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Abstract: We consider a generalized notion of differential positivity of a dynamical system
with respect to cone fields generated by cones of rank k ≥ 2. The property refers to the
contraction of such cone fields by the linearization of the flow along trajectories. It provides the
basis for a generalization of differential Perron-Frobenius theory, whereby the Perron-Frobenius
vector field which shapes the one-dimensional attractors of a differentially positive system is
replaced by a distribution of rank k that results in k-dimensional integral submanifold attractors
instead. We further develop the theory in the context of invariant cone fields and invariant
differential positivity on Lie groups and illustrate the key ideas with an extended example
involving consensus on the space of rotation matrices SO(3).
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1. INTRODUCTION

Differential analysis provides a framework for studying a
nonlinear dynamical system by analyzing the linearization
of the system at every point in the state space. The
motivation is that the local behavior of a system often has
strong implications for the global nonlinear behavior. A
classical result in differential analysis is that of contraction
analysis whereby a local measure of contraction is used
to establish stability without the explicit construction
of a distance function between converging trajectories.
See Lohmiller and Slotine (1998) for details. For more
recent developments in differential analysis, see Forni and
Sepulchre (2014); van der Schaft (2013); Simpson-Porco
and Bullo (2014).

A recent contribution to differential analysis is the notion
of differentially positive systems introduced in Forni and
Sepulchre (2015) as systems whose linearizations along
trajectories are positive. Differential positivity is a natural
extension of linear positivity theory to nonlinear systems.
Recall that positive systems are linear systems that leave
a cone invariant Bushell (1973). Positive systems find
many applications in control engineering, including in
stabilization Farina and Rinaldi (2000), observer design
Bonnabel et al. (2011), and distributed control Moreau
(2004). Perron-Frobenius theory illustrates how positivity
restricts the asymptotic behavior of a system: if the
system is strictly positive in the sense that it maps the
boundary of a cone K into its interior, then the trajectories
asymptotically align with the one-dimensional subspace
spanned by the dominant eigenvector of the system.

? C. Mostajeran is supported by the Engineering and Physical
Sciences Research Council (EPSRC) of the United Kingdom. The
research leading to these results has also received funding from
the European Research Council under the Advanced ERC Grant
Agreement Switchlet n.670645.

In this paper, we consider systems that are positive with
respect to so-called cones of rank k ≥ 2. These structures
are a generalization of classical solid convex cones and
lead to a weakened notion of monotonicity. For linear
systems that are strictly positive with respect to a cone
of rank k ≥ 2, the one-dimensional dominant eigenspace
of Perron-Frobenius theory is replaced by an eigenspace of
dimension k; see Fusco and Oliva (1991). Cones of rank
k ≥ 2 have been used to study the existence of periodic
orbits via a Poincare-Bendixson property for a new class
of monotone systems (as in Smith (1980); Sanchez (2009,
2010)), including for cyclic feedback systems Mallet-Paret
and Smith (1990); Mallet-Paret and Sell (1996). Here we
develop a differential analytic formulation of positivity
with respect to a cone field of rank k ≥ 2, which is
applicable to the study of nonlinear systems. We discuss
how the property leads to a generalization of differential
Perron-Frobenius theory, whereby the attractors of the
system are shaped by a distribution of rank k.

The study of differentially positive systems requires the
construction of a cone field, which assigns a cone to the
tangent space at each point of the state space. In many
applications, the state space is not a vector space, but is a
nonlinear manifold. In particular, nonlinear spaces that
are homogeneous and highly symmetric are ubiquitous
in applications. An important feature of such spaces is
that the basic structures used in the local analysis can
be made invariant with respect to the symmetries of the
space. There is a strong advantage to be gained from
making the differential analysis invariant by including the
symmetries of the state space in the analysis as much
as possible. It is within this context that we discuss
invariant differential positivity on Lie groups, which form
an important class of homogeneous spaces. One motivation
for the development of a theory of invariant differential
positivity is to arrive at a theory of consensus on nonlinear



spaces Sepulchre et al. (2008) which is based on the ideas
of order and positivity. In many applications, the agents
evolve on nonlinear manifolds that are Lie groups Sarlette
et al. (2010); Tron et al. (2012) or homogeneous spaces
Sarlette and Sepulchre (2009). For instance, oscillators
evolve on the circle S1, satellite attitudes on SO(3), and
vehicles move in the Euclidean group SE(3). Exploiting
suitable notions of order and positivity on homogeneous
spaces offers the possibility of extending existing successful
positivity results in linear consensus to consensus theory
on nonlinear spaces.

The paper is organized as follows. We begin with a review
of the structure of cones of rank k ≥ 2 and discuss the
generation of invariant cone fields on Lie groups, with
a focus on left-invariant cone fields as an example. In
Section 3, we introduce the notion of differential positivity
with respect to higher rank cone fields. In Section 4,
we review invariant differential positivity on Lie groups
(Mostajeran and Sepulchre (2016)) and provide a theorem
which generalizes differential Perron-Frobenius theory to
systems that are differentially positive with respect to
invariant higher rank cone fields on Lie groups. In Section
5, we study an extended example involving consensus of
N agents on SO(3) through differential positivity with
respect to a left-invariant cone field of rank k = 3 on
SO(3)N .

2. INVARIANT CONE FIELDS

2.1 Cones of rank k ≥ 2

Throughout this paper, a cone is a closed set K in a vector
space V that satisfies the following: (i) K + K ⊆ K, (ii)
λK ⊆ K for all λ ∈ R≥0, and (iii) K ∩−K = {0}. That is,
it is assumed that the cone is pointed, closed, and convex.
Furthermore, we assume that the cone is solid in the sense
that it contains n := dimV linearly independent vectors.
We now generalize the notion of cones to cones of rank
k, the simplest case of which is a cone of rank 1. Given a
convex cone K, the set C = K ∪ −K defines a generalized
cone of rank 1. The full generalization is given by the
following definition.

Definition 1. A closed set C in a vector space V is said to
be a cone of rank k if

(i) x ∈ K, α ∈ R⇒ αx ∈ K,
(ii) max{dimW : W a subspace of V, W ⊂ K} = k.

Note that if K is a convex cone, C = K ∪ −K satisfies the
above conditions for k = 1. Given a cone C of rank k, the
closure of the set V\C is a cone of rank n−k, and is known
as the complementary cone Cc of C.
A polyhedral convex cone in a vector space V of dimension
n endowed with an inner product 〈·, ·〉 can be specified by
a collection of inequalities of the form

x ∈ V : 〈ni, x〉 ≥ 0, (1)

where {n1, · · ·, nm} is a set of m ≥ n vectors in V that
span V. For each i, the equation (1) defines a halfspace
defined by the normal vector ni ∈ V. If we relax the
requirement that {ni} span V and instead require that
dim span{ni} = l ≤ n, the collection of inequalities (1)

define a convex set K̃ of rank k = n− l+ 1, such that the

set C := K̃∪−K̃ is a generalized cone of rank k = n− l+1.
In particular, n − k + 1 inequalities of the form (1), with
linearly independent ni, can be used to define a cone of
rank k. A very simple example of a class of polyhedral
cones of rank k is obtained from the positive orthant
K = Rn+ = {xi : xi ≥ 0} in Rn by eliminating k − 1 of
the inequalities xi ≥ 0 and retaining the remaining ones.
The resulting set K̃ can be used to generate a generalized
cone of rank k as C = K̃ ∪ −K̃.

A second class of cones of rank k can be defined using
quadratic forms. These cones are known as quadratic cones
of rank k and are a generalization of the idea of quadratic
cones of rank 1. Let P be a symmetric invertible n × n
matrix with k positive eigenvalues and n − k negative
eigenvalues. Then the set

C(P ) = {x ∈ V : 〈x, Px〉 ≥ 0}, (2)

can be shown to define a cone of rank k. In particular, if
P1 is a k× k symmetric positive definite matrix and P2 is
an (n−k)×(n−k) symmetric positive definite matrix, the
block diagonal matrix P = diag(P1,−P2) has k positive
eigenvalues and n − k negative eigenvalues and defines a
cone of rank k in Rn via the inequality

xTPx =

(
x1
x2

)T (
P1 0
0 −P2

)(
x1
x2

)
= xT1 P1x1 − xT2 P2x2 ≥ 0, (3)

where x1 ∈ Rk, x2 ∈ Rn−k.

2.2 Invariant cone fields on a Lie group

Let G be a Lie group with Lie algebra g ∼= TeG, where e
denotes the identity element of G, and fix a ∈ G. The left
and right translation maps La, Rg : G→ G are defined by
La(g) = ag and Ra(g) = ga, respectively. For any point
g0 ∈ G the diffeomorphism Lg induces a vector space
isomorphism dLg|g0 : Tg0G → Tgg0G. A vector field X
on G is said to be left-invariant if Xag = dLa|gXg, for
each a, g ∈ G. Note that a left-invariant vector field X
can be uniquely generated by the vector Xe at identity,
since Xg = dLg|eXe. Similarly, one can use the vector
space isomorphisms dLg|e : TeG → TgG to generate
corresponding fields over the tangent bundle TG given
objects in the tangent space TeG at the identity element.

A pointed convex cone field KG on G smoothly assigns
a cone KG(g) ⊂ TgG to each point g ∈ G. This idea
can clearly be generalized to cone fields of rank k for any
1 ≤ k ≤ n − 1, where n = dimG, so that a smooth cone
field CG of rank k smoothly assigns a cone CG(g) of fixed
rank k to each point g ∈ G.

Definition 2. A cone field CG of rank k on a Lie group G
is said to be left-invariant if

CG(g1g2) = dLg1
∣∣
g2
CG(g2), (4)

for all g1, g2 ∈ G.

Clearly a left-invariant cone field of any rank is fully
characterized by the cone in the tangent space at identity
TeG = g. Specifically, given a cone C in g, the correspond-
ing left-invariant cone field is described by CG(g) = dLg|eC.
For example, if we are given a polyhedral cone C of rank
k in TeG that is specified via a collection of inequalities



〈ni, x〉e ≥ 0 for x ∈ TeG, where {n1, · · ·, nm} is a set of m
vectors in TeG with dim span{ni} = n − k + 1 ≤ n, and
〈·, ·〉e is an inner product on TeG, then the corresponding
left-invariant cone field of rank k can be defined by the
collection of inequalities

δg ∈ TgG : 〈dLg
∣∣
e
ni, δg〉g ≥ 0, (5)

for all g ∈ G, where 〈·, ·〉g is the unique left-invariant
Riemannian metric corresponding to the inner-product
〈·, ·〉e in TeG.

Similarly, given a quadratic cone C of rank k in TeG defined
by 〈x, Px〉e ≥ 0 for x ∈ TeG, where P is a symmetric
invertible n × n matrix with k positive eigenvalues and
n−k negative eigenvalues, the corresponding left-invariant
cone field is given by

δg ∈ TgG : 〈δg, dLg
∣∣
e
PdL−1g

∣∣
g
δg〉g ≥ 0, (6)

for all g ∈ G. Similarly, one can also define notions of right
invariant cone fields of any rank k using the vector space
isomorphisms dRg|g0 induced by right translations on G.

3. DIFFERENTIAL POSITIVITY

3.1 Differential positivity with respect to pointed convex
cone fields

Let M be a smooth manifold endowed with a smooth
cone field K such that for each x ∈ M, K(x) ⊂ TxM
is a closed, convex, pointed cone. For a continuous-time
dynamical system Σ on M governed by ẋ = f(x), where
f is a smooth vector field on M, the system is said to be
differentially positive with respect to the cone field K if
dψt
∣∣
x
K(x) ⊆ K(ψt(x)) for all x ∈ M and t ≥ 0, where

ψt(x) denotes the flow of Σ at time t starting at x. Here
we have assumed that the system is forward complete so
that any trajectory ψ(·)(x0) is defined on a time domain
of the form [t0,∞).

A cone field K on a manifoldM induces a conal order ≺ on
M and locally partially orders the manifold. A continuous
piecewise smooth curve γ : [t0, t1] → M is called a conal
curve if γ′(t) ∈ K(γ(t)), whenever the derivative exists.
We write x1 ≺ x2 for points x1, x2 ∈ M if there exists
a conal curve starting at x1 that ends at x2. If the conal
order is also antisymmetric, then it defines a partial order
on M, although this is generally not the case globally.
In the case where M = V is a vector space and K is
a constant cone field, the conal order does indeed define
a global partial order. A dynamical system defined on a
vector space endowed with a partial order � is said to be
monotone if for any x1, x2 ∈ V, the trajectories ψt satisfy

x1 � x2 ⇒ ψt(x1) � ψt(x2). (7)

It is a key observation that differential positivity in a linear
space with respect to a constant cone field is precisely the
local characterization of monotonicity.

A main contribution of Forni and Sepulchre (2015) is
the generalization of Perron-Frobenius theory to the dif-
ferential framework, whereby the the Perron-Frobenius
eigenvector of linear positivity theory is replaced by a
Perron-Frobenius vector field w(x) whose integral curves
shape the attractors of the system. Differential positivity
can be particularly powerful on bounded forward invariant
sets, where the existence of an integral curve of w whose

image is an attractor for all the trajectories from S can be
established under mild technical assumptions.

3.2 Differential positivity with respect to higher rank cones

A pointed convex cone K in Rn induces an order in Rn
such that for any pair x1, x2 ∈ Rn, we write x1 � x2
if x2 − x1 ∈ K. It is of course the convexity of K and
the condition K ∩ −K = {0} that ensure that � defines
a global partial order on Rn. As a generalized cone C of
rank k in Rn does not satisfy these conditions, it does not
induce a partial order. Nonetheless, we can still define a
weakened generalized notion of an order relation between
two points x1, x2 ∈ Rn with respect to C in a similar
fashion. Specifically, we say that x1 and x2 are ordered or
related with respect to C and write x1 ∼ x2 if x2−x1 ∈ C.
Clearly, x1 ∼ x2 if and only if x2 ∼ x1. We say that x1
and x2 are strongly ordered and write x1 ≈ x2 if x2 −
x1 ∈ int C. One can now consider monotonicity of systems
with respect to these weaker generalized order relations
induced by cones of rank k ≥ 2. Given a cone field C of rank
k on a manifoldM, we say that two points x1, x2 ∈M are
ordered with respect to C and write x1 ∼ x2 if there exists
a conal curve γ connecting x1 to x2, so that γ′(t) ∈ C(γ(t)),
at all points along the curve. Indeed, if C is a cone field
of rank k on a manifold M, the continuous-time system
ẋ = f(x) onM with semiflow ψt(x) is said to be monotone
with respect to C if

x1 ∼ x2 ⇒ ψt(x1) ∼ ψt(x2), (8)

for all t > 0. The system is strongly monotone with respect
to C if x1 ∼ x2, x1 6= x2 ⇒ ψt(x1) ≈ ψt(x2), for all t > 0.

Definition 3. Let M be a smooth manifold endowed with
a smooth cone field C of rank k and consider a continuous-
time system Σ given by ẋ = f(x) on M with positive
semiflow ψt(x). We say that Σ is differentially positive
with respect to C if

dψt
∣∣
x
C(x) ⊆ C(ψt(x)) (9)

for all x ∈ M and t ≥ 0. Furthermore, we say that Σ is
strictly positive if dψt

∣∣
x

(C(x) \ {0x}) ⊂ int C(ψt(x)), for
all x ∈M and t ≥ 0.

Now if Σ is a monotone system with respect to C, it is
easy to see that an infinitesimal difference δx between
neighbouring ordered solutions at x satisfies dψt

∣∣
x
δx ∈

C(ψt(x)), for all t ≥ 0. That is, monotonicity with respect
to a cone field C of rank k implies differential positivity
with respect to C.

3.3 Differential Perron-Frobenius theory for cones of rank
k ≥ 2

The following result from Fusco and Oliva (1991) is a
generalization of the classical Perron-Frobenius theorem
to higher rank cones.

Theorem 4. Let C be a cone of rank k in a vector space
V of dimension n and suppose that T ∈ L(V) is a strictly
positive linear map with respect to C so that T (C \ {0}) ⊂
int C. Then there exist unique subspaces W1 and W2 of V
such that dimW1 = k, dimW2 = n − k, V = W1 ⊕W2,
which are T -invariant:

T (Wi) ⊆ Wi, for i = 1, 2, (10)



and satisfy

W1 ⊂ int C ∪ {0}, W2 ∩ C = {0}. (11)

Furthermore, denoting the spectrum of T restricted toWi

by σi(T ) for i = 1, 2 , we have

|λ1| > |λ2|, ∀λ1 ∈ σ1(T ), λ2 ∈ σ2(T ). (12)

By replacing the classical Perron-Frobenius theorem with
this generalization and the notion of differential positivity
with respect to a pointed convex cone field with that of
differential positivity with respect to a cone field of rank
k ≥ 2, we arrive at a generalization of differential Perron-
Frobenius theory whereby the attractors of the system are
shaped not by a Perron-Frobenius vector field, but by a
smooth distribution of rank k.

Recall that a smooth distribution D of rank k on a smooth
manifold M is a rank-k smooth subbundle of TM. A
rank k distribution is often described by specifying a k-
dimensional linear subspace Dx ⊆ TxM at each point
x ∈ M, and writing D = ∪x∈MDx. It follows from the
local frame criterion for subbundles that D is a smooth
distribution if and only if each point x ∈ M has a
neighborhood U on which there are smooth vector fields
X1, ..., Xk such that {Xj |x̃ : j = 1, ..., k} forms a basis for
Dx̃ at each point x̃ ∈ U . The distribution D is then said
to be locally spanned by the vector fields Xj .

Given a smooth distribution D ⊆ TM, a nonempty
immersed submanifold N ⊆ M is said to be an integral
manifold of D if

TxN = Dx ∀x ∈ N . (13)

The question of whether for a given distribution there
exists an integral manifold is intimately connected to the
notion of involutivity and characterized by the Frobenius
theorem. A distribution D is said to be involutive if
given any pair of smooth vector fields X,Y defined on
an open subset of M such that Xx, Yx ∈ Dx for each
x ∈ M, the Lie bracket [X,Y ]|x also lies in Dx. By the
local frame criterion for involutivity, one can show that a
distribution D is involutive if there exists a smooth local
frame {Xj : j = 1, ..., k} for D in a neighborhood of
every point in M such that [Xi, Xj ] is a section of D for
each i, j = 1, ..., k. The Frobenius theorem tells us that
involutivity of a distribution is a necessary and sufficient
condition for the existence of an integral manifold through
every point Lee (2003).

4. INVARIANT DIFFERENTIAL POSITIVITY ON
LIE GROUPS

Let G be a Lie group equipped with a bi-invariant Rie-
mannian metric 〈·, ·〉g and consider a continuous-time dy-

namical system on G given by d
dtg = f(g) for all g ∈ G,

where f is a smooth vector field that assigns a vector
f(g) := Xg ∈ TgG to each point g ∈ G. Let ψt(g) denote
the trajectory of Σ at time t ∈ R with initial point g ∈ G.
Note that the flow ψt : G → G is a diffeomorphism with
differential dψt|g : TgG→ Tψt(g)G. The linearization of Σ
with respect to a left-invariant frame on G takes the form

d

dt
δg = lim

t→0

dLgψt(g)−1 |ψt(g) ◦ dψt|g δg − δg
t

. (14)

To see this, note that the tangent vector δg ∈ TgG evolves
under the flow to dψt|gδg ∈ Tψt(g)G, which is then pulled

back to TgG using dLgψt(g)−1 |ψt(g) by left-invariance, in

order to compute the derivative δ̇g relative to a left-
invariant frame.

The system on G can be rewritten as ġ = f(g) = gΩ(g) for
some smooth Ω : G→ g. We identify g = TeG with Rn via
the vectorization map ∨ : Ω 7→ Ω∨ ∈ Rn. Thus, the system
is characterized by the map Ω∨ : G → Rn. The push-
forward of this map takes the form dΩ∨|g : TgG → Rn
and maps tangent vectors δg ∈ TgG to vectors in Rn. The
linearization takes the form

d

dt
δg = dLg

∣∣
e
◦ dΩ∨

∣∣
g
δg = g dΩ∨

∣∣
g
(δg). (15)

Since we are working with a left-invariant cone field, we
can equivalently consider the linear map

A(g) := dΩ∨
∣∣
g
◦ dLg

∣∣
e

: Rn → Rn (16)

for each g ∈ G, where Rn is identified with g through the
∨ map. Differential positivity with respect to an invariant
cone field of rank k generated by a cone C ⊂ Rn reduces
to the positivity of the linear map ẋ = A(g)x with respect
to C for all g ∈ G.

The following theorem provides an explicit generalization
of differential Perron-Frobenius theory to systems that are
invariantly differentially positive with respect to higher
rank cone fields on Lie groups. In the interest of brevity,
we have elected to include the proof in a future journal
publication which expands upon this work. Instead, we
shall focus on the application of the theorem in this
manuscript.

Theorem 5. Let Σ be a uniformly strictly differentially
positive system with respect to a left-invariant cone field C
of rank k in a bounded, connected, and forward invariant
region S ⊆ G of a Lie group G equipped with a bi-
invariant Riemannian metric. If the distribution of rank
k of dominant eigenspaces of linearizations of Σ in S is
involutive and satisfies

lim sup
t→∞

‖dψt|gw(g)‖ψt(g) <∞, (17)

for every g ∈ S, t ≥ 0, and w(g) ∈ Dg, then there exists
an integral manifold N of D that is an attractor for all the
trajectories of Σ from S.

5. CONSENSUS ON SO(3)

Let G be a compact Lie group with a bi-invariant Rie-
mannian metric. Consider a network of N agents gk repre-
sented by an undirected connected graph G = (V, E) evolv-
ing on G. For a given element gk ∈ G, the Reimannnian
exponential and logarithm maps are denoted by expgk :
TgkG → G and loggk : Ugk → TgkG, respectively, where
Ugk ⊂ G is the maximal set containing gk for which expgk
is a diffeomorphism. For any commnication edge (k, i) ∈ E ,
define

θki = d(gk, gi) and uki =
loggk gi

‖ loggk gi‖
, (18)

where d denotes the Riemannian distance on G. Let inj(G)
denote the injectivity radius of G. A class of consensus
dynamics can be defined on G by

ġk =
∑

i:(k,i)∈E

f(θki) uki, (19)



where f : [0, inj(G)] → R is a suitable reshaping function
that is differentiable on (0, inj(G)) and satisfies f(0) = 0.

Here we consider a network of N agents evolving on the
space of rotations SO(3). Associate to each agent a state
gk ∈ SO(3) = {R ∈ R3×3 : RTR = I, detR = 1}, where
e = I denotes the identity element and matrix in SO(3).
The Lie algebra of SO(3) is the set of 3×3 skew symmetric
matrices, and is denoted by so(3). For any tangent vector
δgk ∈ TgkG, there exist ω1, ω2, ω3 ∈ R3 such that

δgk = gk

(
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

)
= gkΩ, (20)

where Ω ∈ so(3). We can thus identify any δgk ∈ TgkG
with a vector Ω∨ = (ω1, ω2, ω3)T ∈ R3 via the ∨ map.

Assume that SO(3) is equipped with the standard bi-

invariant metric characterized by 〈Ω1,Ω2〉so(3) = (Ω∨1 )
T

Ω∨2 ,
for Ω1,Ω2 ∈ so(3), and let ∇ denote its Levi-Civita
connection. Consider a consensus protocol of the form
ġk =

∑
i:(k,i)∈E f(θki)uki, where the reshaping function

f : [0, π]→ R is differentiable on (0, π), satisfies f(0) = 0,
f(θ) > 0 and f ′(θ) > 0 for θ ∈ (0, π).

We consider the linearization of (19) in the form

∇δgk

 ∑
i:(k,i)∈E

f(θki)
loggk gi

‖ loggk gi‖

 , (21)

which is a measure of the change in
∑
i:(k,i)∈E f(θki)uki

when gk changes infinitesimally in the direction of δgk ∈
TgkG. The term corresponding to the communication edge
(k, i) ∈ E in this linearization can be expressed using a
symmetric operator acting on two tangent vectors where

Aki(ξgi , ηgi) := 〈∇ξgi (f(θki)uki) , ηgi〉gi , (22)

for ξgi , ηgi ∈ TgiG. In the subsequent analysis, we make
use of the following result from Ferreira et al. (2013).

Lemma 6. Let B(gk) be a sufficiently large geodesic ball
centred at gk and γ : [0, θki] → B(gk) denote the unit
speed geodesic from gk to gi ∈ B(p). Then

Aki(ξgi ,ηgi) = f ′(θki)〈ξ‖gi , ηgi〉gi

+
f(θki)

θki

3∑
j=1

cλj
(θki)〈ξ⊥gi , E

j
gi〉〈ηgi , E

j
gi〉, (23)

where {Ejgi} is an orthonormal basis which diagonal-
izes the linear operator R : TgiG → TgiG, R(ξgi) =
R(ξgi , γ̇gi)γ̇gi with eigenvalues λj : R(Ejgi) = λjE

j
gi , where

R denotes the curvature endomorphism on the Rieman-
nian manifold G. The coefficients cλj

in (23) are given by

cλ(t) =


√
λt/ tan(

√
λt) λ > 0

1 λ = 0√
−λt/ tanh(

√
−λt) λ < 0,

(24)

and the ‖ and ⊥ signs denote parallel and perpendicular
components of the vector with respect to the velocity
vector of γ, respectively.

The formula in (23) simplifies considerably when the space
G has constant sectional curvature as is the case for SO(3).
For such spaces, the eigenvalues of the operator R are
constant and equal to the sectional curvature, except for

one, which is 0 and corresponds to the eigenvector γ̇. This
result is used to obtain the matrix representation of the
linearization of the consensus dynamics that follows.

Writing g = (g1, · · ·, gN ), the dynamical system can be
expressed as d

dtg = F (g), where F is a smooth vector

field on SO(3)N . The linearization of the system can be
expressed in the form

d

dt
x = A(g) x, (25)

where x ∈ R3N is the vector representation of

(δg1, · · ·, δgN ) ∈ TgSO(3)N (26)

with respect to a left-invariant frame {Elk|g}l=1,2,3;k=1,···,N
of SO(3)N formed as the Cartesian product of N copies of
a left-invariant orthonormal frame of SO(3). For each g,
the linear map A(g) has the 3N × 3N matrix representa-
tion of the form

Akk(g) = −
∑

i:(k,i)∈E

A(θki),

Aki(g) = A(θki) if (k, i) ∈ E ,
Aki(g) = 0 if (k, i) /∈ E .

(27)

with respect to the orthonormal basis {Elk|g} of R3N ,
where A(θki) is a 3 × 3 block matrix whose spectrum is
given by{

f ′(θki),
1

2
f(θki) cot

(
θki
2

)
,

1

2
f(θki) cot

(
θki
2

)}
.

(28)
Thus, for θki ∈ (0, π), A(θki) is positive definite.

Let 11 denote the vector consisting of N copies of e1 =
(1, 0, 0)T with respect to the orthonormal basis {Elk} of
TgSO(3)N ∼= R3N . Similarly, define 12 and 13 using N
copies of e2 = (0, 1, 0)T and e3 = (0, 0, 1)T , respectively.
We define the invariant cone field CSO(3)N (g, δg) of rank 3
by

Q(x) := xT1111
Tx + xT1212

Tx + xT1313
Tx

−µ xTx ≥ 0, (29)

where µ ∈ (0, 3N) is a parameter and x is the vector
representation of δg ∈ TgSO(3)N with respect to the or-
thonormal basis {Elk} of TgSO(3)N ∼= R3N . Observe that
D = span{11,12,13} ⊂ int C, at every point g ∈ SO(3)N .
Furthermore, it is not difficult to see that D is an involu-
tive left-invariant distribution of rank 3 with an integral
manifold isomorphic to a single copy of SO(3) diagonally
embedded in SO(3)N . In particular, the consensus mani-
foldMsync = {g ∈ SO(3)N : g1 = · · · = gN} is the integral
manifold through the identity element e ∈ SO(3)N .

Noting that A(g)1j = 0, for j = 1, 2, 3, we find that the
time derivative of Q along trajectories of the variational
dynamics takes the form

d

dt
Q(x) = −2µ xTA(g)x (30)

= 2µ
∑

(k,i)∈E

(xk − xi)
TA(θki)(xk − xi) ≥ 0, (31)

where xk ∈ R3 consists of the elements of x ∈ R3N

at the entries 3k − 2, 3k − 1, 3k. It is clear that for a
connected graph Q̇ > 0, unless xi = xk for all i, k. This
demonstrates strict differential positivity of the consensus



dynamics with respect to the cone field C for the monotone
coupling function f , whenever θki < π. Thus, by Theorem
5, for any bounded, connected, and forward invariant
region S ⊆ {g ∈ SO(3)N : d(gi, gk) < π, ∀(i, k) ∈ E},
there exists a unique integral manifold of D that is an
attractor for all of the trajectories from S. In particular,
if d(gi, gk) < π/2 for all gi, gk ∈ SO(3), then the attractor
is clearly the three-dimensional synchronization manifold
Msync

∼= SO(3).

6. CONCLUSION

A generalization of linear positivity theory is obtained
when one replaces the notion of a dominant eigenvector
with that of a dominant eigenspace of dimension k ≥ 2.
For such systems, it is natural to characterize positivity
by the contraction of a generalized cone of rank k in place
of a convex cone as in classical positivity theory. One can
naturally extend this generalization to nonlinear systems
by introducing the notion of differential positivity with
respect to cone fields of rank k ≥ 2. The resulting theory
is a generalization of differential Perron-Frobenius theory
whereby a distribution of rank k consisting of dominant
eigenspaces of linearizations of the system shapes the
attractors of the system. As illustrated with an example of
consensus on SO(3), this framework can be used to study
systems whose attractors arise as integral submanifolds of
the distribution.

In future work, we will seek to exploit the framework of
invariant differential positivity with respect to polyhedral
higher rank cone fields to study consensus on Lie groups
for networks with directed and time-varying graphs, or
coupling functions fik that are not symmetric in the in-
dices i, k. These networks give rise to consensus dynamics
that cannot be formulated as gradient dynamics and hence
cannot be tackled via quadratic Lyapnunov theory. It is for
these systems that the differential positivity approach may
prove to be particularly powerful.
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