Supporting information for:

Inhibition of $\mathbf{F}_{\mathbf{1}}$-ATPase from Trypanosoma brucei by its regulatory protein inhibitor $\mathbf{T b I F}_{\mathbf{1}}$

Ondřej Gahura ${ }^{1,2}$, Brian Panicucci ${ }^{1}$, Hana Váchová ${ }^{1}$, John E. Walker ${ }^{2}$, Alena Zíková ${ }^{1,3}$
${ }^{1}$ Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech
Republic
${ }^{2}$ The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom
${ }^{3}$ Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
\#To whom correspondence should be addressed: Alena Zíková, Institute of Parasitology, Biology Centre Czech Academy of Science, Branišovská 31, 37005, České Budějovice, Czech Republic; Tel.:

0042038775482; Email: azikova@paru.cas.cz; website: http://www.paru.cas.cz/en

List of supporting information:

Tables S1-S3
Figures S1

TABLE S1
Intact molecular masses of $\mathbf{T b I F}_{1}$ and its variants

TbIF_{1} variant	Mass (Da)		Mass difference (kDa)	Modification
	Observed	Calculated		
$\operatorname{TbIF}_{1}-\mathrm{WT}$	12148	12148.6	-0.6	None
$\operatorname{TbIF}_{1}(1-64)$	8608	8608.5	-0.5	None
$\operatorname{TbIF}_{1}(\mathrm{Y} 36 \mathrm{~W})$	12171	12170.6	0.4	None
$\operatorname{TbIF}_{1}(\mathrm{P} 32 \mathrm{~A})$	12121	12121.5	-0.5	None
$\operatorname{TbIF}_{1}(\mathrm{E} 24 \mathrm{~A})$	12089	12089.5	-0.5	None
$\operatorname{TbIF}_{1}(\mathrm{E} 27 \mathrm{~A})$	ND	11649.0	ND	ND
$\operatorname{TbIF}_{1}-\Delta 1-5$	11648	11199.6	-1.0	None
$\operatorname{TbIF}_{1}-\Delta 1-8$	11493	10958.3	-0.6	None*
$\operatorname{TbIF}_{1}-\Delta 1-10$	11199	10615.9	-0.3	None*
$\operatorname{TbIF}_{1}-\Delta 1-12$	10958	11492.9	-0.9	None*
$\operatorname{TbIF}_{1}-\Delta 1-15$	10615	12089.5	0.1	None*

*N-terminal methionine was retained; ND, not determined

TABLE S2
Interactions between amino acids in subunits of bovine F_{1}-ATPase and bovine IF_{1} and their possible conservation in T. brucei

Bold residues are identical in bovine and T. brucei mitochondria. Brackets denote non-identical residues at equivalent positions in the T. brucei ortholog.

$\mathbf{1 1 - 6 0}{ }_{\text {E }}$	$\beta_{\text {E }}$	$\boldsymbol{\beta}_{\text {TP }}$	$\beta_{\text {DP }}$	γ	$\boldsymbol{\alpha}_{\text {DP }}$	$\boldsymbol{\alpha}_{\text {E }}$
E31	R408					
Y33	K401					
Q41 (T)	D450					
[1-60 ${ }_{\text {TP }}$						
R25 (K)				E241 (S)		
E30		R408				
Y33		K401				
F34 (A)		E454, S405 (D), R408				
Q41 (T)		D450				
11-60 ${ }_{\text {DP }}$						
S11 (H)				N15 (R)		
A12 (R)						E353 (D)
G13 (K)			D386			
V15 (E)			D386			
D17			D386			
F22		$\begin{aligned} & \text { D386, I390 } \\ & \text { (V), L391 } \end{aligned}$		I16 (F)		
E30			R408			
Y33			M393 (I), D394,			
			K401			
F34 (A)			$\begin{aligned} & \text { V404, S405 (D), } \\ & \text { R408, E454 } \end{aligned}$			
R35 (L)					E399 (K)	
Q41 (T)			D450			
L42			P453, L473 (M),			
(M)			A474, H477 (A)			
L45			$\begin{aligned} & \text { A470, D471 (K), } \\ & \text { A474 } \end{aligned}$			

Adapted from ref (9).

TABLE S3

List of oligonucleotides

Sequence	Use
TAGCATATGCATATGAGCGAGGGGAAGCCAACTGA AGG	TbIF_{1}-WT amplification, forward primer (F)
TAGCATATGCATATGACTGAAGGACACAG	$\mathrm{TbIF}_{1}-\Delta 1-5$ amplification F
TAGCATATGCATATGCACAGAAAGATCAAC	$\mathrm{TbIF}_{1}-\Delta 1-8$ amplification F
TAGCATATGCATATGAAGATCAACCTGGAC	$\mathrm{TbIF}_{1}-\Delta 1-10$ amplification F
TAGCATATGCATATGAACCTGGACGATG	$\mathrm{TbIF}_{1}-\Delta 1-12$ amplification F
TAGCATATGCATATGGATGATGAGAGGTGG	$\mathrm{TbIF}_{1}-\Delta 1-15$ amplification F
CGAAAGCTTGCTAGCTTAGTGATGGTGATGGTGATG TTGCTTCTCGTTCGTTAACTGC	TbIF_{1}-WT amplification, reverse primer (R)
CGAAAGCTTGCTAGCTTAGTGATGGTGATGGTGATG TTGCTTCTCGTTCGTTAACTGC	$\mathrm{TbIF}_{1}(1-64)$ amplification R
CTTCGGTCTCCAGAAGAACGATGGGCACTCGAACG ACA	$\mathrm{TbIF}_{1}(\mathrm{Y} 36 \mathrm{~W})$ mutagenesis F
TGTCGTTCGAGTGCCCATCGTTCTTCTGGAGACCGA AG	$\mathrm{TbIF}_{1}(\mathrm{Y} 36 \mathrm{~W})$ mutagenesis R
GACGAAAAACTTCGGTCTGCAGAAGAACGATATGC AC	$\mathrm{TbIF}_{1}(\mathrm{P} 32 \mathrm{~A})$ mutagenesis F
GTGCATATCGTTCTTCTGCAGACCGAAGTTTTTCGT C	$\mathrm{TbIF}_{1}(\mathrm{P} 32 \mathrm{~A})$ mutagenesis R
GGTGGATCGAGGCGGCGTTCGACGAAAAACT	$\mathrm{TbIF}_{1}(\mathrm{E} 24 \mathrm{~A})$ mutagenesis F
AGTTTTTCGTCGAACGCCGCCTCGATCCACC	$\mathrm{TbIF}_{1}(\mathrm{E} 24 \mathrm{~A})$ mutagenesis R
GGAGACCGAAGTTTTGCGTCGAACTCCGCCT	$\mathrm{TbIF}_{1}(\mathrm{E} 27 \mathrm{~A})$ mutagenesis F
AGGCGGAGTTCGACGCAAAACTTCGGTCTCC	$\mathrm{TbIF}_{1}(\mathrm{E} 27 \mathrm{~A})$ mutagenesis R

A

$$
\begin{align*}
& y_{t}-y_{0}=V_{0} t+\left[\left(V_{0}-V_{\infty}\right) / k_{\text {inh }}\right]\left[1-\exp \left(-k_{\text {inh }} t\right)\right] \tag{1}
\end{align*}
$$

FIGURE S1. Analysis of kinetic data illustrated with the example of TbIF ${ }_{1}$-WT at $\mathbf{p H}$ 8.0. (A), The decrease of NADH absorbance corresponding to the monoexponential decay of the activity of F_{1}-ATPase from T. brucei upon inhibition at each inhibitor concentration was fitted to equation (1) to obtain the parameters V_{0}, V_{∞}, and $\mathrm{k}_{\text {inh }}$. (B), $\mathrm{k}_{\text {on }}$ was calculated as the slope of the linear regression of $\mathrm{k}_{\mathrm{inh}}$ plotted against [I] (equation (2)). The ratio $\mathrm{V}_{\infty} / \mathrm{V}_{0}$ was plotted against [I] and the data fitted to equation (3) to obtain K_{i}. In order to obtain $\mathrm{k}_{\text {off }}$, the ratio $\mathrm{V}_{\infty} / \mathrm{V}_{0}$ was plotted against $1 / \mathrm{k}_{\text {inh }}$ and data were fitted into the linear equation (4).

