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Because specular reflection is view dependent, shiny surfaces behave radically differently from matte, textured surfaces when 
viewed with two eyes.  As a result, specular reflections pose substantial problems for binocular stereopsis. Here we use a combi-
nation of computer graphics and geometrical analysis to characterize the key respects in which specular stereo differs from stan-
dard stereo, to identify how and why the human visual system fails to reconstruct depths correctly from specular reflections. We 
describe rendering of stereoscopic images of specular surfaces in which the disparity information can be varied parametrically, 
and independently of monocular appearance.  Using the generated surfaces and images, we explain how stereo correspondence 
can be established with known and unknown surface geometry.  We show that even with known geometry, stereo matching for 
specular surfaces is non-trivial because points in one eye may have zero, one or multiple matches in the other eye. Matching fea-
tures typically yield skew (non-intersecting) rays, leading to substantial ortho-epipolar components to the disparities, which makes 
deriving depth values from matches non-trivial.  We suggest that the human visual system may base its depth estimates solely on 
the epipolar components of disparities while treating the ortho-epipolar components as a measure of the underlying reliability of 
the disparity signals.  Reconstructing virtual surfaces according to these principles reveals that they are piece-wise smooth with 
very large discontinuities close to inflection points on the physical surface. Together, these distinctive characteristics lead to cues 
that the visual system could use to diagnose specular reflections from binocular information.


Keywords: Stereopsis, Matching, Correspondence Problem, Binocular Vision, Specularity, Material Perception.


1. Introduction and goals 

Binocular vision provides humans and machines with 
a ready source of information about the depth structure of a 
surrounding scene. To infer depth from binocular disparities, 
it is first necessary to match image features between the two 
views. For matte objects, elements that match between the 
viewpoints tend to be similar in form, arise at similar locations 
in the image (at least vertically), and vary smoothly across 
space. However, specular objects (such as a polished kettle 
or chrome bumper) can give rise to binocular disparity signals 
quite different from those that arise from matte objects. Here, 
we aim to explain and detail these differences.


A well-known feature of specular reflections is that 
they often lie at a location in space that is displaced from the 
true surface of the object (Blake & Bülthoff, 1991; Hurlbert, 
Cumming, & Parker, 1991; Kerrigan & Adams, 2013). This 
contrasts with non-specular objects where disparity values 
map to surface depth in a straightforward way. This difference 
in the relationship between depth values and surface location 
poses a potential challenge to both artificial and human visual 
systems. Here, we seek to characterize the conditions that 
lead to the displacement of specular reflections. We do this 
as a means of understanding why human observers treat 
reflections as though they are true surface markings when 
judging depths (Muryy, Welchman, Blake, & Fleming, 2013). In 
the process, we also quantify other respects in which specu-
lar reflections deviate from standard stereopsis.


Most previous theoretical and computational work has 
focussed on the behaviour of individual highlights (Koen-
derink & van Doorn, 1980; Longuet-Higgins, 1960) or surface 
reconstruction from multiple images (including stereopsis and 
movement): (Blake & Brelstaff, 1988; Oren & Nayar, 1997; 
Sankaranarayanan, Veeraraghavan, Tuzel, & Agrawal, 2010; 
Vasilyev, Adato, Zickler, & Ben-Shahar, 2008; Vasilyev, Zickler, 
Gortler, & Ben-Shahar, 2011; Zisserman, Giblin, & Blake, 
1989).  However, few of these studies explicitly spell out the 
main challenges that specular stereo present to the human 

visual system. Here we characterize in detail several key 
properties of specular stereopsis. First, we present a method 
for determining ground-truth stereo matches for mirror sur-
faces of known geometry, demonstrating the presence of 
image regions for which meaningful stereo matches do not 
exist. Then, we describe key features of specular disparities 
that are potentially important for both biological and machine 
stereo-vision. In particular, we detail the presence of non-
epiopolar disparity matches and the potential for very large 
disparity gradients and discontinuities. We further address 
the instability of specular disparity fields with respect to varia-
tions of viewing/surface geometries. Finally, we show that the 
distribution of ortho-epipolar disparities is related to surface 
geometry, providing a constraint when estimating the curva-
ture of the viewed object. Thereby we show that even though 
specular stereo signals do not support direct perceptual es-
timates of the physical shape of an object (Muryy, Welchman, 
Blake, & Fleming, 2013), specular disparity fields do carry 
information about the intimate relations between the viewing 
geometry and surface topography which could potentially be 
exploited by humans and artificial systems.


2. Specular and Lambertian illumination mapping 

To frame the problem of specular stereo and its differ-
ences from the typical case of a Lambertian object, we start 
by considering the ray geometry of binocular image genera-
tion. We pose this as the process of generating a computer 
image; however, the exposition describes the information that 
is available to either a human or artificial visual system.  Un-
derstanding the relevant image information is a crucial step 
for determining which binocular cues the human visual sys-
tem could use to identify and interpret the disparities pro-
duced by specular surfaces.


Rendering an image of an object depends on three 
main elements: (i) the object’s surface (geometry and materi-
al), (ii) the viewing geometry (left and right viewpoints and 
orientations) and (iii) the illumination provided by the scene 
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(from a single point light source to a full illumination map). Let 
us assume that (i) the surface S and its normal vectors N are 
known, and the surface material is a perfect mirror , (ii) the 1

viewpoints are located at EL and ER (at finite distance from 
the surface) and (iii) the illumination is a spherical illumination 
map at infinity (Debevec, 2008). To render the image of the 
object entails that for each visible point P of surface S we 
determine its pixel value in the images for EL and ER.

2.1. The rendering process for an ideal mirror


Ideal mirrors do not have texture markings, so the 
image consists of nothing more than a distorted reflection of 
the surrounding environment. In order to find the pixel value 
of point P in the image of eye EL, we trace viewing vector vL = 
P – EL, calculate the reflected ray vector by the law of specu-
lar reflection ωL = 2 (n vL) n + vL, trace it out to the environ-
ment and take the corresponding pixel value of the spherical 
illumination map (Fig 1b). 


There are three main observations to make about this 
generative process. First, notice that since viewing vectors 
from left and right eyes at surface point P are different 
vL(P)≠vR(P), the left and right reflected ray vectors cannot be 
equal ωL(P)≠ωR(P) such that different locations in the envi-
ronment are viewed by the two eyes. Therefore, surface point 
P will generally have different pixel values in EL and ER eyes 
and thus left and right images of this surface point will be 
disparate. Second, notice that the reflected ray vectors that 
determine the pixel values vary twice as fast as surface nor-
mal vectors. This leads to the characteristic distortions of the 
environment in mirror reflections (under orthographic projec-
tion a hemispherical mirror images the entire sphere around 
the surface). 


Third, near  surface inflection points where the surface 2

normal vectors start turning in the opposite direction, the 
reflected vectors invert. In consequence the reflected ray 
vectors sweep through the same portions of the environment 
several times, giving rise to multiple reflections of the same 
feature in the environment map (see Fig 1b stereo pair: the 
reflection of Utrecht Dom Tower appears three times). This 
multiple mapping of the environment to the image has the 
potential to give rise to significant confusion when calculating 
stereo correspondence. Nevertheless, in Section 3 (below), 
we describe how local matching could in principle be used to 
filter out such potentially misleading matches to ensure that 
matches come from surface patches with qualitatively similar 
structure. In particular, although global matches (e.g. three 
images of the Dom Tower) involve reflections of the same 
portions of the surrounding environment, from the point of 
view of stereopsis, two should be considered spurious 
matches (like those that occur in the wallpaper illusion) and 
thus be filtered out.

2.2. Rendering surfaces with specular reflections stereo-

scopically ‘painted’ onto the surface

Being able to render a graphical image of a specular 

object is a good starting point to understand the way in which 
the human visual system might process the information it 
contains. However, from an experimental perspective it is 
useful to be able to construct versions of the stimuli that dif-
fer along a key dimension (e.g. specularity), while keeping 
other factors (e.g., low level image statistics) as similar as 

possible. Previous studies on the role of individual point light 
highlights have used such an approach by placing single 
highlights on the surface of the object (Blake & Buelthoff, 
1990; Wendt, Faul & Mausfeld, 2008). Here we use a similar 
approach for full scene reflections and thereby isolate and 
characterize the effects of specularity on human stereopsis 
(see section 6). In particular, we can quantify the differences 

 Our analysis and observations are based on rendering an ideal mirror (excluding inter-reflection). While this is a simplification, the specular and 1

diffuse components of a partially specular surface can to a first approximation be treated independently, yielding two distinct disparity fields.

 It is near, rather than exactly at, surface inflection points because the image creation process depends on the combination of surface and view2 -
ing geometry
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Figure 1. The stereo rendering process. A) Creating stereo 
images of reflective objects involves a 3D shape model (left) 
illuminated by a spherical illumination map (right). Here the 
illumination map is unwrapped into a latitude-longitude projection. B) 
The rendering process for a mirror. Point P on the surface of the 
object is viewed from eyes ER and EL. The pixel value at point P is 
determined by the reflection of the view vectors (vR, vL) around the 
surface normal (n) at point P. The reflected ray vectors ωL and ωR 
point to different locations in the illumination map, meaning that 
location P has different pixel values in the two images. This is shown 
schematically by the rainbow illumination map and the dots behind 
each eye. Stereograms (right) are presented for cross-fusion.C) The 
rendering process for a ‘painted’ shape (virtual illumination point, vIP 
= 0). Here the pattern of reflections is determined using a view ray 
from the cyclopean point (EC). Tracing out rays from EC across the 
whole surface produces characteristic specular distortions, which 
are then imaged binocularly from the two viewpoints. Note that the 
stereoscopic frustum is the same as in B, the only difference is the 
location from which pixel intensities are determined. D) Manipulating 
the virtual illumination point. Pixel intensities can be determined 
from any location along the interocular axis. Here the points from 
which to determine reflections are half way between the eye 
positions and the cyclopean point.



between specular and matte versions of an object to under-
stand the specific properties of specular stereo available to 
the human visual system, and then use such stimuli to con-
duct perceptual experiments. Here we describe a way in 
which such stimuli can be generated in order to isolate the 
binocular differences between matte and specular objects 
while the monocular content of the stereo-pairs remains as 
close as possible to identical across mirrored and matte ver-
sions. This is important for our subsequent analysis as it al-
lows us to directly compare the binocular properties of matte 
and specular surfaces.


As a starting point, we can ‘paint’ the specular reflec-
tions onto the surface of an object so that the reflections are 
practically indistinguishable from true mirror reflections when 
viewed monocularly, but which have all the disparity charac-
teristics of standard surface texture markings when viewed 
binocularly. Such ‘painted’ stimuli are akin to ‘sticky’ reflec-
tions for moving objects (Doerschner et al., 2011). Here we 
show how the ‘painting’ approach can be generalised to al-
low parametric manipulation of specular objects suitable for 
studies of the human visual system. This complements sug-
gestions for perceptually-motivated “short-cuts” when ren-
dering specular- (Templin, Didyk, Ritschel, Myszkowski, & 
Seidel, 2012) and refractive- (Dąbała et al., 2014) objects.


In order to make left and right images stereoscopically 
consistent, the pixel values of the surface should be inde-
pendent of viewing point, i.e. the reflected patterns should be 
attached (‘painted’ on) to the surface. We also would like to 
be able to ensure that monocular properties of the images are 
similar to mirrors, i.e. they should have mirror-like distortions. 
To achieve this, we map the environment onto the surface 
using reflected ray vectors cast from the cyclopean point EC 
= (EL + ER) / 2 (Fig. 1c). Notice that there is no camera (i.e., no 
image formation) at the cyclopean point.  Rather, it is used 
only for mapping (‘painting’) the environment onto the surface 
when images of the surface are rendered from eyes EL and 
ER, (i.e. the view vectors used for rendering the stereopair do 
not change). Since the mapping process is governed by the 
laws of specular reflection, the images will have distortions 
similar to mirrors.  However, the mapping does not depend 
on the true position of the eyes and therefore each surface 
point will have the same pixel values in left and right images 
and can thus be matched stereoscopically.  Moreover, as we 
describe next, this approach can be generalized to create 
stereopairs whose disparity properties vary continuously be-
tween mirror-like and standard surfaces, while keeping the 
monocular properties of the image almost constant.

2.3. Virtual illumination mapping


Using the logic of the rendering approach described 
above, we can construct artificial stereo-images whose dis-
parity properties range smoothly between mirror and matte/
textured surfaces. For the left eye we map illumination onto 
the surface using point vEL (virtual illumination point for left 
eye) and vER for right eye (Fig. 1d). Virtual illumination map-
ping points are placed on inter-ocular axis equidistant from 
cyclopean point


vEL = EC + vIP*(EL – EC) / ||EL – EC|| 

vER = EC + vIP*(ER – EC) / ||ER – EC|| 

where vIP is virtual illumination point index. Note again 
that the virtual illumination points are used only for mapping 
environment on the surface while actual images are taken 
from real viewpoints EL and ER, i.e. viewing vectors are fixed. 
Condition vIP = 0 corresponds to ‘painted’ case described 
above (virtual illumination points coincide at the cyclopean 

point). If vIP = 1 then virtual illumination points coincide with 
the true locations of the corresponding viewpoints, leading to 
standard mirror reflections. Varying vIP smoothly allows us to 
construct stimuli with stereo-properties ranging between (or 
indeed beyond) these two extremes. 


This technique enables stimuli to be generated from a 
parametric space of disparity-defined objects. Figure 1 pro-
vides examples of three stimuli drawn from the vIP space, 
while in Figure 2 we quantify how the displacement of the 
highlights from the physical surface varies as a function of 
this manipulation to show how the range of depths in the 
objects changes as vIP is manipulated. In this paper, we fo-
cus on using such stimuli to quantify the type of stereoscopic 
information available to viewers. However, empirically, the vIP 
space lends itself to systematic testing of human judgments 
of shape and material. In particular, the ability to systemati-
cally vary binocular signals while keeping monocular informa-
tion more-or-less constant could be exploited to understand 
the weighting process by which monocular and binocular 
information is combined when observers make judgments 
about 3D shape and material properties. Here, we rely on this 
manipulation to characterize the key differences between 
specular and non-specular disparity signals.


It should be noted that (Dąbała et al., 2014) recently 
presented a similar approach to manipulating stereoscopic 
signals for reflective objects. Their approach was designed to 
promote “visual comfort” in the displays, using manipulations 
equivalent to the vIP for each rendered pixel in the image 
(meaning that individual pixels are rendered with from differ-
ent virtual illumination points).
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Figure 2. Quantifying the effect of manipulating the virtual 
illumination point on the divergence between the physical 
surface and the virtual surface described by binocular specular 
reflections. The graph shows the mean unsigned depth offset 
between the physical and virtual surfaces for four ‘potato’ objects 
(spheres randomly perturbed by 100 Gaussian blobs) as vIP was 
manipulated. Viewing distance was 50 cm, interocular separation 6.5 
cm, and the objects were approximately 7 cm in diameter – i.e., like 
looking at an apple or potato at arm’s length. Depth displacements 
greater than 10 cm were only found to originate from unfusible image 
locations; we therefore treated them as outliers in calculating the 
mean offset value. The vIP manipulation causes a systematic, regular 
and monotonic change in the depths of the stimulus.



3. Determining specular stereo-matches for an object of 
known shape using ray geometry 

In Section 2 we considered the forward process by 
which the environment is mapped to left and right eye im-
ages. Here we describe the disparity field that results when 
viewing specular objects binocularly, by solving the corre-
spondence problem for the simpler case of known geometry. 
Although of course, stereopsis usually deals with unknown 
geometry, in order to frame the problem correctly, and to es-
tablish ground-truth estimates of specular disparity fields, it is 
useful first to consider the case with known geometry. In par-
ticular, these ground truth descriptors are based on a forward 
model of disparity generation that exploits the known geome-
try of the viewed shape. This provides a purely geometric 
definition of the available disparity information that is inde-
pendent of the content of the illumination field. As we shall 
see, and unlike the case of standard textured surfaces, for 
specular surfaces even when geometry is known, establish-
ing correspondence is not entirely trivial.


To calculate the disparity field we need to solve the 
stereo correspondence problem: for each location in the left 
eye’s image seek the location in the right eye’s image that has 
the same generative cause. For a matte, textured object, we 
can think of this process as two eyes viewing a particular 
texture element of the surface of the object, with the brain 
charged with establishing correspondence between the reti-
nal projections of the texture elements in the two images. In 
the specular case, we assume (like previous work on specular 
stereo, (Muryy et al., 2013)) that the definition of correspon-
dence is essentially equivalent; namely, that the visual system 
seeks the image feature in one eye that matches the same 
image feature in the other eye. Thus, the basic task is the 
same (seeking correspondence between image features), 
however, in the specular case, these features originate from 
the reflection of the environment illumination map, rather than 
markings on surface itself. Given this definition, correspond-
ing points in the environment yield the same pixel values in 
the two images (up to sampling limits).  


It is important to note that defining correspondence in 
terms of matching image features means that, in general, the 
resulting disparities do not lie on the surface in depth (we 
explain this observation in detail in Section 3.1).  To correctly 
reconstruct surface depths would require finding the projec-
tions of corresponding surface features in the two eyes’ views 
(e.g., matching extrema of curvature).  However, the definition 
of correspondence in terms of matching image features 
makes more sense given the optics of mirror reflection.  Re-
flections are virtual images, whose location in 3-space is 
specified by the geometry of reflection. Importantly, the depth 
of the virtual images is therefore consistent across all paral-
lax-based depth cues (stereopsis, motion parallax, accom-
modation).  For example, in order to bring the reflections into 
focus, it is necessary to focus not at the distance of the sur-
face but at the location behind or in front of the surface that is 
consistent with the disparity signals .  Matching correspond3 -
ing surface features would require favouring matches that 
have large inter-ocular differences in the image values, while 
suppressing the much better image matches from the virtual 
image.  Given that this is the exact opposite of normal stere-
opsis—for which the visual system is presumably opti-
mized—it seems intuitively unlikely that the visual system 
would prefer surface matches to image matches, even 
though it is the surface matches that would indicate the true 
physical location of the surface.  This intuition is supported 

by our previous findings that when subjects are asked to re-
port the perceived depths of surface locations, they generally 
report depths that are much closer to the virtual surface than 
to the true physical surface (Muryy et al., 2013), implying that 
the visual system does indeed match image features rather 
than surface locations.


While the principles of establishing correspondence 
are straightforward, pixel intensity per se is not a generally 
useful characteristic for matches because (i) the environment 
map may contain repetitive pixel values (e.g. a picket fence) 
that correspond to unrelated reflected ray directions and (ii) 
surface concavities entail that multiple surface locations can 
reflect the same portion of the environment map (e.g. the 
Dom in Fig. 1). To define a unique match for each image loca-
tion we therefore need to constrain the solution, the logic for 
which we now describe.


3.1. Reflections depend on the viewpoint, thus the same 
surface point P reflects different portions of the envi-
ronment to left and right eyes.


To start we deal with the simplified one-dimensional 
case (i.e. a cross section through a shape; Fig. 3), then we 
expand to finding correspondence in two dimensions. Given 
a surface of known shape S with known normal vectors n = 
n(P), P ∈ S, we can define SL and SR as the portions of the 
surface that are visible to left and right eyes EL and ER. Con-

 Recall that for ideal mirrors, reflections are the only visible features.3
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Figure 3. Establishing stereo correspondence. A) Calculating 
binocular disparities depends on matching locations that point to 
the same place in the illumination map. Here, points PL and PR of 
surface S reflect same portion of the environment to eyes EL and 
ER. This correspondence can be identified by finding reflected ray 
vectors ωL and ωR that are parallel (note that this occurs even 
though the normals nL and nR are different, because of the 
difference of view position).  Notice that different portions of the 
surface (SL, SR) are visible to the two eyes – denoted by the shaded 
regions around the surface. B) The differences in the visible 
portions of the surface mean that different portions of the 
illumination map are visible to the two eyes, leading to unmatchable 
features. This is described as the set of reflected ray vectors ΩL, 
ΩR. The intersection of these reflected ray vectors (Ω′) defines the 
space within which binocular correspondence can be established. 



sider point P on the surface S, the images of point P in the 
left and right eyes are defined by the reflected ray vectors ωL 
and ωR (see Fig. 1). According to the law of specular reflec-
tion:


ωL = 2 (n vL) n + vL 

ωR = 2 (n vR) n + vR

where n = n (P) is the unit surface normal vector (||n|| = 

1) at point P, and vL and vR are normalized left/right viewing 
vectors:


vL = ( P – EL ) / || P – EL || 

vR = ( P – ER ) / || P – ER ||. 
Since the eyes are separated EL ≠ ER, for a real mirror 

surface, the left and right reflected vectors cannot coincide 
ωL(P) ≠ ωR(P), i.e. left and right reflected vectors must point at 
different locations in the environment. Thus, every surface 
point P forms different images in left and right eyes. To solve 
the stereo-matching problem we need to find such points PL 
and PR  whose corresponding reflected ray vectors point to 
the same location in the environment and thus form the same 
pixel values in left and right images (Fig. 3a). Assuming the 
environment is infinitely far away it is sufficient to identify re-
flected ray vectors that are parallel. In other words, for each 
point PL ∈ SL (portion of S that is visible to EL) we need to find 
a point PR ∈ SR such that ωL(PL) = ωR(PR) (or ωL × ωR = 0). 
Treating the environment as infinitely far is a 
reasonable simplification; our analysis (see Ap-
pendix 1) shows that under normal conditions 
this assumption should not lead to significant 
depth errors. For some portions of the surface, 
solutions do not exist while for non-convex 
shapes there may be multiple solutions. We 
address such situations below.


Rather than considering a single reflect-
ed ray, let us move on to consider the set of all 
possible reflected ray vectors. In principle, the 
space of reflected ray vectors may cover the 
entire sphere of possible directions (if the view-
point is infinitely far from the object). However 
generally the reflected ray vectors will occupy 
only a subspace of the sphere of possible direc-
tions. The subspaces of reflected vectors for 
left ΩL = Ω(SL) and right ΩR = Ω(SR) eyes do not 
completely coincide, i.e. ΩL ≠ ΩR (however there 
is considerable overlap, Fig. 3b). It is clear that 
the stereo-matching solutions exist only for 
points whose reflected ray vectors overlap. In 
other words, the solution to the stereo corre-
spondence problem exists only for surface points from SL′ ∈ 
SL and SR′ ∈ SR where SL′ and SR′ are such that EL:SL′→Ω′ 
and ER:SR′→Ω′ where Ω′ = ΩL ∩ ΩR. Each point of SL′ must 
have a corresponding stereo-match SR′, i.e. ∀ PL ∈ SL′ ∃ PR ∈ 
SR′ : ωL(PL) = ωR(PR) where ωL ∈ Ω′, ωR ∈ Ω′. Thus we have a 
formulation for the regions within which to establish stereo 
correspondence.


The corollary of this is that for points outside SL′ and 
SR′ stereo-matches do not exist. In the simple case of a 
sphere, this absence of correspondence is similar to ‘da Vinci 
occlusion’ (Nakayama & Shimojo, 1990) where the edges of a 
solid objects are differentially visible for the two eyes. Note 
however that there is an important difference for the specular 
case in that these areas are more pronounced because re-
flected vectors vary faster than surface normals. However, as 
we discuss next, for surfaces that have concave regions, ar-
eas of missing stereo correspondence are not limited to the 
physical edges of the object.


Having illustrated the problem in a one-dimensional 
slice, we now move to the two-dimensional case (Fig 4). If a 
viewed reflective surface has concavities, the reflected ray 
vectors are not unique because different surface points can 
reflect the same portion of the environment (e.g. the Dom in 
Fig 1). In consequence, the global solution will generally not 
be unique, i.e. for single PL there may be multiple stereo-
matches PR1, PR2, …, PRn such that ωL(PL) = ωR(PR1) = … = 
ωR(PRn); this poses a challenge in deciding which match to 
choose. We suggest taking a local match whereby corre-
sponding points PL and PR belong to a smooth, surface 
patch.


Let us consider point P on the surface and construct 
around it patches SL and SR, which project uniquely to the 
space of reflected ray vectors ΩL and ΩR (Figure 4). The 
edges of these patches will be very close to (although not 
coincident with – see footnote 2) the inflection contours of the 
surface where the sign of curvature changes and thus the 
normal vectors reverse. Beyond the boundaries there are 
areas where no stereo solution exists because of ‘da Vinci’ 
like differences in the portions of the environment visible to 
the two eyes; note however that these regions are not limited 
to a shape’s physical boundaries but can occur in the centre 
of the visible portion of the shape. In other words, inflection 
contours naturally divide a non-convex specular object into 

patches with locally smooth disparity fields, which are sepa-
rated by regions of unmatchable features, for which disparity 
is undefined. Such regions create difficulties for machine and 
human vision as stereo cues specify internal contours where 
no depth is defined despite monocular image features being 
contiguous. We illustrate the presence of these internal 
boundaries in the disparity field in Fig 5, where we construct-
ed ‘painted’ and ‘specular’ stereograms of a 3D shape re-
flecting an illumination of uniformly sized spheres. This illumi-
nation map provides a clear illustration of the way in which 
environmental features are distorted by reflections – changing 
the isotropic illumination into patches with local orientations. 
For the specular case, the different environmental features 
visible to the two eyes produce locations where binocular 
disparity is undefined. These internal contours divide the 
shape into a series of smooth islands where disparity is de-
fined.
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Figure 4. Finding correspondence in two dimensions. We can construct surface re-
gions around point P for which stereo solutions exist. Portions SL and SR of surface S are 
visible to eyes EL and ER, and they reflect portions ΩL and ΩR of environment Ω. Their 
intersection of Ω′ = ΩL ∩ ΩR contains reflected ray vectors that are visible to both eyes, 
thus defining the space within which to identify stereo matches. Defining this surface 
patch provides a local region within which to identify correspondence: for each point of 
SL′ there must exist a specular stereo-match in SR′, where SL′ and SR′ are portions of 
surface S which reflect Ω′ to EL and ER. 
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While the surface patches SL and SR overlap consid-
erably, they do not coincide perfectly because the reflected 
vectors depend not only on surface normals but also on the 
viewing vectors, which are different for left and right view-
points. In consequence, we can find the overlap of reflected 
ray vectors Ω′ = ΩL ∩ ΩR and then project this overlapping 
region back into left/right surface patches SL′ and SR′ (Fig. 4). 
For each point in SL′ there must exist a unique stereo-match 
in SR′ and through surface smoothness, this mapping must 
be continuous and the corresponding disparity field should 
also be smooth. Thus, conceptualising the reflected ray vec-
tors in this manner allows us to ensure a local match where 
corresponding points arise from surface regions with similar 
topological properties between the two eyes. While other 
global matches are possible (e.g. other copies of the Dom 
Tower), such matches would generally belong to a surface 
patch with qualitatively different surface structure and thus 
such matches would not provide useful information about 
local surface geometry. Moreover, such matches would cross 
inflection contours, often resulting in large binocular dispari-
ties that can exceed the human limits for fusion. 


To summarise the process of identifying the space of 
binocular correspondences with known surface shape: for a 
fixed viewing geometry, the entire surface of an object is nat-
urally divided into patches for which stereo matches are 
smooth. These patches are separated by areas for which no 

local solution exists, and while global stereo-matches for the 
margins SL – SL′ and SR – SR′ may exist, they should be fil-
tered out. 


Using these ideas, the stereo-matches for a specular 
surface of known geometry and for given viewing geometry 
can be found computationally using an iterative approach. In 
particular, we could construct regions of unique solutions SL′ 
and SR′ and then compute one-to-one correspondence be-
tween them. In practice it is usually computationally simpler 
and more flexible to find all the potential matches first (includ-
ing global ones) and thereafter filter out the inappropriate 
global matches. This has the advantage that specific criteria 
can be used to determine which matches are filtered out, for 
example, to select only those matches that could in principle 
be measured by the human visual system. To this end, we 
have implemented a matching algorithm by constructing a 
grid of points on surface region SL that is visible to left eye, 
and then for each point PL of that grid, we find (through brute 
force search), corresponding points PR ∈ SR that satisfy 
｜ωL(PL) – ωR(PR) ｜ < γ , where γ is the numerical precision 
with which we can measure non-zero values (Fig. 6). Specifi-
cally, correspondence is found by searching for such loca-
tions that left and right reflected ray vectors become parallel 
(within double floating point precision). Note that this ap-
proach generalizes to arbitrarily fine grid resolutions (again, 
within numerical limits).


Given the resulting set of multiple candidate matches 
for PR, we find a unique match by selecting the one that is 
closest to PL (i.e., minimizing disparity). This method gives us 
all the stereo-matches. However, not all of these stereo-
matches will be fusible. In particular, there are limits on dis-
parity gradients for stereopsis (Burt & Julesz, 1980; Tyler, 
1975) and limits on the vertical offsets between matched fea-
tures (Qin, Takamatsu, & Nakashima, 2006; Van Ee & Schor, 
2000). In order to visualise those disparities that fall within 
these limits, in Figure 6 we show the subset of matches that 
are likely to be fusible by the human visual system.


This analysis shows that reliable stereo-matches form 
local patches with smooth and continuous mapping sur-
rounded by narrow areas that are likely be unfusible. Notice 
also that unfusible regions correspond to regions of low 
Gaussian curvature (as indicated by the surface colour map), 
i.e. regions around inflection contours where at least one of 
the principle surface curvatures changes its sign and thus 
surface normal vectors reverse.

3.2. Correspondence is not limited to epipolar lines


As can be appreciated from the vector field connect-
ing binocularly corresponding points on the surface of a 3D 
object in Figure 6, corresponding points can be shifted with 
respect to each other in any direction depending on topologi-
cal properties of local surface patch. This makes the specular 
disparity field different from Lambertian objects for which 
disparity vectors are strictly limited to epipolar lines. These 
omnidirectional offsets are a consequence of the fact that the 
viewing vectors do not intersect in three-dimensional space, 
thus points of correspondence are not found along epipolar 
lines. This is important for image-based methods of finding 
corresponding points because such methods often rely on an 
epipolar constraint and would therefore fail with specular re-
flections. We address these issues in detail in Section 4. The 
presence of potentially large non-epipolar disparities can 
dramatically influence fusibility in human stereo vision, mean-
ing that even smooth local matches can present difficulties 
for stereopsis. Therefore large portions of mirror reflective 
surfaces may be binocularly undetermined because either 
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Figure 5. Illustration of piece-wise smoothness of the disparity 
field. We rendered a 3D object with concavities under an isotropic 
illumination map containing spheres. This allows a clear 
visualization of the distortions introduced by specular reflection – 
i.e. regions in which there is a rapid change in the reflection vectors 
result in elongated features on the surface of the object. These 
regions align with piece-wise smooth patches for an object with a 
specular surface. Outside these ‘islands’, disparities can become 
very large and are often undefined. Stereograms are presented for 
cross-fusion. 



stereo matches do not exist or non-epipolar offsets are ex-
cessively large for human stereo correspondence.


3.3. The relationship between second-order surface struc-
ture and disparity magnitude


One final observation to make based on calculating 
disparities by matching view vectors is that there is an ap-
proximate relationship between curvature-like surface proper-
ties and the magnitude of the offset between matched loca-
tions on the surface, ξ = PR – PL (Fig 6). This comes about 
because when there is a high rate of change of surface nor-
mal directions, the reflected ray vectors sweep rapidly 
through the surrounding world, so that a small distance on 
the surface will encompass a large portion of the environ-

ment. Others have also noted important relationships be-
tween second-order surface structure and disparity magni-
tudes and signs (e.g., (Blake & Brelstaff, 1988; Blake & 
Bülthoff, 1991)).


For illustration: consider a fixed point PL on the sur-
face and suppose we need to find corresponding point PR. 
Matching points cannot coincide on the surface, therefore to 
find a match we need to move PR away from PL until corre-
sponding reflected ray vectors match. As we move point PR 
away, the viewing vector vR(PR) and surface normal n(PR) vary, 
and, the faster this happens, the lower the distance required 
before ray vector ωR meets ωL. Conversely, for regions of low 
curvature, the surface normals barely change across local 
surface patch, meaning that a larger distance over the sur-
face of the object is traversed before a match is found. In the 
extreme case of a nearly planar surface, disparities become 
very large indeed. Describing the relationship between sur-
face curvature (an intrinsic object property) and disparity (a 
viewer property) is necessarily approximate because, as de-
scribed in Section 2, the view vector depends on both the 
viewer’s location and the surface topology. While this state-
ment is always true when seeking relationships between im-
age cues and physical properties of an object, it is more criti-
cal for specular reflections because reflected ray vectors vary 
faster than the surface normals. Thus approximations relating 
3D structure to, for instance, texture patterns are more robust 
than the equivalent case for specular reflections. 


4. A correlation based method for finding stereo-
matches in binocular images of a specular object 

In the previous section we explained how specular 
stereo-matches can be found assuming the surface is already 
known. In general, however, surface geometry is unknown so 
stereo-matches need to be determined from binocular image 
pairs. Here we describe an approach for calculating dispari-
ties from binocular images of specular objects to provide a 
proof of computational principle and a cross-validation of the 
forward model approach we took in Section 3.


To extract disparities, for each pixel in the left image 
we need to find a pixel in the right image that reflects the 
same portion of the environment. Consistent with models of 
standard (non-specular) stereopsis (Banks, Gepshtein, & 
Landy, 2004; Bolles, Baker, & Hannah, 1993; Cormack, 
Stevenson, & Schor, 1991; Cumming & DeAngelis, 2001; Fil-
ippini & Banks, 2009; Fleet, Wagner, & Heeger, 1996; Harris, 
McKee, & Smallman, 1997; Kanade & Okutomi, 1994; Ohza-
wa, DeAngelis, & Freeman, 1990) we take the approach of 
identifying correspondence based on correlations between 
image neighbourhoods. Specifically, corresponding pixels are 
those whose local surroundings correlate most strongly be-
tween left and right views. Matching pixel to pixel can be time 
consuming, and in order to optimize this search conventional 
algorithms exploit the epipolar constraint, which reduces the 
area of potential matches to a line (Prazdny, 1983). However, 
as noted above, specular stereo violates the epipolar con-
straint and matches can occur anywhere in the image. Given 
that only local matches make geometrical sense (from a gen-
erative perspective, see section 3.1), we suggest searching 
for solution within ±ε of the epipolar line, where we have de-
fined ε = 12 arcmin for shapes we used. 


To find corresponding locations, we used a method 
where for any left eye image location, PL, we constructed the 
corresponding epipolar line in the right image (Fig. 7a). We 
then searched for corresponding points by taking a square 
sub-image region (length = 6 arcmin / 25 pixels) around sam-
ple point PL in the left image and calculated the pixel-based 
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Figure 6: illustration of corresponding points mapped onto an 
object’s surface. We show corresponding points (PL, PR) identified 
by matching reflected ray vectors. A regular grid of points in the left 
eye image (orange) are matched to points in the right eye image 
(green). We connect these points to provide a vector flow 
representation where the colour of the connecting line (red or blue) 
indicates the sign of the disparity. This vector map is plotted on top 
of a colour map that shows the intrinsic Gaussian Curvature of the 
underlying surface. To aid visualization and avoid overcrowding the 
figure, we down-sampled the matches and displayed only matches 
with cyclopean separation less than 12 arcmin. The shapes are 
examples of ‘potato’ objects (~7cm in diameter), viewed from 50cm 
with an interocular spacing of 6.5 cm. These were mathematically 
defined in spherical coordinates, and sample locations are therefore 
uniform in spherical coordinates (i.e., not regular in the image 
plane). Sampling in this way allowed us to estimate precise surface 
normals analytically. This precision was critical because even very 
small errors in surface normal calculations (which would be 
unavoidable if we had sampled in the image plane and used 
numerical methods for surface normal estimation) may lead to large 
errors in reflected vectors.�Our calculations of ground truth matches 
sampled the visible hemispheres of the shapes (180 x 180 deg) very 
densely (512 x 512 samples). The results shown here are down-
sampled considerably for visualization.



correlation for all similar sub-images along the epipolar line in 
the right image. (The size of the sub-image is somewhat arbi-
trary; we selected a value that would capture fine detail and 
wanted to avoid the additional parameters of a multi-scale 
approach). This created a correlation map centred on the 
epipolar line (Fig. 7a). By default we searched for correspon-
dence by applying a tolerance of ± 12arcmin (± 48 pixels) 
around the epipolar line based on experimental results on 
human fusibility limits for vertical offsets between the two 
eyes (Qin et al., 2006; Van Ee & Schor, 2000). We selected 
corresponding points as the peak of the correlation land-
scape in the right image for point PL, which typically gave rise 
to a close match between the sub-images from the left and 

right images (Fig. 7b). By systematically manipulating the 
tolerance value (ε) we examined how critical this was in es-
tablishing correlation-based matches that were close to (± 
0.25 arcmin) those identified based on the ray-matching for-
ward model approach (Fig. 7c).


To demonstrate the approach, we rendered stereo-
images of specular objects in retinal angular coordinates with 
high resolution such that 1 pixel = 0.25 arcmin with a 50 cm 
viewing distance. We converted images into grey-scale by 
averaging the RGB channels, and then constructed a grid of 
104x104 sample points in the left image (Fig. 8). Note that the 
grid is uniform in terms of the angular coordinates of the 
shape, not in terms of image coordinates, although the pre-
cise choice of locations to test is arbitrary: other locations 
could also have been tested given sufficient mathematical 
precision (see Fig 6 caption). 
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Figure 7. Establishing stereo correspondence for specular objects 
using a correlation method. A) For a given point, PL, in the left eye 
image, we search for a match along the corresponding epipolar line in 
the right eye image. The algorithm correlates graylevel image 
intensities for a sub-image region in PL with all the possible locations 
along the epipolar line in the right eye image. We vary the tolerance 
around the epipolar line in which to search for corresponding 
locations. The peak of the correlation map is selected as the 
corresponding location. B) Identified corresponding locations typically 
have similar image structure (here, R = 0.96). C) Systematically varying 
the search zone around the epipolar line reveals that allowing some 
tolerance is important when finding corresponding locations for 
specular objects. When the search zone is ± 12 arcmin of the epipolar 
line, the match between the ground truth forward model and the 
correlation approach approaches the best achievable (i.e., saturating 
function) for the shapes and viewing situations we have considered. 
‘Good’ matches are those that correlation solutions that lie within ± 
0.25 arcmin of solution based on matching reflected ray vectors. The 
function saturations around 0.7 as some portions of the shape are 
unfusible based on the ray-matching approach – see Fig 6 – so 
matches are beyond the search zone of 12 arcmin and can therefore 
never be ‘good’ (i.e., viewers would not be able to extract the disparity 
information from these locations).

Regular sample grid in left image

Matched locations in right image

Painted

Specular

Ray vector match

Correlation match

Figure 8. Stereo matches calculated using a cor-
relation-based image method. 
We sought to establish correspondence using an 
image correlation approach. We start with a regular 
sample grid in the left eye and then identify corre-
sponding locations in the right eye. (Note that the 
grid is uniform in the spherical coordinates of the 
shape, rather than in the image plane, matching our 
analysis in Figure 6). We show results for a ‘painted’ 
shape and a specular rendering of the same shape. 
We superimpose matched locations identified from 
ray geometry (blue dots) with those identified using 
the correlation method (red dots). For the painted 
case, there is very good correspondence between 
the two. For the specular, there is good correspon-
dence for local surface regions, however in other 
regions where disparity is undefined (as per the re-
flected ray analysis with known object geometry) the 
correlation method produces spurious matches. 
These regions are likely to pose a similar challenge 
to the human visual system – see Figure 4. Movie 1 
shows the matches for the specular object with dif-
ferent amounts of tolerance for matches with respect 
to the epipolar line.



As a sanity check on this approach, we first applied 
this algorithm to a ‘painted’ version of the object (i.e. one with 
mirror-like monocular appearance, but whose disparities lie 
on the surface, like a matte textured object). We found very 
good correspondence with the ground truth depths (Fig. 8), 
indicating that when disparities are well defined, our correla-
tion-based matching algorithm provides good results. We 
then calculated correlation-based stereo-matches for a spec-
ular version of the object, and compared the results with 
those derived from the reflected-ray based approach (Section 
3), which we defined as ground truth for the disparity signals 
available from these images. The correlation-based approach 
recovers features of the disparity structure that are similar to 
the ray-based approach with known geometry. In particular, 
for well-defined ‘islands’ within the shape there is a good 
correspondence between the recovered disparities and the 
ground truth stereo-matches. However, in other portions of 
the shape there is poor correspondence (i.e. correlation at the 
best match was low, suggesting residual errors in the match).  
Importantly, these regions corresponded to the locations 
where disparity was undefined and for which no local solution 
exists in the ground truth. Thus, the correlation-based 
method with unknown geometry, and reflected-ray approach 
with known geometry yield broadly similar results.


The correlation-based method we have used is not 
sophisticated and is slow (97 times slower than it would take 
for a Lambertian object with standard epipolar constraints). 
Many other existing stereo algorithms are likely to be more 
efficient or accurate (for a recent review of such work which 
assesses the relative merits of different algorithms on 
benchmark tests, see (Baker et al., 2011)).  However the re-
sults of our method correspond well to the ground truth, 
which demonstrates that in principle stereo-information from 
mirrors is available for machine vision, through a simple gen-
eralization of standard stereo-matching approaches. We con-
sider this a proof of concept that specular disparities can be 
robustly calculated from images of unknown surfaces.  The 
most conceptually significant difference between our ap-
proach and existing methods—which are optimized for stan-
dard stereopsis—is that we do not restrict search for matches 
to epipolar lines.  To evaluate the extent to which this alters 
performance, we measured how close the image-based 
matches are to ground truth as a function of the size of the 
tolerance around the epipolar line (Figure 7c; Movie 1).  En-
abling matches that deviate from the epipolar line is clearly 
very important for achieving accurate matches, although in-
creasing search window beyond the limits of human fusibility 
would yield diminishing returns (the curve saturates).


One other advantage of a simple correlation-based 
matching approach is that additional information can be ac-
quired from the magnitudes of the correlations associated 
with the best match. Where the correlation is very high, the 
quality of the match is good, but where the view geometry 
leads to substantial deviations in the pattern of reflections 
between the two eyes, the maximum correlation will likely be 
lower, indicating a poorer quality match. In principle human or 
machine vision could exploit information about the quality of 
matches to weight the signals derived from different surface 
locations.  Indeed, we have argued that the visual system 
prefers to interpolate across regions where the disparities are 
too unreliable, yielding smoother estimates of the disparity 
field (Muryy et al., 2013). For the remainder of the article we 
use the ground truth solutions based on known geometry.


5. Ortho-epipolar distances and their potential use as a 
shape cue.  

For a Lambertian object, binocular correspondence 
falls along epipolar lines, but as discussed in Section 4, for 
specular surfaces this does not have to be true. Specular 
stereo matches generally fall some distance away from the 
epipolar line, depending on the orientation of the offset vector 
ξ = PR – PL between the corresponding points on the surface. 
The closer this vector is to coplanar with inter-ocular axis, the 
closer the stereo-match is to the epipolar line. Intuition sug-
gests that the non-epipolar signals are not randomly dis-
tributed across the surface but are systematically related to 
specific geometrical properties. In this section, we describe 
how the relationship between surface and view geometry 
leads to unusual patterns of disparities, quite unlike those 
seen with standard matte/textured surfaces.  A vision system 
could in principle use these non-epipolar disparities to infer 
additional information about the shape of the surface that 
generated the signals.


To start, consider a generic local surface patch, which 
has different curvatures in different directions (i.e. it is non 
spherical). Along the direction of highest curvature, corre-
sponding reflected ray vectors tend to match up quickly and 
thus projection of the offset vector onto the direction of max-
imum principal curvature is likely to be smaller than its projec-
tion onto the direction of minimal curvature (see Section 3.3). 
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Movie 1. To complement the results shown in Figures 7 and 8, this 
movie illustrates how changing the tolerance for non-epipolar 
matches changes the spatial consistency between matches based 
on ray geometry and image correlation. The image patch 
corresponds to the local region shown in Figure 8. Different frames 
of the movie show difference positive and negative tolerances 
around the epipolar line – from zero (strict epipolar) to a search 
zone of 24 arcmin centered on the epipolar line (12 arcmin 
tolerance). Notice that as the tolerance increases, more red dots 
line up with blue dots. However, there is never a perfect match 
because for some locations on the shape disparities become very 
large or are undefined – see Section 3. 



Thus, at first glance one may think the offset vector ξ should 
be oriented primarily along the minimal principal curvature 
(Fig 9a and b). However, as shown in Figure 9c, when the 
minimum principal axis is vertical (i.e. zero curvature is or-
thogonal to the inter-ocular axis), the matches are also hori-

zontal, because the depth variations reduce to one dimen-
sion. This demonstrates that surface curvature influences 
deviations from epipolar geometry in a way that is very differ-
ent from matte-textured surfaces.  More generally, however, 
surface geometry alone cannot fully predict the orientation of 
the disparity vector because reflected ray vectors depend on 
viewing vectors as well as on surface normals. Thus, the 
problem of offset vector orientation cannot be formulated in 
purely object-centric terms such as curvature, but must also 
include viewing geometry.


In order to determine the extent to which specular 
surfaces violate the epipolar constraint, we calculated the 
ortho-epipolar distance (i.e. image distance between the 
match point and corresponding epipolar line (Read, Phillip-
son, & Glennerster, 2009)) for every matched pair of points in 
an image. Figure 10a shows the results. Superimposed con-
tours represent points where viewing vectors intersect and 
thus ortho-epipolar distance is zero. These singularities are 
especially interesting because they relate to the orientations 
of the offset vectors (i.e., the 2D vector between correspond-
ing points in the two eyes’ views, for a given vergence angle) 
and through these to surface and viewing geometries. 


In order to incorporate viewing geometry into the 
analysis, we constructed a depth map of the object from the 
cyclopean viewpoint and computed the eigenvectors of the 
Hessian matrix of this depth map (Fleming, Torralba, & Adel-
son, 2004; 2009). The Hessian matrix captures the rate of 
change of surface normal as a function of distance in the 
image, and therefore incorporates information about both 
viewing and surface geometries. The eigenvectors of the 
Hessian matrix are orthogonal to one another in the cyclo-
pean image plane, and represent the directions in which sur-
face normal changes fastest (direction of maximum second 
derivative) and slowest (direction of minimum second de-
rivative) respectively. For example, for a patch of surface that 
is locally cylindrical, one eigenvector direction runs in a 
straight line along the axis of the cylinder, whereas the other 
runs orthogonally around the circular cross-section of the 
cylinder. If either one of these two eigenvectors is parallel to 
the inter-ocular axis, then ortho-epipolar distance tends to 
zero. In other words, if the cylindrical patch is either horizon-
tal or vertical relative to the eyes, then matches for that loca-
tion will lie on epipolar lines, just like in standard stereopsis. 
Figure 10 demonstrates this correspondence—note that ar-
eas of zero ortho-epipolar distance correspond to zero orien-
tation. In terms of the mirrored cylinders considered in Figure 
9, if the axis of the cylinder is either parallel to—or orthogonal 
to—the inter-ocular axis, then disparities are purely epipolar. 
In general all other locations tend to have non-zero ortho-
epipolar components, unlike standard stereoscopic matches, 
which always lie on epipolar lines.
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Figure 9. The orientation of disparity vectors for different 
viewing geometries. Here we show corresponding reflection 
locations on the surface of a cylinder at different rotation angles. In 
(a), the direction of minimum curvature is aligned with the 
interocular axis and the resulting disparity contains no vertical 
component. At oblique orientations (b) the vertical component of 
the offset between the two eyes can be considerable. Intuition 
might suggest that the orientation of the offset vector between 
corresponding surface locations is relate to surface curvature, 
however part (c) demonstrates that matches are horizontal when 
the direction of zero curvature is orthogonal to the inter-ocular axis. 
Therefore a formulation that incorporates viewing geometry is 
needed to capture the relationship between the magnitude of 
ortho-epipolar disparity components and the viewed shape.
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Figure 10. The relationship between 
surface/viewing geometries and ortho-
epipolar distances. (a) A plot showing 
locations for which ortho-epiplar distances 
are zero. (b) A plot showing locations at 
which the orientation of either of the two 
eigenvectors of the Hessian matrix of a depth 
map of the object is parallel to the inter-
ocular axis (loosely speaking, the directions 
of the principal curvatures of the surface in a 
view-centered coordinate system). The 
correspondence between the two suggests 
second-order surface properties play a key 
role in determining where specular stereo 
conforms to the epipolar constraint. 



This observation has one potentially interesting con-
sequence for shape reconstruction from specular disparities.  
An artificial vision system could in principle use the loci of 
epipolar matches as additional constraints on the second-
order properties of the generating surface at those locations, 
as it indicates that the eigenvectors must be parallel or or-
thogonal to the inter-ocular axis.  In practice, however, it 
seems relatively unlikely—but not impossible—that  the hu-
man visual system makes use of this constraint, at least for 
the estimation of metric second-order properties.  In our pre-
vious work we find that where features are easily fused, sub-
jects tend to take the resulting depth estimates at face value, 
incorrectly interpreting them as the true surface locations 
(Muryy et al., 2013).  We suggested that ortho-epipoplar 
components indicate the underlying disparities are unreliable.  
Within this framework, epipolar matches provide the most 
reliable disparity signals. If the human visual system applied 
this constraint appropriately, then inconsistencies between 
depth signals, and the inferred second-order surface con-
straints should veto, or at least influence the resulting depth 
estimates, but they do not. This suggests the visual system 
does not exploit this constraint. Nevertheless, the constraint 
could prove useful for artificial vision systems.

5.1. Distinguishing specularities from half-occlusions


Unmatchable features or pseudo-matches that infringe 
epipolar geometry can be created not only by specular reflec-
tions, but also by half-occlusions (Da Vinci stereopsis).  How 
then might the visual system distinguish between these two 
quite different physical causes? Occlusion is substantially 
more common than specular reflection in the natural envi-
ronment, so one possibility is that the visual system treats 
unmatchable features (or non-epipolar pseudo-matches) as 
evidence of occlusion by default, and that it is only inconsis-
tencies between binocular and monocular cues to occlusion 
that veto this interpretation.  Even in the absence of monocu-
larly visible boundaries, binocular occlusion cues—such as 
unmatchable (or incorrectly pseudo-matched) line termina-
tors—are strong enough to yield vivid illusory contours, and 
constrain the orientation and depth of the illusory occlude 
(Anderson, 1994; Gillam & Grove, 2004; Grove, Brooks, An-
derson, & Gillam, 2006; Grove, Byrne, & Gillam, 2005). In 
general, however, unmatchable features caused by occlusion 
occur more frequently on the left and right flanks of an object, 
and tend to be spatially aligned with monocular occlusion 
cues.  In contrast, those created by specular reflections can 
occur at arbitrary locations in the centre of the object.  In-
deed, the unmatchable features (or regions with very large 
ortho-epipolar components) created by specular reflections 
generally do not lie close to occlusion events, instead occur-
ring in locations where there are clear monocular indications 
of a continuous surface.  Thus, the presence of unmatchable 
features at locations where monocular cues are inconsistent 
with occlusion, could provide a reliable indicator that specular 
reflection (or some other surface-related physical process, 
like refraction) is the underlying cause.


An alternative possibility is that there is something 
about the pattern of the unmatchable features themselves 
that indicates that occlusion is an improbable interpretation.  
When occlusion is the cause, unmatchable features are typi-
cally narrow, elongated areas along the contour, flanked by 
clearly fusible regions, as the binocularly visible portions of 
matte surfaces are easily matched, yielding reliable disparity 
signals.  By contrast, with specular reflections, unmatchable 
regions are not constrained to be elongated in shape, and, 
more importantly, fusibility usually declines progressively to-
wards the unmatchable region. Unmatchable regions in the 

middle of specular surfaces are typically surrounded by areas 
of partial fusion, with increasingly large disparity gradients or 
large ortho-epipolar components to the disparities.  Thus, the 
visual system could use both monocular cues and the spatial 
context of the unmatchable features to determine their origin.


To illustrate these properties, Figure 11 shows epipo-
lar and ortho-epipolar disparity fields and the epipolar dispar-
ity gradient (i.e., the gradients of the epipolar disparities along 
the epipolar lines) for painted (vIP=0), mirrored (vIP=1) and 
midway between these stimuli (vIP=0.5). Notice that dispari-
ties reach extreme values at the edges of reliable patches, 
which is in line with the formal definition (section 3) that there 
is no reliable depth beyond these patches. Notice also the 
magnitude of the ortho-epipolar disparities can be quite large 
for both vIP=1 and vIP=0.5, while it is everywhere zero for the 
vIP=0 case. Gradients of epipolar disparity are also large at 
the edges of the smooth local patches: these are likely to 
pose a challenge to the mechanisms of binocular fusion (Burt 
& Julesz, 1980).
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Figure 11. Example disparity fields of an irregular 3D object (a 
‘potato’). We show maps of epipolar disparity, disparity gradients 
along the epipolar lines, and ortho-epipolar disparity for three 
different vIPs: ‘painted’ vIP=0 (top row), vIP=0.5 (middle row) and 
‘specular’ VIP=1 (bottom row) versions of an irregularly shaped 
object. The object is viewed along the depth axis; x, y image 
locations are in centimeters. The red-blue color code indicates the 
magnitude of each quantity (color bars are scaled for each column). 
Notice that there is a greater range of values for all quantities for 
non-zero vIP stimuli. This is particularly marked for ortho-epipolar 
disparity signals. Gaps in the maps are regions for which disparity 
is undefined or exceeds the fusion limits of the human visual 
system.



6. Interpretation of stereo-matches as virtual surface 
depths 

6.1. Corresponding ray vectors are typically skewed

Having identified stereo-matches it is useful explore 

how depth values could be calculated from the image dispari-
ties. For standard stereopsis with matte/textured surfaces 
and known vergence, calculating depths from corresponding 
points is straightforward trigonometry. However, for specular 
surfaces, the image depends on the interaction between the 
viewpoint and the properties of the local surface patch. This 
has the important consequence that corresponding vectors 
are, in general, skew and thus do not intersect in 3D space 
(Figure 12). Thus, depth values cannot be trivially derived for 
a given stereo-match, because there is no unique point of 
intersection between the two eyes’ views. There is, in princi-
ple, therefore complete ambiguity about where the depth of 
the match should lie as correspondence could be established 
at any point along the view rays for the two eyes (Van Ee & 
Schor, 2000). Despite this, the human visual system appears 
able to select from these potentially ambiguous matches giv-
ing rise to an impression of binocular depth.


To arrive at a depth estimate, we have to define a lo-
cation in space that should be considered the triangulation 
point.  One possible solution is to calculate the shortest mid-
point between skew viewing vectors (i.e. the point at which 
they pass closest to one another) and consider such a point 
as a depth estimate. Although this makes intuitive sense from 
a geometrical standpoint, it is unclear how a visual system 
would be able to calculate such a property. We therefore take 
the approach of projecting viewing vectors into the fixation 
plane where they must intersect. We can establish matches 

based on this projection, and thereafter project the point of 
intersection back onto the viewing vectors for the two eyes. 
This establishes two depth locations (one each for left- and 
right- eye views). We then take the mean location in 3D space 
as the depth solution. While this strategy may sound convo-
luted, it is equivalent to estimating depths by ignoring the 
ortho-epipolar component of the disparity. Measurements of 
human depth matches for specular objects suggests that this 
strategy provides a close approximation to human depth per-
ception (Muryy et al., 2013). As ortho-epipolar disparity does 
not indicate depths in standard stereopsis, it is perhaps un-
surprising that the visual system ignores it for specular reflec-
tions too.

6.2. Characteristics of the virtual surface


Having established points of correspondence between 
the (generally ambiguous) disparity values provided by spec-
ular reflections, we can trace out a virtual surface in depth.  In 
this section, we characterize some of the properties of the 
virtual surfaces produced by specular objects and report 
three interesting properties of the depth surfaces that result 
when viewing specular objects. To illustrate these points we 
show examples in Figure 13 of the virtual surfaces for two 
different types of 3D object: (i) a ‘muffin’ object that is based 
on a sphere that has been very subtly distorted by applying 
low amplitude sinusoidal deviations to the depth profile with 
the result that the object convex but has slight ‘corners’; (ii) a 
‘potato’ object that is globally convex, but whose surface 
contains local concavities. For the muffin object, stereo-
matches are smooth and thus the virtual surface exists 
everywhere except at the object edges, i.e. there are no dis-
continuities in the middle of the disparity field. This is not true 
for the potato object whose virtual surface contains a number 
of discontinuities.


First, notice that the properties of the virtual surface 
can be qualitatively different from the physical surface that 
generated them. In the case of the muffin object, the physical 
surface is very close to a sphere and has no concavities, yet 
the virtual surface contains concavities and a much more 
pronounced ‘rippled’ depth structure than we might intuit 
from looking at the structure of the object. While this might 
appear surprising at first glance, recall that the virtual surface 
is a product of reflections that vary twice as fast as the sur-
face normals (Section 2.1). Second, the virtual surface can be 
highly sensitive to small variations of viewing and surface 
geometries, especially those parts of the virtual surface that 
correspond to regions of low physical curvature (because the 
offset vector is longer there and shift of corresponding points 
results in larger jumps in depth) while regions that correspond 
to high physical curvature remain more stable. 


A third interesting property of the virtual surface is its 
piece-wise smoothness, which comes from piece-wise 
smoothness of the stereo-matches (‘Potato’ in Figure 13). 
Notice that for convex regions, the virtual surface is typically 
behind the physical surface in depth, while for concave phys-
ical patches it appears in front of the surface. This relation-
ship between the physical surface shape and depths is strict 
in 2D (where viewing vectors must intersect) but can, under 
specific (rare) conditions, be infringed in 3D. With increasing 
curvature of the physical surface, the virtual surface ap-
proaches the true surface depths.  By contrast, as curvature 
approaches zero, the virtual depths deviate further and fur-
ther from the depths of the physical surface: further behind in 
the case of convex physical surface patches, and further in 
front for concave patches. This has the important conse-
quence that near inflection points (see footnote 2) of the 
physical surface, the virtual surface contains a singularity and 
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Figure 12. Establishing depth locations for skewed view rays. 
Rays reflecting the same portion of the environment are not 
constrained to epipolar lines meaning that they can pass each 
other in 3D space without defining a unique point of intersection. 
Establishing the depth corresponding to the left and right eye views 
is therefore undefined on the basis of simple trigonometry. We 
illustrate this in three dimensions. The observer fixates point F. 
Consider surface locations PL and PR that point to the same 
location in the illumination map. Extending the view vectors (vL and 
vR) to determine the depth of the matched feature of the 
illumination does not define a unique location in 3D space because 
the vectors pass each other. We therefore establish depth by 
projecting vL and vR into the fixation plane where there is an 
intersection. This intersection location is then projected back onto 
the view rays to define a virtual point for the left and right eyes (AL 
and AR). The depth of virtual point (A) is defined as the average 3D 
location of AL and AR. Assuming the visual system uses only the 
horizontal component of the disparity is equivalent to projecting the 
view vectors into the fixation plane. Figure adapted with permission 
from the supplementary information of Muryy et al (2013).



undergoes a dramatic jump in depth from far in front to far 
behind the surface, somewhat like a tangent (tan) function 
(Figure 13). This means that undulating low-curvature mirrors 
yield extreme depth signals, often outside the range that can 
be computed by human vision.


7. Discussion 

Our goal with this investigation was to provide a de-
tailed and formal description of specular stereopsis to identify 
how it deviates from standard stereopsis.  In so doing, we 
also sought to shed light on when and why human binocular 
surface depth estimation sometimes fails when viewing pure-
ly specular surfaces. Our analysis forms a basis for potential 
future studies both in human and in machine stereo vision.  
Specifically:

1) We introduced a rendering technique based on virtual 

illumination mapping, which makes it possible to manipu-
late stereo cues while keeping monocular cues practically 
unchanged. The method enables the experimenter to 
continuously interpolate the disparity field between ‘mir-
rored’ and ‘painted’ versions of the stimulus (and indeed 
beyond) allowing precise control of the conflict between 
monocular and binocular cues. Here, we used this tech-
nique to analyse the structure of specular disparity fields.


2) We formulated the solution of the stereo correspondence 
with known geometry based on matching reflected ray 
vectors, to establish the ground truth disparities created 
by specular surfaces. This analysis generalizes previous 

work that only considered the behaviour of individual light 
sources.


3) We formally described situations where solutions to the 
correspondence problem for specular stereopsis do not 
exist and when there can be multiple matches. This pro-
vides crucial insights into when and where human stere-
opsis should fail when viewing images of mirrored sur-
faces, expressed in geometrical terms.


4) We demonstrated that it is possible to find matching 
points between stereo-images of a mirrored object using 
a simple correlation-based method, as long as the 
matches are not constrained to lie on the epipolar lines, 
but rather within a 12 arcmin region flanking those lines 
(consistent with human visual limits fusion for vertical 
offsets). This demonstrates that simple image-based 
matching yields disparity fields similar to those predicted 
from the ground truth structure of the virtual image creat-
ed by the reflective surface. It also models a simple 
mechanism through which the human visual system 
could access both epipolar and ortho-epipolar compo-
nents of the matches, which we argue are treated as pro-
viding different information.


5) We showed a relation between specular disparities and 
surface topology/viewing geomentry. Thus, specular dis-
parities can be used to interpret some second-order 
properties of the real physical surface. Although we argue 
that the human visual system does not exploit these rela-
tionships, they could be used in artificial vision systems.


Previous work has suggested that the human visual sys-
tem may have internalized the physics of specular reflection 
(Blake & Bülthoff, 1990; 1991), tacitly implying that it might be 
able to reconstruct depth from specular surfaces and use the 
precise locations of reflections to determine surface material 
properties.  This may be true in some qualitative sense—for 
example, when features lie on the surface in depth they are 
seen as matte surface markings rather than as highlights.  
However, we suggest that rather than ‘knowing the physics’ 
of specular reflection, many of the limits and problems ob-
servers encounter when viewing purely specular surfaces 
may in fact result from the nature of the disparity signals 
themselves.  In particular, we suggest that the visual system 
treats the components of the disparity vectors that lie along 
the epipolar lines as indicators of depth (much as in standard 
stereopsis), while the orthogonal components may be treated 
as an intrinsic indicator of the reliability of the depth estimate 
signal.  This approach means that where image regions are 
unmatchable, no depth estimate results, whereas in locations 
where matches are epipolar, the visual system treats the 
depth signals at face value, leading to depth estimates that 
correspond to the virtual image (i.e., the reflections), rather 
than the true physical surface itself. In between these two 
extremes, where features are still fusible, but contain sub-
stantial ortho-epipolar components, the visual system may 
treat the depth estimates as an untrustworthy ‘best guess’.  
Future studies with surfaces that have both reflections and 
texture, should investigate how the ortho-epipolar compo-
nents modulate the combination of depth estimates between 
the accurate and reliable signals from the surface texture with 
the inaccurate and unreliable signals from the reflections.  
Our analysis predicts that the depths seen should vary as a 
function of the specific geometry of the surface and view 
positions, because these determine the extent of the ortho-
epipolar components, and therefore the weight that should be 
attributed to the depth estimates from the specular reflec-
tions.
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Figure 13. Illustrations of the virtual surface of a sphere, a near-
spherical (‘muffin’) and irregular (‘potato’) object under different 
degrees of rotation with respect to the viewer. The depth of the 
virtual surface defined by specular reflections (central column) 
becomes increasingly complex as local deviations in the surface 
are introduced. Even for the muffin which is only a very slight 
deviation from a sphere (inspect cross section on right of figure) the 
variation in the depth profile of the virtual surface (orange line) 
becomes quite pronounced. Viewing distance was 50 cm, and 
interocular separation 6.5 cm. The sphere  had a diameter of 7 cm. 
The ‘muffin’ object was created by adding nine sinusoidal bumps 
(‘corners’) to a 7 cm diameter sphere in the azimuthal direction, 
while applying a weighting term to the bumps to ensure that the 
shape remained convex.



8. Conclusions 

In this paper we have described the process by which 
images of specularly reflective objects are produced in order 
to highlight the ways in which specular stereo, differs from 
the more widely considered matte/textured case. This treat-
ment allows us to make some observations with relevance to 
artificial matching systems, as well as identify the challenges 
such images pose to the human visual system. To summa-
rize, the key characteristics of specular stereo we identify are:

(1) A given feature in one eye may have zero, one or multiple 

potential matches in the other eye, depending on the sur-
face and viewing geometry.  Da Vinci-like unmatchable 
features routinely occur not just at occlusions, but also at 
points of inflection on the surface. Surface concavity 
yields multiple global matches, although constraints on 
the size of disparities and their gradients can 
be used to rule out many of these.


(2) Matches can deviate substantially from the 
epipolar line, leading to large ortho-epipolar 
components to the disparity signals. To find 
matches it is typically necessary to broaden 
search to a region surrounding the epipolar 
line. These ortho-epipolar components tend 
towards zero when the eigenvectors of the 
Hessian matrix of surface depths (roughly 
speaking, the principle curvature directions) 
are parallel to or orthogonal to the inter-ocular 
axis.


(3) Corresponding points generally do not yield 
intersecting rays, so even when correspond-
ence is found, deriving depth estimates from 
the matches is non-trivial. We suggested the 
visual system may treat the epipolar compon-
ent of the disparity signal as a depth estimate, 
and the ortho-epipolar component as an in-
dicator of the intrinsic reliability of the depth 
estimate.


(4) Based on these assumptions, the depth val-
ues inferred from specular disparity fields 
trace out virtual surfaces that fall some dis-
tance away from the surface in depth.  These 
virtual surfaces can have qualitatively different 
structure from the surface that generated 
them (e.g., convex physical surfaces can yield 
virtual surfaces with concavities). The virtual 
surfaces are highly sensitive to view and surface geo-
metry.  Smooth physical surfaces can yield virtual sur-
faces that are discontinuous (piece-wise smooth), 


(5) The depth relationships between the physical surface and 
its virtual surface are strongly influenced by the physical 
surface’s second-order properties. Depth behaves qualit-
atively like a tangent function of surface curvature, under-
going a sudden jump—from very far in front to very far 
behind the surface—as surface curvature transitions from 
concave via planar to convex.  This causes large virtual 
depth discontinuities around surface inflections.


Together, these properties make specular surfaces highly 
challenging for vision systems. Our experimental work on 
human perception of shape and material properties from bin-
ocular cues suggests that the visual system has not internal-
ized the specific quantitative relationships between specular 
reflections and the physical surface that generated them. 
However, the substantial and systematic deviations from typ-
ical behaviour means that specular reflections should often 

be relatively easy to identify and exclude where the goal is to 
estimate true surface depths from stereo signals. In these 
conditions, interpolation processes are likely to play a key 
role.


9. Appendix 1 

For the analysis in the paper we made the simplifying 
assumption that illumination is infinitely far from the object. In 
reality, however, the distance of a point in the environment to 
the surface of the specular object is finite and therefore the 
locations mapped out by specular reflections depend on this 
distance. This is most obvious for flat mirrors where the depth 
of an object behind a mirror is as far as the real object is in 
front. Thus, it is important to evaluate the effects of distance 
on the calculation of the virtual surface.


To test the importance of the assumption of illumina-
tion at infinity and its compatibility with the main conclusions 
of our paper, we conducted an analysis of the effects of illu-
mination distance on calculated depths. We did this by calcu-
lating depth locations of reflections for a simple near-spheri-
cal reflective object while using spherical illumination maps of 
different, finite radii. Figure 14 shows variation of virtual 
depth as we change distance to the illumination. Notice that 
the offset in depth with respect to changing illumination dis-
tance is more pronounced for regions of low curvature, while 
highly curved patches are hardly affected by it. The orange 
solid line (“baseline”) shows the virtual depth profile for illu-
mination at infinity; the blue dotted lines indicate virtual pro-
files for illuminations of different radii, and the bar chart 
shows mean displacement of the virtual surface from the 
baseline values calculated for infinitely far illuminations. It is 
apparent from Fig. 14 that the exact depth of the virtual sur-
face depends on the distance from the reflected environment 
to the surface of the object. However, if the environment is 
further than 0.5 m, this difference is negligibly small.
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Figure 14. Exploring the ‘illumination at infinity’ assumption. Our analysis in the 
paper is based on assuming that the environment illuminating the considered objects 
is infinitely far away. Here we consider different radii of illumination to test the 
reasonableness of that assumption. (A) Schematic of the viewing geometry and 
illumination distances. (B) Virtual surfaces produced by illumination spheres of 
different radii. The solid orange line shows the profile obtained for illumination at 
infinity. The virtual surface changes systematically as the illumination gets closer to 
the object (dotted blue lines). We quantify the difference between the mean depth of 
the virtual surface at infinity and the other illumination distances (bar graph on Right). 
Beyond a distance of 30 cm, the difference become from illumination at infinity 
becomes very small. (C) Virtual surfaces for a sinusoidal surface that contains both 
convexities and concavities. In this case, the difference from illumination at infinity is 
even smaller than in B. Figure adapted with permission from Muryy et al (2013).
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