, but in fact meta-analysis 
inherits these problems; see (Stegenga, 2011). 
17 This is a widely reported phenomenon. For an example, see (Eyding et al., 2010). 
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included in published studies differ from the set of all subjects in their degree of 
responsiveness to the intervention in question, and under the safe assumption that the 
overall set of subjects (including subjects from unpublished studies) is more representative 
of target patients than the subset of subjects that are included in published studies with 
respect to their degree of responsiveness to the intervention, publication bias threatens 
extrapolation. The presence of publication bias is a threat to any method of extrapolation 
which does not take the pernicious effects of publication bias into account. But a method 
of extrapolation could take publication bias into account by decreasing estimates of 
effectiveness as measured in published studies when predicting the effectiveness of the 
medical intervention in a target population, and thereby improve on SEU. 
 A problem with SEU that is closely related to the problem of publication bias is the 
fact that many results from clinical trials are later overturned by contradictory results. 
Broadbent (2013) calls this the problem of stability: in epidemiology, notes Broadbent, 
many research findings are not stable. This is also true in clinical research: many findings 
that purport to show that a medical intervention is helpful, or purport to show that a 
medical intervention is not harmful, are contradicted by results from subsequent research. 
SEU ignores the chance that the present evidence from which one extrapolates will be 
contradicted by later evidence.   
 The third major problem with SEU is that it ignores information regarding how the 
intervention works. Suppose a clinical trial reported that a particular medical intervention 
has an effect size of x for some specific parameter, but that background knowledge of the 
mechanisms of action for the medical intervention suggests that it would have a 
completely different effect incompatible with x. Further suppose that for a particular 
patient the overriding clause of SEU is not met—there are no reasons to suppose that the 
patient in question is different in any relevant respects from the experimental subjects of 
the trial. SEU tells us rather simply to infer that the medical intervention will cause x in 
this patient. This approach, obviously, disregards the background knowledge of the 
mechanism of action of this medical intervention.18 
 The reliance on SEU contributes to overestimating the effectiveness of medical 
interventions, for reasons corresponding to the above problems with SEU. First, the 
features that real-world patients tend to have that render them different from subjects in 
clinical trials—compared to subjects in trials, patients tend to be sicker, older, on more 
medications, and less compliant—usually mitigate treatment response in patients. Second, 

																																																								
18 Russo and Williamson (2007), and (Steel, 2007), among others, argue that knowledge of the mechanism 
of action of an alleged medical intervention is useful in warranting causal claims regarding the intervention. 
This view has been criticized by Howick (2011a) and Broadbent (2013) on the grounds that mechanistic 
knowledge is not necessary for extrapolation. See also (Illari, 2011) for a clarifying exposition of the Russo-
Williamson thesis. All contributors to this debate, nonetheless, appear to agree that knowledge of 
mechanisms can, at the very least, sometimes aid in extrapolation (though Howick is skeptical of this). 
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publication bias is asymmetric with respect to estimating effectiveness of medical 
interventions: trials that suggest a medical intervention is effective are far more likely to 
be published than trials that suggest a medical intervention is ineffective. Third, attention 
to the mechanism by which an intervention works ought, at least sometimes, to decrease 
one’s estimate of the effectiveness of medical interventions. In §2 I noted the example of 
high-dose chemotherapy, which appeared to be effective for breast cancer treatment in 
small initial trials (and which was already known to be effective for treating blood 
cancers), but since chemotherapeutic drugs operate by interfering with mechanisms of cell 
division, cells that divide rapidly (like blood cells) are more susceptible to chemotherapy, 
and slower growing tumors (like breast tumors) are less susceptible to chemotherapy. The 
estimation of effectiveness of high-dose chemotherapy for breast cancer, based on 
seemingly positive results from the initial trials, should have been tempered by 
consideration of the intervention’s mechanism of action.  
 As if SEU were not problematic enough, the ‘unless’ clause in SEU is often not 
attended to in policy development. Fuller (2013b) examined six clinical guidelines that 
recommend treatment with the five most commonly prescribed classes of medications for 
elderly patients in Ontario and found that these guidelines employ simple extrapolation 
for generalizing from RCT results to treatment guidelines for wide target populations 
(including the elderly), without considering limits to generalizability. 
 The problems with SEU discussed here naturally suggest three corresponding 
correctives. First, extrapolation would be more reliable if subjects in trials about a 
particular disease were more similar to patients in the broader population who have that 
disease than they currently are. Not just any similarity will do, of course—it would not 
help if both the experimental subjects and all members of the target population were born 
under the sign of Scorpio (likewise, as Broadbent (2013) notes, not just any difference 
between experimental population and target population invalidates an extrapolation). 
Second, when extrapolating from a particular measured value in published studies to 
make an inference of effectiveness in a target population, one should incorporate a 
subtraction factor to account for publication bias (the size of which should correspond to 
best estimates of the severity of publication bias in the relevant domain). Third, and 
related to the first, when extrapolating, one ought to consider knowledge of the 
mechanism of how the intervention works, and how the intervention can fail to work, and 
one ought to ensure that the target population is similar to the experimental population in 
all respects that are relevant to these mechanisms.  
 This latter principle has been characterized in various ways. To know that an 
intervention that appeared effective in an experimental setting will be effective in a target 
setting, Cartwright (2011) argues that we must know (i) that the causal law which 
operated in the experimental setting also operates in the target setting, (ii) that the 
‘helping factors’ (additional causal requirements) which are necessary for the intervention 
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to be effective (and that were present in the experimental setting) are in place in the target 
setting, and (iii) that the mechanism by which the intervention is effective operates in the 
target population and remains unbroken upon application of the intervention. Making a 
relatively similar point, Broadbent (2013) argues that we must know that we have 
eliminated potential interferers (where an interferer is a possible way in which an 
extrapolation could go wrong). Perhaps the most detailed proposal for a compelling 
method of extrapolation in biology and the social sciences is due to (Steel, 2007), who 
argues that extrapolation can be grounded in ‘comparative process tracing’: identifying 
the relevant mechanism in the experimental population and comparing the mechanism in 
the target population, and assessing those stages in the mechanism that are most likely to 
be different between the two populations (although Steel’s focus is on extrapolation from 
experiments on one species to knowledge about another species—typically humans—the 
method of comparative process tracing can also be valuable in the context of clinical 
research).  
 Perhaps most importantly, when extrapolating measurements of effectiveness from a 
research setting to a clinical setting, one ought to take into account features of the 
research setting that go beyond mere concern about internal and external validity, 
including features such as the potential for publication bias and the chance that present 
findings will be contradicted by later research.  
 
 

5  Conclusion 
 
The measurement of effectiveness of medical interventions faces three epistemological 
challenges: the selection of a good measuring instrument, the use of an appropriate 
outcome measure, and the employment of a reliable method of extrapolating 
measurements in an experimental setting to a broader setting.19 The way these challenges 
are met in contemporary clinical research is unsatisfactory, which systematically 
contributes to overestimating the effectiveness of medical interventions. 
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