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The social network model on infinite graphs

Jonathan Hermon ∗ Ben Morris † Chuan Qin Allan Sly ‡

Abstract

Given an infinite connected regular graph G = (V,E), place at each vertex
Poisson(λ) walkers performing independent lazy simple random walks on G simulta-
neously. When two walkers visit the same vertex at the same time they are declared
to be acquainted. We show that when G is vertex-transitive and amenable, for all
λ > 0 a.s. any pair of walkers will eventually have a path of acquaintances between
them. In contrast, we show that when G is non-amenable (not necessarily transitive)
there is always a phase transition at some λc(G) > 0. We give general bounds on
λc(G) and study the case that G is the d-regular tree in more detail. Finally, we
show that in the non-amenable setup, for every λ there exists a finite time tλ(G)
such that a.s. there exists an infinite set of walkers having a path of acquaintances
between them by time tλ(G).
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1 Introduction

We consider the following model for a social network which we call the social network model
(SN as a shorthand). The model was proposed by Itai Benjamini and was first investigated
in [4] in the context of finite graphs (see §1.2 for further details). In this work we study
the model on infinite graphs. Let G = (V,E) be an infinite connected d-regular graph,
which is the underlying graph of the SN model. In our model we have walkers performing
independent lazy simple random walks on G, denoted by LSRW (see §2 for a definition).
The walkers perform their LSRWs simultaneously (i.e., at each time unit they all perform
one step, which may be a lazy step). The SN model on a graph G with density λ > 0 is
defined by setting (|Wv|)v∈V to be i.i.d. Pois(λ) r.v.’s, where Wv denotes the set of walkers
whose initial position is v (and Pois(λ) is the Poisson distribution of mean λ). We denote
the corresponding probability measure by Pλ.

Let t ∈ Z+ ∪ {∞}. We say that two walkers w,w′ have met by time t, which we denote

by w
t↔ w′, if there exists t0 6 t such that they have the same position at time t0. After

two walkers meet they continue their walks independently without coalescing. We write

w
∞↔ w′ (“meeting by time ∞”), if there exists some finite t, such that w

t↔ w′. “Meeting
by time t” is a symmetric relation and thus induces a unique minimal equivalence relation
that contains it. We call this equivalence relation having a path of acquaintances by time t

and denote it by
t∼ (note that w

∞∼ w′ iff there exists some finite t such that w
t∼ w′). More

explicitly, two walkers a and b have a path of acquaintances by time t iff there exist k ∈ N,
and walkers a = c0, c1, . . . , ck, ck+1 = b such that ci

t↔ ci+1, for all 0 6 i 6 k. Note that
we are not requiring the sequence of times in which the walkers met to be non-decreasing,
which is the main difference between the SN model and some existing models for spread
of rumor/infection (e.g., the A + B 7→ 2B model [11] and the frog model [16, 1, 14, 10]).
Consequently, the SN model typically evolves much faster than such models.

We are interested in the coalescence process of the equivalence classes, and in particular in
the number of equivalence classes of

∞∼ and in the existence of an infinite equivalence class

of
t∼ for some finite t.

Let W := ∪u∈VWu be the set of all walkers. Denote by Con (a shorthand for “connected”)
the event that w

∞∼ w′ for all w,w′ ∈ W (i.e., Con is the event that every pair of walk-
ers eventually have a path of acquaintances between them). The following question was
proposed to us by Itai Benjamini [2].

Question 1.1. Let Td be the infinite d-regular tree. Does Pλ[Con] = 1 for all λ > 0?

We give a negative answer to this question (Theorem 2). This raises the problem of
identifying for which graphs Con occurs Pλ-a.s. for all λ > 0.

Definition 1.2 (Critical density). Let G = (V,E) be an infinite connected regular graph.
The critical density for the SN model on G is defined to be

λc(G) := inf{λ : ∃ p > 0 such that inf
u,v∈V

Pλ[u
∞∼ v | Wu 6= ∅,Wv 6= ∅] > p},
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where for a pair of vertices u, v and t ∈ Z+ ∪ {∞} we write u
t∼ v (respectively, u

t↔ v) if

there exist some w ∈ Wv and w′ ∈ Wu such that w
t∼ w′ (respectively, w

t↔ w′).

The following phase transition occurs around the critical density:

Proposition 1.3. Let G be an infinite connected regular graph. Then

Pλ[Con] =

{
0 if 0 < λ < λc(G),

1 if λ > λc(G).
(1.1)

A graph G = (V,E) is called vertex transitive if the action of its automorphisms group,
Aut(G), on its vertices is transitive (i.e., {ϕ(v) : ϕ ∈ Aut(G)} = V for all v). The spectral
radius of a random walk onG = (V,E) with transition kernel P is ρ := lim supn(P

n(v, u))1/n

(the limit is independent of u, v ∈ V ). A graphG is called amenable if ρ = 1 for LSRW onG
(otherwise, it is called non-amenable). We review some consequences of amenability/non-
amenability in §2.5 and §4.
There are numerous characterizations of amenability. Most characterizations describe a
certain dichotomy between amenable graphs and non-amenable graphs. In particular,
several probabilistic models exhibit very different behaviors in the amenable setup and the
non-amenable setup. However, proving a sharp dichotomy may be an extremely challenging
task for some models. For instance, it is a major open problem in percolation theory to
establish that for vertex transitive graphs, the existence of a non-uniqueness regime for
Bernoulli percolation is equivalent to non-amenability. For further details see [13, Chapter
7]. For a different recent characterization of non-amenability via percolation see [8]. The
following theorem asserts that for transitive graphs, amenability can be characterized by
the SN model (note that there is no transitivity assumption in the non-amenable setup).

Theorem 1. For every infinite connected vertex transitive amenable graph of finite degree,
λc = 0. Conversely, for every infinite non-amenable connected regular graph λc > 0.

Remark 1.4. A similar dichotomy is believed to hold for the frog model (in the context of
recurrence), however the only family of non-amenable graphs for which a phase transition
is known to exist in the frog model is the infinite d-regular tree for all d > 3 [9]. The frog
model in the amenable setup is studied in [15].

Remark 1.5. Using our analysis of the non-amenable setup it is not hard to verify that by
attaching the root of an infinite binary tree to the origin of Zd we obtain a non-transitive
amenable graph with λc > 0. Thus the transitivity assumption is necessary in Theorem 1.

A question which arises naturally is what can be said about λc in the non-amenable setup.
We give general lower and upper bounds on λc(G) (Theorems 8.1 and 5.1, respectively)
in terms of the spectral radius ρ of the walk and the degree d of the underlying graph. It
turns out that the holding probability (which obviously affects ρ) can drastically change λc,
which is somewhat counter-intuitive at first sight. As an illustrating example we consider
the infinite d-regular tree.
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Theorem 2. Let Td = (V,E) be the infinite d-regular tree for some d > 3. There exist
absolute constants c, C > 0 such that when the holding probability of the walks is taken to
be 1/(d+ 1) we have that

c
√
d 6 λc(Td) 6 C

√
d. (1.2)

In contrast, Theorem 5.1 asserts that when the holding probability is taken to be 1/2, there
exists an absolute constant C such that for all d > 3 and all infinite connected d-regular
graphs G we have that λc(G) 6 C log d. In §9.1 we state and provide a sketch of proof of
Theorem 9.1, which refines Theorem 8.1 and asserts the following. There exists an absolute
constant c > 0 such that for every connected, infinite, regular graph G, when the holding
probability is 1/2 we have that λc(G) > c log(1/ρ), where ρ is the spectral-radius of simple
random walk on G (rather than of lazy simple random walk with holding probability 1/2).

Combining these two results we obtain as a corollary that c log d 6 λc(Td) 6 C log d, when
the holding probability is 1/2. In fact, the same bounds hold for all infinite connected

Ramanujan graph, which are by definition d-regular graphs with ρ = 2
√
d−1
d

. (For SRW on

infinite connected d-regular graphs one always has that ρ > 2
√
d−1
d

and for Td this is an
equality – see e.g., [13, Theorem 6.10].)

We strongly believe that up to the value of the absolute constants, the same bounds hold
for the continuous-time analog of the SN model, as the ones holding in discrete-time when
the holding probability is 1/2.

1.1 Infinite friend clusters in finite time

We now turn our attention to the problem of determining the existence of an infinite

equivalence class of
t∼ for some finite t.

Let t ∈ Z+ ∪ {∞}. For each walker w we call the set walkers in the same equivalence class

of
t∼ as w, the friend cluster of w at time t and denote it by FCt(w). When t = ∞ we call

this set the friend cluster of w and denote it by FC(w) := FC∞(w). More generally, when
t = ∞ we often omit it from our terminology and notation. Recall that for u, v ∈ V and

t ∈ Z+ ∪ {∞} we denote u
t↔ v and u

t∼ v iff there exist w ∈ Wu and w′ ∈ Wv so that

w
t↔ w′ and w

t∼ w′, respectively. Let

Ξ := {u ∈ V : |Wu| > 0}

be the set of initially occupied vertices. It will be convenient to define the friend cluster
of a vertex u at time t, which by abuse of notation we denote by FCt(u), which is defined
as follows. If u ∈ Ξ then we define FCt(u) to be the friend cluster of the walkers in Wu

at time t, i.e., FCt(u) := FCt(w) for some (and hence every) w ∈ Wu. Otherwise, we set
FCt(u) to be the empty-set. Note that

λc(G) = inf{λ : ∃ p > 0 such that ∀ u, v ∈ V, Pλ[FC(u) = FC(v) | u, v ∈ Ξ] > p}. (1.3)
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Minor adjustments to the analysis of the frog model on (Z/nZ)d from [3] show that when
the underlying graph is Zd with d > 1, for every λ > 0 there is indeed an infinite friend
cluster in finite time a.s.

Conjecture 1.6 (Benjamini [2]). Let G be an infinite connected graph of bounded degree.
Assume that for some 0 < p < 1 Bernoulli bond percolation on G with survival probability
p has an infinite connected component with probability 1. Then for all λ > 0, there exists
tλ(G) > 0 such that

∀ t > tλ(G), Pλ

[
max
w

|FCt(w)| = ∞
]
= 1.

The following theorem provides a partial answer.

Theorem 3. Let G = (V,E) be a regular connected infinite non-amenable graph. Denote
the spectral radius of LSRW with some arbitrary holding probability 0 6 p < 1 by ρ. Let
IC(t) be the event that maxv∈V |FCt(v)| = ∞. Then there exists an absolute constant C > 0
(independent also of G) such that for all λ ∈ (0, 1] and t > ⌈ C

λ(1−ρ)
⌉ =: tC,λ

Pλ[IC(t)] = 1.

Remark 1.7. Theorem 6 in [4] asserts that (for λ = 1) if G is a d-regular expander of
size n, then there exists some constants t, c1 (depending only on the spectral gap of the
walk on G and on d) such that after t steps maxv |FC(v)| > n/6 with probability at least
1 − e−c1n. However, the techniques from the finite setup do not carry over to the infinite
setup of Theorem 3.

1.2 Related work

The SN model, proposed by Itai Benjamini, was first investigated in the context of finite
graphs and λ = 1 in [4], where it was shown that there exist constants c, C > 0 such that
for every finite connected graph G = (V,E) of average degree d,

P[c log |V | 6 inf{t : FCt(u) = FCt(v) for all u, v ∈ Ξ} 6 Cd6 log3 |V |] > 1− |V |−1.

That is, (when λ = 1 and the holding probability is taken to be 1/2) the first time at
which all walkers have a path of acquaintances between them is with high probability
poly-logarithmic in the number of vertices, provided that the average degree is at most
poly-logarithmic. For d-regular graphs the term d6 is improved to d. Further improvements
are given under appropriate heat-kernel decay assumption or under a certain isoperimetric
assumption.
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1.3 Organization of the paper and discussion of our techniques

In §2 we present some preliminaries about Poisson thinning, percolation and random walks
on non-amenable graphs. In §3 we prove Proposition 1.3.

In §4 we prove the assertion of Theorem 1 in the transitive amenable setup (namely, that
λc = 0). The main tools used in §4 are borrowed from the study of percolation. Namely,
we consider the graph with vertex set V in which all vertices in V \ Ξ are isolated and
each pair of vertices u, v ∈ Ξ are connected if FC(u) = FC(v) (i.e., if eventually there is a
path of acquaintances between the walkers whose initial location is u and the ones whose
initial location is v). We wish to show that for every λ > 0 a.s. all u ∈ Ξ lie in the same
connected component (this is the same as saying Pλ[Con] = 1)

We show that this percolation process stochastically dominates an auxiliary translation-
invariant percolation process possessing insertion tolerance (see §2.3 for the relevant defi-
nitions), in which for each u ∈ Ξ the connected component of u is infinite. Using standard
machinery from the theory of percolation on transitive amenable graphs (see Theorem 4.1)
we deduce that the auxiliary percolation process a.s. has a unique infinite cluster. The
vertex set of the unique infinite cluster must be Ξ, as if some u ∈ Ξ does not lie in the
unique infinite cluster, then there would be more than one infinite cluster (as the cluster of
u is infinite, as is the cluster of every v ∈ Ξ). The aforementioned stochastic domination
implies that Pλ[Con] = 1.

In §5 we bound λc from above in the non-amenable setup. The idea of the argument is to
argue that if λ is sufficiently large, then any two friend clusters have a drift towards each
other. Clearly, if λ is large enough (in terms of the degree) this is true in the first step.
The idea is to exploit Poisson thinning, and to somehow use just a fraction of the walkers,
in a manner that guarantees that at each step we have a sufficient amount of “unused”
walkers to maintain a drift. The key fact used in the analysis is the exponential decay
(w.r.t. time) of the transition probabilities of the random walk.

In §6 we consider the d-ary tree and prove Theorem 2. Here we use a certain comparison
between the SN model with parameter λ and a Bernoulli bond percolation, with parameter
proportional to (λ/d)2, on a certain copy of T⌈d/2⌉ inside Td. This percolation is supercrit-

ical if λ > C
√
d, which by the nature of the comparison we establish, in turn implies the

supercriticality of the SN model.

In §7 we prove Theorem 3. Here we use a variant of an exploration process of Benjamini,
Nachmias and Peres [5] which they used to prove locality of the critical percolation prob-
ability for non-amenable graphs of large girth. Their analysis establishes some connection
between percolation and random walks, and hence it is perhaps not surprising that a
variant of it is useful also in our setup.

In §8 we conclude the proof of Theorem 1 by proving a general lower bound on λc in the
non-amenable setup. Here we explore the friend cluster in a way which we then dominate
by a branching random walk with mean offspring distribution 1 + 2λ. Such a branching
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random walk is known to be transient provided that 1 + 2λ 6 1/ρ [7], where ρ is the
spectral-radius of the corresponding walk (see §2.5 and §8 for definitions). Transience of
the branching random walk implies that a.s. there are some vertices which are never visited
by walkers in the friend cluster of the origin.

If we only considered paths of acquaintances which are monotone in time (as in the afore-
mentioned A + B 7→ 2B and frog models – see the discussion at page 3), then as we now
explain it would have been relatively easy to dominate the friend cluster via a branching
random walk with offspring distribution whose law is the same as that of 1 + X , where
X ∼ Pois(λ). For this consider the exploration process in which at each time unit t we
recruit to the exploration process (the yet unrecruited) walkers that met at time t one
of the walkers already recruited to the exploration process before time t. Using Poisson
thinning it is not hard to argue that each recruited walker contributes at each stage at
most Pois(λ) new walkers.

In §8 we describe a variant of this exploration process, which actually captures the evolution
of FC(o). Exploring directly the evolution of FCt(o) as time increases is counter-productive,
as it grows to rapidly and by Theorem 3 it becomes infinite in finite time. Instead we shall
explore the evolution of FC(o) in a slowed down fashion. At each stage we reveal two steps
of each previously recruited walker, one corresponds to moving forward in time, as above,
and the other corresponds to a step backwards in time. Namely, if a walker is recruited
to the exploration process at stage t, due to an acquaintance made at time s 6 t, then at
stage t + i (for i > 0) we reveal its location at time s + i (forward step) and if i 6 s also
its location at time s− i (backwards step).

Crucially, using reversibility (and the fact that the transition kernel P of the walk per-
formed by each particle is symmetric, i.e., it satisfies P (x, y) = P (y, x) for all x, y), if
(v0, v1, . . .) is a random walk, then (vt, vt−1, . . . , v1, v0) is also a random walk. That is, the
backwards evolution of each walker still has the law of a random walk. Thus we may think
of each recruited walker as two distinct particles, one corresponding to the forward trajec-
tory, and one to the backwards trajectory (from the time at which the walker was recruited
until time 0). This accounts for the multiplicative term 2 in 1 + 2λ above. Namely, we
dominate the exploration process via a branching random walk with offspring distribution
1 + 2X , where X ∼ Pois(λ).

Finally, in §9 we give a refinement of the lower bound on λc from §8 which is specialized
to the case where the holding probability is large. It is used to determine the asymptotic
behavior of λc(Td) as d → ∞ when the holding probability is 1/2, as described after the
statement of Theorem 2.

2 Preliminaries and additional notation

LSRW is defined as follows. If a walker’s current position is v, then the walker either stays
in its current position w.p. 1/2, which we refer to as the holding probability, or moves to
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one of the neighbors of v w.p. 1
2d
. We shall also consider the case of holding probability

1/(d+ 1) in which 1/(2d) and 1/2 above are both replaced by 1/(d+ 1).

2.1 Reversibility, Poisson thinning, stationarity of the occupation measure
and independence of the number of walkers performing different walks.

Let G = (V,E) be a regular graph. Then the transition kernel P of LSRW on G is
symmetric (i.e., P (x, y) = P (y, x) for all x, y ∈ V ) and so P t is also symmetric for all
t ∈ N. In other words, P is reversible w.r.t. the counting measure on V . We now establish
a certain independence property for walks in G, which in particular implies stationarity of
the occupation measure for the SN model.

A walk of length k in G is a sequence of k + 1 vertices (v0, v1, . . . , vk) such that for all
0 6 i < k either vi = vi+1 or {vi, vi+1} ∈ E. Let Γk be the collection of all walks of
length k in G. Throughout, we denote the set of walkers whose initial position is v by
Wv := {wv

1, . . . , w
v
Nv
}. We denote by wv

i (t) the position of the walker wv
i at time t. We

say that a walker wv
i performed a walk γ ∈ Γk if (wv

i (0), . . . ,w
v
i (k)) = γ. For a walk

γ = (γ(0), . . . , γ(k)) ∈ Γk for some k > 1, we denote p(γ) :=
∏k−1

i=0 P (γi, γi+1). This is
precisely the probability that some given walker w ∈ Wγ(0) performed the walk γ.

Let γrev be the reversal of γ ∈ Γk. That is γrev(i) = γ(k − i) for all 0 6 i 6 k.
Then by reversibility p(γ) = p(γrev). We denote the number of walkers whose position
at time t is v by Yv(t). By reversibility, for all v ∈ V and t > 0 we have Eλ[Yv(t)] =∑

u∈V Eλ[Yv(0)]P
t(u, v) = λ

∑
u∈V P

t(v, u) = λ. Thus by Poisson thinning:

Fact 2.1. Let G = (V,E) be a regular graph. Denote the number of walkers who performed
a walk γ (in the above sense) by Xγ. For every λ > 0, under Pλ we have that Xγ ∼
Pois(λp(γ)), for all t > 0 and γ ∈ Γt. Moreover, (Xγ)γ∈Γt are independent for each fixed
t > 0. Consequently, (Yv(t))v∈V are i.i.d. Pois(λ) random variables for each fixed t > 0.

2.2 Further notation, monotonicity and the regeneration Lemma

Let t ∈ Z+ ∪ {∞}. The acquaintances graph at time t, denoted by ACt(G) = (V,Et),
is a random graph in which two distinct vertices u, v ∈ V are connected by an edge iff

u
t↔ v. We denote AC(G) := AC∞(G). We denote the connected component of v in

ACt(G) by Ct(v). Note that FCt(v) =
⋃

u∈Ct(v)
Wu, where as before Wu is the set of

walkers which initially occupy vertex u. When clear from context, we omit G from the
notation. When we want to emphasize the density of the walkers we write ACλ

t (G). We
denote the collection of walkers which occupy vertex v (respectively, the set A ⊆ V ) at
time t by Wv(t) (respectively, WA(t)) and set WA := WA(0) =

⋃
a∈A Wa (this is the set of

walkers whose initial position is in A).

Proposition 2.2. Let G = (V,E) be a regular graph. There exists a probability space on
which the SN model on G is defined for all λ > 0 simultaneously, such that deterministi-
cally, for all t ∈ Z+ ∪ {∞} we have that ACλ1

t is a subgraph of ACλ2

t for all λ1 6 λ2.
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The construction is fairly straightforward and is very similar to the one in [3]. We present
it in the Appendix B for the sake of completeness.

Lemma 2.3. (Regeneration Lemma) Let G = (V,E) be an infinite d-regular graph. Let
Yv,B(t) be the number of walkers belonging to WB which are at vertex v at time t. Then
for every finite set A ⊂ V and each fixed t, (Yv,A∁(t))v∈V are independent Poisson r.v.’s,

where A∁ := V \ A is the complement of A. Moreover, limt→∞ infv Eλ[Yv,A∁(t)] = λ.

Lemma 2.4. Let G = (V,E) be an infinite, connected, regular graph. Let w := (w0,w1, . . .)
∈ V Z+. For t ∈ N ∪ {∞} let Nt(w) be the number of walkers not belonging to W

w0
which

for some i 6 t visited wi at time i. Then Nt(w) has a Poisson distribution for all t and
w whose mean (under Pλ) is at least cλ

√
t for some constant c. In particular, N∞(w) is

infinite a.s.

The proofs of the last two lemmas involve straightforward applications of Fact 2.1 combined
with the general bound supx,y∈V P

t(x, y) 6 C√
t+1

and are thus deferred to Appendix A.

2.3 Insertion tolerance, translation invariance, ergodicity.

We now show how the SN model on a graph G with a countable vertex set V can be viewed
as a long-range bond percolation process on G. This will allow us to use existing machinery
from percolation theory in our study of the SN model.

Let S := {{v, u} : v 6= u, v, u ∈ V }. The standard form of a probability space of a
long-range bond percolation process on G is ({0, 1}S,P,Fcylinder), where Fcylinder is the
the cylinder σ-algebra, the minimal σ-algebra w.r.t. which {x ∈ {0, 1}S : x(s) = 1} is
measurable for all s ∈ S. Each x ∈ {0, 1}S can be viewed as a graph graph(x) = (V,E(x)),
where s ∈ E(x) iff x(s) = 1, in which case we say s is open in the configuration x.
If x(s) = 0 we say that s is closed in the configuration x. For B ⊆ {0, 1}S we write
graph(B) := {graph(b) : b ∈ B}.
Let (Ω,P,F) be a probability space in which there exist zero-one valued random variables
(Zs)s∈S (S as above). This probability space gives rise to a (long-range bond) percolation
process on G as follows. For every ω ∈ Ω we construct a graph graph(ω) = (V,E(ω)) by
setting s ∈ E(ω) iff Zs(ω) = 1. Note that ω 7→ graph(ω) need not be bijective.

Several definitions which we soon give take a simple form when the percolation process
is given in the standard form. These definitions extend to the general case as follows.
There is a canonical correspondence between (Ω,P,F) and a probability space having
the standard form. For every ω ∈ Ω, we define ψ(ω) ∈ {0, 1}S by setting ψ(ω)(s) =
Zs(ω). For every B ∈ F set ψ(B) := {ψ(b) : b ∈ B} ⊆ {0, 1}S. Conversely, for every
x ∈ {0, 1}S we set ψ−1(x) := {ω ∈ Ω : ψ(ω) = x} and for every B ⊆ {0, 1}S we set
ψ−1(B) :=

⋃
x∈B ψ

−1(x). By abuse of notation, we identify the restriction of P to the
σ-algebra generated by (Zs)s∈S with the space ({0, 1}S,Pcylinder,Fcylinder), where for every
B ∈ Fcylinder, Pcylinder(B) := P(ψ−1(B)). That is, we identify x ∈ {0, 1}S and B ∈ Fcylinder
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with ψ−1(x) and ψ−1(B), respectively, and by abuse of notation write P(B) for P(ψ−1(B)).
In particular, we say that P satisfies one of the properties defined below if Pcylinder satisfies
this property.

For every x ∈ {0, 1}S and s ∈ S, we define x+s ∈ {0, 1}S by setting

x+s (s
′) :=

{
1 s′ = s,

x(s′) otherwise
.

That is, x+s is obtained from x by flipping the value at s to 1 if necessary, while keeping
the the configuration unchanged elsewhere. For every s ∈ S and B ⊆ {0, 1}S we define

B+
s := {b+s : b ∈ B}.

Note that graph(B+
s ) = {(V,E(b)∪{s}) : b ∈ B} (where as before graph(b) = (V,E(b)); In

other words, if we identify B+
s and B with collections of graphs, then the former is obtained

from the latter by adding to each graph in B the edge s, if it did not already appear in it).
We say that P is insertion tolerant (also known as having positive finite energy) if for all
B ∈ Fcylinder such that P(B) > 0 also P(B+

e ) > 0, for all e ∈ E.

Every ϕ ∈ Aut(G) acts on {0, 1}S (ϕ : {0, 1}S → {0, 1}S) via ϕ(x)(s) = x(ϕ(s)). Clearly,
graph(ϕ(x)) is isomorphic to graph(x). We say that an event A ∈ Fcylinder is translation
invariant if for all ϕ ∈ Aut(G) we have that A = ϕ(A), where ϕ(A) := {ϕ(a) : a ∈ A}. We
denote the σ-algebra of all translation invariant events by I. We say that P is translation
invariant if for all A ∈ Fcylinder we have that P(A) = P(ϕ(A)) for all ϕ ∈ Aut(G). When
the percolation process is defined via Bernoulli random variables (Zs)s∈S, this is equivalent

to the requirement that for all ϕ ∈ Aut(G) we have that (Zs)s∈S
d
= (Zϕ(s))s∈S, where

d
=

denotes equality in distribution. We say that P is ergodic if P(A) ∈ {0, 1} for all A ∈ I.

Proposition 2.5. Let G = (V,E) be an infinite connected vertex-transitive graph. Then
for all λ > 0 we have that the law of ACλ

t (G) is translation invariant and ergodic for all
λ > 0 and t ∈ Z+ ∪ {∞}.

When G is a Cayley graph, it is straightforward to see that ACλ
t (G) is a factor of i.i.d.’s

and hence is indeed translation invariant and ergodic. When G is only assumed to be
transitive one can still present ACλ

t (G) as a factor of i.i.d.’s, but this requires some care.
We defer the proof of Proposition 2.5 to Appendix C.

2.4 Couplings and stochastic domination

Let G = (V,E) be a graph. As before, let S := {{v, u} : v 6= u, v, u ∈ V }. Equip {0, 1}S
with the partial order 6, where x6y iff x(s) 6 y(s) for all s ∈ S. We say that A ∈ Fcylinder

is increasing if x ∈ A and x6y imply that also y ∈ A. For any two probability measures
on ({0, 1}S,Fcylinder), µ and ν, we say that µ stochastically dominates ν if µ(A) > ν(A)
for every increasing event A ∈ Fcylinder.
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Let (Xs)s∈S and (Ys)s∈S be Bernoulli random variables defined on the same probability
space (Ω,P,F). Let the marginal distributions of (Xs)s∈S and (Ys)s∈S under P be µ and
ν, respectively. Such a construction is called a coupling of µ and ν. It is well-known and
straightforward to show that if there exists such a coupling in which for all s ∈ S, Xs > Ys
P-a.s., then µ stochastically dominates ν. Thus by Proposition 2.2:

Proposition 2.6. For every underlying graph G for the SN model we have that for all
t ∈ Z+ ∪ {∞}, the law of ACλ2

t stochastically dominates the law of ACλ1

t for all λ1 6 λ2.

2.5 Non-amenability and the spectral radius

Let G = (V,E) be a connected infinite regular graph. Let π be the counting measure
on V . The space of L2 functions is given by ℓ2(V, π) := {f ∈ RV : ‖f‖2 < ∞}, where
‖f‖22 := 〈f, f〉 and 〈f, g〉 := ∑

v f(v)g(v)). Let K be a symmetric (i.e., K(x, y) = K(y, x)
for all x, y ∈ V ) transition kernel of a Markov chain (Xt)

∞
t=0 on V . We identify it with an

operator by setting (Kf)(x) :=
∑

yK(x, y)f(y) = Ex[f(X1)]. Its operator norm is given
by

‖K‖ := sup{‖Kf‖2
‖f‖2 : f ∈ ℓ2(V, π), f 6= 0} = sup{ 〈Kf,f〉

‖f‖2
2

: f ∈ ℓ2(V, π), f 6= 0} (2.1)

(e.g., [13, Ex. 6.7]). Let x, y ∈ V be arbitrary vertices. The spectral radius of K is

ρ(K) := lim sup
n→∞

[Kn(x, y)]1/n. (2.2)

It is standard that (see e.g., [13, p. 182-183]):

(1) The limit is independent of the choice of x, y.

(2) ρ(K) = ‖K‖.

(3) Kn(x, y) 6 [ρ(K)]n for all x, y and n > 0 (use Kn(x, y) = 〈Kn1x, 1y〉 and (2)).

Let 0 6 p < 1. Let Pp be the transition kernel of LSRW on G with holding probability
p (i.e., Pp = pI + (1 − p)P0, where P0 corresponds to simple random walk on G). Let
x, y ∈ V be arbitrary vertices. We denote the spectral radius of Pp by

ρp := ρ(Pp) = lim sup
n→∞

(P n
p (x, y))

1/n. (2.3)

We denote the spectral radius of the SRW by ρ(G) := ρ0. By (3) above

P n
p (x, y) 6 ρnp , for all x, y ∈ V and n > 0. (2.4)

Thus having ρp < 1 is equivalent to having uniform exponential decay of the transition
probabilities w.r.t. Pp. By (2) above, (2.1) and the fact that

〈Ppf, f〉 = p〈f, f〉+ (1− p)〈Pf, f〉
we have that

ρp = p+ (1− p)ρ(G), (2.5)

and so ρ(G) < 1 iff ρp < 1 for all p ∈ [0, 1).
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3 Proof of Proposition 1.3

Proof. We first note that if λc > 0 and 0 < λ < λc, then there exists a sequence
(un, vn)n∈N ⊂ V × V such that Pλ[FC(un) = FC(vn) and un, vn ∈ Ξ] 6 2−n, for all
n. By (both parts of) the Borel-Cantelli Lemma, Pλ-a.s. there exists some n such that
FC(un) 6= FC(vn) and un, vn ∈ Ξ. Indeed, on the one hand, a.s. there are only finitely
many n’s such that FC(un) = FC(vn) and un, vn ∈ Ξ, while on the other hand, a.s. there
are infinitely many n’s such that un, vn ∈ Ξ. Thus a.s. there exists some n such that
un, vn ∈ Ξ and FC(un) = FC(vn). Thus Pλ[Con] = 0, as desired.

Conversely, fix some λ > λc > 0. We shall show that Pλ[Con] = 1. By definition of
λc (and the monotonicity of the model w.r.t. λ)[1] there exists some p > 0 such that
infu,v Pλ′ [FC(u) = FC(v) | u, v ∈ Ξ] > p for all λ′ > λ+λc

2
. Fix some u, v ∈ V . Let us

condition on u, v ∈ Ξ. Let Br be the ball of radius r around u. Let Dt be the event
that there exist some k ∈ N and some u1 = u, u2, . . . , uk+1 = v all belonging to Bt such

that ui
t↔ ui+1 for all 1 6 i 6 k. Since Dt ր {u ∞∼ v} as t → ∞ (recall that a

path of acquaintances has a finite length) there exists a finite time t1 and some finite set
A1 ⊂ V (both may depend on u, v), such that w.p. at least p/2, there exists a path of
acquaintances between the walkers from Wu and Wv by time t1, which only uses walkers
from WA1

:= ∪w∈A1
Ww. We think of this as the “first trial” to connect the walkers in Wu

to those in Wv.

Using the regeneration Lemma we show that after each failed trial, there will be another
trial whose success probability is at least p/2, regardless of the information exposed in all
previous trials. All trials involve some finite set of walkers and a finite amount of time
(both may depend on the information exposed in previous trials).

Denote by Ya,1(t) the number of walkers not from WA1
which are at vertex a at time

t. By Lemma 2.3, there exists some s1 so that (Ya,1(s))a∈V stochastically dominate i.i.d.

Pois(λ2) random variables for all s > s1, where λ2 := λc +
3(λ−λc)

4
. We may assume

that s1 = t1 by increasing one of them if necessary. Pick some wu ∈ Wu and wv ∈ Wv

and let (wu(t))
∞
t=0, (wv(t))

∞
t=0 be the LSRWs they perform, respectively. Let Wa(t) be the

collection of walkers which are at vertex a at time t.

Repeating the same reasoning as before (with λ2 = λc +
3(λ−λc)

4
in the role of λ) yields

that there must exist some t2 > t1 and some finite set A2 ⊂ V (both may depend on
(wv(t1),wu(t1))) such that given the walks performed by the walkers in A1 := WA1

by
time t1 (and that the first trial failed) we have that (i)-(ii) below hold:

[1]Actually, we are using here also the fact that the Poisson(λ) distribution conditioned on being positive
is stochastically increasing in λ. To see this, consider the number of points in [0, 1] for a rate λ Poisson
process. Observe that conditioned on having at least 1 point, the location of the first point is stochastically
decreasing in λ. Given that the first point is at x the number of additional points has a Pois(λ(1 − x))
distribution (which is stochastically decreasing in x and increasing in λ). We leave the remaining details
to the reader.
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(i) The conditional probability that wu and wv have a path of acquaintances by time t2
which uses only walkers from (A2 \ A1) ∪ {wv, wu} where A2 := ∪a∈A2

Wa(t1), and
all the acquaintances along this path were made between time t1 and t2 (ignoring
possible earlier acquaintances if such occurred), is at least p/2.

(ii) (Ya,2(t2))a∈V stochastically dominate i.i.d. Pois(λ3) r.v.’s, where λ3 := λc +
5(λ−λc)

8

and Ya,2(t2) is the number of walkers, not from A1 ∪A2, which are at a at time t2.

It is clear how to continue. Namely, by induction on i one can argue that there exist ti+1

and finite sets A1, . . . , Ai+1 ⊂ V and Aj := ∪a∈Aj
Wa(tj−1) for j ∈ [i + 1] (where t0 := 0

and both ti+1 and Ai+1 may depend on (wv(ti+1),wu(ti+1)))) such that ti+1 > ti and given
the walks performed by the walkers in ∪j∈[i]Aj by time ti we have that (i)-(ii) below hold:

(i) The conditional probability that wu and wv have a path of acquaintances by time
ti+1 which uses only walkers in

(Ai+1 \ ∪i
j=1Aj) ∪ {wv, wu},

and all the acquaintances along this path were made between time ti and ti+1 (ignor-
ing possible earlier acquaintances if such occurred) is at least p/2.

(ii) (Ya,i+1(ti+1))a∈V stochastically dominate i.i.d. Pois(λi+2) random variables, where

λi+2 := λc+
(2i+1+1)(λ−λc)

2i+2 and Ya,i+1(ti+1) is the number of walkers, not from ∪j∈[i+1]Aj,
which are at a at time ti+1.

As each trial has success probability at least p/2, regardless of the result of the previous
rounds, a.s. one of the trials will be successful, where here success means that the event
from (i) occurs.

4 The amenable case

We shall utilize the following theorem, taken from [6], in our analysis of the amenable case.
We note that in [6] only the graphs Zd for d ∈ N (or some half spaces) were considered.
However their analysis can easily be extended to all amenable vertex-transitive graphs.

Theorem 4.1. Let G = (V,E) be an infinite connected vertex-transitive amenable graph.
Let (Ω,P) be a translation invariant long range bond percolation process on G possessing
insertion tolerance. Then P[there exists at most one infinite connected component] = 1.

For B ∈ Fcylinder and e ∈ E let B̂e := {(V, F ) : e ∈ F, F ⊇ F ′ for some (V, F ′) ∈ graph(B)}
be the collection of all graphs obtained by adding to each graph in graph(B) some collection
of edges containing e.
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Note that for all B ∈ Fcylinder and e = {u, v} ∈ E, by planting additional walkers at u and
v (this is done in the proof below) we see that

Pλ[AC ∈ graph(B)] > 0 =⇒ Pλ[AC ∈ B̂e] > 0.

The problem is that planting additional walkers at u and v might add more than just the
edge {u, v} to AC. Thus this idea cannot be used to establish insertion tolerance. In order
to utilize Theorem 4.1, we construct an auxiliary model, stochastically dominated by the
SN model, to which this idea applies. In order to ensure we can add to the obtained graph
with positive probability an edge e and only that edge, in the auxiliary model the planted
walkers can only make acquaintances at time 1.

Theorem 4.2. Let G = (V,E) be an infinite connected vertex-transitive amenable graph.
Then λc = 0.

Proof. Let λ > 0. We partition the particles into two independent sets, W1,W2 of density
λ/2 each. We may consider the evolution of the model only w.r.t. W1 (as if W2 did not
exist). Denote the obtained acquaintances graph w.r.t. W1 for time ∞ by H := (V,E1).
Denote the degree of G by d. We now partition W2 into d sets of density λ/(2d) as follows.
For v ∈ V let N(v) := {u ∈ V : {u, v} ∈ E} be the set of its neighbors. Let W i

v be the
particles in W i (where i ∈ {1, 2}) which initially occupy v. We partition it into d sets:
W(v, u) for u ∈ N(v). Let E2 ⊆ E be the collection of edges {u, v} ∈ E such that there is
some particle w ∈ W(v, u) and some particle w′ ∈ W(u, v) which met at time 1 (note that
this is always possible as we take the holding probability to be positive).

Let H1 := (V,E1∪E2). Note that by Poisson thinning the events {e ∈ E2} are independent
for different e ∈ E and thus H1 is insertion tolerant. The proof of translation invariance
of the SN model, with minor adaptations can easily be extended to show that the law of
H1 is translation invariant.

We may switch the roles of W1 and W2 in the above construction and now partition each
W1

v further into d sets Ŵ(v, u) for u ∈ N(v) to get: Ĥ := (V, Ê1) the acquaintances graph

for time ∞ defined only w.r.t. W2 and Ê2 ⊆ E the collection of {u, v} ∈ E such that there

is some particle w ∈ Ŵ(v, u) and some particle w′ ∈ Ŵ(u, v) which met at time 1. By

symmetry also H2 := (V, Ê1 ∪ Ê2) is insertion tolerant and translation invariant.

Clearly, H̃ := (V,E1 ∪ E2 ∪ Ê1 ∪ Ê2) is a subgraph of the (usual) acquaintances graph for
time ∞ (when the walkers are not partitioned into different sets). Thus it suffices to argue
that a.s. it has a unique infinite connected component containing all u ∈ Ξ = {v : Wv 6= ∅}.
It follows from Theorem 4.1 that both H1 and H2 a.s. have at most one infinite connected
component. Now if Wv 6= ∅, then W i

v 6= ∅ for some i ∈ {1, 2}. It is not hard to verify
that for all positive λ′, the SN model with particle density λ′ satisfies that every u ∈ Ξ
lies in an infinite connected component of the acquaintances graph for time ∞, as every
walker meets infinitely many other walkers by time ∞ (this follows from Lemma 2.4). By
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uniqueness it follows that every v such that W i
v 6= ∅ lies in the same infinite connected

component of Hi. As a.s. there is some v such that both W1
v 6= ∅ and W2

v 6= ∅ it follows

that H̃ has a unique infinite connected component containing all u ∈ Ξ.

5 An upper bound on the critical density in the non-amenable
setup.

Theorem 5.1. Let G = (V,E) be a d-regular connected infinite non-amenable graph.
Denote the spectral radius of LSRW with holding probability 1/(d + 1) (respectively, 1/2)
by ρ (respectively, ρ1/2). If the holding probability of the walks is 1/(d + 1) (respectively,

1/2) then λc 6 (d+ 1 + 2
1−ρ

) log 8 (respectively, λc 6
20 log d
1−ρ1/2

).

We first explain the main idea behind the proof of Theorem 5.1 in simple words, in a
slightly simpler setup. We concentrate here on the case that the holding probability is 1

d+1
.

Let u, v ∈ V . We want to bound the conditional probability, given that u ∈ Ξ (i.e., that
u is initially occupied), that the friend cluster of some walker w ∈ Wu eventually contains
some walker which visited v. (Note that this need not imply that u

∞∼ v. Thus in the proof
of Theorem 5.1 we will have to work with two “paths”, rather than one. Namely, we will
construct also a path starting from v in such a way that the two paths will collide.)

Note that the number of particles in Wu \ {w} does not have a Pois(λ) distribution. To
deal with this, in the proof of Theorem 5.1 we shall use the regeneration lemma. But for
the sake of the current discussion, let us assume that the walker w was planted at u at
time 0, so that Wu \ {w} ∼ Pois(λ). Pick some û1 ∼ u which is closer to v than u is. The
number of walkers from Wu \ {w} which crossed from u = u0 to û1 has a Pois(λ/(d+ 1))
distribution.

Fix some α 6 λ/(d+1) to be determined shortly. By Poisson thinning we can look at time
one at a subset W(1) of them whose size has a Pois(α) distribution (namely, by including
in it each walker which crossed from u0 to û1 at time 1 w.p. α/[λ/(d+1)] independently).
If it is not empty, we set u1 := û1, otherwise, we set u1 to be the location of w at time 1.

Assume by induction that we have defined the vertices u0, u1, . . . , ui and û1, . . . , ûi as well
as disjoint sets of walkers W(1), . . . ,W(i), such that

· For all j ∈ [i] the size of W(j) has a Pois(α) distribution (given the information
exposed up to the time W(j) was defined; i.e., given W(1), . . . ,W(j − 1) as well as
u0, u1, . . . , uj−1 and û1, . . . , ûj−1).

· For all j ∈ [i] the set W(j) is a subset of the set of walkers which was at uj−1 at time
j − 1 and then moved to ûj at time j, where ûj is some neighbor of uj−1 which is
closer to v than uj−1 is.
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· If |W(j)| > 0 we set uj = ûj. Otherwise, we set uj to be a vertex closest to v which
is occupied at time j by some walker from ∪j−1

m=0W(m) (where W(0) := {w}).

Observe that if α is sufficiently large, then the sequence (ui : i ∈ Z+) has a positive drift
towards v. In order for this construction to work, it is necessary that the distribution
of the number of walkers which are at ui at time i, which do not belong to ∪i

m=0W(m),
will stochastically dominate the Pois(α(d + 1)) distribution. In fact, it is not hard to
prove by induction that for all a1, . . . , ai, â1, . . . , âi−1 ∈ V , conditioned on u0 = a0, u1 =
a1, . . . , ui = ai and û1 = â1, . . . , ûi−1 = âi−1, the aforementioned law is a Poisson with
parameter λ − α

∑i
j=1 pj, where pj = P i−j(aj , ai) is the probability of a given walker

from W(j) to be at ui at time i. Clearly, pj 6 supx,y P
i−j(x, y) 6 ρi−j . We get that

λ − α
∑i

j=1 pj 6 λ − α/(1 − ρ), and thus the construction is indeed possible, provided
that λ is sufficiently large. Crucially, after conditioning on u0 = a0, u1 = a1, . . . , ui = ai
and û1 = â1, . . . , ûi−1 = âi−1 as above, using the induction hypothesis, the induction step
requires only a standard use of Poisson thinning.

Proof of Theorem 5.1. First consider the case that the holding probability is (d + 1)−1.
Fix some u, v ∈ Ξ and λ > (d+1+ 2

1−ρ
) log 8. We shall construct two random paths (more

precisely, two sequences of vertices) γ, γ′ such that the walkers which are at γt (respectively,
γ′t) at time ℓ+ t (for some ℓ to be determined below) are in FC(v) (respectively, FC(u)).

Denote the natural filtration of (γt, γ
′
t)t > 0 by Ft. We will show that there exists some c > 0

such that for all t on the event d(γt, γ
′
t) > 0 we have Eλ[d(γt+1, γ

′
t+1)−d(γt, γ

′
t) | Ft] 6 − c,

(where d(·, ·) is the graph distance, i.e., the paths have a bias towards each other). This
clearly implies that given that u, v ∈ Ξ, we have that FC(u) = FC(v) Pλ-a.s.

Fix some α > log 8 such that λ > (d + 1 + 2
1−ρ

)α. At time 0 expose some wv ∈ Wv =:
A0, wu ∈ Wu =: B0 and their locations at time ℓ and set γ0 and γ′0 to be these locations,
resp., where ℓ is sufficiently large so that the distribution of the number of walkers, not
belonging toA0∪B0 at the different vertices of G at all times t > ℓ, stochastically dominates
that of i.i.d. Pois(λ′) random variables, where λ′ := α(d+ 1 + 2

1−ρ
). In other words,

inf
t > ℓ,a∈V

κt(a) > λ′, where κt(a) := λ(1− P t(u, a)− P t(v, a)). (5.1)

Recall that for v ∈ V and t ∈ Z+ we define Wv(t) as the set of walkers occupying v at time
t. For an oriented edge (possibly a loop) e = (e−, e+) let

We(t) := We−(t) ∩We+(t + 1)

be the collection of all walkers whose positions at times t and t + 1 are e− and e+, re-
spectively. Clearly, it suffices to describe the construction of γ, γ′ only until the first k for
which γk = γ′k. We define γ, γ′ inductively as follows. Assume that (γi, γ

′
i)
k−1
i=0 and some

collection of oriented edges e1, f1, . . . , ek−1, fk−1, have already been defined and that for
all 1 6 i < k in the i-th step of the construction we first define ei, then (as described in
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(3) below) expose a certain set of walkers Ai ⊆ Wei(ℓ+ i− 1) and define γi (as described
below in (2)), after which we define fi, expose a set of walkers Bi ⊆ Wfi(ℓ + i − 1) and
finally define γ′i, such that the following hold (the construction is described only in (2) and
(3), while (4)-(5) are included as part of the induction hypothesis only for the purpose of
facilitating the induction step):

(1) γi 6= γ′i for all i < k (otherwise, the construction is concluded before stage k).

(2) For all 1 6 i < k, the edge ei = (e−i , e
+
i ) is some oriented edge in G of the form ei =

(γi−1, vi) satisfying that d(vi, γ
′
i−1) = d(γi−1, γ

′
i−1)−1 (i.e., vi is some neighbor of γi−1

which is closer to γ′i−1 than γi−1 is). The sets A0,B0, . . . ,Ai−1,Bi−1 have already been
defined, as described in (3) below. The set Ai is then defined inductively in a manner
described in (3) below so that given |A0|, |B0|, | . . . |, |Ai−1|, |Bi−1|, e1, f1, . . . , ei−1, fi−1

and (γj, γ
′
j)

i−1
j=0

Ai ⊆ Ri := Wei(ℓ+ i− 1) \
i−1⋃

j=0

(Aj ∪ Bj) and |Ai| ∼ Pois(α). (5.2)

If |Ai| > 1, we set γi = vi = e+i . Otherwise, we define γi to be some vertex occupied
at time ℓ+ i by some walker in ∪i−1

j=0Aj of minimal distance from γ′i−1.

Similarly, after defining γi, we set fi = (f−
i , f

+
i ) to be of the form fi = (γ′i−1, ui)

satisfying that d(γi, ui) = d(γi, γ
′
i−1) − 1 if γi 6= γ′i−1; otherwise, we set ui := γi. As

before, we then define the set Bi inductively in a manner described in (3) below so
that given |A0|, |B0|, | . . . |, |Ai−1|, |Bi−1|, |Ai|, e1, f1, . . . , ei−1, fi−1, ei, γi and (γj, γ

′
j)

i−1
j=0

Bi ⊆ R′
i := Wfi(ℓ+ i− 1) \

i−1⋃

j=0

(Aj ∪ Bj) and |Bi| ∼ Pois(α). (5.3)

If |Bi| > 1, we set γ′i = ui = f+
i . Otherwise, we define γ′i to be some vertex occupied

at time ℓ+ i by some walker in ∪i−1
j=0Bj of minimal distance from γi.

(3) The sets A1,B1, . . . ,Ak−1,Bk−1 are all disjoint and their sizes are i.i.d. Pois(α). De-
note

βi(y) :=
i−1∑

j=1

(
Eλ[|Aj|]P i−j−1(e+j , y) + Eλ[|Bj|]P i−j−1(f+

j , y)
)

= α
i−2∑

j=0

(
P j(e+i−j−1, y) + P j(f+

i−j−1, y)
)
6 2α

∑

j > 0

ρj = 2α/(1− ρ).

(5.4)

Let Ri and R′
i be as in (5.2)-(5.3). Let κt(·) and βi(·) be as in (5.1) and (5.4).

Then, for all i < k given e1, f1, . . . , ei−1, fi−1, we have that |Ri−1| and |R′
i−1| are
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independent Poisson r.v.’s,

E[|Ri| | e1, f1, . . . , ei−1, fi−1, ei] = P (e−i , e
+
i )[κi+ℓ−1(e

−
i )− βi(e

−
i )]

> 1
d+1(λ

′ − 2α/(1− ρ)) > α,

E[|R′
i| | e1, f1, . . . , ei, fi] = P (f−

i , f
+
i )[κi+ℓ−1(f

−
i )− βi(f

−
i )] > α.

(5.5)

For all i < k, the set Ai (respectively, Bi) is a random subset of Ri (respectively, R′
i)

obtained from it by including in Ai (respectively, Bi) every element of Ri (respec-
tively, R′

i) independently w.p. pi := α/E[|Ri| | e1, f1, . . . , ei−1, fi−1, ei] (respectively,
p′i := α/E[|R′

i| | e1, f1, . . . , ei, fi]). Note that by (5.5) pi, p
′
i 6 1.

(4) For i < k and every walk w := (w0, . . . ,wℓ+i) with w0 /∈ {u, v}, given e1, f1, . . . ,
ei−1, fi−1, the number Q

w
of walkers not belonging to

⋃i−1
j=0(Aj∪Bj) which performed

the walk w has a Poisson distribution.[2] Moreover, for each fixed i < k, given
e1, f1, . . . , ei−1, fi−1, the Qw

’s (where w is as above, of length ℓ+ i).

(5) Consequently, for all i 6 k the number U i
y of walkers not belonging to

⋃i−1
j=0 (Aj ∪Bj)

which are at vertex y at time ℓ+ i−1, has a Poisson distribution (by (4)) with mean
κi+ℓ−1(y) − βi(y). Finally, for each fixed i 6 k we have that (U i

y)y∈V are mutually
independent.

In order to define ek,Ak, γk, fk,Bk, γ
′
k (in this order) we apply steps (2) and (3) with k in

the role of i. It is not hard to see that by the induction hypotheses (3)-(5) together with
Poisson thinning and (5.5) (with i = k), this extends the construction by one step so that
(2)-(5) remain valid for k + 1 in the role of k. We leave the details to the reader.

Note that d(γk, γ
′
k−1)− d(γk−1, γ

′
k−1) 6 1 and that also d(γk, γ

′
k)− d(γk, γ

′
k−1) 6 1. By step

(2) the first increment equals −1 w.p. at least P(Pois(α) > 0) = 1 − e−α > 7/8 and the
same holds for the second increment, unless γk = γ′k−1, in which case the second increment
equals 0 w.p. at least 1− e−α > 7/8. Thus γ and γ′ are indeed biased towards each other
as desired.

We now consider the case of holding probability 1/2. We explain the necessary adaptations
leaving some of the details to the reader. Set λ = 20 log d

1−ρ1/2
. As before let γ0 and γ′0 be

the positions of wv and wu at time ℓ, respectively, where ℓ is so that the distribution of
the number of walkers, other than wu and wv, at the different vertices of G at time ℓ
stochastically dominates that of i.i.d. Pois(λ′) for some λ′ > 20 log d

1−ρ1/2
− 1.

[2] The exact expression for the mean shall not be used in what comes. It is given by λp(w)
∏

j∈Iw
(1−

pj)
∏

j′∈Jw

(1− p′j′ ), where pj and p′j are as in (3) and p(w) is as in §2.1, and where

Iw := {1 6 j < i : (wℓ+j−1,wℓ+j) = ej} and

Jw := {1 6 j < i : (wℓ+j−1,wℓ+j) = fj}.
.

19



Assume that for some collection of oriented edges e1, f1, . . . , ek−1, fk−1 the sequence (γi, γ
′
i)
k−1
i=0

has been defined and that in the i-th step of the construction we exposed sets of walkers

Ai ⊆ Wei(ℓ+ i− 1),

Ci ⊆ W(γi−1,γi−1)(ℓ+ i− 1)= Wγi−1
(ℓ+ i− 1) ∩Wγi−1

(ℓ+ i),

Bi ⊆ Wfi(ℓ+ i− 1) and

Di ⊆ W(γ′
i−1

,γ′
i−1

)(ℓ+ i− 1) = Wγ′
i−1

(ℓ+ i− 1) ∩Wγ′
i−1

(ℓ+ i),

so that

(i) A1,B1, C1,D1, . . . ,Ak−1,Bk−1, Ck−1,Dk−1 are all disjoint;

(ii) |A1|, |B1|, . . . , |Ak−1|, |Bk−1| are i.i.d. Pois(2d−1 log d);

(iii) |C1|, |D1|, . . . , |Ck−1|, |Dk−1| are i.i.d. Pois(4 log d) and

(iv) |A1|, |B1|, |C1|, |D1|, . . . , |Ak−1|, |Bk−1|, |Ck−1|, |Dk−1| are independent.

We set ek = (γk−1, vk) to be some oriented edge in G so that d(vk, γ
′
k−1) = d(γk−1, γ

′
k−1)−1

and expose a subset Ak of Wek(ℓ+ k) and a subset Ck of Wγk−1
(ℓ+ k − 1) ∩Wγk−1

(ℓ+ k),
disjoint of the previously exposed sets of walkers, so that |Ak| ∼ Pois(2d−1 log d) and
|Ck| ∼ Pois(4 log d). A similar calculation as in the case of holding probability 1/(d + 1)
shows that one can construct such (Ak, Ck). We defer the calculation to the end of the
proof, as to not disrupt the flow of the argument.

If |Ak| > 0 we set γk = vk. If |Ak| = 0 but |Ck| > 0 we set γk = γk−1. If |Ak| = 0 = |Ck|,
we define γk to be some vertex occupied at time ℓ+ k by some walker in ∪k−1

i=0 (Ai ∪ Ci) of
minimal distance from γ′k−1.

We define Bk,Dk and γ′k in an analogous manner (with γk here taking the role of γ′k−1 in
the construction of Ak, Ck and γk). Finally, note that each of the increments d(γk, γ

′
k−1)−

d(γk−1, γ
′
k−1) and d(γk, γ

′
k)− d(γk, γ

′
k−1) is in {0,±1} and has mean at most

−1× Pλ[|Ak| > 1] + 1× Pλ[|Ak| = 0]Pλ[|Ck| = 0]

= −P[Pois(2d−1 log d) > 1] + P[Pois(2d−1 log d) = 0]P[Pois(4 log d) = 0]

= −(1− e−2d−1 log d) + e−2d−1 log de−4 log d < −d−1 log d+ d−4 < 0.

To conclude the proof we now provide a sketch proof for the existence of (Ak, Ck) and
(Bk,Dk) as above. The key calculation is that by induction, given e1, f1, . . . , ek−1, fk−1, for
all i < k the loss to the expected number of particles at γk−1 at time k−1+ℓ due to the fact
we are not counting particles from Ai,Bi, Ci,Di is respectively, 2d

−1 log d×P k−i(e+i , γk−1),
4 log d×P k−i(e−i , γk−1), 2d

−1 log d×P k−i(f+
i , γk−1) and 4 log d×P k−i(f−

i , γk−1). Summing
over these four sets and over i < k, the total contribution is at most

(8 log d+ 4d−1 log d)/(1− ρ1/2).
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Thus given e1, f1, . . . , ek−1, fk−1, the the number of walkers at γk−1 at time k− 1+ ℓ which
do not belong to either of the sets A1,B1, C1,D1, . . .Ak−1,Bk−1, Ck−1,Dk−1 has a Poisson
distribution with mean at least λ′−(8 log d+4d−1 log d)/(1−ρ1/2) > 8 log d. The existence
of (Ak, Ck) now follows from Poisson thinning. The proof of the existence of (Bk,Dk) is
analogous.

6 The d-regular tree - Proof of Theorem 2.

Let us first explain the main idea behind the proof of Theorem 2. As explained below, the
lower bound on λc follows from Theorem 8.1. So our goal is to sketch the proof that for
some C, p > 0, when λ > C

√
d we have that for all u, v ∈ V we have that u

∞∼ v w.p. at
least p. We now sketch a construction from which we deduce that with positive probability
there are infinitely many times t at which u is visited by some walker w which is at time t
in the friend cluster of some walker in Wu, and t is the first time that w visits u.

With slightly more care, in the proof below we manage to perform a small modification of
the construction, and deduce that in fact w.p. at least p there are infinitely many times t
as above at which we have that in addition v is visited by some walker w′ which is at time
t in the friend cluster of some walker in Wv, and t is the first time that w′ visits v. Clearly,
on this event a.s. u

∞∼ v (as at each such time t we get two new walkers at u and v, and
these pair of walkers have some probability of meeting each other).

For simplicity assume that d := 2ℓ + 1 is odd and that ℓ > 2. Set u as the root of Td.
We say that a child of u is a left child if it is one of the ℓ + 1 leftmost children of u and
otherwise it is a right child. Similarly, for z 6= u we say that a child of z is a left child
if it is one of the ℓ leftmost children of z and otherwise it is a right child. Let T be the
induced tree on u and the vertices which are right children and the path between them
and u contains only right children (apart from u).

Observe that T is an ℓ-ary tree. For every site z in T we may look at the subtree Tz

containing z, its left children and all of their descendants. The number of walkers whose
initial position lie in Tz to reach z for the first time at some time t, denoted by Zz(t), can
be shown to have a Poisson distribution with parameter at least cλ. Moreover, for different
times we have independence, by Poisson thinning. Moreover, as the trees Tz are disjoint
for different z’s in T we see that Zz := (Zz(t) : t ∈ Z+) are independent for different z’s.
(This follows from the requirement that the initial position of the walker is in Tz.)

Now, one scenario in which u is occupied at time 2t by a walker belonging at time 2t to
the friend cluster some walker in Wu is that for some path (u0 = u, u1, . . . , ut) in T we
have that for all i ∈ {0, . . . , t− 1}, Zui

(i) > 0 and one of the corresponding walkers moved
from ui to ui+1 at time i + 1, while for all i ∈ {1, . . . , t}, Zui

(2t − i) > 0 and one of the
corresponding walkers moved from ui to ui−1 at time 2t− i+ 1.

As on each edge {ui, ui+1} we have two independent requirements, each occurring w.p. at
least P[Pois(cλ/(d + 1)) > 0], we get that if λ > C

√
d for some sufficiently large C, then
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we can lower-bound the probability that such a path (u0 = u, u1, . . . , ut) as in the previous
paragraph exists in T , by the probability of the event that the cluster of u in a Bernoulli
bond percolation on T (which is an ℓ-ary tree) with parameter, say 2/(ℓ − 1), contains
some vertex at distance t from u. This probability is at least the probability that u is in
an infinite open cluster, which is positive.

The difficulty is that we seek to argue that with positive this happens for infinitely many
t’s. However, this strengthening of the previous conclusion requires only a few simple
observations concerning Bernoulli percolation on trees, which we defer for the proof of
Theorem 2.

Proof of Theorem 2. The lower bound on λc follows from Theorem 8.1 and the fact that the
spectral radius of SRW on Td is ρ(Td) =

2
√
d−1
d

(cf. [13, Theorem 6.10]) and so by (2.5) the

spectral radius of LSRW with holding probability 1/(d+1) on Td is
1

d+1
+ d

d+1
2
√
d−1
d

. We now
prove the upper bound. By Theorem 5.1 we may assume that d > 4. Fix some u, v ∈ V .
We shall show that if λ > C

√
d for some absolute constant C to be determined later, then

Pλ[FC(u) = FC(v) | u, v ∈ Ξ] > c1 for some constant c1 = c1(d) > 0 independent of (u, v).

Throughout the proof we condition on the event that u, v ∈ Ξ. We now set u to be the root
of Td. This induces a partial order 6 , where a 6 b iff the path from b to u goes through
a. The children of a ∈ V are {b : d(a, b) = 1, a 6 b} = {b ∼ a : d(b, u) = d(a, u) + 1}
(where d(•, •) is the graph distance). Denote ℓ := ⌊(d− 1)/2⌋.
For each a ∈ V we distinguish between its ℓ leftmost children, denoted by La, and its
d − ℓ− 1 rightmost children Ra (apart from a = u, for which Ru is taken to be the d − ℓ
rightmost children of u). Let R be the collection of all vertices such that the path between
them and u is contained in {u} ∪ (∪a∈VRa). By symmetry, we may assume that v ∈ R.

For each a ∈ R we denote by Ta,L the tree rooted at a with vertex set

Va := {a} ∪ (∪b′∈La{b : b′ 6 b})

(where Ta,L is the induced graph on this set; in other words, this is the tree containing
a and its left children, along with all of their descendants). For each a ∈ R and t > 1
let Wa,L(t) be the set of walkers whose initial position is in Va \ {a} that reached a for
the first time at time t. Set Wa,L(0) := Wa. For a ∈ R and b ∼ a let W(a,b),L(t) be the
set of walkers in Wa,L(t) whose location at time t + 1 is b (i.e., this is the set of walkers
whose initial position is in Va \ {a}, who reached a for the first time at time t and moved
to b in their next step). As Ta,L and Ta′,L are disjoint for all a 6= a′ ∈ R we have that
(W(a,b),L(t))a,b,t: a∈R,b∼a,t∈Z+

are disjoint. Hence by Poisson thinning the following holds:

(1) (|W(a,b),L(t)|)a,b,t: a∈R,b∼a,t∈Z+
are independent and for each fixed t, we have that

(|W(a,b),L(t)|)a,b: a∈R,b∼a are i.i.d. Pois(αt), where by reversibility (used in the second
equality)

αt(d+ 1)/λ =
∑

b∈Va

Pb(Ta = t) = Pa(S1, . . . , St ∈ Va \ {a}),
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where (Sk)k > 0 is a LSRW (with holding probability 1
d+1), Ta := inf{s : Ss = a} is

the hitting time of a and Pb denotes the law of a LSRW (with holding probability
1

d+1) started from b.

Thus if C is taken to be sufficiently large we get that

αt >
λ

d+1Pa({Sk : k > 1} ⊆ Va \ {a}) > | log
(
1− 2/

√
d− ℓ− 1

)
|, (6.1)

where we have used the fact that Pa({Sk : k > 1} ⊆ Va \ {a}) is bounded from below,
uniformly in d and that ℓ = ⌊(d− 1)/2⌋ and so | log

(
1− 2/

√
d− ℓ− 1

)
| 6 C0/

√
d.

Denote by Tu = (Uu, Eu) and Tv = (Uv, Ev) the induced graphs on

Uu := {a ∈ R : v 
 a} and Uv := {a ∈ R : v 6 a}, (6.2)

respectively. Crucially, by construction, Uu and Uv are disjoint.

For each s > 0, a ∈ R and a′ ∼ a we denote by J(a,a′)(s) the indicator of |W(a,a′),L(s)| > 0.
Note that by (6.1)

p := inf
t>0

(1− e−αt) > 2/
√
d− ℓ− 1. (6.3)

By (1) we have that

(2) The joint distribution of (J(a,a′)(s))a,a′,s:a∈R,a′∼a,s > 0 stochastically dominates that of
independent Bernoulli(p) random variables.

We say that u (respectively, v) is good at time 2t if there exists some path (γ0 = u, γ1, . . . , γt)
in Tu (respectively, (γ0 = v, γ1, . . . , γt) in Tv) such that both J(γi,γi+1)(i) = 1 and J(γi+1,γi)(2t−
i− 1) = 1, for all 0 6 i 6 t− 1. We denote the indicator of u (respectively, v) being good
at time 2t by Zu(2t) (respectively, Zv(2t)). Note that if u (respectively, v) is good at time
2t then there is some walker w ∈ FC2t(u) (respectively, FC2t(v)) which reached u (respec-
tively, v) for the first time at time 2t. Thus on the event that both u and v are good
(simultaneously) for infinitely many even times, we get that a.s. FC(u) = FC(v). Hence
in order to conclude the proof, it suffices to show that u and v are good (simultaneously)
for infinitely many even times with probability at least q > 0, for some q independent of
u, v. We do so by comparison with super-critical Bernoulli bond percolation (on Tv and
Tu) which we now define.

Bernoulli bond percolation on a graph H = (U, F ) with density q is a random graph
Hq := (U, Fq) such that Fq ⊆ F is defined by including in it every edge f ∈ F independently
w.p. q. Let

pc(H) := inf{q : Hq has an infinite connected component with positive probability}

be the critical density for Bernoulli bond percolation on H . Then

pc(Tu) = 1/(d− ℓ− 1) = pc(Tv).
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Moreover, for all q > pc(Tu) we have that a.s. (Tu)q satisfies that

pc((Tu)q) = pc(Tu)/q = pc((Tv)q)

(where (Tu)q is the graph obtained from Bernoulli bond percolation with density q on Tu).

In fact, for every q >
√
pc(Tu) we have that

(3) The connected component C(Tu)q(u) of u in (Tu)q is infinite with positive probability.

(4) Let T̄ := ((Tu)q)q be the graph obtained by Bernoulli bond percolation with density
q on (Tu)q. Given that |C(Tu)q(u)| = ∞, the connected component CT̄ (u) of u in T̄
is infinite with positive probability.

(5) There exist β, δ > 0 such that w.p. at least β over the choice of (Tu)q, the graph (Tu)q
satisfies that |CT̄ (u)| = ∞ w.p. at least δ, conditioned on (Tu)q.

The same applies for Tv (with v in the role of u above). Note that by (6.3)

p >
√
pc(Tu). (6.4)

Let b ∈ Uu (respectively, ∈ Uv) and b
′ ∈ Rb, where Uu and Uv are as in (6.2). Denote the

distance of b from u (respectively, v) by r. We say that the edge {b, b′} is forward good if
J(b,b′)(r) = 1 and that it is backwards good for time 2t (for t > r) if J(b′,b)(2t− r − 1) = 1.
This gives raise to the following random subgraphs of Tu = (Uu, Eu) and Tv = (Uv, Ev):

Let T̃u (respectively, T̃v) be a graph with vertex set Uu (respectively, Uv) and edge set

Ẽu := {e ∈ Eu : e is forward good} (resp. Ẽv := {e ∈ Ev : e is forward good}).

Let T̃u,t := (Uu, Ẽu,t) be the random subgraph of T̃u, defined by setting Ẽu,t to be the
collection of all e ∈ Eu,t which are backwards good for time 2t, where Eu,t is the set of
edges in Tu having both end-points within distance t from u. Define T̃v,t := (Uv, Ẽu,t) in
an analogous manner. Note that:

(6) T̃u and T̃v are independent (as Uv ∩ Uv = ∅) and (by (2)) T̃u (respectively, T̃v)
stochastically dominates Bernoulli bond percolation on Tu (respectively, Tv) with
parameter p, where p is as in (6.3).

(7) The collection of random forests (T̃w,t)w,t:w∈{u,v},t > 1 are conditionally mutually inde-

pendent, given (T̃u, T̃v) (this follows from (2)).

(8) Given Ẽu ∩ Eu,t, the joint law of (1e∈Ẽu,t
)e∈Ẽu∩Eu,t

stochastically dominates that of
i.i.d. Bernoulli p random variables, where p is as in (6.3) (this follows from (2)).
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We say that T̃u (respectively, T̃v) is δ-excellent if the connected component of u (respec-
tively, v) in T̃u (respectively, T̃v) is infinite and the probability that the connected com-
ponent of u (respectively, v) in a Bernoulli bond percolation on T̃u (respectively, T̃v) with
parameter p is infinite is at least δ. Note that by (6), the event that T̃u is δ-excellent
is independent of the event that T̃v is δ-excellent. By (3)-(6) and (6.4) there exist some
β, δ > 0 (independent of (u, v)) so that T̃u and T̃v are both δ-excellent with probability at
least β.

By (7)-(8), conditioned on T̃u and T̃v both being δ-excellent, the conditional joint distribu-
tion of (Zw(2t))w,t:w∈{u,v},t>0 stochastically dominates that of i.i.d. Bernoulli(δ) r.v.’s, and
so by the Borel-Cantelli Lemma indeed a.s. Zu(2t) = 1 = Zv(2t) for infinitely many t’s, as
desired.

Indeed, by (7) it suffices to show that Pλ[Zw(2t) = 1 | T̃w is δ-excellent] > δ, for each
w ∈ {u, v} and t > 0. By (8), for each fixed t, (given T̃u) the (conditional) probability that
u is connected in T̃u,t to some vertex of distance t from it (i.e., that Zu(2t) = 1) is at least
the probability that the connected component of u in (T̃u)p is infinite, which by definition of
the notion of δ-excellence is at least δ, given that T̃u is δ-excellent (an analogous statement
holds for v).

7 Proof of Theorem 3

Before turning to the proof of Theorem 3 let us explain our strategy. Consider the following
naive exploration process. Expose the first t steps of some walker w ∈ Wv for some v ∈ V .
Let G1 be the set of walkers that w met by time t. Pick t = t(λ, ρ) so that the expectation
of |G1| is at least some large constant L (uniformly in v). Then sequentially expose the
first t steps of the walks performed by the walkers in G1 and let G2 be the collection of
walkers not in G1∪{w} which met some walker from G1 by time t. Inductively, let Gk+1 be
the collection of walkers not in (∪k

i=1Gi) ∪ {w} which met some walker from Gk by time t.

The problem with this naive approach is that it is not clear that for large k, “typically”:
for w′ ∈ Gk (or even for at least some fixed small fraction of w′ ∈ Gk) we have that the
expectation of the contribution of w′ to |Gk+1| is large, because the contribution is restricted
to walkers not in (∪k

i=1Gi) ∪ {w} (plus we need to avoid double-counting contributions of
different walkers in Gk, corresponding to the case that two or more walkers in Gk discover
the same walker). However, as follows from our analysis below, if ρ is sufficiently small
(some precise version of) the statement of the previous sentence indeed holds.

Below we consider “s-walks” (defined by looking at a walk only at times which are multiples
of s for some sufficiently large s = s(ρ)) in order to obtain walks with sufficiently small
spectral radius. Instead of the aforementioned naive aforementioned exploration process,
we work with a variant of an exploration process due to Benjamini, Nachmias and Peres [5]
which allows us to perform effectively the bookkeeping of which “active but still unchecked”
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walkers (i.e., walkers already recruited to the exploration process, such that the s-walk
performed by them is yet unexposed) are likely to recruit “many” new walkers to the
exploration process.

Proof. Recall that tC,λ := ⌈ C
λ(1−ρ)

⌉, where ρ is the spectral radius of LSRW on G = (V,E).
Fix some v ∈ V . By a standard use of Kolmogorov’s 0-1 law, it suffices to show that
Pλ[|FCtC,λ

(v)| = ∞] > 0, provided that C is sufficiently large. In particular, we may
condition on v ∈ Ξ. Denote

s := ⌈8K/(1− ρ)⌉ and M := ⌈32K/λ⌉, where K > 3

shall be determined later. Consider the random walk obtained by replacing the transition
kernel P by Q := P s (i.e., every step of this walk is s steps of the original LSRW). We

refer to such walks as s-walks and denote it by (S
(s)
t )t > 0 and the corresponding probability

measure (for initial state u) by P
(s)
u (similarly, when the initial distribution of the walk is

µ we write P
(s)
µ ).

Our strategy is to expose a subset of FCsM(v) via a variant of an exploration process
due to Benjamini, Nachmias and Peres [5]. Recall that Wu(t) is the set of walkers which
are at vertex u at time t. Our exploration process produces increasing sets of space-time
coordinates {Aℓ}ℓ > 0, which are subsets of V × {st : 0 6 t 6 M} so that for all ℓ and all
(u, st) ∈ Aℓ we have that Wu(st) ⊆ FCsM(v). Start with A0 := {(v, 0)}. We proceed by
exposing the first sM steps of the walk (wv(i))0 6 i 6 sM performed by some walker in Wv

and set
A1 := {(wv(ts), ts) : 0 6 t 6M, wv(ts) /∈ {wv(t

′s) : t′ < t}}
(in simple words, these are the space time co-ordinates of the first M steps of the corre-
sponding s-walk, after we omit repetitions in the space co-ordinate), C1 := {(v, 0)} and
U1 := A1 \ C1. We will construct inductively sets Uℓ, Cℓ, Aℓ := Uℓ ∪ Cℓ and

Aℓ := {u : (u, st) ∈ Aℓ for some t} (7.1)

such that A1 ⊆ A2 ⊆ · · · . To avoid double-counting (which may arise since Wu(st) and
Wu′(st′) need not be disjoint), we consider certain subsets of the Wu(st)’s. Set

Wℓ
u(st) := Wu(st) \

⋃

a∈Aℓ,t′∈Z+: (a,t′)6=(u,t)

Wa(st
′). (7.2)

That isWℓ
u(st) is the collection of walkers occupying u at time st which avoid Aℓ throughout

their s-walks, apart from at time t of the s-walk (that is, they did not visit any a ∈ Aℓ at
any time in sZ+ \ {st}, where sZ+ := {sz : z ∈ Z+}).
From the construction below it will be clear that for all ℓ

|Aℓ| = |Aℓ| and |Cℓ| = ℓ.
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At each stage ℓ some of (u, st) ∈ Aℓ will be checked, Cℓ, and some unchecked, Uℓ. As long as
Uℓ is non-empty we can proceed with the (ℓ+1)-th stage, in which we pick some (u, st) ∈ Uℓ

(the manner in which we choose (u, st) shall be described later) and first expose |Wℓ
u(st)|

and set Cℓ+1 := Cℓ ∪ {(u, st)}. If |Wℓ
u(st)| = 0 we set Uℓ+1 := Uℓ \ {(u, st)}. Otherwise, we

pick one walker w from Wℓ
u(st) and expose its walk by time sM , (w(i))0 6 i 6 sM and set

Uℓ+1 := (Uℓ ∪ {(w(is), is) : 0 6 i 6M, i 6= t, w(is) /∈ {w(js) : j < i}}) \ {(u, st)}

(in simple words, we add to Uℓ some of the space time co-ordinates of the first M steps of
the s-walk of w, where we avoid taking more than one pair with the same space co-ordinate,
and then subtract from it {(u, st)}). We conclude the step by setting Aℓ+1 := Cℓ+1 ∪Uℓ+1.
To motivate what comes, assume for the moment that we can pick (u, st) ∈ Uℓ such that

P(s)[∀ t′ 6= t, S
(s)
t′ /∈ Aℓ | S(s)

t = u] > 1− 2e−4K . (7.3)

From the analysis below and Poisson thinning, it follows that for such (u, st) we have that

|Wℓ
u(st)| > 0 w.p. at least q := 1− exp[−λ(1− 2e−4K)] and

E[|Uℓ+1| − |Uℓ| | Aℓ, |Wℓ
u(st)|] >M/4 on the event |Wℓ

u(st)| > 0

(it equals −1 on the complement). As λ ∈ (0, 1], provided that K is sufficiently large, in
such stage

E[|Uℓ+1| − |U ℓ|] > qM/4− (1− q) > 8qK/λ− 1 > 4K.

If we could always pick such (u, st), then it is intuitively clear that with positive probability
|Aℓ| > 2ℓ for all ℓ and thus the construction will have infinitely many stages, implying the
desired result. As we now explain, at least a (1 − e−4K)-fraction of (u, st) ∈ Aℓ satisfy
(7.3), and thus as long as |Aℓ| > 2ℓ, we will indeed be able to choose (u, st) ∈ Uℓ satisfying
(7.3).

Following [5], given some A ⊆ V and α ∈ (0, 1) we say that a ∈ V is (A, α)-good if

P
(s)
a [T+

A <∞] 6 α, where T+
A := inf{t > 0 : S

(s)
t ∈ A}. Denote the uniform distribution on

A by πA. As the spectral radius of Q = P s is ρs 6 e−8K , it follows from Lemma 2.1 in [5]
that for every finite A ⊂ V

P(s)
πA
[T+

A <∞] 6 ρs 6 e−8K . (7.4)

It follows from (7.4) that for every finite A ⊂ V , the set

GA := {a ∈ A : a is (A, e−4K)-good}

satisfies that
|GA|/|A| > 1− e−4K . (7.5)

Fix some a ∈ GA and k 6M . Let

Wa(A, ks) := Wa(ks) \ ∪ℓ∈Z+, a′∈A: (ℓ,a′)6=(k,a)Wa′(ℓs)
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be the collection of walkers which are at vertex a at time ks, which avoid A throughout
their s-walks, apart from at time ks (time k of their s-walk). Note that when we take
A = Aℓ and a ∈ Aℓ, we have that Wa(A, ks) = Wℓ

u(ks) (where Aℓ and Wℓ
u(ks) are as in

(7.1)-(7.2)). This allows us to translate the conclusion below into one concerning (7.3).

Observe that by reversibility if a ∈ GA and (w(t))t > 0 is the walk performed by some walker
w ∈ Wa(A, ks), then the walks (wforward(t))t∈Z+

:= (w((k+t)s))t∈Z+
and (wbackward(t))0 6 t 6 k :=

(w((k− t)s))0 6 t 6 k are (independent) s-walks conditioned to avoid A, apart from at time
0. In particular, (7.3) holds for A in the role of Aℓ as a ∈ GA. Again using a ∈ GA we
have that

E[|Wa(A, ks)|] > E[|Wa(ks)|](1− 2P(s)
a [T+

A <∞])

> (1− 2e−4K)E[|Wa(ks)|] = λ(1− 2e−4K).

By Poisson thinning if a ∈ GA, then for all k we have that |Wa(A, ks)| has a Poisson
distribution with mean at least λ(1− 2e−4K).

Using (2.4) it is not hard to show that the expected number of times an s-walk of length
at most M intersects itself is at most Mρs/(1 − ρs) 6 9

10Me−8K 6 e−4K/λ, provided that
K is sufficiently large. Thus by Markov’s inequality, if a ∈ GA and (w(t))t > 0 is the walk
performed by some walker w ∈ Wa(A, ks) for some k 6 M , then (w(ts))t: 0 6 t 6 M, t6=k visits
at least M/4 > 2K/λ distinct vertices with probability at least p := 1− 1

Ke4K(1−2e−4K )
.[3]

Let

Uℓ := {u : (u, st) ∈ Uℓ for some t} and Cℓ := {u : (u, st) ∈ Cℓ for some t}.

Assume that |Aℓ| > 2ℓ. Then |GAℓ
| > (1 − e−4K)2ℓ > ℓ and so GAℓ

\ Cℓ = GAℓ
∩ Uℓ is

non-empty (as |Cℓ| = ℓ). As long as this is the case, in the ℓ-th stage we expose some
(u, st) ∈ Uℓ such that u ∈ GAℓ

∩ Uℓ, where the choice of (u, st) is made according to some
prescribed order on V × Z+ (or simply according to the lexicographic order on the stage
in which the walkers were discovered and their time coordinate). By the above analysis,
provided that K is sufficiently large, the probability that |Aℓ+1| − |Aℓ| > 2K/λ is at least
qp = (1− exp[−λ(1−2e−4K)])× (1− 1

Ke4K(1−2e−4K )
) > λ/2 (for λ 6 1 and large K), and so

E[|Aℓ+1| − |Aℓ| | |Aℓ| > 2ℓ] > (2K/λ)pq > K > 3.

Combining this with Azuma inequality (applied to the Doob’s martingale of (|Aℓ|)ℓ > 0),
it is not hard to verify that with positive probability |Aℓ| > 2ℓ for all ℓ (cf. the proof of
Theorem 1.1 in [5]) as desired.

[3]The term 1 − 2e−4K in the denominator is there since instead of taking w ∈ Wa(ks) we take w ∈
Wa(A, ks), which means that the law of its walk is conditioned to be in some set of walks whose probability
(w.r.t. the law of a walk of a walker in Wa(ks)) is at least 1− 2e−4K .
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8 A lower bound on λc in the non-amenable case

Theorem 8.1. Let G = (V,E) be an infinite connected non-amenable regular graph. De-
note the spectral radius of LSRW on G (with an arbitrary holding probability p) by ρ. Then
the SN model on G with holding probability p satisfies

Pλ[Con] = 0, for all λ < 1
2

(
ρ−1 − 1

)
.

Throughout the section we fix the holding probability of the walks to be some constant
0 6 p < 1. Let µλ (respectively, νλ) be the distribution of 1 + 2Xλ (respectively, 1 +Xλ),
where Xλ ∼ Pois(λ). A lazy branching random walk on G with offspring distribution µλ

started at a vertex o, denoted by LBRW(µλ, o), is defined as follows. At time 0 there
are a random number of particles distributed according to νλ which are all positioned at
vertex o. Call the set of these particles generation number 0. The process is then defined
inductively. At stage t each particle w belonging to the t-th generation performs one step
of LSRW on G from its position at time t, where steps performed by different particles
are independent. Then it gives birth to a random number of particles (referred to as its
offsprings) Yw ∼ µλ, at its current position, independently of all other particles. The set
of all the offspring of the particles from the t-th generation is defined to be the (t + 1)-th
generation.

The following interpretation of LBRW(µλ, o) is useful for our purposes. First, by including
the previous generations as part of the current generation, we may think of the offspring
distribution as being the same as that of 2Xλ, where Xλ ∼ Pois(λ). Equivalently, in this
interpretation, a particle does not “die” after giving birth to some offspring at a certain
step, and may give birth to additional offspring in future stages (alternatively, we may
view the particle as an “offspring of itself”).

We may think of each particle as giving birth to Pois(λ) “regular particles” which then
clone themselves. By reversibility, we may think of the regular particles as performing
independent LSRWs, while the clones perform a LSRW moving backwards in time in the
following sense. The law of LSRW started from v is the same as the law of (Ys)

∞
s=0, where

Ys := X−s for all s > 0 and (Xs)s∈Z is a bi-infinite LSRW conditioned on being at v at
time 0. Hence we may assume the walk of the clone particle is sampled in that manner.

We now describe a process which, based on the previous two observations, is essentially
equivalent to LBRW(µλ, o). In particular, the expected total number of visits to each
vertex (including multiplicities) is the same for the two processes. While the definition of
this process is somewhat cumbersome, it will be transparent that this process stochastically
dominates the exploration process used below in order to “expose” FC(o), the friend cluster
of Wo. We intentionally use similar notation to describe this variant of LBRW(µλ, o) as
the one used later in the exploration process of FC(o).

In the 0-th generation, V0,0, we start with 1 + Pois(λ) walkers v0,0,1, . . . , v0,0,|V0,0| at o. Let
each v0,0,j perform a Z-indexed (bi-infinite) random walk (v0,0,j(t))t∈Z on G, conditioned to
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be at o at time 0. Such a walk can be sampled by taking two independent Z+-indexed walks
started at v, (fv0,0,j(t))t > 0 and (bv0,0,j(t))t > 0 (which can be thought of as 2 independent
walks performed by 2 separate particles) and concatenating one to the reversal of the other
as follows v0,0,j(t) := fv0,0,j(t) and v0,0,j(−t) := bv0,0,j(t) for all t > 0.

In the first stage we expose v0,0,j(±1) for all j (in the above interpretation, we expose
one step of the walk of the forward particle fv0,0,j(1) and one of the backward particle
bv0,0,j(1)) and plant at v0,0,j(±1) (independently for different j’s and for ±1) Pois(λ)
walkers performing (independent) Z-indexed random walks on G conditioned to be at
v0,0,j(±1) at time ±1, respectively. Denote the set of walkers planted at stage 1 at time ±1
by V1,±1 = {v1,±1,1, . . . , v1,±1,|V1,±1|}, respectively. The construction continues inductively
as follows:

By the end of stage r, for all 0 6 i 6 r and −i 6 j 6 i such that i − j is even, we have
already defined Vi,j = {vi,j,1, . . . , vi,j,|Vi,j|} the set of walkers planted at stage i and time
j, and for all 1 6 k 6 |Vi,j| exposed (vi,j,k(t))t:|t−j| 6 r−i, where vi,j,k is the k-th walker in
Vi,j and (vi,j,k(t))t∈Z is the walk she performs. In the (r + 1)-th stage we expose for all
i, j, k as before vi,j,k(j ± (r + 1 − i)) and plant at vi,j,k(j ± (r + 1 − i)) (independently
for different (i, j, k)’s and for j ± (r+ 1− i)) Pois(λ) walkers performing (independent) Z-
labeled random walks on G conditioned to be at vi,j,k(j± (r+1− i)) at time j± (r+1− i),
respectively. Finally, we denote the set of walkers planted at stage r + 1 at time ℓ by
Vr+1,ℓ = {vr+1,ℓ,1, . . . , vr+1,ℓ,|Vr+1,ℓ|}.

Below we expose FC(o) in “slow motion” using an exploration process. At each stage t
of the exploration process, new walkers are “recruited” to the friend cluster by meeting
at some time s 6 t walkers already belonging to the exploration process. The walkers
recruited at stage t can be thought of as the t-th generation of the exploration process.

Let w be some walker in the t-th generation of the exploration process who was recruited
at stage t due to an acquaintance which occurred at time s (the set of such walkers shall
be denoted below by Wt,s). Instead of exposing in the (t+1)-th stage the entire trajectory
of w, we expose its position at times s+ 1 and s− 1. At stage t+ 2 we expose its position
at times s+ 2 and s− 2 (if s > 2), and so on (at stage t+ i we expose its position at time
s+ i and if s > i also at time s− i).

Let (w(n))n > 0 be the infinite walk performed by w. We can think of w as two separate
particles, one a forward particle performing the forward walk (w(t+n))n > 0 and the other a
clone performing the reversed walk (w(t−n))n:0 6 n 6 t. At each stage, for every previously
exposed walker w we expose one step of its forward walk and one step of its reversed
walk (or in the above terminology, one step of the walk performed by its clone), if it was
not fully exposed already. The particle (or clone) recruits new walks if she meets them
at the space-time coordinate of her walk which was exposed at the current stage, and if
those walkers avoided all the space-time coordinates previously exposed by the exploration
process (otherwise these walkers would have already been recruited to the exploration
process).
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Using Poisson thinning, we can dominate this exploration process by the equivalent for-
mulation of LBRW(µλ, o), involving the Z-valued walks and the sets Vt,s. Indeed there are
two differences between the two. The first is that in the latter the walks of the particles
moving backwards in time continue all the way to time −∞ instead of stopping at time
0. The second difference is that in the exploration process of FC(o) each particle can only
recruit “new” walkers (and their clones), which means that these walkers have to avoid
certain space-time coordinates previously exposed by the exploration process. Thus, by
Poisson thinning her offspring (= new walkers recruited by her at each stage and their
clones) distribution is stochastically dominated by the 2Pois(λ) distribution.

Unfortunately, while the aforementioned stochastic domination is intuitively clear, its proof
requires some cumbersome bookkeeping and no much additional insights beyond the ones
described in the above intuitive explanation. For this reason we defer the proof of Propo-
sition 8.2 to Appendix D.

By Lemma 2.4 every vertex is visited infinitely often a.s. Thus on the event Con∩{o ∈ Ξ}
(assuming it has a positive probability) we have that FC(o) (the friend cluster of Wo) is
the set of all walkers, and so o is visited by walkers in FC(o) infinitely often a.s. Note that
if Pλ[Con] > 0, then there must be some o such that Pλ[Con ∩ {o ∈ Ξ}] > 0, and so
the expected number of times in which vertex o is visited by walkers from FC(o) including
multiplicities (here we count also visits made by a walker w ∈ FC(o) at time t in which
w /∈ FCt(o), i.e., before the walker w joined the friend cluster of the walkers in Wo) is
infinite, as on the event Con∩{o ∈ Ξ} the last expectation is simply the expected number
of visits to o by all particles (with multiplicities; The number of such visits is a.s. infinite
and so this expectation is infinite even on the event Con ∩ {o ∈ Ξ}). Hence the assertion
of Theorem 8.1 follows by combining the following proposition and lemma.

Proposition 8.2 (proof deferred to Appendix D). Let Xv be the number of times vertex v
was visited by a walker from FC(o) (including multiplicities) when the density of the walkers
is taken to be λ. Let Yv be the number of times that vertex v was visited by a particle in
LBRW(µλ, o) (where if a particle in the lazy branching random walk LBRW(µλ, o) is born
at vertex v this also contributes to Yv). Let ν1 and ν2 be the laws of (Xv)v∈V and (Yv)v∈V ,
respectively. Then ν2 stochastically dominates ν1.

Lemma 8.3. For v ∈ V and n > 0, let Qn(v) be the the number of particles belonging to
the n-th generation of LBRW(µλ, o) which were born at vertex v. Then for all v and n > 1,

E[Qn(v)] = (1 + λ)(1 + 2λ)n−1P n(o, v) 6 [(1 + 2λ)ρ]n. (8.1)

In particular, if λ < 1
2(ρ

−1 − 1) we have that
∑∞

n=0Qn(o) <∞ a.s.

The proof of the equality in (8.1) is obtained by a simple induction on n, performed
simultaneously over all vertices (we omit the details). The inequality in (8.1) follows from
(2.4). We note that it is shown in [7] that the critical mean offspring distribution for
a branching random walk is 1/ρ and that a critical branching random walk is transient
(i.e., it a.s. visits every vertex only finitely many times). Hence if (1 + 2λ)ρ = 1 then the
LBRW(µλ, o) is transient.
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9 Concluding remarks

9.1 Refined lower bound when the holding probability is 1/2

In this subsection we give a rough sketch of a proof of the following theorem.

Theorem 9.1. Let G = (V,E) be an infinite connected non-amenable regular graph. De-
note the spectral radius of SRW on G by ρ. Then the SN model on G with holding probability
1/2 satisfies

Pλ[Con] = 0, for all λ such that 1 + 2λ(1 + 2eλ/2) 6 ρ−1. (9.1)

Note that while in (9.1) we are considering the SN model with holding probability 1/2, the
term 1/ρ is defined w.r.t. SRW. For instance, for the d-ary tree this shows that λc > c log d
when the holding probability is 1/2, whereas in this case Theorem 8.1 yields a weaker lower
bound which does not diverge as d → ∞. Combining Theorem 9.1 with Theorem 5.1 yields
the following.

Corollary 9.2. There exist absolute constants c, C > 0 such that for all d > 3 we have
that c log d 6 λc(Td) 6 C log d for SN model with holding probability is 1/2. The same
holds for every connected infinite d-regular Ramanujan graph, with the same c and C.

The reason we provide here a much less detailed analysis than in §8 (and Appendix D)
is that the ideas here are extremely similar to those from §8. Like in Appendix D, in
order to rigorously justify the claim that the below exploration process for FC(o) is indeed
dominated by the branching random walk described below, one can introduce “dummy
particles”. This is meant to justify the following fact that is used implicitly below:

· The number of walkers at vertex v at time t which avoid a certain collection of space-
time co-ordinates (u1, t1), . . . , (ur, tr) (where u1, . . . , ur ∈ V and t1, . . . , tr ∈ Z+,
possibly ti > t for some i’s) is independent of X := (|Wti(ui)| : i ∈ [r]), where
|Wti(ui)| is the number of walkers at vertex ui at time ti.

· Moreover, it is stochastically dominated by the Poisson(λ) distribution.

· Furthermore, for each path (v0, v1, . . . , vs) that avoids the above space time co-
ordinates, in the sense that for all i 6 s we have that vi /∈ {uk : tk = i}, we
have that the number of walkers which performed this path is independent of X .

However, in order to facilitates analysis analogous to the one of Appendix D, the notation
and bookkeeping required here are much more cumbersome compared to the already cum-
bersome notation from §8. For the sake of clarity of presentation, we chose to present the
exploration process below using as little notation as possible, and to leave it to the reader
to verify the details of the claimed stochastic domination.
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The idea of the proof is to explore FC(o) in an “ultra slowed down” fashion which exploits
the laziness of the walks. The exploration process below is still be dominated by a branching
random walk, but in a much less wasteful fashion than as in the proof of Theorem 8.1.

Consider the case that a walker x jumps at time tx to some site v from some neighboring
site u, and that x left v at time t′x + 1. The walkers W1 she met at v during [tx, t

′
x] must

all be in FC(x). Each walker w ∈ W1 entered v at some time tw and left it at time t′w + 1
such that [tw, t

′
w] ∩ [tx, t

′
x] = ∅. Let W2 be the collection of walkers z not belonging to

{x} ∪ W1 such that they entered v at some time tz > 0 and left at time t′z + 1 such that
[tz, t

′
z] ∩ (

⋃
w∈W1

[tw, t
′
w]) 6= ∅.

We can continue defining Wi’s in these fashion inductively until the first i0 such that
Wi0+1 = ∅. Namely, if Wi 6= ∅ let Wi+1 be the collection of walkers z not belonging to
{x} ∪

⋃i
j=1Wj such that they entered v at some time tz > 0 and left at time t′z + 1 such

that [tz, t
′
z] ∩ (

⋃
w∈Wi

(tw, t
′
w]).

Clearly,
⋃i0

j=1Wj must all be in FC(x). For each walker w ∈
⋃i0

j=1Wj we can now reveal
(“backwards step”) from what vertex did it jump to v (provided tw > 0) and to which
vertex it jumped to when leaving v (“forward step”). Each such walker w starts in its
forward and backwards step a new process with the same description as (Wi)

i0
i=1 above.

However, at each stage we wish to not count walkers already recruited to the exploration
process at previous stages (or earlier on at the same stage).

As in §8, for each particle recruited to the exploration process we will expose at each stage
its trajectory one step forward and one step backwards. However, one crucial difference
is that now we reveal its non-lazy trajectory. By this, we mean the following. The non-
lazy trajectory corresponding to a SRW trajectory (u0, u1, . . .) is obtained by deleting
consecutive repetitions. That is, it is (v0, v1, . . .) where vi := uτi and τi := inf{j > τi−1 :
uj 6= uτi−1

}.
Let x be a particle recruited to the exploration process at some stage k. Let (v0, v1, . . .)
be its non-lazy trajectory. Assume that w was recruited at location vm during the time
interval [τm, τm+1 − 1] (with τ· as above). At a stage i > k we reveal (forward step) vm+i−k

and if i−k 6 m also vm−(i−k) (backwards step). We can then define U0 to be the collection
of particles y not previously recruited to the exploration process, that jumped to vm+i−k at
some time ty > 0 and stayed there until time t′y+1 so that [ty, t

′
y]∩ [τm+i−k, τm+i−k+1−1] 6=

∅. Recruit the walkers from U0 to the exploration process. Let U1 be the collection of
walkers y not previously recruited to the exploration process, who jumped to vm+i−k at
some time ty > 0 and stayed there until time t′y + 1 so that [ty, t

′
y] ∩ (

⋃
z∈U1

[tz , t
′
z]) 6= ∅.

Recruit the walkers from U1 to the exploration process. We can continue defining Uj+1

inductively in this fashion as long as Uj 6= ∅. Let j0 be the minimal integer such that
Uj0+1 = ∅. Then the collection of particles recruited by x at stage i via its forward step is⋃j0

j=0 Uj .

We now define the collection of particles recruited by x at stage i via its backwards step.
We assume that i − k 6 m as otherwise there is no such backwards step. Let B0 to
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be the particles y who jumped to vm−(i−k) at some time ty > 0 and stayed there until
time t′y + 1 such that [ty, t

′
y] ∩ [τm−(i−k), τm−(i−k)+1 − 1] 6= ∅ and have not been previously

recruited to the exploration process. Recruit the walkers from B0 to the exploration process.
Let B1 be the collection of walkers y not previously recruited to the exploration process,
who jumped to vm−(i−k) at some time ty > 0 and stayed there until time t′y + 1 so that
[ty, t

′
y] ∩ (

⋃
z∈B1

[tz, t
′
z]) 6= ∅. Recruit the walkers from B1 to the exploration process. We

can continue defining Bj+1 inductively in this fashion as long as Bj 6= ∅. Let j′0 be the
minimal integer such that Bj′

0
+1 = ∅. Then the collection of particles recruited by x at

stage i via its backwards step is
⋃j′

0

j=0 Bj .

As in §8 at each stage we reveal the backwards and forward steps of all recruited particles
sequentially according to some predetermined order. This affects the notion of “not being
previously recruited to the exploration process” used above (during each stage this notion
is updated as the stage progresses). Moreover, in order to be at Ui (respectively, Bi) we
require a walker to not be in Uj (respectively, Bj) for all j < i).

As mentioned above, we shall dominate this exploration process via a branching random
walk. The offspring distribution of this branching random walk has the same law as 1+2W ,
where W has a rather complicated law we shall soon describe. The source of the +1 term
and of the multiplicative term 2 is exactly the same as in §8 (particles don’t die explains
the term +1 , and the fact each paarticlllle progresses in both directions of time explains
the term 2). We seek to take the law of W to be one which dominates the laws of

⋃j0
j=0 Uj

and
⋃j′

0

j=0 Bj described above.

To do so, it is useful to describe the evolution of U :=
⋃j0

j=0 Uj one time unit at a time, from
τm+i−k to maxw∈U t

′
w (rather than one index at a time, from U0 to Uj0; a similar description

applies to
⋃j′

0

j=0 Bj). However, we also need to consider its evolution backwards in time
(which takes place between time minw∈U tw and τm+i−k), as some walkers in U0 could have
been at vm+i−k both at time τm+i−k and at time τm+i−k − 1.

Moving forward in time, each particle stays in vm+i−k with probability 1/2. By Poisson
thinning, the number of new (i.e., not previously recruited) particles to jump to vm+i−k at
each time is stochastically dominated by the Pois(λ/2) distribution.

For the evolution forward in time, we are interested in the number of the walkers recruited
between time τm+i−k and maxw∈U t

′
w. The latter is the first time t > τm+i−k at which no

particles that were in vm+i−k at time t− 1 stayed at vm+i−k at time t. If we reverse time,
the same description is valid backwards in time - that is, provided some walkers in U0 were
at vm+i−k both at time τm+i−k and at time τm+i−k − 1, we are looking at the maximal time
t < τm+i−k at which there are no particles at vm+i−k that were there also at time t+ 1.

Consider the Markov chain (Xt)t > 0 that at time t + 1 evolves to Xt+1 = Yt+1 + Zt+1,
where Z1, Z2, . . . are i.i.d. Pois(λ/2), and given Xt we have that Yt+1 has a Bin(Xt, 1/2)
distribution and is independent of Zt+1. We extend this process to a bi-infinite process
by setting for all t > 0, X−t−1 = Y−t−1 + Z−t−1, where Z−1, Z−2, . . . are i.i.d. Pois(λ/2),
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and given X−t we have that Y−t−1 has a Bin(X−t, 1/2) distribution and is independent of
Z−t−1. Let

σ = inf{t : Yt+1 = 0} and σ′ = inf{t : Y−t−1 = 0}.
We consider the case that X0 ∼ 1 + Pois(λ). It is not hard to see that by reversibility we
can take

W = (X0 − 1) +

σ∑

i=1

Zi +

−1∑

i=−σ′

Zi.

By abuse of notation, if ξ ∼ Pois(a) then we refer to the law of 1 + ξ as 1 + Pois(a).
Using similar reasoning as in footnote 1, we argue that given σ > 1, we have that Y1 is
stochastically dominated by the law 1 + Pois(λ/2). Indeed, we may think of Y1 as the
number of successes in X0 Bernoulli(1/2) trials. We are interested in the conditional law
of Y1 given Y1 > 0. If the first trial is a success, then the conditioning on Y1 > 0 does not
affects the number of successes in the remaining Pois(λ) trials, and so by Poisson thinning
the law of the number of additional successes has the Pois(λ/2) distribution.

If the first trial is a failure, then the conditional law of the total number of success is, again
by Poisson thinning, the law of a Pois(λ/2) random variable conditioned on being positive.
As in footnote 1, by considering the number of arrivals in [0, 1] in a rate λ Poisson process,
and conditioning on the location of the first arrival, we see that the aforementioned law is
stochastically dominated by the 1 + Pois(λ/2) distribution.

It follows by induction that given σ > t, we have that Xt is stochastically dominated
by the 1 + Pois(λ) distribution. Hence σ is stochastically dominated by the Geometric
distribution with parameter 1/(2eλ/2) (which is the probability that 1+Pois(λ) independent
Bernoulli(1/2) trials all fail). Likewise, the same applies to σ′ by reversibility. By Wald’s
equation we have that E[W ] = λ(1 + 2eλ/2). As in §8, the condition 1 + 2E[W ] 6 1/ρ
implies the branching (simple) random walk on G with offspring distribution 1 + 2W is
transient, which as in §8, can be used to argue that the above exploration process for FC(o)
a.s. does not visit all vertices. This concludes the sketch of the proof of Theorem 9.1.

9.2 Improving the dependence on the distance of the spectral-radius from 1

As we now explain, with a bit more care, the terms 2
1−ρ

and 20
1−ρ1/2

from Theorem 5.1 can

be replaced by c1√
1−ρ

and c2√
1−ρ1/2

, respectively, for some constants c1, c2 > 0. Similarly, in

Theorem 3 we could have taken tC,λ to be ⌈ C
λ
√
1−ρ

⌉, rather than ⌈ C
λ(1−ρ)

⌉.
Let P be the transition kernel of SRW or lazy SRW with holding probability p 6 1/2 on
an infinite connected regular graph G = (V,E). Let ρ(P ) be the spectral-radius of P . By
inspecting the proofs of Theorem 5.1 and Theorem 3, such improvements can be derived
from the estimate ∞∑

t=0

sup
x,y

P t(x, y) 6 C0/
√
1− ρ(P ), (9.2)
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rather than the estimate
∑∞

t=0 supx,y P
t(x, y) 6 C1/(1− ρ(P )) that we use.

Similarly to (3) from §2.5, for all s, t > 0 and all x ∈ V we have that

P 2t+2s(x, x) = 〈P 2t+2s1x, 1x〉 = ‖P t+s1x‖22 6 ρ(P )2s‖P s1x‖22 = ρ(P )2sP 2t(x, x).

Combining the above with the fact that maxx,y P
t(x, y) 6 supx P

2⌊t/2⌋(x, x) (Proposition
A.1), yields that

∞∑

t=0

sup
x,y

P t(x, y) 6 2
∞∑

t=0

sup
x
P 2t(x, x) 6

2e

e− 1

⌈1/(1−ρ(P ))⌉∑

t=0

sup
x
P 2t(x, x).

Finally, we obtain (9.2) using the fact that there exists an absolute constant C > 0 such
that supx P

t(x, x) 6 C√
t+1

for all t (the same constant C works for all p 6 1/2 and all

graphs G as above, e.g., [12] – see the discussion in the proof of Lemma 2.3).
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and lazy SRW with holding probability 1/2 – the case of any other holding probability
bounded away from 1 can be deduced from the SRW case, by averaging over the number
of lazy steps the walk performs by time t and using the concentration of the Binomial
distribution around its mean. Indeed, if P is SRW and Pp is lazy SRW with holding
probability p then P t

p(x, x) =
∑

i P[Bin(t, p) = i]P i(x, x)).

Proposition A.1. SRW on a regular graph satisfies supx,y P
t(x, y) 6 supx P

2⌊ t2 ⌋(x, x).

Proof. By reversibility (used in the second equality and to argue that
∑

z[P
t(a, z)]2 =∑

z P
t(a, z)P t(z, a) = P 2t(a, a)) and the Cauchy-Schwartz inequality (first inequality)

P 2t(x, y) =
∑

z

P t(x, z)P t(z, y) =
∑

z

P t(x, z)P t(y, z)

6
√
P 2t(x, x)P 2t(y, y) 6 sup

x
P 2t(x, x).

Similarly, P 2t+1(x, y) 6
√
P 2t+2(x, x)P 2t(y, y) 6 sup

x
P 2t(x, x).

(A.1)

Proof of Lemma 2.4. The fact that the distribution ofNt(w) is Poisson follows from Poisson
thinning. Let Mt(w) :=

∑t
i=1 |Wwi

(i)|. By stationarity of the law of the occupation
measure (Fact 2.1) we have that Eλ[Mt(w)] = λt. Decomposing the last expectation
according to the first time i at which a walker is at wi (and noting that the contribution
corresponding to time i is (Eλ[Ni(w)] − Eλ[Ni−1(w)])

∑t−i
j=0 P

j(wi,wi+j), which can be

bounded from above by (Eλ[Ni(w)]− Eλ[Ni−1(w)])
∑t

j=0 supx,y∈V P
j(x, y)) we get that

λt = Eλ[Mt(w)] 6 Eλ[Nt(w)]

t∑

j=0

sup
x,y∈V

P j(x, y) 6 Eλ[Nt(w)]C
√
t.

B Appendix B: explicit construction of the SN model

Proof of Proposition 2.2. For every v ∈ V let Mv(t) be a homogeneous Poisson process
on R+ with rate 1 (all of which defined on the same probability space so that they are
independent). For each λ > 0, when the density of walkers is taken to be λ, we take
|Wλ

v | :=Mv(λ), where Wλ
v denotes the the set of walkers whose initial position is v (in the

case of density λ). Thus if λ1 < λ2 then for all v ∈ V we have that Wλ1
v ⊆ Wλ2

v . The
assertion of the Proposition is already clear at this point. For the sake of completeness, we
give additional details concerning the construction.

We continue by constructing at each site v an infinite collection of independent walks,
where in practice, only Mv(λ) of them shall be involved in the dynamics associated with
the SN model with density λ. For each v ∈ V and n ∈ N, let wv

n = (wv
n(t))t∈Z+

be a
LSRW on G, started at v (throughout we denote the law of such a walk by Pv, where the
holding probability is either clear from context or irrelevant). We take all the walks to be
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independent. Moreover, we take W := (wv
n)n∈N,v∈V and M := (Mv)v∈V to be independent.

We think of wv
n as the walk performed by the n-th particle whose initial position is v.

We are now in the position to define ACλ
t := (V,Et,λ). Denote by Zu,v

i,j (t) the indicator
of the event that the i-th particle from u met the j-th particle from v by time t (i.e.,
Zu,v

i,j (t) := 1{wu
i (s) = wv

j (s) for some s 6 t}). We want the last event to imply that

{u, v} ∈ Et,λ iff i 6 |Wλ
u | = Mu(λ) and j 6 |Wλ

v | = Mv(λ) (because we want the number
of particles starting at each site which are involved in the dynamics to have a Pois(λ)

distribution). Hence we define Q
(λ)
u,v(t) = max{Zu,v

i,j (t) : i 6 |Wλ
u |, j 6 |Wλ

v |} (this is the

indicator of the event that some w ∈ Wλ
v met by time t some w′ ∈ Wλ

u ) and set {u, v} ∈ Et,λ

iff Q
(λ)
u,v(t) = 1.

C Appendix C: Proof of translation invariance and ergodicity

Using the notation from §2.2, let Wv := ((wv
i (t))t > 0)

|Wv|
i=1 be the infinite walks that the

walkers in Wv performed.

Lemma C.1. Let G = (V,E) be an infinite connected graph. Let λ > 0, ε > 0 and
t ∈ Z+∪{∞}. Then for every A ∈ Fcylinder, there exist a finite set B = B(A, ε, t) ⊂ V and
Aε such that the event ACλ

t (G) ∈ graph(Aε) is in the σ-algebra generated by (Wu : u ∈ B)
and

Pλ[AC
λ
t (G) ∈ graph(Aε △A)] 6 ε.

This follows via elementary measure theoretical considerations, and so we omit the proof.
Proof of Proposition 2.5. We first establish translation invariance. Let ϕ ∈ Aut(G). We
shall show that there exists a coupling of ACλ

t (G) and ϕ(AC
λ
t (G)) (i.e., a probability space

in which both are realized) such that ACλ
t (G) = ϕ(ACλ

t (G)). This clearly implies the
desired equality of the corresponding laws.

Note that if (w(s))s > 0 has law Pv then (ϕ(w(s)))s > 0 has law Pϕ(v). Recall the construc-
tion of the SN model from §2.2 via (Mv, ((w

v
n(s))s∈Z+

)n∈N)v∈V , where (Mv)v∈V are i.i.d.
Pois(λ) and ((wv

n(s))s∈Z+
)n∈N are independent LSRWs started from v (i.e., having law Pv).

Denote this realization of ACλ
t (G) by H := (V,E(H)). Now consider a different realization

obtained by replacing for all v ∈ V the walks ((wv
n(s))s∈Z+

)n∈N by ((ϕ(w
ϕ−1(v)
n (s)))s∈Z+

)n∈N
and replacing Mv by Mϕ−1(v). Denote it by H ′ := (V,E(H ′)). Note that {u, v} ∈ E(H ′) iff

there is some k 6Mϕ−1(u), m 6Mϕ−1(v) and s 6 t such that w
ϕ−1(u)
k (s) = w

ϕ−1(v)
m (s). This

occurs iff {ϕ−1(u), ϕ−1(v)} ∈ E(H), or equivalently iff {u, v} is an edge in ϕ(H). That is
H ′ = ϕ(H).

We now prove ergodicity. Let A ∈ I. Fix some t ∈ Z+ ∪ {∞}. We seek to show
that Pλ[AC

λ
t ∈ graph(A)] ∈ {0, 1}. Let ε > 0. By Lemma C.1, there exist a finite set

Bε ⊂ V and an event Aε such that {ACλ
t (G) ∈ graph(Aε)} is in the σ-algebra generated by
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(Wb(t))b∈Bε and Pλ[AC
λ
t (G) ∈ graph(Aε △A)] 6 ε. Let rε := max{dist(u, v) : u, v ∈ Bε}.

Let ϕε ∈ Aut(G) be such that dist(v, ϕε(v)) > 2rε for all v ∈ V .

The event {ACλ
t (G) ∈ graph(ϕε(Aε))} is in the σ-algebra generated by (Wϕε(b)(t))b∈Bε .

By our choice of ϕε, the sets Bε and {ϕε(b) : b ∈ Bε} are disjoint. Hence the events
{ACλ

t (G) ∈ graph(ϕε(Aε))} and {ACλ
t (G) ∈ graph(Aε)} are independent, as they depend

on disjoint sets of walkers. By translation invariance and the fact that A ∈ I (and so
ϕε(Aε)△A = ϕε(Aε △A))

Pλ[AC
λ
t (G) ∈ graph(ϕε(Aε)△A)] = Pλ[AC

λ
t (G) ∈ graph(Aε △A)] 6 ε.

Hence Pλ[AC
λ
t (G) ∈ graph((Aε ∩ ϕε(Aε))△A)] 6 2ε and thus

Pλ[AC
λ
t (G) ∈ graph(A)] = lim

ε→0
Pλ[AC

λ
t (G) ∈ graph(Aε ∩ ϕε(Aε))]

= lim
ε→0

Pλ[AC
λ
t (G) ∈ graph(Aε)]Pλ[AC

λ
t (G) ∈ graph(ϕε(Aε))]

= lim
ε→0

Pλ[AC
λ
t (G) ∈ graph(Aε)]

2 = Pλ[AC
λ
t (G) ∈ graph(A)]2.

Thus indeed Pλ[AC
λ
t (G) ∈ graph(A)] ∈ {0, 1}, as desired.

D Proof of Proposition 8.2

We denote the walk performed by a walker w by (w(t))t > 0. Recall that Wv(t) is the set of
walkers whose location at time t is v and that for B ⊆ V and t > 0, WB(t) := ∪b∈BWb(t)
is the set of walkers occupying B at time t. We denote the lexicographic order by ≺. Our
use of the lexicographic order below is just a mean of preforming the bookkeeping in a
manner which avoids double-counting (so that each walker is recruited to the exploration
process at most once). It plays no additional role in the argument.

Proof of Proposition 5.2: At stage zero, we start the exploration process of FC(o) by setting
W0,0 := Wo and A0,0 = {v}. We label the walkers in W0,0 as w0,0,1, . . . , w0,0,|W0,0|.

If Wo is empty the exploration process is completed. Otherwise, at stage one we set

A1,1 := {w(1) : w ∈ W0,0} and W1,1 := {w ∈ WA1,1(1) : w /∈ W0,0}

to be the collection of walkers not belonging to W0,0, which have the same position at time
1 as some walker in W0,0. We say that w ∈ W1,1 is an offspring of w0,0,j if w(1) = w0,0,j(1)
and j is the minimal integer such that this holds. Finally, we label the elements of W1,1

as w1,1,1, . . . , w1,1,|W1,1|.

The first “interesting” stage of the process is stage 2, thus we describe it before proceeding
to the description of a general stage. Let

A2,0 := {w(0) : w ∈ W1,1} and A2,2 := {w(2) : w ∈ W0,0 ∪W1,1}.
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We set

W2,0 := {w ∈ WA2,0(0) : w /∈ W1,1} and W2,2 := {w ∈ WA2,2(2) : w /∈ ∪(i,j)≺(2,2)Wi,j}.

In words, Wi,j is the set of walkers recruited to the process at stage i of the exploration
process, by meeting at time j some walker which was recruited to the exploration process
at an earlier stage (not necessarily an earlier time). These are the walkers which at time
j visit the set Ai,j but for all (i′, j′) ≺ (i, j) avoided Ai′,j′ at time j′. Once a walker is
recruited to the exploration process by joining Wi,j at stage i, we then expose at each stage
i + ℓ (where ℓ ∈ N) its location at time j + ℓ and if ℓ 6 j we also expose its position at
time j − ℓ.

In particular, for every t, for some values of s (namely, for s 6 t such that t− s is even) we
expose at the t-th stage of the exploration process the location at time s of some particles
which have been recruited to the exploration process prior to stage t (namely of the ones
in Wi,j for (i, j) such that either j+(t− i) = s or j− (t− i) = s). We denote the collection
of these locations by

At,s := ∪(i,j): j+(t−i)=s or j−(t−i)=s{w(s) : w ∈ Wi,j}.

Finally, we let Wt,s be the collection of walkers in WAt,s(s) (i.e., the ones occupying At,s

at time s) which do not belong to Wt′,s′ for any (t′, s′) ≺ (t, s).

The parent of w ∈ W2,0 (respectively, W2,2) is defined to be w1,1,k ∈ W1,1 (respectively,
wi,j,k ∈ W0,0∪W1,1) such that w(0) = w1,1,k(0) (respectively, w(2) = wi,j,k(2)) and (1, 1, k)
(respectively, (i, j, k)) is minimal w.r.t. ≺. Finally, for (i, j) ∈ {(2, 0), (2, 2)} we label the
walkers in Wi,j as wi,j,1, . . . , wi,j,|Wi,j|.

The sets Ar,s and Wr,s = {wr,s,1, . . . , wr,s,|Wr,s|} (where 0 6 s 6 r is of the same parity as
r) are defined inductively so that the following holds:

(1) Ar,s := {w(s) : w ∈ ∪(i,j)∈Fr,s∪Br,sWi,j}, where

Fr,s := {(i, j) : (i, j) ≺ (r, s) and r − i = s− j > 0} and

Br,s := {(i, j) : j − s = r − i > 0}.
(in simple words, as described above, Ar,s are the positions explored by the explo-
ration process at stage r corresponding to time s of some walkers. This walkers were
recruited at an earlier stage, either at an earlier time or at a latter time. If they were
recruited at stage i and time j then by construction in the first case (i, j) ∈ Fr,s,
while in the second case (i, j) ∈ Br,s.)

(2) Wr,s := {w ∈ WAr,s(s) : w /∈ ∪(i,j)≺(r,s)Wi,j}. Note that this is the set of walkers
which joined the exploration process at stage r and time s.
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It follows that
∪(r,s): r > s, r−s is evenWr,s = FC(o).

We now describe the assignment of offspring to walkers. In the r-th stage we expose
the sets Ar,s (where 0 6 s 6 r is of the same parity as r) sequentially according to the
order ≺. We expose each Ar,s by exposing sequentially the positions of the walkers in
∪(i,j)∈Fr,s∪Br,sWi,j one walker at a time, according to the order ≺ (over the indices of the
walkers (i, j, k) such that (i, j) ∈ Fr,s ∪ Br,s and 1 6 k 6 |Wi,j|). We say that w ∈ Wr,s is
an offspring of wi,j,k (where (i, j) ∈ Fr,s ∪ Br,s and 1 6 k 6 |Wi,j|) if w(s) = wi,j,k(s) but
for all (i′, j′, k′) ≺ (i, j, k) such that (i′, j′) ∈ Fr,s ∪ Br,s and 1 6 k′ 6 |Wi′,j′| we have that
w(s) 6= wi′,j′,k′(s). Moreover, as w /∈ ∪(i′,j′)≺(r,s)Wi′,j′ (by the definition of Wr,s and the
assumption that w ∈ Wr,s), we also have that w(ℓ) /∈ An,ℓ for all 0 6 ℓ 6 n 6 r (where
n − ℓ is even) such that (n, ℓ) ≺ (r, s). If s > j (respectively, j > s) we say that w is
a forward (respectively, backward) offspring of wi,j,k. Let Bi,j,k(r − i) and Fi,j,k(r − i) be
the backward and forward (resp.) offspring of wi,j,k at stage r. Denote by Bi,j,k(r− i) and
Fi,j,k(r− i) the collection of space-time coordinates which (as described above) a walker in
Bi,j,k(r− i) and Fi,j,k(r− i) (respectively) has to avoid, in order to have not been recruited
to the exploration process prior to the exposure of Bi,j,k(r− i) or Fi,j,k(r− i), respectively
(namely, these are the space-time coordinates exposed prior to the exposure of Bi,j,k(r− i)
and Fi,j,k(r − i), respectively).

We think of a walker wi,j,k as performing a forward walk, fwi,j,k(ℓ) := w(j + ℓ) and a
backward walk (of length j) bwi,j,k(ℓ) = w(j − ℓ). At each stage r > i we expose one
additional step of fwi,j,k (namely, fwi,j,k(r − i) = w(j + (r − i))) and if j > r − i also
one additional step of bwi,j,k (namely, bwi,j,k(r − i) = w(j − (r − i))). Note that the
forward (respectively, backward) offspring of wi,j,k at stage r are precisely the collection of
all walkers w whose location at time j + r − i (respectively, j − r + i) is wi,j,k(j + r − i)
(respectively, wi,j,k(j − r + i)) so that (w(ℓ), ℓ) /∈ Fi,j,k(r− i) (respectively, /∈ Bi,j,k(r− i))
for all 0 6 ℓ 6 r.

Recall that Γr is the collection of all walks of length r in G and that for γ ∈ Γr, we
denote the number of walkers which performed the walk γ by Xγ ∼ Pois(λp(γ)), where
p(γ) :=

∏r−1
i=0 P (γi, γi+1) .

Let Γi,j,k,r,f (respectively, Γi,j,k,r,b) be the collection of all γ = (γ0, . . . , γr) ∈ Γr such
that (γℓ, ℓ) /∈ Fi,j,k(r − i) for all ℓ and γj+r−i = wi,j,k(j + r − i) (respectively, (γℓ, ℓ) /∈
Bi,j,k(r− i) for all ℓ and γj−r+i = wi,j,k(j − r+ i)). By Poisson thinning, given Fi,j,k(r− i)
andwi,j,k(j+r−i) (respectively, Bi,j,k(r−i) andwi,j,k(j−r+i)), (Xγ)γ∈Γi,j,k,r,f

(respectively,
(Xγ)γ∈Γi,j,k,r,b

) are independent Poisson r.v.’s with mean λp(γ), respectively.

Now, consider the case that after exposing wi,j,k(j + r− i) (respectively, wi,j,k(j − r + i)),
for each

γ ∈ {γ′ ∈ Γr : γ
′
j+r−i = wi,j,k(j + r − i)} \ Γi,j,k,r,f

(respectively, γ ∈ {γ′ ∈ Γr : γ
′
j−r+i = wi,j,k(j − r + i)} \ Γi,j,k,r,b)
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we “plant” λp(γ) new “dummy particles” (independently for different such γ’s) which per-
form the path γ, and then continue their walk after time r randomly. The dummy particles
do not discover new walkers in the following stages of the exploration process (i.e.,they
do not have any offspring and the trajectory of their walk plays no role in the following
stages). If we count the dummy particles as part of the offspring of wi,j,k corresponding to
its forward step at stage r, then we have that (X i,j,k,r,f

γ )γ∈Γr:γj−r+i=wi,j,k(j−r+i) are indepen-
dent Poisson r.v.’s and Eλ[X

i,j,k,r,f
γ ] = λp(γ) for all γ ∈ {γ′ ∈ Γr : γ

′
j−r+i = wi,j,k(j−r+ i)},

where X i,j,k,r,f
γ is the number of offspring of wi,j,k corresponding to its forward step at

stage r who perform the walk γ. By Poisson thinning, this is the same as having Pois(λ)
offspring, each performing an independent Z+-indexed LSRW on G, conditioned to be at
wi,j,k(j + r− i) at time j + r− i. A similar statement holds for the number of offspring of
wi,j,k corresponding to its backwards step at stage r.

Recall the construction of the sets Vr,s = {vr,s,1, . . . , vr,s,|Vr,s|} from the equivalent represen-
tation of LBRW(µλ, o). It is not hard to prove that the sets Wr,s and Vr,s can be coupled
(for all 0 6 s 6 r so that r − s is even) so that Wr,s ⊆ Vr,s. More precisely, this can be
done so that for all k 6 |Wr,s| we have that vr,s,k(t) = wr,s,k(t) for all t > 0. We leave the
details to the reader.
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