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CAPACITY OF THE RANGE OF RANDOM WALK ON Z4

By Amine Asselah, Bruno Schapira and Perla Sousi

Universities of Paris-Est, Aix-Marseille and Cambridge

We study the scaling limit of the capacity of the range of a ran-
dom walk on the integer lattice in dimension four. We establish a
strong law of large numbers and a central limit theorem with a non-
gaussian limit. The asymptotic behaviour is analogous to that found
by Le Gall in ’86 [28] for the volume of the range in dimension two.

1. Introduction. This paper is devoted to the study of the capacity
of the range of a simple random walk in dimension four. The point of view
we adopt is that the capacity is a hitting probability. More precisely, the
capacity of a set is proportional to the probability a random walk sent from
infinity hits the set. Then, the capacity of the range of a random walk is
cast into a problem of intersection of paths, and dimension four is critical in
view of classical results of Dvoretsky, Erdös and Kakutani [14] establishing
that the paths of two independent Brownian motions do not intersect if, and
only if, dimension is four or larger.

The capacity of a set A ∈ Z4 can also be viewed as an escape probability.
Indeed, let Px be the law of a simple random walk starting at x, let Gd be
the discrete Green’s function, and let HA and H+

A stand respectively for the
hitting time of a finite set A and the return time in A. Then

(1.1) Cap (A) =
∑
x∈A

Px(H+
A =∞) = lim

‖y‖→∞

Py(HA <∞)

Gd(0, y)
.

One easily passes from one representation in (1.1) to the other using the last
passage decomposition formula, see (2.8) below.

Denote by {S(n), n ∈ N} a simple random walk in Z4. For two integers
m,n, the range R[m,n] (or simply Rn when m = 0) in the time period
[m,n] is defined as

R[m,n] = {S(m), . . . , S(n)}.

Our first result is a strong law of large numbers for Cap (Rn).
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Theorem 1.1. Let S be a simple random walk in Z4. Almost surely,

lim
n→∞

log n

n
· Cap (Rn) =

π2

8
.

Our second result is a central limit theorem for Cap (Rn), and requires

more notation: G denotes the continuous Green’s function,
(d)

=⇒ convergence
in law, and (βs, s ≥ 0) a standard four-dimensional Brownian motion.

Theorem 1.2. Let S be a simple random walk in Z4. Then, as n goes
to infinity

(log n)2

n
· (Cap (Rn)− E[Cap (Rn)])

(d)
=⇒ −π

4

4
· γG

(
[0, 1]2

)
,

where γG
(
[0, 1]2

)
is formally defined as

(1.2) γG
(
[0, 1]2

)
=

∫ 1

0

∫ 1

0
G(βs, βt) ds dt− E

[∫ 1

0

∫ 1

0
G(βs, βt) ds dt

]
.

Moreover, γG
(
[0, 1]2

)
is non-degenerate, and non-gaussian, since for some

λ ∈ R,

(1.3) E
[
exp(λγG

(
[0, 1]2

)
)
]

=∞.

Remark 1.3. Although both terms appearing in the definition (1.2)
of γG([0, 1]2) have infinite expectation, we make sense, in Section 4, of
γG
(
[0, 1]2

)
as an L2-random variable following Le Gall’s approach used to

define the self-intersection local time, see [27, 28, 29]. We also prove there
that it has some infinite exponential moment.

Remark 1.4. Theorem 1.2 shows that the capacity of the range in di-
mension 4 behaves in the same way as the size of the range in dimension 2
as shown by Le Gall in ’86 [28]:

(log n)2

n
· (|Rn| − E[|Rn|])

(d)
=⇒ −π2 · γ([0, 1]2),

where γ([0, 1]2) is defined formally via

γ([0, 1]2) =

∫ 1

0

∫ 1

0
δ(0)(βs − βt) ds dt− E

[∫ 1

0

∫ 1

0
δ(0)(βs − βt) ds dt

]
,

where β is a standard two-dimensional Brownian motion.
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As a corollary of our result we obtain the asymptotic behaviour of the
variance of Cap(Rn).

Corollary 1.5. Let S be a simple random walk in Z4. Then

lim
n→∞

(log n)4

n2
Var (Cap (Rn)) =

π8

16
· E
[(
γG
(
[0, 1]2

))2]
.

We note that the limiting term in this corollary is nonzero.
Seen as a normalised hitting probability, the capacity of the range of a

walk is an object which appeared in disguised form in topics linked with
intersection of paths of random walks. This latter topic grew already large
in the nineties, as Lawler’s ’91 book [24] testifies. One reason for that is
the many diverse sources of motivation: (i) quantum field theories with a
seminal insight of Symanzik [35], and with contributions by Lawler [22, 23],
Aizenman [1], Felder and Frölich [16], to name a few (see the book [17] for
a historical account and references therein), (ii) probability and the non-
Markovian model of self-avoiding walk, with contributions from Brydges
and Spencer [6], Madras and Slade [32], and Lawler [21], (iii) conformal field
theories, and the intersection exponents relations in dimension two and with
contributions by Duplantier and Kwon [11], Duplantier [10], Burdzy and
Lawler [7], and Lawler, Schramm and Werner [26] and references therein.

The models studied can be either discrete random walks, or their continu-
ous counterpart, the Wiener sausages. In the mid-nineties, Aizenman [1], Al-
beverio and Zhou [2], Pemantle, Peres and Shapiro [33] and Khoshnevisan [20]
proposed useful methods and estimates for the intersection of two Wiener
sausages. These estimates were important in understanding how small was
the trace of a Brownian motion. In 2004, van den Berg, Bolthausen and den
Hollander [37] studied the upward deviations for the volume of intersection
of two Wiener sausages, and established a Large Deviations Principle. More
recently Erhard and Poisat [15] also established large deviations estimates
for the capacity of a Wiener sausage.

Recently, there has been a revival of problems linked with intersection of
paths. The model of random interlacements was invented by Sznitman [36]
initially to study the trace of a walk, living in d-dimensional torus of side
N for a time Nd. Sznitman introduced a measure on infinite paths on the
infinite lattice of random walks whose probability of avoiding any given set is
proportional to the exponential of minus its Newtonian capacity. Recently
Rath and Sapozhnikov [34], and Chang and Sapozhnikov [9] established
moments and deviation bounds for the capacity of the union of ranges of
paths. In [4] we observed that the precise two sided non-intersection bounds
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of Lawler [24] yield in dimension four,

(1.4) lim
n→∞

log n

n
E[Cap(Rn)] =

π2

8
.

Soon after this, Chang [8] obtained a sharp estimate on the second moment:

lim
n→∞

E[Cap(Rn)2]

E[Cap(Rn)]2
= 1,

implying a weak law of large numbers. Chang [8] also established a fluc-
tuation result in dimension three by coupling the walk and the Brownian
motion:

(1.5)
Cap(Rn)

σ
√
n

(d)
=⇒ Cap(β[0, 1]),

with σ some renormalising constant and β[0, 1] the trace of a 3-dimensional
Brownian motion between time 0 and 1. In [4], we also proved a standard
central limit theorem in dimension larger than or equal to 6 (with a standard√
n normalising factor, and a Gaussian limit), while the law of large numbers

had already been obtained in dimension 5 and larger by Jain and Orey [18],
almost fifty years ago. A striking correspondence emerges: all these results
for the capacity of the range are analogous to results for the volume of the
range, see [13, 19, 28], but only after dropping space dimension by two units
to go from capacity to volume of the range. The remaining open issue is the
central limit theorem for the capacity of the range in dimension 5.

Recently, van den Berg, Bolthausen and den Hollander [38] studied the
torsional rigidity of the complement of a Wiener sausage, as a way to probe
the shape of the sausage. In order to obtain leading asymptotics for the
torsional rigidity, one needs a law of large numbers for the capacity of a
Wiener sausage, which is now proved in dimension four in our companion
paper [5]. Our Theorem 1.1 establishes these asymptotics for the discrete
model, and thus prepares the study of torsional rigidity for random walk.

Our own motivation for studying the capacity of the range of a random
walk comes from studying a random walk conditioned on being localised
during a time-period [0, N ] in a ball of volume of order N [3]. In this regime
the localised walk necessarily intersects often its own path, and one of the
main technical estimates in [3] concerns the event of visiting a set Λ made
up of non-overlapping balls of fixed radius. We establish that visiting each
ball, making up Λ, the same number of times is related to the capacity of Λ.
This allowed us to obtain rough estimates on the capacity of the range of
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a localised walk, and convinced us that the capacity of the range was a
relevant object to consider.

Heuristics. We wish now to explain at a heuristic level the scaling of
the capacity in d = 4, as well as the reason for our CLT. Along the way, we
present a simple decomposition formula for the capacity of two finite sets,
and highlight the connection with the volume of the range in d = 2.

Let us start by explaining in simple terms why the scaling of the capacity
of the range is n/ log n in dimension 4. Consider (1.1) where A = Rn, and
observe that it is enough to consider the site x on the boundary of a ball,
say of radius R, containing the set A: a walker coming from infinity basically
spreads uniformly on the boundary of such a ball when it hits it, and (1.1)
is almost correct when considering x uniformly distributed on the boundary
of ball of radius R and normalised by Gd(0, R), since Gd(0, y)/Gd(0, R) is
the probability of eventually hitting the ball of radius R when starting at y.
Now, during a time-period [0, n], the walk typically stays in a ball of radius
R =

√
n, and we consider R of this order. We need therefore to estimate the

probability that two independent walks starting at a distance
√
n meet. More

precisely, we need to estimate

P0,x(R[0, n] ∩ R̃[0,∞) 6= ∅), with ‖x‖ ∼
√
n.

To estimate this intersection event, Lawler [24] counts the number of times
the two paths intersect. Its expectation is expressed as a product of the
probability the two walks meet times the mean number of meetings after
the first one, that is when they start from the same point. Then, simple
computations give the following when ‖x‖ ∼

√
n

E0,0[|R[0, n] ∩ R̃[0,∞)|] � log n, and E0,x[|R[0, n] ∩ R̃[0,∞)|] � 1.

Then, the order of the probability of intersection is obtained by taking the
ratio of the two previous quantities, and dividing by Gd(0, R) which is of
order 1/R2. This is established rigorously in Section 4.3 of Lawler [24]. The
scaling for the capacity follows, at least heuristically.

A simple and key observation of Le Gall [28], using the symmetry of
the increments and translation invariance of the lattice, is that the range
R[0, 2n] translated by S(n), is the union of two independent ranges: R1

n =
R[0, n] − S(n) and R2

n = R[n, 2n] − S(n), which yields by the exclusion-
inclusion formula

(1.6) |R1
n ∪R2

n| = |R1
n|+ |R2

n| − |R1
n ∩R2

n|.

This is the starting block of Le Gall’s proof. Our starting point is that the
capacity of the range obeys a decomposition formula which plays exactly
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the same role as the exclusion-inclusion formula does for the volume of the
range.

Proposition 1.6. Let A and B be two finite subsets of Zd. We have

(1.7) Cap (A ∪B) = Cap (A) + Cap (B)− χ(A,B)− χ(B,A) + ε(A,B),

where

χ(A,B) =
∑
y∈A

∑
z∈B

Py
(
H+
A∪B =∞

)
Gd(y, z)Pz

(
H+
B =∞

)
,

and 0 ≤ ε(A,B) ≤ Cap (A ∩B).

Remark 1.7. The equalities (1.6) and (1.7) explain the striking cor-
respondence between asymptotics for the volume and the capacity of the
range. As long as the term ε in (1.7) is innocuous, the order of magnitude
of the cross term χ(R1

n,R2
n) in dimension d+ 2 is shown to be the same as

the order of magnitude of the intersection term |R1
n ∩R2

n| in dimension d.

Remark 1.8. We intend to apply (1.7) with A = R1
n and B = R2

n. In
dimension 4, it turns out that ε(A,B) is innocuous. One classical inequality
Cap (A ∪B) ≤ Cap (A) + Cap (B) − Cap (A ∩B) (see Proposition 2.3.4 of
Lawler [24]) misses the χ terms in (1.7) which dominate the fluctuations.

As in the CLT proof for the volume of the range in dimension 2 [28], we
iterate (1.7) and write the capacity of the range as the sum of a rescaled
self-similar part, consisting of a sum of independent and (almost) identically
distributed terms, plus a sum of cross terms. Our proofs establish that for
the law of large numbers it is the self-similar part which dominates, the
cross terms being of smaller order than n/ log n, while for the central limit
theorem, it is the opposite situation: the fluctuations of the self-similar part
are negligible compared to those of the cross terms of order n/ log2 n. This
striking phenomenon is exactly the same as the one Le Gall discovered some
thirty years ago, when dealing with the volume of the range [28].

We are now in a position to shed some light on the form of our CLT.
We consider χ(R1

n,R2
n) and expect, as Theorem 1.1 essentially teaches, that

typically and to leading order for x ∈ R1
n and y ∈ R2

n

Px
(
H+
R1
n∪R2

n
=∞

)
∼ π2

8
· 1

log n
and Py

(
H+
R2
n

=∞
)
∼ π2

8
· 1

log n
.

Note that in dimension higher than four, typically for x ∈ R[0, n], the prob-
ability Px(H+

R[0,n] = ∞) is rather of order 1. Our key technical estimates
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is then to make the escape events into local events (in a space scale much
smaller than

√
n), and thus transform the intersection term in a term looking

to leading order like

(1.8)
(π2

8
· 1

log n

)2
·
∑
x∈R1

n

∑
y∈R2

n

Gd(x, y).

The expression (1.8), in conjunction with the decomposition (1.7) which we
iterate, explains heuristically the form (1.2).

The rest of the paper is organised as follows. In Section 2, we start by
recalling known estimates on Green’s kernel, and deriving useful simple es-
timates on random walks. Then, we present the proof of Proposition 1.6.
The strong law of large numbers is established in Section 3.3 after a rough
second estimate is obtained for the cross term. Section 4 studies the lim-
iting object in the CLT. Section 5 presents our non-intersection events –
Proposition 5.2 which generalises Lawler’s Theorem 5.1. Section 6 presents
the asymptotics for the cross term obtained by the method of moments.
Section 7 establishes the CLT based on estimates of Section 6, and the re-
cursive use of the decomposition. Finally, Section 8 gathers computations
linked with Section 5.

2. Preliminaries.

2.1. Notation and standard estimates. We mostly use the symbol S to
denote a random walk, and use both notation Sk and S(k) to denote its
position at time k. When 0 ≤ a ≤ b are real numbers, R[a, b] denotes
R[[a], [b]], where [x] stands for the integer part of x. By convention, if a > b,
then R[a, b] is the empty set. We also write Ra for R[0, [a]], and S(n/2) for
S([n/2]).

For positive functions f, g we write f ∼ g if f(n)/g(n)→ 1 as n→∞. We
also write f(n) . g(n) if there exists a constant c > 0 such that f(n) ≤ cg(n)
for all n, and f(n) & g(n) if g(n) . f(n). Finally, we use the notation
f(n) � g(n) if both f(n) . g(n) and f(n) & g(n).

For α > 0, and n ≥ 2, we note nα := n · (log n)−α.
The Euclidean norm of x ∈ Z4 is denoted ‖x‖, and the Euclidean ball of

center x and radius r is denoted B(x, r). We denote by Px the law of a simple
random walk starting from x, and simply write P when x = 0. Likewise Px,x′
denotes the law of two independent random walks starting from x and x′,
and similarly when there are more walks. Recall that HA denotes the hitting
time of a set A, and we abbreviate this in Hx when A is reduced to a single
point x ∈ Zd.
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We write
pk(x, y) = Px(Sk = y).

The function pk is symmetric in x and y, and one has pk(x, y) = pk(0, y −
x) := pk(y − x). Define

(2.1) fk(x) =
8

π2k2
exp

(
−2
‖x‖2

k

)
.

A well-known estimate, see Proposition 2.1.2 (b) in [25], shows that for some
positive constants c and C

(2.2) ∀k ≥ 1, P
(

max
`≤k
‖S`‖ ≥ r

)
≤ C · e−c·r2/k.

Furthermore, for any fixed α < 2/3, one has for all k ≥ 1 and x with
pk(x) > 0 and ‖x‖ ≤ kα, (see Proposition 1.2.5 in [24]):

(2.3) pk(x) = fk(x)(1 +O(k3α−2)).

One deduces in particular the following useful estimate:

(2.4) P(‖Sk‖2 ≤ k/R) = O(R−2).

The discrete Green’s function Gd is defined by

Gd(x, y) =
∑
k≥0

Px(Sk = y) and
Gd(x, y)

Gd(0, 0)
= Px(Hy <∞).

We also write Gd(x) = Gd(0, x), and recall that Gd is symmetric, and satis-
fies Gd(x, y) = Gd(y − x).

The continuous Green’s function G(x, y) is also symmetric and satisfies
G(x, y) = G(0, y − x) =: G(y − x). It is defined for z ∈ R4 non zero, by

(2.5) G(z) =
1

2π2
· 1

‖z‖2
.

These two functions are linked by the relation (see Theorem 4.3.1 in [25]):
for x ∈ Z4

(2.6) Gd(x) = 4G(x) +O
(

1

1 + ‖x‖4

)
.

We also use the following (see Proposition 6.5.1 and 6.5.2 in [25]): there
exists a constant C > 0, such that for all x and r > 0,

(2.7) Px(HB(0,r) <∞) ≤ C · r2

1 + ‖x‖2
.

Finally we prove two useful estimates on the heat kernel pk(x):
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Claim 2.1. Let x ∈ Zd and k ∈ N be such that
√
k ≤ ‖x‖ ≤ k3/5. Then

there exists a positive constant C (independent of x) so that for all i ≤ k we
have

pi(x) ≤ C fk(x).

Proof. Suppose first that i ≤ k1−ε, for some ε > 0 to be fixed later. Then
one can use (2.2) which gives

pi(x) ≤ P(‖Si‖ ≥ ‖x‖) . exp

(
−c‖x‖

2

i

)
. exp

(
− c

2
kε − 2

‖x‖2

k

)
. fk(x),

using for the third inequality that for k large enough, ‖x‖2/i ≥ max(kε, (4/c)·
‖x‖2/k).

Suppose next that k1−ε ≤ i ≤ k/2. Now choose ε such that 3/(5(1−ε)) <
2/3. Then one can use the local CLT (2.3), which gives

pi(x) .
1

i2
exp

(
−2 ‖x‖2

i

)
=
‖x‖4

i2
exp

(
−‖x‖

2

i

)
· 1

‖x‖4
exp

(
−‖x‖

2

i

)
.

Using that the function y2e−cy is upper bounded by a constant, the assump-
tion that i ≤ k/2 and ‖x‖ ≥

√
k, we obtain

pi(x) .
1

k2
exp

(
−2 ‖x‖2

k

)

and this completes the proof in the case i ≤ k/2.
Suppose finally that k/2 ≤ i ≤ k. Then, we conclude the proof

pi(x) .
1

i2
exp

(
−2 ‖x‖2

i

)
.

1

k2
exp

(
−2 ‖x‖2

k

)
.

Recall next the notation nα = n/(log n)α.

Claim 2.2. Let i, k, n ∈ N and x, z ∈ Z4 satisfy k ≥ nα, ‖x‖ ≤√
n(log n)2, i ≤ k/(log n)β and ‖z‖ ≤

√
i(log n)γ with α, β and γ satisfy-

ing β > α+ 4 and 4 + 2γ + α− β < 0. Then we have as n→∞

fk−i(x− z) = fk(x) · (1 + o(1)).
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Proof. First, k and i depend on n, and as n→∞
1

k2
=

1

(k − i)2
· (1 + o(1)).

We next turn to the exponential terms in the expression for fk. We have

‖x‖2

k
− ‖x− z‖

2

(k − i)
=

(k − i)‖x‖2 − k(‖x‖2 − 2〈x, z〉+ ‖z‖2)
k(k − i)

=
2k〈x, z〉 − k‖z‖2 − i‖x‖2

k(k − i)
.

It suffices to prove that this last expression tends to 0 as n → ∞. By the
assumption

i‖x‖2

k(k − i)
. (log n)α+4−β and

k ‖z‖2

k(k − i)
. (log n)2γ−β,

and since α + 4 < β and 2γ < β they both tend to 0. Finally, by Cauchy-
Schwarz we get

|〈x, z〉|
k − i

≤ ‖x‖‖z‖
k − i

. (log n)2+γ−
α
2
−β

2 → 0 as n→∞,

again by using the assumption on α, β and γ and this completes the proof.

2.2. A decomposition formula for the capacity. Recall the last passage
decomposition formula (see for instance Proposition 4.6.4 in [25]): for any
finite set A ⊆ Zd and x /∈ A,

(2.8) Px(HA <∞) =
∑
y∈A

Gd(x, y) · Py(H+
A =∞).

We also recall two well-known formulas for the capacity of a finite setA ⊆ Zd.
First

(2.9) Cap (A) = lim
‖x‖→∞

Px(HA <∞)

Gd(x, 0)
,

and for any y ∈ A,

(2.10)
Py(H+

A =∞)

Cap(A)
= lim
‖x‖→∞

Px
(
S(HA) = y | HA <∞

)
.

The first formula is obtained through the last passage decomposition for-
mula (2.8) and the definition of the capacity (1.1), and the second is Theorem
2.1.3 of Lawler’s book [24].
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Proof of Proposition 1.6. Consider two finite subsets A and B of Zd.
One has

Px(HA∪B <∞) = Px(HA <∞) + Px(HB <∞)−Px(HA <∞, HB <∞)
(2.11)

= Px(HA <∞) + Px(HB <∞)−Px(HA ≤ HB <∞)

−Px(HB ≤ HA <∞) + Px(HA = HB <∞).

Consider now the term Px(HA ≤ HB < ∞). Conditioning on the possible
hitting point in A and using the Markov property yield:

Px(HA ≤ HB <∞) =
∑
y∈A

Px
(
S(HA∪B) = y, HA∪B <∞

)
Py
(
HB <∞

)
= Px

(
HA∪B <∞

)∑
y∈A

Px
(
S(HA∪B) = y | HA∪B <∞

)
Py
(
HB <∞

)
.

Then, use (2.9) and (2.10) to obtain

lim
x→∞

Px(HA ≤ HB <∞)

Gd(0, x)
=
∑
y∈A

Py
(
H+
A∪B =∞

)
Py
(
HB <∞

)
.

Finally by using the last passage formula (2.8), we get the desired limit

lim
x→∞

Px(HA ≤ HB <∞)

Gd(0, x)
=
∑
y∈A

∑
z∈B

Py
(
H+
A∪B =∞

)
Gd(y, z)Pz

(
H+
B =∞

)
.

By symmetry one also has

lim
x→∞

Px(HB ≤ HA <∞)

Gd(0, x)
=
∑
y∈B

∑
z∈A

Py
(
H+
A∪B =∞

)
Gd(y, z)Pz

(
H+
A =∞

)
.

We also obtain the existence of the limit ε(A,B) of Px(HA = HB <∞)/Gd(0, x),
as x→∞, since in (2.11) all other ratios converge. To conclude, note that

Px(HA = HB <∞) ≤ Px(HA∩B <∞),

which gives ε(A,B) ≤ Cap (A ∩B).

We will apply successively the decomposition of Proposition 1.6. To this
end, we define for i ≥ 1 and j ≤ 2i,

R(i,j)
n := R[(j − 1)2−in, j2−in].
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Proposition 2.3. Fix p ∈ N. Then we have

Cap (Rn) =

2p∑
j=1

Cap
(
R(p,j)
n

)
−

p∑
i=1

2i−1∑
j=1

χn(i, j) + εn,

where E
[
ε2n
]

= O((log n)2) and

χn(i, j) := χ(R(i,2j−1)
n ,R(i,2j)

n ) + χ(R(i,2j)
n ,R(i,2j−1)

n ).

Proof. The proof follows directly by applying repeatedly Proposition 1.6
to Rn. Moreover, from Proposition 1.6 we have that in every subdivision the
term ε is upper bounded by the size of the intersection of two independent
ranges. A straightforward calculation shows that this has expectation log n
(see for instance [24, Section 3.4]). The bound on the second moment follows
from [31, Lemma 3.1]. Since we are only taking a finite sum, the result
follows.

3. Strong law of large numbers. In this section we prove Theorem
1.1. The main part of the proof consists in obtaining good bounds on the
first and second moments of the cross term χn(1, 1) appearing in the decom-
position formula of the capacity. More precisely we show that

Lemma 3.1. The first and second moments of χn(1, 1) satisfy

E[χn(1, 1)] . n · log logn

(log n)2
and(3.1)

E
[
χn(1, 1)2

]
. n2 · (log log n)2

(log n)4
.(3.2)

Then, in Section 3.3, we deduce the strong law of large numbers by using
our decomposition of the capacity, Proposition 2.3. Section 3.1 is devoted to
some preliminary facts needed for the proof of Lemma 3.1.

3.1. Preliminaries. We first recall a standard fact, which directly follows
from (2.6): the mean time a walk spends in a ball of radius R is of order R2.
More precisely

(3.3)
∑
k∈N

P(‖S(k)‖ ≤ R) =
∑

x∈B(0,R)

Gd(0, x) = O(R2).

Next we present a lemma which is needed in the second moment estimate,
and which deals with intersecting the trace of a path Rn by two independent
walks starting far apart. The proof follows basically from estimates of Lawler
[24]. Recall that nα = n/(log n)α.
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Lemma 3.2. Let α > 0. Consider three independent walks S, S1, S2 start-
ing at the origin, and let x, y ∈ Zd with ‖x‖2, ‖y‖2 ≥ nα. There is a constant
C > 0, such that for n large enough,
(3.4)

P
(
(x+R1[0,∞)) ∩Rn 6= ∅, (y +R2[0,∞)) ∩Rn 6= ∅

)
≤ C·

(
log log n

log n

)2

.

Proof. The proof consists in showing that even if the two events consid-
ered in (3.4) are not independent, one can still dissociate them. Consider
the two random times

σx = inf{k : S(k) ∈ x+R1[0,∞)}, and σy = inf{k : S(k) ∈ y+R2[0,∞)}.

Note that σx (resp. σy) is independent of S2 (resp. of S1). We can express
the non-intersection event in terms of σx and σy:

P
(
(x+R1[0,∞)) ∩Rn 6= ∅, ((y +R2[0,∞)) ∩Rn 6= ∅

)
≤ P(σx ≤ σy ≤ n) + P(σy ≤ σx ≤ n) .

By symmetry, it is enough to deal with the first probability on the right-hand
side. Conditioning on S1 and σx, we get

P(σx ≤ σy ≤ n) ≤ E
[
1(σx ≤ n) PS(σx)

(
R[0, n− σx] ∩ (y +R2[0,∞)) 6= ∅

)]
≤ E

[
1(σx ≤ n) PS(σx)

(
R[0, n] ∩ (y +R2[0,∞)) 6= ∅

)]
.

Note that since ‖y‖2 ≥ nα, we have using (2.7),

P
(
σx ≤ n, ‖S(σx)− y‖2 ≤ nα+2

)
≤ P

(
HB(y,√nα+2) <∞

)
.

1

(log n)2
.

Now, on the event {σx ≤ n, ‖S(σx)−y‖2 ≥ nα+2}, [24, Theorem 4.3.3] shows
that

PS(σx)
(
(y +R2[0,∞)) ∩R[0, n] 6= ∅

)
.

log log n

log n
.

Thus by another application of [24, Theorem 4.3.3] we get

P(σx ≤ σy ≤ n) . P(σx ≤ n) · log log n

log n
.

(
log logn

log n

)2

,

and this completes the proof.
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3.2. First and second Moment estimates of the cross terms.

Proof of Lemma 3.1. Note first that by reversibility of the walk, χn(1, 1)
is equal in law to χ(Rn/2, R̃n/2) + χ(R̃n/2,Rn/2), with R and R̃ the ranges

of two independent walks S and S̃. By symmetry (and Cauchy-Schwarz) it is
enough to bound the first and second moments of χ(Rn/2, R̃n/2). However,

to avoid annoying factors 1/2 everywhere, we bound the term χ(Rn, R̃n).
Recall that for any finite sets A and B, we have by definition of χ(A,B) and
using also the last exit formula (2.8):

χ(A,B) =
∑
y∈A

Py(H+
A∪B =∞) · Py(HB <∞).

Even though the first moment bound (3.1) follows from (3.2) by using
Jensen’s inequality, it is interesting to include a direct proof of (3.1). In-
deed, it serves as a warmup for the proof of the second moment estimate.

So let us prove (3.1). For this we need to consider two additional indepen-
dent random walks S1 and S̃1 starting from the origin and also independent
of S and S̃. Denote their ranges by R1 and R̃1 respectively. Also, we use
the shorthand R for R[0,∞) and R+ for R[1,∞). We start with a bound
on χ(Rn, R̃n), which is a sum of n terms

n∑
k=1

1{Sk 6∈Rk−1}P((Sk +R1
+) ∩ (Rn ∪ R̃n) = ∅, (Sk + R̃1) ∩ R̃n 6= ∅ | S, S̃)

≤
n∑
k=1

P
(
(Sk +R1

+) ∩Rn = ∅ | S
)
· P
(
(Sk + R̃1) ∩ R̃n 6= ∅ | S, S̃

)
.

Taking expectation on both sides and choosing any α > 2, we bound
E[χ(Rn, R̃n)] as follows

n∑
k=1

∑
‖x‖2≥nα

P
(
(x+R1

+) ∩Rn = ∅, Sk = x
)
· P
(
(x+ R̃1) ∩ R̃n 6= ∅

)
+O(nα)

.
n∑
k=1

P
(
(Sk +R1

+) ∩Rn = ∅
)
· log log n

log n
+O(nα)

.
n−nα∑
k=nα

P
(
(Sk +R1

+) ∩Rn = ∅
)
· log logn

log n
+O(nα) . n · log logn

(log n)2
,

where we used (3.3) at the first line and Lawler’s results [24, Theorem 3.5.1
and 4.3.3] at the second and third lines. This proves (3.1).
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Let {S, S̃, S1, S2, S̃1, S̃2} be independent random walks all starting at the
origin. Fix α > 4, and n and introduce the following event Ak = {‖S(k)‖2 ≥
nα}. Now, using (3.3) at the second line and Lemma 3.2 at the fourth line,
we bound the second moment of χ(Rn, R̃n) by

n∑
k1=1

n∑
k2=1

P
(
(Ski +Ri+) ∩Rn = ∅, (Ski + R̃i) ∩ R̃n 6= ∅, ∀i = 1, 2

)
≤
∑
k1,k2

P
(
Aki , (Ski +Ri+) ∩Rn = ∅, (Ski + R̃i) ∩ R̃n 6= ∅, ∀i = 1, 2

)
+O(n · nα)

≤
∑
k1,k2

∑
x1,x2

P
(
Aki , Ski = xi, (xi +Ri+) ∩Rn = ∅, ∀i = 1, 2

)
× P

(
(xi + R̃i) ∩ R̃n 6= ∅, ∀i = 1, 2

)
+O(n · nα)

.
∑
k1,k2

P
(
Aki , (Ski +Ri+) ∩Rn = ∅, ∀i = 1, 2

)
· log2 log n

log2 n
+O(n · nα)

.
∑

nα≤k1≤k2−nα≤n−2nα

P
( ⋂
i=1,2

(Ski +Ri+) ∩Rn = ∅
)
· log2 log n

log2 n
+O(n · nα).

We deal now with the non-intersection terms for which we removed the space
constraints but we added time constraints. From the walk S, we form two
walks stemming from position Sm with m = [(k1 + k2)/2]. One walk goes
backward, and is denoted S3, and another one goes forward and is denoted
S4. Translating the origin to Sm we obtain using [24, Theorem 3.5.1],

P
(
(Ski +Ri+) ∩Rn = ∅, ∀i = 1, 2

)
≤ P

(
(S3
m/2 +R1

+) ∩R3[0,m] = ∅
)

× P
(
(S4
m/2 +R2

+) ∩R4[0, n−m] = ∅
)

= O
(

1

(log n)2

)
,

which proves (3.2).

3.3. Strong law of large numbers. We are now ready for the proof of The-
orem 1.1. The first step is to use the dyadic decomposition of the capacity to
produce self-similar independent terms at a smaller scale. If this scale is well
chosen, then the result of the previous section shows that the cross terms
χn(i, j) are negligible, by a simple application of Chebyshev’s inequality. On
the other hand, using Borel-Cantelli and Chebyshev’s inequality again, one
can show that the self-similar part converges almost surely, at least along
some subsequence growing sub-exponentially fast. Finally, using the mono-
tonicity of the capacity we deduce the convergence along the full sequence.
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Proof of Theorem 1.1. Choose L as a function of n, such that (log n)4 ≤
2L ≤ 2(log n)4. In particular one has L � log logn. Proposition 2.3 shows
that

(3.5) Cap (Rn) =

2L∑
j=1

Cap
(
R(L,j)
n

)
− ξn + εn,

where E[εn] = O(2L log n) = O((log n)5), and

ξn =
L∑
i=1

2i−1∑
j=1

χn(i, j).

Now (3.2) shows that for all i ≤ L and j ≤ 2i−1

E[χn(i, j)2] . n2 · (log log n)2

22i(log n)4
.

Using Cauchy-Schwarz and the independence of the (χn(i, j))j for any fixed
i, one obtains

Var (ξn) ≤ L ·
L∑
i=1

Var

2i−1∑
j=1

χn(i, j)

 = L ·
L∑
i=1

2i−1Var (χn(i, 1))

= O
(
n2 · (log log n)3

(log n)4

)
.

This together with Chebyshev’s inequality give

(3.6) P
(
|ξn − E[ξn] | > ε

n

log n

)
.

(log log n)3

(log n)2
,

where ε > 0. On the other hand, using the trivial bound Cap(Rn) ≤ |Rn| ≤
n, and Chebyshev’s inequality again for a sum of independent terms, we get

(3.7) P

 2L∑
j=1

∣∣∣Cap
(
R(L,j)
n

)
− E

[
Cap

(
R(L,j)
n

)]∣∣∣ > ε
n

log n

 .
1

(log n)2
.

Now consider the subsequence an = exp(n3/4), and observe that it satisfies

lim
n→∞

an+1

an
= 1, and

∑
n

(log log an)3

(log an)2
<∞.
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Therefore (3.1), (3.6) and Borel-Cantelli show that almost surely

lim
n→∞

log an
an

· ξan = 0.

Similarly using the bound E[εn] = O((log n)5), we deduce using Markov’s
inequality that almost surely

lim
n→∞

log an
an

· εan = 0.

Finally, using (1.4), (3.5), (3.7) and Borel-Cantelli again, we deduce that
almost surely

lim
n→∞

log an
an

· Cap(Ran) =
π2

8
.

To conclude, first observe that Cap(Rn) is nondecreasing, since for any A ⊂
B, one has Cap(A) ≤ Cap(B). Thus if for n ≥ 1, we define kn as the unique
integer, such that akn ≤ n < akn+1, we have

Cap (R[0, akn ]) ≤ Cap (R[0, n]) ≤ Cap (R[0, akn+1]) .

Since akn+1/akn goes to 1, as n→∞, the sequence (log n/n) ·Cap (R[0, n])
converges.

Remark 3.3. Note that in the last part of our proof, we followed the
strategy of Dvoretzky and Erdös in their pioneering work on the range [13].
They first proved an almost sure limiting result along a subsequence growing
subexponentially fast (using also Chebyshev’s inequality and good bounds
on the variance), and then deduced the strong law of large numbers using a
monotonicity argument. The idea that a decomposition like (1.6) could be
useful in obtaining sharp variance bounds and a central limit theorem came
much later, in Le Gall’s papers [28, 29].

4. Existence and definition of the limiting term. The goal of this
section is to give a precise definition of the limiting term appearing in The-
orem 1.2. We also prove a Carleman’s condition for the sum approximating
it.

4.1. Carleman’s condition. We recall that Carleman’s condition holds for
a nonnegative random variable X, if its sequence of moments mp := E[Xp]
satisfies: ∑

p≥1
(mp)

− 1
2p = ∞.
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Proposition 4.1. Let

X =

∫ 1

0

∫ 1

0

1

‖βs − β̃t‖2
ds dt,

where β and β̃ are two independent standard 4-dimensional Brownian mo-
tions. There exist positive constants c and C, such that

cp pp ≤ E [Xp] ≤ Cp · p2p,

for all integers p ≥ 1. In particular the upper bound implies that Carleman’s
condition holds for X.

Remark 4.2. Note that by reversibility of the Brownian path, and scal-
ing invariance, one has

X
(d)
= 2

∫ 1/2

0

∫ 1

1/2

1

‖βs − βt‖2
ds dt.

Proof. We first prove the upper bound. By using Jensen’s inequality we
get, for any integer p,

E[Xp] .
∫ 1

0
dtE

[(∫ 1

0

ds

‖βs − β̃t‖2

)p]
.

We define Cp := {0 ≤ s1 ≤ · · · ≤ sp ≤ 1}, and by symmetry

(4.1) E[Xp] . p!

∫ 1

0
dt

∫
Cp

E

[
1

‖βs1 − β̃t‖2 · · · ‖βsp − β̃t‖2

]
ds1 . . . dsp.

By using standard properties of the Brownian motion, we write

∫
Cp
E

[
p∏
i=1

1

‖βsi − β̃t‖2

]
p∏
i=1

dsi

=

∫
Cp

E
[ p−1∏
i=1

1

‖βsi − β̃t‖2
× E

(
1

‖βsp − β̃t‖2

∣∣∣ (βu)u≤sp−1 , β̃t

)] p∏
i=1

dsi

=

∫
Cp−1

E

[
p−1∏
i=1

1

‖βsi − β̃t‖2

∫ 1−sp−1

0
E
(

1

‖βs − xp‖2
∣∣∣ xp) ds

]
p−1∏
i=1

dsi,

(4.2)

with xp = βsp−1 − β̃t. Now we need the following two lemmas.
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Lemma 4.3. One has∫ 1

0
E
[

(a+ | log ‖βs − x‖|)k

‖βs − x‖2

]
ds .

k+1∑
`=0

(4k)` · (a+ 1 + | log ‖x‖|)k+1−` ,

uniformly in x ∈ R4 \ {0}, a ≥ 0 and k ≥ 0.

Lemma 4.4. For all k ≥ 1 and a ≥ k,∫ 1

0
E
[
(a+ | log ‖β̃t‖|)k

]
dt . k · ak.

We prove these two lemmas in the Appendix. Let us now conclude the
proof of the proposition. First one can use Lemma 4.3 and by induction, we
can bound the last integral in (4.2) by

Cp ·
p∑
`=0

α` · (4p)` · E
[
(p+ | log ‖β̃t‖|)p−`

]
,

where C is a constant and

α` := # {1 ≤ i1 ≤ · · · ≤ i` ≤ p} =

(
p+ `− 1

`

)
.

Then using Lemma 4.4, (4.1), and (4.2) we obtain the upper bound

E[Xp] . Cp
p∑
`=0

(
p+ `− 1

`

)
(4p)` · (p− `) · pp−` . C̃p · p2p,

where C̃ is a positive constant and this proves the upper bound.
Now, we prove the lower bound. Define

Γ(p) := inf
x∈B(0,2/√p)
z,z′∈B(0,1/√p)

∫ 1/p

0

∫ 1/p

0
Ez,z′

[
1
(
β1/p, β̃1/p ∈ B(0, 1/

√
p)
)

‖x+ βs − β̃t‖2

]
ds dt.

Note that by scaling Γ(p) = Γ(1)/p, and that

Γ(1) ≥ 1

16
P
(

sup
s≤1
‖βs‖ ≤ 1

)2

:= c0 > 0.

Now define

D =

[
0,

1

p

]
× · · · ×

[
p− 1

p
, 1

]
, and A :=

p⋂
i=1

{
βi/p, β̃i/p ∈ B(0,

1
√
p

)

}
.
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Then, for any permutation σ of the set {1, . . . , n}, one has by the Markov
property and standard properties of Brownian motion,∫

Cp

∫
Cp

E

[
p∏
i=1

1

‖βsi − β̃tσ(i)‖2

]
p∏
i=1

dsi dti

≥
∫
D

∫
D
E

[
p∏
i=1

1(A)

‖βsi − β̃tσ(i)‖2

]
p∏
i=1

dsi dti

=

∫
D

∫
D
E

[
p∏
i=1

1(A)

‖xi + (βsi − βi/p)− (β̃tσ(i) − β̃σ(i)/p)‖2

]
p∏
i=1

dsi dti

≥ Γ(p)p ≥ (c0/p)
p,

with xi = βi/p − β̃σ(i)/p, for i = 1, . . . , p. Now one has

E[Xp] ≥ (p!)2 inf
σ

∫
Cp

∫
Cp

∏
dsi

∏
dti E

[
p∏
i=1

1

‖βsi − β̃tσ(i)‖2

]
,

and this gives the lower bound using the previous bound and Stirling’s for-
mula.

4.2. The limiting term. We have now all the ingredients to define prop-
erly the term γG([0, 1]2), appearing in Theorem 1.2. First define the following
subsquares of [0, 1]2:

Ai,j = [(2j − 2)2−i, (2j − 1)2−i]× [(2j − 1)2−i, (2j)2−i],

for i ≥ 1 and j ≤ 2i−1. Define also C = {s, t ∈ [0, 1] : s ≤ t}, the closure of
the union of all these squares.

A straightforward computation shows that

E
[∫ 1

0

∫ 1

0
G(βs, βt) ds dt

]
=∞.

However, if we consider disjoint intervals, then this expectation is finite
as we already proved in Proposition 4.1, i.e.

E

[∫ 1/2

0

∫ 1

1/2
G(βs, βt) ds dt

]
<∞,

and by scaling the same fact holds when integrating over any of the squares
Ai,j . This observation is at the heart of the following proposition:
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Proposition 4.5. Let β be a standard 4-dimensional Brownian motion.

Then the limit γG(C) :=
∑∞

i=1

∑2i−1

j=1 γG(Ai,j) exists in L2, where

γG(Ai,j) :=

∫
Ai,j

G(βs, βt) ds dt− E

[∫
Ai,j

G(βs, βt) ds dt

]
.

Moreover, there exists λ ∈ R, such that

E
[
eλ·γG(C)

]
= ∞.

Remark 4.6. We take by definition γG([0, 1]2) := 2 γG(C).

Proof. For any j ≤ 2i−1, note that By Brownian scaling γG(Ai,j) has the
same law as 21−iγG(A1,1). By Proposition 4.1 these random variables have
finite second moment. Now by the triangle inequality for the L2-norm, we
have for m < n∥∥∥∥∥∥

n∑
i=m

2i−1∑
j=1

γG(Ai,j)

∥∥∥∥∥∥
2

≤
n∑

i=m

∥∥∥∥∥∥
2i−1∑
j=1

γG(Ai,j)

∥∥∥∥∥∥
2

=
n∑

i=m

2i−1∑
j=1

E
[
(γG(Ai,j))

2
]1/2

,

where for the last inequality we used the independence of the terms γG(Ai,j),
when the rectangles Ai,j are all in the same subdivision. By scale invariance
mentioned earlier this last sum is equal to

n∑
i=m

√
2i−1

22(i−1)
·Var (γG(A1,1)) =

√
Var (γG(A1,1))

n∑
i=m

1

2(i−1)/2
.

This shows that the sequence
∑n

i=1

∑2i−1

j=1 γG(Ai,j) is Cauchy in L2, and

hence it converges in L2. Now we prove that this limit random variable
has some infinite exponential moment, using the same argument as in Le
Gall [30]. First note that by definition we can express γG(C) almost surely
as

γG(C) =
1

2
·
(
γ1 + γ2 +

1

2π2
· (X − E[X])

)
,

with γ1 and γ2 two independent random variables with the same law as
γG(C), and X a random variable with the same law as the random variable
from Proposition 4.1. Now the lower bound in the latter proposition shows
that there exists λ > 0 such that E[exp(λX)] =∞. Since X = 2π2(2γG(C)−
γ1−γ2)+E[X], it implies by Cauchy-Schwarz that either E

[
exp(8π2λγG(C))

]
or E

[
exp(−4π2λγG(C))

]
is infinite.
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5. Intersection and non-intersection probabilities. The goal of
this section is to obtain an asymptotic expression for the probability of non-
intersection of a two sided walk with simple random walk, when one walk
is conditioned to end up at a specific location. Our proofs will rely heavily
on the following estimate of Lawler on the non-intersection probability of a
two-sided walk with a simple random walk.

Theorem 5.1. ([24, Corollary 4.2.5]) Let R1,R2 and R3 be the ranges
of three independent random walks in Z4 starting at 0. Then,
(5.1)

lim
n→∞

log n · P
(
(R1[0, n] ∪R2[0, n]) ∩R3[1,∞) = ∅, 0 6∈ R1[1, n]

)
=
π2

8
.

Recall the definition of fk(x) from (2.1) and also the shorthand notation
nα = n/(log n)α.

Proposition 5.2. Let α > 8, n−nα > k > nα and x ∈ Z4 with
√
n2α ≤

‖x‖ ≤
√
n(log n)2. Let R1,R2 and R3 be the ranges of three independent

random walks starting from 0. Then

P
(
(R1[0, k] ∪R2[0, n]) ∩R3[1,∞) = ∅, S1(k) = x, 0 /∈ R1[1, k]

)
=
π2

8
· 1

log n
· pk(x) · (1 + o(1)) +O

(
log log n

(log n)3/2
· fk (x/2)

)
.

Note that in the expression above we cannot always absorb the second
term in the o(1) term, since pk(x) is not always comparable to fk(x/2).
However, this second term is going to be negligible when we take the sum
over all time indices and all points in space.

The rest of this section is devoted to the proof of the above proposition.
The following lemma on the probability that two walks intersect when one

walk is conditioned to end up at a specific location is a crucial ingredient in
the proof of the proposition above and will be used in later parts too.

Lemma 5.3. There exists a positive constant C so that the following
holds. Let z ∈ Z4 and let S1 and S2 be two independent simple random walks
in Z4 starting from 0 and z respectively. For a, k, f ∈ N and b ∈ N∪{∞} let
A(a, b, f, k) = {R1[f, k]∩R2[a, b] 6= ∅}. Then for all x ∈ Z4 with ‖x‖ ≤ k2/3
we have

P0,z

(
A(a, b, f, k), S1(k) = x

)
≤ Cfk (x/2) ·max(P0,z(A(a, b, f, k)) ,

Px,z(A(a, b, 0, k))).
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We now state two lemmas and a claim whose proofs are deferred after the
proof of Proposition 5.2.

Lemma 5.4. Let α > 8. Let nα < k < n − nα, i = k/(log n)5α and√
n2α ≤ ‖x‖ ≤

√
n(log n)2. Let R1,R2 and R3 be the ranges of three inde-

pendent random walks starting from 0. Then we have

P
(
(R1[0, i] ∪R2[0, n]) ∩R3[1,∞) = ∅, S1(k) = x, 0 /∈ R1[1, i]

)
=
π2

8
· 1

log n
· pk(x) · (1 + o(1)).

Lemma 5.5. Same assumptions as in Lemma 5.4. We have

P
(
(R1[0, i] ∪R2[0, n]) ∩R3[1,∞) = ∅,R1[i, k] ∩R3[1,∞) 6= ∅, S1(k) = x

)
. fk(x/2) · log logn

(log n)3/2
.

Claim 5.6. Let α > 0, k > nα and
√
n2α ≤ ‖x‖ ≤ k3/5. Let hit[a, b] =

{∃ ` ∈ [a, b] : S1(`) = 0}. Then we have

P
(
S1(k) = x,hit[nα, k]

)
. fk(x) · (log n)2α

n
.

We now give the proof of Proposition 5.2 which is an easy consequence
of the results above and then we will prove Lemmas 5.3, 5.4 and 5.5 and
Claim 5.6.

Proof of Proposition 5.2. Let i = k/(log n)5α as in Lemma 5.4. Then
we can write

P
(
(R1[0, k] ∪R2[0, n]) ∩R3[1,∞) = ∅, S1(k) = x, 0 /∈ R1[1, k]

)
= P

(
(R1[0, i] ∪R2[0, n]) ∩R3[1,∞) = ∅, S1(k) = x, 0 /∈ R1[1, i]

)
− P(R1[0, i] ∪R2[0, n]) ∩R3[1,∞) = ∅, S1(k) = x, 0 /∈ R1[1, i],

{R1[i, k] ∩R3[1,∞) 6= ∅} ∪ {0 ∈ R1[i, k]}).

For the first term we use Lemma 5.4 to get the asymptotic expression of the
statement. Regarding the second probability by the union bound it is upper
bounded by

P
(
(R1[0, i] ∪R2[0, n]) ∩R3[1,∞) = ∅, S1(k) = x,R1[i, k] ∩R3[1,∞) 6= ∅

)
+P
(
S1(k) = x, 0 /∈ R1[1, i], 0 ∈ R1[i, k]

)
.

The first term can be bounded using Lemma 5.5 and the second one using
Claim 5.6.
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Proof of Lemma 5.3. We assume that pk(x) > 0, since otherwise the
statement is trivial. Suppose first that ‖x‖2 ≤ k. Then in this case pk(x) �
1/k2, and hence for all y, z ∈ Z4 we have pk/2(y, z) ≤ C/k2 � pk(x). We
now get

P0,z(A(a, b, f, k), S1(k) = x) =
∑
y

P0,z(A(a, b, f, k), S1(k) = x, S1(k/2) = y)

≤
∑
y

P0,z

(
R2[a, b] ∩R1[f, k/2] 6= ∅, S1(k/2) = y, S1(k) = x

)
+
∑
y

P0,z

(
R2[a, b] ∩R1[k/2, k] 6= ∅, S1(k/2) = y, S1(k) = x

)
.

Using time reversibility and the Markov property this last sum is equal to∑
y

P0,z

(
A(a, b, f, k/2), S1(k/2) = y

)
· pk/2(y, x)

+
∑
y

Px,z
(
A(a, b, 0, k/2), S1(k/2) = y

)
· pk/2(y, 0)

. pk(x) ·
∑
y

P0,z

(
A(a, b, f, k/2), S1(k/2) = y

)
+ pk(x) ·

∑
y

Px,z
(
A(a, b, 0, k/2), S1(k/2) = y

)
. pk(x) · P0,z (A(a, b, f, k/2)) + pk(x) · Px,z (A(a, b, 0, k/2))

. pk(x) ·max(P0,z (A(a, b, f, k)) ,Px,z (A(a, b, 0, k))).

This completes the proof in the case when ‖x‖2 ≤ k, since fk(x/2) & 1/k2.
Suppose next that ‖x‖2 ≥ k. We write Bx = B(x, ‖x‖ /2) and Sx = ∂Bx.

We define σx as the last visit time to Sx before time k and τx for the first
hitting time of Sx (both for the walk S1). For all i ≤ k and w ∈ Z4 we have

Pw(S1(i) = x, τx ≤ i) =
∑
j≤i

∑
y∈Sx

Pw(τx = j, S1(j) = y, S1(i) = x)

=
∑
j≤i

∑
y∈Sx

Pw(τx = j, S1(j) = y) · pi−j(y, x) . fk(x/2) · Pw(τx ≤ i) . fk(x/2),

(5.2)

where the first inequality follows from Claim 2.1. Now one can write

P0,z(A(a, b, f, k), S1(k) = x) ≤ P0,z

(
R2[a, b] ∩R1[f, σx] 6= ∅, S1(k) = x

)
+ P0,z

(
R2[a, b] ∩R1[σx, k] 6= ∅, S1(k) = x

)
.

(5.3)
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In order to bound the first term, let us define

I := inf{i ≥ f : S1(i) ∈ R2[a, b]}.

Note that for any i, the event {I = i} is σ(R1[f, i])∨σ(R2[a, b])-measurable.
Therefore by the Markov property we obtain

P0,z

(
R2[a, b] ∩R1[f, σx] 6= ∅, S1(k) = x

)
=
∑
w

∑
f≤i≤k

P0,z

(
I = i, σx ≥ i, S1(i) = w, S1(k) = x

)
=

∑
w, f≤i≤k

P0,z

(
I = i, S1(i) = w

)
· Pw(S1(k − i) = x, τx ≤ k − i)

. fk(x/2) ·
∑

w, f≤i≤k
P0,z

(
I = i, S1(i) = w

)
. fk(x/2) · P0,z (A(a, b, f, k)) ,

where we used (5.2) for the first inequality. Now concerning the second term
in (5.3), one can look at the path backwards in time, and observe that seen
from x, σx is now the first hitting time of Sx, namely τx. Therefore, using
the strong Markov property,

P0,z

(
R2[a, b] ∩R1[σx, k] 6= ∅, S1(k) = x

)
=

∑
y∈Sx, i≤k

P0,z

(
R2[a, b] ∩R1[i, k] 6= ∅, S1(i) = y, σx = i, S1(k) = x

)
=
∑
y,i

Px,z
(
A(a, b, 0, k − i), S1(k − i) = y, τx = k − i

)
· pi(y)

. fk(x/2)
∑
y,i

Px,z
(
A(a, b, 0, k), S1(k − i) = y, τx = k − i

)
. fk(x/2) · Px,z (A(a, b, 0, k)) ,

where for the first inequality we used Claim 2.1 again. This now completes
the proof.

Proof of Lemma 5.4. This proof is very similar to [24, Proposition 4.3.2],
but we include it here for the sake of completeness. Again we assume that
pk(x) > 0, otherwise the statement is trivial.

We defineD = {‖S1(i)‖ ≤
√
i(log n)α+6}. Then P(Dc) ≤ exp(−(log n)α+6).

We set

A =
{

(R1[0, i] ∪R2[0, n]) ∩R3[1,∞) = ∅, 0 /∈ R1[1, i]
}
.
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Then by Lawler’s estimate, Theorem 5.1, we have that

P(A) =
π2

8
· 1

log n
· (1 + o(1)).

We now obtain

P
(
A,S1(k) = x,D

)
≤ P

(
A,S1(k) = x

)
≤ P

(
A,S1(k) = x,D

)
+ P(Dc) .

By the Markov property we now get

P
(
A ∩D,S1(k) = x

)
= P

(
S1(k) = x

∣∣ A ∩D)P(A ∩D)

= pk(x)(1 + o(1))P(A ∩D) ,

where the last equality follows from (2.3) and Claim 2.2, since after condi-
tioning on D, the time changes to k − i and the walk starts from some z
with ‖z‖ ≤

√
i(log n)α+6. Note that for α > 8 the assumptions of Claim 2.2

are satisfied. We also have

P(A ∩D) = P(A)− P(A ∩Dc) = P(A) (1 + o(1)),

since P(A ∩Dc) ≤ P(Dc) ≤ exp(−(log n)α+6) and P(A) � 1/ log n. So far
we have showed that

P
(
A ∩D,S1(k) = x

)
= pk(x)(1 + o(1))P(A) .

By the assumption on the values of x and k, we get that

P(A) pk(x) & exp(−c(log n)α+4).

Therefore,

P
(
A ∩D,S1(k) = x

)
+ P(Dc) = pk(x)P(A) (1 + o(1))

and this completes the proof.

Proof of Lemma 5.5. Define ` = i/(log n)2α+20. Then, we can upper
bound the probability of the statement as follows (with R+ for R[1,∞))

P
(
(R1[0, i] ∪R2[0, n]) ∩R3

+ = ∅,R1[i, k] ∩R3
+ 6= ∅, S1(k) = x

)
≤ P

(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3

+ 6= ∅, S1(k) = x
)

≤ P
(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3[1, `] 6= ∅, S1(k) = x

)
+ P

(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3[`,∞) 6= ∅, S1(k) = x

)
.

(5.4)
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From Lemma 5.3 we have

P
(
R1[i, k] ∩R3[1, `] 6= ∅, S1(k) = x

)
. fk(x/2) ·max(Px,0

(
R1[0, k] ∩R3[1, `] 6= ∅

)
,P
(
R1[i, k] ∩R3[1, `] 6= ∅

)
).

We now define

D3 =

{
max
j≤`
‖S3(j)‖ ≤

√
i

(log n)4

}
.

By the choice of ` and (2.2) we have P(Dc
3) . exp(−(log n)α+6). We also let

D1 =

{
‖S1(i)‖ ≥

√
i

(log n)2

}
.

Then by (2.4) we get P(Dc
1) .

1
(logn)8

, and hence we obtain that

P
(
R1[i, k] ∩R3[1, `] 6= ∅

)
≤ P(Dc

3) + P(Dc
1) + P

(
R1[i, k] ∩R3[1, `] 6= ∅, D1, D3

)
.

2

(log n)8
+ max
‖w‖≥

√
i/(logn)2

Pw
(
HB

(
0,

√
i

(logn)4

) <∞
)

.
1

(log n)4
,

where for the last inequality we used (2.7). When S1 starts from x, we then
get

Px,0
(
R1[0, k] ∩R3[1, `] 6= ∅

)
. P(Dc

3) + Px,0
(
R1[0, k] ∩R3[1, `] 6= ∅, D3

)
≤ exp(−(log n)α+6) + Px

(
HB

(
0,

√
i

(logn)4

) <∞
)

≤ exp(−(log n)α+6) +
1

(log n)8+3α
,

where for the last inequality we used again (2.7) and the assumption on i
and ‖x‖.

So we overall get that

P
(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3[1, `] 6= ∅, S1(k) = x

)
.

fk(
x
2 )

(log n)4
.

Returning to the probability appearing in the penultimate line of (5.4), we
obtain

P
(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3[`,∞) 6= ∅, S1(k) = x

)
≤ P

(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3[`,∞) 6= ∅, S1(k) = x,D3

)
+ P(Dc

3)

. P
(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3[`,∞) 6= ∅, S1(k) = x,D3

)
+

fk(
x
2 )

(log n)4
,

(5.5)
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where for the last inequality we used that for x and k as in the statement
of the lemma we have

pk(x) & exp
(
−2(log n)α+4

)
and P(Dc

3) ≤ exp(−(log n)α+6).

The first term appearing in the last line of (5.5) is upper bounded by
(5.6)∑
‖z‖2≤ i

log8 n

P0,z

(
R1[i, k] ∩R3

+ 6= ∅, S1(k) = x
)
P
(
R2[0, n] ∩R3[1, `] = ∅, S3(`) = z

)
.

Using Lemma 5.3 again and [24, Theorem 4.3.3] we get that for all z in the
range as above

P0,z

(
R1[i, k] ∩R3

+ 6= ∅, S1(k) = x
)

. fk(x/2) max
(
P0,z

(
R1[i, k] ∩R3

+ 6= ∅
)
,Px,z

(
R1[0, k] ∩R3

+ 6= ∅
))

. fk(x/2) · log log n

log n
.

Therefore, the sum of (5.6) becomes upper bounded by

P
(
R2[0, n] ∩R3[1, `] = ∅

)
· fk(x/2) · log log n

log n
� fk(x/2) · log log n

(log n)3/2
,

where for the equivalence we used [24, Theorem 4.4.1]. Substituting this
into (5.5) finishes the proof.

Proof of Claim 5.6. In order to upper bound the probability of this
event we consider two cases, either ‖x‖ ≤

√
k or ‖x‖ >

√
k. If ‖x‖ ≤

√
k,

then using reversibility and the Markov property we obtain

P
(
S1(k) = x, hit[nα, k]

)
= P

(
S1(k) = x,hit[nα, k/2]

)
+ P

(
S1(k) = x,hit[k/2, k]

)
=
∑
z

P
(
S1(k/2) = z, S1(k) = x,hit[nα, k/2]

)
+
∑
z

P
(
S1(k/2) = z, S1(k) = x,hit[k/2, k]

)
. pk(x)P(hit[nα, k/2]) + pk(x)Px(H0 <∞) . pk(x) · (log n)2α

n
.

We turn to the case ‖x‖ >
√
k. We now have using the Markov property

P
(
S1(k) = x,hit[nα, k]

)
= P

(
S1(k) = x

∣∣ hit[nα, k]
)
P(hit[nα, k])

≤ sup
i<k

pi(x) · P(hit[nα, k]) . fk(x) · (log n)2α

n
,

where for the last inequality we used Claim 2.1.
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6. Joint convergence in law of the cross terms. The main purpose
of this section is to prove the joint convergence in law of the cross terms.
First recall the definition of the squares

Ai,j = [(2j − 2)2−i, (2j − 1)2−i]× [(2j − 1)2−i, (2j)2−i],

for i ≥ 1 and j ≤ 2i−1. Recall also the definition of the cross terms from
Proposition 2.3:

χn(i, j) = χ(R(i,2j−1)
n ,R(i,2j)

n ) + χ(R(i,2j)
n ,R(i,2j−1)

n ),

with

R(i,j)
n = R[(j − 1)2−in, j2−in].(6.1)

Proposition 6.1. Let p ≥ 1 be a fixed integer. Then as n→∞,

(
2(log n)2

π4 · n
· χn(i, j)

)
1≤i≤p

1≤j≤2i−1

(d)
=⇒

(∫
Ai,j

G(βs, βt) ds dt

)
1≤i≤p

1≤j≤2i−1

.

(6.2)

Moreover, the convergence also holds in expectation.

Our strategy for proving this proposition is first to localize in a certain
sense all the χn(i, j). More precisely we prove that for any given i and
j ≤ 2i−1, the term χn(i, j) can be written as a sum of two elements, one being
a localised version of this cross term (the so-called χn,α(i, j), see below),
and the other one having a negligible expectation. So to prove the joint
convergence in law of the cross terms, we are led to prove only the joint
convergence in law of the χn,α(i, j). To prove this in turn, we show the
convergence of the joint moments, which is indeed sufficient thanks to the
results of Section 4.1 and Carleman’s criterion (see Section 3.3.5 in [12]).

Now the χn,α(i, j) have the great advantage that their joint moments
reduce (after some tedious computation) to a product of non-intersection
probabilities (whose asymptotics have been computed in the previous sec-
tion) times a product of Green’s function. Then a separate argument shows
that this product of Green’s functions converges to its continuous counter-
part.

Before digging into the proof, we gather some basic preliminary estimates
in the next subsection.
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6.1. Preliminaries. We start with an elementary fact which directly fol-
lows from the local CLT (2.3) and (2.2): there is a constant C > 0, such
that for all k ≥ 0,

(6.3) E[Gd(Sk)] ≤ C · 1

k + 1
and E

[
Gd(Sk)

2
]
≤ C · 1

k2 + 1
.

Now for α > 0, recall that nα = n/(log n)α, and define the set

(6.4) Bα = {(x, y) :
√
n2α ≤ ‖x‖, ‖y‖ ≤

√
n(log n)2, ‖x− y‖ ≥

√
n2α}.

Lemma 6.2. Let S and S̃ be two independent random walks and let α >
0. Then

(6.5)

n∑
k=0

nα∑
`=0

E
[
Gd
(
Sk − S̃`

)]
. nα · log n,

(6.6)
n∑
k=0

n∑
`=n−nα

E
[
Gd
(
Sk − S̃`

)]
. nα,

and

(6.7)

n∑
k,`=0

∑
(x,y)/∈Bα

P(Sk = x, S̃` = y) ·Gd(x, y) . n2α · (log n)2.

Proof. Note that Sk − S̃` is equal in law to Sk+`. Thus by using (6.3),
we deduce that for any k ≥ 1,

nα∑
`=0

E
[
Gd
(
Sk+`

)]
.

nα∑
`=0

1

k + `
.

nα
k
.

Summing over k proves (6.5). The proof of (6.6) is entirely similar.
We prove now (6.7). Using (2.4) yields

P(‖Sk − S̃`‖2 ≤ n2α) = P(‖Sk+`‖2 ≤ n2α) .
n22α

1 + (k + `)2
.

Similarly one has

P(‖Sk‖2 ≤ n2α) .
n22α

1 + k2
and P(‖S̃`‖2 ≤ n2α) .

n22α
1 + `2

.

Therefore by using (6.3), (2.2), (2.4) and Cauchy-Schwarz, we get

E
[
Gd(Sk, S̃`)1((Sk, S̃`) /∈ Bα)

]
.

n2α
1 + k + `

(
1

1 + k
+

1

1 + `

)
.

The result follows by summing over k and `.
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Lemma 6.3. There exists a constant C > 0 so that for all i ≥ 1 and for
all j ≤ 2i−1, one has

1

n
· E

∑
k,`≤n

1(‖Sk − S`‖ ≤ ε
√
n) ·Gd(Sk, S`)

 ≤ C · ε log
1

ε
.

Proof. By considering two independent random walks we get

1

n
· E

∑
k,`≤n

1‖Sk−S`‖≤ε√n ·Gd(Sk, S`)

 .
1

n

2n∑
k=1

k
∑

z:‖z‖≤ε
√
n

pk(z)Gd(z)

.
1

n

2n∑
k=1

∑
z:‖z‖≤ε

√
n

k × exp(−‖z‖2/(2k))

k2
Gd(z).

(6.8)

Summing over z we now obtain

∑
z:‖z‖≤ε

√
n

exp(−‖z‖2/(2k))Gd(z) .
∫ ε
√
n

0

exp(−r2/(2k))

r2
r3 dr

= k(1− exp(−ε2n/(2k))).

Summing over k we get

1

n

2n∑
k=1

(
1− exp(−ε2n/2k)

)
≤ ε+

1

n

2n∑
k=εn

ε
n

2k
. ε log(1/ε)

and this concludes the proof.

Lemma 6.4. We have∑
x,y∈Z4

∑
k≤n

∑
`≤n

fk(x/2)f`(y/2)Gd(x, y) . n.

Proof. The proof follows immediately by substituting the expression for
f and using (2.6).

6.2. Localisation of one cross term. For any n ≥ 1, i ≥ 1 and j ≤ 2i−1,
define

Ani,j := {(2j − 2)2−in, . . . , (2j − 1)2−in} × {(2j − 1)2−in, . . . , j2−i+1n},
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and for any α > 0,

An,αi,j : = {(2j − 2)2−in+ nα, . . . , (2j − 1)2−in− nα}
× {(2j − 1)2−in+ nα, . . . , j2

−i+1n− nα}

at least for n large enough, to make sense of this definition, and with the
usual convention to take integer parts when needed.

Lemma 6.5. Let i, j be positive integers with j ≤ 2i−1. For all α > 3 we
have

χn(i, j) = 2 · χn,α(i, j) + εn,α(i, j),

where E[εn,α(i, j)] = o(n/(log n)2) and

χn,α(i, j)

=
∑

(k,`)∈An,αi,j
(x,y)∈Bα

P
(
R[k − n4α, k + n4α] ∩ (x+R1) = ∅, Sk = x /∈ R[k − n4α, k)

∣∣ S)
× Gd(x, y) · P

(
R[`− n4α, `+ n4α] ∩ (y +R2) = ∅, S` = y /∈ R[`− n4α, `)

∣∣ S) ,
with Bα as in (6.4) and R1 and R2 the ranges of two independent random
walks starting from 0 and where for simplicity we used the convention R1 =
R1[1,∞) and similarly for R2.

In order to prove the lemma above, we first approximate χn(i, j) by an ex-
pression without localisation which we call χ̃n,α(i, j), and which decorrelates
the two parts of the range in some sense.

Lemma 6.6. With the same notation as in Lemma 6.5 and (6.1), we
have

χn(i, j) = 2 · χ̃n,α(i, j) + ε̃n,α(i, j),

where E[ε̃n,α(i, j)] = o(n/(log n)2) and

χ̃n,α(i, j) =
∑

(k,`)∈An,αi,j
(x,y)∈Bα

P
(
R(i,2j)
n ∩ (y +R2) = ∅, S` = y /∈ R[(2j − 1)2−in, `)

∣∣∣ S)

× Gd(x, y) · P
(
R(i,2j−1)
n ∩ (x+R1) = ∅, Sk = x /∈ R[(2j − 2)2−in, k)

∣∣∣ S) .
Proof of Lemma 6.6. Since i and j are going to be kept fixed while n

will tend to infinity, we will not lose generality in doing the proof for i = 0
and j = 1. Also by moving the origin to S(n), and looking at the range
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R[0, n] backwards, one is led to consider χ(Rn, R̃n) + χ(R̃n,Rn), with Rn
and R̃n two independent ranges. So it suffices to treat the term χ(Rn, R̃n).

By the independence of R1 and R2 we get

χ(Rn, R̃n)

=

n∑
k,`=0

∑
x,y

Gd(x, y)P((Rn ∪ R̃n) ∩ (x+R1) = ∅, Sk = x /∈ R[0, k) | S, S̃)

× P(R̃n ∩ (y +R2) = ∅, S̃` = y /∈ R̃[0, `) | S̃).

Lemma 6.2 shows that we can restrict the sum over nα ≤ k, ` ≤ n− nα and
(x, y) ∈ Bα at a cost of at most nα log n in expectation. The probability
term appearing above is equal to

P
(
Rn ∩ (x+R1) = ∅, Sk = x /∈ R[0, k)

∣∣ S)
· P
(
R̃n ∩ (y +R2) = ∅, S̃` = y /∈ R̃[0, `)

∣∣∣ S̃)
− P

(
Rn ∩ (x+R1) = ∅, R̃n ∩ (y +R2) = ∅, R̃n ∩ (x+R1) 6= ∅,

Sk = x /∈ R[0, k), S̃` = y /∈ R̃[0, `)|S, S̃
)
.

The first term is equal to the probability term in the expression of χ̃n,α. So
we now turn to the second term. On the event {Sk = x}, by moving the
origin to point x and reversing time we can write

{Rn ∩ (x+R1) = ∅} = {(R3[0, k] ∪R4[0, n− k]) ∩R1 = ∅},

where R3 and R4 are the ranges of two independent walks starting from
0. Applying the same to R̃ we get that the event under consideration is
contained in the intersection of the following events

{(R3[0, k] ∪R4[0, n− k]) ∩R1 = ∅, S3(k) = −x}

{(R̃3[0, `] ∪ R̃4[0, n− `]) ∩R2 = ∅, S̃3(`) = −y}

{(R̃3[0, `] ∪ R̃4[0, n− `]) ∩ (x− y +R1) 6= ∅, S̃3(`) = −y}.

(6.9)

Setting i = nβ with β = 10α+ 4 we next define

A1 = {(R3[0, k] ∪R4[0, n− k]) ∩R1[0, i] = ∅, S3(k) = −x}

A2 = {R̃3[0, `] ∩R2 = ∅, S̃3(`) = −y}

A3 = {R̃4[0, n− `] ∩R2 = ∅}

A4 = {R̃3[0, `] ∩ (x− y +R1[0, i]) 6= ∅, S̃3(`) = −y}
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A5 = {R̃3[0, `] ∩ (x− y +R1[i,∞)) 6= ∅, S̃3(`) = −y}

A6 = {R̃4[0, n− `]) ∩ (x− y +R1[0, i]) 6= ∅}

A7 = {R̃4[0, n− `]) ∩ (x− y +R1[i,∞)) 6= ∅}.

The first event in (6.9) is contained in A1; the second one is contained in
A2 ∩ A3, and the third one is contained in the union of A4, A5, A6 and
A7. Therefore we get that the probability of the intersection of the events
appearing in (6.9) is upper bounded by

P(A1, A2, A6) + P(A1, A2, A7) + P(A1, A3, A4) + P(A1, A3, A5) .(6.10)

The first step now is to decorrelate the events where the range R1 appears.
Lemma 5.3 gives

P(A4) = P
(
R̃3[0, `] ∩ (x− y +R1[0, i]) 6= ∅, S̃3(`) = −y

)
. f`(y/2)×

max
(
P
(
R̃3[0, `] ∩ (x− y +R1[0, i]) 6= ∅

)
,P−y,0

(
R̃3[0, `] ∩ (x− y +R1[0, i]) 6= ∅

))
.

(6.11)

Defining the event D = {‖S1(r)‖ ≤
√
i(log n)α+2, ∀ r ≤ i} we get from (2.2)

for a positive constant c

P(Dc) . exp
(
−c(log n)2α+4

)
.(6.12)

On the event D, in order for R̃3[0, `] and x − y + R1[0, i] to intersect, S̃3

must hit a ball centred at x− y of radius
√
i(log n)α+2 or a ball centred at

x of the same radius (depending on whether we start from 0 or −y). Since
‖x− y‖ ≥ √n2α and ‖x‖ ≥ √n2α, using (2.7) and (6.12) we get

P
(
R̃3[0, `] ∩ (x− y +R1[0, i]) 6= ∅

)
∨ P−y,0

(
R̃3[0, `] ∩ (x− y +R1[0, i]) 6= ∅

)
.

1

(log n)4
,

(6.13)

where the last inequality follows from the choice of β (recall that i = nβ
with β = 10α+ 4).

Using (6.11), (6.13) and the independence between R̃3 and R̃4 we get

P(A1, A3, A4) .
1

(log n)4
· pk(x)f`(y/2) · P(A3) ≤

1

(log n)4
· pk(x)f`(y/2).
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Similarly we get the same upper bound for P(A1, A2, A6). It remains to
bound the probabilities P(A1, A2, A7) and P(A1, A3, A5). By the indepen-
dence between the walks again we get

P(A1, A2, A7) = P(A2)P(A1, A7) and P(A1, A3, A5) = P(A3)P(A1, A5) .

For the probability of the eventA2 by exactly the same proof as in Lemma 5.4
we have for a suitable γ > 0

P(A2) ≤ P
(
R̃3

[
0,

`

(log n)γ

]
∩R2 = ∅, S̃3(`) = −y

)
. p`(y) · 1√

log n
,

where in the last inequality we also used [24, Theorem 4.4.1]. By [24, The-
orem 4.4.1] again we get

P(A3) .
1√

log n
.

We now upper bound the probability P(A1, A5). The probability P(A1, A7)
can be bounded using similar ideas. Recall the definition of the event D
above. Then from (6.12) and the independence between the three walks we
get

P
(
Dc, S3(k) = −x, S̃3(`) = −y

)
≤ 1

(log n)4
pk(x)p`(y).

Conditioning on S1(i), the events A1 and A5 become independent, and hence
we obtain

P(A1, A5, D) ≤
∑

‖z‖≤
√
i(logn)α+2

P
(
A1

∣∣ S1(i) = z
)
P
(
S1(i) = z

)
P
(
A5

∣∣ S1(i) = z
)
.

(6.14)

From Lemma 5.3 again and [24, Theorem 4.3.3] we obtain for all z with
‖z‖ ≤

√
i(log n)α+2

P
(
A5

∣∣ S1(i) = z
)
.

log log n

log n
· f`(y/2).

Plugging this into (6.14) gives

P(A1, A5, D) . f`(y/2)
log logn

log n
P(A1) . f`(y/2)pk(x)

log log n

(log n)2

+O
(

(log log n)2

(log n)5/2
· fk(x/2) · f`(y/2)

)
,
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where for the last inequality we used Proposition 5.2. Therefore we conclude
that the sum of probabilities appearing in (6.10) is upper bounded by

1

(log n)7/3
· (pk(x)p`(y) + pk(x)f`(y/2) + fk(x/2)f`(y/2))

.
1

(log n)7/3
fk(x/2)f`(y/2)

Taking the sum over all k, ` and x, y and applying Lemma 6.4 completes the
proof.

Proof of Lemma 6.5. Using Lemma 6.6 it suffices to prove that for all
i, j ∈ N we have

χ̃n,α(i, j) = χn,α(i, j) + εn,α(i, j),

where E[εn,α(i, j)] = o(n/(log n)2). As in the proof of the previous lemma
we only prove the result for i = 0 and j = 1, and by using reversibility of the
walk, we are led to consider two independent ranges Rn and R̃n between
times 0 and n.

We now define

H =
{
Rn ∩ (x+R1) = ∅, Sk = x /∈ R[0, k)

}
.

Then we have that H = H1 ∩H2, where

H1 = {R[k − n4α, k + n4α] ∩ (x+R1) = ∅, Sk = x /∈ R[k − n4α, k)}
H2 = {(R[0, k − n4α] ∪R[k + n4α, n]) ∩ (x+R1) = ∅, x /∈ R[0, k − n4α)}.

Since P(H) = P(H1)−P(H1 ∩Hc
2), using Lemma 6.4 it suffices to prove that

for all x and k satisfying
√
n2α ≤ ‖x‖ ≤

√
n(log n)2 and nα ≤ k ≤ n − nα,

we have

P(H1 ∩Hc
2) . fk(x/2) · log logn

(log n)3/2
.(6.15)

So we now turn to prove (6.15). We first note that H1 ∩Hc
2 ⊆ F1 ∪ F2 ∪ F3,

where

F1 = {R[0, k − n4α] ∩ (x+R1) 6= ∅, R[k, k + n4α] ∩ (x+R1) = ∅, Sk = x}
F2 =

{
R[k + n4α, n] ∩ (x+R1) 6= ∅, R[k − n4α, k] ∩ (x+R1) = ∅, Sk = x

}
F3 = {Sk = x ∈ R[0, k − n4α]} .

We start by proving the upper bound of (6.15) for P(F1). The probability
P(F2) can be treated in exactly the same way.
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First we decorrelate the two events appearing in F1, by conditioning on
Sk = x and also by considering R1 in separate time intervals just like we
did in the proof of Lemma 6.6. Let i = n10α+4. Then subtracting x and
reversing time we obtain F1 ⊆ F1(1) ∪ F1(2), where

F1(1) = {R3[n4α, k] ∩R1[1, i] 6= ∅, S3(k) = −x}
F1(2) = {R3[n4α, k] ∩R1[i,∞) 6= ∅,R4[0, n4α] ∩R1[1, i] = ∅, S3(k) = −x},

and R3 and R4 are two independent ranges. From Lemma 5.3 we get

P(F1(1)) . fk(x/2) ·max(P−x,0
(
R3[0, k] ∩R1[1, i] 6= ∅

)
,

P
(
R3[n4α, k] ∩R1[1, i] 6= ∅

)
).

Just like in the proof of Lemma 6.6 we define the event D = {
∥∥S1(r)

∥∥ ≤√
i(log n)2, ∀r ≤ i}. Then on the event D in order for R3 and R1[1, i] to

intersect, the range R3 must hit the ball centered at 0 of radius
√
i(log n)2.

By the choice of x and (2.4), this now gives us

max(P−x,0
(
R3[0, k] ∩R1[1, i] 6= ∅

)
,P
(
R3[n4α, k] ∩R1[1, i] 6= ∅

)
) .

1

(log n)4
,

and hence

P(F1(1)) . fk(x/2) · 1

(log n)4
.

We now turn to bound P(F1(2)). Clearly P(F1(2), Dc) ≤ pk(x)/(log n)4. Now
on the event D conditioning on S1(i) we get

P(F1(2), D) ≤
∑

‖z‖≤
√
i(logn)2

P
(
R4[0, n4α] ∩R1[1, i] = ∅, S1(i) = z

)
×P
(
R3[n4α, k] ∩R1[i,∞) 6= ∅, S3(k) = −x

∣∣ S1(i) = z
)
.

From Lemma 5.3 again we obtain

P
(
R3[n4α, k] ∩R1[i,∞) 6= ∅, S3(k) = −x

∣∣ S1(i) = z
)

. fk(x/2) ·max
(
Pz,0

(
R3[n4α, k] ∩R1[0,∞) 6= ∅

)
,Pz,−x

(
R3[0, k] ∩R1[0,∞) 6= ∅

))
. fk(x/2) · log logn

log n
,

where the last inequality follows from [24, Theorem 4.3.3].
Plugging this above we finally deduce

P(F1(2), D) ≤ log logn

log n
· fk(x/2) · 1√

log n
,



38 A. ASSELAH, B. SCHAPIRA & P. SOUSI

where the last estimate follows from [24, Theorem 4.4.1].
To finish the proof we only need to upper bound P(F3). By reversing time

again we obtain

P(F3) ≤ P(Sk = −x,∃ ` ∈ [n4α, k] : S` = 0) . fk(x/2) · (log n)2α

n
,

where the last inequality follows from Claim 5.6. Therefore, putting all these
bounds together proves (6.15) and this now completes the proof.

6.3. Moments of χ. In this subsection we prove the following result

Lemma 6.7. Let r ∈ N and let i1, j1, . . . , ir, jr be integers such that jm ≤
2im−1 for all m ≤ r (and possibly with repetition). Then for all α > 12 as
n→∞ we have
(6.16)(

8 log n

π2

)2r

· E

[
r∏

m=1

χn,α(im, jm)

]
∼ E

 r∏
m=1

 ∑
(k,`)∈Anim,jm

Gd(Sk, S`)

 .
Before proving the lemma above we state a result on the convergence

of discrete quantities to their continuous counterparts. We defer the proof
after we prove Lemma 6.7. For all β > 0 we define the sets Dβ and Eβ to be
the set of time indices and points in space at distance nβ and

√
n2β apart

respectively. More precisely, we define

Dβ =

{
(k1, `1, . . . , kr, `r) ∈ N2r : (km, `m) ∈ An,βim,jm , ∀m ≤ r and

|km − km′ |, |km − `m′ |, |`m − `m′ | ≥ nβ, ∀m 6= m′ ≤ r
}(6.17)

and also, with Bβ as in (6.4),

Eβ =

{
(x1, y1, . . . , xr, yr) ∈ (Zd)2r : (xm, ym) ∈ Bβ, ∀m ≤ r, and

‖xm − xm′‖ , ‖xm − ym′‖ , ‖ym − ym′‖ ≥
√
n2β, ∀m 6= m′ ≤ r

}
.

(6.18)

Lemma 6.8. Let r ∈ N and let i1, j1, . . . , ir, jr be integers satisfying jm ≤
2im−1 for all m ≤ r (and possibly with repetition). Then as n→∞ we have

1

nr
·

r∏
m=1

 ∑
(k,`)∈Anim,jm

Gd(Sk, S`)

 (d)
=⇒

r∏
m=1

∫
Aim,jm

16G(βs, βt) ds dt.
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Moreover, for all β > 2 we have

1

nr
·
∑
Dβ

1(Skm ,S`m )m≤r∈Eβ

r∏
m=1

Gd(Skm , S`m)
(d)

=⇒
r∏

m=1

∫
Aim,jm

16G(βs, βt) ds dt,

where in the sum above we take (k1, `1, . . . , kr, `r) ∈ Dβ. Finally in both
cases we also have convergence in expectation.

Lemma 6.9. There exists a positive constant C so that for all r ≥ 1 and
all i1, j1, . . . , ir, jr (satisfying jm ≤ 2im−1 for all m ≤ r and possibly with
repetition), one has

E

 r∏
m=1

∑
(k,`)∈Anim,jm

Gd(Sk, S`)

 ≤ Cnr.
Remark 6.10. Since we allow repetition of the indices, Lemma 6.9 shows

that the random variables

1

nr
·

r∏
m=1

∑
(k,`)∈Anim,jm

Gd(Sk, S`)

are bounded in Lp for all p ∈ N.

Proof of Lemma 6.9. The proof of the lemma follows directly by the
Cauchy-Schwarz inequality together with [4, Lemma 3.2].

Proof of Lemma 6.7. For shorthand notation, we write for k ≥ 0, x ∈
Zd, α > 0, and Λ ⊂ Zd,

Aα(k, x,Λ) = {R[k − n4α, k + n4α] ∩ (x+ Λ) = ∅, Sk = x /∈ R[k − n4α, k)}.

Now for multi-indices i = (i1, . . . , ir) and j = (j1, . . . , jr), write as above
An,αi,j = An,αi1,j1 × . . . × A

n,α
ir,jr

. Let (Rm)m and (R̃m)m be the ranges of inde-
pendent walks starting from 0. Then we have

E

[
r∏

m=1

χn,α(im, jm)

]
=

∑
An,αi,j , Bα

P

(
r⋂

m=1

(Aα(km, xm,Rm) ∩ Aα(`m, ym, R̃m))

)

×
r∏

m=1

Gd(xm, ym),

(6.19)
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where in the sum above we take (k1, `1, . . . , kr, `r) ∈ An,αi,j and (xm, ym) ∈ Bα
for all m ≤ r.

First of all it is obvious that

E

[
r∏

m=1

χn,α(im, jm)

]
≥
∑
Dα,Eα

P

(
r⋂

m=1

(Aα(km, xm,Rm) ∩ Aα(`m, ym, R̃m))

)

×
r∏

m=1

Gd(xm, ym).

(6.20)

Next, we establish that for a suitable β > α we have

E

[
r∏

m=1

χn,α(im, jm)

]
≤
∑
Dβ ,Eβ

P

(
r⋂

m=1

(Aβ(km, xm,Rm) ∩ Aβ(`m, ym, R̃m))

)

×
r∏

m=1

Gd(xm, ym) + o(nr/(log n)2r).

(6.21)

Indeed, we decompose (6.19) into two parts, one over the set Dβ × Eβ and
one over the complementary set. Since β > α, we notice that Aα(k, x,Λ) ⊆
Aβ(k, x,Λ) for all k, x,Λ. It remains to show that the sum over (Dβ ×Eβ)c

is o(nr/(log n)2r). Forgetting about the intersection events, we can upper
bound this sum by

∑
An,αi,j , D

c
β , Bα

P

(
r⋂

m=1

{Skm = xm, S`m = ym}

)
·

r∏
m=1

Gd(xm, ym)

+
∑

An,αi,j ,Dβ , Bα, E
c
β

P

(
r⋂

m=1

{Skm = xm, S`m = ym}

)
·

r∏
m=1

Gd(xm, ym).

We start by bounding the first sum appearing above. Using that Gd(x, y) .
1/n2α for all (x, y) ∈ Bα gives

∑
An,αi,j , D

c
β , Bα

P

(
r⋂

m=1

{Skm = xm, S`m = ym}

)
·

r∏
m=1

Gd(xm, ym)

.
n2r−1

(n2α)r
· nβ =

nr

(log n)β−2αr
,

(6.22)
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where we used that if β > α, then An,αim,jm ⊆ An,βim,jm . We now turn to the
second sum. Using again the bound on Gd(x, y) for (x, y) ∈ Bα as above and
that on the set Dβ all the indices are within distance at least nβ apart, we
get

∑
An,αi,j , Dβ , Bα,E

c
β

P

(
r⋂

m=1

{Skm = xm, S`m = ym}

)
·

r∏
m=1

Gd(xm, ym)

≤ n2r

(n2α)r
· sup
t≥nβ

P
(
‖St‖ ≤

√
n2β
)
.

(6.23)

Note that we used that n2r is an upper bound on the cardinality of An,αi,j .
Using now (2.4) we can upper bound the second sum by

∑
An,αi,j ,Dβ , Bα,E

c
β

P

(
r⋂

m=1

{Skm = xm, S`m = ym}

)
·

r∏
m=1

Gd(xm, ym)

.
nr

(log n)2β−2αr
.

Thus taking 2β > 2αr + 2r + 1 proves (6.21).
We next show that for all β sufficiently large we have the following: for any

0 = k0 < k1 < . . . < kr and any 0 = x0, x1, . . . , xr satisfying |ki+1−ki| ≥ nβ,
‖xi+1 − xi‖ ≥

√
n2β and ‖xi‖ ≤

√
n(log n)2 for all i < r we have

P

(
r⋂

m=1

Aβ(km, xm,Rm)

)

=

(
π2

8
· 1

log n

)r
·

r∏
m=1

pkm−km−1(xm−1, xm) · (1 + o(1))

+O

(
log log n

(log n)r+
1
2

·
r∏

m=1

fkm−km−1((xm−1 − xm)/2)

)
.

(6.24)

We show (6.24) by induction on r. The case r = 1 follows from Proposi-
tion 5.2. We now assume r > 1. We write j = kr−1 + n4β and define for
x ∈ Zd

B(x) = {z : ‖z − x‖ ≤ √n4β · (log n)3β/4}, and D =
{
Sj ∈ B(Skr−1)

}
.
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We now obtain

P

(
r⋂

m=1

Aβ(km, xm,Rm)

)
=P

(
r⋂

m=1

Aβ(km, xm,Rm), D

)

+ P

(
r⋂

m=1

Aβ(km, xm,Rm), Dc

)
.

(6.25)

For z ∈ B(xr−1) by the Markov property we have

P

(
r⋂

m=1

Aβ(kr, xr,Rr), Sj = z

)
= P(Aβ(kr, xr,Rr) | Sj = z)

× P

(
r−1⋂
m=1

Aβ(km, xm,Rm), Sj = z

)
.

Taking β satisfying β > 8 and applying Proposition 5.2 to the first term
appearing on the right hand-side above we obtain as n→∞

P(Aβ(kr, xr,Rr) | Sj = z) =
π2

8
· 1

log n
· pkr−j(z, xr) · (1 + o(1))

+O
(

log logn

(log n)3/2
· fkr−j((z − xr)/2)

)
.

(6.26)

Then by Claim 2.2 and (2.3) since β > 8 we get that

pkr−j(z, xr) = pkr−kr−1(xr−1, xr) · (1 + o(1))

and similarly for f . Substituting this into (6.26) gives

P(Aβ(kr, xr,Rr) | Sj = z) =
π2

8
· 1

log n
· pkr−kr−1(xr−1, xr) · (1 + o(1))

+O
(

log log n

(log n)3/2
· fkr−kr−1((xr − xr−1)/2)

)
.

Hence overall we obtain

P

(
r⋂

m=1

Aβ(km, xm,Rm), D

)(6.27)

=
∑

z∈B(xp−1)

P

(
r−1⋂
m=1

Aβ(km, xm,Rm),Aβ(kr, xr,Rr), Sj = z

)
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=
π2

8
· 1

log n
· pkr−kr−1(xr−1, xr) · (1 + o(1)) · P

(
r−1⋂
m=1

Aβ(km, xm,Rm), D

)

+O

(
P

(
r−1⋂
m=1

Aβ(km, xm,Rm), D

)
log log n

(log n)3/2
· fkr−kr−1((xr − xr−1)/2)

)
.

By the Markov property and (2.2) we have

P

(
r−1⋂
m=1

Aβ(km, xm,Rm), Dc

)
≤

r−1∏
m=1

pkm−km−1(xm−1, xm) · exp
(
−(log n)3β/2

)
.

Now note that pkr−kr−1(xr−1, xr) & e−2(logn)
β+4

whenever pkr−kr−1(xr−1, xr)
is positive, since we have taken kr−kr−1 ≥ nβ and ‖xr − xr−1‖ ≤ 2

√
n(log n)2.

Taking β such that 3β/2 > β + 6 we have

P

(
r⋂

m=1

Aβ(km, xm,Rm), Dc

)
≤

r−1∏
m=1

pkm−km−1(xm−1, xm) · exp(−(log n)β+6)

≤
r∏

m=1

pkm−km−1(xm−1, xm) · exp(−(log n)2),

Therefore, the two inequalities above together with (6.25) and (6.27) give

P

(
r⋂

m=1

Aβ(km, xm,Rm)

)

=
π2

8 log n
pkr−kr−1(xr−1, xr) · P

(
r−1⋂
m=1

Aβ(km, xm,Rm)

)
(1 + o(1))

+O

(
r∏

m=1

pkm−km−1(xm−1, xm) exp
(
−(log n)2

))

+O

(
P

(
r−1⋂
m=1

Aβ(km, xm,Rm)

)
log log n

(log n)3/2
fkr−kr−1((xr − xr−1)/2)

)

+O

(
fkr−kr−1((xr − xr−1)/2)

r−1∏
m=1

pkm−km−1(xm−1, xm) exp
(
−(log n)3β/2

))
.

Note that for (xi) and (ki) as above, we have from (2.3) that

pkm−km−1(xm−1, xm) . fkm−km−1((xm − xm−1)/2).
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So we can replace the product appearing in the last O term above by∏r−1
m=1 fkm−km−1((xm − xm−1)/2). We use the previous equation to finish

the inductive proof of (6.24).
We now explain how to conclude the proof of the lemma from (6.24).
Since (6.24) holds for all β > 12 and since α > 12, we can plug (6.24)

into (6.20) to get

E

[
r∏

m=1

χn,α(im, jm)

]

≥
(
π2

8
· 1

log n

)2r

E

[∑
Dα

1(Skm ,S`m )m≤r∈Eα

r∏
m=1

Gd(Skm , S`m)

]
(1 + o(1))

+
log log n

(log n)2r+1/2
O

 ∑
Dα,Eα

2r∏
m=1

fsi−si−1((zi − zi−1)/2)

r∏
m=1

Gd(xm, ym)

 ,

where (si) is the increasing rearrangement of the indices (km) and (`m)
and (zi) are the corresponding rearrangement of (xm) and (ym). Similarly,
plugging (6.24) into (6.21) we obtain

E

[
r∏

m=1

χn,α(im, jm)

]
≤ o(nr/(log n)2r)

+

(
π2

8
· 1

log n

)2r

E

∑
Dβ

1(Skm ,S`m )m≤r∈Eβ

r∏
m=1

Gd(Skm , S`m)

 (1 + o(1))

+
log logn

(log n)2r+1/2
O

 ∑
Dβ ,Eβ

2r∏
m=1

fsi−si−1((zi − zi−1)/2)

r∏
m=1

Gd(xm, ym)

 .

By Lemma 6.8, since both sequences appearing below converge in expecta-
tion to the same limit, we get that as n→∞

E

∑
Dβ

1(Skm ,S`m )m≤r∈Eβ

r∏
m=1

Gd(Skm , S`m)

 ∼ E

 r∏
m=1

 ∑
(k,`)∈Anim,jm

Gd(Sk, S`)

 .
Using that fk(x/2) � f4k(x) � p4k(x) + p4k+1(x) and Lemma 6.9 we get

that the O terms appearing in the two inequalities above are O(nr) and this
now completes the proof of the lemma.
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6.4. Proof of Proposition 6.1. In this section we give the proof of Propo-
sition 6.1. We start by proving Lemma 6.8.

Proof of Lemma 6.8. We start by proving the first statement of the
lemma. Let ε > 0 and ϕε be a continuous function satisfying

1(‖x‖ ≥ ε) ≤ ϕε(x) ≤ 1(‖x‖ ≥ ε/2).

Recall from (2.6) that

Gd(x) = 4G(x) +O
(

1

1 + ‖x‖4

)
.

To simplify notation, we now write

X(m) =
∑

(k,`)∈Anim,jm

Gd(Sk, S`), Xε(m) =
∑

(k,`)∈Anim,jm

Gd(Sk, S`)ϕε

(
Sk − S`

2
√
n

)

and X̃ε(m) =
∑

(k,`)∈Anim,jm

4G(Sk, S`)ϕε

(
Sk − S`

2
√
n

)
.

Using Lemma 6.9 it is straightforward to check that

1

nr
· E

[
r∏

m=1

Xε(m)−
r∏

m=1

X̃ε(m)

]
= O(1/n).(6.28)

Note that the function G(x)ϕε(x) is continuous and bounded, and that by
Donsker’s invariance principle (S[nt]/2

√
n, t ≥ 0) converges in law to a stan-

dard Brownian motion. Hence we obtain as n→∞

1

nr
·

r∏
m=1

X̃ε(m)
(d)

=⇒
r∏

m=1

∫
Aim,jm

16G(βs, βt)ϕε(βs − βt) ds dt.(6.29)

For all m ≤ r we have

X(m)−Xε(m) ≤
∑

(k,`)∈Anim,jm

Gd(Sk, S`)1(‖Sk − S`‖ ≤ 2ε
√
n),

and hence using Lemma 6.3 we get

E[X(m)−Xε(m)] . n · ε log

(
1

ε

)
.(6.30)
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For each ε > 0 we now define

Rn(ε) =
1

nr
·

r∏
m=1

X(m)− 1

nr
·

r∏
m=1

Xε(m).

In view of (6.28) and (6.29), in order to complete the proof of the first
statement, it suffices to prove that E[Rn(ε)]→ 0 as ε→ 0 uniformly in n.

With the definitions above we can upper bound Rn(ε) by

Rn(ε) ≤ 1

nr
·

r∑
w=1

(X(w)−Xε(w)) ·
r∏

m=1
m 6=w

X(m).

We now set Z(w) to be equal to the product appearing above. Using the
obvious upper bound X(m)−Xε(m) ≤ (X(m)−Xε(m))1/2 · (X(m))1/2 and
Hölder’s inequality applied twice gives the following bound for E[Rn(ε)]

1

nr
·

r∑
w=1

(E[X(w)−Xε(w)])1/2 · (E
[
(X(m))3

]
)1/6 · (E

[
(Z(w))3

]
)1/3.

Lemma 6.9 and (6.30) now give that

E[Rn(ε)] ≤ C1 ·

√
ε log

(
1

ε

)
→ 0 as ε→ 0(6.31)

and this proves the first convergence.
For the second statement we note that using Cauchy-Schwarz and similar

arguments as in Lemma 6.2 one can remove the sets Dβ and Eβ and then
apply the first part of the lemma.

Finally we get the convergence in expectation as a consequence of weak
convergence together with uniform integrability which follows directly from
Lemma 6.9.

Proof of Proposition 6.1. By Cramer–Wold in order to deduce the
weak convergence it suffices to prove that all linear combinations of vari-
ables on the left converge weakly to the corresponding linear combinations
of variables on the right. Lemma 6.5 shows that one can replace the terms
χn(i, j) by their localised versions, χn,α(i, j). Lemmas 6.7 and 6.8 show that
the moments of all linear combinations of the χn,α(i, j) do actually converge
to the corresponding moments. We only need to ensure that the moments of
the limiting object uniquely characterise the distribution. This now follows
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from Proposition 4.1 using Carleman’s criterion (see Section 3.3.5 in [12]).
Indeed, for any variable X on the right of (6.2), Proposition 4.1 gives that

E[Xp] ≤ Cpp2p.

Therefore, if X and Y are two of the variables on the right, then by the
triangle inequality for the Lp-norm we get

E[(X + Y )p]1/p ≤ E[Xp]1/p + E[Y p]1/p ≤ 2C · p2.

Therefore, Carleman’s condition also holds for the sum X + Y , hence its
distribution is uniquely characterised by its moments.

7. Central Limit Theorem. In this section we finally give the proof
of Theorem 1.2.

We start by proving an upper bound on the variance of Cap (Rn) using
the same technique as Le Gall did for the range in dimension 2.

Lemma 7.1. We have E
[
(Cap (Rn)− E[Cap (Rn)])4

]
. n4/(log n)8.

Proof. The proof follows in the same way as [28, Lemma 6.2] and [4,
Lemma 3.5] . We write Xn = Cap (Rn) and X = X − E[X]. We now write
` = [n/2] and m = n− `. Then from Proposition 2.3 we get

|Xn −X
(1)
` −X

(2)
m | = |χn(1, 1) + εn|.

Lemmas 6.7 and 6.9 give that

E[χn(1, 1)] .
n

(log n)2
and E

[
(χn(1, 1))2

]
.

n2

(log n)4
.

Also from Proposition 2.3 we have that E[εn] = O(log n) and E
[
ε2n
]

=
O((log n)2). The rest of the proof follows in exactly the same way as in [4,
Lemma 4.2].

Proof of Theorem 1.2. For any fixed p ≥ 1, Proposition 2.3 shows that

Cap (Rn) =
2p∑
j=1

Cap
(
R(p,j)
n

)
−

p∑
i=1

2i−1∑
j=1

χn(i, j) + εn.

We write X = X−E[X]. Subtracting the expectation in the equation above
we obtain

Cap (Rn) =
2p∑
j=1

Cap
(
R(p,j)
n

)
−

p∑
i=1

2i−1∑
j=1

χn(i, j) + εn.
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Lemma 7.1 and the independence of the ranges R(p,j)
n immediately give that

E

(log n)2

n

2p∑
j=1

Cap
(
Rp,jn

)2 . 2−p.

Since E[εn] = o(n/(log n)2) from Proposition 2.3 we get that

(log n)2

n
· εn

P−→ 0, as n→∞.

Moreover, using Proposition 6.1 we get that for a fixed p, as n goes to infinity

2(log n)2

π4 · n
·

p∑
i=1

2i−1∑
j=1

χn(i, j)
(d)

=⇒
p∑
i=1

2i−1∑
j=1

γG(Ai,j).

From Proposition 4.5 we also have in L2-norm:

lim
p→∞

p∑
i=1

2i−1∑
j=1

γG(Ai,j) = γG(C) =
1

2
γG([0, 1]2).

By first taking p large enough, and then letting n→∞ finishes the proof.

Proof of Corollary 1.5. Lemma 7.1 shows that (log n)4/n2(Cap (Rn)−
E[Cap (Rn)])2 is uniformly integrable. Hence this together with the conver-
gence in distribution from Theorem 1.2 proves the corollary.

8. Appendix. In this section we prove the two lemma that were used
in the proof of Proposition 4.1.

Proof of Lemma 4.3. First using the explicit density of the Brownian
motion we get∫ 1

0
E
[

(a+ | log ‖βs − x‖|)k

‖βs − x‖2

]
ds .

∫ 1

0

ds

s2

∫
R4

(a+ | log ‖u‖|)k

‖u‖2
e−
‖u+x‖2

2s du

.
∫
R4

(a+ | log ‖u‖|)k

‖u‖2 · ‖u+ x‖2
e−
‖u+x‖2

2 du,

using Fubini at the second line. Now, define

F (u, x) :=
(a+ | log ‖u‖|)k

‖u‖2 · ‖u+ x‖2
· e−

‖u+x‖2
2 .
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We bound F as follows,

F (u, x) .


(a+| log ‖u‖|)k

‖u‖4 · e−
‖u‖2

8 if ‖u‖ ≥ 2‖x‖
(a+| log ‖u‖|)k
‖u‖2·‖x‖2 · e−

‖x‖2
8 if ‖u+ x‖ ≥ ‖x‖2 and ‖u‖ ≤ 2‖x‖

(a+1+| log ‖x‖|)k
‖x‖2·‖u+x‖2 · e−

‖u+x‖2
2 if ‖u+ x‖ ≤ ‖x‖2 .

Then, we obtain with appropriate changes of variables∫
R4

F (u, x) du . I1(x) + I2(x) + I3(x),

with

I1(x) =

∫ ∞
2‖x‖

(a+ | log r|)k

r
· e−

r2

8 dr,

I2(x) = ‖x‖−2 · e−
‖x‖2

8

∫ 2‖x‖

0
r (a+ | log r|)k dr,

I3(x) =
(a+ 1 + | log ‖x‖|)k

‖x‖2

∫ ‖x‖
0

r e−r
2/2 dr.

Note that I3(x) . (a + 1 + | log ‖x‖|)k. Moreover, I1(x) and I2(x) will be
bounded using the two following claims.

Claim 8.1. For all a ≥ 0, b > 0 and k ≥ 1 we have∫ b

0
(a+ | log r|)kr dr . b2 ·

k∑
`=0

(a+ | log b|)k−` · k`,

Proof. Using the change of variable r = exp(−u), we obtain

f(k) :=

∫ b

0
(a+ | log r|)kr dr =

∫ ∞
− log b

(a+ |u|)ke−2u du.

Assume first that b < 1, so that − log b is nonnegative. Then an integration
by parts gives

f(k) =
b2

2
(a+ | log b|)k +

k

2
f(k − 1),

leading to the desired result by induction. Now if b ≥ 1, one has

f(k) =

∫ log b

0
(a+ u)ke2u du+

∫ ∞
0

(a+ u)ke−2u du,
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and an integration by parts gives similarly

f(k) . b2(a+ log b)k + kf(k − 1),

and the claim follows by induction.

Claim 8.2. For all a ≥ 0, b > 0, and k ≥ 0 we have∫ ∞
b

(a+ | log r|)k

r
e−r

2/8 dr .
(a+ | log b|)k+1

k + 1
+e−b

2/8·
k∑
`=0

(4k)`(a+| log b|)k−`.

Proof. Assume first that b ≥ 1, and note that∫ ∞
b

(a+ | log r|)k

r
e−r

2/8 dr ≤ g(k, b) :=

∫ ∞
b

(a+ | log r|)k r e−r2/8 dr.

Moreover, an integration by parts yields

g(k, b) ≤ 4(a+ log b)ke−b
2/8 + 4kg(k − 1, b),

which gives the result by induction. Now if b < 1, we have∫ ∞
b

(a+ | log r|)k

r
e−r

2/8 dr ≤
∫ 1

b

(a− log r)k

r
dr + g(k, 1)

=
(a+ | log b|)k+1

k + 1
+ g(k, 1),

and using the previous estimate for g(k, 1), this concludes the proof of the
claim.

Now we can just apply these two claims with b = 2‖x‖ and use that
| log 2‖x‖| ≤ 1+ | log ‖x‖|. This gives the desired upper bounds for I1(x) and
I2(x) and concludes the proof of Lemma 4.3.

Proof of Lemma 4.4. We have∫ 1

0
E
[
(a+ | log ‖β̃t‖|)k

]
dt .

∫ 1

0

dt

t2

∫
R4

(a+ | log ‖u‖|)ke−‖u‖2/(2t) du

.
∫
R4

(a+ | log ‖u‖|)k

‖u‖2
e−‖u‖

2/2 du .
∫ ∞
0

(a+ | log r|)k r e−r2/2 dr

.
∫ 1

0
(a+ | log r|)k r dr +

∫ ∞
1

(a+ | log r|)k r e−r2/2 dr.

Now using the same argument as in the proof of Claim 8.2 for the second
integral and Claim 8.1 with b = 1 for the first one, we obtain the lemma.
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