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Abstract. We consider the nonlinear Schrödinger equation i∂tu+∆u+u|u|p−1 =
0 in dimension N ≥ 2 and in the mass super critical and energy subcritical range
1 + 4

N
< p < min{N+2

N−2
, 5}. For initial data u0 ∈ H1 with radial symmetry, we

prove a universal upper bound on the blow up speed. We then prove that this
bound is sharp and attained on a family of collapsing ring blow up solutions first
formally predicted in [9].

1. Introduction

1.1. Setting of the problem. We consider in this paper the nonlinear Schrödinger
equation

(NLS)

{
i∂tu+ ∆u+ |u|p−1u = 0,
u|t=0 = u0,

(t, x) ∈ R× RN (1.1)

in dimension N ≥ 2 and in the mass supercritical and energy subcritical range

1 +
4

N
< p < 2∗ − 1, 2∗ =

{
+∞ for N = 2,
2N
N−2 for N ≥ 3.

(1.2)

From Ginibre and Velo [11], given u0 ∈ H1, there exists a unique solution u ∈
C([0, T ), H1) to (1.1) and there holds the blow up alternative:

T < +∞ implies lim
t→T
‖u(t)‖H1 = +∞.

The H1 flow admits the conservation laws:

Mass : M(u)

∫
|u(t, x)|2 = M(u0),

Energy : E(u) =
1

2

∫
|∇u(t, x)|2dx− 1

p+ 1

∫
|u(t, x)|p+1dx = E(u0)

Momentum : P (u) = =
(∫
∇u(t, x)u(t, x)dx

)
= P (u0).

A large group of symmetries also acts in the energy space H1, in particular the
scaling symmetry

u(t, x) 7→ λ
2
p−1

0 u(λ2
0t, λ0x), λ0 > 0 (1.3)

and the Galilean drift:

u(t, x) 7→ u(t, x− β0t)e
i
β0
2
·(x−β0

2
t), β0 ∈ RN .

The scaling invariant homogeneous Sobolev space Ḣsc attached to (1.1) is the one
which leaves the scaling symmetry invariant, explicitly:

sc =
N

2
− 2

p− 1
.

1
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We say that the problem is mass subcritical if sc < 0, mass critical if sc = 0 and mass
supercritical if sc > 0. From standard argument, for mass subcritical problems, the
energy dominates the kinetic energy and all H1 solutions are global and bounded,
see [4]. On the other hand, for sc ≥ 0 and data

u0 ∈ Σ = H1 ∩ {xu ∈ L2},

the celebrated virial identity

d2

dt2

∫
|x|2|u(t, x)|2dx = 4N(p− 1)E(u0)− 16sc

N − 2sc

∫
|∇u|2 ≤ 16E(u0) (1.4)

implies that solutions emerging from non positive energy initial data E(u0) < 0
cannot exist globally and hence blow up in finite time.
This dichotomy can also be seen on the stability of ground states periodic solutions
u(t, x) = Q(x)eit where Q is from [10], [18] the unique up to symmetries solution to

∆Q−Q+Qp = 0, Q ∈ H1, Q > 0. (1.5)

From variational arguments [5], these solutions are orbitally stable for sc < 0, and
unstable by blow up and scattering for sc > 0, [2], [32].
Note that we may reformulate the condition (1.2) as

0 < sc < 1.

In this setting, the Cauchy problem is also well posed in Ḣs for sc ≤ s ≤ 1 and from
standard argument, this implies the scaling lower bound on the blow up speed for
H1 finite time blow up solutions:

‖∇u(t)‖L2 &
1

(T − t)
1−sc

2

, (1.6)

see [28] for further details.

1.2. Qualitative information on blow up. There is still little understanding of
the blow up scenario for general initial data. The situation is better understood in
the mass critical case sc = 0 since the series of works [33], [23], [24], [25], [26], [27]
where a stable blow up regime of "log-log" type is exhibited in dimension N ≤ 5
with a complete description of the associated bubble of concentration. In particular,
blow up occurs at a point and the solution concentrates exactly the ground state
mass

|u(t, x)|2 ⇀ ‖Q‖2L2δx=x∗ + |u∗|2 as t→ T (1.7)

for some (x∗, u∗) ∈ RN × L2. This blow up dynamic is not the only one and there
exist further threshold dynamics which transition from stable blow up to stable scat-
tering, see [3], [31]. These explicit scenario correspond to an improved description
of the flow near the ground state solitary wave.

For sc > 0, the situation is more poorly understood. The only general feature
known on blow up is the existence of a universal upper bound on blow up rate1∫ T

0
(T − t)‖∇u(t)‖2L2dt < +∞ (1.8)

which is a direct consequence of the time integration of the virial identity (1.4), see
[4]. In [28], Merle and Raphaël consider radial data in the range 0 < sc < 1, and

1for data u0 ∈ Σ = H1 ∩ {xu ∈ L2}.
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show that if blow up occurs, the Sobolev invariant critical norm does not concentrate
as in (1.7), it actually blows up with a universal lower bound

‖u(t)‖Ḣsc ≥ |log(T − t)|C(N,p). (1.9)

This relates to the regularity results for the 3D Navier Stokes [8] and the regularity
result [14], and shows a major dynamical difference between critical and super crit-
ical blow up. Then two explicit blow up scenario have been constructed so far. In
[30], a stable self similar blow up regime

‖∇u(t)‖L2 ∼
1

(T − t)
1−sc

2

is exhibited in the range 0 < sc � 1, N ≤ 5, which bifurcates in some sense from
the log-log analysis in [24], [26]. These solutions concentrate again at a point in
space.

A completely different scenario is investigated in [36], [38] for the quintic nonlin-
earity p = 5 in dimensions N ≥ 2 where "standing ring" solutions are constructed.
These solutions have radial symmetry and concentrate their mass on an asymptotic
fixed sphere

u(t, r) ∼ 1

λ
2
p−1

(t)
Q

(
r − r∗

λ(t)

)
, r∗ > 0

where Q is the one dimensional mass critical ground state p = 5, and the speed of
concentration is given by the log log law

λ(t) ∼

√
T − t

log|log(t− t)|
.

Note that this includes energy critical (N = 3) and energy super critical regimes
(N ≥ 4), and this blow up scenario is shown to be stable by smooth radially sym-
metric perturbation of the data. We refer to [41], [12], [13] for further extensions in
cylindrical symmetry.

In the breakthrough paper [9], Fibich, Gavish and Wang propose a formal general-
ization of the ring scenario for 1+ 4

N < p < 5: they formally predict and numerically
observe solutions with radial symmetry which concentrate on a collapsing ring

u(t, r) ∼ 1

λ
2
p−1

(t)
(Qe−β∞y)

(
r − r(t)
λ(t)

)
were Q is the mass subcritical one dimensional ground state solution to (1.5), β∞ is
a universal Galilean drift

β∞ =

√
5− p
p+ 3

, (1.10)

and concentration occurs at the speed:

λ(t) ∼ (T − t)
1

1+α , r(t) = (T − t)
α

1+α

for some universal interpolation number

α =
5− p

(p− 1)(N − 1)
. (1.11)

Moreover, numerics suggest that this blow up is stable by radial perturbation of
the data. This blow up corresponds to a new type of concentration, and like the
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standing ring solution for p = 5, it recovers in the supercritical regime the mass
concentration scenario (1.7).

1.3. Statement of the result. We first claim a universal space time upper bound
on blow up rate for radial data in the regime 0 < sc < 1 which sharpens the rough
virial bound (1.8).

Theorem 1.1 (Upper bound on blow up rate for radial data). Let

N ≥ 2, 0 < sc < 1, p < 5.

Let u0 ∈ H1 with radial symmetry and assume that the corresponding solution u ∈
C([0, T ), H1) of (1.1) blows up in finite time t = T . Then there holds the space time
upper bound: ∫ T

t
(T − τ)‖∇u(τ)‖2L2dτ ≤ C(u0)(T − t)

2α
1+α , (1.12)

where α is given by (1.11).

The proof of (1.12) is surprisingly simple and relies on a sharp version of the
localized virial identity introduced in [28]. Recall that no upper bound on the
blow up rate is known in the mass critical case sc = 0, and arbitrary slow type
II concentration2 should be expected for the energy critical problem sc = 1 in the
continuation of [17]. Note also that the bound (1.12) implies

lim inf
t↑T

(T − t)
1

1+α ‖∇u(t)‖L2 < +∞,

but the derivation of a pointwise upper bound on blow up speed for all times re-
mains open.

We now claim that the bound (1.12) is sharp in all dimensions and attained on
the collapsing ring solutions:

Theorem 1.2 (Existence of collapsing ring blow up solutions). Let

N ≥ 2, 0 < sc < 1, p < 5

and β∞ > 0, 0 < α < 1 given by (1.10), (1.11). Let Q be the one dimensional
mass subcritical ground state solution to (1.5). Then there exists a time t < 0 and
a solution u ∈ C([t, 0), H1) of (1.1) with radial symmetry which blows up at time
T = 0 according to the following dynamics. There exist geometrical parameters
(r(t), λ(t), γ(t)) ∈ R∗+ × R∗+ × R such that3:

u(t, r)− 1

λ
2
p−1 (t)

[
Qe−iβ∞y

](r − r(t)
λ(t)

)
eiγ(t) → 0 in L2(RN ). (1.13)

The speed and the radius of concentration and the phase drift are given by the as-
ymptotic laws:

r(t) ∼ |t|
α

1+α , λ(t) ∼ |t|
1

1+α , γ(t) ∼ |t|−
1−α
1+α as t ↑ 0. (1.14)

Moreover, the blow up speed admits the equivalent:

‖∇u(t)‖L2 ∼
1

(T − t)
1

1+α

as t ↑ 0. (1.15)

2i.e. with bounded kinetic energy sup[0,T ) ‖∇u(t)‖L2 < +∞.
3If the rough profile Qe−iβ∞y in (1.13) is replaced by the precise profile of (3.32), then the

convergence in (1.13) is in H1(RN ) instead of L2(RN ).
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Comments on the result.

1. Sharp upper bound on the blow up speed. From direct inspection using (1.11),
the blow up rate (1.15) of ring solutions saturates the upper bound (1.12) which is
therefore optimal in the radial setting. This shows that there is some sharpness in
the nonlinear interpolation estimates underlying the proof of (1.12) and the asso-
ciated localized virial identity which were already at the heart of the sharp lower
bound (1.9) in [28]. We may also derive from the proof the behavior of the critical
norm

‖u(t)‖ ˙Hsc ∼
1

λsc(t)
∼ 1

(T − t)
sc

1+α

which shows as conjectured in [28] that the logarithmic lower bound (1.9) is not
always sharp, even though it is attained for the self similar blow up solutions build
in [30].

2. On the restriction sc < 1. We have restricted attention in this paper to the
case sc < 1. This assumption is used to control the plain nonlinear term and en-
sures through the energy subcritical Cauchy theory that controlling H1 norms is
enough to control the flow. We however conjecture that the sharp threshold for the
existence of collapsing ring solutions is p < 5 in any dimension N ≥ 2. This would
require exactly as in [38] the control of higher order Sobolev norms in the bootstrap
regime corresponding to collapsing ring solutions exhibited in this paper. This is
an independent problem which needs to be addressed in details.

3. Non dispersive solutions. The construction of the ring solution relies on the
strategy to build minimal blow up elements developed in [39]. In particular, let us
stress the fact that (1.13) coupled with the laws (1.14) implies that the solution is
nondispersive because

‖u0‖L2(RN ) = ‖Q‖L2(R)

and the solution concentrates all its L2 mass at blow up:

|u(t)|2 ⇀ ‖Q‖2L2(R)δx=0 as t ↑ 0.

In fact, a three parameter family of such minimal elements -indexed on scaling and
phase invariance, and an additional internal Galilean drift parameter- is constructed.
This is a major difference with [36], [38] where the stationary ring solutions require
a non trivial dispersion, and hence the full log-log machinery developed in [24], [26].
Such minimal elements can be constructed by reintegrating the flow backwards from
the singularity using a mixed Energy/virial Lyapunov functional. The key is that
as observed in [39], only energy bounds on the associated linearized operator close
to Q are required to close this analysis, see also [15], [21] for further illustrations.
We also remark that because the problem is no longer critical, we can construct
an approximate solution to all orders using the slow modulated approach in [24],
[16], [39], and therefore the construction of the minimal element requires less struc-
ture4 than in [39] and the proof is particularly robust. Let us stress the fact that
obtaining dispersion using dispersive bounds for the linearized operator would be
particularly delicate for this problem because the leading order blow up profile is
given by the mass subcritical ground state for which the linearized spectrum displays
a pair of complex eigenvalues leading to oscillatory modes, see [6]. We mention that

4even though a similar structure could be exhibited which would probably be relevant for
stability issues, and in particular a finite order expansion is enough to close the analysis.
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the existence of a minimal ring solution in the particular case N = p = 3 has been
recently announced in [34].

4. Arbitrary concentration of the mass. We may let the scaling symmetry (1.3) act
on the solution constructed by Theorem 1.2 and obtain solutions with an arbitrary
small or large amount of mass:

|u(t)|2 ⇀mδx=0 as t ↑ 0, m > 0.

This is a spectacular difference with the mass critical problem sc = 0 where the
amount of mass focused by the nonlinearity is conjectured to be quantized, see [27].

Let us stress that Theorem 1.2 gives the first explicit description of blow up dy-
namics for a large set of values (N, p), and the robust scheme behind the proof is
likely to adapt to a large class of problems. One important open problem after this
work is to understand stability properties of the collapsing ring blow up solutions.
The numeral experiments in [9] clearly indicate the stability of the ring mechanism
by radial perturbation of the data, but the proof would involve dealing with dis-
persion near the subcritical ground state which is a delicate analytical problem.
We moreover expect that the ring singularity scenario persists on suitably prepared
finite codimensional sets of non radial initial data.

Acknowledgments. The authors thank the anonymous referees for their care-
ful reading of the paper. P.R and J.S are supported by the ERC/ANR program
SWAP. All three authors are supported by the advanced ERC grant BLOWDISOL.
P.R would like to thank the MIT Mathematics Department, Boston, which he was
visiting when finishing this work.

Notations. We introduce the differential operator;

Λf =
2

p− 1
f + y · ∇f.

Let L = (L+, L−) the matrix linearized operator close to the one dimensional ground
state:

L+ = −∂2
y + 1− pQp−1, L− = −∂2

y + 1−Qp−1. (1.16)

We recall that L has a generalized nullspace characterized by the following algebraic
identities generated by the symmetry group:

L−(Q) = 0, L+(ΛQ) = −2Q, L+(Q′) = 0, L−(yQ) = −2Q′. (1.17)

We note the one dimensional scalar product:

(f, g) =

∫
f(y)g(y)dy.

1.4. Strategy of the proof. Let us give a brief insight into the proof of Theorem
1.2. The scheme follows the road map designed in [39].

step 1. A rough approximate solution. Let us renormalize the flow using the
time dependent rescaling:

u(t, r) =
1

λ(t)
2
p−1

v

(
s,
r − r(t)
λ(t)

)
eiγ(t),

ds

dt
=

1

λ2
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which maps the finite time blow up problem (1.1) onto the global in time renormal-
ized equation5 (3.4):

i∂sv + vyy +
N − 1

1 + αb
2β y

αb

2β
vy − (1 + β2)v + ibΛv + 2iβvy + v|v|p−1 (1.18)

= i

(
λs
λ

+ b

)
Λv + i

(rs
λ

+ 2β
)
vy + (γ̃s − β2)v

where we have introduced a Galilean drift parameter β and where we have defined

b =
2β

α

λ

r
and γ̃s = γs − 1.

The beautiful observation of Fibich, Gavish and Wang [9] is that an approximate
solution to (1.18) can be constructed of the form:

w(s, y) = Q(y)e−i
b(s)y2

4 e−iβ∞y

where Q is the mass subcritical one dimensional ground state, and this relies on
the specific algebra generated by the choice (1.10) of β and the specific choices of
modulation equations (3.5). Note that this choice corresponds to the cancellation

E(Qe−iβ∞y) = 0

which is indeed required for a blow up profile candidate. The explicit integration of
the modulation equations

rs
λ

= −2β, −λs
λ

= b =
2β

α

λ

r
,
ds

dt
=

1

λ2
(1.19)

with the choice β = β∞ leads from direct check to the regime (1.14) for r, λ, γ. Since
λ(t) touches zero in finite time, this corresponds to a finite time blow up regime.
Furthermore, there holds the relation:

b ∼ λ1−α. (1.20)

step 2. Construction of a high order approximate solution. We now proceed to
the construction of a high order approximate solution to (3.4). Following the slow
modulated ansatz approach developed in [24], [16], [39], we freeze the modulation
equations

rs
λ

+ 2β = 0, γ̃s = β2, b =
2β

α

λ

r
and look for an expansion of the form

Q
b,β̃

(y) =

Q+
∑

1≤j+l≤k−1

bj β̃l(s)(Tj,l(y) + iSj,l(y))

 e−i b(s)y24 e−iβy. (1.21)

where
β = β∞ + β̃

and the laws for the remaining parameters are adjusted dynamically
λs
λ

+ b = P1(b, β̃), β̃s = P2(b, β̃).

Expanding in powers of b, β̃, the construction reduces to an inductive linear system{
L+Tj,l = Fj,l(Tp,q, . . . , Sp,q)1≤p+q≤j+l−1

L−Sj,l = Gj,l(Tp,q, . . . , Sp,q)1≤p+q≤j+l−1
, j ≥ 1, (1.22)

5defined on y > − 2β
αb

.
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where (L+, L−) is the matrix linearized operator (1.16) close to Q. The kernel of
this operator is well known, [40], and the solvability of the nonlinear system (1.22)
in the class of Schwarz functions is subject to the orthogonality conditions{

(Fj,l(Tp,q, . . . , Sp,q)1≤p+q≤j+l−1, ∂yQ) = 0,
(Gj,l(Tp,q, . . . , Sp,q)1≤p+q≤j+l−1, Q) = 0

(1.23)

which correspond respectively to the translation and phase orbital instabilities, and
is ensured inductively through the construction of the polynomials (Pi(b, β̃))i=1,2.
The fundamental observation is that the problem near the sub critical ground state
is no longer degenerate i.e.

(ΛQ,Q) 6= 0,

and this is major difference with [39], [15]. The outcome is the construction of an
approximate solution to arbitrary high order.

step 3 The mixed Energy/Morawetz functional. We now aim at building an
exact solution and use for this the Schauder type compactness argument designed
in [22], [19], see also [16], [39]. We let a sequence tn ↑ 0 and consider un(t) the
solution to (1.1) with initial data given by the well prepared bubble

un(tn, x) =
1

λ(tn)
2
p−1

Q
b(tn),β̃(tn)

(
r − r(tn)

λ(tn)

)
eiγ(tn)

where the parameters are chosen in their asymptotic law (1.14):

r(tn) ∼ |tn|
α

1+α , λ(tn) ∼ |tn|
1

1+α , γ(tn) ∼ |tn|−
1−α
1+α .

We then proceed to a modulated decomposition of the flow

u(t, r) =
1

λ(t)
2
p−1

(
Q
b(t),β̃(t)

+ ε
)(

t,
r − r(t)
λ(t)

)
eiγ(t)

where ε satisfies suitable orthogonality conditions through the modulation on
(r(t), γ(t), λ(t), β̃(t)), and the b parameter is frozen:

b(t) =
2β(t)

α

λ(t)

r(t)
.

We claim that there exists a backward time t independent of n such that

∀t ∈ [t, tn], ‖ε(t)‖H1
µ
. λck(t) (1.24)

where we introduce the renormalized Sobolev norm:

‖ε‖2H1
µ

=

∫
(|∂yε|2 + |ε|2)µ, µ(y) =

(
1 +

αb

2β
y

)N−1

11+αb
2β
y>0,

and where ck → +∞ as k → +∞ relates to the order of expansion of the approxi-
mate solution Q

b,β̃
to (1.18). The estimate (1.24) easily allows to conclude the proof

existence by passing to the limit tn ↑ 0, and the control of the parameters (λ(t), r(t))
leading concentration follows from the standard reintegration of the corresponding
modulation equation.
Following [37], [39], [31], the proof of (1.24) relies on the derivation of a mixed
Energy/Morawetz Lyapunov functional. Let the Galilean shift

ε̃ = εeiβy,
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the corresponding monotonicity formula roughly takes the form:

d

dt
I = J +O

(
bk

λ4

)
(1.25)

where I,J are given by

I(ũ) =
1

2

∫
|∇ũ|2 +

1 + β2

2

∫
|ũ|2

λ2
−
∫ [

F (Q̃+ ũ)− F (Q̃)− F ′(Q̃) · ũ
]

+
β

λ
=
(∫

φ

(
r

r(t)
− 1

)
∂rũũ

)
,

with F (u) = |u|p+1, φ a suitable cut off function, and

J = O

(
b‖ε‖2H1

µ

λ4

)
.

The power of b in the right hand side of (1.25) is related to the error in the con-
struction of Q

b,β̃
, and the Morawetz term in I is manufactured to reproduce the

non trivial Galilean drift β∞ so that I is on the soliton core a small deformation
of the linearized energy. Our choice of orthogonality conditions then ensures the
coercivity of I:

I &
‖ε‖2H1

µ

λ2
. (1.26)

Now unlike in [39], we do not need to take into account further structure in the
quadratic term J . Indeed, for a large enough6 parameter θ � 1, we obtain from
−λλt ∼ b > 0:

d

dt

(
I
λθ

)
&

b

λ4+θ

[
(θ − C)‖ε‖2H1

µ

]
+O

(
bk

λ4+θ

)
& O

(
bk

λ4+θ

)
.

For k large enough, the last term is integrable in time in the ring regime, and inte-
grating the ODE backwards from blow up time where ε(tn) ≡ 0 yields (1.24). Note
that the strength of this energy method is in particular to completely avoid the use
of weighted spaces to control the flow as in [3], [1], and the analysis is robust enough
to handle rough nonlinearities p < 2.

This paper is organized as follows. In section 2, we prove Theorem 1.1. In section
3, we construct the approximate solution Q

b,β̃
using the slowly modulated ansatz. In

section 4, we set up the bootstrap argument and derive the modulation equations. In
section 5, we derive the mixed Energy/Morawetz monotonicity formula. In section
6, we close the bootstrap and conclude the proof of Theorem 1.2.

2. Universal upper bound on the blow up rate

This section is devoted to the proof of Theorem 1.1. The proof is spectacularly
simple and relies on a sharp version of the localized virial identity used in [28].

Proof of Theorem 1.1. step 1 Localized virial identity. Let N ≥ 2, 0 < sc < 1 and
u ∈ C([0, T ), H1) be a radially symmetric finite time blow up solution 0 < T < +∞.

6related to the universal coercivity constant in (1.26).
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Pick a time t0 < T and a radius 0 < R = R(t0) � 1 to be chosen. Let χ a radial
function in D(RN ) and recall the localized virial identity7 for radial solutions:

1

2

d

dτ

∫
χ|u|2 = Im

(∫
∇χ · ∇uu

)
, (2.1)

1

2

d

dτ
Im

(∫
∇χ · ∇uu

)
=

∫
χ′′|∇u|2 − 1

4

∫
∆2χ|u|2 −

(
1

2
− 1

p+ 1

)∫
∆χ|u|p+1.

Applying with χ = ψR = R2ψ( xR) where ψ is a radial function such that ψ(x) = |x|2
2

for |x| ≤ 2 and ψ(x) = 0 for |x| ≥ 3, we get:
1

2

d

dτ
Im

(∫
∇ψR · ∇uu

)
=

∫
ψ′′
( x
R

)
|∇u|2 − 1

4R2

∫
∆2ψ

( x
R

)
|u|2 −

(
1

2
− 1

p+ 1

)∫
∆ψ(

x

R
)|u|p+1

≤
∫
|∇u|2 −N

(
1

2
− 1

p+ 1

)∫
|u|p+1 + C

[
1

R2

∫
2R≤|x|≤3R

|v|2 +

∫
|x|≥R

|u|p+1

]
.

Now from the conservation of the energy:∫
|u|p+1 =

p+ 1

2

∫
|∇u|2 − (p+ 1)E(u0)

from which∫
|∇u|2 −N

(
1

2
− 1

p+ 1

)∫
|u|p+1 =

N(p− 1)

2
E(u0)− 2sc

N − 2sc

∫
|∇u|2,

and thus:
2sc

N − 2sc

∫
|∇u|2 +

1

2

d

dτ
Im

(∫
∇ψR · ∇uu

)
.

[
|E0|+

∫
|x|≥R

|u|p+1 +
1

R2

∫
2R≤|x|≤3R

|u|2
]

(2.2)

≤ C(u0)

[
1 +

1

R2
+

∫
|x|≥R

|u|p+1

]
from the energy and L2 norm conservations.

step 2 Radial Gagliardo-Nirenberg interpolation estimate. In order to control
the outer nonlinear term in (2.2), we recall the radial interpolation bound:

‖u‖L∞(r≥R) ≤
‖∇u‖

1
2

L2‖u‖
1
2

L2

R
N−1

2

,

which together with the L2 conservation law ensures:∫
|x|≥R

|u|p+1 ≤ ‖u‖p−1
L∞(r≥R)

∫
|u|2 ≤ C(u0)

R
(N−1)(p−1)

2

‖∇u‖
p−1
2

L2

≤ δ
2sc

N − 2sc

∫
|∇u|2 +

C

δR
2(N−1)(p−1)

(5−p)

= δ
2sc

N − 2sc

∫
|∇u|2 +

C

δR
2
α

7see [28] for further details.
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where we used Hölder for p < 5 and the definition of α (1.11). Injecting this into
(2.2) yields for δ > 0 small enough using R� 1 and 0 < α < 1:

sc
N − 2sc

∫
|∇u|2 +

d

dτ
Im

(∫
∇ψR · ∇uu

)
≤ C(u0, p)

R
2
α

(2.3)

step 3 Time integration. We now integrate (2.3) twice in time on [t0, t2] using
(2.1). This yields up to constants using Fubini in time:∫

ψR|u(t2)|2 +

∫ t2

t0

(t2 − t)‖∇u(t)‖2L2dt

.
(t2 − t0)2

R
2
α

+ (t2 − t0)

∣∣∣∣Im(∫ ∇ψR · ∇uu) (t0)

∣∣∣∣+

∫
ψR|u(t0)|2

≤ C(u0)

[
(t2 − t0)2

R
2
α

+R(t2 − t0)‖∇u(t0)‖L2 +R2‖u0‖2L2

]
We now let t → T . We conclude that the integral in the left hand side converges8
and∫ T

t0

(T − t)|∇u(t)|2L2dt ≤ C(u0)

[
(T − t0)2

R
2
α

+R(T − t0)‖∇u(t0)‖L2 +R2

]
. (2.4)

We now optimize in R by choosing:

(T − t0)2

R
2
α

= R2 ie R(t0) = (T − t0)
α

1+α .

(2.4) now becomes:∫ T

t0

(T − t)‖∇u(t)‖2L2dt ≤ C(u0)
[
(T − t0)

2α
1+α + (T − t0)

α
1+α (T − t0)‖∇u(t0)‖L2

]
≤ C(u0)(T − t0)

2α
1+α + (T − t0)2‖∇u(t0)‖2L2 . (2.5)

In order to integrate this differential inequality, let

g(t0) =

∫ T

t0

(T − t)‖∇u(t)‖2L2dt, (2.6)

then (2.5) means:

g(t) ≤ C(T − t)
2α
1+α − (T − t)g′(t)

ie (
g

T − t

)′
=

1

(T − t)2
((T − t)g′ + g) ≤ 1

(T − t)2− 2α
1+α

.

Integrating this in time yields

g(t)

T − t
≤ C(u0) +

1

(T − t)1− 2α
1+α

ie g(t) ≤ C(u0)(T − t)
2α
1+α

for t close enough to T , which together with (2.6) yields (1.12).
This concludes the proof of Theorem 1.1. �

8this is consistent with (1.8) and can be proved in Σ without the radial assumption.
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3. The approximate solution

The rest of the paper is dedicated to the proof of Theorem 1.2 on the existence
of ring solutions. We start in this section with the construction of an approximate
solution at any order.

3.1. The slow modulated ansatz. Recall the definition of the positive numbers
α and β∞ as:

α =
5− p

(p− 1)(N − 1)
, β∞ =

√
5− p
p+ 3

. (3.1)

Recall also that the restrictions on p yield:

0 < α < 1 and 0 < β∞ < 1. (3.2)

Finally, recall that Q denotes the 1-dimensional groundstate, i.e. the only positive,
nonzero solution in H1 of:

Q′′ −Q+Qp = 0, explicitly Q(x) =

 p+ 1

2 cosh2
(
p−1

2 x
)
 1

p−1

. (3.3)

Let us consider the general modulated ansatz:

u(t, r) =
1

λ(t)
2
p−1

v

(
s,
r − r(t)
λ(t)

)
eiγ(t),

ds

dt
=

1

λ2

which maps the finite time blow up problem (1.1) onto the global in time renormal-
ized equation9 (3.4):

i∂sv + vyy +
N − 1

1 + αb
2β y

αb

2β
vy − (1 + β2)v + ibΛv + 2iβvy + v|v|p−1 (3.4)

= i

(
λs
λ

+ b

)
Λv + i

(rs
λ

+ 2β
)
vy + (γ̃s − β2)v

where we have defined

b =
2β

α

λ

r
and γ̃s = γs − 1. (3.5)

We shift a Galilean phase and let w be defined by:

w(s, y) = v(s, y)eiβy (3.6)

which satisfies:

i∂sw + wyy − w + w|w|p−1 +
αb

2β

N − 1

1 + αby
2β

(wy − iβw) + b(iΛw + βyw) (3.7)

= −β̃syw +

(
λs
λ

+ b

)
(iΛw + βyw) +

(rs
λ

+ 2β
)

(iwy + βw) + (γ̃s − β2)w.

9defined on y > − 2β
αb

.
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3.2. Construction of the approximate solution Q
b,β̃

. We now proceed to the
slow modulated ansatz construction as in [16], [39]. Let

β = β∞ + β̃.

We look for an approximate solution to (3.4) of the form

v(s, y) = Q
b(s),β̃(s)

(y),
λs
λ

= −b+ P1(b, β̃),
rs
λ

= −2β, γ̃s = β2, βs = P2(b, β̃),

where P1 and P2 are polynomial in (b, β̃) which will be chosen later to ensure
suitable solvability conditions. Note from the definition (3.5) of b the relation:

bs+(1−α)b2− b
β
P2−bP1 =

b

β
(β̃s−P2)+b

(
λs
λ

+ b− P1

)
− α

2β
b2
(rs
λ

+ 2β
)
. (3.8)

We then define the error term:

−Ψ
b,β̃

= i

(
−(1− α)b2 +

b

β
P2 + bP1

)
∂bQb,β̃ + iP2∂β̃Qb,β̃ (3.9)

−(1 + β2)Q
b,β̃

+ i(b− P1)

(
2

p− 1
+ y∂y

)
Q
b,β̃

+2iβ∂yQb,β̃ + ∂2
yQb,β̃ +

αb

2β

N − 1

1 + αb
2β y

∂yQb,β̃ + |Q
b,β̃
|p−1Q

b,β̃
.

The algebra simplifies after a mixed Galilean/pseudo conformal drift:

Q
b,β̃

(y) = P
b,β̃

(y)e−iβy−ib
y2

4 (3.10)

which leads to the slowly modulated equation:

i

(
−(1− α)b2 +

b

β
P2 + bP1

)
∂bPb,β̃ + iP2∂β̃Pb,β̃ (3.11)

− P
b,β̃

+ ∂2
yPb,β̃ +

αb

2β

N − 1

1 + αb
2βy

∂yPb,β̃ + |P
b,β̃
|p−1P

b,β̃

− iP1

(
2

p− 1
+ y∂y

)
P
b,β̃
− P1

(
βy +

by2

2

)
P
b,β̃

+ P2yPb,β̃

+

(
bβy +

(
αb2 +

b

β
P2 + bP1

)
y2

4
− i

[
N − 1

1 + bαy
2β

αb2

4β
(1− α)y

])
P
b,β̃

= −Ψ
b,β̃
eiβy+ib

|y|2
4 .

We now claim that we can construct a well localized high order approximate solution
to (3.11).

Proposition 3.1 (Approximate solution). Let an integer k ≥ 5, then there exist
polynomials P1 and P2 of the form

P1(b, β̃) =
∑

3≤j+l≤k−1

c1,j,lb
j β̃l, P2(b, β̃) = −2bβ̃ +

∑
3≤j+l≤k−1

c2,j,lb
j β̃l, (3.12)

and smooth well localized profiles (Tj,l, Sj,l)1≤j+l≤k−1, such that

P
b,β̃

= Q+
∑

1≤j+l≤k−1

bj β̃l(Tj,l + iSj,l), (3.13)
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is a solution to (3.11) with Ψ
b,β̃

smooth and well localized in y satisfying:

Ψ
b,β̃

= O(bk|y|cke−|y|). (3.14)

Moreoever, there holds the decay estimate:

|P
b,β̃
| . (1 + |y|2k)e−|y|. (3.15)

Proof of Proposition 3.1

The proof proceeds by injecting the expansion (3.13) in (3.11), identifying the
terms with the same homogeneity in (b, β̃), and inverting the corresponding opera-
tor. Let us recall that if L = (L+, L−) is the matrix linearized operator close to Q
given by (1.16), then its kernel is explicit:

Ker{L+} = span{Q′}, Ker{L−} = span{Q}, (3.16)

see [40], [6].

step 1 General strategy.

Let j + l ≥ 1. Assume that Tp,q, c1,p,q and c2,p,q for p+ q ≤ j + l − 1 have been
constructed. Then, identifying the terms homogeneous of order (j, l) in (3.11) yields
a linear system of the following type{

L+(Tj,l) = h1,j,l − c1,j,lβ∞yQ+ c2,j,lyQ,
L−(Sj,l) = h2,j,l − c1,j,lΛQ,

(3.17)

where h1,j,l and h2,j,l may be computed explicitly and only depend on Tp,q, c1,p,q

and c2,p,q for p+q ≤ j+ l−1. The invertibility of (3.17) requires according to (3.16)
to manufacture the orthogonality conditions (h

(1)
j , Q′) = (h

(2)
j , Q) = 0, see [37] for

related issues. We also need to track the decay in space of the associated solution
in a sharp way. We claim:

Lemma 3.2. For all 1 ≤ j + l ≤ k − 1, let:

c1,j,l =
1

(Q,ΛQ)
(h2,j,l, Q) and c2,j,l =

2

‖Q‖2
L2

(h1,j,l, Q
′)+

β∞
(Q,ΛQ)

(h2,j,l, Q). (3.18)

Then, there exist (Tj,l, Sj,l) solution of (3.17) for all 1 ≤ j+ l ≤ k−1. Furthermore,
Tj,l and Sj,l are smooth, and decay as

Tj,l = O(|y|2(j+l)e−|y|) and Sj,l = O(|y|2(j+l)e−|y|) as y → ±∞. (3.19)

Remark 3.3. Note that the quantity (Q,ΛQ) appearing in (3.18) is given by

(Q,ΛQ) =
5− p

2(p− 1)
,

and is well-defined and not zero since 1 < p < 5. This is a major difference with
respect to the analysis in [39].

Proof of Lemma 3.2. In order to be able to solve for (Tj,l, Sj,l), we need, in view of
(3.16) and (3.17)

(h1,j,l − c1,j,lβ∞yQ+ c2,j,lyQ,Q
′) = 0 and (h2,j,l − c1,j,lΛQ,Q) = 0

which is equivalent to (3.18). Thus, choosing c1,j,l and c2,j,l as in (3.18), we may
solve for (Tj,l, Sj,l) solution of (3.17).
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Next, we investigate the smoothness and decay properties of (Tj,l, Sj,l). Identi-
fying the terms homogeneous of order j + l in (3.11), we have for h1,j,l and h2,j,l

defined in (3.17)

h1,j,l =
∑

p+q≤j+l−1

(
a1,p,qy

j+l−p−qTp,q + a2,p,qy
j+l−p−qSp,q

+a3,p,qy
j+l−p−qT ′p,q

)
+ NL(1)

j ,

h2,j,l =
∑

p+q≤j+l−1

(
a4,p,qy

j+l−p−qTp,q + a5,p,qy
j+l−p−qSp,q

+a6,p,qy
j+l−p−qT ′p,q

)
+ NL(2)

j ,

(3.20)

where we have defined by convenience T0,0 = Q, where am,p,q are real numbers
which may be explicitly computed, and where NL(1)

j and NL(2)
j are the contribu-

tions coming from the Taylor expansion of the nonlinearity near Q. They take the
following form

NL(1)
j =

∑
p≥0,q≥0

∑
jm≥1,lm≥1/j1+···+jq+l1+···+lq=j+l

a
(1)
j1,··· ,jq ,l1,··· ,lq

×Tj1,l1 · · ·Tjp,lpSjp+1,l+p+1 · · ·Sjq ,lqQp−j−l, (3.21)

and

NL(2)
j =

∑
p≥0,q≥0

∑
jm≥1,lm≥1/j1+···+jq+l1+···+lq=j+l

a
(2)
j1,··· ,jq ,l1,··· ,lq

×Tj1,l1 · · ·Tjp,lpSjp+1,l+p+1 · · ·Sjq ,lqQp−j−l, (3.22)

where the real numbers a(1)
j1,··· ,jq ,l1,··· ,lq and a

(2)
j1,··· ,jq ,l1,··· ,lq may be computed explicitly.

We argue by induction. Assume that Tp,q, p+q ≤ j+ l−1, satisfy the conclusions
of the lemma in terms of smoothness and decay. Then, we easily check from the
formulas (3.20) (3.21) (3.22) that h1,j,l and h2,j,l are smooth. Then, from standard
elliptic regularity, we deduce that Tj,l and Sj,l are smooth.

Finally, we consider the decay properties of Tj,l and Sj,l. Since we assume by
induction that Tp,q, p+ q ≤ j+ l− 1, satisfy the decay assumption (3.19), we easily
obtain from (3.21) and (3.22)

NL(1)
j = O(|y|2(j+l)e−p|y|) and NL(2)

j = O(|y|2(j+l)e−p|y|) as y → ±∞.

Together with (3.17), the fact that Tp,q, p+q ≤ j+l−1 satisfy the decay assumption
(3.19), and the fact that p > 1, we deduce

h1,j,l = O(|y|2j−1e−|y|) and h2,j,l = O(|y|2j−1e−|y|) as y → ±∞. (3.23)

Now, let us consider the solution (f1, f2) to the system

L+(f1) = h1 and L−(f2) = h2,

with (h1, Q
′) = 0 and (h2, Q) = 0. Then, for y ≥ 1 for instance, we define

g1(y) = Q′(y)

∫ y

1

dσ

Q′(σ)2
and g2(y) = Q(y)

∫ y

1

dσ

Q(σ)2
,

so that (Q′, g1) forms a basis of solutions to the second order ordinary differential
equation L+(f) = 0, while (Q, g2) forms a basis of solutions to the second order
ordinary differential equation L−(f) = 0. Note that the decay properties of Q and
Q′ immediately yield

g1(y) = O(ey) and g2(y) = O(ey) as y → +∞.
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Furthermore, using the variation of constants method, we find that a solution is
given by10:

f1(y) = −g1(y)

(∫ +∞

y
h1(σ)Q′(σ)dσ

)
+Q′(y)

(∫ y

1
h1(σ)g1(σ)dσ

)
,

f2(y) = −g2(y)

(∫ +∞

y
h2(σ)Q(σ)dσ

)
+Q(y)

(∫ y

1
h2(σ)g2(σ)dσ

)
.

Thus, for any integer n, if

h1 = O(|y|ne−|y|) and h2(y) = O(|y|ne−|y|) as y → ±∞,
then, we obtain

f1 = O(|y|n+1e−|y|) and f2(y) = O(|y|n+1e−|y|) as y → ±∞.
Applying this observation to the system (3.17) with the choice n = 2(j+l)−1 yields,
in view of (3.23), the decay (3.19). This concludes the proof of the lemma. �

In view of Lemma 3.2, the proof of Proposition 3.1 will follow from the verification
that

cn,1,0 = cn,0,1 = cn,2,0 = cn,0,2 = 0 for n = 1, 2, c1,1,1 = 0 and c2,1,1 = −2.

step 2 Computation of c1,1,0 and c2,1,0.

We identify the terms homogeneous of order (1, 0) in (3.11) and get: L+(T1,0) =
(N − 1)α

2β∞
Q′ + β∞yQ− c1,1,0β∞yQ+ c2,1,0yQ,

L−(S1,0) = −c1,1,0ΛQ.
(3.24)

Now, note that(
(N − 1)α

2β∞
Q′ + β∞yQ,Q

′
)

=
(N − 1)α

2β∞

∫
(Q′)2 − β∞

2

∫
Q2 (3.25)

=
β∞
2

(
p+ 3

p− 1

∫
(Q′)2 −

∫
Q2

)
,

where we used in the last inequality the definition of α and β∞ given by (1.10),
(1.11). Now, taking the scalar product of the equation (3.3) with Q + (p + 1)yQ′,
and integrating by parts, yields∫

Q2 =
p+ 3

p− 1

∫
(Q′)2, (3.26)

which together with (3.25) implies(
(N − 1)α

2β∞
Q′ + β∞yQ,Q

′
)

= 0.

Together with (3.24), we obtain

(h1,1,0, Q
′) = (h2,1,0, Q) = 0

which together with (3.18) yields

c1,1,0 = c2,1,0 = 0

10note that solutions are given up to an element of the kernel, but adjusting this element is
irrelevant.
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as desired.

step 3 Computation of c1,0,1 and c2,0,1.

We identify the terms homogeneous of order (1, 0) in (3.11) and get:{
L+(T0,1) = −c1,0,1β∞yQ+ c2,0,1yQ,
L−(S0,1) = −c1,0,1ΛQ,

(3.27)

which together with (3.18) yields

c1,0,1 = c2,0,1 = 0

as desired.

step 4 Computation of c1,2,0 and c2,2,0.

We identify the terms homogeneous of order (2, 0) in (3.11) and get:

L+(T2,0) = (1− α)S1,0 +
(N − 1)α

2β∞
T ′1,0 − (N − 1)

α2

4β2
∞
yQ′

+
p(p− 1)

2
Qp−2T 2

1,0 +
p− 1

2
Qp−2S2

1,0 + β∞yT1,0

+
α

4
y2Q− c1,2,0β∞yQ+ c2,2,0yQ,

L−(S2,0) = −(1− α)T1 +
(N − 1)α

2β∞
S′1,0 + (p− 1)Qp−2T1,0S1,0

+β∞yS1,0 − (N − 1)
α

4β∞
yQ(1− α)− c1,2,0ΛQ.

(3.28)

Note from (3.24) that T1,0 is an odd function, while S1,0 is an even function. In
view of (3.28), this implies that

h1,2,0 is even and h2,2,0 is odd.

In particular, since Q is even and Q′ is odd, we obtain

(h1,2,0, Q
′) = 0 and (h2,2,0, Q) = 0,

which together with (3.18) yields

c1,2,0 = c2,2,0 = 0

as desired.

step 5 Computation of c1,1,1 and c2,1,1.

We identify the terms homogeneous of order (1, 1) in (3.11) and get:{
L+(T1,1) = − (N−1)α

2β2
∞

Q′ + yQ− c1,1,1β∞yQ+ c2,1,1yQ,

L−(S1,1) = −c1,1,1ΛQ.
(3.29)

In view of (3.29), we have

(h1,1,1, Q
′) = −(N − 1)α

2β2
∞

∫
(Q′)2 − 1

2

∫
Q2.

Using the computation ∫
(Q′)2 =

p− 1

p+ 3

∫
Q2
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and the definition of α and β∞ given by (1.10), (1.11), we deduce

(h1,1,1, Q
′) = −

∫
Q2,

which together with (3.18) and the fact that h2,1,1 = 0 yields

c1,1,1 = 0 and c2,1,1 = −2

as desired.

step 6 Computation of c1,0,1 and c2,0,1.

We identify the terms homogeneous of order (0, 2) in (3.11) and get:{
L+(T0,2) = −c1,0,2β∞yQ+ c2,0,2yQ,
L−(S0,2) = −c1,0,2ΛQ,

(3.30)

which together with (3.18) yields

c1,0,2 = c2,0,2 = 0

as desired.

step 7 Conclusion.

We therefore have constructed an approximate solution P
b,β̃

of (3.11) of the form
(3.13). The decay estimate (3.15) on P

b,β̃
follows from (3.19). The error Ψ

b,β̃

consists of a polynomial in (Tj,l, Sj,l)j+l≤k−1 with lower order k, the error between
the Taylor expansion of the potential terms αb

2β
N−1

1+αb
2β
y
and N−1

1+ bαy
2β

in (3.11), and the

error between the nonlinear term and its Taylor expansion. The first and second
type of terms are easily treated using the uniform exponential decay of P

b,β̃
. We

need to be slightly more careful for the nonlinear term. Here we recall that given
z ∈ C, let Pk−1(z) be the order k− 1 Taylor polynomial of z 7→ (1 + z)|1 + z|p−1 at
z = 0, then from11 p < 5 ≤ k:

∀z ∈ C,
∣∣(1 + z)|1 + z|p−1 − Pk−1(z)

∣∣ . Ck|z|k.
Let then

ε
b,β̃

= P
b,β̃
−Q,

we obtain the bound by homogeneity:∣∣∣∣(Q+ ε
b,β̃

)|Q+ ε
b,β̃
|p−1 −QpPk−1

(
ε
b,β̃

Q

)∣∣∣∣ . CkQp |εb,β̃|kQk

. Qp
∑

1≤j+l≤k−1

(
|b|j |β̃|l(|Tj,l|+ |Sj,l|)

Q

)k
.

On the other hand, (3.19) ensures the uniform bound
|Tj,l|+ |Sj,l|

Q
. 1 + |y|ck , j + l ≤ k − 1,

and hence the bound:∣∣∣∣(Q+ εb)|Q+ εb|p−1 −QpPk−1

(
εb
Q

)∣∣∣∣ . (|b|+ |β̃|)k|y|cke−|y|,

11to handle the case when |z| � 1.
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and the control (3.14) of Ψ
b,β̃

follows.
This concludes the proof of proposition 3.1.

3.3. Further properties of Q
b,β̃

. In order to avoid artificial troubles near the
origin after renormalization, we introduce a smooth cut off function

ζ(y) =

{
0 for y ≤ −2
1 for y ≥ −1

, ζb(y) = ζ(
√
by), (3.31)

and define once and for all for the rest of this paper:

Q
b,β̃

(y) = ζb(y)P
b,β̃

(y)e−iβy−ib
y2

4 . (3.32)

Let us rewrite the Q
b,β̃

equation using (3.4), (3.9) in the form which we will use in
the forthcoming bootstrap argument.

Corollary 3.4 (Q
b,β̃

equation in original variables). Given C1 modulation parame-

ters (λ(t), r(t), γ(t), β̃(t)) such that

0 < b(t) =
2β

α

λ(t)

r(t)
� 1, (3.33)

let Q̃ be given by

Q̃(t, x) =
1

λ
2
p−1

Q
b(t),β̃(t)

(
r − r(t)
λ(t)

)
eiγ(t). (3.34)

Then Q̃ is a smooth radially symmetric function which satisfies:

i∂tQ̃+ ∆Q̃+ Q̃|Q̃|p−1 = ψ =
1

λ(t)
2p
p−1

Ψ

(
t,
r − r(t)
λ(t)

)
eiγ(t) (3.35)

with

Ψ = −(γs − 1− β2)Q
b,β̃
− i
(
λs
λ

+ b− P1

)(
ΛQ

b,β̃
− b∂bQb,β̃

)
(3.36)

− i
(rs
λ

+ 2β
)(

∂yQb,β̃ +
α

2β
b2∂bQb,β̃

)
+ i

(
bs + (1− α)b2 − b

β
P2 − bP1

)
∂bQb,β̃

+ i(βs − P2)

(
∂
β̃
Q
b,β̃

+
b

β
∂bQb,β̃

)
+O

(
e−|y|

bck
1y∼ 1√

b

+ (|b|+ |β̃|)kζb|y|cke−|y|
)
.

Proof of Corollary 3.4. We simply observe from (3.32), (3.33) that Q̃ is identically
zero near the origin and hence (3.34) defines a well localized smooth radially sym-
metric function. The exponential decay in space of P

b,β̃
ensures that the localization

procedures perturbs the error term in (3.11) by an O
(
e−|y|

bck 1y∼ 1√
b

)
and the estimate

(3.36) now directly follows from (3.4), (3.8), (3.9), (3.14). �

4. Setting up the analysis

The aim of this section is to set up the bootstrap argument.
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4.1. Choice of initial data. . Let us start with soling the system of exact modu-
lation equations formally predicted by the Q

b,β̃
construction. Is it easily seen that

this system formally predicts a stable blow up in the ring regime. We shall simply
need the following claim which proof is elementary and postponed Appendix A.

Lemma 4.1 (Integration of the exact system of modulation equations). There exists
te < 0 small enough and a solution (λe, be, β̃e, re, γe) to the dynamical system:

λs
λ + b = P1(b, β̃),
rs
λ + 2β = 0,

β̃s = P2(b, β̃),
γs = 1 + β2,
ds
dt = 1

λ2
,

b = 2β
α
λ
r , β = β∞ + β̃,

(4.1)

which is defined on [te, 0). Moreover, this solution satisfies the following bounds

be(t) =
1

1 + α

(
2(1 + α)β∞

αg∞

) 2
1+α

|t|
1−α
1+α

(
1 +O

(
log(|t|)|t|

1−α
1+α

))
, (4.2)

λe(t) =

(
2(1 + α)β∞

αg∞

) 1
1+α

|t|
1

1+α

(
1 +O

(
log(|t|)|t|

1−α
1+α

))
, (4.3)

re(t) = g∞

(
2(1 + α)β∞

αg∞

) α
1+α

|t|
α

1+α

(
1 +O

(
log(|t|)|t|

1−α
1+α

))
, (4.4)

β̃e(t) = O

(
|t|

2(1−α)
1+α

)
, (4.5)

and

γe(t) = (1 + β2
∞)

(
1− α
1 + α

) 1−α
1+α

(
2(1− α)β∞

αg∞

)− 2
1+α

|t|−
1−α
1+α +O(log(|t|)) (4.6)

for some universal constant |g∞ − 1| � 1.

From now on, we choose the integer k appearing in Proposition 3.1 such that

k >
2

1− α
+ 1. (4.7)

Given te < t̄ < 0 small, we let u(t) be the solution to (1.1) with well prepared initial
data at t = t̄ given explicitly by:

u(t̄, r) =
1

λe(t̄)
2
p−1

Q
be(t̄),β̃e(t̄)

(
r − re(t̄)
λe(t̄)

)
eiγe(t̄). (4.8)

Our aim is to derive bounds on u backwards on a time interval independent of
t̄ as t̄ → 0. We describe in this section the bootstrap regime in which we will
control the solution, and derive preliminary estimates on the flow which prepare the
monotonicity formula of section 5.
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4.2. The modulation argument. We prove in this section a standard modulation
lemma which relies on the implicit function theorem and the mass subcritical non
degeneracy (Q,ΛQ) 6= 0.

Lemma 4.2 (Modulation). There exists a universal constant δ > 0 such that the
following holds. Let u be a radially symmetric function of the form

u(r) =
1

λ
2
p−1

0

Qb0,β̃0

(
r − r0

λ0

)
eiγ0 + ũ0(r)

with
λ0, r0 > 0, β0 = β∞ + β̃0, b0 =

2β0

α

λ0

r0
,

the a priori bound
r0

λα0
& 1 (4.9)

and the a priori smallness:

0 < |b0|+ |β̃0|+ ‖ũ0‖L2 < δ. (4.10)

Then there exists a unique decomposition

u(t, r) =
1

λ
2
p−1

1

Qb1,β̃1

(
r − r1

λ0

)
eiγ1 + ũ1(r)

with
β1 = β∞ + β̃1, b1 =

2β1

α

λ1

r1
,

such that

ũ1(r) =
1

λ
2
p−1

1

ε̃1

(
r − r1

λ1

)
e
iγ1−iβ1 r−r1λ1

satisfies the orthogonality conditions

(<(ε̃1), ζb1yQ) = (<(ε̃1), ζb1Q) = (=(ε̃1), ζb1ΛQ) = (=(ε̃1), ζb1∂yQ) = 0.

Moreover, there holds the smallness:∣∣∣∣λ1

λ0
− 1

∣∣∣∣+
|r0 − r1|
λ0

+ |β̃0 − β̃1|+ |γ0 − γ1|+ ‖ũ1‖L2 . δ. (4.11)

Proof of Lemma 4.2. This is a standard consequence of the implicit function theo-
rem. We have by assumption:

u(r) =
1

λ
2
p−1

0

Qb0,β̃0

(
r − r0

λ0

)
eiγ0 + ũ0(r),

and we wish to introduce a modified decomposition

u(r) =
1

λ
2
p−1

1

Qb1,β̃1

(
r − r1

λ1

)
eiγ1 + ũ1(r).

Comparing the decompositions, we obtain the formula:

ũ1(r) =
1

λ
2
p−1

0

Qb0,β̃0

(
r − r0

λ0

)
eiγ0 − 1

λ
2
p−1

1

Qb1,β̃1

(
r − r1

λ1

)
eiγ1 + ũ0(r).

We now form the functional

Fz,µ,γ,β̃(y) = µ
2
p−1Qb0,β̃0 (µy + z) e−iγ+i(β0+β̃)y −Qb1,β̃1(y)eiβ1y (4.12)
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with

z =
r1 − r0

λ0
, µ =

λ1

λ0
, γ = γ1 − γ0, β̃ = β̃1 − β̃0,

so that

ε̃1(y) = Fz,µ,γ,β̃(y) + λ
2
p−1

1 ũ0(λ1y + r1)e−iγ1+iβ1y.

We then define the scalar products:

ρ(j) =

∫ +∞

−∞
<(ε̃1)ζb1T

(j)dy

=

∫ +∞

−∞
<(Fz,µ,γ,β̃)ζb1T

(j)dy

+ <

∫ +∞

0
ũ0(r)

λ
2
p−1

1

λ1
(ζb1ΛQ)

(
r − r1

λ1

)
e
−iγ1+iβ

r−r1
λ1 dr

 for j = 1, 2,

and

ρ(j) =

∫ +∞

−∞
=(ε̃1)ζb1T

(j)dy

=

∫ +∞

−∞
=(Fz,µ,γ,β̃)ζb1T

(j)dy

+ =

∫ +∞

0
ũ0(r)

λ
2
p−1

1

λ1
(ζb1ΛQ)

(
r − r1

λ1

)
e
−iγ1+iβ

r−r1
λ1 dr

 for j = 3, 4,

where
T (1) = yQ, T (2) = Q, T (3) = ∂yQ, T (4) = ΛQ.

We now view ρ = (ρ(j))1≤j≤4 as smooth functions of (ũ0, z, µ, β̃, γ). Observe that
the bound (4.9) ensures using the explicit formula (1.11) for α:

|ρ(ũ0, 0, 1, 0, 0)| .

 r0

λ
5−p

(N−1)(p−1)

0

−N−1
2

‖ũ0‖L2 . δ. (4.13)

We now compute

b1 =
2β1

α

λ1

r1
= 2(β0 + β̃)

λ0

αr0
µ
r0

r1
=

(
1 +

β̃

β0

)
b0µ

(
1 +

αb0
2β0

z

)−1

.

We thus obtain using
(Qb,β̃)|(b,β̃)=(0,0) = Qe−iβ∞y

the infinitesimal deformations:

∂zF|(z=0,µ=1,β̃=0,γ=0)
= Q′ − iβ∞Q+O((|b0|+ |β̃0|)e−c|y|),

∂µF|(z=0,µ=1,β̃=0,γ=0)
= ΛQ− iβ∞yQ+O((|b0|+ |β̃0|)e−c|y|),

∂β̃F|(z=0,µ=1,β̃=0,γ=0)
= iyQ+O((|b0|+ |β̃0|)e−c|y|),

∂γF|(z=0,µ=1,β̃=0,γ=0)
= −iQ+O((|b0|+ |β̃0|)e−c|y|).
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The Jacobian matrix of ρ at (ũ0 = 0, z = 0, µ = 1, β̃ = 0, γ = 0) is therefore given
by:

D =

∣∣∣∣∣∣∣∣
(Q′, yQ) (ΛQ, yQ) 0 0
(Q′, Q) (ΛQ,Q) 0 0
−β∞(Q,Q′)) −β∞(yQ,Q′) (yQ,Q′) −(Q,Q′)
−β∞(Q,ΛQ) −β(yQ,ΛQ) (yQ,ΛQ) −(Q,ΛQ)

∣∣∣∣∣∣∣∣+O(|b0|+ |β̃0|)

= − 1

16

(
5− p
p− 1

)2

‖Q‖8L2 +O(|b0|+ |β̃0|) 6= 0

from the smallness assumption (4.10). The existence of the desired decomposition
now follows from the implicit function theorem, and the bound (4.11) follows from
(4.13). �

4.3. Setting up the bootstrap. Let u(t, r) be the radially symmetric solution
emanating from the data (4.8) at t = t̄. From Lemma 4.1, Lemma 4.2 and a
straightforward continuity argument, we can find a small time t∗ < t̄ such that
u(t, r) admits on [t∗, t̄] a unique decomposition

u(t, r) =
1

λ(t)
2
p−1

v

(
t,
r − r(t)
λ(t)

)
eiγ(t) (4.14)

where we froze the law:
b(t) =

2β

α

λ

r
,
ds

dt
=

1

λ2(t)
, (4.15)

and where there holds the decomposition

w(s, y) = v(s, y)eiβy = Q
b(t),β̃(t)

eiβy + ε̃(t, y), ε̃ = ε̃1 + iε̃2 (4.16)

with the orthogonality conditions:

(ε̃1, ζbyQ) = (ε̃1, ζbQ) = (ε̃2, ζbΛQ) = (ε̃2, ζb∂yQ) = 0. (4.17)

Let us define the renormalized weight on the Lebesgue measure:

µ =

(
1 +

λ(t)

r(t)
y

)N−1

=

(
1 +

αb

2β
y

)N−1

(4.18)

and the weighted Sobolev norms:

‖ε‖2L2
µ

=

∫
|ε|2µ, ‖ε‖2H1

µ
=

∫
|∂yε|2µ+

∫
|ε|2µ,

then from Lemma 4.2, the decomposition (4.14) holds as long as
r(t)

λ(t)α
. 1

and
|b(t)|+ |β̃(t)|+ ‖ε̃(t)‖L2

µ
< δ

for some universal constant δ > 0 small enough.
We also introduce the decomposition of the flow:

u(t, r) = Q̃(t, x) + ũ(t, r), ũ(t, r) =
1

λ(t)
2
p−1

ε

(
t,
r − r(t)
λ(t)

)
eiγ(t) (4.19)

and thus
ε̃(s, y) = ε(s, y)eiβy. (4.20)

From (4.8), we have the well prepared data initialization:

ε(t̄) = 0, (λ, b, β̃, r, γ)(t) = (λe, be, β̃e, re, γe)(t̄)
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and we may thus consider a backward time t < t̄ such that the following bootstrap
assumptions hold ∀t ∈ (t, t̄]:

‖ε‖H1
µ
< min(b, λ)δ, (4.21)

0 < b < δ, (4.22)

|β̃| ≤ b
3
2 , (4.23)

and
g∞
2
≤ r(t)

λ(t)α
≤ 2g∞. (4.24)

In particular, the modulation decomposition of Lemma 4.2 applies. Our claim is
that the above regime is trapped.

Proposition 4.3 (Improvement of the bootstrap assumptions). Let te defined in
Lemma 4.1. For any t such that te ≤ t < t̄, and such that the bootstrap assumptions
(4.21)-(4.24) are satisfied on (t, t̄], there holds ∀t ∈ (t, t̄]:

‖ε‖H1
µ
. min

(
|t|

1
1+α , λ

)
|t|

1
1+α , (4.25)

b =
1

1 + α

(
2(1 + α)β∞

αg∞

) 2
1+α

|t|
1−α
1+α

(
1 +O(log(|t|)|t|

1−α
1+α )

)
, (4.26)

|β̃| . |t|
2(1−α)
1+α , (4.27)

and
r(t)

λ(t)α
= g∞

(
1 +O(log(|t|)|t|

1−α
1+α )

)
. (4.28)

Proposition 4.3 is the heart of the proof of Theorem 1.2, and relies on a refine-
ment of the energy method designed in [39].

We finish this section by deriving preliminary estimates on the decomposition
(4.19) which are mostly a consequence of the construction of Q

b,β̃
and the choice of

orthogonality conditions (4.17). These estimates prepare the monotonicity formula
of section 5 which is the key ingredient of the proof.

4.4. Modulation equations. We derive the modulation equations associated to
the modulated parameters (λ(t), r(t), β̃(t), γ(t)). The parameter b is computed from
(4.15) which yields:

bs+(1−α)b2− b
β
P2−bP1 =

b

β
(β̃s−P2)+b

(
λs
λ

+ b− P1

)
− α

2β
b2
(rs
λ

+ 2β
)
. (4.29)

The modulation equations are a consequence of the orthogonality conditions (4.17)
and require the derivation of the equation for ε̃. Recall the equation (3.7) satisfied
by w

i∂sw + wyy − w + w|w|p−1 +
αb

2β

N − 1

1 + αby
2β

(wy − iβw) + b(iΛw + βyw)

= −β̃syw +

(
λs
λ

+ b

)
(iΛw + βyw) +

(rs
λ

+ 2β
)

(iwy + βw) + (γ̃s − β2)w.

We inject the decomposition (4.16) which we rewrite using (3.32):

w = ζbPb,β̃e
−ib y

2

4 + ε̃.
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We then define

Mod(t) =
∣∣∣rs
λ

+ 2β
∣∣∣+ |γ̃s − β2|+

∣∣∣∣λsλ + b− P1

∣∣∣∣+
∣∣∣β̃s − P2

∣∣∣ ,
and obtain using (4.29), the formula (3.36) and the fact that P

b,β̃
= Q+O(be−c|y|)

the following system of equations for ε̃1, ε̃2:

∂sε̃1 − L−(ε̃2) = −αb
2β

(N − 1)

1 + αb
2β y

((ε̃2)y − βε̃1)− β̃syε̃2 +

(
λs
λ

+ b− P1

)
ΛQ

+
λs
λ

(Λε̃1 + βyε̃2) +
(rs
λ

+ 2β
)

(Qy + (ε̃1)y) + Γε̃2

−=R(ε̃) +O
[(
b|ε̃|+ bk + bMod

)
e−c|y|

]
, (4.30)

and

∂sε̃2 + L+(ε̃1) = −αb
2β

(N − 1)

1 + αb
2β y

(−(ε̃1)y − βε̃2) + (β̃s − P2)yQ+ β̃syε̃1

−β
(
λs
λ

+ b− P1

)
yQ+

λs
λ

(Λε̃2 − βyε̃1) +
(rs
λ

+ 2β
)

(ε̃2)y

−Γ(Q+ ε̃1) + <R(ε̃) +O
[(
b|ε̃|+ bk + bMod

)
e−c|y|

]
, (4.31)

where:
Γ = (γ̃s − β2) + β

(rs
λ

+ 2β
)
, (4.32)

L+ and L− are the matrix linearized operator close to Q:

L+ = −∂2
y + 1− pQp−1, L− = −∂2

y + 1−Qp−1. (4.33)

and the nonlinear term is given by

R(ε̃) = f(Q
b,β̃
eiβy + ε̃)− f(Q

b,β̃
eiβy)− f ′(Q

b,β̃
eiβy) · ε̃

with
f(u) = u|u|p−1. (4.34)

We are now in position to derive the modulation equations:

Lemma 4.4 (Modulation equations). There holds the bounds:

Mod . b‖ε̃‖H1
µ

+ bk, (4.35)∣∣∣∣bs + (1− α)b2 − b

β
P2 − bP1

∣∣∣∣ . b2‖ε̃‖H1
µ

+ bk+1. (4.36)

Proof of Lemma 4.4. We multiply the equation of ε̃1 (4.30) by ζbyQ and integrate.
Using the orthogonality conditions (4.17), the identity L−(yQ) = −2Q′ and the non
degeneracy

(∂yQ, ζbyQ) = −1

2
‖Q‖2L2 +O(e

− c√
b ), (4.37)

we obtain:∣∣∣rs
λ

+ 2β
∣∣∣ . b‖ε̃‖L2

µ
+ Mod(b+ ‖ε̃‖L2

µ
) + bk +

∫
|y|C |R(ε̃)|ζbe−|y|. (4.38)

Next, we multiply the equation of ε̃2 (4.31) by ζbΛQ and use the orthogonality
conditions (4.17), the identity L+(ΛQ) = −2Q and the non degeneracy

(ζbΛQ,Q) =
5− p

2(p− 1)

(∫
Q2

)
+O(e

− c√
b ) 6= 0 (4.39)
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to compute:

|Γ| . b‖ε̃‖L2
µ

+ Mod(b+ ‖ε̃‖L2
µ
) + bk +

∫
|y|C |R(ε̃)|ζbe−|y|. (4.40)

Next, we multiply the equation of ε̃1 (4.30) by ζbQ and integrate. Using the orthog-
onality condition (4.17), the identity L−(Q) = 0 and the non degeneracy (4.39), we
obtain:∣∣∣∣λsλ + b− P1

∣∣∣∣ . b‖ε̃‖L2
µ

+ Mod(b+ ‖ε̃‖L2
µ
) + bk +

∫
|y|C |R(ε̃)|ζbe−|y|. (4.41)

Finally, we multiply the equation of ε̃2 (4.31) by ζbQ
′ and use the orthogonality

condition (4.17), the identity L+(Q′) = 0 and the non degeneracy (4.37), we obtain∣∣∣β̃s − P2

∣∣∣ . b‖ε̃‖L2
µ

+ Mod(b+ ‖ε̃‖L2
µ
) + bk +

∫
|y|C |R(ε̃)|ζbe−|y|. (4.42)

In order to estimate the nonlinear term, we first use the one dimensional Sobolev12

‖ε‖L∞(y≥− δ
b
) ≤ ‖ε

′‖
1
2

L2(y≥− δ
b
)
‖ε‖

1
2

L2(y≥− δ
b
)
. ‖ε‖H1

µ
. (4.43)

We then estimate by direct inspection13:

∀z ∈ C, |f(1 + z)− f(1)− f ′(1)z| . |z|2 + |z|p1p>2 (4.44)

and hence by homogeneity:

|R(ε̃)| . |Q
b,β̃
|p−2|ε|2 + |ε|p1p>2. (4.45)

We therefore conclude from the decay (3.15):∫
|y|C |R(ε̃)|ζbe−|y| .

∫
|y|Ckζp−1

b e−(p−1)|y||ε|2 + 1p>2

∫
|ε|pζb

. ‖ε‖2L2
µ

+ 1p>2‖ε‖p−2
L∞ ‖ε‖

2
L2
µ
. ‖ε‖2L2

µ

where we used the Sobolev bound (4.43) and the bootstrap bound (4.21) in the
last step. Injecting this estimate into (4.38), (4.40), (4.41) and (4.42) yields (4.35).
(4.36) now follows from (4.35) and (4.29). �

5. Monotonicity formula

We now turn to the core of our analysis which is the derivation of a monotonicity
formula for the norm of ε which relies on a mixed Energy/Morawetz functional in
the continuation of [37], [39]. As in [39], the required repulsivity properties for
the linearized operator are thanks to the minimal mass assumption energy bounds
only which are well known for the mass subcritical ground state. The addiitional
Morawetz term is designed to produce the expected non trivial Galilean drift on the
soliton core after renormalization.

12Recall that µ = (1 + αb
2β
y)N−1 and thus, y > − δ

b
implies µ & 1.

13let us recall that p > 1 but p < 2 is allowed in our range of parameters.
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5.1. Algebraic identity. We recall the decomposition (4.19) which in view of
(3.35) yields the equation for ũ:

i∂tũ+ ∆ũ+ |u|p−1u− Q̃|Q̃|p−1 = −ψ = − 1

λ(t)
2p
p−1

Ψ

(
t,
r − r(t)
λ(t)

)
eiγ(t) (5.1)

with Ψ given by (3.36). We let

φ : [−1,+∞)→ R

be a time independent smooth compactly supported cut off function which satisfies:

φ(z) ≡ 0 for − 1 ≤ z ≤ −1

2
and for z ≥ 1

2
, (5.2)

and

φ(0) = 1, sup
z≥−1

|φ(z)| <
√

1 + β2
∞

β∞
. (5.3)

Let

F (u) =
1

p+ 1
|u|p+1, f(u) = u|u|p−1 so that F ′(u) · h = Re(f(u)h).

We first claim a purely algebraic identity for the linearized flow (5.1) which is a
mixed Energy/Morawetz functional:

Lemma 5.1 (Algebraic energy/Morawetz estimate). Let

I(ũ) =
1

2

∫
|∇ũ|2 +

1 + β2

2

∫
|ũ|2

λ2
−
∫ [

F (Q̃+ ũ)− F (Q̃)− F ′(Q̃) · ũ
]

+
β

λ
=
(∫

φ

(
r

r(t)
− 1

)
∂rũũ

)
, (5.4)

J (ũ) = −1 + β2

λ2
=
(
f(u)− f(Q̃), ũ

)
(5.5)

− 2β

λ
<
(∫

φ

(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
− <

(
∂tQ̃, (f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)

)
,

then there holds:

d

dt
I(ũ) = J (ũ) +O

(
b

λ4
‖ε‖2H1

µ
+
bk

λ4
‖ε‖H1

µ

)
. (5.6)
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Proof of Lemma 5.1. step 1 Algebraic derivation of the energetic part. We compute
from (5.1):

d

dt

{
1

2

∫
|∇ũ|2 +

1 + β2

2

∫
|ũ|2

λ2
−
∫ [

(F (u)− F (Q̃)− F ′(Q̃) · ũ)
]}

(5.7)

= −<

(
∂tũ,∆ũ−

1 + β2

λ2
ũ+ (f(u)− f(Q̃))

)
− (1 + β2)λt

λ3

∫
|ũ|2

+
ββt
λ2

∫
|ũ|2 −<

(
∂tQ̃, (f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)

)
= =

(
ψ,∆ũ− 1 + β2

λ2
ũ+ (f(u)− f(Q̃))

)
− 1 + β2

λ2
=
(
f(u)− f(Q̃), ũ

)
− (1 + β2)λt

λ3

∫
|ũ|2 +

ββt
λ2

∫
|ũ|2 −<

(
∂tQ̃, (f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)

)
.

We first estimate from (4.35):

−λt
λ3

∫
|ũ|2 =

b

λ4

∫
|ũ|2 − P1

λ4

∫
|ũ|2 − 1

λ4

(
λs
λ

+ b

)
‖ũ‖2L2 (5.8)

=
1

λ4
O
(
b‖ε‖2L2

µ

)
where we used the bootstrap assumptions (4.21) (4.23) (4.24) in the last equality.
Also, using again (4.35), we have

ββt
λ2

∫
|ũ|2 =

βP2

λ4

∫
|ũ|2 +

β(βs − P2)

λ4

∫
|ũ|2 (5.9)

=
1

λ4
O
(
b‖ε‖2L2

µ

)
where we used the bootstrap assumptions (4.21) (4.22) (4.23) (4.24) in the last
equality.

It remains to estimate the first term in the RHS (5.7). We have∣∣∣∣∣=
(
ψ,∆ũ− 1 + β2

λ2
ũ+ (f(u)− f(Q̃))

)
− 1 + β2

λ2
=
(
f(u)− f(Q̃), ũ

) ∣∣∣∣∣
.

∣∣∣∣∣=
(∫ [

∆ψ − (1 + β2)
ψ

λ2
+
p+ 1

2
|Q̃|p−1ψ − p− 1

2
|Q̃|p−3Q̃2ψ

]
ũ

)∣∣∣∣∣
+

∣∣∣=(ψ, (f(Q̃+ ũ)− f(Q̃)− f ′(Q̃) · ũ)
)∣∣∣ .

We extract from (3.36), (4.35) and (4.36) the bound:

|Ψ| . ζb(b
k + Mod)(1 + |y|ck)e−|y| +

e−|y|

bck
1y∼ 1√

b

. ζb(b
k + b‖ε‖H1

µ
)(1 + |y|ck)e−|y| +

e−|y|

bck
1y∼ 1√

b

(5.10)

Then, we estimate in brute force:∣∣∣∣∣=
(∫ [

∆ψ − (1 + β2)
ψ

λ2
+
p+ 1

2
|Q̃|p−1ψ − p− 1

2
|Q̃|p−3Q̃2ψ

]
ũ

)∣∣∣∣∣
.

(bk + b‖ε‖H1
µ
)‖ε‖H1

µ

λ4
.
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Also, we estimate using the homogeneity estimate (4.45):∣∣∣=(ψ, (f(Q̃+ ũ)− f(Q̃)− f ′(Q̃) · ũ)
)∣∣∣

.
1

λ4

∫ [
ζb(b

k + b‖ε‖H1
µ
)(1 + |y|ck)e−|y| +

e−|y|

bck
1y∼ 1√

b

] [
|Q

b,β̃
|p−2|ε|2 + |ε|p1p>2

]
.

b

λ4
‖ε‖2H1

µ

where we used the Sobolev bound (4.43) in the last step. We have therefore obtained
the preliminary computation:

d

dt

{
1

2

∫
|∇ũ|2 +

1 + β2

2

∫
|ũ|2

λ2
−
∫ [

(F (u)− F (Q̃)− F ′(Q̃) · ũ)
]}

= −1 + β2

λ2
=
(
f(u)− f(Q̃), ũ

)
−<

(
∂tQ̃, (f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)

)
+

1

λ4
O

(
bk‖ε‖H1

µ
+ b‖ε‖2H1

µ

)
. (5.11)

step 2 Algebraic derivation of the localized virial part. We now estimate the
contribution of the localized Morawetz term. We first compute using (4.15):

d

dt

[
r

r(t)

]
= −rt(t)r

r2(t)
= −rs

λ

r

λr2(t)

=
2βr

λ(t)r(t)2
−
(rs
λ

+ 2β
) r

λ(t)r2(t)

=
αb(t)

λ2(t)

r

r(t)
− αb

2βλ(t)2

r

r(t)

(rs
λ

+ 2β
)
.

This yields:

d

dt

{
β

λ
=
(∫

φ

(
r

r(t)
− 1

)
∂rũũ

)}
(5.12)

=
αβb

λ3
=
(∫

r

r(t)
φ′
(

r

r(t)
− 1

)
∂rũũ

)
− αb

2λ3

(rs
λ

+ 2β
)
=
(∫

r

r(t)
φ′
(

r

r(t)
− 1

)
∂rũũ

)
+
P2

λ3
=
(∫

φ

(
r

r(t)
− 1

)
∂rũũ

)
+

βs − P2

λ3
=
(∫

φ

(
r

r(t)
− 1

)
∂rũũ

)
+
β(b− P1)

λ3
=
(∫

φ

(
r

r(t)
− 1

)
∂rũũ

)
− b

λ3

(
λs
λ

+ b− P1

)
=
(∫

φ

(
r

r(t)
− 1

)
∂rũũ

)
+

β

λ
<

(∫
i∂tũ

[(
1

r(t)
φ′ +

N − 1

r
φ

)(
r

r(t)
− 1

)
ũ+ 2φ

(
r

r(t)
− 1

)
∂rũ

])

=
β

λ
<

(∫
i∂tũ

[(
1

r(t)
φ′ +

N − 1

r
φ

)(
r

r(t)
− 1

)
ũ+ 2φ

(
r

r(t)
− 1

)
∂rũ

])

+ O

(
b

λ4
‖ε‖2H1

µ

)
,



30 F. MERLE, P. RAPHAËL, AND J. SZEFTEL

where we used in the last inequality (4.35), the bootstrap assumptions (4.21) (4.22)
(4.23) (4.24), and the fact that

1

r
∼ 1

r(t)
on the support of φ

(
·

r(t)
− 1

)
. (5.13)

The first term in the right-hand side of (5.12) corresponds to the localized Morawetz
multiplier, and we get from (5.1) and the classical Pohozaev integration by parts
formula:

β

λ
<

(∫
i∂tũ

[(
1

r(t)
φ′ +

N − 1

r
φ

)(
r

r(t)
− 1

)
ũ+ 2φ

(
r

r(t)
− 1

)
∂rũ

])

=
αb

λ2

(∫
φ′
(

r

r(t)
− 1

)
|∂rũ|2

)
− α2b2

8βλ3

(∫
∆

(
1

r(t)
φ′ +

N − 1

r
φ

)(
r

r(t)
− 1

)
|ũ|2
)

− 2β

λ
<
(∫

φ

(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
− β

λ
<
(∫ (

1

r(t)
φ′ +

N − 1

r
φ

)(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃))ũ

)
− 2β

λ
<
(∫

φ

(
r

r(t)
− 1

)
ψ∂rũ

)
− β

λ
<
(∫ (

1

r(t)
φ′ +

N − 1

r
φ

)(
r

r(t)
− 1

)
ψũ

)
.

which together with (5.13) yields

β

λ
<

(∫
i∂tũ

[(
1

r(t)
φ′ +

N − 1

r
φ

)(
r

r(t)
− 1

)
ũ+ 2φ

(
r

r(t)
− 1

)
∂rũ

])

= −2β

λ
<
(∫

φ

(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
(5.14)

− β

λ
<
(∫ (

1

r(t)
φ′ +

N − 1

r
φ

)(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃)− f ′(Q̃) · ũ)ũ

)
− 2β

λ
<
(∫

φ

(
r

r(t)
− 1

)
ψ∂rũ

)
− β

λ
<
(∫ (

1

r(t)
φ′ +

N − 1

r
φ

)(
r

r(t)
− 1

)
ψũ

)
+ O

(
b

λ4
‖ε‖2H1

µ

)
.

We estimate by direct inspection:

|f(1 + z)− f(1)− f ′(1) · z| . |z|p + |z|21p>2

and hence the bound by homogeneity:

|f(Q̃+ ũ)− f(Q̃)− f ′(Q̃) · ũ| . |ũ|p + |Q̃|p−2|ũ|21p>2. (5.15)

We thus obtain the bound:∣∣∣∣∣− β

λ
<
(∫ (

1

r(t)
φ′ +

N − 1

r
φ

)(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃)− f ′(Q̃) · ũ)ũ

) ∣∣∣∣∣
.

b

λ2

[∫
|ũ|p+1 + |ũ|3|Q̃|p−21p>2

]
(5.16)
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where we used (5.13). We claim the nonlinear bounds:∫
|ũ|3|Q̃|p−2 .

δ‖ε‖2L2
µ

λ2
for p > 2, (5.17)

∫
|ũ|p+1 .

δp−1‖ε‖2H1
µ

λ2
, (5.18)

which are proved below. The terms involving ψ in (5.14) are estimateed in brute
force using (5.10) ∣∣∣∣2βλ <

(∫
φ

(
r

r(t)
− 1

)
ψ∂rũ

)∣∣∣∣ (5.19)

+

∣∣∣∣βλ<
(∫ (

1

r(t)
φ′ +

N − 1

r
φ

)(
r

r(t)
− 1

)
ψũ

)∣∣∣∣
.

(bk + b‖ε‖H1
µ
)‖ε‖H1

µ

λ4
.

Injecting (5.16), (5.17), (5.18) and (5.19) into (5.14) yields:

β

λ
<

(∫
i∂tũ

[(
1

r(t)
φ′ +

N − 1

r
φ

)(
r

r(t)
− 1

)
ũ+ 2φ

(
r

r(t)
− 1

)
∂rũ

])

= −2β

λ
<
(∫

φ

(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
+O

(
b

λ4
‖ε‖2H1

µ
+
bk

λ4
‖ε‖H1

µ

)
.

We now inject this into (5.12) which together with (5.11) concludes the proof of
(5.6).
Proof of (5.17): Note first that Q̃ is localized in the region r ≥ r(t)/2 due to the
cut-off ζb in its definition. Now, the region r ≥ r(t)/2 corresponds to y ≥ − r(t)

2λ(t)

and thus:
µ & 1 for r ≥ r(t)/2.

For p > 2, we estimate from the Sobolev bound (4.43) and the bootstrap assumption
(4.21): ∫

|ũ|3|Q̃|p−2 =
1

λ2

∫
y≥− r(t)

2λ(t)

|ε|3|Q
b,β̃
|p−2µ .

1

λ2

∫
y≥− r(t)

2λ(t)

|ε|3µ

≤ 1

λ2
‖ε‖

L∞(y≥− r(t)
2λ(t)

)
‖ε‖2L2

µ
.

1

λ2
‖ε‖H1

µ
‖ε‖2L2

µ

.
δ‖ε‖2H1

µ

λ2
,

and (5.17) is proved.
Proof of (5.18). Observe that the bootstrap bound (4.21) implies:

‖ũ‖H1 .
‖ε‖H1

µ

λ
. δ. (5.20)

In view of the Sobolev embeddings, this yields:∫
|ũ|p+1 . ‖ũ‖p+1

H1 .
‖ε‖2H1

µ

λ2
‖ũ‖p−1

H1 .
δp−1‖ε‖2H1

µ

λ2
,

and (5.18) is proved. This concludes the poof of Lemma 5.1. �
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5.2. Coercivity of I. We now examine the various terms in Lemma 5.1 which
correspond to quadratic interactions. Let us start with the boundary term in time
I:

Lemma 5.2 (Coercivity of I). Let I(ũ) given by (5.4). Then:

I(ũ) ≥ c0

(
‖∇ũ‖2L2 +

1

λ2
‖ũ‖2L2

)
(5.21)

for some universal constant c0 > 0.

Proof of Lemma 5.2. We first renormalize:

I(ũ) =
1

2λ2

{∫
|∂yε|2µ+ 2β=

(∫
φ(z)∂yεε

)
µ+ (1 + β2)

∫
|ε|2µ

− 2

∫ (
F (Q

b,β̃
+ ε)− F (Q

b,β̃
)− F ′(Q

b,β̃
) · ε
)
µ

}
.

where

z =
r

r(t)
− 1 =

αb

2β
y, µ = (1 + z)N−1. (5.22)

We compute:

F ′′(Q
b,β̃

) · ε · ε =
p− 1

4
Q2
b,β̃
ε2 +

p+ 1

2
|Q

b,β̃
|p−1|ε|2 +

p− 1

4
|Q

b,β̃
|p−3Q2

b,β̃
ε2

and estimate by homogeneity:∣∣∣∣F (Q+ ε)− F (Q
b,β̃

)− F ′(Q
b,β̃

) · ε− 1

2
F ′′(Q

b,β̃
) · ε · ε

∣∣∣∣ (5.23)

. |ε|p+1 + |ε|3|Q
b,β̃
|p−21p>2.

We conclude using the bounds (5.17), (5.18):

2

∫ [
F (Q

b,β̃
+ ε)− F (Q

b,β̃
)− F ′(Q

b,β̃
) · ε
]
µ

=

∫ [
p− 1

4
Q2
b,β̃
ε2 +

p+ 1

2
|Q

b,β̃
|p−1|ε|2 +

p− 1

4
|Q

b,β̃
|p−3Q2

b,β̃
ε2

]
µ

+O

(
λ2

∫
|ũ|3|Q̃|p−21p>2 + |ũ|p+1

)
= p

∫
ε̃2

1ζbQ
p−1 +

∫
ε̃2

2ζbQ
p−1 +O

(
b‖ε‖2L2

µ
+ ‖ε‖3H1

µ

)
= p

∫
ε̃2

1ζbQ
p−1 +

∫
ε̃2

2ζbQ
p−1 +O

(
δC‖ε‖2H1

µ

)
where we used the estimates (5.17) and (5.18), the bootstrap assumption (4.22), the
fact that

Q
b,β̃

= ζbQe
−iβy +O(be−c|y|) and ζbQ

p−1µ = ζbQ
p−1 +O(bζbe

−c|y|),

and where we recall from (4.20) that:

ε̃ = εeiβy.
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Together with β = β∞ + β̃ and the bootstrap assumptions (4.22) (4.23), this yields
the preliminary estimate:

I(ũ) =
1

2λ2

{∫
|∂yε|2µ+ 2β∞=

(∫
φ(z)∂yεεµ

)
+

∫
(1 + β2

∞)|ε|2µ(5.24)

− p

∫
ε̃2

1Q
p−1 −

∫
ε̃2

2Q
p−1 +O

(
δC‖ε‖2H1

µ

)}
.

Let us now split the potential part in the zones |y| ≤ 1√
b
, |y| ≥ 1√

b
. Away from the

soliton, the reduced discriminant of the quadratic form

|∂yε|2 + 2β∞= (φ(z)∂yεε) + (1 + β2
∞)|ε|2

is given by

∆ = β2
∞φ

2(z)− (1 + β2
∞)2 < 0

from (5.3) and thus:∫
|y|≥ 1√

b

[
|∂yε|2 + 2β∞= (φ(z)∂yεε) + (1 + β2

∞)|ε|2
]
&
∫
|y|≥ 1√

b

[
|∂yε|2 + |ε|2

]
.

On the singularity |y| . 1√
b
, we have from (5.3):

|φ(z)− 1| . |z| .
√
b

and thus: ∫
|y|≤ 1√

b

[
|∂yε|2 + 2β∞= (φ(z)∂yεε) + (1 + β2

∞)|ε|2
]
µ

=

∫
|y|≤ 1√

b

[
|∂y ε̃|2 + |ε̃|2

]
+O(

√
b‖ε‖2H1

µ
)

Collecting the above bounds yields:

2I(ũ) =

∫
|y|≤ 1√

b

[
|∂y ε̃|2 + |ε̃|2

]
− p

∫
ε̃2

1ζbQ
p−1 +

∫
ε̃2

2ζbQ
p−1

+

∫
|y|≥ 1√

b

[
|∂yε|2 + |ε|2

]
µ+O(δC‖ε‖2H1

µ
). (5.25)

We now recall the following coercivity property of the linearized energy in the one
dimensional subcritical case which is a well known consequence of the variational
characterization of Q, see for example [6]:

Lemma 5.3 (Coercivity of the linearized energy). There holds for some universal
constant c0 > 0 : ∀ε ∈ H1(R),

(L+(ε1), ε1) + (L−(ε2), ε2) ≥ c0‖ε‖2H1 (5.26)

− 1

c0

{
(ε1, Q)2 + (ε1, yQ)2 + (ε2,ΛQ)2

}
.
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We now inject the choice of orthogonality conditions (4.17) into (5.26) and obtain
using a standard localization argument14:∫

|y|≤ 1√
b

[
|∂y ε̃|2 + |ε̃|2

]
− p

∫
ε̃2

1ζbQ
p−1 +

∫
ε̃2

2ζbQ
p−1

&
∫
|y|≤ 1√

b

[
|∂y ε̃|2 + |ε̃|2

]
+O(δC‖ε̃‖2H1

µ
)

&
∫
|y|≤ 1√

b

[
|∂yε|2 + |ε|2

]
µ+O(δC‖ε‖2H1

µ
)

which together with (5.25) concludes the proof of (5.21). �

Remark 5.4. One can easily extract from the above proof the upper bound:

I . ‖∇ũ‖2L2 +
1

λ2
‖ũ‖2L2 . (5.27)

5.3. Estimate for J (ũ). We now treat the J (ũ) term given by (5.5). We first
extract the leading order quadratic terms in J (ũ) and claim that is a b degenerate
quadratic term. A suitable choice of the cut off function φ would allow us sign this
term again as in [39], but we shall not need this additional structural fact here.

Lemma 5.5 (Leading order terms in J (ũ)). We have the rough bound:

|J (ũ)| . b

λ4
‖ε‖2H1

µ
. (5.28)

Proof of Lemma 5.5. step 1 The ∂tQ̃ term. We compute ∂tQ̃ from (3.34):

Q̃t = iγtQ̃−
2

p− 1

λt
λ
Q̃− r − r(t)

λ

λt
λ

1

λ
2
p−1

Q′
b,β̃

(
r − r(t)
λ(t)

)
eiγ

−rt(t)
λ

1

λ
2
p−1

Q′
b,β̃

(
r − r(t)
λ(t)

)
eiγ + bt

1

λ
2
p−1

∂bQb(t),β̃(t)

(
r − r(t)
λ(t)

)
eiγ(t)

+β̃t
1

λ
2
p−1

∂
β̃
Q
b(t),β̃(t)

(
r − r(t)
λ(t)

)
eiγ(t)

=

(
i(1 + β2)

λ2
+

2

p− 1

b

λ2

)
Q̃+

b

λ

r − r(t)
λ

∂rQ̃+
2β

λ
∂rQ̃

+
1

λ
2+ 2

p−1

O

([
b2 + Mod +

∣∣∣∣bs + (1− α)b2 − b

β
P2 − bP1

∣∣∣∣] ζb|y|ce−|y|)
=

i(1 + β2)

λ2
Q̃+

2β

λ
∂rQ̃+

1

λ
2+ 2

p−1

O
(
bζb|y|ce−|y|

)
where we used (4.35) and the decay estimate (3.15) in the last step. This yields:

− <
(
∂tQ̃, (f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)

)
= −1 + β2

λ2
=
(∫

(f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)Q̃

)
− 2β

λ
<
(∫

(f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)∂rQ̃

)
+

1

λ4
O

(∫
bζb|y|ce−|y|

∣∣∣f(Q
b,β̃

+ ε)− f(Q
b,β̃

)− f ′(Q
b,β̃

) · ε
∣∣∣µ)

14using the smallness of b and the exponential localization of Q, see for example [20]
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where we used the estimates (5.17) and the bootstrap assumptions (4.21) and (4.22).
We estimate the nonlinear terms using (4.45), (4.21), (4.43):

∫
bζb|y|ce−|y|

∣∣∣f(Q
b,β̃

+ ε)− f(Q
b,β̃

)− f ′(Q
b,β̃

) · ε
∣∣∣µ

. b

∫
ζb|y|ce−|y|

[
|Q

b,β̃
|p−2|ε|2 + |ε|p1p>2

]
µ

. b

[
1 + ‖ε‖p−2

L∞(y≥− δ
b
)
1p>2

] ∫
|ε|2µ

. b‖ε‖2H1
µ
.

Injecting the collection of above bounds into (5.5) yields the preliminary computa-
tion:

J (ũ) = −1 + β2

λ2
=
∫ (

f(u)− f(Q̃), ũ
)

(5.29)

− 2β

λ
<
(∫

φ

(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
− 1 + β2

λ2
=
(∫

(f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)Q̃

)
− 2β

λ
<
(∫

(f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)∂rQ̃

)
+O

(
b

λ4
‖ε‖2H1

µ

)
.

step 2 Nonlinear cancellation on the phase term. We observe using the explicit
formula for f and

f ′(Q̃) · ũ =
p+ 1

2
|Q̃|p−1ũ+

p− 1

2
|Q̃|p−3Q̃2ũ. (5.30)

the nonlinear cancellation:

− 1 + β2

λ2
=
∫ (

f(u)− f(Q̃), ũ
)
− 1 + β2

λ2
=
(∫

(f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)Q̃

)
= −1 + β2

λ2
=
(∫

f(ũ+ Q̃), Q̃+ ũ

)
+

1 + β2

λ2
=
(∫

f(Q̃), Q̃

)
+

1 + β2

λ2
=
(∫

f(Q̃)ũ+ f ′(Q̃) · ũQ̃
)

=
1 + β2

λ2
=
(∫

f(Q̃)ũ+ f ′(Q̃) · ũQ̃
)

=
1 + β2

λ2
=
(∫
|Q̃|p−1

(
Q̃ũ+

p+ 1

2
ũQ̃+

p− 1

2
Q̃ũ

))
= 0. (5.31)

step 3 Conclusion. Let ϕ be a smooth compactly supported cut-off function
which is 1 in the neighborhood of the support of φ, and 0 in the neighborhood of
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z = −1. We compute:

A1 = −2β

λ
<
(∫

ϕ

(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
− 2β

λ
<
(∫

ϕ

(
r

r(t)
− 1

)
(f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)∂rQ̃

)
= −2β

λ
<
(∫

ϕ

(
r

r(t)
− 1

)
f(Q̃+ ũ)∂rQ̃+ ∂rũ

)
+

2β

λ
<
(∫

ϕ

(
r

r(t)
− 1

)
f(Q̃)∂rQ̃

)
+

2β

λ
<
(∫

ϕ

(
r

r(t)
− 1

)
(f(Q̃)∂rũ+ f ′(Q̃) · ũ∂rQ̃)

)
= −2β

λ
<
∫
ϕ

(
r

r(t)
− 1

)
∂r[F (u)− F (Q̃)− f(Q̃)ũ].

Integrating by parts in r, we obtain:

A1 =
2β

λ
<
∫ [

1

r(t)
ϕ′ +

N − 1

r
ϕ

](
r

r(t)
− 1

)
(F (u)− F (Q̃)− f(Q̃)ũ).

In view of the properties of ϕ, we have

1

r
∼ 1

r(t)
on the support of ϕ

(
·

r(t)
− 1

)
, (5.32)

and thus

A1 =
2β

λ
<
∫ [

1

r(t)
ϕ′ +

N − 1

r
ϕ

](
r

r(t)
− 1

)
(5.33)

×
(
F (u)− F (Q̃)− f(Q̃)ũ− 1

2
F ′′(Q̃)(ũ, ũ)

)
+O

(
b

λ4
‖ε‖2H1

µ

)
.

Next, we estimate using (5.23), the nonlinear estimates (5.17), (5.18), (5.32) and
(4.15):∣∣∣∣2βλ <

∫ [
1

r(t)
ϕ′ +

N − 1

r
ϕ

](
r

r(t)
− 1

)(
F (u)− F (Q̃)− f(Q̃)ũ− 1

2
F ′′(Q̃)(ũ, ũ)

)∣∣∣∣
.

b

λ4

∫ [
|ε|p+1 + |ε|3|Q

b,β̃
|p−21p>2

]
µ .

bδC

λ4
‖ε‖2H1

µ
,

which together with (5.33) yields

A1 = O

(
b

λ4
‖ε‖2H1

µ

)
. (5.34)

Since ϕ = 1 on the support of φ, we have:

2β

λ
<
(∫

φ

(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
=

2β

λ
<
(∫

(ϕφ)

(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
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and thus from (4.15):

A2 = −2β

λ
<
(∫

φ

(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
(5.35)

+
2β

λ
<
(∫

ϕ

(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
= −2β

λ
<

(∫
ϕ

(
r

r(t)
− 1

)[
φ

(
r

r(t)
− 1

)
− 1

]
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
.

We then observe the identity:

<
(
∂r[F (Q̃+ ũ)− F (Q̃)− f(Q̃)ũ]− (f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)∂rQ̃

)
= <

(
f(Q̃+ ũ)(∂rQ̃+ ∂rũ)− f(Q̃)∂rQ̃− f ′(Q̃) · ∂rQ̃ũ− f(Q̃)∂rũ− f(Q̃+ ũ)∂rQ̃

+ f(Q̃)∂rQ̃+ f ′(Q̃) · ũ∂rQ̃

)
= <

(
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
+ <

(
−f ′(Q̃) · ∂rQ̃ũ+ f ′(Q̃) · ũ∂rQ̃

)
= <

(
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
+ <

(
−∂uf(Q̃)∂rQ̃ũ− ∂uf(Q̃)∂rQ̃ũ+ ∂uf(Q̃)ũ∂rQ̃+ ∂uf(Q̃)ũ∂rQ̃

)
= <

(
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
+ <

(
−∂uf(Q̃)∂rQ̃ũ+ ∂uf(Q̃)ũ∂rQ̃

)
= <

(
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
,

where we used in the last inequality the fact that

∂uf(Q̃) =
p+ 1

2
|Q̃|p−1 ∈ R.
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Injecting this into (5.35) and using (4.15), (5.22) yields:

A2 = −2β

λ
<

(∫
ϕ

(
r

r(t)
− 1

)[
φ

(
r

r(t)
− 1

)
− 1

]

× ∂r[F (ũ+ Q̃)− F (Q̃)− f(Q̃)ũ]

)

+
2β

λ
<

(∫
ϕ

(
r

r(t)
− 1

)[
φ

(
r

r(t)
− 1

)
− 1

]

× (f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)∂rQ̃

)

=
2β

λ2
<

(∫ (
αb

2β
∂z (ϕ(z) [φ(z)− 1]) +

(N − 1)λ

r
ϕ(z) [φ(z)− 1]

)(
r

r(t)
− 1

)

× (F (ũ+ Q̃)− F (Q̃)− f(Q̃)ũ)

)

+
2β

λ
<

(∫
ϕ

(
r

r(t)
− 1

)[
φ

(
r

r(t)
− 1

)
− 1

]

× (f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)∂rQ̃

)
. (5.36)

Since φ(0) = 1, we obtain from (5.22):

|φ(z)− 1| . |z| . b|y|, |∂z (φ(z)− 1)| . 1. (5.37)

We inject this into (5.36), use the homogeneity bounds (4.44) and∣∣∣F (Q
b,β̃

+ ε)− F (Q
b,β̃

)− f(Q
b,β̃

)ε
∣∣∣ . |Qb,β̃|p−1|ε|2 + |ε|p+1,

the pointwise bound:

|φ(z)|+ |∂zφ(z)| . 1,
λ

r
(1 + |z|) . λ

r

∣∣∣∣ r

r(t)

∣∣∣∣ . b on Supp(φ)

and the decay (3.15) to estimate:

A2 .
b

λ4

∫ [
|Q

b,β̃
|p−1|ε|2 + |ε|p+1

]
[|∂z(ϕ(z)(φ(z)− 1)|+ ϕ(z) |φ(z)− 1|]µ

+
1

λ4

∫ [
|Q

b,β̃
|p−2|ε|2 + |ε|p1p>2

]
ϕ(z) |φ(z)− 1| |∂yQb,β̃|µ

.
b

λ4

∫ [
|ε|p+1 + b|y|Cζbe−(p−1)|y||ε|2

]
µ

+
1

λ4

∫
b|y|

[
|ε|2|y|Cζbe−(p−1)|y| + ζb|ε|p1p>2e

−c|y|
]
µ

.
b

λ4
‖ε‖2H1

µ
(5.38)

where we used (5.18) and the Sobolev bound (4.43) in the last step. We conclude
from (5.34), (5.38):

A1 −A2 = O

(
b

λ4
‖ε‖2H1

µ

)
. (5.39)
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The function 1− ϕ is supported by construction in y . −1
b where Q̃ vanishes, and

hence (5.39) ensures:

−2β

λ
<
(∫

φ

(
r

r(t)
− 1

)
(f(Q̃+ ũ)− f(Q̃))∂rũ

)
(5.40)

−2β

λ
<
(∫

(f(ũ+ Q̃)− f(Q̃)− f ′(Q̃) · ũ)∂rQ̃

)
= O

(
b

λ4
‖ε‖2H1

µ

)
.

In view of (5.29), (5.31) and (5.40), we obtain the expansion of quadratic terms in
J (ũ):

J(ũ) = O

(
b

λ4
‖ε‖2H1

µ

)
which is the wanted estimate (5.28). This concludes the proof of Lemma 5.5. �

6. Existence of ring solutions

We conclude in this section the proof of Theorem 1.2. We start with closing
the bootstrap Proposition 4.3 using the monotonicity tools developed in the previ-
ous section, and then prove the existence of a ring solution using a now standard
Schauder type compactness argument and a backwards integration of the flow from
blow up time.

6.1. Closing the bootstrap. We are now in position to close the bootstrap i.e.
Proposition 4.3.

Proof of Proposition 4.3. step 1 Pointwise control of ε. In view of (5.6), we have:

d
(
I(ũ)
λθ

)
dt

=
1

λθ
dI(ũ)

dt
− θ λt

λθ+1
I(ũ)

=
1

λθ
J (ũ) + θ

b

λ2+θ
I(ũ)− θ P1

λ2+θ
I(ũ)

−
(
λs
λ

+ b− P1

)
I(t)

λ2+θ
+O

(
b

λ4+θ
‖ε‖2H1

µ
+

bk

λ4+θ
‖ε‖H1

µ

)
.

We estimate from (4.35), the bootstrap assumptions (4.22) (4.23), and (5.27):∣∣∣∣ P1

λ2+θ
I(ũ)

∣∣∣∣+

∣∣∣∣(λsλ + b

)
I(t)

λ2+θ

∣∣∣∣ . b

λ4+θ

[
b2 + b‖ε‖H1

µ
+ bk

]
‖ε‖2H1

µ

.
bδC

λ4+θ
‖ε‖2H1

µ
,

which together with (5.21) yields the ecistence of a constant C > 0 such that

d
(
I(ũ)
λθ

)
dt

≥ (c0θ − C)
b

λ4+θ
‖ε‖2H1

µ
− C b

2k−1

λ4+θ
. (6.1)

We fix θ such that

θ >
C

c0
.

Then, (6.1) yields

d
(
I(ũ)
λθ

)
dt

& −b
2k−1

λ4+θ
. (6.2)
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Now, the definition (4.15) of b together with the bootstrap assumptions (4.22) (4.23)
(4.24) yield

b ∼ λ1−α. (6.3)
In view of (6.2) and (6.3), we obtain

d
(
I(ũ)
λθ

)
dt

& −bλ2(1−α)(k−1)−4−θ. (6.4)

This yields after integration between t and t̄ using I(ũ) = 0 at t = t̄ from the well
prepared initial data assumption (4.8):

I(ũ) . λ(t)θ
∫ t̄

t
b(τ)λ(τ)2(1−α)(k−1)−4−θdτ. (6.5)

We now use the bootstrap bounds (4.21) (4.22) (4.23) and the modulation equation
(4.35) to estimate:∣∣∣∣λsλ + b

∣∣∣∣ . |P1(b, β̃)|+ b‖ε‖H1
µ

+ bk . δCb from which 0 < b . −λλt.

We conclude from (6.5) and the choice of k

k > 1 +
1 + max

(
θ
2 , 1
)

1− α
that

I(ũ) . λ(t)2.

In view of the coercivity (5.21) of I(ũ), we obtain

‖∇ũ‖2L2 +
1

λ2
‖ũ‖2L2 . λ2

or equivalently
‖ε‖H1

µ
. λ2. (6.6)

step 2 Control of the modulation parameters.

To conclude the proof of Proposition 4.3, it remains to control the modulation
parameters. We first derive an estimate for Mod(t). Note that in view of (6.4), we
obtain the following improvement of (6.6)

‖ε‖H1
µ
. λ2+(1−α)(k−1− 2

1−α ).

Together with (4.35) and (6.3), we deduce

Mod(t) . b‖ε‖H1
µ

+ bk . bk. (6.7)

The control of the modulation parameters is achieved by the following lemma.

Lemma 6.1. Let k satisfying the condition

k >
2

1− α
+ 1. (6.8)

Let te defined in Lemma 4.1. Let t and t̄ such that te ≤ t < t̄ < 0. Let (λe, be, β̃e, re, γe)

solution to the exact system (4.1) of modulation equations. Let (λ, b, β̃, r, γ) initial-
ized at t = t as

(λ, b, β̃, r, γ)(t) = (λe, be, β̃e, re, γe)(t̄) (6.9)
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and solution of the following perturbed system of modulation equations on [t, t̄]:

λs
λ + b− P1(b, β̃) = O(bk),
rs
λ + 2β = O(bk),

β̃s − P2(b, β̃) = O(bk),

b = 2β
α
λ
r , β = β∞ + β̃,

γs = 1 + β2 +O(bk).

(6.10)

Then, the following bounds hold on [t, t̄]:

b(t) =
1

1 + α

(
2(1 + α)β∞

αg∞

) 2
1+α

|t|
1−α
1+α

(
1 +O

(
log(|t|)|t|

1−α
1+α

))
, (6.11)

λ(t) =

(
2(1 + α)β∞

αg∞

) 1
1+α

|t|
1

1+α

(
1 +O

(
log(|t|)|t|

1−α
1+α

))
, (6.12)

r(t) = g∞

(
2(1 + α)β∞

αg∞

) α
1+α

|t|
α

1+α

(
1 +O

(
log(|t|)|t|

1−α
1+α

))
, (6.13)

β̃(t) = O

(
|t|

2(1−α)
1+α

)
, (6.14)

and

γ(t) = (1 + β2
∞)

(
1− α
1 + α

) 1−α
1+α

(
2(1− α)β∞

αg∞

)− 2
1+α

|t|−
1−α
1+α +O(log(|t|)). (6.15)

The proof of Lemma 6.1 is postponed to Appendix B. We now conclude the proof
of Proposition 4.3. The assumptions (6.8) (6.9) (6.10) of Lemma 6.1 are satisfied in
view of the choice (4.7) for k, (6.7) and (4.8). Thus, the conclusions of Lemma 6.1
apply. In particular, (6.11) yields (4.26), (6.14) yields (4.27), (6.13) and (6.12) yield
(4.28), while (6.6) and (6.12) yield (4.25). This concludes the proof of Proposition
4.3. �

6.2. Proof of Theorem 1.2. We are now in position to conclude the proof of
Theorem 1.2.

Proof of Theorem 1.2. Let (tn)n≥1 be an increasing sequence of times tn < 0 such
that tn → 0−. Let un the solution to (1.1) with initial data at t = tn given by:

un(tn, r) =
1

λe(tn)
2
p−1

Q
be(tn),β̃e(tn)

(
r − re(tn)

λe(tn)

)
eiγe(tn). (6.16)

Let t < 0 be the backwards time provided by Proposition 4.3 which is independent
of n. We first claim that un(t) is compact in L2 as n → +∞. Indeed, Proposition
4.3 ensures the uniform bound

∀t ∈ [t, tn], ‖un(t)‖H1 . 1. (6.17)

This shows that up to a subsequence, (un(t))n≥1 is compact in L2(r < R) as n →
+∞ for all R > 0. The L2 compactness of un(t) is now the consequence of a
standard localization procedure. Indeed, let a cut-off unction χ(x) = 0 for |x| ≤ 1
and χ(x) = 1 for |x| ≥ 2, then∣∣∣∣ ddt

∫
χR|un|2

∣∣∣∣ = 2

∣∣∣∣Im(∫ ∇χR · ∇un)un

)∣∣∣∣ . 1

R
,
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where we used (6.17). Integrating this backwards from tn to t and using (6.16)
yields:

lim
R→+∞

sup
n≥1
‖un(t)‖L2(r>R) = 0,

which together with the L2(r < R) compactness of (un(t))n≥1 provided by (6.17)
implies up to a subsequence:

un(t)→ u(t) in L2 as n→ +∞.

Let then u ∈ C([t, T ), H1) be the solution to (1.1) with initial data u(t), then,
using the uniform control in H1 for un and the convergence in L2 of un(t), we obtain
∀t ∈ [t,min(T, 0)),

un(t)→ u(t) in L2.

Let (λn(t), bn(t), γn(t), εn(t)) be the geometrical decomposition associated to un(t)

un =
1

λn(t)
2
p−1

(Qbn(t) + εn)

(
t,
r − rn(t)

λn(t)

)
eiγn(t),

then u admits on [t,min(T, 0)) a geometrical decomposition of the form

u =
1

λ(t)
2
p−1

(Q
b(t),β̃(t)

+ ε)

(
t,
r − r(t)
λ(t)

)
eiγ(t)

with: ∀t ∈ [t,min(T, 0)),

λn(t)→ λ(t), rn(t)→ r(t), bn(t)→ b(t), β̃n(t)→ β̃(t), γn(t)→ γ(t),

and εn(t)→ ε(t) in L2 as n→ +∞,

see [25] for related statements. By passing to the limit in the bounds provided by
Proposition 4.3 and Lemma 6.1, we obtain the bounds: ∀t ∈ [t,min(T, 0)),

b(t) =
1

1 + α

(
2(1 + α)β∞

αg∞

) 2
1+α

|t|
1−α
1+α

(
1 +O

(
log(|t|)|t|

1−α
1+α

))
,

λ(t) =

(
2(1 + α)β∞

αg∞

) 1
1+α

|t|
1

1+α

(
1 +O

(
log(|t|)|t|

1−α
1+α

))
,

r(t) = g∞

(
2(1 + α)β∞

αg∞

) α
1+α

|t|
α

1+α

(
1 +O

(
log(|t|)|t|

1−α
1+α

))
,

β̃(t) = O

(
|t|

2(1−α)
1+α

)
,

γ(t) = (1 + β2
∞)

(
1− α
1 + α

) 1−α
1+α

(
2(1− α)β∞

αg∞

)− 2
1+α

|t|−
1−α
1+α +O(log(|t|)),

and
‖ε‖H1

µ
. |t|

2
1+α .

This yields that u ∈ C([t, 0), H1), u blows up at time T = 0. The estimates (1.13),
(1.14), (1.15) are now a straightforward consequence of the above estimates for
(b, λ, r, γ, ε).
This concludes the proof of Theorem 1.2. �
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Appendix A. Integration of the exact system of modulation
equations

The goal of this Appendix is to prove Lemma 4.1. For convenience, we prove
Lemma 4.1 in time s, with ds

dt = 1
λ2e(t)

. This is done in the following lemma.

Lemma A.1 (Integration of the exact system of modulation equations in time s).
There exists a universal constant s0 � 1 such that the following holds. Let

1

2
< g0 < 1, γ0 ∈ R

and
b0 =

1

(1− α)s0
. (A.1)

Then the solution (λe, be, β̃e, re, γe) to the dynamical system:

(M∞) =



λs
λ + b = P1(b, β̃),
rs
λ + 2β = 0,

β̃s = P2(b, β̃),

b = 2β
α
λ
r , β = β∞ + β̃,

γs = 1 + β2

with


r(s0)
λα(s0) = g0,

b(s0) = b0,

β̃(s0) = 1
s20
,

γ(s0) = γ0,

(A.2)

is defined on [s0,+∞). Moreover, there exists g∞ > 0 with

g∞ = g0 + os0→+∞(1) (A.3)

such that the following asymptotics hold on [s0,+∞):

be(s) =
1

(1− α)s
+O

(
|logs|
s2

)
, |β̃e(s)| .

1

s2
, (A.4)

λe(s) =

[
αg∞

2(1− α)β∞s

] 1
1−α

[
1 +O

(
log(s)

s

)]
, (A.5)

re(s) = g∞

[
αg∞

2(1− α)β∞s

] α
1−α

[
1 +O

(
log(s)

s

)]
, (A.6)

and
γe(s) = (1 + β2

∞)s+O(1). (A.7)

We first show how Lemma A.1 yields the conclusion of Lemma 4.1.

Proof of Lemma 4.1. In view of (A.5), we have∫ +∞

s0

λ2 < +∞.

Thus, since ds
dt = 1

λ2(t)
, the time of existence of the existence of the dynamical system

in time t is finite, and we may choose the origin of time t such that the final time
is 0. Then, for all te ≤ t < 0, we have

−t =

∫ +∞

s
λ2,

which together with (A.5) yields

1

s
=

(
1 + α

1− α

) 1−α
1+α

(
2(1− α)β∞

αg∞

) 2
1+α

|t|
1−α
1+α

(
1 +O(log(|t|)|t|

1−α
1+α )

)
. (A.8)

Injecting (A.8) in (A.4), (A.5) and (A.7) yields the wanted estimates (4.2), (4.3),
(4.4), (4.5) and (4.6). This concludes the proof of Lemma 4.1. �
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We now turn to the proof of Lemma A.1.

Proof of Lemma A.1. step 1 Reformulation and bootstrap bounds.

The local existence of solutions to (A.2) follows from Cauchy Lipschitz. To control
the solution on large positive times, let us introduce the auxiliary function:

g =
r

λα

which from (A.2) satisfies:

dg

ds
= −α

(
λs
λ

+ b

)
r

λα
= −αP1(b, β̃)g. (A.9)

We view equivalently (A.2) as a system on (b, g, β̃) with from direct computation
the equivalent system of equations:

dg
ds = −αP1(b, β̃)g,

bs + (1− α)b2 = b
βP2(b, β̃) + bP1(b, β̃),

β̃s = P2(b, β̃),

b = 2β
α
λ
r , β = β∞ + β̃,

with


g(s0) = g0,
b(s0) = b0,

β̃(s0) = 1
s20
.

(A.10)

We bootstrap the following a priori bounds on the solution which are consistent
with the initial data:

∀s0 ≤ s ≤ s̄, |g(s)| ≤ 1 + 2g0, |β̃(s)| ≤ 1

s
3
2

,

∣∣∣∣b(s)− 1

(1− α)s

∣∣∣∣ ≤ (logs)2

s2
. (A.11)

step 2 Closing the bootstrap.

We claim that the bounds (A.11) can be improved on [s0, s̄] provided s0 has been
chosen large enough. Indeed, let us close the b bound. From (A.10), (A.11):∣∣∣∣− d

ds

(
1

b

)
+ 1− α

∣∣∣∣ .
∣∣∣ bβP2(b, β̃) + bP1(b, β̃)

∣∣∣
b2

.
b(b2 + |β̃|2)

b2
.

1

s

and thus using the boundary condition on b at s0 and the initialization (A.1):∣∣∣∣ 1

b(s)
− (1− α)s

∣∣∣∣ . ∣∣∣∣ 1

b(s0)
− (1− α)s0

∣∣∣∣+

∫ s

s0

dσ

σ
. logs

from which using s ≥ s0 � 1:∣∣∣∣b(s)− 1

(1− α)s

∣∣∣∣ . logs

s2
. (A.12)

Next, we consider β̃. Since

P2(b, β̃) = −2bβ̃ +O(b3 + β̃3),

we obtain in view of (A.11),

β̃s = −2bβ̃ +O

(
1

s3

)
,

which we rewrite using (A.11) (A.12):∣∣∣∣ dds (s 2
1−α β̃

)∣∣∣∣ . s 2
1−α

[
logs

s2
|β̃|+ 1

s3

]
. s

2
1−α−3.
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We integrate using the boundary condition (A.10) and 2
1−α − 2 > 0:∣∣∣s 2

1−α β̃(s)
∣∣∣ . ∣∣∣∣s 2

1−α
0 β̃0

∣∣∣∣+ s
2

1−α−2 − s
2

1−α−2

0 . s
2

1−α−2,

and thus

|β̃(s)| . 1

s2
. (A.13)

We now close the g bound in brute force from (A.12), (A.13), (A.10) which yield:∣∣∣∣dgds
∣∣∣∣ . 1 + 2g0

s3

and thus in view of the initialization (A.10)

|g(s)| ≤ g0 + C
1 + g0

s2
0

≤ 1

2
+

3

2
g0, (A.14)

for s0 large enough. The bounds (A.12), (A.13), (A.14) improve (A.11) and thus
from a standard continuity argument, the bounds (A.12), (A.13), (A.14) hold on
[s0,+∞) and the solution is global.

step 3. Conclusion.

The bounds (A.12), (A.13) being now global, (A.4) is proved. We moreover
conclude from (A.10):∫ +∞

s0

∣∣∣∣dgds
∣∣∣∣ ds . ∫ +∞

s0

ds

s3
= os0→+∞(1)

and hence there exists g∞ satisfying (A.3) such that:

∀s ≥ s0, |g(s)− g∞| .
1

s2
. (A.15)

This yields from (A.10), (A.15), (A.11):

λ(s) =
αb

2β
r =

α

2(1− α)β∞s
g∞λ

α

[
1 +O

(
log(s)

s

)]
from which:

λ(s) =

[
αg∞

2(1− α)β∞s

] 1
1−α

[
1 +O

(
log(s)

s

)]
.

Together with (A.15), we obtain

r(s) = gλα = g∞

[
αg∞

2(1− α)β∞s

] α
1−α

[
1 +O

(
log(s)

s

)]
.

Finally, it only remains to estimate γ. In view of (A.2) and (A.13), we have

dγ

ds
= 1 + β2

∞ +O

(
1

s2

)
,

which after integration between s0 and s yields

γ(s) = (1 + β2
∞)s+O(1).

This concludes the proof of Lemma A.1. �
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Appendix B. Stability of the modulation equations

The goal of this Appendix is to prove Lemma 6.1. Recall that te is defined in
Lemma 4.1 and that t and t̄ are such that te ≤ t < t̄ < 0. We introduce the auxiliary
functions

g =
r

λα
and ge =

re
λαe
.

We define
b = b− be, g = g − ge and β̃ = β̃ − β̃e.

From the initial conditions (6.9), we have

(b, g, β̃)(t) = (0, 0, 0). (B.1)

Let t0 such that t ≤ t0 < t̄ and such that the following bootstrap assumptions15

hold
∀t0 ≤ t ≤ t̄, |g(t)|+ |β̃(t)|+ |b(t)| ≤ |t|

2
1+α . (B.2)

Next, recall (A.2)
dge
ds

= −αP1(be, β̃e)ge. (B.3)

Also, the modulation equations for r and λ and the choice of b in (6.10) implies
dg

ds
=
(rs
λ

+ 2β
)
g
λ

r
− αg

(
λs
λ

+ b

)
= −αP1(b, β̃)g +O(bk). (B.4)

We have
ds

dt
=

1

λ2
=

(
2β

αbg

) 2
1−α

and
dse
dt

=
1

λ2
e

=

(
2βe
αbege

) 2
1−α

. (B.5)

In view of the dynamical system (6.10) for (b, β̃), the dynamical system (B.4) for g,
the dynamical system (A.2) for (be, ge, β̃e), the dynamical system (B.3) for ge, the
definition of (b, g, β̃), (B.5), and the bootstrap bound (B.2), we obtain the following
dynamical system for (b, g, β̃) on t0 ≤ t ≤ t

bt −
2α

1 + α

b

|t|
= O

(
|t|−

2α
1+α (|b|+ |β̃|+ |g|) + |t|k

1−α
1+α
− 2

1+α

)
, (B.6)

β̃
t
+

2

1 + α

β̃

|t|
= O

(
|t|−

2α
1+α (|b|+ |β̃|+ |g|) + |t|k

1−α
1+α
− 2

1+α

)
, (B.7)

and
g
t

= O
(
|t|−

2α
1+α (|b|+ |β̃|+ |g|) + |t|k

1−α
1+α
− 2

1+α

)
. (B.8)

Integrating (B.8) between t and t and using (B.1) and (6.8) yields

|g(t)| .
∫ t

t
|τ |−

2α
1+α (|b|+ |β̃|+ |g|)dτ + |t|k

1−α
1+α

+1− 2
1+α . (B.9)

Integrating (B.6) between t and t and using (B.1) and (6.8) yields

|b(t)| . |t|−
2α
1+α

∫ t

t
(|b|+ |β̃|+ |g|)dτ + |t|k

1−α
1+α

+1− 2
1+α . (B.10)

Integrating (B.7) between t and t and using (B.1) and (6.8) yields

|β̃(t)| . |t|
2

1+α

∫ t

t
|τ |−2(|b|+ |β̃|+ |g|)dτ + |t|k

1−α
1+α

+1− 2
1+α . (B.11)

15which are consistent with (B.1).
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In view of (B.9), (B.10) and (B.11), we obtain

|b|+ |β̃|+ |g| .
∫ t

t
(|τ |−

2α
1+α + |t|−

2α
1+α + |t|

2
1+α |τ |−2)(|b|+ |β̃|+ |g|)dτ

+|t|k
1−α
1+α

+1− 2
1+α . (B.12)

Injecting the bootstrap assumption (B.2), noticing that the integral is convergent,
and then reiterating finally yields

|b|+ |β̃|+ |g| . |t|k
1−α
1+α

+1− 2
1+α , (B.13)

which is an improvement of the bootstrap assumption (B.2) in view of (6.8). Thus,
(B.13) holds on [t, t̄]. Now, the wanted estimate (6.11) for b and (6.14) for β̃ follow
from (B.13), (6.8), and the estimate (4.2) for be and (4.5) for β̃e. Also, the wanted
estimate (6.12) for λ and (6.13) for r follow from the definition of b and g, (B.13),
(6.8), and the estimate (4.4) for re and (4.3) for λe.

Finally, we derive the wanted estimate for γ. In view of the dynamical system
(6.10) for γ, the dynamical system (A.2) for γe, (B.5), and the estimate (B.13), we
obtain the following dynamical system for γ − γe

(γ − γe)t = O
(
|t|k

1−α
1+α

+1− 5−α
1+α

)
. (B.14)

Now, recall that γ(t) = γe(t) from (6.9), so that integrating (B.14) between t and t
and using (6.8) yields

|γ − γe| . |t|k
1−α
1+α

+2− 5−α
1+α . (B.15)

Now, the wanted estimate for γ (6.15) follows from (B.15), (6.8), and the estimate
for γe (4.6). This concludes the proof of Lemma 6.1.
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