Supporting information for:

Inhibition of F₁-ATPase from *Trypanosoma brucei* by its regulatory protein inhibitor TbIF₁

Ondřej Gahura^{1,2}, Brian Panicucci¹, Hana Váchová¹, John E. Walker², Alena Zíková^{1,3}

¹Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic

²The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom ³Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic

#To whom correspondence should be addressed: Alena Zíková, Institute of Parasitology, Biology Centre Czech Academy of Science, Branišovská 31, 37005, České Budějovice, Czech Republic; Tel.: 0042038775482; Email: <u>azikova@paru.cas.cz</u>; website: http://www.paru.cas.cz/en

List of supporting information:

Tables S1-S3 Figures S1

TABLE S1

TbIF ₁ variant	Mass (Da)		Mass difference	Modification
-	Observed	Calculated	(kDa)	
TbIF ₁ -WT	12148	12148.6	-0.6	None
$TbIF_{1}(1-64)$	8608	8608.5	-0.5	None
$TbIF_1(Y36W)$	12171	12170. 6	0.4	None
$TbIF_1(P32A)$	12121	12121.5	-0.5	None
$TbIF_1(E24A)$	12089	12089.5	-0.5	None
$TbIF_1(E27A)$	ND	11649.0	ND	ND
$TbIF_1-\Delta 1-5$	11648	11199.6	-1.0	None
$TbIF_1-\Delta 1-8$	11493	10958.3	-0.6	None*
$\text{TbIF}_1\text{-}\Delta1\text{-}10$	11199	10615.9	-0.3	None*
$TbIF_1-\Delta 1-12$	10958	11492.9	-0.9	None*
$TbIF_1-\Delta 1-15$	10615	12089.5	0.1	None*

Intact molecular masses of TbIF₁ and its variants

*N-terminal methionine was retained; ND, not determined

TABLE S2

Interactions between amino acids in subunits of bovine F_1 -ATPase and bovine IF_1 and their possible conservation in *T. brucei*

Bold residues are identical in bovine and *T. brucei* mitochondria. Brackets denote non-identical residues at equivalent positions in the *T. brucei* ortholog.

I1-60 _E	$\beta_{\rm E}$	β _{TP}	β _{DP}	γ	add	α
E31	R408					
Y33	K401					
Q41 (T)	D450					
I1-60 _{TP}						
R25 (K)				E241 (S)		
E30		R408				
Y33		K401				
F34 (A)		E454 , S405				
		(D), R408				
Q41 (T)		D450				
I1-60 _{DP}						
S11 (H)				N15 (R)		
A12 (R)						E353 (D)
G13 (K)			D386			
V15 (E)			D386			
D17			D386			
F22		D386, I390		I16 (F)		
		(V), L391				
E30			R408			
Y33			M393 (I), D394 ,			
			K401			
F34 (A)			V404 , S405 (D),			
			R408, E454			
R35 (L)					E399 (K)	
Q41 (T)			D450			
L42			P453 , L473 (M),			
(M)			A474 , H477 (A)			
L45			A470 , D471 (K),			
			A474			

Adapted from ref (9).

TABLE S3

List of oligonucleotides

Sequence	Use		
TAGCATATGCATATGAGCGAGGGGAAGCCAACTGA AGG	TbIF ₁ -WT amplification, forward primer (F)		
TAGCATATGCATATGACTGAAGGACACAG	TbIF ₁ - Δ 1-5 amplification F		
TAGCATATGCATATGCACAGAAAGATCAAC	TbIF ₁ - Δ 1-8 amplification F		
TAGCATATGCATATGAAGATCAACCTGGAC	TbIF ₁ - Δ 1-10 amplification F		
TAGCATATGCATATGAACCTGGACGATG	TbIF ₁ - Δ 1-12 amplification F		
TAGCATATGCATATGGATGATGAGAGGTGG	TbIF ₁ - Δ 1-15 amplification F		
CGAAAGCTTGCTAGCTTAGTGATGGTGATGGTGATG TTGCTTCTCGTTCGTTAACTGC	TbIF ₁ -WT amplification, reverse primer (R)		
CGAAAGCTTGCTAGCTTAGTGATGGTGATGGTGATG TTGCTTCTCGTTCGTTAACTGC	TbIF ₁ (1-64) amplification R		
CTTCGGTCTCCAGAAGAACGATGGGCACTCGAACG ACA	TbIF ₁ (Y36W) mutagenesis F		
TGTCGTTCGAGTGCCCATCGTTCTTCTGGAGACCGA AG	TbIF ₁ (Y36W) mutagenesis R		
GACGAAAAACTTCGGTCTGCAGAAGAACGATATGC AC	TbIF ₁ (P32A) mutagenesis F		
GTGCATATCGTTCTTCTGCAGACCGAAGTTTTTCGT C	TbIF ₁ (P32A) mutagenesis R		
GGTGGATCGAGGCGGCGTTCGACGAAAAACT	TbIF ₁ (E24A) mutagenesis F		
AGTTTTTCGTCGAACGCCGCCTCGATCCACC	TbIF ₁ (E24A) mutagenesis R		
GGAGACCGAAGTTTTGCGTCGAACTCCGCCT	TbIF ₁ (E27A) mutagenesis F		
AGGCGGAGTTCGACGCAAAACTTCGGTCTCC	TbIF ₁ (E27A) mutagenesis R		

FIGURE S1. Analysis of kinetic data illustrated with the example of TbIF₁-WT at pH 8.0. (A), The decrease of NADH absorbance corresponding to the monoexponential decay of the activity of F₁-ATPase from *T. brucei* upon inhibition at each inhibitor concentration was fitted to equation (1) to obtain the parameters V₀, V_{∞}, and k_{inh}. (B), k_{on} was calculated as the slope of the linear regression of k_{inh} plotted against [I] (equation (2)). The ratio V_{∞}/V₀ was plotted against [I] and the data fitted to equation (3) to obtain K_i. In order to obtain k_{off}, the ratio V_{∞}/V₀ was plotted against 1/k_{inh} and data were fitted into the linear equation (4).