#### WILEY-VCH

#### COMMUNICATION

# Interfacing formate dehydrogenase with metal oxides for reversible electrocatalysis and solar-driven reduction of carbon dioxide

Melanie Miller,<sup>[a]</sup> William E. Robinson,<sup>[a]</sup> Ana Rita Oliveira,<sup>[b]</sup> Nina Heidary,<sup>[a]</sup> Nikolay Kornienko,<sup>[a]</sup> Julien Warnan,<sup>[a]</sup> Inês A. C. Pereira,<sup>[b]</sup> Erwin Reisner<sup>\*[a]</sup>

Abstract: The integration of enzymes with synthetic materials allows efficient electrocatalysis and solar fuels production. Here, we couple formate dehydrogenase (FDH) from Desulfovibrio vulgaris Hildenborough (DvH) to metal oxides for catalytic CO2 reduction and report an in-depth study of the resulting enzymematerial interface. Protein film voltammetry (PFV) demonstrates stable binding of FDH on metal oxide electrodes and reveals reversible and selective reduction of CO2 to formate. Quartz crystal microbalance (QCM) and attenuated total reflection infrared (ATR-IR) spectroscopy confirm a high binding affinity for FDH to the TiO<sub>2</sub> surface. Adsorption of FDH on dye-sensitized TiO<sub>2</sub> allows for visible-light driven CO<sub>2</sub> reduction to formate in the absence of a soluble redox mediator with a turnover frequency (TOF) of  $11 \pm 1 \text{ s}^{-1}$ . The strong coupling of the enzyme to the semiconductor gives rise to a new benchmark in selective photoreduction of aqueous CO<sub>2</sub> to formate.

Electrocatalytic and solar-driven fuel synthesis from the greenhouse gas CO<sub>2</sub> is a desirable approach to simultaneously produce sustainable energy carriers and combat increasing atmospheric CO<sub>2</sub> levels.<sup>[1]</sup> Formate is a stable intermediate in the reduction of CO<sub>2</sub> and can be used as liquid energy carrier in fuel cells, as hydrogen storage material, or feedstock for the synthesis of fine chemicals.<sup>[2]</sup> Metals and synthetic molecular systems are widely studied as electrocatalysts for CO<sub>2</sub> reduction to formate, but largely lack the required efficiency, selectivity or affordability to enable carbon capture and utilization technologies.<sup>[3,4]</sup>

There is avid research in both biological and artificial  $CO_2$  fixation. Semi-artificial photosynthesis provides a common stage for these contrasting approaches as components from synthetic and biological origin can be combined in hybrid model systems.<sup>[5]</sup> To date, enzyme-based visible-light driven  $CO_2$  reduction to formate relies on diffusional mediators such as methyl viologen ( $MV^{2+}$ ) and nicotinamide adenine dinucleotide ( $NAD^+$ ).<sup>[6,7]</sup> Mediated processes are inefficient as they consume energy, are kinetically slow and cause short-circuit reactions.  $MV^{2+}$  is toxic to microorganisms,<sup>[8]</sup> and  $NAD^+$  is prohibitively expensive for fuel production.<sup>[6]</sup>

| [a] | M. Miller, Dr. W. E. Robinson, Dr. N. Heidary, Dr. N. Kornienko, |  |  |  |
|-----|------------------------------------------------------------------|--|--|--|
|     | Dr. J. Warnan, Prof. E. Reisner                                  |  |  |  |
|     | Department of Chemistry, University of Cambridge                 |  |  |  |
|     | Cambridge CB2 1EW (United Kingdom)                               |  |  |  |
|     | E-mail: reisner@ch.cam.ac.uk                                     |  |  |  |
|     | Web: http://www-reisner.ch.cam.ac.uk/                            |  |  |  |
| [b] | A. R. Oliveira, Prof. I. A. C. Pereira                           |  |  |  |
|     | Instituto de Tecnologia Química e Biológica António Xavier       |  |  |  |
|     | Universidade Nova de Lisboa                                      |  |  |  |
|     | Av. da República, 2780-157 Oeiras (Portugal)                     |  |  |  |

Supporting information for this article is given via a link at the end.



**Figure 1.** Schematic CO<sub>2</sub> conversion with a semiconductor-**FDH** photocatalyst system. Photoexcited electrons from the dye, **RuP** in (A) or **DPP** in (B), are transferred via the conduction band (CB) of TiO<sub>2</sub> across the enzyme-material interface through the intraprotein [4Fe-4S] relays to the W-active site of **FDH** for the reduction of CO<sub>2</sub> to formate. The oxidized dye is regenerated by triethanolamine (TEOA). A protein structure homologous to *Dv*H **FDH** is shown.<sup>[9]</sup>

In this work, we have selected **FDH** from *Dv*H as it has previously displayed robustness and high activity for the reduction of CO<sub>2</sub> and oxidation of formate in solution assays.<sup>[10,11]</sup> Initially, PFV was employed to study interfacial electron transfer between **FDH** and porous indium-doped tin oxide (ITO) and TiO<sub>2</sub> electrodes in the absence of a mediator. Immobilization and loading of **FDH** on TiO<sub>2</sub> were then investigated using a QCM and ATR-IR spectroscopy. **FDH** was finally coupled directly to dyesensitized TiO<sub>2</sub> nanoparticles to enable photocatalytic reduction of CO<sub>2</sub> selectively to formate in a diffusional mediator-free colloidal system (Figure 1).

The electrocatalytic activity of **FDH** on metal oxide electrodes was studied by PFV on mesoporous ITO (*meso*ITO) and TiO<sub>2</sub> (*meso*TiO<sub>2</sub>) electrodes with a film thickness of approximately 2.5 µm (Figure S1).<sup>[12,13]</sup> **FDH** (21.5 µM) was activated by incubation with the reducing agent *DL*-dithiotreitol (DTT, 50 mM)<sup>[9]</sup> and the resulting solution (2 µL) was drop cast on the electrode surface. The **FDH**-modified electrode was placed in an electrolyte solution containing CO<sub>2</sub>/NaHCO<sub>3</sub> and KCl at pH 6.5 under a CO<sub>2</sub> atmosphere.

#### COMMUNICATION



**Figure 2.** PFV (v = 5 mV s<sup>-1</sup>) showing (A) reversible reduction of CO<sub>2</sub> to formate by *meso*TO|**FDH** (blue trace) and (B) CO<sub>2</sub> reduction by *meso*TiO<sub>2</sub>|**FDH** before (blue) and after 2 h CPE (black). Inset: CPE at -0.6 V vs. SHE. Conditions: 43 pmol **FDH** (amount drop-cast), 100 mM CO<sub>2</sub>/NaHCO<sub>3</sub>, 50 mM KCI, 20 mM formate (only present in A), 1 atm CO<sub>2</sub>, pH 6.5, 25°C, Pt counter electrode. Dashed traces show control experiments of **FDH**-free electrodes.

Figure 2A shows the electrochemically reversible interconversion of CO<sub>2</sub> and formate by **FDH** immobilized on a conductive *meso*ITO electrode (*meso*ITO|**FDH**). The onset potential for both CO<sub>2</sub> reduction and formate oxidation was observed close to the thermodynamic potential ( $E^{0'} = -0.36$  V *vs*. SHE, pH 6.5),<sup>[14]</sup> demonstrating that interfacial electron transfer by the [4Fe-4S] relays and catalysis at the W-active site are highly efficient.<sup>[15]</sup> Similar electrochemically reversible characteristics have been previously reported for **FDH**s from *Escherichia coli* and *Syntrophobacter fumaroxidans* on graphite electrodes,<sup>[14,16,17]</sup> but not for *Dv*H **FDH** or for any **FDH** on metal oxide electrodes.

When **FDH** was immobilized on a semiconducting *meso*TiO<sub>2</sub> electrode (*meso*TiO<sub>2</sub>|**FDH**), a similar onset potential for CO<sub>2</sub> reduction (-0.4 V vs. SHE) was observed and the current density reached  $-100 \ \mu\text{A} \text{ cm}^{-2}$  at  $-0.6 \ \text{V} \text{ vs. SHE}$  (Figure 2B). Formate oxidation cannot be observed for *meso*TiO<sub>2</sub>|**FDH** electrodes as TiO<sub>2</sub> behaves as an insulator at the required potentials. Controlled-potential electrolysis (CPE) at  $-0.6 \ \text{V} \text{ vs. SHE}$  for 2 h produced formate with a Faradaic efficiency of ( $92 \pm 5$ )% (Figure 2B, inset). Comparison of PFV scans before and after CPE showed that 92% of the initial **FDH** activity remains after 2 h, demonstrating the excellent stability of the immobilized enzyme.

The interaction of **FDH** and TiO<sub>2</sub> was quantitatively investigated with a previously described QCM cell.<sup>[18,19]</sup> Upon flowing an **FDH**-containing solution over a *planar*TiO<sub>2</sub>-covered

quartz chip (12 nM in 100 mM TEOA), the surface of TiO<sub>2</sub> reached saturation after 1 h, resulting in approximately 3.5 pmol cm<sup>-2</sup> of adsorbed **FDH** (*planar*TiO<sub>2</sub>|**FDH**; Figure 3A). The strength of the enzyme - TiO<sub>2</sub> interaction was probed by exposing the *planar*TiO<sub>2</sub>|**FDH** electrode to buffer solutions with different ionic strengths. Rinsing the QCM cell with an enzyme-free solution for 1 h desorbed only 6% of the preloaded **FDH**. Changing to higher KCl concentrations showed that 70 - 60% of **FDH** remained adsorbed on the TiO<sub>2</sub> after multiple rinsing steps with high KCl concentrations suggests a contribution from chemisorption for the attachment of the enzyme.<sup>[20,21]</sup> Amino acid residues exposed on the FDH surface are likely involved in binding. For example, aspartic and glutamic acid have previously been shown to form a strong interaction with TiO<sub>2</sub>.<sup>[22,23]</sup>



**Figure 3:** (A) QCM analysis of the adsorption process of **FDH** on a *planar*TiO<sub>2</sub>-coated quartz chip. Conditions: 12 nM **FDH**, 100 mM TEOA, open circuit potential of -0.1 to 0.0 V vs. SHE, pH 6.5, 25°C, N<sub>2</sub> atmosphere, circulation (0.141 mL min<sup>-1</sup>). Inset: Desorption of **FDH** by replacing the solution with fresh solution (100 mM TEOA) and subsequent increase of the ionic strength (each condition was held for 1 h). Error bars correspond to standard deviation (N = 3). (B) ATR-IR absorbance spectra of amide band region of **FDH** during the adsorption process over time onto *planar*TiO<sub>2</sub> coated Si prism (100 nm thickness). Arrows indicate successive spectra every 1.5 min up to 7.5 min and then every 30 min. Conditions: 1.0 µM **FDH**, 100 mM TEOA, total volume: 150 µl, open circuit potential, pH 6.5, 25°C.

Adsorption of **FDH** was also probed by surface-selective ATR-IR spectroscopy using a Si prism coated with a *planar* and a *meso*TiO<sub>2</sub> layer (100 and 400 nm thickness, respectively). After addition of **FDH** to the buffer solution covering the *planar*TiO<sub>2</sub> (Figure 3B) or *meso*TiO<sub>2</sub> (Figure S2) coated prism, the two

## COMMUNICATION

characteristic amide I and amide II bands of the protein backbone structure were detected at 1650 cm<sup>-1</sup> and 1545 cm<sup>-1</sup>.<sup>[24]</sup> The protein adsorption was monitored *in situ* over 2 h of incubation time and no (*planar*TiO<sub>2</sub>) or slight (*meso*TiO<sub>2</sub>) changes of the band features in the amide band region were observed, suggesting a mainly retained backbone structure of **FDH** on the surface of TiO<sub>2</sub>. During the adsorption process, amide I and amide II band intensities showed an increase over time (Figure S3). The majority of **FDH** remained adsorbed on the surface of *planar*TiO<sub>2</sub> (Figure S3) upon increasing the ionic strength of the buffer, which agrees with the QCM experiments (Figure 3A, inset) and supports a stronger than purely electrostatic interaction between **FDH** and TiO<sub>2</sub>.

After establishing the strong interface between **FDH** and TiO<sub>2</sub>, visible-light-driven CO2 reduction to formate was investigated with FDH immobilized on dye-sensitized TiO<sub>2</sub> nanoparticles (dve|TiO<sub>2</sub>|FDH, Figures 1 and 4). The colloidal system was selfassembled by adding FDH pre-activated with DTT to a suspension of TiO<sub>2</sub> nanoparticles containing TEOA and a phosphonate group-bearing dve. either a ruthenium tris-2.2'bipyridine complex (RuP) or a diketopyrrolopyrrole (DPP) at pH 6.5 and 25°C under N<sub>2</sub> atmosphere to protect the enzyme from aerobic damage. Both dves are known to adsorb on TiO<sub>2</sub> via their phosphonate anchoring groups and **DPP** provides a preciousmetal free alternative to RuP.<sup>[25]</sup> CO<sub>2</sub> was introduced to the solution via the addition of NaHCO<sub>3</sub>. Upon UV-filtered irradiation, the photoexcited dye injects electrons into the CB of TiO2  $(E_{CB}(TiO_2) = -0.67 V \text{ vs. SHE} \text{ at } pH 6.5)$ ,<sup>[25]</sup> whereupon the electrons are conveyed to the catalytic W-center of FDH to drive CO<sub>2</sub> reduction. The oxidized dye is regenerated by the sacrificial electron donor (Figure 1).[26]



**Figure 4.** Photocatalytic CO<sub>2</sub> reduction to formate with **FDH** in a colloidal dyesensitized TiO<sub>2</sub> system. Conditions: 12 nM **FDH**, 10 mM DTT, 0.83 mg mL<sup>-1</sup> TiO<sub>2</sub>, 16.7  $\mu$ M dye (**RuP** or **DPP**), 100 mM TEOA, 100 mM NaHCO<sub>3</sub>, pH 6.5, 25°C, total volume: 1.0 mL, assembled in an anaerobic glove box, UV-filtered simulated solar light irradiation: 100 mW cm<sup>-2</sup>, AM 1.5G,  $\lambda$  > 420 nm. Error bars correspond to standard deviation (*N* = 3). Dashed traces show control experiments in the absence of **FDH**.

The dye|TiO<sub>2</sub>|**FDH** systems show stable formate production for approximately 6 h (Figure 4). The formation of gaseous or dissolved side-products was not detected by ion chromatography, gas chromatography and <sup>1</sup>H NMR spectroscopy. The activity of **RuP**|TiO<sub>2</sub>|**FDH** was not limited by the amount of dye or light intensity (Figures S4 and S5). A solution assay monitoring the activity of **FDH** by UV-vis spectroscopy (via formate oxidation in presence of 2 mM MV<sup>2+</sup>) showed that approximately  $36 \pm 7\%$ **FDH** remained active after 24 h photocatalysis (Figure S6), suggesting that denaturation of **FDH** is the main reason for activity loss. The addition of MV<sup>2+</sup> as a soluble redox mediator to **RuP**|TiO<sub>2</sub>|**FDH** showed that not all **FDH** present in the system is accessible by direct electron transfer across the enzyme-material interface (Figure S7). Control experiments demonstrated that all components are essential for formate production (Figures S8 and S9) and support oxidative quenching and 'through-particle' electron transfer as depicted in Figure 1 (Figure S10 and S11).<sup>[26]</sup> Isotopic labelling studies confirmed that formate was produced from CO<sub>2</sub> (Figure S12).

| reaction                   | dye                            | catalyst                                                 | TOF / h⁻¹           | ref.      |
|----------------------------|--------------------------------|----------------------------------------------------------|---------------------|-----------|
| $CO_2 \rightarrow HCO_2^-$ | RuP                            | DvH <b>FDH</b> <sup>[a]</sup>                            | 4.0×10 <sup>4</sup> | this work |
|                            | DPP                            | DvH <b>FDH</b> <sup>[a]</sup>                            | 1.8×10 <sup>4</sup> | this work |
| <b>60 60</b>               | RuP                            | Ch CODH I <sup>[b]</sup>                                 | 5.4×10 <sup>2</sup> | [27]      |
| $CO_2 \rightarrow CO$      | dye <sup>[c]</sup>             | <b>Re</b> <sup>[d]</sup>                                 | 8.6                 | [28]      |
|                            | RuP                            | Db [NiFeSe]-<br>H <sub>2</sub> ase <sup>[e]</sup>        | 1.8×10⁵             | [22]      |
| $H^{+} \rightarrow H_{2}$  | DPP                            | Db [NiFeSe]-<br>H <sub>2</sub> ase <sup>[e]</sup>        | 8.7×10 <sup>3</sup> | [25]      |
|                            | CN <sub>x</sub> <sup>[f]</sup> | <i>Db</i> [NiFeSe]-<br>H <sub>2</sub> ase <sup>[e]</sup> | 2.8×10 <sup>4</sup> | [23]      |
|                            | RuP                            | NiP <sup>[g]</sup>                                       | 3.2×10 <sup>2</sup> | [29]      |

[a] W-**FDH** from *Dv*H, [b] Carbon monoxide dehydrogenase (CODH) I from *Carboxydothermus hydrogenoformans* (*Ch*), [c] (E)-2-cyano-3-(5'-(5''-(p-(diphenylamino)phenyl)thiophen-2''-yl)thiophen-2''-yl)-acrylic acid, [d] synthetic rhenium catalyst in *N*,*N*-dimethyl formamide (DMF) and water, [e] [NiFeSe]-hydrogenase from *Desulfomicrobium baculatum* (*Db*), [f] polyheptazine carbon nitride polymer melon (CN<sub>x</sub>), [g] nickel(II) bis(diphosphine) catalyst (**NiP**).

For photocatalytic experiments, an enzyme loading of approximately 0.03 pmol cm<sup>-2</sup> was calculated assuming that all **FDH** is adsorbed on TiO<sub>2</sub> with a surface area of 50 m<sup>2</sup> g<sup>-1</sup>. Saturation of the TiO<sub>2</sub> surface with **FDH** in the QCM experiment was only observed when two orders of magnitude higher amounts of **FDH** were adsorbed (Figure 3A). As QCM and ATR-IR spectroscopy indicate stronger than purely electrostatic interactions, close-to-quantitative adsorption of **FDH** on the TiO<sub>2</sub> nanoparticle in the colloidal system is likely. A TOF of 11 ± 1.0 and 5 ± 0.6 s<sup>-1</sup> (based on CO<sub>2</sub> conversion after 6 h) and approximately 4.9 ± 0.2 and 2.0 ± 0.2 µmol formate (after 24 h)

### COMMUNICATION

were observed from CO<sub>2</sub> using RuP and DPP-sensitized TiO<sub>2</sub>, respectively (Figure 4). The results of all photocatalysis experiments are presented in Tables S1 and S2.

Table 1 shows a comparison of state-of-the-art catalysts (enzymatic and synthetic) in combination with dye-sensitized TiO<sub>2</sub> nanoparticles without diffusional mediators for CO2 reduction and H<sub>2</sub> evolution. Previous studies showed that enzymes clearly outperform the synthetic systems in terms of TOF.<sup>[30]</sup> Among the compared systems, the presented RuP|TiO2|FDH system exhibits the highest TOF for CO<sub>2</sub> reduction. DPP|TiO<sub>2</sub>|FDH shows that comparable activities can also be achieved in an entirely precious metal-free system. In semi-artificial systems, rapid electron transfer from TiO<sub>2</sub> to the enzyme was previously found to be essential for efficient catalysis,<sup>[22,31]</sup> suggesting that the strong interfacial interaction plays an important role for the high activity and stability of dye|TiO2|FDH. Previously reported photocatalyst systems employing NAD<sup>+</sup> dependent FDHs for CO<sub>2</sub> reduction to formate rely on soluble redox mediators and only produced TOFs in the range of 10-20 h<sup>-1</sup>.[32]

In summary, FDH immobilized on metal oxide electrodes is established as a reversible electrocatalyst for the selective conversion of CO<sub>2</sub> to formate. The porous metal oxide scaffolds allow for high FDH loading and consequently high current densities, which makes the protein-modified electrodes not only a relevant model system for CO<sub>2</sub> utilization, but also for formate oxidation in formate fuel cells. An excellent interface between TiO<sub>2</sub> and **FDH** is confirmed by QCM and ATR-IR spectroscopy. The direct (diffusional mediator-free) electron transfer across the enzyme-metal oxide interface is exploited for visible-light-driven CO2 reduction to formate. Our results underline the importance of characterizing the interactions at the enzyme-material interface and future improvements in performance may arise from more controlled immobilization and more efficient electron transfer with the directly wired FDH.

#### Acknowledgements

This work was supported by an ERC Consolidator Grant "MatEnSAP" (682833), the Royal Society (NF160054, Newton fellowship), the Christian Doppler Research Association and OMV Group, SFRH/BD/116515/2016, grant PTDC/BIA-MIC/2723/2014 and R&D units UID/Multi/04551/2013 (Green-IT) and LISBOA-01-0145-FEDER-007660 (Most-Micro) cofunded by FCT/MCTES and FEDER funds through COMPETE2020/POCI and European Union's Horizon 2020 research and innovation programme (GA 810856). We thank Prof. J. Hirst, Dr. A. Eisenschmidt, Dr. S. Roy, A. Wagner and D. Antón García for fruitful discussions.

Keywords: artificial photosynthesis • carbon dioxide fixation • formate dehydrogenase • interfaces • photocatalysis



- D. G. Nocera, Acc. Chem. Res. 2017, 50, 616-619.
- [1] [2] A. Boddien, D. Mellmann, F. Gartner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R. Ludwig, M. Beller, Science 2011, 333, 1733-1736.
- S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. [3] Xie, Nature 2016, 529, 68-71.
- K. E. Dalle, J. Warnan, J. J. Leung, B. Reuillard, I. S. Karmel, E. [4] Reisner. Chem. Rev. 2019, in press, DOI
- 10.1021/acs.chemrev.8b00392. [5] N. Kornienko, J. Z. Zhang, K. K. Sakimoto, P. Yang, E. Reisner, Nat. Nanotechnol. 2018, 13, 890-899.
- J. Kim, S. H. Lee, F. Tieves, D. S. Choi, F. Hollmann, C. E. Paul, C. [6]
- B. Park, Angew. Chemie Int. Ed. 2018, 57, 13825–13828.
  B. A. Parkinson, P. F. Weaver, Nature 1984, 309, 148–149. [7]
- [8] S. F. Rowe, G. Le Gall, E. V. Ainsworth, J. A. Davies, C. W. J. Lockwood, L. Shi, A. Elliston, I. N. Roberts, K. W. Waldron, D. J. Richardson, et al., ACS Catal. 2017, 7, 7558–7566.
- [9] H. Raaijmakers, S. Macieira, J. M. Dias, S. Teixeira, S. Bursakov, R. Huber, J. J. G. Moura, I. Moura, M. J. Romão, Structure 2002, 10, 1261-1272
- S. M. da Silva, C. Pimentel, F. M. A. Valente, C. Rodrigues-Pousada, I. A. C. Pereira, *J. Bacteriol.* **2011**, *193*, 2909–2916. [10]
- S. M. da Silva, J. Voordouw, C. Leitao, M. Martins, G. Voordouw, I. A. C. Pereira, *Microbiology* **2013**, *159*, 1760–1769. [11]
- [12] T. E. Rosser, M. A. Gross, Y.-H. Lai, E. Reisner, Chem. Sci. 2016, 7, 4024-4035.
- M. Kato, T. Cardona, A. W. Rutherford, E. Reisner, J. Am. Chem. [13] Soc. 2012, 134, 8332-8335
- T. Reda, C. M. Plugge, N. J. Abram, J. Hirst, Proc. Natl. Acad. Sci. [14] U. S. A. 2008, 105, 10654–10658.
- F. A. Armstrong, J. Hirst, Proc. Natl. Acad. Sci. U. S. A. 2011, 108, [15] 14049-14054.
- A. Bassegoda, C. Madden, D. W. Wakerley, E. Reisner, J. Hirst, J. [16] Am. Chem. Soc. 2014, 136, 15473-15476.
- W. E. Robinson, A. Bassegoda, E. Reisner, J. Hirst, J. Am. Chem. [17] Soc 2017 139 9927-9936
- [18] N. Kornienko, N. Heidary, G. Cibin, E. Reisner, Chem. Sci. 2018, 9, 5322-5333.
- D. H. Nam, J. Z. Zhang, V. Andrei, N. Kornienko, N. Heidary, A. Wagner, K. Nakanishi, K. P. Sokol, B. Slater, I. Zebger, et al., [19] Angew. Chemie Int. Ed. 2018, 57, 10595-10599.
- S. Frasca, T. von Graberg, J. J. Feng, A. Thomas, B. M. Smarsly, I. [20] M. Weidinger, F. W. Scheller, P. Hildebrandt, U. Wollenberger, ChemCatChem 2010, 2, 839-845.
- H. K. Ly, M. A. Marti, D. F. Martin, D. Alvarez-Paggi, W. Meister, A. [21] Kranich, I. M. Weidinger, P. Hildebrandt, D. H. Murgida, ChemPhysChem 2010, 11, 1225-1235.
- E. Reisner, D. J. Powell, C. Cavazza, J. C. Fontecilla-Camps, F. A. [22]
- Armstrong, J. Am. Chem. Soc. 2009, 131, 18457-18466.
- C. A. Caputo, L. Wang, R. Beranek, E. Reisner, Chem. Sci. 2015, 6, [23] 5690-5694
- [24] A. Barth, Biochim. Biophys. Acta - Bioenerg. 2007, 1767, 1073-1101.
- J. Warnan, J. Willkomm, J. N. Ng, R. Godin, S. Prantl, J. R. Durrant, E. Reisner, *Chem. Sci.* **2017**, *8*, 3070–3079. [25]
- J. Willkomm, K. L. Orchard, A. Reynal, E. Pastor, J. R. Durrant, E. [26] Reisner, Chem. Soc. Rev. 2016, 45, 9-23.
- T. W. Woolerton, S. Sheard, E. Pierce, S. W. Ragsdale, F. A. [27] Armstrong, Energy Environ. Sci. 2011, 4, 2393
- [28] J.-S. Lee, D.-I. Won, W.-J. Jung, H.-J. Son, C. Pac, S. O. Kang, Angew. Chemie Int. Ed. 2017, 56. 976-980
- [29] M. A. Gross, A. Reynal, J. R. Durrant, E. Reisner, J. Am. Chem. Soc. 2014, 136, 356-366.
- [30] C. Wombwell, C. A. Caputo, E. Reisner, Acc. Chem. Res. 2015, 48,
- 2858-2865. [31] T. W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. W. Ragsdale,
  - F. A. Armstrong, J. Am. Chem. Soc. 2010, 132, 2132-2133.
- [32] S. H. Lee, D. S. Choi, S. K. Kuk, C. B. Park, Angew. Chemie Int. Ed. 2018, 57, 7958-7985.

#### WILEY-VCH

## COMMUNICATION

#### Table of Contents



**Electro- and solar-driven CO**<sub>2</sub> **utilization:** Reversible electrocatalysis with formate dehydrogenase on porous metal oxides is established. A self-assembled colloidal system containing formate dehydrogenase immobilized on dye-sensitized TiO<sub>2</sub> provides a benchmark for selective reduction of CO<sub>2</sub> to formate in aqueous solution.