
J
H
E
P
1
0
(
2
0
1
6
)
0
3
1

Published for SISSA by Springer

Received: August 18, 2016

Accepted: September 19, 2016

Published: October 7, 2016

Instability of supersymmetric microstate geometries

Felicity C. Eperon, Harvey S. Reall and Jorge E. Santos

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Wilberforce Road, Cambridge CB3 0WA, U.K.

E-mail: fce21@cam.ac.uk, hsr1000@cam.ac.uk, jss55@cam.ac.uk

Abstract: We investigate the classical stability of supersymmetric, asymptotically flat,

microstate geometries with five non-compact dimensions. Such geometries admit an “eva-

nescent ergosurface”: a timelike hypersurface of infinite redshift. On such a surface, there

are null geodesics with zero energy relative to infinity. These geodesics are stably trapped

in the potential well near the ergosurface. We present a heuristic argument indicating that

this feature is likely to lead to a nonlinear instability of these solutions. We argue that

the precursor of such an instability can be seen in the behaviour of linear perturbations:

nonlinear stability would require that all linear perturbations decay sufficiently rapidly but

the stable trapping implies that some linear perturbation decay very slowly. We study

this in detail for the most symmetric microstate geometries. By constructing quasinormal

modes of these geometries we show that generic linear perturbations decay slower than any

inverse power of time.

Keywords: Black Holes, Black Holes in String Theory, Spacetime Singularities

ArXiv ePrint: 1607.06828

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP10(2016)031

mailto:fce21@cam.ac.uk
mailto:hsr1000@cam.ac.uk
mailto:jss55@cam.ac.uk
https://arxiv.org/abs/1607.06828
http://dx.doi.org/10.1007/JHEP10(2016)031


J
H
E
P
1
0
(
2
0
1
6
)
0
3
1

Contents

1 Introduction 2

2 Geodesics and stable trapping 6

2.1 Zero energy null geodesics 6

2.2 The 6d perspective 7

2.3 Stable trapping 8

2.4 Heuristic argument for instability 11

2.5 The energy functional 13

3 3-charge microstate geometries 16

3.1 Metric and charges 16

3.2 Evanescent ergosurface and zero energy null geodesics 17

4 Quasinormal modes 19

4.1 Relation to null geodesics 19

4.2 Matched asymptotic expansion 20

4.2.1 Region 1: y �
√
` 22

4.2.2 Region 2: 1� y � ` 23

4.2.3 Region 3: y �
√
` 23

4.2.4 Real part of the frequency 24

4.2.5 Imaginary part of the frequency 25

4.3 Kaluza-Klein momentum scaling with ` 26

4.3.1 Asymptotic matching 26

4.4 Numerical determination of quasinormal modes 28

4.4.1 Method 28

4.4.2 Results 30

4.5 Lower bound on decay rate 33

A 2-charge microstate geometries 35

A.1 The metric 35

A.2 Evanescent ergosurface 36

A.3 2-charge quasinormal modes 36

A.3.1 2-charge matched asymptotic expansion 36

A.3.2 2-charge quasinormal mode frequencies scaling with ` 38

B Quasimode construction 38

– 1 –



J
H
E
P
1
0
(
2
0
1
6
)
0
3
1

1 Introduction

Type IIB supergravity admits supersymmetric “microstate geometry” solutions [1–10].

These are asymptotically flat, geodesically complete, stationary solutions without hori-

zons. Near infinity, they approach the product of 5 dimensional flat spacetime with 5

compact dimensions. Some of these solutions can be dimensionally reduced to give smooth

solutions of 5d supergravity. In 5d, the stationary Killing vector field V is timelike ev-

erywhere except on a certain timelike hypersurface, where is it is null. This surface has

infinite redshift relative to infinity, and has been called an “evanescent ergosurface” [11].

A natural question is whether these spacetimes are classically stable. This has been in-

vestigated for non-supersymmetric microstate geometries, which can have a genuine ergore-

gion, where V becomes spacelike [12]. Such geometries have been shown to be unstable [13]:

linear perturbations localized in the ergoregion can have negative energy and there exist

modes which grow exponentially in time. In the supersymmetric case, linear perturbations

have non-negative energy, which excludes exponential growth so one might expect stability.

A simple argument suggests that supersymmetric microstate geometries actually have a

nonlinear instability. The argument is based on the existence of the evanescent ergosurface.

As we shall explain, on an evanescent ergosurface, V is tangent to affinely parameterized

null geodesics with zero energy. These geodesics are at rest relative to infinity so they are

resisting the frame-dragging effect caused by the rotation of the geometry. Hence they can

be regarded as carrying angular momentum opposed to that of the background spacetime.

These geodesics are “trapped” in the sense that they remain in a finite region of space, i.e.,

they do not disperse. Trapping occurs in other situations, e.g., at the photon sphere of a

Schwarzschild black hole. However, in the Schwarzschild case, the trapping is unstable: if

one perturbs the geodesic then it will escape to infinity or fall into the black hole. At an

evanescent ergosurface the trapping is stable because the geodesics sit at the bottom of a

gravitational potential well.

Now consider perturbing the spacetime by adding an uncharged massive particle (or

a tiny black hole) near to the evanescent ergosurface. If we neglect backreaction then

the particle moves on a geodesic. However, if we couple it to supergravity fields then it

will gradually radiate energy and angular momentum through its coupling to gravitational

radiation (and other massless fields). Hence it will gradually lose energy and its trajectory

will approach a geodesic which minimizes the energy. But these trajectories are precisely

the zero-energy null geodesics tangent to V on the evanescent ergosurface. Hence the

trajectory of our particle will approach one of these trapped null geodesics. It will have very

small energy as measured at infinity. However, since the massive particle is now following

an almost null trajectory, the energy measured by a local observer will be enormous. Hence

its backreaction on the geometry will be large. This strongly suggests an instability.

What would be the endpoint of such an instability? The instability involves removing

angular momentum from the microstate geometry via radiation. This will tend to shrink the

evanescent ergosurface. An obvious candidate endpoint is an almost supersymmetric black

hole with the same conserved charges as the microstate geometry, but different angular

momenta. This could be a near-extremal BMPV black hole [14] or black ring [15].
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This heuristic argument for instability involves a massive particle. Is there also an

instability involving only massless supergravity fields? Our argument relied on the fact

that the particle can radiate, i.e., interactions are important. This suggests that a corre-

sponding instability in supergravity will be a nonlinear effect, which makes demonstrating

its existence difficult. But it is easy to see why the presence of an evanescent ergosurface

makes nonlinear stability unlikely, as we will now explain.

Proofs of nonlinear stability, e.g., the stability of Minkowski spacetime [16], involve

first establishing that solutions of the linearized problem decay sufficiently rapidly. This

decay occurs via dispersion to infinity (or across a black hole horizon). Without sufficiently

fast decay in the linearized problem there is no reason to expect stability in the nonlinear

problem. For example, in anti-de Sitter spacetime (AdS), linear perturbations do not

decay. This led to the conjecture that AdS suffers from a nonlinear instability [17]. Such

an instability was subsequently discovered numerically [18].

Supersymmetric microstate geometries are asymptotically flat, so it is possible for

linear perturbations to disperse to infinity. However, the presence of the evanescent ergo-

surface implies that generic linear perturbations decay very slowly because of the stable

trapping. To discuss this in more detail, we note first that there exist decoupled linear

perturbations that behave like a massless scalar in these geometries [19]. Therefore we will

consider the behaviour of a massless scalar field, i.e., the wave equation. Using geometric

optics, one can construct low energy, spatially localized, solutions of the wave equation

describing wavepackets propagating along the zero energy null geodesics [20]. These can

decay by dispersion to infinity but, because of the stable trapping, this involves tunnelling

through a potential barrier and so the decay will be very slow. This has been studied in

detail for other examples of spacetimes with stable trapping, namely anti-de Sitter black

holes [21] and “ultracompact” neutron stars (stars with a photon sphere) [22]. In both cases,

it has been shown that the stable trapping implies that the late time decay is generically

as an inverse power of log t where t labels a foliation by spacelike surfaces such that ∂/∂t

is Killing. (This can be contrasted with the power-law decay of waves in asymptotically

flat black hole spacetimes.)

This slow decay presents a serious problem for attempts to prove stability for a non-

linear equation. Even t−1 decay, (as for the linear wave equation in 4d Minkowski space) is

problematic, and will generically lead to solutions which blow up in finite time [23], unless

certain conditions are placed on the nonlinearities. An example of such a condition is the

“null condition” [24]. Physically, this condition prohibits interactions between wave pack-

ets which are travelling in the same null direction, so, although these waves may remain

close to each other for a long time, they cannot interact in order to produce a singular-

ity. It is sometimes possible to replace this condition with a weaker one (the “weak null

condition” [25]) and still obtain global solutions [26]. Indeed one can prove the nonlinear

stability of Minkowski spacetime this way [25].

Given the difficulties already encountered when linear waves decay at a rate t−1, slower

rates appear particularly troubling. In the case where these rates are related to the phe-

nomenon of stable trapping, the physical mechanism underlying the null condition also

appears to be absent: waves can be localised along different null directions, but still in-
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teract for a long time. This appears particularly dangerous in the case where the stable

trapping is “local”, i.e., confined to a finite region of space, as in microstate geometries

and ultracompact stars.1

For supersymmetric microstate geometries, the stable trapping appears worse than the

other two examples just discussed because the associated null geodesics have zero energy.

For the wave equation, the corresponding statement is that the energy degenerates on

the evanescent ergosurface, so that smallness of the energy does not imply smallness of the

gradient of the field there. This means that standard methods for establishing boundedness

of solutions of the wave equation do not work. So even proving linear stability of the wave

equation in these geometries is non-trivial. Even if linear stability can be established, we

expect the decay of linear perturbations will be at least as slow as the examples of stable

trapping just mentioned, which is far too slow for establishing nonlinear stability.

In the discussion so far we have concentrated on microstate geometries from the 5d

perspective. However, such geometries are often best viewed as solutions in 6 dimensions,

with a compact Kaluza-Klein circle (indeed some geometries are smooth in 6d but not in

5d). We explain below how to define the evanescent ergosurface from the 6d perspective.

We will also investigate the trapping in 6d. Surprisingly, we find that for any supersym-

metric microstate geometry, there is a stably trapped null geodesic passing through every

point of the 6d spacetime, i.e., not just points on the evanescent ergosurface. Away from

the ergosurface, these correspond to BPS charged particle trajectories in 5d. In this paper,

we will focus mainly on the stable trapping on the evanescent ergosurface.

To gain some understanding of the behaviour of geodesics and linear perturbations

of microstate geometries, we will study in detail two classes of solutions. In section 3 we

study the 3-charge microstate geometries of ref. [6]. In appendix A we study the maximally

rotating 2-charge microstate geometries of ref. [2]. These solutions are special because they

have extra symmetries which enable the geodesic equation or wave equation to be separated

and reduced to ODEs. We will show that there are families of quasinormal modes which

are localized around the stably trapped zero energy null geodesics on S, and which decay

very slowly. We construct these modes using a matched asymptotic expansion valid for

large “total angular momentum” quantum number `� 1, with the result that these modes

have frequency

ω ≈ ωR − iβe−2` log ` (1.1)

where ωR and β > 0 are constants that are independent of ` to leading order. There are

also quasinormal modes localized around the stably trapped null geodesics away from S,

with Imω ∼ − exp(−` log `). These results are for `� 1 but we have also constructed such

quasinormal modes numerically, and find that they decay very slowly even at small `.

We can compare this result with the behaviour of quasinormal modes for AdS black

holes [28, 29] or ultracompact stars [30]. There are two important differences. First, in

these examples ωR is proportional to ` at large ` whereas in our case, ωR does not scale

1It is conceivable that the stable trapping may be less of a problem for the example of AdS black holes

because there the trapping occurs at infinity. Ref. [27] argues that such spacetimes will be nonlinearly

stable.
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with `. This is closely related to the fact that the associated null geodesics have zero energy.

Second, for AdS black holes or ultracompact stars, the imaginary part of the frequency of

the most slowly decaying quasinormal modes is of the form e−γ` (for some γ > 0) whereas

we have e−2` log `. Hence, in our case, the decay of quasinormal modes is slower than in

these other examples of stable trapping. We will explain below why this behaviour of the

quasinormal modes implies that generic perturbations decay slower than for AdS black

holes or ultracompact stars, and therefore cannot exhibit power law decay. A rigorous

result proving this slow decay will appear in a companion paper [31].

Our construction of the quasinormal modes exploits the special properties of these

particular microstate geometries. However, since these modes are localized around the

zero energy null geodesics, we expect that the slow decay of these quasinormal modes is a

generic feature of spacetimes with an evanescent ergosurface, and hence our conclusion on

the slow decay of generic perturbations should apply to any such spacetime.

Note that the slowest decaying modes are those with the largest angular frequency.

This suggests that the nonlinear instability of such geometries will be a short-distance effect,

perhaps involving the formation of tiny (uncharged) black holes, as in the AdS instability.

Such black holes would then behave as massive particles, accelerate to the speed of light

and cause a large backreaction, perhaps triggering collapse of the evanescent ergosurface,

with the solution finally settling down to an almost BPS black hole solution with the same

conserved charges as the microstate geometry, but different angular momenta.

The “fuzzball proposal” conjectures that supersymmetric microstate geometries pro-

vide a geometrical description of certain quantum microstates of supersymmetric black

holes [32]. It is therefore interesting to compare whether the decay of linear waves in a

microstate geometry resembles the decay for a supersymmetric black hole. For a super-

symmetric black hole, waves are expected to decay as an inverse power law of time at late

time outside the horizon. This has been proved for the extremal Reissner-Nordstrom space-

time [33, 34]. The slowest decaying modes are those with the lowest angular frequency.

However, for a microstate geometry, the stable trapping implies that the decay is slower

than any inverse power law, and the slowest decaying modes are those with the highest

angular frequency. Hence there is a qualitative differences between the behaviour of linear

waves in microstate geometries and in supersymmetric black hole geometries.

Another family of spacetimes with an evanescent ergosurface are supersymmetric

“black lens” solutions [35, 36]. A black lens is a black hole with an event horizon of

lens space topology. These solutions have an evanescent ergosurface outside the event hori-

zon. Other examples of solutions with this property are obtained by superposing black

holes with microstate geometries [37]. Our heuristic particle argument for instability may

not apply to these solutions because the particle can fall across the horizon. However, the

presence of the evanescent ergosurface implies that it is likely that all of these solutions

will exhibit slow decay of linear perturbations and a corresponding nonlinear instability.

To define the evanescent ergosurface we need a Kaluza-Klein symmetry in 6d. It has

been argued that there exist microstate geometries without such a symmetry [38]. (See

also ref. [39] and references therein.) In such geometries one cannot define an evanescent

ergosurface. Nevertheless, as we will explain, we expect such geometries to admit stably
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trapped null geodesics through every point of the spacetime. Hence we expect that such

geometries will suffer from slow decay of linear perturbations and a corresponding nonlinear

instability.

This paper is organized as follows. In section 2 we review the notion of an evanescent

ergosurface in 5d and 6d and show that such a surface is ruled by zero energy null geodesics.

For supersymmetric microstate geometries we prove that these geodesics exhibit stable

trapping. We also show that a 6d microstate geometry has a stably trapped null geodesic

through every point of the spacetime. We elaborate on our heuristic argument for why

these geometries are unstable. We then explain why the evanescent ergosurface presents

a problem for proving linear stability of these geometries. Even if this problem can be

overcome, we argue that the methods required will not extend to the nonlinear problem.

In section 3 we discuss in detail the 3-charge microstate geometries of ref. [6]. In section 4

we determine quasinormal modes of these geometries in two ways: first using a matched

asymptotic expansion (valid for large `), and then using numerical methods (for general

`). We then explain why the properties of these quasinormal modes imply that generic

linear perturbations must decay very slowly, in particular they cannot exhibit power-law

decay. Appendix A performs quasinormal mode calculations for the 2-charge microstate

geometries of ref. [2].

2 Geodesics and stable trapping

2.1 Zero energy null geodesics

Supersymmetric solutions of 5d supergravity admit a non-spacelike Killing vector field V

which approaches a standard time translation at infinity. In a 5d microstate geometry

spacetime, V is timelike everywhere except on the evanescent ergosurface: a timelike hy-

persurface S, on which V is null. In fact supersymmetry implies that there exists a scalar

f such that [40]

V 2 = −f2 (2.1)

and S is given by f = 0. Since V is Killing, it preserves S, i.e., V is tangent to S. It is

easy to see that V is tangent to affinely parameterized null geodesics on S [41]:

V b∇bVa = −V b∇aVb = −(1/2)∇a(V 2) (2.2)

and the r.h.s. vanishes on S because V 2 has a second order zero on S. Hence V is tangent

to affinely parameterized null geodesics on S.2 The conserved energy of a timelike or null

geodesic with momentum P a is

E = −V · P ≥ 0 (2.3)

where the inequality follows because V is non-spacelike and V, P are both future-directed.

Since V is null on S, it follows that V is tangent to zero energy null geodesics on

S. Furthermore, these are the only causal curves with zero energy: away from S, V is

2Note that this is not true for a general ergosurface (e.g. in the Kerr spacetime), when V 2 has only a

first order zero and so the r.h.s. is non-zero and orthogonal to S hence V is non-geodesic in that case.
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timelike so E = 0 would imply that P is spacelike whereas on S, E = 0 implies that P is

tangent to V .

Microstate geometries carry non-zero angular momentum. Since V approaches a stan-

dard time translation at infinity, a particle following an orbit of V does not rotate w.r.t.

to infinity, i.e., it has zero angular velocity. This means that the particle is resisting the

frame-dragging effect arising from the rotation of the spacetime geometry. In this sense,

the zero energy null geodesics can be regarded as having angular momentum opposite in

sign to the angular momentum of the background geometry. If the microstate geometry

has appropriate rotational symmetries then one can use these to define conserved angular

momenta for geodesics; we will see below that at least one of the angular momenta of the

zero energy null geodesics has opposite sign to that of the background.

2.2 The 6d perspective

Sometimes it is more convenient to discuss microstate geometries in 6d rather than 5d. In

particular, this is the case for 2-charge microstate geometries, and the 3-charge geometries

of ref. [6], which are regular in 6d but not in 5d. Therefore we will need to discuss how S
is defined in 6d.

The 5d Killing field V is the Kaluza-Klein reduction of a 6d Killing field, which we

will also call V . Supersymmetry implies that V is globally null w.r.t. the 6d metric [42].

It can be written as V = T + Z where T and Z are commuting Killing vector fields, Z is

the spacelike “Kaluza-Klein” Killing vector field (i.e. the 5d metric is obtained from the

6d metric by projecting orthogonally to Z and rescaling) and, near infinity, T is timelike

and canonically normalized.

V is null in 5d if, and only if, it is orthogonal to Z in 6d. Hence, in 6d, S can be

defined as the locus where V is orthogonal to Z. On S we therefore have (using the fact

that V is null)

T 2 = Z2 = −T · Z (2.4)

For 2-charge microstate geometries, which do not correspond to regular 5d solutions, S is a

2d timelike submanifold on which Z vanishes (and hence T is null). For 3-charge microstate

geometries, S is a timelike hypersurface in 6d (i.e. codimension 1). In the 3-charge case,

Z is non-vanishing on S so the above equations imply that T is spacelike on S. Since T

generates time translations in 6d, it follows that there is a genuine ergoregion present in

6d (this has been noticed before [12]).

In 6d, since V is globally null, it is everywhere tangent to affinely parameterized null

geodesics. We use T to define the energy of geodesics in 6d: E6 = −T · P where P is the

momentum of the geodesic. We define the Kaluza-Klein momentum as p = Z · P . We can

use −V · P ≥ 0 to obtain3 E6 ≥ p. Hence the 6d energy is bounded below despite the

presence of the ergoregion. Since V · Z = 0 on S it follows that the null geodesics on S
with tangent V have zero Kaluza-Klein momentum p = 0 as well as zero 6d energy E6 = 0.

3In the 2-charge microstate geometries, V ′ = T − Z is also a globally null Killing vector field, which

implies E6 ≥ |p|.
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2.3 Stable trapping

A geodesic is trapped if it “remains within a bounded region of space”. Clearly this is

true for the zero energy null geodesics on S discussed above. We will now show that the

null geodesics on S tangent to V are stably trapped in the sense that initially nearby

null geodesics remain nearby. This is intuitively obvious since these geodesics minimize

the energy; we will now see it explicitly using the geodesic deviation equation (i.e. Jacobi

fields). We will also show that all null geodesics with tangent V are stably trapped in a

6d supersymmetric microstate geometry, hence there exists a stably trapped null geodesic

through every point of the spacetime.

We will first consider a more general situation of d-dimensional spacetime admitting

a Killing vector field V . We define T to be the locus where V 2 is extremized, i.e., where

∇a(V 2) = 0. Using Killing’s equation as in (2.2) we then have V b∇bV a = 0 on T . Since

V must be tangent to T , we have a family of affinely parameterized geodesics on T with

tangent V .

Let γ denote one of the geodesics on T with tangent V . Consider a 1-parameter family

of affinely parameterized geodesics which contains γ [43]. Let Xa denote the tangent vector

to these geodesics, and Y a a deviation vector within this family, i.e., LXY = 0. On γ we

have Xa = V a. We want to determine how Y a behaves along γ. The geodesic deviation

equation gives

(∇V∇V Y a)|γ = (∇X∇X)Y a|γ = RabcdX
bXcY d|γ = RabcdV

bV cY d|γ (2.5)

To evaluate the r.h.s. we used the Killing vector identity

∇c∇aVb = RbacdV
d (2.6)

This implies

RbacdV
aV d = ∇c(V a∇aVb)− (∇cV a∇aVb) = Hbc + ωacωab (2.7)

where

Hab = Hba = ∇a∇b(−V 2/2) (2.8)

and

ωab = −ωba = ∇bVa (2.9)

The geodesic deviation equation is therefore[
∇V∇V Y a + (Ha

b + ωcaωcb)Y
b
]
γ

= 0 (2.10)

It will be convenient to rewrite this in terms of the Lie derivative w.r.t. V as follows:

LV LV Y a = ∇V∇V Y a − (∇V Y b)∇bV a − Y bV c∇c∇bV a − (LV Y b)∇bV a (2.11)

The identity (2.6) implies that the 3rd term on the r.h.s. of (2.11) is zero. The first term

is given by (2.10). Using this, (2.11) becomes

(LV LV Y a + 2ωabLV Y b +HabY
b)γ = 0 (2.12)

– 8 –
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This is a second order ODE governing the evolution of Y a along γ. Note that

LV ωab = LVHab = 0 (2.13)

which implies that (2.11) admits the first integral

(LV Ya)(LV Y a) +HabY
aY b = C (2.14)

where C is constant along the geodesic.

Now we assume that γ is a null geodesic and that Y a is a deviation vector pointing to

a nearby causal geodesic. To do this we consider a 1-parameter family of causal geodesics,

so X2 ≤ 0. Since X2 = 0 on γ, we see that X2 is maximized on γ within our 1-parameter

family. Hence on γ we have

0 = ∇Y (X2) = 2XbY a∇aXb = 2XbXa∇aYb = 2Xa∇a(X · Y ) (2.15)

where we used LXY = 0 and the geodesic equation for X. It follows that X ·Y is constant

along γ, therefore V ·Y is constant along γ so VaLV Y a = 0. Hence LV Y a must be spacelike

or null so the first term in (2.14) is non-negative.

Note that Hab is the Hessian of −V 2/2, which is extremized on T . Therefore Hab has

components only in directions normal to T . If assume that T is a timelike submanifold then

these normal directions are all spacelike. If −V 2/2 is minimized on T (as for a microstate

geometry) then Hab will be positive semi-definite, so we deduce that C ≥ 0. Generically,

Hab will be positive definite when restricted to the space of vectors normal to T . In this

case, Hab is a Riemannian metric on the space of vectors normal to T . But we know that

HabY
aY b ≤ C hence the components of Y a normal to T remain bounded. In other words,

at the (infinitesimal) level of geodesic deviation, causal geodesics near to γ cannot move

away from T .

For a 5d supersymmetric microstate geometry, T coincides with the evanescent ergo-

surface S, which is a hypersurface (i.e. a 4d submanifold). Furthermore, V 2 has a second

order zero on S. This implies that the Hessian can be written Hab = αnanb where α > 0

is constant along γ and na is a unit spacelike normal to S. The argument of the previous

paragraph then gives (n · Y )2 ≤ C/α hence the component of Y normal to S remains

bounded so we have stable trapping in the direction normal to S. Hence causal geodesics

that are initially close to γ will remain close to S.

Now consider the case in which V is globally null, e.g. a supersymmetric microstate

geometry in 6d. In this case T is the entire spacetime and Hab vanishes. However, we can

see stable trapping as follows. From (2.6) we see that ∇V ωab = 0 so the geodesic deviation

equation (2.10) admits a first integral4

(∇V Ya)(∇V Y a) + ωacωb
cY aY b = C ′ (2.16)

where C ′ is constant along the geodesic. As above, V · Y is constant along a geodesic γ

with tangent V so Va∇V Y a = 0. Hence ∇V Y a is spacelike or null so the first term above

4Note that we cannot do this when Hab 6= 0 because ∇VHab 6= 0 in general. The constants C and C′

differ by a multiple of ωabY
a∇V Y b which can be shown to be constant along γ using (2.10).
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is non-negative. Hence we have

ωacωb
cY aY b ≤ C ′′ (2.17)

for some new constant C ′′. Note that the l.h.s. is non-negative because ωab is orthogonal

to V hence ωabY
b is non-timelike.

Note that ωab is the rotation of the null geodesic congruence with tangent V .5 As is

usual when dealing with such a congruence, we can pick a null basis {eaµ} where e0 = V

and e1 is null with e0 ·e1 = −1 and ei (i = 2, 3, . . . , d−1) are orthonormal spacelike vectors

orthogonal to e0 and e1. Furthermore, we can choose our basis to be parallelly transported

along the geodesics of the congruence. In such a basis, the components ωµν are constants

along γ and ω0µ = 0. Equation (2.17) becomes

(ωi1Y
1 + ωijY

j)(ωi1Y
1 + ωijY

j) ≤ C ′′ (2.18)

Next note that Y 1 = −e0 ·Y = −V ·Y , which we showed above is constant along γ. Hence

ωi1Y
1 is constant along γ so it follows from this equation that ωijY

j is bounded (w.r.t. the

norm δij).

Now assume that our spacetime contains an evanescent ergosurface S, i.e., a timelike

surface with equation Z · V = 0. Any covector normal to S is parallel to

na = ∇a(Z · V ) = Zb∇aVb + V b∇aZb = −Zb∇bVa − V b∇bZa = −2Zb∇bVa = −2ωabZ
b

(2.19)

with na spacelike (because S is timelike). Note that

n · Y = 2ωabZ
aY b = 2ωijZ

iY j (2.20)

where we used Z1 = Z · V = 0. We have just shown that ωijY
j is bounded along γ, hence

n · Y is also bounded. It follows that S exhibits stable trapping: deviation vectors cannot

become large in the direction orthogonal to an evanescent ergosurface S.

We can deduce a little more from the above analysis. We no longer assume that γ is on

S. We showed above that, along γ, Y 1 is constant and ωijY
j is bounded. Now assume that

ωij is non-degenerate. It follows that Y j must be bounded along γ. In fact, it is easy to

solve explicitly the geodesic deviation equation (2.10) to see that Y i oscillates along γ, such

that the mean value of ωijY
j is −ωi1Y 1. One can then solve for Y 0, finding an oscillating

term plus a term that grows linearly. The latter is “pure gauge”: it can be eliminated by a

change of affine parameter along the geodesics of the 1-parameter family. Having done this,

all components of Y a are bounded along γ. This is stable trapping. Hence if the congruence

of null geodesics with tangent V has non-degenerate rotation matrix ωij then any geodesic

in this congruence exhibits stable trapping. The constant Y 1 represents a shift from a

geodesic γ in this congruence to a nearby geodesic γ′ also within this congruence and the

deviation vector describes oscillations about γ′.

We can apply this argument to supersymmetric microstate geometries in 6d.6 We

will show later that ωij is indeed everywhere non-degenerate for the 3-charge microstate

5We emphasize that our 1-parameter family is not assumed to belong to this congruence, i.e., Y a is a

general deviation vector, not necessarily one associated with this congruence.
6In 10d, ωij is degnerate in directions associated with the internal T 4. However, the compactness of this

space prevents the geodesics from dispersing in these directions.
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geometries of [6–8], and also the 2-charge geometries of [2, 3]. It seems very unlikely that

more complicated microstate geometries would have degenerate ωij so we expect ωij to be

non-degenerate for general supersymmetric microstate geometries (including those lacking

the Kaluza-Klein Killing vector field Z as in [38]). So we expect that the null geodesics

with tangent V are all stably trapped in any supersymmetric microstate geometry. Hence

there is a stably trapped null geodesic through every point of the 6d spacetime. Of course,

these include the zero energy null geodesics on S, which are singled out by the additional

condition of having zero Kaluza-Klein momentum.

Away from S the stably trapped null geodesics have non-zero Kaluza-Klein charge

p. From the 5d perspective, these null geodesics look like “BPS” charged particles, i.e.,

with mass equal to charge, which are at rest relative to infinity. It is familiar that such

particles can remain at rest because they experience a cancellation of forces. But often this

corresponds to neutral equilibrium (degenerate ωij , which allows linear growth of deviation

vectors), whereas we have stable equilibrium. It would be interesting to investigate how

this stability arises from the interaction of the particle with the various 5d fields.

In arguing for instability, we will focus on the consequences of the stable trapping on

S because in this case we have stable trapping of null geodesics in 5d as well as is 6d. The

consequences of the stable trapping away from S in 6d would be interesting to explore

further.

2.4 Heuristic argument for instability

In the Introduction, we presented a heuristic argument that supersymmetric microstate

geometries experience an instability because a massive uncharged 5d particle will accelerate

to the speed of light on S, and cause a large backreaction. We will now discuss this in

more detail.

Let Σ0 be a spacelike Cauchy surface for a 5d microstate geometry. Choose coordinates

xi on Σ0 and let t be the parameter distance from Σ0 along the integral curves of V . Carry

the coordinates xi along these integral curves to define coordinates (t, xi). The metric can

then be written in ADM form

ds2 = −N2dt2 + hij(dx
i − Ωidt)(dxj − Ωjdt) (2.21)

where

N2 = f2 + hijΩ
iΩj , (2.22)

V = ∂/∂t is the stationary Killing vector field, and f = 0 on S. In general there is freedom

to shift t by a function of the other coordinates.

For the 3-charge microstate geometries that we will study later,7 we can split the

coordinates as xi = (xI , xα) such that ∂/∂xI (I = 1, 2) are Killing vectors associated to

rotational symmetries, and Ωα = 0, and it is natural to chose Σ0 so that ∂/∂xI are tangent

to it, which eliminates the freedom to shift t.

7These have a pair of orbifold singularities when reduced to 5d but that is not relevant to this argument.
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We will consider a family of local observers whose velocity is othogonal to surfaces of

constant t. The velocity of such an observer is

ua = −N(dt)a =
1

N

(
∂

∂t
+ Ωi ∂

∂xi

)
(2.23)

For a microstate geometry with rotational symmetries, the velocity of these observers is

orthogonal to ∂/∂xI and so they have zero angular momentum. Hence they are referred

to as “zero angular momentum observers” (ZAMOs). Note that they rotate with angular

velocities ΩI w.r.t. a stationary observer at infinity. This is because of the frame-dragging

caused by the rotation of the spacetime. For a general microstate geometry we don’t

expected any rotational symmetries but we will still refer to these observers as ZAMOs.

In general there is the freedom to shift t by a function of xi so there are many different

families of ZAMOs.

Now consider a particle with mass µ. Its momentum Pa obeys

− µ2 = gabPaPb (2.24)

which can be rearranged to give

E2 − 2EJ − f2

hjkΩjΩk
J2 = N2(µ2 +HklPkPl) ≡ ∆2 (2.25)

Here E = −Pt ≥ 0 is the energy of the particle (conserved if it follows a geodesic) and

J = ΩiPi (2.26)

We have decomposed P i so that the component of Pi along Ωi appears on the l.h.s. of (2.25)

and the orthogonal component appears on the r.h.s. where we have defined H ij to be the

projection of hij orthogonal to Ωi:

H ij = hij − ΩiΩj

hklΩkΩl
(2.27)

For a microstate geometry with rotational symmetries, we have J = ΩIPI and PI are the

angular momenta of the particle, which are conserved if the particle follows a geodesic.

Note that the energy of the particle according to a ZAMO is

EZAMO = −u · P =
1

N
(E − J) (2.28)

To formulate our argument for instability, it is useful to consider equation (2.25). At a

generic point of a microstate geometry spacetime we have f 6= 0 and figure 1 (left) shows E

as a function of J for fixed ∆. The minimum value of E is positive and occurs at some finite

value of J . However, at an evanescent ergosurface, we have f = 0 and the corresponding

figure is shown on the right of figure 1. If ∆ > 0 then E is minimized at J = −∞.

First consider a massive particle µ > 0. If the particle is free then it will move on a

geodesic, so E is conserved. However, when interactions are included, the particle couples
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Figure 1. Plots of E against J . Dashed blue curves: ∆ > 0, solid orange lines: ∆ = 0. Left: a

generic point of spacetime. Right: on an evanescent ergosurface.

to gravitational radiation (and other massless field), and therefore gradually loses energy

through radiation. If E < µ then the particle cannot escape to infinity. Its energy E will

decrease over time and approach its minimum value. From the plots, it is clear that the

energy is minimized on the evanescent ergosurface, and this minimum occurs at J = −∞
for a massive particle (as ∆ > 0). Hence the particle must “roll down the hill” to J = −∞.

This implies that EZAMO will diverge, i.e., the local observer will measure infinite energy.

This strongly suggests that the spacetime will be unstable.8

Now consider a massless particle, µ = 0. If the particle starts on a stably trapped

geodesic then it cannot escape to infinity. As for the massive particle, E will gradually

decrease so we can apply the above argument when ∆ > 0. However, it is possible that

the particle will radiate in such a way that it approaches a final state with ∆ = 0, in which

case it can eventually reach E = 0 at finite negative J . This corresponds to to one of the

null geodesics tangent to V on S. However, there is nothing preventing this endpoint from

having arbitrarily large J , so one might expect generically that this will be the case simply

because there is more phase space available at large J . This again suggests instability.

2.5 The energy functional

We will now discuss the consequences of the existence of an evanescent ergosurface for

linear perturbations of microstate geometries. We will explain how establishing even lin-

ear stability in such backgrounds is problematic, and then discuss the consequences for

nonlinear stability.

Known microstate geometry solutions can be obtained as solutions of 6d supergravity.

For these solutions, ref. [19] showed that one can identify certain decoupled sectors of linear

perturbations for which the 6d equation of motion is simply that of a massless, uncharged,

scalar field, i.e., the wave equation. If this field does not vary around the Kaluza-Klein

circle then it will also satisfy the wave equation in 5d.

The usual method for establishing that solutions of the wave equation remain bounded

in time is based on the existence of a conserved energy functional. Consider a globally

8Note that one could not apply this argument in a supersymmetric black hole spacetime because the

particle would fall across the horizon with non-zero E.

– 13 –



J
H
E
P
1
0
(
2
0
1
6
)
0
3
1

hyperbolic spacetime with a causal Killing vector field V . A field Φ satisfying the wave

equation has a conserved energy momentum tensor

Tab = ∂aΦ∂bΦ−
1

2
gab(∂Φ)2 (2.29)

We can define a conserved energy-momentum current for Φ:

ja = −T abV b (2.30)

Let Σ0 be a spacelike Cauchy surface and let Σt be the image of Σ0 by moving parameter

distance t along the integral curves of V . The energy of Φ on Σt is then

Et[Φ] = −
∫

Σt

√
hn · j (2.31)

where h is the determinant of the induced metric on Σt and n is the future-directed unit

normal to Σt.

Since Tab satisfies the dominant energy condition, ja must be causal and future-

directed, or zero. This implies that Et ≥ 0. Since j is conserved, it follows that if t′ > t

then we have Et′ ≤ Et. (Here we allow for the possibility of the surfaces extending to

future null infinity, in which case energy can be lost by radiation through null infinity.)

Hence if E0 is small then Et remains small for all t > 0.

Consider the integrand of Et. The dominant energy condition implies that −n · j ≥ 0

with equality if, and only if, j = 0. But j = 0 implies (by contracting with dΦ) that

V · ∂Φ = 0 and (∂Φ)2 = 0. If V is timelike then this implies dΦ = 0. However, if V is null

then it implies only that dΦ parallel to V .

If V is timelike everywhere then E is a positive-definite functional of dΦ, i.e., E defines

a norm for dΦ. If there exist additional Killing vector fields KI that span the tangent space

of Σt then one can commute the wave equation several times with these vector fields to

obtain bounds on E[KI1 . . .KINΦ] and hence control the norm of higher derivatives of

Φ. The Sobolev embedding theorem can then be used to bound Φ. This process may be

adapted in several ways: the commuting vector fields need not be exactly Killing, they may

only span a submanifold of Σt (e.g. [44]), or the commutation may be with higher order,

tensorial operators rather than vector fields (e.g. [45]).

Now consider a 5d supersymmetric microstate geometry. In this case, V is null on

S. Hence on S, E fails to control the component of dΦ in the direction of V so E is not

positive definite and the above argument for demonstrating boundedness of Φ does not

work. Conservation of energy does not prevent dΦ from becoming large on S.9

This problem arises also for stationary black hole geometries, where V becomes null

at the horizon. For a non-extremal black hole, this problem is overcome by exploiting

9From the 6d perspective, the functional E gives the difference E6−p where E6 is the 6d energy (defined

using the Killing field T ) and p the Kaluza-Klein momentum (defined using the Killing field Z). If we restrict

attention to fields Φ invariant around the KK circle, i.e., Z · ∂Φ = 0, then we have p = 0 so E6 = E ≥ 0.

Since V is globally null, E fails everywhere to control the component of dΦ along V . But we have imposed

the additional condition Z · ∂Φ = 0, so dΦ can be proportional to V only when V is orthogonal to Z,

i.e., on S.
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the “horizon redshift effect”. This arises from the fact that affinely parameterized horizon

generators have tangent e−κtV where κ is the surface gravity and t is a parameter along

the integral curves of V . Hence a photon travelling along a horizon generator suffers a

redshift e−κt. The wave analogue of this effect enables one to control the behaviour of the

problematic component of dΦ at the horizon [46, 47]. However, this effect is absent for an

extremal black hole. In the extremal case, it turns out that the problematic component

of dΦ remains bounded but higher derivatives blow up along the horizon, i.e., there is an

instability [33, 34, 48, 49].

For a supersymmetric microstate geometry, V is tangent to affinely parameterized

geodesics on S so there is no analogue of the horizon redshift effect that can be used to

control the behaviour of dΦ on S. To control the problematic component of dΦ on S one

might attempt to proceed as follows. First introduce an everywhere timelike vector field W

which agrees with V everywhere except near S. Now use W to define an energy functional.

This new energy functional will be non-degenerate (i.e. it defines a norm on dΦ) but non-

conserved. The idea is that we can control the problematic component of dΦ by commuting

the wave equation with Killing vector fields or higher order operators. In particular, if the

microstate geometry admits angular momentum operators which commute with the wave

operator, then we can first commute with these operators, in order to obtain a bound on

the associated higher order energy. We could then integrate this bound in time to show

that the non-degenerate energy can grow at most linearly in time. But of course this does

not exclude an instability. Alternatively, if a version of Hardy’s inequality (see e.g. [50])

can be proved on these backgrounds, then a similar argument could be employed in order

to show that the nondegenerate energy is bounded for all time.

These arguments will only work when the background has appropriate symmetries,

which will not be the case for a general microstate geometry. Furthermore, even when the

background has such symmetries, these arguments are unlikely to extend to the nonlinear

problem. In the nonlinear problem we would no longer have an exactly conserved energy

so if we were to try to bound the energy of a perturbation by its initial value then we

would encounter various error terms. In order to prove stability, we need to bound these

error terms in a suitable way in terms of the initial data. This is often done in the context

of a bootstrap argument: the error terms are assumed to satisfy certain bounds, which

allows the energy to be bounded, and this in turn allows the initial assumptions on the

error terms to be verified and improved. However, if we take the approach suggested

above for the linear problem, and first commute the equation with (approximate) angular

momentum operators, then the error terms will involve higher derivatives of the field, so

we will need to assume bounds on higher-order energies in order to be able to bound

lower-order energies. However, this scheme can never “close” — in order to bound these

higher-order energies, we would need to assume bounds on even higher order energies,

and so on.

In summary, the existence of an evanescent ergosurface implies that standard methods

for establishing boundedness of solutions of the linear wave equation do not work in super-

symmetric microstate geometries. It is conceivable that this problem could be overcome

for microstate geometries admitting suitable rotational symmetries. But such geometries
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are not typical and furthermore, the methods required are not robust enough to extend to

the nonlinear problem.

3 3-charge microstate geometries

3.1 Metric and charges

In this section we will study in detail the 3-charge microstate geometries of refs. [6–8]. These

are supersymmetric solutions of type IIB supergravity compactified on T 4. The resulting

6d geometry asymptotically approaches the product of 5d Minkowski spacetime with a

Kaluza-Klein circle of radius Rz. We will focus on the case for which the 6d geometries are

smooth with no conical or orbifold singularities. These geometries can be reduced to 5d

however the 5d metric has a pair of orbifold singularities so it is more convenient to work

in 6d.

These solutions admit 4 Killing vector fields and a “hidden” symmetry (associated to a

Killing tensor field) which enables one to separate the wave equation (and Hamilton-Jacobi

equation for geodesics) into ODEs.

The 3 charges of these solutions arise from n1 D1-branes wrapped around the Kaluza-

Klein S1, n2 D5-branes wrapped around S1 × T 4, and np units of momentum around the

S1 where

np = n(n+ 1)n1n2 n ∈ Z (3.1)

The solution is written in terms of dimensionful charges

Q1 =
(2π)4gα′3

V
n1 Q2 = gα′n2 Qp = a2n(n+ 1) =

4G(5)

πRz
np (3.2)

where g is the string coupling constant, V is the volume of the T 4, G(5) is the 5d Newton

constant and the length scale a is defined by

a =

√
Q1Q2

Rz
(3.3)

The 10d string frame metric is:

ds2 = −1

h
(dt2 − dz2) +

Qp
hf

(dt− dz)2 + hf

(
dr2

r2 + (γ̃1 + γ̃2)2η
+ dθ2

)
+ h

(
r2 + γ̃1(γ̃1 + γ̃2)η − (γ̃2

1 − γ̃2
2)ηQ1Q2 cos2 θ

h2f2

)
cos2 θdψ2

+ h

(
r2 + γ̃2(γ̃1 + γ̃2)η +

(γ̃2
1 − γ̃2

2)ηQ1Q2 sin2 θ

h2f2

)
sin2 θdφ2

+
Qp(γ̃1 + γ̃2)2η2

hf
(cos2 θdψ + sin2 θdφ)2

− 2

√
Q1Q2

hf
(γ̃1 cos2 θdψ + γ̃2 sin2 θdφ)(dt− dz)

− 2
(γ̃1 + γ̃2)η

√
Q1Q2

hf
(cos2 θdψ + sin2 θdφ)dz +

√
H1

H2
Σ4
i=1dx

2
i

= ds2
6 +

√
H1

H2
Σ4
i=1dx

2
i

(3.4)
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where

η =
Q1Q2

Q1Q2 +Q1Qp +Q2Qp
, (3.5)

γ̃1 = −an , γ̃2 = a(n+ 1) , (3.6)

f = r2 + (γ̃1 + γ̃2)η(γ̃1 sin2 θ + γ̃2 cos2 θ)

= r2 + a2η
(
− n sin2 θ + (n+ 1) cos2 θ

)
, (3.7)

H1 = 1 +
Q1

f
, H2 = 1 +

Q2

f
and h =

√
H1H2 , (3.8)

where θ ∈ [0, π/2], r > 0 and 0 ≤ φ, ψ ≤ 2π.

The angular momenta of these geometries are

Jψ = −nn1n5 Jφ = (n+ 1)n1n5 . (3.9)

It is worth noting that we will need to work in the Einstein frame in 6d but that when

we reduce from 10 to 6 dimensions and then go to the Einstein frame, the factors involved

cancel so the 6d Einstein metric is exactly the same as ds2
6, the 6d part of the 10d string

frame metric in (3.4).

3.2 Evanescent ergosurface and zero energy null geodesics

The above solution is supersymmetric and therefore admits a globally defined null Killing

vector field:

V = T + Z (3.10)

where

T =
∂

∂t
Z =

∂

∂z
. (3.11)

As discussed in section 2.2, the evanescent ergosurface S is defined as the surface where the

Kaluza-Klein Killing vector field Z is orthogonal to V . We have V ·Z = 1/h and hence S is

the surface where h diverges, i.e., where f = 0. Solving the equation f = 0 for 0 < r <∞
gives the following ranges of θ on S [7]:

• n > 0: θ ∈ In>0 = [θ̃, π/2] where tan θ̃ =
√

n+1
n ;

• n < 0: θ ∈ In<0 = [0, θ̃].

It was shown in [8] that the 6d metric is regular on S and that S has topology S1 × S3.

Due to the symmetries of the spacetime, if U is the tangent vector to an affinely pa-

rameterized geodesic then the quantities pI = (∂/∂xI) ·U are conserved along the geodesic,

where xI ∈ {t, z, φ, ψ}. As discussed in section 2.2, V is everywhere tangent to null

geodesics. The conserved quantities associated to these geodesics are

pt = −h−1 pz = h−1 pψ = −
√
Q1Q2

hf
aη cos2 θ pφ = −

√
Q1Q2

hf
aη sin2 θ .

(3.12)
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On S, these become

pt = 0 , pz = 0 , pψ = −aη cos2 θ , pφ = −aη sin2 θ , (3.13)

so the energy (−pt) and Kaluza-Klein charge (pz) both vanish on S, as expected from

section 2.2. Note that pφ+pψ has opposite sign to Jφ+Jψ; in this sense, the geodesics have

angular momenta opposed to those of the background geometry. If we define JL = Jφ−Jψ
and JR = Jφ + Jψ then the background geometry has JL = (2n + 1)n1n5, JR = n1n5 so

if n, n1, n5 � 1 then JL � JR � 1. The backreaction of particles following geodesics on

S will tend to reduce JR so it is plausible that the final state of the instability will be a

near-extremal BMPV black hole [14], which has JR ≈ 0.

The energy of these geodesics as measured by a local observer is not small. For example,

consider a zero angular momentum observer (ZAMO) (as in section 2.4) with velocity ua

given by

ua = − (dt)a√
−gtt

(3.14)

On S, a ZAMO measures the energy of a null geodesic with momentum V to be

EZAMO = −u · V =
√
Q1Q2

(
Q1 +Q2 +Qp +

Q1Q2 +Q1Qp +Q2Qp

a2η
(
(n+1) sin2 θ − n cos2 θ

))− 1
2

. (3.15)

As discussed in section 2.3, the condition for the null geodesics with tangent V to be

stably trapped everywhere is for the rotation matrix ωij of the null geodesic congruence

with tangent V to be non-degenerate. One can define the rotation as follows [43]. At

any point, consider the space of vectors orthogonal to V quotiented by the subspace of

vectors proportional to V . This defines a 4d vector space V, and ω = −(1/2)dV can be

regarded as a 2-form acting on vectors in this space. We want to ask whether this 2-form

is non-degenerate. So we need to calculate dV . We start from

V = −h−1(dt− dz) + C(hf)−1(cos2 θdψ + sin2 θdφ) (3.16)

where C is a constant and hence

dV =
1

2

(
(Q1+Q2)f+2Q1Q2

)
(hf)−3

[
r(dt−dz) ∧ dr − a2η(2n+1) sin θ cos θ(dt−dz) ∧ dθ

]
+
C

2
(2f +Q1 +Q2)(hf)−3r

[
cos2 θ dψ ∧ dr + sin2 θ dφ ∧ dr

]
+
C

2
sin θ cos θ(hf)−3

[
2(hf)2(dψ ∧ dθ − dφ ∧ dθ)

− a2η(2n+1)(2f+Q1+Q2)(cos2 θ dψ ∧ dθ + sin2 θ dφ ∧ dθ)
]
.

(3.17)

Now we want to show that this is non-degenerate by acting on an arbitrary vector X ∈ V .

Since X ∼ X + αV we can choose X so that Xt = 0. The condition X · V = 0 then

fixes Xz. We now consider (dV )abX
b as a covector acting on V so we neglect terms

proportional to Va in (dV )abX
b. The result is that this covector vanishes if, and only if,
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Xr = Xθ = Xφ = Xψ = 0 and hence Xz = 0. Therefore dV is non-degenerate, viewed as

a quadratic form on V. Hence the rotation matrix is non-degenerate. By setting Qp = 0

one sees that this result applies also to the 2-charge microstate geometries discussed in the

appendix.

4 Quasinormal modes

4.1 Relation to null geodesics

We will now consider the wave equation

�Φ = 0 (4.1)

in the geometry (3.4). The geometric optics approximation tells us that we can expect to

find rapidly varying solutions of this equation which are localized around null geodesics for

an arbitrarily long time.10 Therefore we expect there to exist solutions of the wave equation

that are localized around a null geodesic with tangent V . Of course, such solutions will

eventually decay by dispersion to infinity.

In this section, we will show that such solutions can be constructed as quasinormal

modes, i.e., modes with definite frequency ω. For black hole solutions, it is known that

quasinormal mode frequencies can be related to properties of trapped null geodesics in the

geometric optics limit [52, 53]. For example, consider a Kerr black hole. One can look for

mode solutions of the form

e−iωt+imφΦr(r)Φθ(θ) (4.2)

The angular equation gives spheroidal harmonics labelled by an integer ` with |m| ≤ `. If

`� 1 then one can construct families of quasinormal modes with frequency

ω = ωR + iωI (4.3)

where ωR and ωI < 0 are determined by properties of unstably trapped null geodesics [53].

For example, ωR/mφ ≈ −pt/pφ where pt, pφ are the conserved momenta of a trapped null

geodesic, while ωI is determined by the rate at which nearby null geodesics move away

from this trapped geodesic. ωR is O(`) while ωI is O(1).

We will do something similar for the wave equation in the spacetime (3.4). It has been

shown that the wave equation separates in this geometry [7] so we will look for solutions

of the form

Φ(t, z, r, θ, φ, ψ) = e−iωt+iλz+imψψ+imφφΦr(r)Φθ(θ) , (4.4)

where the angular harmonics Φθ are labelled by an integer `.

By analogy with the Kerr case just discussed, for large ` we expect there to exist

quasinormal modes which are closely related to the trapped null geodesics. There are

several important differences to the Kerr case. First, in the geometry (3.4), the trapping is

stable so we expect ωI to be much smaller than in the Kerr case. Second, on S, the trapped

10Furthermore, the results of ref. [20] prove that the energy of the solution is close to the energy of the

corresponding null geodesic.

– 19 –



J
H
E
P
1
0
(
2
0
1
6
)
0
3
1

null geodesics have zero energy and KK momentum. Hence we expect to find quasinormal

modes with λ = 0 such that ωR/` ≈ 0, i.e., ωR does not scale with `.

We can also consider a null geodesic with tangent V that does not lie on S. Such

geodesics have −pt = pz so we would expect there to exist corresponding quasinormal

modes with λ 6= 0 and ω ≈ λ. We will look for these modes by taking λ = O(`) and

ω − λ = O(1).

We will determine quasinormal modes in two ways. For large ` we will use a matched

asymptotic expansion inspired by a similar calculation in [51]. For general ` we will de-

termine quasinormal modes numerically. For both methods we will need to use the ODEs

resulting from separation of variables, which are [7]

1

sin 2θ

d

dθ

(
sin 2θ

dΦθ(θ)

dθ

)
+

[
A−

m2
ψ

cos2 θ
−

m2
φ

sin2 θ
+ (ω̃2 − λ̃2)

a2η

R2
z

(cos2 θ + n cos 2θ)

]
Φθ(θ) = 0

(4.5a)

1

r

d

dr

[
r(r2 + α2)

dΦr(r)

dr

]
+

(
κ̃2r2 + 1− ν̃2 +

ξ2 s2

r2 + α2
− ζ2s2

r2

)
Φr(r) = 0 ,

(4.5b)

where A is a constant arising from the separation of variables and

ω̃ = ωRz , λ̃ = λRz , s =

√
Q1Q2

R2
z

, α = s
√
η , κ̃ =

√
ω̃2 − λ̃2 (4.6)

ν̃ =

√
1 +A− κ̃2

Q1 +Q2

R2
z

− (ω̃ − λ̃)2
Qp
R2
z

, (4.7)

ξ =
√
η

[
ω̃

η
− λ̃Qp(Q1 +Q2)

Q1Q2
+ nmψ −mφ (n+ 1)

]
, (4.8)

ζ =
√
η
[
λ̃+mψ (n+ 1)− nmφ

]
. (4.9)

4.2 Matched asymptotic expansion

We will look first for quasinormal modes corresponding to the null geodesics with tangent

V that are on, or near to, S. On S these have pt = pz = 0 and non-zero pφ, pψ in general.

Therefore we look for quasinormal modes with |mψ|, |mφ| � 1 while keeping {ω̃, λ̃} = O(1)

in (4.4). Our aim is to solve the coupled system of equations (4.5) for the eigenvalue pair

{A, ω̃}. It turns out that if either |mφ| or |mψ| are large, the two eigenvalues essentially

decouple. That is to say, one can first determine A and a posteriori determine ω̃.

To see how this works in more detail, we start by looking at the angular equation (4.5a).

In the |mψ|, |mφ| → ∞ limit, while keeping {ω̃, λ̃} fixed, we can introduce the effect of ω̃

and λ̃ perturbatively. At leading order, we can ignore the term proportional to ω̃2 − λ̃2

in (4.5a), so that it becomes the equation for spherical harmonics on S3 with known

eigenvalues A = `(`+ 2) ≡ µ2
` where

` ≥ |mψ|+ |mφ| , ` ∈ Z . (4.10)
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From (4.10), |mψ|, |mφ| → ∞ is equivalent to taking ` → ∞ and |mψ|, |mφ| = O(`);

we will work in this limit for simplicity in keeping track of the orders of various terms. The

next order term in the large ` expansion will only affect the ` independent piece of A, that

is to say, at large11 `

A ≈ µ2
` +O(1) .

It turns out that we only need to know A up to this order in ` to know the leading behaviour

of the imaginary part of the quasinormal modes in this sector of perturbations.

We now turn our attention to the radial equation. Unlike the angular equation, we

cannot use standard perturbation theory to determine ω̃. Instead, we have to resort to a

matched asymptotic expansion.

The radial equation (4.5b) can be written as

− y(y2 + s2η)
d

dy

[
y(y2 + s2η)

dΦr

dy

]
+ V (y)Φr(y) = 0 (4.11)

where we introduce the dimensionless variable y = r/Rz and define

V (y) = −κ̃2y6 + ay4 − by2 + c (4.12)

where a = `2a0 + `a1 +O(1), b = `2b0 + `b1 +O(1) and c = `2c0 + `c1 +O(1),

a0 = 1 , a1 = 2

b0 = −s2η +
m2
φ

`2
(2n+ 1)(1− j2)s2η ,

b1 = −2s2η + 2ηs2mφ

l

(
ω̃

η
− λ̃Qp(Q1 +Q2)

Q1Q2

)(
nj − (n+ 1)

)
− 2λ̃s2η

mφ

l

(
j(n+ 1)− n

)
c0 = s4η2

m2
φ

`2
(
j(n+ 1)− n

)2
and c1 = 2s4η2λ̃

mφ

`

(
j(n+ 1)− n

)
. (4.13)

For later use, we also define

j ≡
mψ

mφ
, m ≡

mφ

`
⇒ |m| ≤ 1

1 + |j|
. (4.14)

The wave equation is invariant under complex conjugation and so we have an overall choice

of sign in the exponent in (4.4). Geodesics with tangent vector V on S have pφ < 0 so we

will fix the sign by assuming m < 0.

To calculate the frequencies of quasinormal modes we find solutions of (4.11) obeying

the necessary boundary conditions in the limit ` → ∞. We use an asymptotic matching

procedure with `→∞ a large parameter, similar to that used in ref. [51] for the decoupling

limit of non-supersymmetric 3-charge microstate geometries.

11This correction can be easily computed, but will not be needed in what follows. For the interested

reader, when ` = |mφ|+ |mψ|

A ≈ µ2
` +

(
n
mφ

`
− (n+ 1)

mψ

`

)
(ω̃2 − λ̃2)

a2η

R2
z

+O(`−1) .
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Note that {a, b, c} = O(`2) but κ̃ = O(1) so that we can split the y-axis into 3 regions,

approximate the potential V (y) and then solve the remaining equation exactly in each

region. The regions and approximations of the potential are as follows:

1) y �
√
`: V (y) ≈ ay4 − by2 + c

2) 1� y � `: V (y) ≈ ay4

3) y �
√
`: V (y) ≈ −κ̃2y6 + ay4.

Since region 2 overlaps with both regions 1 and 3 we can find solutions in each of the

regions then match them where they overlap. We will label the solution of Φr in each of

the regions by Φi, where i indexes the region in question.

4.2.1 Region 1: y �
√
`

We approximate the equation by

y(y2 + s2η)
d

dy

[
y(y2 + s2η)

dΦ1

dy

]
− (ay4 − by2 + c)Φ1(y) = 0 . (4.15)

To make the expressions more compact, we define

α ≡ s√η , β ≡
√
a+

c

α4
+

b

α2
, ν ≡

√
1 + a = `+ 1 +O(`−1) . (4.16)

Eq. (4.15) can be brought to a more familiar form by a suitable change of variable. We

define

Φ1(y) = y
√
c

α2 (y2 + α2)
β
2Q

(
− y2

α2

)
,

where we implicitly have changed to a new coordinate z̃ = −y2/α2. The resulting equation

for Q(z̃) is that of a Gaussian hypergeometric function of the second kind, 2F1(ã, b̃, c̃, z̃)

with

ã =
1

2

(
1− ν + β +

√
c

α2

)
, b̃ =

1

2

(
1 + ν + β +

√
c

α2

)
and c̃ = 1 +

√
c

α2
.

Our boundary conditions demand that we choose the regular Gaussian hypergeometric

function at z̃ = y = 0. Our final solution, in this region of the potential, can simply be

written as

Φ1(y) = A1y
√
c

α2 (y2 + α2)
β
2 2F1

(
ã, b̃, c̃,− y

2

α2

)
, (4.17)

where A1 is a constant.

To match to region 2 take the limit y →∞ (`→∞ and the overlap region is 1� y �√
`, so we can have for example y ≈ O(`

1
4 )):

Φ1(y) ≈ A1Γ

(
1 +

√
c

α2

)
α
√
c

α2
+ 1

2
+β

2

[
α
ν
2 y−ν−1 Γ(−ν)

Γ(c̃− b̃)Γ(ã)
+ α−

ν
2 yν−1 Γ(ν)

Γ(c̃− ã)Γ(b̃)

]
.

(4.18)
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4.2.2 Region 2: 1� y � `

In this region the equation is approximated by

y3 d

dy

(
y3dΦ2

dy

)
− ay4Φ2(y) = 0 (4.19)

since s2η � y2. This has solution

Φ2(y) = B1y
−ν−1 +B2y

ν−1 (4.20)

where B1, B2 are constants.

Matching (4.18) to (4.20) in the overlapping region gives the condition:

B1

B2
= αν

Γ(−ν)

Γ(ν)

Γ(c̃− ã)Γ(b̃)

Γ(c̃− b̃)Γ(ã)
. (4.21)

4.2.3 Region 3: y �
√
`

In this region at highest order in `,

y3 d

dy

(
y3dΦ3

dy

)
− (−κ̃2y6 + ay4)Φ3 = 0 (4.22)

with solution

Φ3(y) =
1

y

(
C1Jν(κ̃y) + C2Yν(κ̃y)

)
(4.23)

where C1, C2 are constants and Jν(x), Yν(x) are Bessel functions of the first and second

kind respectively.

In the asymptotic region as y →∞,

Φ3(y) =
1

y
3
2

1√
κ̃π

[
eiκ̃ye−i

νπ
2

(
1

2
− i

2

)
(C1− iC2)+e−iκ̃yei

νπ
2

(
1

2
+
i

2

)
(C1 + iC2)

]
+O

(
y−

5
2
)
.

(4.24)

Imposing the boundary condition that there are only outgoing waves at infinity gives

C1 + iC2 = 0 . (4.25)

To match to Region 2 in the overlap region
√
`� y � ` we take κ̃y � ` while ν →∞.

Using the formulae for the asymptotic form of the Bessel functions at large orders [54]

gives:

Φ3 =

[
C1y

ν−1

(
κ̃

2

)ν 1√
2πν

eν

νν
− C2y

−ν−1

(
κ̃

2

)−ν√ 2

πν

e−ν

ν−ν

][
1 +O(`−1)

]
(4.26)

and so we find
C1

C2
= −2

(
κ̃

2

)−2ν

e2νν−2νB2

B1
. (4.27)
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4.2.4 Real part of the frequency

The conditions (4.21), (4.25) and (4.27) all together imply that the quasinormal mode

frequencies ω̃ are solutions of the equation

α−ν
Γ(c̃− b̃)Γ(ã)

Γ(c̃− ã)Γ(b̃)
= 2i

(
κ̃

2

)2ν Γ(−ν)

Γ(ν)
e2νν−2ν . (4.28)

We have that ν =
√

1 + a = O(`) � 1 so the r.h.s. is extremely small; the only way to

solve (4.28) is to have a pole in one of the Γ-functions in the denominator of the l.h.s. i.e.

(c̃− ã = −N ∨ b̃ = −N)⇒ 1

2

(
1 + ν ± β +

√
c

α2

)
= −N . (4.29)

The leading order dependence on ω̃ in (4.29) comes from

β = `|m
(
jn− (n+ 1)

)
|+
|m
(
nj − (n+ 1)

)
|

m
(
nj − (n+ 1)

) ( ω̃
η
− λ̃Qp(Q1 +Q2)

Q1Q2

)
+O(`−1) . (4.30)

From the condition that |ω̃|, |λ̃| � `, all the terms that are proportional to ` in (4.29)

must cancel:

1 + |m
(
j(n+ 1)− n

)
| ± |m

(
jn− (n+ 1)

)
| = 0 . (4.31)

Clearly, this condition does not hold for general values of m and j, and so we will

use (4.31) to find possible values for m in terms of j for which there are quasinormal

modes with |ω̃|, |λ̃| � `. By examining (4.31) we see that it can only be solved if we choose

the minus sign (otherwise all terms on the left hand side are positive). The equation

remains non-trivial. We will use geometric optics to help us find a solution.

In geometric optics, j = pψ/pφ to leading order in `. In section 3.2 we found that the

zero energy geodesics with tangent vector V have:

0 ≤
pψ
pφ
≤ n

n+ 1
for n > 0 ,

pψ
pφ
≥ n

n+ 1
for n < 0 (4.32)

This suggests that we look for a solution of (4.31) with

0 ≤ j ≤ n

n+ 1
for n > 0 , j ≥ n

n+ 1
for n < 0 (4.33)

In both cases we have j ≥ 0 and (n+ 1)j−n ≤ 0, and these imply nj− (n+ 1) < 0. Using

these, along with m < 0, equation (4.31) reduces to

m = − 1

1 + j
(4.34)

which is equivalent to

` = −mφ −mψ (4.35)

So in summary, we have found values of `, mφ, mψ that are consistent with our assumptions

by taking mφ,mψ < 0 and j = mψ/mφ in the range (4.33), with ` given by (4.35).

Substituting these values into (4.29), the real part of ω̃ at leading order is

ω̃R = 2η(N + 1) + λ̃ . (4.36)
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The expression (4.36) for ω̃R is remarkably simple. As a check on this formula we can

take the decoupling limit Qp �
√
Q1Q2 � R2

z, which gives η → 1, in (4.36). In this limit

the geometry reduces to AdS3 × S3 and our expression for ω̃R reduces to the formula for

certain normal modes in AdS3 × S3, see e.g. eq. (6.12) of [55].12

4.2.5 Imaginary part of the frequency

To find the imaginary part of the frequency we look at the next order terms in (4.28) by

substituting ω̃ = ω̃R + δω̃. Then β = β(ω̃R) + δβ where δβ = δω̃
η and we substitute

Γ

(
−N − δβ

2

)
=

(−1)N+1

N !

2

δβ

(
1 +O(δβ)

)
(4.37)

in the left hand side of (4.28), which is the only term that depends on δβ at highest order.

We also use the well known identities

Γ(−ν) = − π

ν sinπν

1

Γ(ν)
, and Γ(−N − ν) =

(−1)N+1π

(N + ν) sinπν

1

Γ(N + ν)
.

Substituting these into (4.28) and rearranging:

δβ = −i
(
κ̃

2

)2ν

αν
4(N + ν)Γ

(
N + 1 + ν +

√
c

α2

)
N !νΓ

(
N + 1 +

√
c

α2

) Γ(N + ν)

Γ(ν)2
e−2ν log ν+2ν . (4.38)

The size of the corrections to the real part of the frequency ω̃R from eq. (4.29) are of order

O(`−1) and are thus much larger than the corrections to ω̃ here. However, the corrections

to ω̃ in (4.29) will all be real (all the coefficients are real apart from dependence on ω̃)

and so the imaginary part of the frequency does not have any terms that are proportional

to inverse powers of `. We therefore use (4.38) to find the imaginary part of ω̃ at leading

order and we in fact have δω̃ = δω̃R + iω̃I . Substituting this in to (4.38), we find

ω̃I = −η
(
κ̃

2

)2ν

αν
4(N + ν)Γ

(
N + 1 + ν +

√
c

α2

)
N !νΓ

(
N + 1 +

√
c

α2

) Γ(N + ν)

Γ(ν)2
e−2ν log ν+2ν . (4.39)

Define µ = − j(n+1)−n
1+j > 0, then use `� 1 in (4.39) gives

ω̃I = −Dηακ̃2
0e
−2` log `+`

[
2−µ log µ+(1+µ) log(µ+1)+2 log

κ̃0
√
α

2

]
+(N− 3

2) log `+O(1)
(4.40)

where κ̃0 =
√
ω̃2
R,0 − λ̃2, ω̃R,0 is the real part of ω̃ calculated to leading order only (i.e. ω̃R

in (4.36)). D is a positive constant that is independent of ` at leading order but depends

on the higher order corrections to the real part of ω̃ from the term κ̃2(`+1) in (4.39).

Equation (4.40) is one of our main results. We see that ω̃I < 0 so the waves decay

as expected. However, the rate of decay is very slow, since at leading order the term that

controls it is e−2` log ` which is very small for large `.

12A similarly simple expression was found for the real part of the frequencies of unstable modes in the

non-supersymmetric 3-charge geometries in the decoupling limit in [51] although in that case the real part

of the frequency scales as ` in general.
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As discussed above, in the decoupling limit we expect our quasinormal modes to reduce

to normal modes in AdS3 × S3 so ω̃I should vanish in this limit. This is indeed the case

because α→ 0 in the decoupling limit.

The calculation above assumes n 6= 0, i.e., Qp 6= 0 so it does not apply to 2-charge

microstate geometries. When n = 0, S becomes the 2-dimensional submanifold r = 0,

θ = π/2. In appendix A we show that it is straightforward to modify the above calculation

to cover this case too. The result is the same, i.e., ω̃I is O(e−2` log `) at large `. Hence the

dimension of S does not seem to affect the slow decay, which is to be expected since the

slowly decaying quasinormal modes are associated to individual null geodesics on S rather

than to global properties of S.

4.3 Kaluza-Klein momentum scaling with `

In section 3.2 we saw that at every point in the six-dimensional spacetime there is a stably

trapped geodesic with tangent V . We have found quasinormal modes that correspond to

the zero energy null geodesics that are trapped near S but we also expect to be able to

find slowly decaying modes that are localised near geodesics that are trapped elsewhere in

the spacetime. These geodesics have tangent V and conserved quantities pz = −pt. Under

the geometric optics approximation we expect that the corresponding solutions of the wave

equation will have ω̃ ≈ λ̃. We will now consider λ̃ = O(`) but keep the difference |ω̃− λ̃| =
O(1) in the limit |mψ|, |mφ| → ∞. In this case, κ̃2 = (ω̃ − λ̃)(ω̃ + λ̃) = O(|mψ|, |mφ|).

Since κ̃2 � m2
φ, m

2
ψ, we can ignore the κ̃2 in the angular equation (4.5a) at leading

order in mφ, mψ. This means that we have

A ≈ `2 +A1`+O(1)

with ` defined previously in (4.10). If we set ` = |mφ|+ |mψ|, i.e. m = −1/(1 + j), we can

find A1 using standard perturbation theory. It turns out that

A1 = 2− 2
λ̃α2

`
(ω̃ − λ̃)

(
n− (n+ 1)j

1 + j

)
(4.41)

We will find later that we must have m = −1/(1 + j) to have modes |ω̃− λ̃| = O(1) so this

assumption is consistent.

The expressions for a, b, c in (4.11) at the various orders change: we now have

a = ν̃2 − 1− κ̃2α2

b = α2(1− ν̃2) + s2(ξ2 − ζ2)

c = α2s2ζ2

(4.42)

where ν̃, ξ, ζ are defined in (4.9).

4.3.1 Asymptotic matching

The asymptotic matching procedure in 4.2 only needs to be slightly modified to find so-

lutions with frequencies with κ̃2 = O(`). Regions 1, 2 and 3 must be changed so that the

potentials can be approximated in the same way as before in each region.
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We define the new regions as:

1’) y � `
1
4 : V (y) ≈ ay4 − by2 + c

2’) 1� y �
√
`: V (y) ≈ ay4;

3’) y � `
1
4 : V (y) ≈ −κ̃2y6 + ay4.

Note that the regions still overlap so we can match the solutions in different regions.

Exactly the same matching procedure as in section 4.2 then follows through to give

that the real part of the frequency is defined by the condition

1

2

(
1 + ν ± β +

√
c

α2

)
= −N . (4.43)

We expect ω̃ − λ̃ to be small so we must take the minus sign for the same reasons as in

section 4.2.4. However, the leading order behaviour of β and ν differs to the previous case;

we find that now

β = λ̃+m`
[
jn− (n+ 1)

]
+ (ω̃ − λ̃)

{
1

η
− λ̃α2

λ̃+m`[jn− (n+ 1)]

}
+O(`−1)

√
c

α2
= λ̃+m`

[
j(n+ 1)− n

]
,

ν = `+
A1

2
− (ω̃ − λ̃)

λ̃

`

(
Q1 +Q2

R2
z

+ α2

)
+O(`−1) = `+ ν1 +O(`−1) .

(4.44)

We assume as before that m < 0, jn − (n + 1) < 0, j > 0 and λ̃ ≥ 0. Substituting this

into equation (4.43) and imposing the condition |ω̃− λ̃| = O(1), we find that we must take

m = −1/(1 + j) so that the higher order terms cancel. Then the real part of the frequency

is given by (4.43):

ω̃R = λ̃+
2η

P
(N + 1) +O(`−1) (4.45)

where we use the definitions of a, b, c and ω̃ = λ̃+O(1) to find

P = 1 +
λ̃α2η

`

(
1− `

λ̃+m`[jn− (n+ 1)]

)
+
λ̃

`
η
Q1 +Q2

R2
z

+
λ̃α2η

`

(
n− j(n+ 1)

1 + j

)
> 0 .

(4.46)

If we take λ̃� ` in (4.45) we recover the real part of the frequency for λ̃ = O(1) as given

in eq. (4.36).

The calculation for the imaginary part is also very similar to that of section 4.2.5; we

simply have to replace δβ with Pδω̃ in (4.39). Then let

µ′ =
λ̃

`
− j(n+ 1)− n

1 + j
> 0 .

In the limit `→∞, the imaginary part of the frequency at leading order is

ω̃I = −D′e−` log `+`
[
2−µ′ log µ′+(1+µ′) log(µ′+1)+2 log

κ̃0
√
α

2
√
`

]
+(N+ 1

2
−ν1) log `

+O(l−1) (4.47)
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for some positive constant D′ that is independent of ` and where κ̃2
0 = 2λ̃(ω̃R − λ̃) with

ω̃R evaluated using (4.45) and ν1 is given in (4.44) with the terms ω̃ − λ̃ also evaluated at

leading order using (4.45). D′ is proportional to αν1 ; in the decoupling limit ν1 → 1 and

α→ 0 so we see that the imaginary part vanishes in this limit, as expected. The real part

reduces to the expression for certain normal modes in AdS3 × S3, as given in [55].

We have constructed quasinormal modes with ω̃I ∼ −e−` log ` at leading order for `� 1.

We expect that such a mode will be localised near a stably trapped geodesics with tangent

V , whose location is determined by the matching the ratios pψ/pφ, pz/pφ to mψ/mφ and

λ/mφ. Note that there is no longer a factor of 2 multiplying −` log ` in the exponent so

these modes decay faster than the modes localized near S that we found in the previous

section. However, the decay is still very slow and therefore likely to be problematic for

nonlinear stability.

The above calculation assumes n 6= 0, i.e., Qp 6= 0 but in appendix A we show that

it is straightforward to modify the calculation to cover the 2-charge case. The result is

ω̃I = O(e−` log `) as for the 3-charge case.

4.4 Numerical determination of quasinormal modes

4.4.1 Method

In the previous sections we have determined certain quasinormal modes in the limit of

large quantum number `, we now aim to determine the behaviour of the corresponding

modes at finite ` numerically. In doing so, we can also understand the regime of validity of

the approximation scheme detailed in our previous sections. For the sake of presentation,

we will restrict ourselves to the case with λ̃ = 0, i.e. modes that do not depend on the

Kaluza-Klein momentum.

Our separation ansatz reads

Φ(r, θ) = X(cos θ)W

(
rRz√
Q1Q2

)
,

which yields the following pair of ordinary differential equations for X(x) and W (w) to be

solved numerically:

1

x

d

dx

[
x (1− x2)

d

dx
X(x)

]
+

{
A+ α1α2ηω̃

2
[
− n(1− x2) + x2(1 + n)

]
−
m2
ψ

x2
−

m2
φ

1− x2

}
X(x) = 0

(4.48a)

1

w

d

dw

[
w (w2 + η)

d

dw
W (w)

]
+

{
ω̃2
[
α1 + α2 + α1α2n(1 + n) + α1α2w

2
]
−A−

η[nmφ − (1 + n)mψ]2

w2

+
η[(α1 + α2)n(1 + n)ω̃ + ω̃ + nmψ − (1 + n)mφ]2

w2 + η

}
W (w) = 0 ,

(4.48b)
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where we have changed variables to x ≡ cos θ and w ≡ rRz/
√
Q1Q2 and defined Qi =

αiR
2
z. Here, as in previous sections, A is a separation constant to be determined in what

follows.

Before detailing our numerical method, we need to investigate the boundary conditions

at the edges of our integration domain. Our equations have five real singular points (three

for the angular equation, and two for the radial equation). For the angular equation (4.48a)

these are x = 0, x = 1 and x =∞. For the radial equation these are w = 0 and w =∞.

Let us start with the angular equation. Since our integration domain is x ∈ (0, 1), we

only need to understand what happens at these singular points. A Frobenius expansion at

x = 0, yields the following behaviour

X ∼ x±|mψ |
[
1 +O(x)

]
,

while at x = 1 we find

X ∼ (1− x)±
|mφ|

2
[
1 +O(1− x)

]
.

In order to have a regular solution, we must choose the + signs at both integration edges.

To solve the problem numerically, we change to a new variable that relates to X in the

following manner:

X = x|mψ |(1− x2)
|mφ|

2 X̃ ,

and impose Robin boundary conditions for X̃ at x = 0 and x = 1. These can be found by

solving the equations for X̃ in a Taylor expansion around the two singular points.

Next we address the radial equation. The singular point at w = 0 is a regular singular

point, and its behaviour can be extracted via a Frobenius expansion (similar to the angular

equation):

W (w) ∼ w±|n(mφ−mψ)−mψ |
[
1 +O(w)

]
,

again regularity demands keeping the + sign only. Finally, at w = +∞, there is an essential

singularity, which is to be expected since we want to impose outgoing boundary conditions

there. The singular behaviour can be easily extracted, and takes the following form

W (w) ∼ e±i
√
α1
√
α2wω̃

w
3
2

[
1 +O(w−1)

]
.

Demanding outgoing boundary conditions yields demands choosing the + sign. As we have

done for the angular equation, we now change to a new variable that is more adequate for

the numerical procedure. We chose the following:

W (w) =
ei
√
α1
√
α2wω̃

w
3
2

+|n(mφ−mψ)−mψ |
w|n(mφ−mψ)−mψ |W̃ (w) .

Finally, since w is a non-compact coordinate, we do a further change of coordinates of

the form

w =
w̃
√

2− w̃2

1− w̃2
,

which maps w = 0 to w̃ = 0 and w = +∞ to w̃ = 1. Robin boundary conditions at w̃ = 0

and w̃ = 1 can now be found by solving the respective equation for W̃ (w̃).
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Figure 2. Left panel : real part of ω̃ as a function of mφ < 0. Right panel : imaginary part of ω̃ as

a function of mφ. In both panels, the blue points are the numerical data, the solid red line is the

analytic prediction for Re(ω̃) based on a quasimode construction (see appendix B), the dashed red

line is the fit to (4.40), and both plots were generated with α1 = α2 = n = −mψ = 1.

Our original system of equations (4.48) has been mapped to two equations for X̃(x)

and W̃ (w̃), with two coupled eigenvalues (ω̃, A). In order to solve these, we use a Newton-

Raphson routine which has been outlined in [56] for a similar problem. Regarding the

implementation of the algorithm, the only nuance that is worth emphasising is that we had

to work with arbitrary-precision arithmetic, since the magnitude of the imaginary part of

our quasinormal modes can be as small as 10−170 (for an order of magnitude, this is more

than the number of decimal places captured by octuple precision — 10−71).

4.4.2 Results

We have varied parameters in our search, i.e. different values of n, αi, but the results look

qualitatively similar. We divide the types of quasinormal modes we find into two types:

i) those for which ωR does not scale with ` and ii) those for which ωR does scale with `.

In this paper we will focus on type i) modes, which is the sector that is responsible for

the slow decay of generic perturbations. As we have seen in section 4.2.4 (see discussion

around eq. (4.34)), the slow decay will only hold for modes satisfying ` = |mφ| + |mψ|,
which are the modes we are going to focus on.

For the sake of presentation, we will keep α1 = α2 = 1 = n = 1. Changing α1 or α2

will just change the regime at which the matched asymptotic expansion analysis settles in.

The larger α1 or α2, the larger the value of ` we need to reach in order to see matching

with the matched asymptotic expansion analysis of the previous sections.

In figure 2 we show a linear plot (left panel) of the real part of ω̃ as a function of

mφ < 0 for mψ = −1. We see that as |mφ| increases, ω̃R approaches the value predicted

in eq. (4.36). The approach to this value (solid red curve) can also be determined via the

explicit construction of “quasimodes”, which we detail in appendix B. On the right panel

of the same figure, we show a log-log plot of the imaginary part of ω̃ as a function of |mφ|:
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Figure 3. Contour plot for |Φ| as a function of w and x on a surface extending to future null

infinity. The red curve is the evanescent ergosurface S. On the left panel we have mφ = −4 and on

the right panel we have mφ = −25. Both panels were generated with α1 = α2 = n = −mψ = 1 and

the normalization is max |Φ| = 1.

the blue dots are the numerical data, whereas the red dashed curve is a one parameter fit

to (4.40), with D, the overall scale, being the fitting parameter.

The agreement of the fit with the numerical data is very reassuring. In fact, the

agreement is much better than one might have expected: our analytical result (4.40) works

well down to small values of ` whereas this result was only expected to hold for ` � 1.

Note that the imaginary part of ω̃ is very small even for small values of `. So there exist

very slowly decaying quasinormal modes even at small `. The decay becomes even slower

at high `, in agreement with our analytical result.

Quasinormal modes grow exponentially at spatial infinity but they are well behaved

at future null infinity. We can consider the behaviour of quasinormal modes on a surface

of constant retarded time u = t − r, which extends to future null infinity. In figure 3

we plot the absolute value of the quasinormal mode as a function of w and x on such

a surface for the smallest and largest value of mφ we studied. The idea is to see if the

quasinormal mode is localized near the corresponding null geodesic on S, i.e., the geodesic

with pψ/pφ = mψ/mφ (represented in figure 3 by a black dot). We see that as mφ increases,

the maximum moves towards x = 0, as a consequence of the fact that mφ is increasing,

while mψ is kept constant, so the ratio mψ/mφ decreases. Furthermore, the quasinormal

mode localises more sharply around the geodesic prediction, as expected from geometric

optics because ` = |mφ|+ |mψ| is increasing.

We have also considered a case in which both mφ and mψ are simultaneously increasing

with `, while their ratio is kept fixed. In figure 4, we use mφ = 4mψ, and increase mφ, with

` = |mφ|+ |mψ|. Since both mφ and mψ are increasing, we expect the matched asymptotic

expansion analysis to give a better approximation. We indeed see that this is the case: for

mψ = −1 and mφ = −4, the matched asymptotic expansion result is barely discernible

from the numerical data. Note that the colour coding in figure 4 is the same as in figure 2.
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Figure 4. Left panel : real part of ω̃ as a function of mφ < 0. Right panel : imaginary part of ω̃ as

a function of mφ. In both panels, the blue points are the numerical data, the dashed red line is the

fit to (4.40), and both plots were generated with α1 = α2 = n = 1, with mφ = 4mψ.
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Figure 5. Contour plot for |Φ| as a function of w and x: on the left panel we have mφ = −4 and

on the right panel we have mφ = −32. Both panels were generated with α1 = α2 = n = 1 and

mφ = 4mψ.

In figure 5, we plot the normalised quasinormal mode as a function of w and x, for the

case mφ = 4mψ. As before, its peak is located exactly at the point predicted in section 2.

Furthermore, the peak gets more and more sharp as we increase ` = |mφ|+ |mψ|.

One can go further, and determine the width of quasinormal mode around its max-

imum. It turns out to scale as
√
`, as expected from geometrical optics. This is best

observed in figure 6, where we plot the contour lines of |Φ| = 1/5, for several values of mφ.

The arrow in the plot indicates the direction of increasing (−mφ), and the point in the

middle indicates the geometric optics prediction for the location of the maximum of |Φ|.
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Figure 6. Contour lines for |Φ| = 1/4 at fixed u = t− r, as a function of w and x. All curves were

generated with α1 = α2 = n = 1 and mφ = 4mψ.

4.5 Lower bound on decay rate

Proofs of nonlinear stability usually require first establishing uniform decay for linear

perturbation. The first step is to establish decay of some non-degenerate energy. We

consider some spacelike Cauchy surface Σ0 and let Σt denote the surface obtained by

translation Σ0 through parameter distance t w.r.t. the Killing field V . A non-degenerate

energy E1(t) is an integral over Σt of some quantity quadratic in ∂Φ, such that E1(t) is

positive definite. Note that the conserved energy does not have this property because it

degenerates on the evanescent ergosurface.

Ideally one would like to establish a quantitative uniform energy decay result of

the form

E1(t) ≤ g(t)E1(0) (4.49)

for some function g(t), independent of Φ, with g(t)→ 0 as t→∞. This is uniform because

it applies to any perturbation Φ with g independent of the perturbation. If g(t) decays

fast enough (e.g. t−p for large enough p) then one can hope to establish non-linear stability.

However, when trapping is present, it is known that a decay result of this form does not

exist [20]. Instead the best one can hope for is energy decay with “loss of a derivative”,

which means that one has

E1(t) ≤ g(t)E2(0) (4.50)

where E2(t) is a second order energy, i.e., a positive functional of ∂Φ and ∂2Φ defined

as an integral over Σt. For example, the Schwarzschild solution, which exhibits unstable

trapping at the photon sphere, admits a result of the above form with g(t) ∝ t−2 [47].

Energy-decay results of the above form have also been obtained for spacetimes with

stable trapping, but the function g(t) decays very slowly. For AdS black holes [21], and

also for ultracompact neutron stars [22], results of the form (4.50) have been proved with

g(t) =
(

log(2+ t)
)−2

. Moreover, in both of these examples, this result is sharp in the sense
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that if one picks g(t) decaying faster than this then one can construct solutions which

violate (4.50). In both cases, one can also obtain pointwise decay results for the field Φ.

We can now use our quasinormal modes to show that the decay is evern slower for

the supersymmetric microstate geometries studied above. Quasinormal modes do not have

finite energy when defined on a surface of constant t in the coordinates of (3.4). This is

because such modes diverge at spatial infinity. However, it is well known that quasinormal

modes are finite at future null infinity. Therefore we will pick our Cauchy surfaces Σ0 to

extend to future null infinity.

Now consider a quasinormal mode with large `. Since E2 is quadratic in second deriva-

tives of Φ, we expect E2(0) < C`4 for some C > 0 independent of `. Hence if (4.50) holds

we must have E1(t) < C`4g(t). On the l.h.s. we have

E1(t) ∼ `2e2ωI t (4.51)

where ω = ωR + iωI . The factor of `2 comes from the fact that E1 is quadratic in first

derivatives of Φ. More precisely, we can find some constant D > 0, independent of `,

such that

E1(t) > D`2e2ωI t (4.52)

hence if (4.50) holds then we must have

De2ωI t < C`2g(t) (4.53)

For example, consider g(t) =
(

log(2 + t)
)−2

as for the examples discussed above. Set

t = eα` for some α > 0. Then we need (using our result for ωI)

D exp(−2βe−2` log `eα`) .
C

α2
(4.54)

where β > 0 is the coefficient in our large ` expression for ωI derived above. Now taking the

limit `→∞ gives D . C/α2, which we can violate by taking α large enough. This proves

that a uniform decay result of the form (4.50) cannot exist with g(t) =
(

log(2 + t)
)−2

, so

the decay in a supersymmetric microstate geometry is slower than for an AdS black hole

or an ultracompact neutron star.

An example of a function g(t) for which our quasinormal modes are consistent

with (4.50) is given by

g(t) = `−2 where 2` log ` = log(2 + t) for `� 1 (4.55)

Of course, we are not claiming that a result of the form (4.50) exists, merely that it is not

ruled out by the behaviour of quasinormal modes. Such decay is much too slow to be of

any use in establishing nonlinear stability.

The above analysis can be made rigorous by replacing quasinormal modes with quasi-

modes. These are approximate solutions of the wave equation which are compactly sup-

ported. In particular, they vanish in a neighbourhood at spatial infinity so one can work

with a foliation of constant coordinate time t in the coordinates of (3.4) so the surfaces Σt

extend to spatial infinity. Using quasimodes one can prove the following [31]
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Theorem 4.1 Let k1, k2 > 0. Let ` satisfy the following equation:

` log ` = log(2 + t) (4.56)

Then there exists a universal positive constant Ck1,k2 > 0 such that the following holds: for

solutions Φ to the linear wave equation �gΦ = 0,

lim sup
t→∞

sup
Φ∈Hk1+k2 (Σ0)

||Φ||2
Hk1 (Σt)

||Φ||2
Hk1+k2 (Σ0)

`2k2 ≥ Ck1,k2 (4.57)

In particular, for any k1, k2 this gives sub-polynomial decay.

Here ||Φ||2
Hk1 (Σt)

is the kth Sobolev norm associated to Σt, i.e., the norm involving an

integral over Σt of the sum of squares of the first k derivatives of Φ. Our heuristic argument

above corresponds to the case k1 = k2 = 1 of this theorem. In general, the theorem allows

for a loss of k2 derivatives.
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A 2-charge microstate geometries

A.1 The metric

We consider the 2-charge supersymmetric microstate geometries constructed in [2]. These

are obtained by setting Qp = 0 in the solution described in section 3. Ref. [4] describes a

whole family of such solutions, but we will only consider the maximally rotating solution

with a circular profile. The metric for this 2-charge D1−D5 microstate geometry (in the

form given in [57]) is

ds2 = −1

h
(dt2 − dz2) + hf

(
dθ2 +

dr2

r2 + a2

)
− 2a

√
Q1Q2

hf
(cos2 θdzdψ + sin2 θdtdφ)

+ h

[(
r2 +

a2Q1Q2 cos2 θ

h2f2

)
cos2 θdψ2 +

(
r2 + a2 − a2Q1Q2 sin2 θ

h2f2

)
sin2 θdφ2

]
(A.1)

where

f = r2 + a2 cos2 θ , h =

[(
1 +

Q1

f

)(
1 +

Q2

f

)]1/2

(A.2)

and a is defined in (3.3).
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A.2 Evanescent ergosurface

As in the 3-charge microstate geometry, the globally null Killing vector field is

V =
∂

∂t
+

∂

∂z
(A.3)

and the evanescent ergosurface S2 defined by V ·Z = 0 is at f = 0; this is defined by r = 0

and θ = π/2.

In the 2-charge geometry the Kaluza-Klein circle pinches off smoothly at f = 0 [4].

The ψ-direction also shrinks to zero size at f = 0 (in the same way as at the origin of

polar coordinates) so that at constant t, S2 has topology S1 where the coordinate around

this circle is φ. There are several differences between the evanescent ergosurface in the

2- and 3-charge geometries. First of all they have different dimensions: the 3-charge S
is 5 dimensional whilst the 2-charge S2 is only 2 dimensional. In the 2-charge case the

Killing vector field T = ∂/∂t is timelike everywhere except on S2 where it is null (V is null

everywhere and Z = ∂/∂z vanishes on S2) and so in this case there is no ergoregion, in

contrast with the 3-charge case where T is spacelike on S.

There are zero energy null geodesics with tangent vector V which are stably trapped

on S2 and thus stay at constant r = 0, θ = π/2. In the same way as for the 3-charge

geometry this follows from the discussion in section 2.

A.3 2-charge quasinormal modes

The wave equation separates in the 2-charge microstate geometries in the coordinates

of (A.1) (see ref. [57]) in the same way as for the 3-charge geometry but with n = 0. In

the wave equation we will therefore again use the ansatz

Φ(t, z, r, θ, φ, ψ) = e−iωt+iλz+imψψ+imφφΦr(r)Φθ(θ) . (A.4)

However, if we are looking for modes that correspond, via the geometric optics approxima-

tion, to null geodesics with tangent vector V that are stably trapped on S2 we must set

mψ = 0 because the corresponding geodesics are localized at θ = π/2 so they have pψ = 0.

Ref. [57] discusses scattering solutions of the wave equation with low frequencies. Here

we will find quasinormal modes with |mφ| � 1. As for the 3-charge case, we look specifically

for solutions where ω̃, λ̃ = O(1)� |mφ|, motivated by the geometric optics approximation

since the geodesics with tangent V on S2 have zero energy and Kaluza-Klein momentum.

A.3.1 2-charge matched asymptotic expansion

After separating variables, the equation for Φθ(θ) is exactly the same as (4.5a) with mψ = 0,

n = 0 and η = 1. Note that mψ = 0 implies that j = 0 and that if we write (4.5a) in the

form of a Schrödinger equation the potential is not strictly positive at θ = π/2 on S2 so

we have an ‘allowed’ region there.

Exactly as in section 4.2, from eq. (4.5a) the separation constant is A = `(`+2)+O(1)

where

` ≥ |mφ| , ` ∈ Z . (A.5)

We will construct quasinormal modes satisfying `� 1 and |mφ| = O(`).
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The differences to the calculation for the 3-charge case arise in the radial equation. We

still have equation (4.11) for Ψr(y) but there are important differences in the coefficients b

and c:

b0 = s2(m2 − 1) , b1 = −2s2(1 +mω̃)

c0 = 0 = c1 ⇒ c = c2 = α4λ̃2.
(A.6)

From the calculation for the 3-charge case we expect that we will have to set m = −1;

in this case b0 = 0 and b = O(`). When we define each region we will allow either b0 = 0

or b0 6= 0 and use (assuming κ̃ = O(1)):

1) y � `
1
4 : κ̃2y6 �: V (y) ≈ ay4 − by2 + c

2) 1� y � `: V (y) ≈ ay4;

3) y �
√
`: `2(y2 + C)� κ̃2y6 and V (y) ≈ −κ̃2y6 + ay4.

Although the regions themselves are slightly different to those used in the 3-charge case,

region 2 still overlaps both regions 1 and 3 and we approximate the equation in the same

way as before in each region.

Therefore the analysis of section 3 follows through in exactly the same way as before;

the fact that c = O(1) doesn’t change anything in the method or matching and we reach

the same conditions as in the 3-charge case.

First of all, substituting j = 0 and n = 0 into equation (4.31), the requirement that

the frequencies do not scale with `, implies that

m = −1 (A.7)

as we anticipated so that we do indeed have b = O(`).

For the real part of the frequency we substitute η = 1 into (4.36) (or substitute c2 and

the other necessary values into (4.29)) to find that at leading order

ω̃R = 2(N + 1) + λ̃ . (A.8)

For the imaginary part of the frequency given in (4.40) we set µ = 0 to find

ω̃I = −D2sκ̃
2
0e
−2` log `+`

(
2+2 log

κ̃0
√
α

2

)
+(N− 3

2) log `+O(1)
(A.9)

for some positive constant D2 and κ̃0 =
√
ω̃2
R,0 − λ2 where ω̃R,0 is the real part of ω̃

calculated to leading order only in (A.8).

In both the 2- and 3-charge geometries the imaginary part of ω is negative and

O(e−2` log `) as `→∞ when κ̃ = O(1). Hence the dimension of the evanescent ergosurface

does not seem to make a difference to the rate at which the modes decay.
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A.3.2 2-charge quasinormal mode frequencies scaling with `

The angular equation for the 2-charge case is exactly the same as in the 3-charge case,

but we had to modify the calculation of section 4.2 because some of the coefficients in the

potential for the radial equation were zero at leading order. However, if we now assume

that |ω̃− λ̃| = O(1) but λ̃ = O(`) so that the frequency scales with `, the coefficients in the

potential are non-zero at leading order and the calculation for the quasinormal frequencies

that scale with ` is exactly the same as in section 4.3.1.

To obtain the quasinormal modes for the 2-charge case from the 3-charge calculation

we set n = 0. Previously we also had to set j = 0 because we were looking for quasinormal

modes localised near null geodesics stably trapped on S2. Now we want to find solutions

of the wave equation localised near null geodesics that are stably trapped away from S2;

these do not necessarily have j = 0. However, in the calculation of section 4.3.1 we assume

that we still have n − (n + 1)j ≥ 0; for ease of calculation we will therefore still assume

that j = 0 here so we are looking for solutions localised near θ = π/2 but not on S2.

In this case we can simply substitute n = 0 and j = 0 into the results of section 4.3.1.

We find the real and imaginary parts of the quasinormal frequencies from equations (4.45)

and (4.47) respectively: at leading order

ω̃R = λ̃+
2η

P ′
(N + 1) +O(`−1) (A.10)

where

P ′ = 1 +
λ̃α2

`

(
1− `

λ̃+ `

)
+
λ̃

`

Q1 +Q2

R2
z

. (A.11)

If we define

µ′′ =
λ̃

`
> 0

we find that the imaginary part in the limit `→∞ is

ω̃I = −D′2e
−` log `+`

[
2−µ′′ log µ′′+(1+µ′′) log(µ′′+1)+2 log

κ̃0
√
α

2
√
`

]
+(N+ 1

2
−ν1) log `

+O(l−1) (A.12)

where ν1 is independent of ` and defined in (4.44) with n = 0 and j = 0, D′2 is a constant

proportional to sν1 that vanishes in the decoupling limit and κ̃0 =
√
ω̃2
R − λ̃2 with ω̃R

defined in (A.10).

B Quasimode construction

Quasimodes are approximate solutions of the wave equation, with exponentially small er-

ror [21, 22]. Quasimodes can be used to study local features of potentials, and establish

rigorous lower bounds on the uniform decay of fields. Even though one can envisage such a

construction for generic backgrounds, it has only been firmly established for backgrounds

that admit separable solutions [21, 22]. In such cases, the equations of motion governing

how certain perturbations propagate on such backgrounds, become a set of coupled ordi-

nary differential equations, for which potentials can be defined. Our geometries fall into

that class.
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Quasimodes are constructed as follows. One first restricts to a finite domain and im-

pose boundary conditions at the edges of this domain. We choose our boundary conditions

to be such that at the centre, w = 0, the quasimode is regular, and at a given radius,

say w = wc we impose a Dirichlet boundary condition Φ = 0. The choice of wc is largely

irrelevant, except we want to make it sufficiently large that any interesting feature in our

potential lies in the interval w ∈ (0, wc). We solve this Dirichlet problem for w < wc, which

gives a set of normal mode frequencies, and then set Φ = 0 for w > wc. The resulting

solutions are not smooth at w = wc; one defines quasimodes by applying a smoothing

procedure near w = wc, which means that one no longer has an exact solution to the wave

equation: there is a small error near wc.

We will perform the first part of this construction, i.e., solution of the Dirichlet prob-

lem. It turns out that the associated normal mode frequencies give an excellent fit to the

real part of the frequences of our quasinormal modes. For the sake of presentation, we will

only describe below the case in which we kept mψ fixed, but allow mφ to become arbitrarily

large. In addition, we will set ` = |mφ|+ |mψ|.
The idea is simple, we start with a consistent ansatz for the angular and radial eigen-

functions and eigenvalues. These take the following form:

X(x) = x|mψ |(1− x2)
|mφ|

2

+∞∑
k=0

X̃k(x)

|mφ|k
,

W (w) = e−|mφ|φ̃(w)W0(w)

[
1 +

+∞∑
k=1

W̃k(w)

|mφ|k

]
,

A =
(
|mφ|+ |mψ|

)(
|mφ|+ |mψ|+ 2

)
+

+∞∑
k=0

Ãk
|mφ|k

, and ω̃ =

+∞∑
k=0

$k

|mφ|k
.

Inputting these into the equations of motion, allows us to determine the coefficients{
X̃k(x), W̃k(w), Ãk, $k

}
to any order in the expansion. For instance, keeping all parameters in the 3-charge mi-

crostate geometries gives

Ã0 = α1 α2 η n$
2
0 , Ã1 = −α1 α2 η $0

[
(2n+ 1)$0

(
|mψ|+ 1

)
− 2n$1

]
,

$0 = 2 η , $1 = − 2(α1 + α2 + α1α2n
2 + α1α2n)

[(α1 + α2)n2 + (α1 + α2)n+ 1]3
.

It is possible to go to higher orders in k, but the expressions become increasingly

complicated. Progress can be made by choosing specific values for α1, α2, n and mψ. For

instance, for α1 = α2 = n = −mψ = 1 (the parameters of figure 2), we find

ω̃ =
2

5
− 8

125|mφ|
+

424

3125|mφ|2
− 21284

78125|mφ|3
+

968684

1953125|mφ|4
− 34114268

48828125|mφ|5
+O

(
|mφ|−6

)
.

– 39 –



J
H
E
P
1
0
(
2
0
1
6
)
0
3
1

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox,

Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].

[2] J.M. Maldacena and L. Maoz, Desingularization by rotation, JHEP 12 (2002) 055

[hep-th/0012025] [INSPIRE].

[3] V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S.F. Ross, Supersymmetric conical

defects: towards a string theoretic description of black hole formation,

Phys. Rev. D 64 (2001) 064011 [hep-th/0011217] [INSPIRE].

[4] O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with

angular momentum, hep-th/0212210 [INSPIRE].

[5] O. Lunin, Adding momentum to D1-D5 system, JHEP 04 (2004) 054 [hep-th/0404006]

[INSPIRE].

[6] S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates,

Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [INSPIRE].

[7] S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals,

Nucl. Phys. B 710 (2005) 425 [hep-th/0406103] [INSPIRE].

[8] S. Giusto and S.D. Mathur, Geometry of D1-D5-P bound states,

Nucl. Phys. B 729 (2005) 203 [hep-th/0409067] [INSPIRE].

[9] I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes,

Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].

[10] P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and

black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].

[11] G.W. Gibbons and N.P. Warner, Global structure of five-dimensional fuzzballs,

Class. Quant. Grav. 31 (2014) 025016 [arXiv:1305.0957] [INSPIRE].

[12] V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries

and D1-D5-P bound states, Phys. Rev. D 71 (2005) 124030 [hep-th/0504181] [INSPIRE].
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