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Abstract  
When making a turn at a familiar intersection, we know what items and landmarks will come into view. 

These perceptual expectations, or predictions, come from our knowledge of the context, however it’s 

unclear how memory and perceptual systems interact to support the prediction and reactivation of sensory 

details in cortex. To address this, human participants learned the spatial layout of animals positioned in a 

cross maze. During fMRI, participants of both sexes navigated between animals to reach a target, and in 

the process saw a predictable sequence of five animal images. Critically, to isolate activity patterns related 

to item predictions, rather than bottom-up inputs, one quarter of trials ended early, with a blank screen 

presented instead. Using multivariate pattern similarity analysis, we reveal that activity patterns in early 

visual cortex, posterior medial regions, and the posterior hippocampus showed greater similarity when 

seeing the same item compared to different items. Further, item effects in posterior hippocampus were 

specific to the sequence context. Critically, activity patterns associated with seeing an item in visual cortex 

and posterior medial cortex, were also related to activity patterns when an item was expected, but omitted, 

suggesting sequence predictions were reinstated in these regions. Finally, multivariate connectivity showed 

that patterns in the posterior hippocampus at one position in the sequence were related to patterns in 

early visual cortex and posterior medial cortex at a later position. Together, our results support the idea 

that hippocampal representations facilitate sensory processing by modulating visual cortical activity in 

anticipation of expected items.  

 

Significance statement 

Our visual world is a series of connected events, where we can predict what we might see next based on 

our recent past. Understanding the neural circuitry and mechanisms of the perceptual and memory systems 

that support these expectations is fundamental to revealing how we perceive and act in our world. Using 

brain imaging, we studied what happens when we expect to see specific visual items, and how such 

expectations relate to top-down memory signals. We find both visual and memory systems reflect item 

predictions, and moreover, we show that hippocampal activity supports predictions of future expected 

items. This demonstrates that the hippocampus acts to predict upcoming items, and reinstates such 

predictions in cortex.  
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Introduction 
Our knowledge of how the world is structured has a powerful influence on our perceptions (Bar, 2004; 

Oliva and Torralba, 2007; Summerfield and Egner, 2009), allowing predictions of future states we may 

encounter (Bar, 2009; Eichenbaum and Fortin, 2009). Perceptual expectations, or predictions, take 

different forms, with one distinction being between predictions dependent on temporal continuity (e.g. a 

train moving from one location to another as it’s driven), and predictions relating to upcoming items that 

are not in view. This latter form of perceptual expectation must depend on coordinated responses between 

perceptual and contextual memory systems, however the neural mechanisms of how memory systems 

might predict and reactivate perceptual details in cortex is elusive. 

Expecting to see a specific visual stimulus generates responses in early visual cortex that resembles activity 

when perceiving the same stimulus (Kok et al., 2012, 2014), even if the expected item is never shown 

(Eagleman and Dragoi, 2012). To make accurate predictions requires we’ve encountered similar situations 

and learned what is likely to occur next. Statistical learning approaches suggest we acquire knowledge 

about how the world is structured through repeated experiences (Schapiro et al., 2017; Sherman et al., 

2020), with this information utilized to guide predictions of future states (Stachenfeld et al., 2017; Turk-

Browne, 2019; Barron et al., 2020). In humans, the hippocampus represents predictions of future states 

(Eichenbaum and Fortin, 2009; Brown et al., 2016), suggesting it might be a primary source of top-down 

predictions to reactivate expected sensory details. This is supported by recent evidence from Kok and Turk-

Browne (2018), who showed that hippocampal responses reflected the expected stimulus following a 

predictive auditory cue, whilst visual regions reflected the perceived stimulus. Such studies are beginning 

to reveal how memory and perceptual systems support prediction and perception, highlighting the 

hippocampal top-down effects on cortex. While learned prior contexts must guide the prediction of future 

states, direct empirical support for such a contextually dependent hippocampal-cortical interaction remains 

limited. 

Beyond primary sensory regions and the hippocampus, a network of posterior brain regions are implicated 

in item and context-based reactivations, including the parahippocampal cortex, precuneus/posterior 

cingulate cortex and angular gyrus (Bar and Aminoff, 2003; Lee and Kuhl, 2016; Livne and Bar, 2016; 

Jonker et al., 2018; Caplette et al., 2020). This posterior medial (PM) network (Ranganath and Ritchey, 

2012; Ritchey and Cooper, 2020) displays connectivity with the posterior hippocampus (Barnett et al., 

2019, 2021). In contrast, the anterior hippocampus displays connectivity with an anterior temporal (AT) 

network including the perirhinal cortex, temporal pole, amygdala and orbitofrontal cortex, linked to item 

and object information (Ranganath and Ritchey, 2012; Ritchey and Cooper, 2020). The differing 

connectivity profiles of anterior and posterior hippocampus are linked to differential functional properties 

(Poppenk et al., 2013), leading us to predict that contextually-driven reactivations will be present in the 

posterior hippocampus and PM network, with the reactivation of sensory details in primary visual cortex. A 

further unexplored question is how the hippocampus, PM network and visual cortex interact to support the 

prediction and reactivation of sensory patterns. 

To explore these issues, we conducted an fMRI study where participants navigated through a learned 

space and saw predictable sequences of objects (Figure 1AB). Critically, a quarter of the sequence trials 

terminated early, where a specific item was expected, but instead a blank screen was presented. Using 

pattern similarity analysis, we ask (1) which regions represent item information, (2) are item 

representations specific to the sequence context, and (3) do these regions also represent information 

about expected items, even if not shown. To test how the hippocampus interacts with other regions, we 

employed multivariate representational connectivity (Kriegeskorte et al., 2008; Anzellotti and Coutanche, 

2018; Pillet et al., 2020) to test whether the representational structure in the hippocampus at one point 
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in the sequence related to a later point in the sequence, providing evidence that hippocampal 

representations support the reactivation of expected future activity patterns in cortex. 

 

 

Figure 1. Experimental design and analysis. A) Participants learned the spatial layout of 9 animals in two distinct zoos. B) 

During fMRI, participants navigated between two animals, seeing a predictable sequence of images. In a quarter of trials, the 

sequence ended early where a specific item was expected, but instead a blank screen was shown. C) Item effects were established 

by comparing activity patterns when seeing the same item in the same sequence and same zoo (red arrow), with patterns for 

different items within the same sequence context and zoo (grey arrows). D) Sequence effects were established by comparing 

activity patterns between the same items seen in the same sequence, against patterns when the same item was seen in a 

difference sequence, while controlling for position (position 4 only used) and zoo. E) Item expectation effects were established 

by comparing activity patterns between the blank period (catch trial) and the item that was expected given the sequence context 

(red arrow), against activity patterns for different blank and seen items (grey arrows). 

 

Materials and Methods 
Participants 

Thirty healthy individuals participated in the study. All participants had normal or corrected-to-normal vision 

and were right handed. Data from one participant was excluded due to technical complications with the 

fMRI scanner, one subject was excluded due to incomplete behavioral data, two subjects were excluded 

due to poor behavioral performance in the scanner (defined as falling below trained criterion, 85% correct, 

in the scanner), and one subject was removed from the scanner before the experiment was completed. 

Prior to data analysis, to ensure data quality, we conducted a univariate analysis to look at motor and visual 

activation during the task compared to an implicit baseline. Two subjects showed little to no activation in 

these regions and were excluded from further analysis. This resulted in twenty-three participants reported 

here (11 male, 12 female, all right handed). Written informed consent was obtained from each participant 

prior to the experiment, and the study was approved by The Institutional Review Board at the University of 

California, Davis. 

Experimental Design 
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Stimuli: The stimuli consisted of nine common animal images. Each animal was represented by a color 

photograph, presented in isolation on a grey background. The nine animals were positioned into a cross 

maze with two animals per arm and one in the central location, creating the first zoo called ‘San Francisco 

Zoo’. A second zoo was created, ‘San Diego Zoo’, by mirror-reversing and rotating 90 degrees anti-

clockwise one zoo map to create the other. Therefore, both zoos contained the same animals with the 

same transitional structure but a different global layout (Figure 1A). 

Training: Participants initially underwent a training session in order to learn the animals and their locations 

within the two zoos. To achieve this, participants completed map construction, exploration and navigation 

trials for one zoo, with the process then repeated for the second (zoo order counter-balanced across 

participants). During map construction, participants were shown the zoo layout and asked to arrange the 

animal images shown on screen into the correct positions. During exploration, participants were shown 

the animal at the center of the maze and were free to move up/down/left/right to see how moving in 

different directions resulting in seeing a different animal. After making 9 moves, the exploration reset to 

the center animal to begin again. Exploration continued until each animal was seen at least four times. 

Next, participants navigated between positions in the maze. They were shown a cue image indicating a 

start and a goal animal, followed by seeing the start animal. The participant had to select the correct moves 

to reach the goal animal. Start and goal animals were always located at the end points of an arm, and 

participants had a maximum of four moves. If participants did not reach criterion during navigation, they 

repeated map construction and navigation. After completing training with one zoo, the procedure was 

repeated with the second zoo. After successfully completing training with both zoos, participants completed 

a final navigation task including trials from both zoos and presented with the same structure and timings 

of the fMRI navigation task (see below). All training and navigation tasks were presented using 

Psychtoolbox and Matlab. 

fMRI: During fMRI scanning, participants performed the navigation task for both zoos in a blocked fashion 

across six scanning runs. In each run, participants were told which zoo they were in and completed eight 

navigation trials for one zoo before switching to the other zoo. A navigation trial consisted of seeing a cue 

screen showing the start and goal animal for 3 seconds, followed by a blank screen for 3 seconds. The 

start animal was then displayed for 2 seconds followed by a 3 second blank screen. After a response, the 

relevant animal was shown for 2 seconds followed by a 3 second blank screen, with the process continuing 

for a maximum of four moves. After four responses were made, the participant was shown a feedback 

screen. The participant was required to make their response within 2 seconds of the animal appearing, 

otherwise the move was judged as incorrect and they were shown a text screen indicating ‘wrong move’ 

for 2 seconds followed by a 3 second blank screen, and the animal was shown again. 

Participants competed navigation trials for the twelve possible start and goal animal combinations in each 

zoo, with each navigation trial being repeated 3 times resulting in 72 full navigation trials. A total of 24 

catch navigation trials were included where each navigation trial was terminated early, after the third animal 

(the central animal if correct responses were made), and instead of seeing the fourth animal, participants 

saw an additional blank screen lasting six seconds before a new trial began. The order of zoos was 

counterbalanced both across runs and between participants. 

Scanning acquisition 

MRI data were acquired on a 3T Siemens Skyra MRI using a 32-channel head coil. Anatomical images 

were collected using a T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) 

pulse sequence image (TR = 1800ms; TE = 29.6 ms; flip-angle = 7 degrees; 1 mm3 isotropic voxels; 

208 axial slices, TR=2100ms, TE=2.98ms, FOV = 256mm). Functional images were collected with a 
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multi-band gradient echo planar imaging sequence (TR = 1222 ms; TE = 24 ms; flip angle = 67 degrees; 

matrix=64x64, FOV=192mm; multi-band factor = 2; 3 mm3 isotropic spatial resolution). 

Data Preprocessing 

Preprocessing used SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). Functional images underwent slice time 

correction, spatial realignment and smoothing using a 4mm FWHM Gaussian kernal. To detect fast motion 

events, the ART repair toolbox (Mazaika et al., 2009) was used. These spike events were used as nuisance 

variables within the GLMs. Single item beta images were obtained by running a separate GLM for each 

object (LSS model; Mumford et al., 2012). For each GLM, the item of interest was entered as a single 

regressor with 1 event, with an additional regressor for all other events. All events were modelled as a 2 

second boxcar and convolved with a canonical HRF. Additional regressors were included for each spike 

event identified, 12 motion regressors (6 for realignment and 6 for the derivatives of each of the 

realignment parameters), and a drift term using a 128s cutoff. This resulted in five beta images per full 

navigation trial (e.g. zebra, chicken, rabbit, horse, tiger) and four beta images for each catch navigation 

trial (e.g. zebra, chicken, rabbit, omitted item). 

Pattern Similarity Analysis 

ROI PS: Our initial analysis focused on anatomical regions of interest (ROIs) in early visual cortex and the 

hippocampus, both of which are suggested to support sensory expectations and predictions (e.g. Hindy 

et al., 2016; Kok and Turk-Browne, 2018). A V1/V2 region was created from the functional atlas of visual 

cortex developed by Rosenke et al. (2021), where V1 and V2 were combined into a single region, and 

inverse normalized to native space. Probabalistic maps of the hippocampal head, body and tail were 

obtained from the multistudy group template (Yushkevich et al., 2015). These maps were warped to MNI 

space using DARTEL and thresholded at 0.5. The resulting maps were then reverse normalized to each 

participants native space using Advanced Normalization Tools. The anterior hippocampus was defined as 

the hippocampal head, and the posterior hippocampus as the combined body and tail sections. This division 

closely follows recommended anterior–posterior divisions (Poppenk et al., 2013). An additional set of ROIs 

were tested, with the perirhinal cortex (PRC) and parahippocampal cortex (PHC) defined from the 

multistudy group template (Yushkevich et al., 2015), and the temporal pole and PMC (combined 

precuneus and posterior cingulate cortex) were generated using FreeSurfer (version 6) and warped to 

each participants native space. 

Pattern similarity was used to test three issues, if regions represented (1) the currently viewed item, (2) 

the item in a specific sequence context, and (3) the item that was expected but never shown. Our analyses 

focused on the item in position 4 of the sequence context, first because position 4 items are always 

preceded by the same image in all sequences (i.e. a rabbit), meaning any impact of the preceding item on 

voxel patterns due to autocorrelation is controlled for. Second, one quarter of position 4 trials were omitted 

with the trial ending early, allowing us to study the impact of expectations through these catch trials. Third, 

position 4 is also situated after a key decision point (position 3), where it is possible to see multiple 

different animals following the central item (the rabbit), with the decision made at this point determines 

the next image. Therefore, position 4 allows us to both examine item-level effects, while controlling for 

autocorrelation and recent visual effects, and predictive effects generated from the central decision point. 

For item effects, we contrasted pattern similarity (PS) based on repetitions of the same position 4 item 

against when the items were different (Figure 1C). In order to control for sequence effects, PS was 

restricted to trials from the same sequence context and zoo, meaning that we are asking whether the 

items are dissociable within a specific sequence (although this does not control for the position within the 

sequence). Same-item PS was calculated between all possible pairs of the same item-sequence-zoo items 

https://www.fil.ion.ucl.ac.uk/spm/
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and averaged. Different-item PS was calculated between pairs of items that were not the same, but were 

from the same sequence context and zoo, before being averaged. 

Item expectation effects were tested in the ROIs showing significant item effects, and were based on PS 

between the expected-but-omitted beta image and the beta image of trials where the same item was seen. 

All omitted items were at positions 4 (Figure 1E). Specifically, PS was calculated between each omitted 

item and the position 4 trials where the same item was seen. To do this, PS was first calculated between 

an item and an omitted item where they are matched for item, sequence context and zoo, before calculating 

PS values when items are matched for item, but not sequence context and/or zoo. This results in four PS 

values which are averaged to give an overall PS between an item and when an item was expected-but-

omitted. Importantly, this value includes PS values containing all visual histories that converge on that 

position 4 item. Baseline PS values were calculated when the item and omitted item were due to be 

different items, which will also have different visual histories. This ensures that expectation effects are 

matched for the past items in the sequence, as all item expectation PS values will include data with all 

sequence histories. 

In order to test for effects of sequence context (Figure 1D), first, PS was calculated using the position 4 

items between pairs of trials that shared the same item, sequence context and zoo. Then we calculated 

PS when pairs of items shared the same item and same sequence, but from the other zoo. These PS 

values were then averaged across the two zoos giving a PS reflecting the same items in the same 

sequence. These PS values were contrasted with PS for the same-items when in a different sequence 

(averaged across zoo). We chose to average the PS values across the two zoos because here we are 

interested in sequence-level contexts, and not potential global zoo differences, meaning our analyses 

focused on differences between the sequences without considering the two zoos (additional control 

analyses show no significant or marginal effects of zoo on sequence effects). 

All pattern similarity values were calculated between pairs of items using Pearson’s correlation, excluding 

items where an incorrect response was made, and excluding pairs of trials that occurred in the same 

scanning run (Mumford et al., 2012). Pattern similarity was calculated using all grey matter voxels within 

each ROI. 

Multivariate connectivity: We used a measure based on representational connectivity analysis 

(Kriegeskorte et al., 2008; Anzellotti and Coutanche, 2018; Pillet et al., 2020), an approach where PS in 

one region is correlated with PS in another region. However, here we adapted this approach to assess 

connectivity both between regions and from different positions in the sequence. This allowed us to test 

the degree to which PS in one region related to PS in another region at a different position in the trial. 

Here, we tested whether PS in the hippocampus at position 3 in the sequence was related to PS at position 

4 in cortical regions that showed item expectation effects. To do this, we used a partial correlation analysis, 

whereby hippocampal PS from position 3 was correlated with position 4 PS from a second region, while 

controlling for PS from the second region at position 3. The analysis tells us if past information in the 

hippocampus can explain future information in cortex, over and above that explained by past information 

in that same cortical region. Our analysis focused on PS between trials from the same sequence context, 

and same zoo (excluding across sequence/zoo PS), and only included PS values calculated between trials 

in different scanning runs. 

Statistical Analysis 

Pattern similarity values for item, sequence context and expectation effects were calculated for each 

participant and each ROI, and tested using paired-samples t-tests or one-sampled t-test against zero. An 

FDR correction was applied to p-values to control for the number of ROIs tested. Multivariate connectivity 
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was calculated for each participant and tested using a one-sample t-test against zero. In addition to this 

frequentist approach, we analysed all contrasts using Bayesian one or two-sampled t-tests in JASP (version 

0.14.1), where the null was defined as an RSA effect of 0, with a Cauchy prior width set to 0.707. Bayes 

factors are reported, indicating the ratio of evidence supporting our hypothesis compared to the null 

hypothesis. 

Results 

Behavioral learning and task performance 
The experiment was conducted in two parts, a pre-fMRI learning session and a sequence navigation task 

during fMRI. During the pre-fMRI session, participants were required to learn the identities and locations 

of nine different animals in two related zoos (Figure 1A). During the fMRI scanning session, participants 

completed six runs of navigation trials, where each run consisted of blocks of eight trials from each zoo. 

In each zoo, there were 12 different navigation trials, with each full sequence of five animal items being 

repeated three times. As the same animals were found in both zoos, with the same transitions, identical 

visual sequences were seen in both zoos. During scanning, participants showed a high level of performance 

for both zoos (San Francisco: mean = 94.3%, SD = 6%, San Diego: mean = 95.0%, SD = 5%) with no 

statistical differences seen between them (t(22) = 1.11, p = 0.28). This high level of performance 

indicates that the sequences were well-known and therefore participants would be able to predict what 

animal was to appear next due to the sequence context (although they were not instructed to do this). 

Item, sequence and expectation effects in the early visual cortex and hippocampus 
Our initial analysis of the fMRI data focused on the early visual cortex and the hippocampus, both of which 

are suggested to support sensory expectations and predictions (e.g. Hindy et al., 2016; Kok and Turk-

Browne, 2018). Using multivariate pattern similarity analysis, we tested the extent to which these regions 

represented information about: (1) the currently viewed item, (2) the specific sequence context, and, (3) 

the next item that was expected in the sequence. 

 

Figure 2. Pattern similarity results for early visual cortex and the hippocampus. A. Item effects showing difference in pattern 

similarity between same item pairs and different item pairs. FDR correction applied to p-values. B. Sequence effects showing 

changes in pattern similarity for same item pairs in the same sequences compared to seeing the same item in different sequences. 

C. Item expectation effects showing the difference in pattern similarity when the same item was omitted or seen, and when the 

omitted and seen item were different. FDR correction applied to p-values. Error bars show 95% confidence intervals around the 

mean. 
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We first determined if early visual cortex and the hippocampus were sensitive to information about the 

currently viewed item. To do this, we contrasted voxel pattern similarity (PS) for repetitions of the same 

item and compared this to PS between different items (Figure 1C). In order to control for sequence effects, 

PS was restricted to trials from the same sequence context and zoo, meaning that we are asking whether 

the items are dissociable within a specific sequence context. Significant item effects were seen in V1/V2 

(mean = 0.052, t(22) = 5.26, p < 0.0001; BF10=1720 indicating very strong evidence for an item 

effect) and the posterior hippocampus (mean = 0.011, t(22) = 2.02, p = 0.042; BF10=2.3, anecdotal 

evidence for an item effect), but not the anterior hippocampus (mean = 0.010, t(22) = 1.37, p = 0.09; 

BF10=0.9, anecdotal evidence for the null hypothesis; Figure 2A). 

These item-level representations may reflect the visual appearance of the object, however, given past 

research showing the hippocampus is sensitive to contextual sequence information (Ezzyat and Davachi, 

2014; Hsieh et al., 2014), we next asked if these item effects were dissociable across the different 

sequence contexts. We compared PS between the same-items in the same sequence, to PS for the same-

items when found in different sequences. As our analysis only included items in position 4, and PS is 

calculated between same items pairs, any differences we see are driven purely by information pertaining 

to the sequence context, and not by visual details of item or temporal order. Significant sequence effects 

were found in the posterior hippocampus, where patterns were more similar for same-items from the same 

sequence (mean = 0.041) compared to same-items across different sequences (mean = 0.030; t(22) 

= 2.52, p = 0.0196; BF10=3.1, moderate evidence for sequence effects). No significant sequence effects 

were observed in V1/V2 (t(22) = 1.81, p = 0.085; BF10=0.96, anecdotal evidence for the null 

hypothesis) or the anterior hippocampus (t(22) = 1.22, p = 0.23; BF10=0.42, anecdotal evidence for 

the null hypothesis), although our analyses also do not support the absence of a sequence effect in these 

regions. These results show that the posterior hippocampus not only represents information about the 

current item, but that these representations are further reflective of the specific sequence context the item 

occurred in. 

In the above analysis, we characterized representations of presented objects within a learned sequence. 

In well-learned sequences, upcoming items are known, and according to predictive models of perception, 

being able to predict upcoming items should impact neural processing by generating expectations about 

what is about to happen (Bar, 2004; Trapp and Bar, 2015; de Lange et al., 2018; Turk-Browne, 2019). 

To test this hypothesis, we focused our next analyses on catch trials (see Figure 1D), in which each 

sequence was terminated early, such that, after position 3, a blank screen was shown for six seconds, 

followed by the onset of the next navigation trial. In other words, on every catch trial, there was no motor 

response or external visual stimulation, and the preceding image was matched for all sequences. Thus, any 

representational content during a catch trial would be expected to be driven by memory-driven predictions 

in the absence of bottom-up input. 

To test whether the regions that were sensitive to perceived items also carried information about expected 

items in the absence of sensory input, we assessed PS between presented items and activity when an 

item was expected but omitted from the sequence. PS was calculated between items and the catch trials 

when they were the same item, and compared to when the presented and catch trials were different 

(Figure 1D). Significant item expectation effects were seen in V1/V2 (mean = 0.008, t(22) = 2.25, p = 

0.037; BF10=3.3, moderate evidence for expectation effects) but not the posterior hippocampus (mean 

= 0.002, t(22) = 0.58, p = 0.19; BF10=0.51, anecdotal evidence for the null; Figure 2C). Our analyses 

clearly show that activity patterns in early visual regions are not only shaped by the bottom-up visual input, 

but that contextually-predicted item information is reactivated which matches the expected visual input. 
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Together, our analysis of early visual cortex and the hippocampus reveals that while item information is 

present in both regions, item representations in the posterior hippocampus were further modulated by the 

sequence the item was in, and in early visual cortex there was evidence of item patterns being reactivated 

when they were expected, but failed to appear. 

Item and expectation effects in the posterior medial cortex 
As discussed earlier, a wider network of regions beyond the hippocampus have been implicated in memory-

guided predictions and contextual reactivations (Bar and Aminoff, 2003; Lee and Kuhl, 2016; Livne and 

Bar, 2016; Jonker et al., 2018; Caplette et al., 2020; Long and Kuhl, 2021). The PM network is 

functionally connected to the posterior hippocampus, and associated with reactivation of contextually-

relevant object information, whilst the AT network is connected to the anterior hippocampus and is thought 

to represent item information (Ranganath and Ritchey, 2012). As such, we next repeated our analysis of 

item, sequence and expectation effects across regions in the PM network - parahippocampal cortex (PHC), 

posterior medial cortex (PMC; precuneus/posterior cingulate cortex) and the angular gyrus - and the AT 

network - the temporal pole and perirhinal cortex (PRC). 

Item effects were calculated by comparing PS between same-item pairs with PS for different item pairs, 

within the same sequence context. Significant item effects were seen in PMC (mean = 0.026, t(22) = 

3.11, p = 0.0128; BF10 = 17.3, strong evidence for an item effect) and the PHC (mean = 0.016, t(22) 

= 2.80, p = 0.013; BF10 = 9.5, moderate/strong evidence for an item effect), but not the angular gyrus 

(mean = 0.010, t(22) = 1.44, p = 0.10; BF10 = 0.98, anecdotal evidence for a null effect), temporal 

pole (mean = 0.11, t(22) = 1.74, p = 0.080; BF10 = 1.5, anecdotal evidence for an item effect) or PRC 

(mean = 0.005, t(22) = .95, p = 0.17; BF10 = 0.5, anecdotal evidence for a null effect; Figure 3A). This 

suggests that in addition to the early visual cortex and posterior hippocampus, regions of the PM network 

– the PMC and PHC - also represent the currently viewed item during navigation. 

 

 

Figure 3. Pattern similarity results for regions of the PM and AT networks. A. Item effects showing difference in pattern similarity 

between same item pairs and different item pairs. FDR correction applied to p-values. B. Item expectation effects showing the 

difference in pattern similarity when the same item was omitted or seen, and when the omitted and seen item were different. Error 

bars show 95% confidence intervals around the mean. 

 

We next asked whether these regions represented the same items in a distinct manner across sequence 

contexts by comparing PS for same-item pairs from the same sequence, against same-item pairs across 

different sequences. This analysis revealed no significant sequence effects (all p’s > 0.05; ANG, TPole and 

PRC show BF10 < 0.3, moderate evidence for the null). Finally, we tested whether the regions that showed 
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item effects also showed effects of expected items in the absence of bottom-up visual input by comparing 

PS for when items and catch trials were the same item, to when the presented and catch trials were 

different. Significant item expectation effects were in the PMC (mean = 0.016, t(22) = 2.96, p = 0.0187; 

BF10 = 11.6, strong evidence for an expectation effect) but not the PHC (mean = -0.001, t(22) = 0.27, 

p = 0.46; BF10 = 0.18, moderate evidence for the null; Figure 3B). Additional exploratory analyses across 

the remaining regions showed an item expectation effect in the angular gyrus (mean = 0.012, t(22) = 

2.70, p = 0.0187; BF10 = 7, moderate evidence for an expectation effect), but not temporal pole (mean 

= 0.001, t = 0.10, p = 0.459; BF10 = 0.24, moderate evidence for the null) or perirhinal cortex (mean 

= -0.001, t = -0.26, p = 0.459; BF10 = 0.18, moderate evidence for the null; Figure 3B). 

Overall, our data point to a representation of the current item in a network of regions in early visual, PM 

and the posterior hippocampus, with item representations in the posterior hippocampus being further 

specific to the sequence context. Crucially, representations in early visual cortex and the PMC reflect the 

expected item in the absence of any bottom-up input, suggesting they are a site of top-down effects based 

on contextual expectations. While our results primarily point to effects in the primary visual cortex, posterior 

medial cortex and posterior hippocampus, we cannot rule out item and expectation effects in other regions, 

given our Bayesian analysis largely do not support the null hypothesis, meaning that we cannot make any 

conclusions about the presence or absence of item or expectation effects in other regions. 

Hippocampal and cortical interactions support reactivation 
An important question arising from our results, is by what mechanism are visual details of the items being 

reactivated in early visual cortex and PMC? Motivated by the role of the hippocampus in representing 

sequence knowledge, cortical reinstatement and the prediction of future states (Eichenbaum and Fortin, 

2009; Hindy et al., 2016; Stachenfeld et al., 2017; Kok et al., 2020; Turk-Browne, 2019), we next tested 

the hypothesis that hippocampal pattern information related to future information states in visual cortex 

and PMC - regions showing item expectation effects, which may suggest the hippocampus supports the 

prediction and reactivation of sensory patterns in cortex. We reasoned that, if this is the case, the fidelity 

of a hippocampal sequence representations at one state (as indexed by PS across same-sequence pairs) 

should be predictive of the fidelity of the cortical sequence representation at the next position. We focused 

on position 3 in the sequence, as this is a critical decision point where one must choose amongst three 

possible states. Thus, we expected that hippocampal predictions about future states may be enhanced at 

this decision point (Johnson and Redish, 2007; Singer and Frank, 2009; Pfeiffer and Foster, 2013). If so, 

representations in the hippocampus at position 3 should share information with the patterns in cortex at 

position 4, where item representations and expectation effects are seen (Figure 4A). 

To test this, we employed a multivariate connectivity approach based on representational connectivity 

analysis (Kriegeskorte et al., 2008; Anzellotti and Coutanche, 2018; Pillet et al., 2020). Representational 

connectivity analysis asks if PS in one region is correlated with PS in another region, with a significant 

correlation indicating cortical representations are shared between the regions (Pillet et al., 2020). Here, 

we adapt this approach to assess connectivity between regions and from different positions in the 

sequence. We first calculated hippocampal PS between same sequence pairs at position 3, which is the 

central decision point in the sequence (where all items are rabbits; Figure 4B). We next calculated PS in 

cortical ROIs, V1/V2 and PMC, in same sequence trial pairs at position 4. These ROIs were specifically 

chosen as they showed item expectation effects, suggesting they are a target for item reactivation. In order 

to ensure that any connectivity between the hippocampus at position 3 and cortex at position 4 was not 

due to overall shared information between position 3 and position 4, we further controlled for the influence 

of position 3 PS from the same cortical region using partial correlation. This analysis thus allows us to ask 

whether information in the hippocampus at position 3 is related to cortical information at the next point in 

the sequence, over and above what position 3 cortical responses could account for. We find significant 
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partial correlations between position 3 representations in posterior hippocampus and position 4 

representations in V1/V2 (mean pxy = 0.089, t(22) = 4.51, p < 0.0001; BF10 = 355, very strong 

evidence for an effect) and PMC (mean pxy = 0.063, t(22) = 2.77, p = 0.0056; BF10 = 8.9, 

moderate/strong evidence for an effect; Figure 4C). These results show that hippocampal responses reflect 

information about the upcoming states that later emerge in early visual and PMC, and is consistent with a 

predictive role of the hippocampus in supporting cortical reinstatement of expected future items. As an 

additional exploratory analysis, we further tested for relationships between PS at position 3 in the posterior 

hippocampus and the PMAT regions at position 4. This revealed no additional significant relationships for 

PHC (p = 0.0604), ANG (p = 0.0792), TPole (p = 0.0922) or PRC (p = 0.2468). 

 

 

Figure 4. Cross region and position multivariate connectivity. A. (i) Participants navigate the sequence up to position 3, the central 

decision point of the cross-maze. (ii) From here it is possible to see 3 different animals, one of which is the correct next item for 

this sequence. (iii) If hippocampal representations are predictive of future states, then the hippocampal representation at position 

3 will also contain some information about the correct future state (position 4). If so, representations in the hippocampus at 

position 3 should share information with the patterns in cortex at position 4, where item representations and expectation effects 

are seen. This is tested using multivariate connectivity. B) First, posterior hippocampal activity patterns are extracted for each 

rabbit item (position 3) for each repetition of each sequence. Pattern similarity is calculated between each repetition of the same-

sequence pairs, resulting in a correlation vector, analogous to an unwrapped representational similarity matrix, but limited to same-

sequence pairs. Following this, similarity is calculated between same sequence/item-pairs at position 4 for repetitions from the 

same sequence taken from a second region (e.g. V1/V2), producing a second similarity vector. Multivariate connectivity is 

calculated as the partial correlation between the two similarity vectors from the two regions/positions while controlling for the 

similarity of region 2 at position 3. C) Posterior hippocampus was significantly correlated with later similarity patterns in V1/V2 

and PMC. Error bars show 95% CI around the mean. 

Discussion 
Here we asked how the hippocampus, PM network and early visual cortex interact to support the prediction 

and reactivation of sensory details in cortex. Our results revealed that the hippocampus, posterior medial 

cortex and early visual regions, work together to represent, predict and reactivate sensory details of future 

events. After learning the locations of animals within a cross maze structure, participants moved through 

the maze during fMRI, seeing predictable sequences of images. Importantly, in our paradigm, one quarter 

of the sequences ended early, meaning that the next image in the sequence was expected but not shown, 

allowing us to investigate the nature of top-down expectations in the absence of visual input. Pattern 

similarity (PS) analysis revealed complementary roles for the hippocampus and neocortical areas. 

Specifically, the posterior hippocampus carried information about items and sequence contexts, whereas 



12 
 

visual cortical areas carried information about the currently processed item, as well as item expectations. 

Furthermore, we found that the fidelity of hippocampal PS predicted subsequent item-specific 

representations in early visual cortex and the PMC. These findings show that hippocampal representations 

are used to generate expectations of future inputs via top-down modulation to the neocortex. 

Our analysis of item effects contrasted same item and different item trials while controlling for sequence 

context and zoo. However, by controlling these factors, the position of the item in the sequence is not 

controlled for. In relation to our findings of item effects in V1/V2 and PMC, it is unlikely that position drives 

these effects because we find item expectation effects in these same regions in an analysis which does 

control for position effects (item expectation effects can only be studied at position 4). In terms of the 

posterior hippocampus, while it is possible position information could contribute to item effects, we find 

this unlikely given that we do find sequence effects in this region (in a contrast that controls position) and 

previous similar paradigms have found the hippocampus represents item-in-sequence information and not 

solely position information (Hsieh, et al., 2014). Importantly, as our analysis of multivariate connectivity 

assess PS across positions, and item expectation effects control for position, our main findings are not 

limited by any potential impact of position on our item effects. 

Hippocampal memories guide the reactivation of upcoming sensory details 

Using multivariate connectivity, we tested if the representational similarity structure of the hippocampus 

related to representational similarity in V1/V2 and PMC, with the inference being that correlated states 

between regions indicates representations are shared between the regions (Pillet et al., 2020). 

Importantly, we calculated multivariate connectivity between the hippocampus at position 3 in the sequence 

(a rabbit image in all sequences) and V1/V2 and PMC at position 4, meaning that in addition to testing 

for shared representations across regions, we further tested the idea that information is shared between 

past hippocampal responses and future cortical responses. We observed a significant relationship between 

the posterior hippocampus at position 3 with both V1/V2 and PMC at position 4. These results argue that 

the hippocampus is a top-down source of predictive effects. Note that this effect cannot be driven by a 

concurrent strong representation of the current item in both regions, as our analysis controls for effects in 

the cortical regions at position 3. This means there is some element of representational similarity in the 

hippocampus at position 3 that can explain future representational similarity seen at position 4 in cortex, 

over and above that explained by the cortical regions at position 3 themselves. These results align with 

the view that hippocampal memories guide prediction of upcoming sensory events.  

How might these predictive effects come about? One line of research to illustrate the link between the 

hippocampus and prediction, is that of statistical learning. Studies of statistical learning argue that the 

hippocampus enables us to learn the structure of our environment, which can then be used to predict 

upcoming events and help guide behavior (Schapiro et al., 2014; Kourtzi and Welchman, 2019; Turk-

Browne, 2019; Sherman et al., 2020). Human fMRI data indeed points to the hippocampus for 

representing the temporal order of learned object sequences (Hsieh et al., 2014) and for predicting future 

states during navigation in learned environments (Brown et al., 2016). Further, hippocampal place cells 

have been shown to reactivate prospective future locations along a navigational path, a phenomenon 

termed preplay (Johnson and Redish, 2007; Lisman and Redish, 2009). Together with our results, this 

points to a mechanism whereby the hippocampus is engaged in predicting upcoming events, through 

reinstating learned details. 

This leads to a question of why we did not directly observe item expectation effects in the hippocampus 

yet found evidence that hippocampal patterns at position 3 related to future cortical patterns at position 

4? Previous research might indicate that hippocampal patterns reflect the expected stimulus, despite it 

being omitted, during a tasks where a cue is explicitly predictive of a specific shape (Kok et al., 2020). 
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Additionally, when learning such statistical regularities, the hippocampus has been shown to represent the 

upcoming predictions over the current input (Sherman et al., 2020). Our analyses focussed primarily on 

items during the navigation period of the trial, which was preceded by a cue indicating the sequence 

identity. Using the same data as reported here, Crivelli-Decker et al., (2021) did in fact show that 

hippocampal patterns during the cue indicated the identity of the following (or expected) sequence. This 

shows that the hippocampus is representing predictions of future states in the current data, in agreement 

with our representational connectivity analysis. However, the lack of expectation effects in the hippocampus 

could suggest that the dynamics of hippocampal and cortical interactions might shift between a cue-item 

prediction paradigm and our more complex navigation paradigm involving multiple items in succession. 

Learning paradigms have further been employed to reveal the instantiation of visual predictions, where 

after learning sequences of visual gratings, the orientation of an expected grating can be decoded from 

early visual cortex (Luft et al., 2015). In conjunction with our data, these studies point to the hippocampus 

being a source of top-down modulation on early visual regions. Predictions about upcoming items could 

be reactivated in the hippocampus, through pattern completion (McClelland et al., 1995), with information 

about the expected sensory details then reactivated in cortex. In humans, evidence is emerging linking 

hippocampal pattern completion to visual predictions (Hindy et al., 2016; Kok and Turk-Browne, 2018). 

For example, Hindy et al., (2016) used fMRI after participants learned cue-response-outcome associations. 

Using multivariate classifiers trained on either the full association or the outcome alone, and applied to 

cue-response trials, they showed that hippocampal subfields CA1 and CA2/3DG contained information 

about the full sequence of associations, while V1 and V2 contained information about the expected 

perceptual outcome. Further, Hindy et al., (2016) showed that hippocampal sequence decoding was 

related to visual cortex outcome decoding. These results parallel our hippocampal sequence effects and 

early visual cortex item expectation effects. However, much of the previous evidence focused only on the 

hippocampus and visual cortex, while prediction was also part of the task. Here, participants navigated 

through learned environments and saw sequences of objects during a task that does not emphasize 

prediction. This allowed us to establish the top-down nature of hippocampal representations with visual 

cortex, extending past research by showing top-down effects in contextually sensitive posterior medial 

cortex, and during a task that involved goal-directed navigation, rather than cue-outcome predictions. This 

last point suggests critical evidence that such predictive processes are engaged during more natural 

behaviors. Our data further adds to a broad literature highlighting a top-down modulatory role of the human 

hippocampus on visual cortex, and beyond, during memory-guided behaviors such as retrieval (Bosch et 

al., 2014; Staresina and Wimber, 2019; Barron et al., 2020), navigation (Sherrill et al., 2013; Watrous 

and Ekstrom, 2014; Bridge et al., 2017) and attention (Stokes et al., 2012; Aly and Turk-Browne, 2016a, 

2016b; Günseli and Aly, 2020). 

Predicted sensory details are reactivated in early visual and PM cortex 

A critical question we addressed was whether regions represented expected items in the absence of any 

bottom-up input, finding that both V1/V2 and the PMC showed item expectation effects. This was possible 

due to our catch trials, where after position 3 in the sequence, the final two items were omitted and 

replaced by a blank screen. This meant that we could evaluate representations of what was expected, but 

did not appear. Such expectation effects require the retrieval of sequence information based on learned 

experiences, and the reactivation of the expected sensory patterns. 

Previous studies have reported the reactivation of expected sensory details in primary visual regions for 

abstract stimuli (Alink et al., 2010; Eagleman and Dragoi, 2012; Kok et al., 2012, 2014), with our results 

showing this generalizes to complex meaningful items. Going beyond these studies, we revealed item 

expectation effects outside of primary visual cortex - in the PMC. The design of our study did not permit 
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us to dissociate between visual and PMC representations, though the extant literature speaks to this issue. 

For example, recent fMRI research shows the PMC becomes more engaged when item predictions can be 

made from a preceding visual scene. Caplette et al., (2020) showed visual scenes followed by objects 

which were either predictable given general knowledge about a scene (e.g. a beachball is consistent with 

a beach scene) or the object was not predictable. They showed increased precuneus activity for predictable 

objects, suggesting the precuneus is integrating information about the contextual predictions and the 

object. In our paradigm, like the early visual cortex, the PMC showed expectation effects when an item was 

expected, but never shown. Such expectation effects in the PMC have also been observed during speech 

(Scharinger et al., 2016). Such findings suggest that the PMC might play a role in prediction that 

transcends sensory modalities, consistent with the idea that PMC representations may be relatively abstract 

or semantic in nature (Ranganath and Ritchey, 2012).  

We also observed an item expectation effect in the angular gyrus. Past research indicates lateral parietal 

regions, such as angular gyrus, may preferentially represent retrieved content from memory in contrast to 

perceived stimulus details (Lee & Kuhl, 2016; Xiao et al., 2017; Favila et al., 2018). Our data suggests 

this may extend to the expectations and memory-guided predictions elicited by our study, where angular 

gyrus expectation effects were present, and not item effects. One limitation of our approach, is that we 

examine expectation effects through the relationship between seen and catch trials, requiring some shared 

information between them. However, it is possible that expectation related reactivations could be reflected 

by a transformation of the original perceptual experience, as might be the case for episodic memory 

reactivation (Xiao et al., 2017). How, and if, memory-guided reactivations reflect transformed states of 

the initial perceptual experience remains a key issue to be explored (Favila et al., 2020). 

Item expectation effects are driven by the differentiation of activity patterns to different expected animals. 

Several lines of evidence show that when an item is highly predictable, there is an increase in stimulus 

decoding and decrease in activity magnitude (Alink et al., 2010; Kok et al., 2012). The stimulus-specific 

nature of our expectation effects, observed without the occluding impact of a stimulus, are consistent with 

models where predictions result in a sharpening of neural representations, resulting in reduced BOLD 

signals following top-down constraints (de Lange et al., 2018). In our study, the reactivated patterns were 

specific enough to distinguish between different expected animal images, yet what is less clear, is the level 

of detail and nature of information that was reactivated. As we hypothesize above, it is likely that low-level 

visual details are reactivated in early visual areas, and higher-level visual, semantic and contextual signals 

in the PMC. 

Recent research has shown that hippocampal predictions when specific stimuli are expected depend on 

the complexity of the stimulus. Kok and colleagues (2020) have shown that while hippocampal responses 

contained information about the expected stimuli when they were abstract perceptual shapes, it did not 

do so when the expected items were orientation gratings. They suggest that, like with other regions within 

the MTL, stimulus complexity interacts with function. In our study, we also find evidence for a predictive 

function of the hippocampus with sequences of complex meaningful images, shown through our 

connectivity analysis, although find no evidence for item expectation effects in the hippocampus. However, 

other recent evidence using the same dataset shows the hippocampus does reflect future goals when the 

sequence is cued (Crivelli-Decker et al., 2021). Therefore, it will be important to determine how 

hippocampal predictions operate as a function of task state and stimulus complexity. Importantly, although 

expectation effects are often also seen in early sensory regions, participants in our paradigm know the 

exact stimulus that will appear. In real life situations, there can be much more uncertainty about what will 

be seen. In these cases, predictions might not be related to a specific perceptual stimulus, and instead 

they might be more conceptual in nature, with expectation effects limited to higher-level regions, such as 

the posterior ventral temporal cortex. These more general contextual predictions are indeed claimed to 
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constrain responses in posterior ventral temporal cortex, where predictions (or perceptual hypotheses) 

generated in the orbitofrontal cortex constrain activity in posterior regions (Trapp & Bar, 2015). This raises 

the important questions of how real-world contextual predictions, and predictions of varying specificity 

modulates the strength and mechanism of hippocampal guided predictions. 

It is long established that our past experiences impact our current perceptions. The current study provides 

novel insights into the mechanisms of how top-down expectations can influence the visual processing of 

objects. The current results advance our understanding of how the hippocampus and posterior cortical 

regions work together to support perceptual expectations and predictions of future states based on learned 

sequence contexts. Further, our results help to bridge between research on the cortical manifestation of 

expectations, and research on predictive and contextual representations in the hippocampus. 
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