
Abstract 

This paper advocates the use of the distributed compressed 

sensing (DCS) paradigm to deploy energy harvesting (EH) 

Internet of Thing (IoT) devices for energy self-sustainability. 

We consider networks with signal/energy models that capture 

the fact that both the collected signals and the harvested energy 

of different devices can exhibit correlation. We provide 

theoretical analysis on the performance of both the classical 

compressive sensing (CS) approach and the proposed 

distributed CS (DCS)-based approach to data acquisition for 

EH IoT. Moreover, we perform an in-depth comparison of the 

proposed DCS-based approach against the distributed source 

coding (DSC) system. These performance characterizations and 

comparisons embody the effect of various system phenomena 

and parameters including signal correlation, EH correlation, 

network size, and energy availability level. Our results unveil 

that, the proposed approach offers significant increase in data 

gathering capability with respect to the CS-based approach, and 

offers a substantial reduction of the mean-squared error 

distortion with respect to the DSC system. 

Keywords: Distributed compressed sensing, energy harvesting, 

internet of things, energy self-sustainability. 

Introduction 
Devices with energy self-sustainability (ESS) are desired for 

the Internet of Things (IoT) and 6G, i.e. 6th generation of 

mobile communications [1]. To achieve ESS, future 

communication devices are expected to be equipped with 

energy harvesters (e.g., piezoelectric, thermoelectric and 

photovoltaic) to substantially increase their autonomy and 

lifetime [2]-[4]. The use of energy harvesting (EH) has been 

emerging in various IoT applications, e.g., greenhouse 

monitoring using solar energy and super capacitor storage, 

remote sensing of wind-driven wildfire spread, and radio 

frequency EH in structural health monitoring network. 

However, it is also recognized that the gap between EH supply 

and the devices' energy demand is not likely to close in the near 

future due to the surge in demand for more data-intensive 

applications. 

These considerations have motivated the design of energy 

efficient data sensing and coding schemes [5], [6]. Such 

approaches rely on the intra-sensor data correlation but fail to 

exploit the correlations amongst data captured by different 

devices. Rooted in the theoretical results of Slepian and Wolf 

[7] and Wyner and Ziv [8], distributed source coding (DSC) 

schemes exploit inter-sensor data correlation via joint decoding 

[9]. While offering low-complexity solutions, the performance 

of DSC systems is highly dependent on knowledge of the 

correlation statistics, and extending DSC to the multiterminal 

case is a challenging problem in practice. 

Compressive sensing (CS) is a sampling paradigm that can 

reduce energy consumption associated with data acquisition 

and transmission [10]-[14]. By exploiting the CS principle, the 

scheme in [10] shows that a reduced number of weighted sums 

of sensor readings (instead of individual readings) can be 

delivered to the collection unit, thereby reducing both 

communication and computation costs. Alternatively, in [11], 

an adaptive and nonuniform compressive sampling approach is 

applied to improve the energy efficiency of devices. Moreover, 

unbalanced costs of different devices are considered for 

scheduled sensing to prolong the system lifetime in [13]. In 

[14], a CS-based prejudiced random sensing strategy is 

proposed to attain a desired tradeoff between the overall energy 

consumption and the sensing accuracy. Finally, the CS 

principles have been extended to the multiterminal case by 

means of distributed compressed sensing (DCS) [15]-[17], 

which exploits both intra- and inter-sensor data correlations via 

joint reconstruction at the collection unit. 

Regarding energy-efficient data transmission, existing works 

focus on the design of an intelligent point-to-point wireless 

communication system with EH capability, or network-level 

energy management with multiple IoT devices and base 

stations (BSs). Yet, these solutions do not explicitly integrate 

two fundamental mechanisms: energy diversity and sensing 

diversity. 

This paper advocates the use of DCS for ESS in IoT 

applications. The key attributes of the proposed approach that 

lead to ESS are as the following: Due to signal correlations, the 

number of measurements at the various devices can be 
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substantially lower than the data dimensionality without 

compromising data recovery. In addition, a variable number of 

measurements can be allocated to different devices (subject to 

EH constraints) without compromising data recovery. Hence, 

we argue that, due to the energy diversity (associated with the 

EH process) and the sensing diversity (associated with the DCS 

process), we can match the energy supply to the energy 

demand. In this way, we can unlock the possibility for ESS. 

Our contributions lead to ESS are as follows: 

 We propose a DCS-based sensing approach to unlock 

ESS in EH IoT networks by matching the energy 

demand to the profile of energy supply. Our approach 

is fundamentally different from other CS or DCS 

approaches that focus purely on the reduction in the 

required number of measurements; 

 We derive a lower bound to the probability of incorrect 

data reconstruction (PIDR) for both a CS-based data 

acquisition scheme, which only exploits intra-sensor 

correlations, and the DCS-based data acquisition 

scheme, which exploits both intra- and inter-sensor 

correlations; 

 We analyze the performance of the proposed approach 

via numerical simulations that embody the effect of 

various system phenomena and parameters (such as 

signal correlation, energy harvesting correlation, 

network size, and energy availability level). In 

particular, we show that there exist an optimal number 

of signals for joint reconstruction; 

 We conduct an in-depth experimental comparison of 

the proposed DCS system against the DSC approach 

using real sensor data and we demonstrate the 

superiority of our solution. To the best of our 

knowledge, this is the first time where DCS\ and DSC 

are compared against each other in a systematic 

manner. 

The following notational conventions are adopted 

throughout the paper. Lower-case letters denote scalars; 

boldface upper-case letters denote matrices; boldface lower-

case letters denote column vectors; calligraphic upper-case 

letters denote support sets and 0  denotes a vector or a matrix 

with all zeros. The superscript T( ) denotes matrix transpose. 

The 
0

 norm, the 
1

 norm, and the 
2

 norm of vectors, are 

denoted by 
0‖‖ , 

1‖‖ , and 
2‖‖ , respectively. ( )Pr   and 

xP ( )  

denote the probability and the probability density function 

(PDF) of x  respectively. 

System Description 

We consider a typical cluster-based IoT architecture, where a 

set of devices periodically conveys data to one or more base 

stations (BSs) that form the aggregation point of the cluster 

(see Fig.1. We assume slotted transmission such that within a 

time slot of T  seconds the devices are active for Tact
seconds 

in order to capture and transmit data and are inactive for 

T Tact  seconds. Energy may be harvested from the 

environment during each time slot T  and can be stored in a 

battery, as shown in Fig.2. We assume that, upon activation, 

the devices converge into a balanced time-frequency steady-

state mode where each device is associated with a BS using a 

particular channel (or joins a synchronized channel hopping 

schedule) in  

 
Figure 1 A typical cluster-based IoT architecture. 

 

Figure 2 Typical energy consumption profile of a data 
acquisition and EH scheme 

order to convey data without collisions. We also assume fading, 

external interference and other non-idealities in packet 

transmissions are dealt with via the physical-layer modulation 

and coding mechanisms of standards such as IEEE 802.15.4. 

Therefore, without loss of generality, from the sensing and 

processing side, data transmission is taken to be a lossless 

process with any non-idealities dealt with via the lower layers 

of the protocol stack [18]. 

We also consider a data gathering and reconstruction 

process---which is key to match the energy demand to the 

energy supply---based on three steps: (i) DCS based data 

acquisition at the devices, (ii) data transmission from the 

devices to the BS, and (iii) DCS based data reconstruction at 

the BS. These processes, together with the energy consumption 

model and the EH model, are described in the sequel. Note that 

the idea and results are presented exclusively for a centralized 

IoT architecture consisting of K devices that are attached to a 

single BS. However, our scheme can be straight forwardly 

generalized to architectures with devices that are attached to 

multiple BSs, as in Fig. 1. 

DCS Based Data Acquisition and Transmission 

The devices capture low-dimensional projections of the 

original high-dimensional data during each activation time 

iT T t iTact   , which are given by: 

k k k(i) (i) (i)y Φ f                                     (1) 

where km (i)

k (i)y  is the projections vector at the k th device 

corresponding to the i th time interval 1 , n(i)

k (i)f  is the 

original (Nyquist-sampled) data vector at the k th device 

                                                                 
1 Note that the dimensionality of the projections can vary in 
different activation times and different devices. 



corresponding to the i th time interval, and km (i) n(i)

k (i) Φ  is 

the projections matrix where 
km (i) n(i)  for any time interval 

i and device k . In practice, one may obtain the projections 

vector from the original data signal using analogue CS 

encoders [19], whereby the projections vector is obtained 

directly from the analogue continuous-time data, or using 

digital CS encoders [20], whereby the projections vector is 

obtained from the Nyquist sampled discrete-time data via (1). 

The devices then convey the low-dimensional projections of 

the original high-dimensional data to the BS. 

DCS Based Data Reconstruction 

We take the signals n(i)

k (i)f  to admit a sparse 

representation n(i)

k (i)x  in some orthonormal basis 
n(i) n(i)(i) Ψ , i.e., 

k k(i) (i) (i)f Ψ x ，                                    (2) 

where 
k 0 k(i) s(i) m (i) n(i)x‖ ‖ . In addition, we take the 

sparse representations to obey the sparse common component 

and innovations (SCCI) model that has been frequently used to 

capture intra- and inter-signal correlation typical of physical 

signals (e.g., temperature, humidity) in [15], [16], i.e., we write 

k c k(i) (i) (i), x z z                                     (3) 

where n(i)

c (i)z  with 
c 0 c(i) s (i) n(i)z‖ ‖  denotes the 

common component of the sparse representation n(i)

k (i)x , 

which is common to the signals captured by the various devices, 

and n(i)

k (i)z  with 
k 0(i) s (i) n(i)z‖ ‖  denotes the 

innovations component of the sparse representation n(i)

k (i)x , 

which is specific to the signals captured by each device. This 

model applies to scenarios of monitoring specific physical 

phenomena such as temperature or humidity where the 

common component models global factors, e.g., the sun and 

prevailing winds, and the innovations component models local 

factors, e.g., the terrain and shade. Note that 
cs (i) s (i) s(i)   . 

Note also that the signal sparsities 
cs (i) , s (i)  and s(i) , the 

signal dimensionality n(i) , and the orthonormal dictionary 

(i)Ψ  are in general independent of the activation interval i . 

In view of the signal model in (2) and (3), it is possible to 

reconstruct the original signal from the signal projections using 

either standard CS recovery algorithms or DCS recovery 

algorithms. CS recovery only considers intra-signal correlation; 

in contrast, DCS considers both inter- and intra-signal 

correlation [15]. 

1) CS Reconstruction Algorithms: CS signal reconstruction 

only assumes that the signals admit a sparse representation in 

some orthonormal basis, e.g., the discrete Fourier basis and 

wavelet basis. Therefore, the typical signal reconstruction 

process behind conventional CS approaches involves solving 

the following optimization problem to recover individually the 

original signals captured by the various devices in each 

activation interval: 

k (i) k 1

k k k

min (i)

s.t . (i) (i) (i),

x
x

A x y

‖ ‖ 
                                    (4) 

where km (i) n(i)

k k(i) (i) (i)  A Φ Ψ . The major practical 

algorithms for sparse signal reconstruction are surveyed in [21]. 

Instead of directly dealing with the above convex optimization 

problem, there are various algorithms and extensions based on 

sparse Bayesian learning [22]-[25]. Nonconvex algorithms for 

sparse reconstruction is given in [26]. In addition, the rapid 

development of deep learning (DL) provides a fresh 

perspective for solving the linear inverse problem. Interested 

readers may refer to [27] for a more detailed review of DL 

based algorithms for linear inverse problems.  

2) DCS Reconstruction Algorithms: The signal 

reconstruction process behind the adopted DCS approach---

which exploits the SCCI model in (2) together with (3)---

involves solving the following optimization problem to recover 

jointly the original signals captured by various devices in each 

activation interval [15]: 

1(i)
min (i)

s.t . (i) (i) (i),

z
z

A z y

‖ ‖
                                    (5) 

where 
T

T T T (K 1)n(i)

c 1 K(i) (i) (i) (i)     z z z z\  is the 

extended sparse signal vector, 

K

k

k 1

m (i)
T

T T

1 K(i) (i) (i) 


    y y y  

is the extended measurements vector, and 

K

k

k 1

m (i) (K 1)n(i)

(i) 

 
  
 
 


A  

is the extended sensing matrix given by 

1 1

2 2

K K

(i) (i)

(i) (i)
(i) .

(i) (i)

 
 
 
 
 
 

A A 0 0 0

A 0 A 0 0
A

A 0 0 0 A

 

Energy Consumption and Harvesting Models 

We assume that the devices use all the available energy in 

their local battery during each activation interval, which is 

given by: 
C H

k k(i) (i),   

where H

k (i)  is the energy harvested by device k  in the interval 

(i 1)T t iT   , and C

k (i)  is the energy consumed by device k  

in the interval 
actiT T t iT   . 

1) Energy Consumption Model: We assume that the energy 

consumed for sensing, computing and transmitting one 

measurement (projection) is essentially a constant 0  . Hence, 

the energy consumed by device k  during activation interval i  

is modelled as follows: 
C

k k(i) m (i).   

2) Energy Harvesting Model: We also assume that the 

energy harvested by the various devices exhibits some degree 

of correlation. In particular, the energy harvested by device k  

during activation interval i  is modelled as follows: 
H H H

k c k
ˆ ˆ(i) (i) (i),     

where H

c
ˆ (i)  denotes a component of the harvested energy that 

is common to all devices and H

k
ˆ (i)  denotes a component of the 

harvested energy that is specific to the k th device. We assume 

that (1) H

c
ˆ (i)  follows an exponential distribution with 

parameter 
c 0   and that H

k
ˆ (i),k 1, ,K    follows an 



exponential distribution with parameter 
k 0,k 1, ,K    2 [28]; 

(2) H

c
ˆ (i)  and H

k
ˆ (i),k 1, ,K    are independent; and (3) EH 

across time slots is independent. 

It is clear that this correlated EH model is akin to the signal 

correlation model. The motivation for using such a model 

relates to the fact that devices that are close together are also 

likely to---in addition to sense correlated signals---harvest 

correlated amounts of energy. Further, these assumptions are 

also motivated by the following: i) many energy sources, e.g., 

radio frequency (RF) energy and vibration energy, are known 

to exhibit exponential decay, which depends on the path-loss in 

RF signal propagation; therefore, under the assumption of an 

RF source (or vibration source) and devices located at various 

distances around it, both H

c (i)  and H

k (i)  would be 

exponentially decaying; ii) the instantaneous operational state 

of the physical energy converter circuitry of every device is 

independent from that of other devices [29][30]; iii) the energy 

source can be modeled as a memoryless process since the 

energy availability for both RF [29] and vibration harvesting 

[30] fluctuate randomly across time. Overall, our modelling 

approach is expected to capture key elements of the EH process, 

in addition to retaining some degree of analytical tractability. 

Analysis: Lower Bounds to the Probability of 

Incorrect Data Reconstruction 

Via lower bounds to the PIDR (i.e., the probability of failure 

to reconstruct the data captured by all the devices at the BS), 

we compare the performance of the proposed DCS scheme to 

that of conventional CS data acquisition schemes. The PIDR 

associated with the data gathering approaches can be lower 

bounded by the probability that the energy availability at the 

devices is not sufficient to fit the energy consumption 

requirements. These energy consumption requirements are in 

turn dictated by the set of conditions on the number of 

measurements at the various devices necessary for successful 

CS or DCS data reconstruction at the BS (see Appendix A). 

Theorem 1: The PIDR under the proposed signal and EH 

models for CS and DCS data acquisition can be lower bounded 

in any activation interval as follows:3 
K

c k

k 1

K
s s

k

ck 1

K K

k c k c

k 1 k 1

e
e

1 ,PIDR

   


   



 



 



  

 



 
CS

                       (6) 

                                                                 

2 We assume that 
K

k c

k 1

 


 . This mathematical technicality 

does not result in a substantial loss of generality, but is 
required in order to simplify the ensuing analysis. We would 
also like to clarify that the use of the DCS paradigm to deploy 
EH IoT devices for energy self-sustainability is not relying on 
the distribution assumption, although it helps in developing 
the theoretical analysis. 
3 The results of the proposed approach do not depend on the 
activation index i , so, in this section, we drop this index to 
simplify the notation. 

and 
K

c k

k 1

c
c

k cc
c

K
s s

k

ck 1

K K

k c k c

k 1 k 1

s
( s )

(s Ks )s K K( s )
cK

K
k 1

k c k j

j 1, j k

e
e

1 min ,

e e
e

(K ) (1 / )

{

( )
}.

PIDR

   


 

  
 




   



   



 



 


 

   
 



 



  

 




 



 




DCS

                       (7) 

Proof: See Appendix B. 

The lower bounds to the PIDR embody various attributes 

associated with the performance of the various data gathering 

schemes. One can immediately infer from the lower bound in 

(6) that the performance of CS based data acquisition tends to 

deteriorate with the increase in the number of devices K , the 

increase in the signal sparsity s , and the decrease in mean 

energy availability 
c

1


 or 

k

1


 ( k 1, ,K  ). One can also infer 

additional behavior associated with the lower bounds by 

conducting an asymptotic analysis---using Taylor series 

expansions---in the regime where the EH process is highly 

correlated across the devices (
k  ) ( k 1, ,K  ) and in the 

regime where the EH process is highly uncorrelated across the 

devices (
c  ). 

When the EH process is highly correlated, i.e., 
k   

( k 1, ,K  ) and 
c  is finite, the lower bounds to the PIDR can 

be expanded as follows: 

c

K
s

k

k 1

PIDR 1 e 1/ ,( )  



   CS
O                       (8) 

c
c

K(s Ks )
K

k

k 1

PIDR 1 e 1/ .( )


 


  



   DCS
O                 (9) 

We can thus conclude via (8) and (0) that: 

 The mean available energy per device, which is given by 

c1/  , dramatically affects the performance of both data 

acquisition methods. In particular, the lower bounds to 

the PIDR in (8) and (9) now increase exponentially to 

unity with the increase in 
c . 

 The signal sparsities also affect the performance of CS 

and DCS data acquisition considerably. Since 

c cs s s s / K s        one concludes that the lower bound 

in (8) is higher than the lower bound in (9). 

 The network size, as expected, does not affect the lower 

bounds associated with CS data acquisition (since the 

signals are reconstructed independently); in contrast, the 

network size affects the lower bound associated with 

DCS data acquisition via the common signal component 

(since the signals are reconstructed simultaneously). In 

view of the fact that 
c cs s s s / K s        one can 

immediately conclude that the lower bound in (9) can be 

much higher than the lower bound in (8) for a network 

with a large number of nodes (particularly when 
cs s  ). 

In contrast, when the EH process is highly uncorrelated, i.e., 

c   and 
k  ( k 1, ,K  ) are finite, the lower bounds to the 

PIDR can be expanded as follows: 



K

k

k 1

s

cPIDR 1 e (1/ ),
 




  

CS
O                 (10) 

K

k ck

k 1

(s Ks )Ks

cK
k 1 k

j 1, j k j

e
PIDR max 1 e ,1 (1/ ).

(1 )

{ }
   








  



 


   





DCS
 n O (11) 

We can also conclude via (10) and (11) that: 

 The mean available energy per device, which is now 

given by 
k1/   ( k 1, ,K  ), also dramatically affects the 

performance of both data acquisition methods. In 

particular, the lower bounds to the PIDR in (10) and (11) 

now increase rapidly to unity with the increase in 
k  

( k 1, ,K  ). 

 The signal sparsity affects the performance of CS and 

DCS data acquisition. As s s , the lower bound 

associated with CS data acquisition is higher than the first 

term of the lower bound associated with DCS. In addition, 

as 
c cKs K(s s ) s Ks       , the lower bound associated 

with CS data acquisition, which results from 

 1 K1 Pr s , , s       , is also higher than the second 

term of the lower bound associated with DCS, which 

results from 
K

k c

k 1

1 Pr s Ks( )  



   . 

 The behavior of the performance of CS and DCS data 

acquisition as a function of the network size is more 

interesting in the highly uncorrelated than in the 

correlated EH scenario. In particular, the lower bound 

associated with CS data acquisition in (10) rapidly tends 

to unity with increasing network size. In contrast, the 

behavior of the lower bound associated with DCS data 

acquisition in (11) depends on the interplay between the 

two terms in the argument of the max( , )   function: the 

first term tends to increase with the increase in K , but 

the second term, which coincides with the cumulative 

distribution function (CDF) of a generalized Erlang 

distributed random variable with mean value 
K

k 1 k c

1

(s Ks )   


 , could decrease with the increase in 

$K$. One then infers that there may be an optimal 

network size for DCS based data acquisition in the highly 

uncorrelated EH scenario. 

Finally in Fig.3, we give a comparison of the lower bounds 

with the optimal achievable performance 4 . The optimal 

achievable performance is obtained directly from the sufficient 

conditions for successful reconstruction in Appendix A by 

using Monte Carlo simulations. In addition, numerical results 

both with synthetic and real data in the sequel reveal that our 

lower bounds also embody the main performance trends, hence 

can be used to gauge core issues surrounding the effect of 

various system phenomena and parameters. In particular, they 

show the fact that the DCS acquisition and reconstruction 

approach, in view of its ability to strike a trade-off between the  

                                                                 
4 The generation of the data is the same as the synthetic 
experiments given in Section IV. 

 
Figure 3 Comparison of the lower bounds with the optimal 

achievable performance (
1 K1/ 1/ 1/    , 

c/ 5   , 1   

and n 50 ). The left sub-figure corresponds to K 2 , s 1   and 

cs 5  ; The right sub-figure corresponds to s 1  , 
cs 7   and 

c1/ 1/ 40   . 

number of measurements taken at different devices without 

compromising data reconstruction quality, offers the means to 

match the energy demand to the random nature of the energy 

supply in order to increase the lifetime and/or the data 

gathering capability of the network. For example, the left-hand 

sub-figure shows that CS requires two times more average 

energy than DCS for networks consisting of two devices to 

achieve a target PIDR of 110 . 

Experimental Results 

We now illustrate the potential of the approach both with 

synthetic data as well as with real dataset [31]. We retain the 

previous synthetic EH model in both instances. We compare 

our DCS approach against CS as well as the DSC system [32]. 

DCS vs. CS 

In the experiments with synthetic data, we generate sparse 

signal representations 
kx  ( k 1, ,K  ) obeying the SCCI model, 

where the innovation components of various signals exhibit the 

same support size. Both the common component support and 

the innovation component supports are selected randomly, and 

the non-zero elements in the common component and 

innovation components are drawn independent and identically 

distributed (i.i.d.) from a Gaussian distribution with zero mean 

and unit variance. We also generate the equivalent sensing 

matrices kA  ( k 1, ,K  ) randomly with elements drawn i.i.d. 

from a zero mean and unit variance Gaussian distribution. The 

EH process obeys the proposed correlated EH model, where 

the common component of the harvested energy across the 

devices follows an exponential distribution with a pre-specified 

mean c1/   and the innovation component of the harvested 

energy per device are drawn from i.i.d. exponential 

distributions with the same mean 1 K1/ 1/ 1/    . We 

use the CVX package to reconstruct the signals for the CS case 

in (4) and the DCS case in (5). 



 
Figure 4 Probability of incorrect reconstruction vs. average 

harvested energy per device 
c1/ 1/   ( K 2 , 1  , n 50 , 

s 1   and 
cs 4  ). 

Table I 

The PIDR for two devices with different ratios between 

average value of the common energy component and average 

value of the innovation energy component ( 1  , s 1  , 
cs 4   

and n 50 ). 
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Fig.4 shows the PIDR versus average harvested energy per 

device (i.e., 
c1/ 1/  ) for different ratios between the 

average energy of the common component and the innovation 

component (i.e., 
c




). As expected, the performance improves 

with the increase in average harvested energy per device for all 

schemes. As predicted by our analysis, we observe that DCS 

performs better than CS for both the less correlated EH 

scenario (
c/ 5   ) and the more correlated EH scenario 

(
c/ 1/ 2   ). These trends are due to the fact that DCS is able 

to adapt to the energy variability across the devices whereas CS 

cannot perform such adaptation. It is also interesting to note 

that---even though Fig.4 appears to suggest that the 

performance in the more EH correlated scenario tends to be 

better than that in the less EH correlated scenario---there 

appears to be a c/   value that leads to the best performance, 

as shown in Table I. 

Fig.5 shows the PIDR versus the number of devices for 

different ratios between the average values of the common and  

 
Figure 5 Probability of incorrect data reconstruction vs. number 

of devices K  ( 1   and n 50  ). The left sub-figure 

corresponds to s 1  , 
cs 4   and 

c1/ 1/ 300   ; the right sub-

figure corresponds to 1/ 150  , 
c1/ 150   and 

cs s 6   . 

Table II 

The average harvested energy per device required for a target 

PIDR of 210  ( 1  , s 1  , 
cs 4   and n 50 ) . 

 

 

CS 

c   

DCS 

c   

CS 

c2   

DCS 

c2   

K 2  300 160 420 215 

K 5  560 140 570 155 

K 8  1000 160 1100 180 

the innovation energy components (left hand figure) and for 

different ratios between the sizes of the signal innovations 

component support and the signal common component support 

(right hand figure). We confirm that the PIDR for the DCS 

approach first decreases and then increases with the number of 

devices. In contrast, the PIDR for CS increases as the number 

of devices grows. In addition, the presence of an optimal 

number of devices for the DCS-based approach is more 

pronounced in the high signal correlation than in the low signal 

correlation case. 

Table II illustrates the average harvested energy per device 

required to achieve a target PIDR of 210  for different network 

sizes and different ratios between the average values of the 

common and the innovation energy components. It is clear that 

DCS requires much less energy than CS based data gathering 

and reconstruction. It is observed that the gain of the DCS 

approach tends to increase with the size of the network. For 

example, CS requires two times more average energy than 

DCS for networks consisting of two devices, while for 

networks consisting of eight devices, CS requires six times 

more average energy than DCS. Since the amount of harvested 

energy is a function of the devices' duty cycle, using the 

proposed DCS approach can increase the duty cycle of devices 

by approximately six times in comparison to the CS scheme for 

a network consisting of eight devices, and thus can increase the 

data gathering rate six times approximately. 

We now consider the temperature data collected by the Intel-

Berkeley Research Lab [31]---in particular, we consider the  



 
Figure 6 Probability of incorrect data reconstruction vs. solar 

panel size ( K 2 ). 

 
Figure 7 Probability of incorrect reconstruction vs. number of 

devices K  (with a 40 2
cm  solar panel). 

contiguous temperature data available from $8$ devices, 

namely, sensor 1, 2, 3, 4, 7, 8, 9, 10. In order to carry out EH 

and energy consumption calculations, we assume that each 

device is equipped with a solar panel with an average 

harvesting capability of 210W/cm  for the indoor environment 

given in [33]. We also assume that the harvested power is 

exponentially distributed with 2

c k

1 1
5

 
  W/cm  ( k 1, ,K  ). 

To quantify the energy consumed during transmission, we 

consider the use of a typical 250kbps 62.64 mW  (17.4 3.6mA V ) 

ZigBee RF transceiver. To simplify our comparisons, we 

ignore the sensing energy cost in this investigation as 

transmission energy is known to be much higher than the 

energy cost in compressive non-uniform random sampling [20]. 

Prior to transmission, each compressive measurement is 

discretized to 8 bits using a uniform quantizer. Under this 

setting, the energy required to transmit one measurement is 

662.64 8 J J
10 2.00448

250 bit measurement


 
   . The devices 

independently and randomly collect a small portion of the 

original samples, quantize them, and then transmit them to the 

BS based on the available energy. The temperature signals 

have length n 397 . Note that the monitored temperature 

signals are compressible (rather than exactly sparse) in the 

discrete cosine transform (DCT) domain. 

We compare the proposed DCS-based approach versus the 

baseline CS-based system. We assume that the reconstruction 

is successful if the relative recovery error for a single device 

satisfies 
2

k 3k 2

2

k 2

10


f f

f

‖ ‖

‖ ‖
, where 

kf  and kf  denote the original 

signal and the reconstructed signal of the k th device, 

respectively. Fig.6 shows the PIDR for K 2  devices (i.e., 

sensor 2 and 3), achieved by the CS and the proposed DCS data 

gathering schemes for various solar panel sizes. It is clear that 

the DCS scheme requires much lower energy levels in 

comparison to CS for a certain target PIDR. For example, with 

c/ 1   , achieving a PIDR equal to 110 , requires the devices 

to be equipped with solar panels of size 30 2
cm  and 60 2

cm  

when using the proposed DCS and the conventional CS-based 

approach, respectively. It is evident that using the proposed 

approach can considerably ease the EH capability requirements 

per device. 

Considering various numbers of devices communicating 

correlated data to a BS, Fig.7 shows the PIDR with a solar 

panel of fixed size achieved by the CS and the proposed DCS 

schemes. In contrast to the conventional CS-based approach, 

the DCS-based scheme achieves a lower PIDR. In addition, the 

PIDR for the DCS approach first decreases and then increases 

with the number of the devices. This result highlights the 

capacity of DCS to exploit both intra- and inter-sensor 

correlations in the gathered data. There could be many factors 

that determine the best K  achieving the lowest PIDR. For 

example, the real world signal is not exactly sparse but rather 

nearly sparse; there are approximation errors in the SCCI 

model for charactering the inter-sensor correlations. We remark 

that the settings behind 4-7 are such that the device is powered 

only via the energy harvested from the environment. As such, 

the fact that the DCS-based approach exhibits higher energy 

efficiencies in data collection forms the basis of our energy 

neutrality claims. 

DCS vs. Distributed Source Coding (DSC) 

We now compare the proposed DCS scheme against a DSC 

system [32] that performs efficient compression of the 

correlated data collected by the devices, as shown in Fig. 8. 

The experimental datasets [31], as well as the energy 

harvesting and consumption profiles are as in the previous 

section5. The benchmark DSC system is based on the principles  

                                                                 
5 The assumption that the encoding complexity for the DSC 
and DCS are comparable is made based on the following 
observations: i) DCT is an extra operation with respect to the 
DCS encoder; ii) quantization is the same as in DCS (the only 
difference w.r.t. DCS is that it is applied before dimentionality 
reduction, therefore more samples are quantised than in DCS); 
LDPCA encoding has a comparable complexity with (performed 



 
Figure 8 The considered coding architecture that performs 
distributed source coding by means of Wyner-Ziv coding. 

of Wyner-Ziv coding [8] [32]: namely, the data collected from 

one device is intra encoded and communicated to the BS 

(decoder) where it forms the side information used to decode 

the data from the other devices. It is worth mentioning that, 

when 2 devices are connected to a BS, Wyner-Ziv coding is 

optimal in terms of DSC performance. When, however, more 

than 2 devices are connected to a BS then a DSC scheme based 

on Berger-Tung coding, i.e., multiterminal source coding, is 

more efficient. However, multiterminal source coding is not 

fully characterized in terms of performance bounds and is 

difficult to implement in practice, especially when the number 

of devices connected to a BS increases. 

According to the devised DSC architecture [32], n 397  

samples are collected by each device and aggregated for 

encoding. The samples first undergo a DCT to perform intra-

sensor data decorrelation. The value of the first DCT 

coefficient, i.e., the DC coefficient, from each device is 

binarized and transmitted. The remaining 396 AC coefficients 

undergo uniform quantization and the resulting quantization 

indices are split into bit-planes. At the device performing intra-

signal encoding the bit-planes are arithmetic entropy encoded 

sequentially starting from the most significant one. At the 

devices performing Wyner-Ziv coding, the bit-planes are 

Slepian-Wolf [7] encoded using the state-of-the-art Low-

Density Parity-Check Accumulate (LDPCA) codes [34]. 

Concerning Wyner-Ziv rate control, we consider: (i) a decoder-

driven mechanism deploying a feedback channel to request 

extra information from the encoder when decoding fails, or (ii) 

an encoder-based scheme as in [35]. The former performs 

optimal rate control but suffers from structural delays, while 

the latter follows a more realistic approach but occasionally 

fails to accurately estimate the required rate for decoding, thus 

leading to loss in performance. 

For each device---performing either intra-signal coding or 

Wyner-Ziv coding---the number of encoded and transmitted 

bit-planes depends on the required encoding rate and the 

available harvested energy. When the available portion of the 

harvested energy is not depleted during transmission (because 

the encoding rate is lower than the available transmission rate), 

the residual energy is stored in the battery and used during the 

subsequent data transmission. 

At the BS, which runs the decoder, the entropy-encoded bit- 

                                                                                                      

in DCS).multiplication with a random matrix 
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(b) 

Figure 9 Probability of incorrect data reconstruction vs. solar 

panel size ( K 2 ). 

planes are first decoded and then compiled into quantization 

indices. Recall that this information corresponds to the 

quantized AC coefficients of the data from the device 

performing intra-signal encoding. After inverse quantization, 

we use this data as side information to decode the LDPCA-

encoded bit-planes of the AC coefficients from the remaining 

devices. The soft-information required for LDPCA decoding is 

derived by assuming a correlation channel, where the noise 

follows a zero-mean Laplace distribution [32]. The scaling 

parameter of the correlation noise distribution can be derived (i) 

in an offline manner, or (ii) using an online technique as in [32]. 

When the bit-planes are decoded, inverse quantization is 

performed to obtain the decoded AC coefficient. The AC 

coefficients from the data-block of each device are then 

combined with their DC coefficient and inverse DCT is 

performed to derive the decoded temperature data. 

We compare this Wyner-Ziv coding system [32] against the 

proposed DCS scheme in terms of the mean-squared error 

(MSE) distortion of the decoded data versus the available 

harvested energy---expressed through the panel size. We abide 

by the previous EH model, where the harvested power is 



exponentially distributed with 2

c k

1 1
5

 
  W/cm , k 1, ,K   . 

We report average results over 310  independent runs. 

Fig. 9 depicts the results when four devices are connected to 

a BS. Fig. 9(a) shows that the proposed DCS scheme 

significantly outperforms the practical Wyner-Ziv coding 

configuration and achieves a performance similar to the 

optimal DSC system, where FB and CCE denote feedback 

channel and correlation channel estimation, respectively. 

However, when the data from the device performing intra-

signal encoding (which form the side information) is not highly 

correlated with the data from all the other devices (which apply 

Wyner-Ziv coding), then the proposed DCS system 

significantly outperforms even the optimal (yet impractical) 

DSC system [see Fig. 9(b)]. In particular, as shown in Fig. 9(b), 

the reported reduction in the MSE reduction with respect to the 

optimal DSC system can mount up to 66.67% at low EH levels. 

These performance improvements highlight the capability of 

the proposed approach to effectively exploit both intra- and 

inter-sensor data correlations with respect to the state-of-the-art 

DSC solution [32],[36]. 

Conclusion 

We have proposed a novel DCS-based data acquisition and 

reconstruction scheme that offers the means to match the 

energy demand to the energy supply for EH IoT. We have 

shown that our solution delivers substantial gains in energy 

efficiency for a certain target data reconstruction quality in 

comparison to (i) a CS-based data acquisition and 

reconstruction approach, and (ii) a DSC system that realizes 

practical Wyner-Ziv coding. Significant data-reconstruction-

versus-energy gains are achieved that translate immediately 

into improvements in network lifetime and network data 

gathering capability. 

The potential of the proposed DCS-based data acquisition 

and reconstruction solution to unlock energy neutrality has 

been unveiled in a setting involving a centralized EH IoT 

architecture and two basic models: (1) a signal model that 

captures the fact that the signals collected by different devices 

exhibit correlation; and (2) a EH model that also captures the 

fact that the energy harvested by different devices also exhibits 

some degree of correlation. One would expect some of the key 

trends to generalize to other correlated signal models and 

correlated EH models. 
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