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A Numerical Framework for Efficient Motion Estimation on Evolving Sphere-Like
Surfaces Based on Brightness and Mass Conservation Laws\ast 

Lukas F. Lang\dagger 

Abstract. In this work we consider brightness and mass conservation laws for motion estimation on evolving
Riemannian 2-manifolds that allow for a radial parametrization from the 2-sphere. While conser-
vation of brightness constitutes the foundation for optical flow methods and has been generalized
to said scenario, we formulate the principle of mass conservation for time-varying surfaces that are
embedded in Euclidean 3-space and derive a generalized continuity equation. The main motivation
for this work is efficient cell motion estimation in volumetric fluorescence microscopy images of a
living zebrafish embryo. The increasing spatial and temporal resolution of modern microscopes re-
quires efficient analysis of such data. With this application in mind we address this need and follow
an emerging paradigm in this field: dimensional reduction. In light of the ill-posedness of consid-
ered conservation laws, we employ Tikhonov regularization and propose the use of spatially varying
regularization functionals that recover motion only in regions with cells. For the efficient numerical
solution, we devise a mesh-free Galerkin method based on compactly supported (tangent) vectorial
basis functions. Furthermore, for the fast and accurate estimation of the evolving sphere-like surface
from scattered data, we utilize surface interpolation with spatio-temporal regularization. We present
numerical results based on the aforementioned data featuring fluorescently labeled cells.
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1. Introduction. Recent advances in microscopy imaging techniques allow us to study
cellular dynamics of biological model organisms in more detail than ever before [29, 30, 35].
Time-lapse volumetric (4D) image sequences of the development of entire living organisms
can be captured in high resolution and on a subcellular scale. However, increasing spatial and
temporal resolutions require additional effort to deal with the resulting large volume of data.
The need for efficient methods to analyze such data has already been acknowledged and is
considered a major interdisciplinary challenge [28, 45].

One promising approach in dealing with image sequences of this type is dimensional re-
duction. A geometric model of the observed organism is introduced, and the captured data
is considered only with respect to this geometry [22, 47]. These efforts focus on the true
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Figure 1. Frames 110, 130, 150 (left to right) of a volumetric zebrafish microscopy image sequence recorded
during early embryogenesis. The sequence contains 151 frames recorded at intervals of 120 s. Blue indicates
fluorescence response. As time evolves, the initially spherical yolk develops a clearly visible dent, where the
embryonic axis forms and to which cells eventually converge; see also [31, Figures 11 and 15]. All dimensions
are in micrometers (\mu m).

shape---or an approximation---of the specimen and thereby reduce the spatial dimension of
the data by considering only the restriction, or a suitable projection, to this geometry. Due
to the spatial sparsity of the volumetric data, the essential information is preserved.

A major gain of this approach is that it can also reduce the computational effort during
analysis of the recorded material [32, 33, 34, 36, 47]. In addition, introducing a geometric rep-
resentation of the specimen allows one to compute accurate measurements, such as distances,
on curved surfaces rather than in---possibly distorted---projections. For the quantitative anal-
ysis of cellular processes this leads to considerable improvement [22].

The zebrafish is a popular and well-established animal research model that can be observed
in vivo. Understanding its developmental process is of major interest. We refer the reader
to [31] for a detailed discussion and illustrations. Cellular dynamics of endodermal cells are
crucial for organ and tissue formation during early development of the organism. Despite these
cells' importance, there is a lack of understanding of their migration and proliferation patterns
[1, 47]. However, they are known to form a so-called monolayer, meaning that they do not
stack on top of each other but rather float side by side forming a contiguous single-cell layer
[54]. For the purpose of observation, these cells can be fluorescently labeled and recorded
separately from the background by means of confocal laser-scanning microscopy. Figure 1
illustrates a section of a captured image sequence containing only the upper hemisphere of
the embryo. Shown are nuclei of endodermal cells during the gastrula period forming a round
surface in a single-cell layer.

The primary goal of this article is quantitative motion estimation of endodermal cells
in fluorescence microscopy data of a living zebrafish embryo. Efficient motion estimation is
crucial for the large-scale automated analysis of such datasets and can provide new insight
into cellular mechanisms and the dynamic behavior of cells [2, 10, 41, 44, 47].

We build upon previous work [36], where the deforming single-cell layer is modeled as a
closed surface \scrM t \subset \BbbR 3, t \in [0, T ], of the form

\bigl\{ 
\~\rho (t, x)x : x \in \scrS 2

\bigr\} 
, together with a time-

dependent function \^f(t, \cdot ) : \scrM t \rightarrow \BbbR that indicates fluorescence response and is assumed
to be directly proportional to the observed intensity. Here, \~\rho (t, \cdot ) : \scrS 2 \rightarrow (0,\infty ) is a radial
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Figure 2. Frame 150 of the zebrafish image sequence. The left image depicts the unprocessed volumetric
microscopy data f\delta . The curved mesh in the center image illustrates a sphere-like surface fitted to approximate
cell centers. The right image shows the surface data \^f obtained by taking the radial maximum intensity projec-
tion of f\delta onto the surface within a narrow band. For details see section 5. All dimensions are in micrometers
(\mu m).

deformation of the 2-sphere \scrS 2. See Figure 2 for the general idea and Figure 3 for a sketch.
The main idea, which was developed in [32, 34], is to conceive the motion of a cell as it mi-

grates through Euclidean 3-space only with respect to this moving surface. As a consequence,
the velocity \^U(t, x) \in \BbbR 3 of a cell that always stays on this surface can be decomposed into
the sum of a---prescribed and in general not tangential---surface velocity \^V(t, x) \in \BbbR 3 and a
purely tangential velocity \^w(t, x) \in \BbbR 3 that is relative to \^V. See Figure 3 for an illustration.
Consequently, one can estimate \^w from the data \^f by solving a parametrized optical flow
problem

d
\^\bfV 
t
\^f +\nabla \scrM \^f \cdot \^w = 0

on this evolving surface. Here, d
\^\bfV 
t denotes a suitable temporal derivative, \nabla \scrM the (spatial)

gradient, and a dot the standard inner product. As a result, the velocity of a cell can be
estimated as \^U = \^V+ \^w. While \^w is relative to the chosen \^V and should be interpreted with
care, it is reasonable to assume that their sum is close to the true velocity of a cell.

In this model, \^f is assumed to satisfy a brightness constancy assumption, which is typical
for optical flow-based motion estimation: the intensity \^f is conserved along trajectories of
moving points. However, in many situations it is too restrictive and possibly violated; see,
e.g., the discussion in [14, sect. 3]. In this article, we address this issue and assume that
\^f instead fulfills conservation of mass. We derive a suitable generalization of the continuity
equation to evolving surfaces which are embedded in \BbbR 3 and obtain the pointwise conservation
law

d
\^\bfN 
t
\^f +\nabla \scrM \cdot ( \^f\^u) - \^fKV = 0.

Here, d
\^\bfN 
t denotes the normal time derivative and \nabla \scrM \cdot the divergence, K is related to surface

curvature, and V is the scalar normal velocity of the moving surface. The main advantage
of this formulation, compared to [32, 34, 36], is that one is able to directly infer the entire
tangential velocity \^u = P\scrM (\^U) of cells from the data \^f , where P\scrM denotes the orthogonal
projector onto the tangent space of \scrM t. The normal component of \^U is prescribed by the
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surface's normal velocity, and the total velocity \^U can thus be estimated by adding the
tangential part \^u.

In view of the ill-posedness of the above-mentioned conservation equations, we follow a
variational approach. While dense motion estimation is often desired for complex natural
scenes, it is redundant for the aforementioned microscopy data. Such data is considerably
simpler due to the characteristic shape of cell nuclei, the absence of occlusions, and its sparsity.
In order to mitigate undesired fill-in effects of quadratic regularization functionals to areas
where \^f is zero, we introduce novel regularization functionals inspired by image segmentation
models; see, e.g., [7]. Given a segmentation of the cells, motion is only estimated in regions
where data is present.

1.1. Contributions. The contributions of this article are as follows. First, we introduce
the concepts of brightness and mass conservation laws on evolving surfaces and discuss how
they relate to each other. While conservation of brightness is the foundation for the optical
flow equation and has been dealt with in [32, 34, 36], in this article we generalize the principle
of mass conservation to time-varying surfaces that are embedded in Euclidean 3-space and
derive a generalized continuity equation.

Second, we propose new spatially varying regularization functionals for motion estimation
based on the discussed conservation laws. They are specifically tailored to the mentioned
fluorescence microscopy data and indicate motion only in regions where cells are present.

Third, for the numerical solution, we propose a mesh-free Galerkin method based on
compactly supported (vectorial) basis functions. Resulting sparsity effects lead to vast im-
provements in performance compared to [36], which uses globally supported basis functions.
Moreover, we provide a formula for the Hilbert--Schmidt norm of the covariant derivative of
a vector field, which is commonly used for (quadratic) tangent vector field regularization. As
a result, the Gram--Schmidt orthonormalization of the tangent basis is rendered redundant,
yielding another major performance gain compared to [8, 34, 36].

Fourth, for extracting a sphere-like surface, together with surface image data, from the
aforementioned microscopy image sequences we propose surface interpolation with spatio-
temporal regularization. Compared to [36], where only spatial regularization is used, this
leads to a more accurate estimation of the surface's (normal) velocity and the surface data,
which in turn should improve the accuracy of the computed cell velocities.

Fifth, we present numerical results based on the aforementioned zebrafish microscopy
data. We compute and compare cell motion estimated by imposing either of the two discussed
conservation laws.

1.2. Related work. Concerning dense motion estimation in \BbbR 2, Horn and Schunck [26]
were the first to propose a variational approach based on conservation of brightness. They
minimize a Tikhonov-type functional with H1 Sobolev seminorm regularization. For a general
introduction to the topic see [4, 5], and for a survey on various optical flow functionals see
[55]. Well-posedness of the Horn--Schunck functional is proved in [48], where the problem
is treated on irregular planar domains and solved by means of a finite element method. In
[57], an extension to the domain [0, T ] \times \BbbR 2, including spatial as well as temporal first-order
regularization, is proposed. A framework unifying various spatial and temporal regularizers
can be found in [56]. For the comparison of different motion estimation methods, an evaluation
framework is developed in [6].
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It is only recently that generalizations to non-Euclidean and nonstatic domains have re-
ceived increasing attention. For the purpose of robot vision, optical flow on the static round
sphere is considered in [27, 52]. With an application to brain image analysis, [39] gener-
alizes the Horn--Schunck functional to static surfaces that are embedded in \BbbR 3 and proves
well-posedness. Numerically, the problem is solved on a triangle mesh with a finite element
method.

With the aim of analyzing cell motion in fluorescence microscopy data, [32, 34] consider
a generalization of the Horn--Schunck functional to evolving surfaces with boundary. In par-
ticular, [34] proposes a generalization of the spatio-temporal model in [57]. Minimization is
performed by solving the associated Euler--Lagrange equations in the coordinate domain with
a finite-difference scheme. In [33], several decomposition models for optical flow on the static
2-sphere are studied and solved by means of projection to finite-dimensional spaces spanned
by tangent vector spherical harmonics. In [8], optical flow on moving manifolds with and
without spatial boundary is investigated. That work considers product manifolds for which
an appropriate Riemannian metric is constructed and well-posedness is shown. In [36], the
embryo of a zebrafish is modeled as an evolving sphere-like surface. The generalized optical
flow problem is solved by means of a Galerkin method based on tangent vector spherical har-
monics. In order to find the sphere-like surface from microscopy data, surface interpolation
from approximate cell centers is proposed.

We also refer the reader to [2, 41, 44], where optical flow is computed to track cells in
microscopy data, and to [10], where it is used to infer the motion of neural crest cells in
zebrafish microscopy images. Moreover, in [47] the sphere is used to model the embryo of a
zebrafish, and the motion of endodermal cells is computed in map projections by means of
fluid image registration.

According to [14], Schunck [50] was the first work to propose motion estimation in image
sequences based on the continuity equation. Since then it has been used in numerous works,
as mass preservation is a particularly appealing alternative for fluid motion estimation. See,
for instance, [3, 9, 13, 14, 15, 16, 23, 51, 59, 60].

Finally, for mesh-based numerical methods for the solution of partial differential equations
on static and on evolving surfaces, see [46] and [19], respectively.

The remainder of this article is structured as follows. In section 2, we introduce sphere-
like evolving surfaces and vectorial Sobolev spaces on manifolds. In section 3, we discuss
brightness and mass conservation on evolving surfaces and introduce a variational formulation
for each conservation principle. Section 4 is dedicated to their numerical solution based on
compactly supported (vectorial) basis functions. We derive necessary and sufficient conditions.
In order to find a sphere-like surface from the data, we propose surface interpolation with
spatio-temporal regularization and discuss its numerical solution by means of scalar spherical
harmonics. In section 5, we discuss, compare, and visualize numerical results based on the
aforementioned microscopy data. Section 6 concludes the article.

2. Notation and background.

2.1. Sphere-like surfaces. We consider closed smooth 2-manifolds \scrM t \subset \BbbR 3 which are
embedded in the 3-dimensional Euclidean space and are indexed by time t \in I, where I :=
[0, T ] \subset \BbbR is a time interval. Each \scrM t is assumed to be regular and oriented by the outward
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unit normal field \^N(t, x) \in \BbbR 3, x \in \scrM t. Its total curvature K(t, x), which is twice the mean
curvature, is defined as K(t, x) = ( - \nabla \BbbR 3 \cdot \^N)(t, x), where \nabla \BbbR 3 \cdot denotes the usual divergence
of the embedding space.

Let us assume that the family \scrM = \{ \scrM t\} t\in I admits a smooth and smoothly evolving
parametrization of the form

(2.1) y : I \times \Omega \rightarrow \BbbR 3, (t, \xi 1, \xi 2)\top \mapsto \rightarrow \~\rho (t,x(\xi 1, \xi 2))x(\xi 1, \xi 2) \in \scrM t.

Here, x : \Omega \subset \BbbR 2 \rightarrow \BbbR 3 denotes a regular parametrization of the 2-sphere \scrS 2 = \{ x \in 
\BbbR 3 : \| x\| = 1\} , mapping points \xi = (\xi 1, \xi 2)\top \in \Omega in the coordinate domain to points x =
(x1, x2, x3)\top \in \scrS 2 on the sphere, and \~\rho : I\times \scrS 2 \rightarrow (0,\infty ) denotes a sufficiently regular (radius)
function. Moreover, \| x\| =

\surd 
x \cdot x denotes the norm of \BbbR n, n = \{ 2, 3\} . We refer to \scrM as an

evolving sphere-like surface. Figure 3 illustrates the setting.
Let us denote by \^f : \scrM \rightarrow \BbbR a smooth function on \scrM , by f : I \times \Omega \rightarrow \BbbR its coordinate

representation, and by \~f : I \times \scrS 2 \rightarrow \BbbR its representation on \scrS 2. For t \in I and \xi \in \Omega , they are
related by

(2.2) f(t, \xi ) = \~f(t,x(\xi )) = \^f(t,y(t, \xi )).

Functions that are defined on \scrS 2 are indicated with a tilde, whereas functions defined on \scrM 
are indicated with a hat. Their coordinate representation is treated without special indication.
The partial derivative with respect to \xi i is abbreviated as \partial i. Accordingly, the partial deriva-
tive with respect to time is denoted by \partial t. Moreover, we define a smooth (spatial) extension
\=f of \^f to \BbbR \setminus \{ 0\} as

(2.3) \=f(t, x) = \^f

\biggl( 
t, \~\rho 

\biggl( 
t,

x

\| x\| 

\biggr) 
x

\| x\| 

\biggr) 
.

It is constant along radial lines and coincides with \~f(t, \cdot ) on \scrS 2 and with \^f(t, \cdot ) on \scrM t,
respectively. In the following, we assume time t \in I arbitrary but fixed. Moreover, since
\~\rho \equiv 1 gives \scrM t = \scrS 2, for all t \in I, we introduce the following concepts only for \scrM t.

The tangent space at a point y(t, \xi ) \in \scrM t, \xi \in \Omega , is denoted by T\bfy (t,\xi )\scrM t \subset T\bfy (t,\xi )\BbbR 3 and
is defined in terms of derivations of smooth functions on \scrM t; see [37, Chap. 2]. The tangent
bundle is defined by T\scrM t =

\bigl\{ 
\{ y(t, \xi )\} \times T\bfy (t,\xi )\scrM t : \xi \in \Omega 

\bigr\} 
. The orthogonal projector onto

the tangent space Tx\scrM t at x \in \scrM t is given by

(2.4) P\scrM (t, x) = Id - \^N(t, x)\^N(t, x)\top \in \BbbR 3\times 3.

Similarly, T\bfx (\xi )\scrS 2 and T\scrS 2 (respectively, T\xi \Omega and T\Omega ) are defined.
The parametrization (2.1) gives rise to the differential Dy(t, \xi ) : T\xi \Omega \rightarrow T\bfy (t,\xi )\scrM t at \xi \in \Omega 

and provides a unique identification of a tangent vector field v on \Omega with a tangent vector field
\^v on \scrM t via \^v(y(t, \xi )) = Dy(t, \xi )(v(\xi )). Moreover, the parametrization naturally induces a
Riemannian metric g on the coordinate domain by means of the pullback metric. For tangent
vectors u,v \in T\xi \Omega , \xi \in \Omega , this metric is given by

(2.5) \langle u,v\rangle g := (y(t, \xi )\ast \langle \cdot , \cdot \rangle \BbbR 3)(u,v) = Dy(t, \xi )(u) \cdot Dy(t, \xi )(v).
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Similarly, x gives rise to Dx, which identifies v with \~v. The Riemannian metric for \scrS 2 is
defined accordingly.

The spatial gradient \nabla \BbbR 2f of a smooth function f in the coordinate domain is the unique
vector field that satisfies \nabla \BbbR 2f(t, \xi ) \cdot v(\xi ) = df(t, \xi )(v(\xi )) for all v \in T\Omega , where df(v) denotes
the directional derivative of f in direction v. Consequently, for a smooth function \^f as in
(2.2) the gradient \nabla \scrM \^f is defined via

(2.6) \nabla \scrM \^f(t, x) \cdot \^v(x) = d \^f(t, x)(\^v(x)) \forall \^v \in T\scrM t,

where d \^f(t, x)(\^v(x)) is the directional derivative of \^f(t, x) at x \in \scrM t in the direction of the
tangent vector \^v(x). The gradient \nabla \scrS 2 \~f is defined analogously. Let us emphasize that, for an
arbitrary extension such as, e.g., (2.3), the gradient is just the tangential component of the
usual gradient of the embedding space, i.e.,

\nabla \scrM \^f(t, x) =
\bigl( 
P\scrM \nabla \BbbR 3 \=f

\bigr) 
(t, x).

Consequently, we can consider coordinate vector fields \partial iy(t, \xi ), i \in \{ 1, 2\} . At a point
y(t, \xi ) \in \scrM t, the set \{ \partial 1y(t, \xi ), \partial 2y(t, \xi )\} forms a basis for the tangent space T\bfy (t,\xi )\scrM t. A

tangent vector \^v \in T\bfy (t,\xi )\scrM t can thus be uniquely represented as \^v =
\sum 2

i=1 v
i\partial iy(t, \xi ), with

v = (v1, v2)\top \in \BbbR 2 its coordinate representation. The elements vi are called components of
\^v. We will use the Einstein summation convention and sum over each index letter appearing
exactly twice in an expression, once as a subscript and once as a superscript. For instance,
we will write \^v = vi\partial iy for the sake of brevity. As a further notational convention, boldface
letters are used to denote vector fields. In particular, lowercase boldface letters refer to tangent
vector fields, whereas uppercase boldface letters refer to general vector fields in \BbbR 3, with the
exception of the parametrizations x and y. Moreover, we will drop arguments, such as (t, \xi )
or (t, x), whenever they are clear from the context.

Having defined coordinate vector fields we find, by application of the product and the
chain rule to (2.1), that

Dy =
\bigl( 
\partial 1y \partial 2y

\bigr) 
=
\bigl( 
(\partial 1\rho )x (\partial 2\rho )x

\bigr) 
+ \rho Dx \in \BbbR 3\times 2,

where Dx =
\bigl( 
\partial 1x \partial 2x

\bigr) 
and \rho : I \times \Omega \rightarrow (0,\infty ) is the coordinate representation of \~\rho . By

(2.5), the components gij = \partial iy \cdot \partial jy of the Riemannian metric g \in \BbbR 2\times 2 are given by

g =

\biggl( 
(\partial 1\rho )

2 \partial 1\rho \partial 2\rho 
\partial 2\rho \partial 1\rho (\partial 2\rho )

2

\biggr) 
+ \rho 2Dx\top Dx,

and the elements of the inverse g - 1 are denoted by (gij). For further details on the concepts
discussed above we refer the reader to standard differential geometry books, such as [17, 18,
37, 38].

2.2. Vectorial Sobolev spaces on manifolds. For arbitrary but fixed t \in I, the surface
integral of a function \^f , as defined in (2.2), is given by

(2.7)

\int 
\scrM t

\^f d\scrM t =

\int 
\Omega 
fJy d\xi ,

where (Jy)2 = det(g) is the Jacobian of y; see Theorem 3 in [18, p. 88].
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For a tangent vector field \^v, we denote by \nabla \^\bfu \^v(t, x) the covariant derivative at a point
x \in \scrM t along a tangent vector \^u \in Tx\scrM t; cf. [37, Chaps. 4 and 5]. Given a componentwise
extension \=v of \^v to \BbbR 3, it is the tangential part of the usual directional derivative of \=v in
direction \^u in the embedding space, that is,

\nabla \^\bfu \^v(t, x) =
\bigl( 
P\scrM \nabla \BbbR 3\=v(\^u)

\bigr) 
(t, x).

The covariant derivative is a linear operator \nabla \^v(t, x) : Tx\scrM t \rightarrow Tx\scrM t, and its Hilbert--
Schmidt norm is given by

(2.8) \| \nabla \^v(t, x)\| 22 =
2\sum 
i=1

\| \nabla \^\bfe i\^v(t, x)\| 
2,

where \{ \^e1,\^e2\} is an arbitrary orthonormal basis of the tangent space Tx\scrM t. We highlight
that (2.8) is invariant with regard to the chosen parametrization y. Moreover, the divergence
\nabla \scrM \cdot \^v of a tangent vector field \^v is defined by

\nabla \scrM \cdot \^v = Tr(\nabla \^v) =
2\sum 
i=1

\nabla \^\bfe i\^v \cdot \^ei.

For each t \in I, we define the Sobolev space H1(\scrM t, T\scrM t) as the completion of all
C\infty (\scrM t, T\scrM t) tangent vector fields with respect to

(2.9) \| \^v(t, \cdot )\| 2H1(\scrM t,T\scrM t)
:=

\int 
\scrM t

\| \nabla \^v(t, x)\| 22 d\scrM t.

Note that (2.9) is a norm whenever \scrM t is diffeomorphic to the 2-sphere since, by virtue of the
hairy ball theorem, no covariantly constant tangent vector field but \^v = 0 exists [25, p. 125].
We refer the reader to [21, 53] for more details on Sobolev spaces on Riemannian manifolds.

3. Problem formulation. Let us consider an evolving sphere-like surface

(3.1) \scrM :=
\bigcup 
t\in I

\bigl( 
\{ t\} \times \scrM t

\bigr) 
\subset \BbbR 4,

which is specified in terms of a parametrization y : I \times \Omega \rightarrow \BbbR 3 as in (2.1). Every choice of y
gives rise to a surface velocity

(3.2) \^V(t, x) = \partial ty(t, \xi ) \in \BbbR 3,

where \xi = y - 1(t, x). We stress that the velocity \^V depends on the chosen parametrization y
of which, in general, infinitely many exist. However, its (scalar) normal component, given by

V = \^V \cdot \^N,

is intrinsic and thus independent of the choice of y; see [34, Prop. 1]. As a consequence, (3.2)
can be represented as

(3.3) \^V = V \^N+ \^v,
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where V \^N is the normal velocity and \^v is a vector field tangent to \scrM t, t \in I.
In the following, we consider smooth trajectories of moving particles (or cells) which

always stay on the evolving surface. To this end, we assume the existence of a Lagrangian
specification

(3.4) \gamma (\cdot , x) : t \mapsto \rightarrow \gamma (t, x) \in \scrM t, \gamma (0, \cdot ) = Id,

of the path of a particle. Expressing (3.4) with the help of a coordinate representation \beta :
I \times \Omega \rightarrow \Omega requires that

(3.5) \gamma (t,y(0, \xi )) = y(t, \beta (t, \xi )), \beta (0, \cdot ) = Id,

hold for all (t\times \xi ) \in I \times \Omega . As a consequence of (3.5) and with the help of (3.2) we find that

(3.6)
\partial t\gamma = \partial ty + \partial t\beta 

i\partial iy,

= \^V + \^w,

where \^w = \partial t\beta 
i\partial iy is a purely tangential velocity. Therefore, the velocity of a particle moving

along (3.4) can be decomposed into the surface velocity \^V, which is prescribed by the chosen
parametrization y, and a tangential part \^w relative to it. See Figure 3 for a sketch.

As a consequence of (3.4) and (3.5) we infer that the normal part of the velocity of a
particle following \gamma equals the normal velocity of the surface movement. In other words,

\partial t\gamma \cdot \^N = (\^V + \^w) \cdot \^N
= \^V \cdot \^N
= V.

Suppose now that the evolving surface (3.1) is embedded in a fluid which moves with a
velocity U(t, x) \in \BbbR 3, x \in \BbbR 3. For t \in I and x \in \scrM t, we denote the restriction of U(t, x) to
the surface \scrM t by \^U(t, x). We stress that this fluid velocity is in general different from the
surface velocity \^V defined in (3.2).

In the following we assume that a particle of interest following (3.4) convects with this
fluid. In other words, for t \in I and x \in \scrM t we require that

(3.7) \^U(t, x) = \partial t\gamma (t, \gamma 
 - 1(t, x)).

From (3.6) and (3.3) we find that

(3.8)
\^U = \^V + \^w

= V \^N+ \^v + \^w.

Therefore, the surface (3.1) must evolve with (scalar) normal velocity V = \^U \cdot \^N. Since the
fluid velocity \^U can uniquely be decomposed into a normal and a tangential part, we conclude
that the latter is given by

(3.9) \^u = \^v + \^w.
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The primary goal of this article is to estimate the motion of cells as they move along
trajectories (3.4) through Euclidean 3-space. The main assumption is that they form a surface
structure which is deforming over time and can be estimated from data \^f . Hence, we focus
on estimating \^U rather than U and use the fact that the unknown can be decomposed as in
(3.8). In the following we discuss two conceptually different ways of estimating the tangential
part of the particle motion. One is based on conservation of the data \^f along paths (3.4) and
leads to a generalized optical flow equation [32, 34]. The other idea is based on conservation
of mass and leads to a suitable generalization of the continuity equation to evolving surfaces.

3.1. Conservation of brightness. Let us be given a function \^f such that, for time t \in I,

\^f(t, \cdot ) : \scrM t \rightarrow \BbbR 

is an image on the surface \scrM t. In this section we assume that, along a smooth trajectory
(3.4), this data \^f satisfies

(3.10) \^f(t, \gamma (t, x)) = \^f(0, x)

for all t \in I and all x \in \scrM 0. Typically, this constraint is termed the brightness constancy
assumption and is the basis for many motion estimation methods.

In order to linearize (3.10) by differentiation with respect to time, one may consider
temporal derivatives along trajectories; see [32, 34]. To this end, we define the time derivative
of \^f along a trajectory \psi : t \mapsto \rightarrow \psi (t) \in \scrM t at x0 = \psi (t0) as

(3.11) d\partial t\psi t
\^f(t0, x0) :=

d

dt
\^f(t, \psi (t))

\bigm| \bigm| \bigm| \bigm| 
t=t0

.

As a further consequence, the time derivative of \^f at x0 = y(t0, \xi ) along the parametrization
y(\cdot , \xi ) is defined analogously as

(3.12) d
\^\bfV 
t
\^f(t0, x0) :=

d

dt
\^f(t,y(t, \xi ))

\bigm| \bigm| \bigm| \bigm| 
t=t0

.

For a trajectory \psi \^\bfN that passes through x0 \in \scrM t0 at time t0 and for which \partial t\psi \^\bfN (t0) is

orthogonal to Tx0\scrM t0 , the so-called normal time derivative of \^f is defined as

(3.13) d
\^\bfN 
t
\^f(t0, x0) :=

d

dt
\^f(t, \psi \^\bfN (t))

\bigm| \bigm| \bigm| \bigm| 
t=t0

.

The relation between (3.11) and (3.13) is given by

(3.14) d\partial t\psi t
\^f = d

\^\bfN 
t
\^f +\nabla \scrM \^f \cdot \partial t\psi .

See [12, sect. 3.3] for details. Figure 3 sketches the different trajectories and their velocities.
Recall that by assumption (3.7) we have \^U = \partial t\gamma . With the help of definition (3.11)

and relation (3.14) we can immediately recast assumption (3.10) and demand that along a
trajectory \gamma , as defined in (3.4), we must have

(3.15) d
\^\bfU 
t
\^f = d

\^\bfN 
t
\^f +\nabla \scrM \^f \cdot \^U !

= 0.
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\gamma (\cdot , x)
\psi \^\bfN 

y(\cdot , \xi )
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Figure 3. Left: Illustration of a cut through the surfaces \scrS 2 and \scrM t intersecting the origin. Surface normals
are depicted in grey. Right: Sketch of various trajectories following the evolving surface. The corresponding
velocities are depicted in grey. The velocity \^\bfU of a cell following \gamma is composed of the surface velocity \^\bfV and a
tangential velocity \^\bfw .

However, this so-called generalized optical flow equation is inconvenient from a numerical
perspective, as d

\^\bfN 
t
\^f typically is unknown or hard to estimate from real data. As a remedy, in

[34, Lemma 2] proposes using

d
\^\bfN 
t
\^f +\nabla \scrM \^f \cdot \^U (3.8)

= d
\^\bfN 
t
\^f +\nabla \scrM \^f \cdot (\^V + \^w)

(3.14)
= d

\^\bfV 
t
\^f  - \nabla \scrM \^f \cdot \^V +\nabla \scrM \^f \cdot (\^V + \^w)

= d
\^\bfV 
t
\^f +\nabla \scrM \^f \cdot \^w,

which is a parametrised optical flow equation. We highlight that the unknown \^w depends
exclusively on the imposed surface velocity \^V.

Computing the optical flow \^w from data \^f constitutes an ill-posed inverse problem be-
cause the above equation is underdetermined and a unique solution is not guaranteed. As
a remedy, we minimize a Tikhonov-type functional consisting of a data term and a spa-
tially varying regularization term. In what follows, we seek a minimizer to the functional
\scrE : H1(\scrM t, T\scrM t) \rightarrow [0,+\infty ],

(3.16) \scrE (\^w) := \| d\^\bfV 
t
\^f +\nabla \scrM \^f \cdot \^w\| 2L2(\scrM t)

+\scrR (\^w),

where, given a measurable function s(t, \cdot ) : \scrM t \rightarrow \{ 0, 1\} , the regularization functional \scrR (\^w)
is defined as

(3.17) \scrR (\^w) := \alpha 0

\int 
\scrM t

s\| \nabla \^w\| 22 d\scrM t + \alpha 1

\int 
\scrM t

(1 - s)\| \^w\| 2 d\scrM t,

and \alpha 0, \alpha 1 > 0 are regularization parameters. Here, the function s incorporates a priori
information about the support of the solution. The idea is that minimization of (3.16) with
(3.17) as a regularization functional favors tangent vector fields of certain regularity in areas
where data is present but, on the other hand, prevents potentially undesirable fill-in effects
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of quadratic regularization in regions with no data. In practice one may choose s to be,
e.g., a segmentation of the fluorescently labeled cells or, due to the nature of the fluorescence
microscopy data, one may as well choose s := \^f with \^f(t, \cdot ) : \scrM t \rightarrow [0, 1]. In this article,
however, we restrict ourselves to functions s(t, \cdot ) : \scrM t \rightarrow (0, 1) because, by the equivalence of
norms, coercivity of \scrE with respect to H1(\scrM t, T\scrM t), and thus well-posedness of the problem,
is guaranteed [8]. Moreover, let us emphasize that (3.16) is a generalization of [36], where
only the Sobolev (semi)norm was used as a regularization functional.

3.2. Conservation of mass. Let us be given a time-evolving surface (3.1) which is mi-
grating through a fluid defined in the ambient space. We stress that, in general, this surface
is nonmaterial. In other words, the surface velocity \^V induced by a chosen parametrization
of \scrM is different from the fluid velocity \^U. Furthermore, let us denote by

\^f(t, \cdot ) : \scrM t \rightarrow \BbbR 

the density of the fluid restricted to the surface \scrM t. With the goal of estimating the fluid
motion, we assume that this data \^f satisfies mass preservation.

In order to derive a suitable conservation law, let us consider an arbitrary evolving sub-
surface \Gamma t \subseteq \scrM t of this surface. For the sake of simplicity we will omit the index and write
\Gamma (respectively, \partial \Gamma ) for the subsurface and its boundary.

The boundary curve \partial \Gamma is oriented by its exterior unit normal field \^\bfitnu . Recall that \^\bfitnu is
normal to \partial \Gamma and tangent to \scrM t. We denote by \^V\partial \Gamma \in \BbbR 3 the velocity of the curve \partial \Gamma as
it moves through the embedding space. Its intrinsic component, which is independent of the
parametrization of the curve \partial \Gamma , is denoted by

V\partial \Gamma := \^V\partial \Gamma \cdot \^\bfitnu .

Since by assumption we have that \Gamma \subseteq \scrM t, we deduce that

\^V\partial \Gamma \cdot \^N = V.

In other words, \Gamma and \scrM t evolve with equal normal velocities. Furthermore, the normal
migrational velocity V \mathrm{m}\mathrm{i}\mathrm{g}

\partial \Gamma of the curve \partial \Gamma , as it travels through the fluid, is defined by

V \mathrm{m}\mathrm{i}\mathrm{g}
\partial \Gamma := (\^V\partial \Gamma  - \^U) \cdot \^\bfitnu .

Given a fluid density \^f and an arbitrary evolving subsurface \Gamma \subseteq \scrM t, the transport
relation

(3.18)
d

dt

\int 
\Gamma 

\^f d\Gamma =

\int 
\Gamma 

\Bigl( 
d
\^\bfN 
t
\^f +\nabla \scrM \cdot ( \^f\^u) - \^fKV

\Bigr) 
d\Gamma +

\int 
\partial \Gamma 

\^fV \mathrm{m}\mathrm{i}\mathrm{g}
\partial \Gamma d\Gamma 

holds. We refer the reader to [12, sect. 4.2] for details. Here, \^u is the tangent part (3.9) of
the fluid velocity, \nabla \scrM \cdot ( \^f\^u) denotes the divergence of \^f\^u, and K is the total curvature.

Recall that at the beginning of this section we assumed that the surface \scrM t evolves with
(scalar) normal velocity V = \^U \cdot \^N; see (3.7). In addition, let us suppose that \Gamma is material,
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meaning that it convects with the fluid. In other words, it holds that

\^V\partial \Gamma = \^U.

As a consequence, we have V \mathrm{m}\mathrm{i}\mathrm{g}
\partial \Gamma = 0, and the transport relation (3.18) simplifies to

d

dt

\int 
\Gamma 

\^f d\Gamma =

\int 
\Gamma 

\Bigl( 
d
\^\bfN 
t
\^f +\nabla \scrM \cdot ( \^f\^u) - \^fKV

\Bigr) 
d\Gamma .

Since \Gamma is material, conservation of mass requires that

d

dt

\int 
\Gamma 

\^f d\Gamma 
!
= 0,

and we obtain the relation\int 
\Gamma 

\Bigl( 
d
\^\bfN 
t
\^f +\nabla \scrM \cdot ( \^f\^u) - \^fKV

\Bigr) 
d\Gamma = 0.

Since \Gamma was arbitrary, this leads to the pointwise conservation law

(3.19) d
\^\bfN 
t
\^f +\nabla \scrM \cdot ( \^f\^u) - \^fKV = 0,

which, following the terminology from before, resembles a generalized continuity equation. As
for the generalized optical flow equation, we utilize relation (3.14) with time derivative (3.12)
and obtain a parametrized mass preservation constraint

(3.20) d
\^\bfV 
t
\^f +\nabla \scrM \cdot ( \^f\^u) - \^fKV  - \nabla \scrM \^f \cdot \^v = 0,

where \^v is the tangent part of the surface velocity (3.3). We refer to it as the parametrized
continuity equation.

Again, let t \in I be fixed. In view of the ill-posedness of (3.20), we seek a minimizer to
the functional \scrF : H1(\scrM t, T\scrM t) \rightarrow [0,+\infty ],

(3.21) \scrF (\^u) := \| d\^\bfN 
t
\^f +\nabla \scrM \cdot ( \^f\^u) - \^fKV \| 2L2(\scrM t)

+\scrR (\^u) + \scrS (\^u),

where \scrR (\^u) is defined as in (3.17) and

(3.22) \scrS (\^u) := \alpha 2

\int 
\scrM t

(1 - s)
\bigl( 
\nabla \scrM \cdot \^u

\bigr) 2
d\scrM t.

Here, \alpha 2 > 0 is a regularization parameter. The main reason for this additional term in
comparison to (3.16) is to ensure the well-definedness of the data term in (3.21). Moreover,
in the presence of noise it helps to reduce oscillations; see section 5.
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3.3. Discussion. The main differences between the two models are as follows. First, they
differ in the assumptions on \^f . While conservation of brightness requires the image intensities
to stay constant along characteristics, conservation of mass allows them to change and is
therefore more general. Deciding which model to choose depends on the specific application
and on available a priori information about the considered data. Second, in (3.16) the unknown
is \^w, whereas in (3.21) the unknown is \^u. As a result, the latter allows us to estimate the entire
tangential part of the unknown (cell) velocity \^U, whereas the former only yields a tangent
vector field that is relative to the prescribed---and in practice often unknown---surface velocity.
In practical applications this difference could be crucial because one needs to potentially care
less about the chosen parametrization. Third, as we employ a variational approach, the models
differ in their regularity assumptions. The first approach enforces regularity of \^w, whereas
the second enforces regularity \^u. The main disadvantage of using (3.21) is that it requires
evaluation of additional quantities, such as the divergence of the unknown, the total curvature,
and the normal velocity. Let us also mention that, in order to derive (3.19), we required the
additional assumption of arbitrary subsurfaces being material.

4. Numerical solution. In this section, we propose a mesh-free Galerkin method based
on compactly supported (tangent) vectorial basis functions.

4.1. Spherical basis functions. Let h \in (0, 1) and let k \in \BbbN 0 = \{ 0, 1, 2, . . . \} . We define

the 1-dimensional piecewise polynomial function b
(k)
h : [ - 1, 1] \rightarrow \BbbR as

b
(k)
h (\tau ) =

\Biggl\{ 
0 for  - 1 \leq \tau \leq h,
(\tau  - h)k
(1 - h)k for h < \tau \leq 1.

The parameter h controls the support, and k is its degree. For a point xj \in \scrS 2 we define the
xj-zonal function

(4.1) \~bj : \scrS 2 \rightarrow \BbbR , x \mapsto \rightarrow b
(k)
h (xj \cdot x),

which is compactly supported on \scrS 2; see [20, 49]. Moreover, we define the tangent vector
fields

(4.2)
\~y
(1)
j := \nabla \scrS 2\~bj ,

\~y
(2)
j := \nabla \scrS 2\~bj \times \~N,

where \~N is the outward unit normal of \scrS 2. See Figure 4 for an illustration.

4.2. Finite-dimensional approximation. The chosen parametrization y in (2.1) naturally
admits a smooth map \~\phi (t, \cdot ) : \scrS 2 \rightarrow \scrM t of the form

\~\phi (t, x) : x \mapsto \rightarrow \~\rho (t, x)x.

By the product rule, the differential D \~\phi (t, x) : Tx\scrS 2 \rightarrow T\~\phi (t,x)\scrM t of \~\phi is given by

D \~\phi (t, x) = \~\rho (t, x)Id + x\nabla \scrS 2 \~\rho (t, x)\top \in \BbbR 3\times 3.
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Figure 4. Vectorial basis functions \~\bfy 
(1)
j (red) and \~\bfy 

(2)
j (white) and the corresponding zonal function \~bj

centered at the north pole xj = (0, 0, 1)\top . The parameters of the corresponding function b
(k)
h were chosen as

k = 3 and h = 0.6.

Let us be given a set \{ xj \in \scrS 2\} j=1,...,N of pairwise distinct points on the 2-sphere. With
each of its elements xj we associate the xj-zonal function \~bj ; see (4.1). According to definition
(4.2), we immediately obtain the set

(4.3)
\Bigl\{ 
\~y
(i)
j : j = 1, . . . , N, i = 1, 2

\Bigr\} 
of tangent vector fields on \scrS 2. We approximate the solutions to the problems

min
\^\bfw \in H1(\scrM t,T\scrM t)

\scrE (\^w) and min
\^\bfu \in H1(\scrM t,T\scrM t)

\scrF (\^u)

in a finite-dimensional subspace \scrU \subset H1(\scrM t, T\scrM t), where \scrE and \scrF are defined as in (3.16)
and (3.21), respectively. We define this space of tangent vector fields on \scrM t as

(4.4) \scrU := span
\Bigl\{ 
\^y
(i)
j : j = 1, . . . , N, i = 1, 2

\Bigr\} 
,

where \^y
(i)
j = D \~\phi (t, \cdot )(\~y(i)

j ) is the pushforward of an element \~y
(i)
j contained in the set (4.3) by

means of the differential D \~\phi . For notational convenience, we relabel the elements of \scrU with
the help of an index set J\scrU \subset \BbbN and use a single index letter p \in J\scrU .

In the following, we derive optimality conditions for minimizers of the functionals (3.16)
and (3.21).

4.3. Conservation of brightness. We expand the sought-after tangent vector field as

(4.5) \^w =
\sum 
p\in J\scrU 

wp\^yp,



474 LUKAS F. LANG

where wp \in \BbbR , p \in J\scrU , are the unknown coefficients. By plugging ansatz (4.5) into functional
(3.16), for the data term we obtain

\int 
\scrM t

\Biggl( 
d
\^\bfV 
t
\^f +

\sum 
p\in J\scrU 

wp
\bigl( 
\nabla \scrM \^f \cdot \^yp

\bigr) \Biggr) 2

d\scrM t.

In order to compute the regularization functional \scrR (\^w) in (3.17), we require an expression
for the Hilbert--Schmidt norm of the covariant derivative of \^w. For an element \partial iy of the
coordinate basis and \^v = vj\partial jy, the covariant derivative reads

\nabla \partial i\bfy \^v =
\bigl( 
\partial iv

j + vk\Gamma jik
\bigr) 
\partial jy;

see [37, Lemma 4.3]. Here, \Gamma jik denote the Christoffel symbols with regard to the coordinate

basis, that is, \nabla \partial i\bfy \partial ky = \Gamma jik\partial jy. Let us denote the above coefficients by

(4.6) Div
j := \partial iv

j + vk\Gamma jik.

Then for \^yp = ykp\partial ky we find, with the help of Lemma A.1 and the fact that (4.6) is linear,
that

\| \nabla 
\sum 
p\in J\scrU 

wp\^yp\| 22 =
\sum 
p,q\in J\scrU 

wpwqgk\ell g
ijDiy

k
pDjy

\ell 
q,

where gk\ell and gij are the components of the metric (2.5) and of its inverse, respectively.
Moreover, for the second term in (3.17) we obtain

\| 
\sum 
p\in J\scrU 

wp\^yp\| 2 =
\sum 
p,q\in J\scrU 

wpwq
\bigl( 
\^yp \cdot \^yq

\bigr) 
.

The optimality conditions for \scrE (\^w) are obtained by taking \partial \scrE /\partial wp = 0 for all p \in J\scrU and
in matrix-vector form read

(4.7) (A+ \alpha 0C + \alpha 1D)w = b,

where w = (w1, . . . , w| J\scrU | )
\top \in \BbbR | J\scrU | denotes the vector of unknowns. The entries of the matrix

A = (apq) corresponding to the data term are given by

apq =

\int 
\scrM t

\bigl( 
\nabla \scrM \^f \cdot \^yp

\bigr) \bigl( 
\nabla \scrM \^f \cdot \^yq

\bigr) 
d\scrM t,

whereas the entries of the matrices C = (cpq) and D = (dpq) corresponding to the regulariza-
tion terms are given by

cpq =

\int 
\scrM t

sgk\ell g
ijDiy

k
pDjy

\ell 
q d\scrM t
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and

dpq =

\int 
\scrM t

(1 - s)
\bigl( 
\^yp \cdot \^yq

\bigr) 
d\scrM t,

respectively. The entries of the vector b = (bp) are

bp =  - 
\int 
\scrM t

d
\^\bfV 
t
\^f
\bigl( 
\nabla \scrM \^f \cdot \^yp

\bigr) 
d\scrM t.

4.4. Conservation of mass. Next, let us derive the optimality conditions for the func-
tional \scrF defined in (3.21). For numerical convenience we use (3.20) rather than (3.19) as they
are equivalent. Accordingly, we expand the sought-after tangent vector field as

\^u =
\sum 
p\in J\scrU 

up\^yp,

where up \in \BbbR , p \in J\scrU , are the unknown coefficients. For the data term we get

\int 
\scrM t

\Biggl( 
d
\^\bfV 
t
\^f +

\sum 
p\in J\scrU 

up
\bigl( 
\nabla \scrM \^f \cdot \^yp + \^f\nabla \scrM \cdot \^yp

\bigr) 
 - \^fKV  - \nabla \scrM \^f \cdot \^v

\Biggr) 2

d\scrM t.

Regarding the term \scrS (\^u) in the functional (3.21), we find that\Biggl( 
\nabla \scrM \cdot 

\sum 
p\in J\scrU 

up\^yp

\Biggr) 2

=
\sum 
p,q\in J\scrU 

upuq
\bigl( 
\nabla \scrM \cdot \^yp

\bigr) \bigl( 
\nabla \scrM \cdot \^yq

\bigr) 
.

Analogously to before, by taking \partial \scrF /\partial up = 0 for all p \in J\scrU , we obtain the optimality
conditions in matrix-vector form

(4.8) (A+ \alpha 0C + \alpha 1D + \alpha 2E)u = b,

where the matrices C and D are as before. The entries of the matrix A = (apq) corresponding
to the data term are

apq =

\int 
\scrM t

\bigl( 
\nabla \scrM \^f \cdot \^yp + \^f\nabla \scrM \cdot \^yp

\bigr) \bigl( 
\nabla \scrM \^f \cdot \^yq + \^f\nabla \scrM \cdot \^yq

\bigr) 
d\scrM t.

The entries of the matrix E = (epq) corresponding to the regularization term (3.22) are given
by

epq =

\int 
\scrM t

(1 - s)
\bigl( 
\nabla \scrM \cdot \^yp

\bigr) \bigl( 
\nabla \scrM \cdot \^yq

\bigr) 
d\scrM t.

Finally, the vector b = (bp) now reads

bp =  - 
\int 
\scrM t

\bigl( 
d
\^\bfV 
t
\^f  - \^fKV  - \nabla \scrM \^f \cdot \^v

\bigr) \bigl( 
\nabla \scrM \^f \cdot \^yp

\bigr) 
d\scrM t.
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4.5. Surface parametrization. The main goal of this subsection is to estimate the time-
evolving surface \scrM together with a parametrization y of the form (2.1). We extend the idea
of surface interpolation from scattered data in [36]. Given noisy data \~\rho \delta : I \times \scrS 2 \rightarrow (0,\infty ),
we seek a minimizer \~\rho : I \times \scrS 2 \rightarrow (0,\infty ) to the energy

(4.9) \scrG (\~\rho ) :=
\int 
I

\Bigl( 
\| \~\rho (t, \cdot ) - \~\rho \delta (t, \cdot )\| 2L2(\scrS 2) + \beta 0| \~\rho (t, \cdot )| 2Hr(\scrS 2) + \beta 1\| \partial t\~\rho (t, \cdot )\| 2L2(\scrS 2)

\Bigr) 
dt.

Here, \beta 0, \beta 1 > 0 are regularization parameters balancing the terms, and | \cdot | Hr(\scrS 2) is the Sobolev
seminorm on \scrS 2 of order r > 0. While the above problem is stated in an infinite-dimensional
setting, only finitely many (point) evaluations are available in practice. For each frame

t \in \{ 0, . . . , T\} , we are given Nt \geq 0 noisy measurements
\bigl\{ 
\~\rho \delta (t, xi) : xi \in \scrS 2

\bigr\} Nt

i=1
at pair-

wise distinct points on \scrS 2. Approximate locations of cell centers serve as measurements, cf.
section 5.2. Due to the form (2.1), the values of the point evaluations are given by

(4.10) \~\rho \delta (t, \=xi) = \| xi\| , xi \in \BbbR 3 \setminus \{ 0\} , t \in \{ 0, . . . , T\} , i \in \{ 1, . . . , Nt\} ,

where \=xi = xi/\| xi\| is the radial projection onto the 2-sphere. In total, at least one sample
point is required. In order to minimize (4.9) approximately, we consider projections of \~\rho 
onto a finite-dimensional subspace spanned by (scalar) spherical harmonics, as they can be
conveniently related to the regularization functionals in (4.9).

For n \in \BbbN 0, an element \~Yn \in Harmn of the space of harmonic polynomials in \BbbR 3 that
are of degree n and are restricted to \scrS 2 is referred to as a spherical harmonic. It is an
infinitely often differentiable eigenfunction of the Laplace--Beltrami operator \Delta \scrS 2 on \scrS 2, and
its corresponding eigenvalue is \lambda n = n(n+1). Moreover, dim(Harmn) = 2n+1. See Lemma 5.8
and Theorem 5.6 in [42].

The set \{ \~Yn,j : n \in \BbbN 0, j = 1, . . . , 2n + 1\} is a complete orthonormal system in L2(\scrS 2)
with respect to \langle \cdot , \cdot \rangle L2(\scrS 2). As a consequence, the sought-after function \~\rho (t, \cdot ) \in L2(\scrS 2) can
be uniquely expanded in its Fourier series representation as

\~\rho (t, \cdot ) =
\infty \sum 
n=0

2n+1\sum 
j=1

\langle \~\rho (t, \cdot ), \~Yn,j\rangle L2(\scrS 2)
\~Yn,j ;

see Theorem 5.25 in [42]. We assume that \~Yn,j \in Harmn are fully normalized spherical
harmonics [42, sect. 5.2]. By Parseval's identity, we furthermore have

\| \~\rho (t, \cdot )\| 2L2(\scrS 2) =
\sum 
n,j

\langle \~\rho (t, \cdot ), \~Yn,j\rangle 2L2(\scrS 2).

Again, see Theorem 5.25 in [42]. As a further consequence, the Sobolev space Hr(\scrS 2) can be
defined for arbitrary r \in \BbbR by means of the completion of all C\infty (\scrS 2) functions with respect
to the norm

\| \~\rho (t, \cdot )\| 2Hr(\scrS 2) := \| (\Delta \scrS 2 + 1)r/2\~\rho (t, \cdot )\| 2L2(\scrS 2) =
\sum 
n,j

(\lambda n + 1)r\langle \~\rho (t, \cdot ), \~Yn,j\rangle 2L2(\scrS 2).
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For r \in \BbbR , the Hr(\scrS 2) seminorm of order r in (4.9) is defined as

(4.11) | \~\rho (t, \cdot )| 2Hr(\scrS 2) := \| \Delta r/2
\scrS 2 \~\rho (t, \cdot )\| 2L2(\scrS 2) =

\sum 
n,j

\lambda rn\langle \~\rho (t, \cdot ), \~Yn,j\rangle 2L2(\scrS 2).

We approximate the solution to min\~\rho \scrG (\~\rho ) in a finite-dimensional subspace \scrQ \subset Hr(\scrS 2),
chosen as \scrQ := span

\bigl\{ 
\~Yp : p \in J\scrQ 

\bigr\} 
, where J\scrQ \subset \BbbN again is an index set and \~Yp are the fully

normalized scalar spherical harmonics defined above. For a time instant t \in \{ 0, . . . , T\} , the
sought-after function is thus expanded as

(4.12) \~\rho (t, \cdot ) =
\sum 
p\in J\scrQ 

\varrho p(t) \~Yp,

where \varrho p(t) \in \BbbR , for p \in J\scrQ , are the time-dependent, unknown coefficients. From (4.12) we
find that

\partial t\~\rho (t, \cdot ) = \partial t
\sum 
p\in J\scrQ 

\varrho p(t) \~Yp =
\sum 
p\in J\scrQ 

\partial t\varrho p(t) \~Yp.

Thus, for the last term in (4.9) we have

\| \partial t\~\rho (t, \cdot )\| 2L2(\scrS 2) = \| 
\sum 
p\in J\scrQ 

\partial t\varrho p(t) \~Yp\| 2L2(\scrS 2)

=

\int 
\scrS 2

\Biggl( \sum 
p\in J\scrQ 

\partial t\varrho p(t) \~Yp

\Biggr) 2

d\scrS 2

=

\int 
\scrS 2

\sum 
p\in J\scrQ 

\sum 
q\in J\scrQ 

\partial t\varrho p(t)\partial t\varrho q(t) \~Yp \~Yq d\scrS 2

=
\sum 
p\in J\scrQ 

\sum 
q\in J\scrQ 

\partial t\varrho p(t)\partial t\varrho q(t)

\int 
\scrS 2

\~Yp \~Yq d\scrS 2

=
\sum 
p\in J\scrQ 

\bigl( 
\partial t\varrho p(t)

\bigr) 2
,

where the last identity follows from the orthogonality of spherical harmonics. We approximate
the partial derivatives with respect to time with the backward difference \partial t\varrho p(t) \approx \varrho p(t)  - 
\varrho p(t  - 1). By plugging (4.12) into (4.9), utilizing definition (4.11), and taking \partial \scrG /\partial \varrho p(t) for
all p \in J\scrQ and all t \in \{ 0, . . . , T\} , we obtain the linear system of optimality conditions

(4.13)

\sum 
q\in J\scrQ 

\varrho q(t)

\Biggl( 
Nt\sum 
i=1

\~Yp(\=xi) \~Yq(\=xi)

\Biggr) 
+ (\beta 0\lambda 

r
p + 2\beta 1)\varrho p(t)

 - \beta 1\varrho p(t - 1) - \beta 1\varrho p(t+ 1) =

Nt\sum 
i=1

\| xi\| \~Yp(\=xi), p \in J\scrQ ,

and enforce (temporal) zero Neumann boundary conditions at t = 0 and t = T .
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4.6. Evaluation of integrals. In order to solve the linear systems (4.7) and (4.8), it re-
mains to discuss the numerical evaluation of the integrals and the construction of the set (4.3)
of basis functions. For each time instant t \in I, we rewrite the integrals in terms of integrals
on the 2-sphere and apply a suitable cubature rule.

Given M evaluation points xi \in \scrS 2 and corresponding weights qi \in \BbbR , we approximate
the surface integral of a function \^f : \scrM t \rightarrow \BbbR by\int 

\scrM t

\^f d\scrM t =

\int 
\scrS 2

\~f \~\rho 
\sqrt{} 

\| \nabla \scrS 2 \~\rho \| 2 + \~\rho 2 d\scrS 2 \approx 
M\sum 
i=1

\bigl( 
\~f \~\rho 
\sqrt{} 
\| \nabla \scrS 2 \~\rho \| 2 + \~\rho 2

\bigr) 
(xi)qi,

where \~f : \scrS 2 \rightarrow \BbbR is defined in (2.2) and the first identity is proved in [36, Lemma 2.1].
Since our data is supported only on the upper hemisphere (see sect. 5.1), we assume that

the coefficients of vectorial basis functions centered at x3j < 0 are zero. As a result, the number
of unknowns in the linear systems (4.7) and (4.8) is halved. Moreover, we choose a cubature
rule for integration over the spherical cap

\scrC :=
\bigl\{ 
x \in \scrS 2 : arccos(x \cdot e3) \leq \pi /2

\bigr\} 
\subset \scrS 2,

where e3 = (0, 0, 1)\top \in \BbbR 3 is the unit vector pointing in the x3-direction; see [24, sect. 7.1].
To achieve an approximately uniform placement of basis functions (4.3) on the upper hemi-

sphere, we generate a polyhedral approximation \scrS 2
h = (\scrV , \scrT ) of \scrS 2. Here, \scrV = \{ v1, . . . , vn\} \subset 

\scrS 2 is the set of vertices and \scrT the set of triangular faces. This triangular mesh is generated
by iterative refinement of an icosahedron which is inscribed in the sphere [11, Chapter 1.3.3].
In every refinement step the edge lengths are halved by connecting the edge midpoints and
projecting them onto the unit sphere. The number of vertices of \scrS 2

h in iteration \ell \in \BbbN 0 is
n = 2 + 10 \cdot 4\ell . For the placement of basis functions (4.3) we choose \scrV \cap \scrC as center points,
resulting in approximately n basis functions, as every point in this set gives rise to two basis
functions; cf. (4.2).

5. Experiments.

5.1. Microscopy data. The data at hand is volumetric time-lapse (4-dimensional) im-
ages of a living zebrafish embryo. The images were recorded with confocal laser-scanning
microscopy during the gastrula period of the animal, taking place approximately five to ten
hours after its fertilization. The sequence features endodermal cells labeled with a green flu-
orescence protein, and therefore they can be observed separately from the background. We
refer the reader to [40] for information on the imaging techniques and to [43] for the treatment
of the specimen.

The microscopy data contains a cuboid region of approximately 860\times 860\times 320\mu m3 at a
spatial resolution of 512\times 512\times 44 voxels. Due to limitations of the microscopy technique, it
contains only approximately half of the spherical-shaped embryo and exhibits noise contami-
nation. Before data acquisition, the embryo was rotated so that the animal pole points upward
and is contained in the cuboid region. Image intensities are in the range of \{ 0, . . . , 255\} . A
representative sequence contains 151 frames recorded at an interval of 120 s. We denote the
recorded data by f \delta \in \{ 0, . . . , 255\} 151\times 512\times 512\times 44. See Figure 1 for the unprocessed data.
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5.2. Preprocessing and surface data acquisition. In this section, we briefly outline how
we extract an image sequence \^f together with the time-evolving sphere-like surface \scrM from
said microscopy data. We use the approximate centers of cell nuclei as sample points of the
surface. They represent local maxima in image intensity and can be found with sufficient
accuracy by using Gaussian filtering in each frame f \delta (t, \cdot ) followed by thresholding. However,
before we solve the surface interpolation problem (4.9), the points are centered around the
origin by fitting one single sphere to the union of all thresholded local maxima and subse-
quently subtracting the spherical center. Then measurements (4.10) are computed, and the
system (4.13) of optimality conditions is solved. Then all surface quantities can be computed.

It remains to discuss the numerical approximation of the image sequence \^f , its partial
derivative \partial t \^f , and the gradient \nabla \scrM \^f . For each frame t \in \{ 0, . . . , T\} , we obtain surface data
\^f(t, x) at x \in \scrM t via the radial projection

(5.1) \^f(t, x) := max
c\in [1 - \varepsilon ,1+\varepsilon ]

\r f \delta (t, cx),

where \varepsilon > 0 is chosen sufficiently large. By \r f \delta we denote the piecewise linear extension of f \delta 

to \BbbR 3, which is required for gridded data. Before we do so, the intensities \r f \delta are scaled to the
interval [0, 1]. The above projection (5.1) selects the maximum fluorescence-intensity within
a narrow band around \scrM t and thereby allows for small deviations of the cell nuclei from the
fitted surface. See Figures 6 and 7 for illustrations.

Furthermore, we approximate the surface gradient of \^f as

(5.2) \nabla \scrM \^f(t, x) := P\scrM (t, x)

\biggl[ 
mean

c\in [1 - \varepsilon ,1+\varepsilon ]
\nabla \BbbR 3\r f \delta (t, cx)

\biggr] 
,

where P\scrM is the orthogonal projector defined in (2.4). Here, \nabla \BbbR 3\r f \delta is approximated by central
differences inside the cuboid and by one-sided differences at the boundaries. We stress that
in the above projection the parameter \varepsilon must be chosen with care as zero values influence
the magnitude of the projection (5.2) and, as a further consequence, of the estimated velocity
fields.

Finally, for t = \{ 0, . . . , T  - 1\} , the partial derivative of \^f with respect to time is approxi-
mated by the forward difference \partial t \^f(t, \cdot ) \approx \^f(t+ 1, \cdot ) - \^f(t, \cdot ).

5.3. Visualization of results. We utilize the standard flow color-coding for the visualiza-
tion of vector fields [6]. The idea is to create a color image representation of a (planar) vector
field by assigning each vector a color and an intensity value from a predefined color disk. The
color and the intensity associated with a vector are determined by its angle (respectively, its
length). Typically, the radius R of the color disk is chosen to be equal to the length of the
longest vector in the vector field one attempts to visualize.

In [34, 36], the idea has been extended to illustrate vector fields on surfaces. However,
before assigning a color and an intensity to a---not necessarily tangent---vector, it is projected
to the plane and then scaled to its original length, provided that the length of the projection
is nonzero. Let us denote by Px3 : (x1, x2, x3)\top \rightarrow (x1, x2, 0)\top the orthogonal projector of \BbbR 3

onto the x1-x2-plane. Then for a general surface vector field \^X(t, \cdot ) : \scrM t \rightarrow \BbbR 3, we apply the
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color-coding to the scaled projection,

\^X \mapsto \rightarrow 

\left\{   
\| \^\bfX \| 

\| \mathrm{P}x3
\^\bfX \| Px3

\^X if \| Px3 \^X\| > 0,

0 else,

and map the resulting color image back onto the surface. As a result, the lengths of the
individual vectors are preserved, provided that they do not vanish in the projection. We
assume that each \scrM t is such that Px3 is injective.

In order to evaluate the computed velocity fields, we create another triangular mesh \scrS 2
h\prime 

similar to the one in section 4.6. Vector fields are then evaluated at the centroids of the trian-
gular faces and thus yield piecewise constant color-coded images. For plotting purposes, the
surface data is evaluated at the vertices of \scrS 2

h\prime and interpolated piecewise linearly. Moreover,
to simplify matters we plot piecewise linear approximation of the surfaces. We found that
\ell = 7 iterative refinement steps sufficiently resolve the microscopy data.

In addition, we illustrate surface velocity fields with streamlines; see, e.g., [58]. Before
doing so, the velocity fields are projected onto the x1-x2-plane. Then, given a steady vector
field v in the plane and a starting point x0, a streamline \gamma (\cdot , x0) solves the ordinary differential
equation

(5.3)
\partial \tau \gamma (\tau , x0) = v(\gamma (\tau , x0)),

\gamma (0, x0) = x0.

We compute numerical approximations \gamma \kappa of (5.3) by solving

\gamma \kappa (\tau + 1, x0) = \gamma \kappa (\tau , x0) + \kappa v(\gamma \kappa (\tau , x0)),

\gamma \kappa (0, x0) = x0

for a given number of initial points x0 \in \BbbR 2 and for \tau = 50 iterations. Here, \kappa > 0 is a
step size parameter that is set in dependence of v. Moreover, we apply linear interpolation of
v. With increasing \tau we adjust the color of \gamma \kappa from yellow to green; see Figures 10 and 13.
In what follows, for a given surface vector field \^X we create a streamline visualization of its
projection Px3 \^X onto the x1-x2-plane.

5.4. Results. We conducted several experiments with said zebrafish microscopy data. In
a first step, we minimized functional (4.9) by solving the optimality conditions (4.13) to obtain
an approximation of the deforming surface. We chose the parameter r of the Sobolev space
Hr(\scrS 2) as r = 3 + \epsilon , where \epsilon = 2.2204 \cdot 10 - 16 is the machine precision. This particular
choice originates from regularity requirements discussed in [36, sect. 4.3]. The regularization
parameters were set to \beta 0 = 10 - 4 and \beta 1 = 100, and the space \scrQ \subset Hr(\scrS 2) was chosen as
\scrQ = span

\bigl\{ 
\~Yn,j : n = 0, . . . , 10, j = 1, . . . , 2n+ 1

\bigr\} 
.

Figure 5 depicts three selected frames of a minimizing function \~\rho of \scrG computed for frames
\{ 100, 101, . . . , 151\} of the microscopy sequence. Figure 6 shows the estimated surface \scrM t for
the same frames together with the surface data \^f , which is obtained by the radial maximum
intensity projection (5.1) with \varepsilon = 0.1. We highlight that the deformation of the embryo is
well-captured and contains the anticipated cell features; cf. also the unprocessed volumetric
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Figure 5. Depicted is a top view of the recovered (radius) function \~\rho at times 110, 130, and 150 (from left
to right). All dimensions are in micrometers (\mu m).

Figure 6. Shown are frames 110, 130, and 150 (from left to right) of the upper hemisphere of the estimated
sphere-like surface \scrM t together with surface data \^f . The curved surface is indicated by an artificial mesh
which---for illustration purposes---has been widened in the radial direction by one percent of its original distance
from the origin. All dimensions are in micrometers (\mu m).

data in Figure 1. The growing dent in the surface corresponds to the clearly visible dark blue
area in Figure 5. Moreover, Figure 7 illustrates a section of the unprocessed microscopy data
f \delta together with the fitted surface (in grey) and the narrow band (in red and green) used
in (5.1) and (5.2) to obtain the surface data \^f and the gradient \nabla \scrM \^f from the volumetric
data f \delta , respectively. The fitted surface accurately represents the single-cell layer, and cell
material is located almost entirely within the narrow band.

In a second step, we computed minimizers of the functionals (3.16) and (3.21) for one
pair of frames by solving the corresponding optimality conditions (4.7) and (4.8), respectively.
As outlined in section 4.6, the finite-dimensional subspace \scrU \subset H1(\scrM t, T\scrM t) in (4.4) was
created by five mesh refinements resulting in approximately N = 104 (tangent) vectorial
basis functions. Moreover, the parameters of the basis functions were set to k = 3 and
h = 0.99. The degree of the numerical cubature was chosen as 400, yielding approximately
8600 evaluation points on the spherical cap. It remains to discuss the choice of the function s
in the regularization functionals (3.17) and (3.22). We chose it in dependence of the surface
data \^f as

(5.4) s :=

\left\{     
1 - \eta if 1 - \eta < \^f,
\^f if \eta \leq \^f \leq 1 - \eta ,

\eta if \^f < \eta ,

with \eta = 10 - 4. This guarantees that s(t, \cdot ) : \scrM t \rightarrow (0, 1) so that (3.16) and (3.21) are
well-posed minimization problems.
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Figure 7. Shown are cross sections of 50 \mu m thickness of the unprocessed microscopy data f\delta , the inter-
polated surface \scrM t (in grey), and the narrow band (red and green) within which projection (5.1) is taken to
obtain \^f . The images correspond to those depicted in Figure 6, i.e., frames 110, 130, and 150 (from left to
right). All dimensions are in micrometers (\mu m).

Figure 8. Frames 112 (left) and 113 (right) with a top view of the processed microscopy image sequence with
an artificial mesh superimposed. The mesh has been widened by one percent of its radius for better illustration.
All dimensions are in micrometers (\mu m).

All experiments were performed on an Intel Core i5-6500 3.20GHz MacBook Pro equipped
with 16GB RAM. The running time was governed by the evaluation of the integrals in (4.7)
and (4.8), which altogether amounts to approximately 150 seconds per pair of frames in our
MATLAB implementation. In comparison to previous works [33, 36], where globally supported
vectorial basis functions were used and computation time was several hours, this represents a
significant speed-up. Furthermore, the memory requirements have been drastically reduced.

All systems of linear equations were solved by application of the backslash operator in
MATLAB and resulted in a relative residual less than 10 - 14 within just a few seconds. Both
the microscopy data1 and the source code of the implementation2 are available online.

Figure 8 depicts the two selected (consecutive) frames with a top view of the processed

1https://doi.org/10.5281/zenodo.1211599.
2https://doi.org/10.5281/zenodo.1238910.

https://doi.org/10.5281/zenodo.1211599
https://doi.org/10.5281/zenodo.1238910
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Figure 9. Color-coded visualization of minimizers \^\bfw of \scrE (left) and \^\bfu of \scrF (right), respectively, for two
different choices of s. The top row shows s as defined in (5.4), while the bottom row illustrates the choice
s \equiv 1. The regularization parameters were chosen as follows. Top left: \alpha 0 = 10 - 1 and \alpha 1 = 10 - 3. Top right:
\alpha 0 = 10 - 1, \alpha 1 = 10 - 3, and \alpha 2 = 10 - 3. Bottom left and bottom right: \alpha 0 = 10 - 1. All dimensions are in
micrometers (\mu m).

microscopy image sequence. All results in the following figures were computed for this par-
ticular pair of frames and are also shown from a top view only. In Figure 9 we portray
minimizers \^w and \^u of functionals \scrE and \scrF , respectively. Moreover, we compare the effect
of two different choices of s. While the top row shows results for s chosen as in (5.4) and
indicates that individual motion of cells is captured particularly well by the proposed model,
the bottom row depicts results for s \equiv 1. While the choice s \equiv 1 provides a better insight into
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Figure 10. Detailed view of estimated velocities \^\bfw (top) and \^\bfu (bottom) during a cell division. Depicted
are the surface data \^f at frame t = 112 with the respective velocity superimposed (left), the data \^f at frame
t = 113 (middle), and the streamline representation of the respective velocity (right), as outlined in section 5.3.
The same parameters as in Figure 9 (top row) were used. For better illustration, \^f has been brightened slightly.

the collective motion of cells on a global scale, the spatially dependent s captures individual
cell movements (visually) more accurately. Note also the difference in the magnitude, which
is indicated by the radius R of the (scaled) color disk. For s \equiv 1, the minimizers \^w and \^u are
visually similar, whereas for s chosen as in (5.4) they differ significantly. In particular, note
the oscillations where no cell material is present. In our experiments we found that these are
due to noise in the data and can be suppressed by larger choices of \alpha 2 without changing the
result substantially.

Figure 10 depicts a detailed section of the velocity fields shown in Figure 9 (top row)
during a cell division. Clearly, the cell division is adequately captured and the velocity fields
are spatially confined. Notice also the differences in the streamline plot.

In Figure 11, we illustrate tangent vector fields obtained for increasing regularization
parameter \alpha 0 for s chosen as in (5.4). Observe in both rows the broadening of the support
and the decrease in magnitude of the velocity fields for increasing \alpha 0.

Moreover, Figure 12 depicts minimizers for increasing parameter \alpha 0 for s \equiv 1. As expected,
the velocity fields become more regular with increasing \alpha 0 and, due to the regularization
functional being a norm, decrease in magnitude. These findings are in line with the results
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Figure 11. Computed tangent vector fields \^\bfw (top) and \^\bfu (bottom) for increasing regularization parameter
\alpha 0 = 10 - 2 (left), \alpha 0 = 10 - 1 (middle), and \alpha 0 = 1 (right). The other parameters were kept fixed as \alpha 1 = 10 - 3

and \alpha 2 = 10 - 3. The function s was set as in (5.4).

obtained in [33, 36]. In Figure 13, we visualize the velocity fields from Figure 12 with the help
of streamlines as outlined in section 5.3.

We also illustrate the total velocity \^U of cells. Recall from section 3 that for estimated
velocity fields \^w and \^u, it can be computed as \^U = \^V + \^w (respectively as \^U = V \^N + \^u).
From (2.1) it follows that the surface velocity is given by \^V = \partial ty = \partial t\~\rho x, which points in
the radial direction. In Figure 14, we compare the total velocities obtained for the velocity
fields shown in Figure 9 (top row). First, observe the minor differences between \^V and V \^N,
indicating that the surface velocity points mainly in the normal direction. Second, note the
significant difference in the magnitudes. As a result, the surface movement is almost negligible
for the considered data.

6. Conclusions. With the goal of efficient motion estimation in volumetric microscopy
data, we followed the paradigm of dimensional reduction and considered brightness and mass
conservation on evolving sphere-like surfaces. We derived a generalized continuity equation
valid for time-varying surfaces embedded in Euclidean 3-space and discussed its relation to
the generalized optical flow equation derived in [34]. In light of the ill-posedness of the
discussed conservation laws, we proposed the use of spatially-varying regularization functionals
suited for considered microscopy data of fluorescently labeled cells. For the efficient numerical
solution, we devised a Galerkin method based on compactly supported (tangent) vectorial
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Figure 12. Computed tangent vector fields \^\bfw (top) and \^\bfu (bottom) for increasing regularization parameter
\alpha 0 = 10 - 2 (left), \alpha 0 = 10 - 1 (middle), and \alpha 0 = 1 (right). The other parameters were kept fixed as \alpha 1 = 10 - 3

and \alpha 2 = 10 - 3. The function s was set to s \equiv 1.

basis functions allowing for efficient evaluation of the optimality conditions. A significant
performance improvement was observed compared to previous methods based on globally
supported basis functions. In order to accurately estimate the velocity of the (artificially)
imposed sphere-like surface, we considered surface interpolation with spatial and temporal
regularization. We performed several experiments on the basis of the aforementioned zebrafish
microscopy data. The computed velocity fields indicate that cell motion can be estimated well
and efficiently with the proposed method. However, it is left for future research to evaluate
the considered models quantitatively and to investigate theoretical guarantees of the proposed
numerical method.

Appendix A. Hilbert--Schmidt norm of the covariant derivative. In the following, we
derive a coordinate representation of the Hilbert--Schmidt norm of the covariant derivative
(2.8). The Riemannian metric g = (gij) is a covariant symmetric (0, 2)-tensor, and its inverse
g - 1 = (gij) is a contravariant symmetric (2, 0)-tensor. Both obey a transformation law when
changing from one basis to another. Let \{ \^e1,\^e2\} be an arbitrary basis of Tx\scrM t at x \in \scrM t

such that

(A.1) \^ei = \alpha ji\partial jy.
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Figure 13. Shown are streamlines visualizing the velocity fields from Figure 12, i.e., velocity fields obtained
for increasing regularization parameter \alpha 0 (from left to right). The top row shows streamlines computed for
Px3 \^\bfw , while the bottom row illustrates them for Px3\^\bfu . The change in color from yellow to green illustrates the
increasing parameter \tau .

Here, the entries (\alpha ji ) form a matrix with inverse (\alpha  - 1)ji . Then, for a (p, q)-tensor T
i1,...,ip
j1,...,jq

of

order p+ q, which is defined in the basis \{ \partial 1y, \partial 2y\} , its representation in the basis \{ \^e1,\^e2\} is
given by

(A.2) T
i\prime 1,...,i

\prime 
p

j\prime 1,...,j
\prime 
q
= (\alpha  - 1)

i\prime 1
i1
. . . (\alpha  - 1)

i\prime p
ip
T
i1,...,ip
j1,...,jq

\alpha j1
j\prime 1
. . . \alpha 

jq
j\prime q
.

See, e.g., [37] for details. With this at hand we can show the following.

Lemma A.1. Let t \in I and x = y(t, \xi ) be arbitrary for some \xi \in \Omega . Then, for \^v = vi\partial iy,
it holds that

(A.3) \| \nabla \^v\| 22 = gk\ell g
ijDiv

kDjv
\ell ,

where we have omitted the arguments (t, x) on the left-hand side and (t, \xi ) on the right-hand
side.

Proof. First, let us show that the right-hand side of (A.3) is parametrization independent.
To this end, let \{ \partial 1y, \partial 2y\} and \{ \^e1,\^e2\} be arbitrary bases for Tx\scrM t such that its relation is
given by (A.1). Then, by [37, Lemma 4.7] and (A.2), we have the transformation law

\frakD iv
k = (\alpha  - 1)ksDtv

s\alpha ti
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Figure 14. The top row depicts the velocity \^\bfw (left), the surface velocity \^\bfV (middle), and the total velocity
estimated as \^\bfV + \^\bfw (right). The bottom row depicts the velocity \^\bfu (left), the normal component V \^\bfN (middle),
and the total velocity estimated as V \^\bfN + \^\bfu (right). The same parameters as in Figure 9 (top row) were used.

for the components (4.6) of the covariant derivative. Moreover, (gij) and (gij) transform

as gk\ell = gmn\alpha 
m
k \alpha 

n
\ell and gij = (\alpha  - 1)ip(\alpha 

 - 1)jqgpq, respectively. Recall that, by definition,

\alpha ki (\alpha 
 - 1)jk = \delta ji and (\alpha  - 1)ki \alpha 

j
k = \delta ji . As a consequence,

gk\ell g
ij\frakD iv

k\frakD jv
\ell = gmn\alpha 

m
k \alpha 

n
\ell (\alpha 

 - 1)ip(\alpha 
 - 1)jqg

pq(\alpha  - 1)ksDtv
s\alpha ti(\alpha 

 - 1)\ell uDwv
u\alpha wj

= gmng
pqDtv

sDwv
u\delta ms \delta 

n
u\delta 

t
p\delta 
w
q

= gmng
pqDpv

mDqv
n.

Suppose now that \{ \^e1,\^e2\} is orthonormal so that g = (\delta ij) and g - 1 = (\delta ij). Then,

gk\ell g
ij\frakD iv

k\frakD jv
\ell =

\sum 
i,k

(\frakD iv
k)2 =

\sum 
i

\| \nabla \^\bfe i\^v\| 
2 = \| \nabla \^v\| 22,

where the second equality follows from the fact that\sum 
i

\| \nabla \^\bfe i\^v\| 
2 =

\sum 
i

\frakD iv
k\^ek \cdot \frakD iv

\ell \^e\ell =
\sum 
i

\delta k\ell \frakD iv
k\frakD iv

\ell =
\sum 
i,k

(\frakD iv
k)2,

and the last equality is by definition (2.8). The claim follows from combining these
equations.
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