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Abstract. Holographic search algorithms such as direct search (DS) and simulated annealing
allow high-quality holograms to be generated at the expense of long execution times. This is due
to single iteration computational costs of OðNxNyÞ and number of required iterations of order
OðNxNyÞ, where Nx and Ny are the image dimensions. This gives a combined performance of
orderOðN2

xN2
yÞ. We use a technique to reduce the iteration cost down toOð1Þ for phase-sensitive

computer-generated holograms, giving a final algorithmic performance of OðNxNyÞ. We do this
by reformulating the mean-squared error (MSE) metric to allow it to be calculated from the
diffraction field rather than requiring a forward transform step. For a 1024 × 1024-pixel test
images, this gave us a ≈50;000× speed-up when compared with traditional DS with little
additional complexity. When applied to phase-modulating or amplitude-modulating devices, the
proposed algorithm converges on a global minimum MSE in OðNxNyÞ time. By comparison,
most extant algorithms do not guarantee that a global minimum is obtained. Those that do, have
a computational complexity of at least OðN2

xN2
yÞ with the naive algorithm being O½ðNxNyÞ!�.
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1 Introduction

Holographic technology has developed significantly since its invention in 1948 by Dennis
Gabor.1 Conventional holography, developed since then, captures the interference pattern be-
tween a coherent light source and the light scattered off an object onto a photographic plate.2

A three-dimensional (3-D) image of the object is then reconstructed when the photographic plate
is exposed to a coherent light source.

The 1980s saw a breakthrough in holographic technology with the introduction of computer-
generated holography. Improvements in computer processing power and the availability of
computer-controlled spatial light modulators (SLMs) gave users more flexible approaches to
modulate the spatial profile of an incident beam. In other words, the SLM enabled the flexible
configuration of a hologram, something not possible using photographic plates. Advancements
in this technology has revolutionized the display industry with it being applied in virtual reality
and augmented reality systems.3–5 In turn, positively influencing the wider information and edu-
cation industries6,7 as well as healthcare8 and manufacturing,9 holographic technology has also
been used in lithography10 and optical tweezing.11

In modern two-dimensional (2-D) holography systems, an SLM is used to modulate the pro-
file of a coherent light beam. In the simplest configuration, an SLM is placed at the back focal
plane of a lens with the aim of creating a desired light field at the front focal plane of the lens,
as shown in Fig. 1. The back focal plane is termed the “diffraction field” H and the front focal
plane is known as the “replay field” R, with the light fields in the two planes related by a Fourier
transform F such that R ¼ FfHg. The aforementioned holograms are known as “Fraunhofer
holograms,” and it is possible to project light fields onto planes offset from the front focal planes,
which are then known as “Fresnel holograms.”
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An SLM is a pixelated device, and as such it is intuitive to represent the diffraction field
as discrete pixels. Similarly, the replay field can be represented by discrete pixels and the
Fraunhofer transform relationship between the two planes can then be represented by two dis-
crete Fourier transform relationships where the diffraction field coordinates are represented
by x and y, and the replay field coordinates are represented by u and v. The Nx and Ny denote
the size of the diffraction and replay fields along the horizontal and vertical axes, respectively.
This expression assumes that the SLM is illuminated with a plane wave of uniform intensity and
that the pixels have a fill factor of 100%.

EQ-TARGET;temp:intralink-;e001;116;437Ru;v ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
NxNy

p
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SLMs allow either the phase or amplitude of the incident light to be modulated but not both.12

In addition, it is often the case that SLMs are digital devices and that only discrete modulation
levels can be used. Projecting the desired replay field, known as the “target field” T, then cor-
responds to finding a diffraction field subject to these constraints that minimizes some error
metric.13 In this case, the phase-sensitive mean-squared error (MSE) shall be used.

EQ-TARGET;temp:intralink-;e003;116;280ErrorðT; RÞ ¼ 1

NxNy

XNx−1

u¼0

XNy−1

v¼0

jTu;v − Ru;vj2: (3)

The task of finding a computer-generated hologram becomes equivalent to minimizing this
error metric. A variety of techniques has been developed to address this and one family of algo-
rithms is briefly described in Sec. 2. These algorithms require repeated Fourier transforms, the
evaluation of which is computationally expensive. This paper lays out an alternative approach to
generating complex-valued (i.e., phase-sensitive) light fields that only requires a single transform
to be used, after which the hologram can be determined using computationally inexpensive
update steps. The fundamentals of this approach are laid out in Sec. 3.1 and are incorporated
into a search algorithm in Sec. 3.2. Section 3.3 discusses how this approach lends itself to
massive parallelization. Next, more realistic scenarios are considered, with conclusions being
drawn for commercially available SLMs in Sec. 3.4 and Fresnel holograms being considered
in Sec. 3.5. The algorithm is modified to account for a region of interest (RoI) in Sec. 4, which
allows a much higher fidelity replay field to be projected. The approach described requires
several orders of magnitude less computing power, but still yields replay fields of the highest
quality.

Fig. 1 Coordinate systems used in this work.
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2 Established Holographic Search Algorithms

Awidely used family of algorithms for phase-sensitive replay fields are the holographic search
algorithms (HSAs), of which the most famous is perhaps direct search (DS).14–19 Broadly speak-
ing, these algorithms proceed by changing a pixel value and evaluating whether the error metric
has improved. If the error metric has improved, the pixel change is adopted, else the pixel change
is rejected. This process is illustrated in Fig. 2.

A second algorithm in this family is simulated annealing (SA),20–24 which sometimes adopts
pixel changes that do not improve the error metric in an effort to avoid local minima. HSAs
are guaranteed to converge, but can converge extremely slowly and often to local rather than
global minimum. Millions of iterations can be required before these algorithms have fully
converged. This can be prohibitive if a full FFT is required at each iteration {complexity
O½NxNy logðNxNyÞ�}. Alternatively, evaluation of the full FFT can be avoided by using an
update step that exploits the fact that only a single pixel is updated at a time. This gives an
update step with complexity proportional to OðNxNyÞ, which is a marked improvement but can
still give long run times for even medium-sized images as the complete algorithm will still run in
OðN2

xN2
yÞ. The authors have recently introduced several new HSAs that exploit geometric argu-

ments to obtain significantly faster convergence,25–28 but these, too, can still be computationally
expensive to run.

3 Search in Linear Time

3.1 Basic Premise

For our initial investigation, we shall show that using known properties of the Fourier transform
we can significantly reduce the computation required for generating phase-sensitive holograms.
Note that we are only considering Fraunhofer holograms without a RoI, that is, the entire replay
field is to be optimized. We shall extend our analysis to Fresnel holograms and refine our analy-
sis to include an RoI later in this paper.

The Fourier transform operation obeys Parseval’s theorem, reproduced in Eq. (4), where
A ¼ F ðaÞ, B ¼ FðbÞ, and an overline represents the complex conjugate. Parseval’s theorem
corresponds to energy conservation between the diffraction and replay field planes, which is
the reason behind the 1∕

ffiffiffiffiffiffiffiffiffiffiffiffi
NxNy

p
term in Eqs. (1) and (2).

EQ-TARGET;temp:intralink-;e004;116;177

XNx−1

x¼0
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y¼0

ax;ybx;y ¼
XNx−1

u¼0

XNy−1

v¼0

Au;vBu;v: (4)

The relationship between Hx;y and Ru;v has previously been defined as a Fourier transform.
Similarly, a new field Gx;y is defined, which corresponds to the inverse Fourier transform added
to the “inverse” of the Tu;v. In effect, Gx;y represents the diffraction field counterpart of the target
replay field.

Fig. 2 The DS algorithm.
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EQ-TARGET;temp:intralink-;e005;116;543G ⇄
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F−1
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F

F−1
R: (5)

These definitions can be used with Parseval’s theorem to obtain a new expression for the
MSE metric.
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The key innovation of this paper is to observe that this allows us to determine the value of
EMSE on the diffraction field side of the transform from Gx;y and Hx;y, and that this avoids the
need for repeatedly projecting changes to the replay fields side to calculate the MSE. If we know
the original MSE, then the effect of any change can be determined in Oð1Þ rather than the
OðNxNyÞ time required for a calculation on the replay field side.

Result 1. MSE calculation for any phase-sensitive Fraunhofer hologram can be done in the
diffraction plane.

3.2 Linear-Time Holographic Search Algorithm

Crucially, the calculation of Gx;y needs to be done only once—before the hologram calculation
commences—in other words, there is no longer a need for repeated Fourier transform evaluations
at each iteration. While it may appear obvious that Eq. (4) necessitates that Eqs. (3) and (6) are
equivalent, we are unaware of this result having been used previously for hologram generation.
Importantly, if we know EMSEðG;HÞ, changing a single pixel in H at coordinates x, y allows us
to write an expression for the new error:

EQ-TARGET;temp:intralink-;e007;116;124ΔEMSEðG;HÞ ¼ jGx;y −Hx;y − ΔHx;yj2 − jGx;y −Hx;yj2; (7)

which runs in constant Oð1Þ time, whereas on the replay side, the update runs in OðNxNyÞ time.
This error calculation can be incorporated into the DS algorithm (Fig. 2) to give linear time direct
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Fig. 3 Performance of DS and linear-time DS for a simulated 1024 × 1024 pixel 28 phase-level
SLM. Target amplitudes are given by the Mandrill test image and target phases are given by the
Peppers test image as shown in Fig. 4.
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search (LT-DS). Running the LT-DS algorithm gives the performance graph shown in Fig. 3.
Target amplitudes are given by the “Mandrill” test image, and target phases are given by the
“Peppers” test image as shown in Fig. 4. With 1024 × 1024 pixel test images, this gave a
≈50;000× speed up for the DS algorithm. Similar results are seen for SA. Owing to the ampli-
tude and phase constraint on the target, however, convergent reconstruction quality is extremely
poor. This is traditionally solved by using an RoI, a topic we return to in Sec. 4.

It is important to note that, provided the random number generators have the same seed, the
hologram given by LT-DS is identical in every way to the hologram provided by DS. The only
difference is the Fourier plane on which calculation occurs and the resulting orders of magnitude
of speed up. Also worth noting is that we have normalized the values of the hologram here to give
a mean of unit energy per pixel on SLM and replay field sides, with a resulting normalization
effect on the MSE.

Result 2. The change in MSE of a phase-sensitive hologram due to a single pixel change can
be found in constant Oð1Þ time.

3.3 Effect of Independence

Section 3.2 used Eq. (7) to reduce the computation required for DS, but maintained the use of the
search approach. There are cases, such as when an RoI is taken into account (Sec. 4), where a
search approach is necessary, but for the RoI-free case discussed here, we do not actually need to
use search syntax at all. Instead, we notice that the effect on the MSE of changing a single pixel is
independent of the other pixels. This means that we can actually remove the search element
altogether, instead independently assigning values to each individual pixel. This is important
as it allows us to parallelize the algorithm for multicore devices. The performance improvement
obtained in this way over the sequential version is also shown in Fig. 3 and we have termed it
concurrent LT-DS or CLT-DS. The workstation used had an Intel i7-9900K CPU, overclocked to
5.0 GHz with 64 GB of 4000 MHz DDR4 RAM and an RTX 2080TI graphics processing
unit (GPU).

Result 3. The change in MSE of a far-field phase-sensitive hologram due to a single pixel
change is independent of the effect of other pixels.

3.4 Realistic Spatial Light Modulator Constraints

The form of Eq. (6) is a linear minimization problem and is solvable analytically for a range of
modulation regimes. This dependency on the properties of the modulator requires us to inves-
tigate the case of phase and amplitude modulating devices separately.

3.4.1 Phase modulating

If we assume a phase-modulating device where Hx;y is confined to the complex circle with
magnitude given by the incident illumination Ix;y, then we can reformat Eq. (7) as

Mandrill Peppers

Fig. 4 The two test images used.
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EQ-TARGET;temp:intralink-;e008;116;735minimise
XNx−1

x¼0

XNy−1

y¼0

jGx;y −Hx;yj2 → ΦH ¼ ΦG; (8)

where ΦG and ΦH correspond to the phase vectors of G and H.
Result 4. When aberration and replay field RoIs are neglected, the lowest possible mean

square error is achieved for a far-field phase hologram when the phase is equal to the inverse
transform of the target replay.

3.4.2 Amplitude modulating

If we assume an amplitude modulating device whereHx;y is assumed to be confined to jHx;yj ≥ 0

and ΦH ¼ 0, then we can reformat Eq. (7) as

EQ-TARGET;temp:intralink-;e009;116;582minimise
XNx−1

x¼0

XNy−1

y¼0

jGx;y −Hx;yj2 → H ¼ RðGÞ: (9)

Result 5. When aberration and replay field RoIs are neglected, the lowest possible mean
square error is achieved for a far-field amplitude hologram when the SLM amplitude is equal
to the real part of the inverse transform of the target replay.

3.5 Fresnel Holograms, Aberration Correction, and Three Dimensions

The Fresnel transform used for generating Fresnel holograms is equivalent to the Fourier trans-
form with the addition of a “quadratic phase factor” as in

EQ-TARGET;temp:intralink-;e010;116;431Ru;v ¼ F
Fresnel

fHx;yg ¼ F
Fourier

fHx;yΦFresnelg; (10)

where ΦFresnel ¼ exp iπ∕λzðx2 þ y2Þ. It can be seen that the Parseval’s theorem remains appli-
cable here. Equations (3) and (6) remain equivalent and the results of Secs. 3.4.1 and 3.4.2
remain valid with the addition of an additional phase term.

In fact, for any input phase term dependent only on x and y, we can assert the equivalence of
Eqs. (3) and (6). This includes the family of Seidel aberrations.

While we discuss the linear-time algorithm here in the context of 2-D holograms, it is equally
applicable to three-dimensional (3-D) holograms generated by means of “Fresnel slices” or the
layer-based technique.

4 Incorporating a Region of Interest

The reconstruction quality obtained for complex-valued target fields using the techniques above
is often extremely poor, but this is not due to the choice of algorithm. Instead, this is because the
problem is overconstrained. One solution that is widely used is to only require a portion of the
replay field to match the target image, with the remainder of the replay field being free to take on
any value. Mathematically, we can define an RoI mask Mu;v, where Mu;v ¼ 1 in the RoI and
Mu;v ¼ 0 otherwise. We then can write MSE as changed errorðT; RÞ to EMSEðT; RÞ

EQ-TARGET;temp:intralink-;e011;116;182EMSEðT; RÞ ¼
1

NxNy

XNx−1

u¼0

XNy−1

v¼0

Mu;vjTu;v − Ru;vj2: (11)

Unfortunately, we can no longer use Eq. (4) in order to move this to the SLM side, as
Parseval’s theorem only holds true if all of space is considered instead of only a subregion
of space.

We present here an alternative technique for incorporating an RoI into a linear-time algo-
rithm. We can rewrite Eq. (11) to give the following:
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EQ-TARGET;temp:intralink-;e012;116;465

EMSE ¼ 1

NxNy

XNx−1

u¼0

XNy−1

v¼0

jMu;vTu;v −Mu;vRu;vj2

¼ 1

NxNy

XNx−1

u¼0

XNy−1

v¼0

Mu;vTu;vMu;vTu;v −Mu;vTu;vMu;vRu;v

−Mu;vTu;vMu;vRu;v þMu;vRu;vMu;vRu;v

¼ 1

NxNy

XNx−1

x¼0

XNy−1

y¼0

Fx;yFx;y − Fx;yðL �HÞx;y

− Fx;yðL �HÞx;y þ ðL �HÞx;yðL �HÞx;y

¼ 1

NxNy

XNx−1

x¼0

XNy−1

y¼0

Fx;yFx;y − Fx;yKx;y − Fx;yKx;y þ Kx;yKx;y; (12)

where “*” denotes convolution, “·” denotes the Hadamard or “dot” product and changed
“where * denotes convolution and” to “‘*’ denotes convolution, ‘·’ denotes the Hadamard or
‘dot’ product and”

EQ-TARGET;temp:intralink-;sec4;116;241L ⇄
F

F−1
M; F ⇄

F

F−1
M · T; K ⇄

F

F−1
M · R:

Here, Fx;y behaves similarly to our previous study and single pixel updates can be determined
in Oð1Þ. The Kx;y corresponds to a convolution though and cannot be evaluated as easily.
Fortunately, while convolution is anOðN2

xN2
yÞ problem, changing a single pixel of a convolution

can be somewhat optimized. The convolution term of Eq. (6) is given for any pixel x 0, y 0 as

EQ-TARGET;temp:intralink-;e013;116;145Kx 0;y 0 ¼
XNx−1

a¼0

XNy−1

b¼0

La;bHx 0−a;y 0−b: (13)

Recognizing that L is only nonzero for a handful of pixels, this can be calculated in OðnÞ,
where n is the number of pixels where L ≠ 0. The updated equation is given as

L - no threshold

M - no threshold

L - threshold

M - threshold

L-DS real part

L-DS imaginary part

Fig. 5 Mask and inverse transform of mask (left) without thresholding and (center) with thresh-
olding. (Right) Reconstruction of real and imaginary parts for LT-DS. Target amplitudes are given
by the Mandrill test image and target phases are given by the Peppers test image as shown in
Fig. 4.
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EQ-TARGET;temp:intralink-;e014;116;542Kx 0;y 0 ¼
X

L≠0
La;bHx 0−a;y 0−b: (14)

A change in a single pixel x, y of value ΔHx;y then causes a difference to the convolution at
pixel x 0, y 0 as

EQ-TARGET;temp:intralink-;e015;116;483ΔKx 0;y 0 ¼ Lx 0−x;y 0−yΔHx;y: (15)

Incorporating this back into the MSE equation, the following update step can then be defined.

EQ-TARGET;temp:intralink-;e016;116;438ΔEMSE ¼ 1

NxNy

XNx−1

x 0¼0

Fx;yΔKx;y − Fx;yΔKx;y þ ΔKx;yKx;y þ Kx;yΔKx;y þ ΔKx;yΔKx;y: (16)

This can be incorporated into the DS algorithm shown in Fig. 2. Any given mask,Mu;v can be
given to an arbitrary degree of accuracy by FfLg, though, in practice, if L is nonzero for more
than a few points, we recommend a change of mask or an alternative approach.

To demonstrate this in action we take the case of L being nonzero only at a selected 45 points
out of a 512 × 512 image. This leads to a mask function similar to Fig. 5 with associated figures.
We updated Fig. 5 to include spy glasses

The quality of the mask in Fig. 5 depends on the thresholding value chosen. For many simple
masks, over 90% of the power in the mask can be captured by only a few points in L. This
corresponds to a slight reweighting of MSE priorities due to differences in value of M.

The performance scales linearly with the number of points in L. For the images in Fig. 5 with
L thresholded to 45 points, we see the performance shown in Fig. 6 with identical normalization
to that in Fig. 3. The speed improvement when compared to Fig. 3 is lower, however, due to
higher number of calculations per iteration, but is still 10;000× faster than the traditional DS
approach.

As in Sec. 3.2, the hologram generated using this approach is identical to generating a holo-
gram using DS with mask function M, provided the same random number generator seeds are
used in both cases.

5 Further Work

The work described so far is applicable in the case where both the phase and the amplitude of the
replay field are to be controlled. The progress made prompts the obvious question of whether this
linear-time technique can be applied to phase-insensitive holograms where the error is given as

EQ-TARGET;temp:intralink-;e017;116;105EMSE;pi ¼
1

NxNy

XNx−1

u¼0

XNy−1

v¼0

½jTu;vj − jRu;vj�2: (17)
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Fig. 6 Performance of DS and linear time DS for a simulated 1024 × 1024 pixel 28 phase-level
SLM with mask region thresholded at 45 points. Target amplitudes are given by the Mandrill test
image and target phases are given by the Peppers test image as shown in Fig. 4.
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Clearly this problem is nonlinear so a best possible solution is improbable. The authors
believe, however, that the techniques of this paper should allow a similar movement of an error
metric to the SLM side, but have so far been unable to implement this.

6 Conclusions

This paper has presented a new approach to generating holograms for 2-D phase-sensitive replay
fields. The discussed algorithm relies on a judicious use of the Parseval’s theorem, allowing the
phase-sensitive MSE error metric to be calculated from the field in the SLM plane. This allows
search algorithms such as SA and DS to run without the need for repeated Fourier transforms,
providing a significant acceleration in execution time. Whereas one iteration of a more tradi-
tional DS algorithm has a computational cost ofOðNxNyÞ, iterations of the new proposed imple-
mentation have a computation cost as low as Oð1Þ. This performance boost is particularly
marked for high-definition holograms. For example, with the Tokyo 2020 Olympics being
shown in 8k (7680 × 4320) resolution, the expected performance improvement is over 1 million
times faster. The algorithm has been presented for Fraunhofer holograms but has been shown to
be equally valid for Fresnel holograms. Conclusions have been drawn for common modulation
schemes. An equivalent approach for a phase-insensitive MSE error metric has not been found,
but it is felt that further work can address this.
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