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The diversity of Devonian tetrapods has increased dramatically in recent 

decades, but consists mostly of tantalising fragments. The interpretative 

framework is still dominated by the near-complete Ichthyostega and 

Acanthostega, with supporting roles for the less complete but partly 

reconstructable Ventastega and Tulerpeton. All four are of late Famennian age, 

10 million years younger than the earliest tetrapod fragments and nearly 30 

million years younger than the oldest footprints. Here we describe a tetrapod 

from the earliest Famennian of Russia, Parmastega aelidae gen. et sp. nov., 

represented by three-dimensional material that allows reconstruction of the skull 

and dermal shoulder girdle. Its raised orbits, lateral line canals and weakly 

ossified postcranial skeleton suggest a largely aquatic, surface-cruising animal. 

In Bayesian and parsimony-based phylogenetic analyses the majority of trees 

place Parmastega as sister group to all other tetrapods. 

 

The rate of discovery of Devonian tetrapods accelerated greatly during the late 20th 

and early 21st centuries. The description of Ichthyostega in 1932 was followed by 

Acanthostega in 1952, Metaxygnathus in 1977 and Tulerpeton in 1984; all other 

genera (Hynerpeton, Ventastega, Elginerpeton, Obruchevichthys, Densignathus, 

Sinostega, Jakubsonia, Ymeria, Webererpeton, Tutusius, Umzantsia) have been 
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described or identified as tetrapods since 19941-13. Un-named Devonian tetrapod 

material has been described from Belgium14,15 and the United States16,17. However, by 

far the most complete Devonian tetrapod material is still that of Ichthyostega and 

Acanthostega from East Greenland1,2,11,18-31, followed by Ventastega from Latvia6,31,32 

and Tulerpeton from Russia4,33,34. All four date to the late Famennian, the last stage of 

the Devonian, when tetrapods had already been in existence for about 30 million 

years, judging by the trackway evidence35,36, and had colonised both equatorial and 

polar environments13. Substantial differences between them hint at long evolutionary 

histories; notably Ichthyostega and Acanthostega have fundamentally dissimilar 

braincases20.  

 The tetrapod material described here is securely dated to the earliest 

Famennian but is comparable to Ventastega in degree of completeness. Its source, the 

Sosnogorsk Formation of the southern part of Timan Ridge (Komi Republic, 

Russia)37, straddles the Frasnian-Famennian boundary with vertebrate remains 

occurring in the Famennian part (Extended Data Fig. 1). It is thus only marginally 

younger than the oldest fragmentary tetrapods Elginerpeton, Obruchevichthys and 

Webererpeton7,12. The quality of the material, which consists of numerous isolated 

bones and some articulated skull regions, is excellent. Multiple examples of the same 

bone all show the same distinctive features (Extended Data Fig. 2), indicating that 

only a single tetrapod species is present (Extended Data Fig. 3). The Sosnogorsk 

fossils give us the first detailed picture of an animal from the earliest part of the 

known tetrapod body fossil record.  

  

Systematic palaeontology 
Tetrapoda Jaekel, 1909 

Parmastega aelidae gen. et sp. nov. 

Remark. The term Tetrapoda is used here in its traditional, apomorphy-based sense 

of limbed vertebrates. 

Etymology. The generic name derives from parma, a word in the Komi language 

describing the landscape of hills covered by coniferous forest, typical for South 

Timan, and Greek stégi meaning roof, understood here as skull roof. The specific 

name honours Associate Professor of Syktyvkar State University Dr. Aelida I. Popova 
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(1929-2011), who first aroused PB's interest in natural sciences when he was a 

preschool boy. 

Holotype. IG KSC 705/1, an articulated snout region (Fig. 1a-c). 

Referred material. 106 individual bones or bone assemblies (Supplementary Table 

1). 

Locality and horizon. Sosnovskiy Geological Monument, right bank of the Izhma 

River opposite Sosnogorsk, Komi Republic, Russia; Sosnogorsk Formation, 

lowermost Famennian (Extended Data Fig. 1).  

Diagnosis. A stem tetrapod diagnosed by the following unique combination of 

characters: dermal ornament of preorbital region developed into transverse parallel 

‘wave crests’ with a spacing of a few millimetres; ornament present on dorsal blade of 

cleithrum and on anocleithrum; orbit strongly raised above skull roof, framed by an 

anterodorsal crest and a vertical anterior ridge carried on prefrontal; internasal 

fontanelle absent; median rostral paired; lacrimal excluded from orbit by prefrontal-

jugal contact; intertemporal absent; pterygoids separated in midline by parasphenoid; 

interpterygoid vacuities absent; pterygoid dentition restricted to two lines of denticles, 

running anteriorly and anterolaterally from growth centre; ectopterygoid making large 

contribution to lateral wall of subtemporal fossa; middle part of otic capsule narrow, 

occupying approximately half of skull table width; posttemporal fossa wide, 

triangular; fang pair and row of marginal teeth on adsymphysial plate; middle part of 

prearticular with large muscle scar; interclavicle rounded with short posterior process.    

 

Description 

The Parmastega material comprises the entire dermal skull apart from the 

preopercular and the posterior part of the quadratojugal, the entire ethmoid and dorsal 

part of the otoccipital braincase, the entire lower jaw, the dermal pectoral girdle and 

the partly ossified scapulocoracoid (Figs 1-2). A total of 106 numbered specimens 

(Supplementary Table 1, 2), representing a minimum of 11 individuals, show a wide 

size range (Extended Data Figs 2, 4) but were found within a small area of the site 

(Extended Data Fig. 1). Most specimens are isolated bones, but an articulated ethmoid 

(Fig. 1a-c) and several skull tables (Fig. 1d-g) are also present. The bones are three-

dimensionally preserved in limestone, with little or no distortion, and have been freed 

from the matrix using dilute acetic acid (see Methods). Bones from the same 

individual can sometimes be identified by matching size and sutural fit (Extended 
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Data Fig. 3). This allows us to reconstruct the skull, lower jaw and pectoral girdle 

with a high degree of confidence, excepting only the posterior part of the 

suspensorium (Fig. 3). Assuming proportions similar to Acanthostega19, the 

maximum length of Parmastega was approximately 130 cm. 

 The skull shape is broadly similar to that of Ventastega and Acanthostega, 

although the orbits of Parmastega are raised higher above the skull table and the 

snout has a distinctly concave profile (Extended Data Fig. 4). The strongly raised 

orbits and relatively narrow snout are reminiscent of the elpistostegids Elpistostege 

and Tiktaalik38,39. However, the orbits are proportionately larger than in elpistostegids 

(Extended Data Fig. 5).  

The dermal bone pattern of the skull roof and cheeks is, with a single 

exception, characteristic of Devonian tetrapods. There is no postrostral mosaic or 

internasal fontanelle. The median rostral is paired, as in Acanthostega, Ventastega and 

Elpistostege, but unlike Ichthyostega and Elginerpeton where it is single7,18,26,32,38. A 

tectal bone forms the dorsal margin of the naris, which lies very close to the jaw 

margin and faces ventrally; the ventral margin of the naris is formed by the maxilla as 

there is no lateral rostral. The lacrimal is excluded from the orbit by a long suture 

between the jugal and prefrontal. The latter is elongate and carries two bony crests, 

one forming the anterior part of the 'eyebrow' and the other an oblique ridge in front 

of the orbit, both more strongly developed in large specimens (Fig. 1m, 3a-c). The 

frontals are elongate with a distinct transverse ’step’ on the posterior part of the dorsal 

surface marking the transition from snout to skull table. Intertemporals are absent. 

The lateral margins of the supratemporal and tabular form a raised spiracular margin; 

the tabular horn has distinct dorsal and ventral components. A small part of the dorsal 

surface of the braincase is exposed posterior to the tabulars. The dermal ornament of 

the preorbital region includes areas of irregular transverse ripples (Fig. 1h, m; 

Extended Data Fig. 2), somewhat similar to the ornament of Umzantsia13 but much 

coarser; elsewhere it grades into conventional tetrapod 'starburst' ornament. Partly 

enclosed sensory line canals are well developed on the premaxilla, cheek bones and 

anterior part of the nasals, but are absent from the skull table (Fig. 1d). 

Between the anterior suture for the jugal and the posterior suture for the 

preopercular, the ventral margin of the squamosal presents two distinct sutural 

margins that appear to be contacts for two bones (Fig. 1l). The posterior of these must 

be for the quadratojugal; given that the jugal lacks a posterior process, we tentatively 
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infer that the anterior segment of the ventral margin contacts the maxilla (Fig. 3a). A 

squamosal-maxillary contact is characteristic for ’fish’ members of the tetrapod stem 

group such as Eusthenopteron40; its presence in Parmastega is unique for tetrapods.  

 The palatal morphology of Parmastega is intermediate between those of 

elpistostegids and Devonian tetrapods. In the elpistostegids Panderichtys and 

Tiktaalik, the pterygoids are separated in the midline by a long denticulated 

parasphenoid41,42. The vomer has a transverse posterior margin, which in 

Panderichthys ends mesially in a short posterior process extending along the lateral 

margin of the parasphenoid41. This condition is broadly similar to that in 

Eusthenopteron40. By contrast, in Ichthyostega, Acanthostega and Ventastega the 

pterygoids meet in the midline, separating the parasphenoid from the vomers, and the 

most posterior point of the vomer is its posterolateral corner6,18,23. In Parmastega the 

parasphenoid separates the pterygoids, but is not denticulated anteriorly, and the 

vomeral morphology is intermediate (Fig. 1a, 3d). The pterygoid carries a longitudinal 

row or narrow band of denticles, and a shorter oblique band extending anterolaterally. 

Uniquely, the ectopterygoid extends posteriorly past its contact with the pterygoid to 

contribute to the lateral margin of the subtemporal fossa (Fig. 3d). This relationship is 

demonstrated by a sutural fit of three bones from one individual (Fig. 1p).  

 Two parts of the braincase are preserved: the ethmoid and part of the sphenoid 

in IG KSC 705/1 and the dorsal part of the otoccipital in IG KSC 705/17 (Fig. 1a,f-g). 

An ossified ethmoid is only shared with Ichthyostega among known Devonian 

tetrapods18. The otoccipital has a strongly developed prootic buttress, a narrow cranial 

cavity with small inner ears, and a posttemporal fossa bounded laterally by a crista 

parotica that extends onto the tabular horn. Its outline in ventral view resembles 

Tiktaalik42 but is proportionately broader. Previously known Devonian tetrapod 

otoccipitals show two radically different morphologies. In Acanthostega and 

Ventastega the narrow posttemporal fossa is open laterally and the braincase occupies 

almost the whole ventral surface of the skull table, whereas in Ichthyostega the 

narrow braincase is flanked by large cavities under the skull table that probably 

housed spiracular diverticula20,24,25,32. The otoccipital of Parmastega provides a 

plausible ancestral ground plan for both these morphologies (Extended Data Fig. 6).  

 The lower jaw is of typical tetrapod construction30 but unusually slender and 

delicate (Fig. 2a-h, 3e). The only ossified parts of the Meckelian element are the 

articular and the symphysis. The prearticular carries very few denticles but bears a 
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large ventral muscle scar on its middle part. Remarkably, the contact between the 

prearticular and the mesial lamina of the splenial is not a tight suture as in other 

known Devonian tetrapods30 but a loose overlap that must have contained a 

ligamentous component and allowed a degree of flexibility. Fang pairs, positioned 

mesial to the tooth row, are present on the adsymphysial plate, dentary, and anterior 

and middle coronoids. Postsplenial and surangular pit lines are present. The dentary is 

splint-like and loosely attached.  

The pectoral girdle is U-shaped in anterior view with the dorsal blades of the 

cleithra approximately parallel (Fig. 2i-o, 3a,c). The dorsal orientation of the 

anocleithrum, determined from well-preserved contact surfaces, makes the girdle 

surprisingly tall. Cleithrum and anocleithrum both carry dermal ornament, a 

characteristic otherwise absent in tetrapods except Umzantsia13. The clavicle is 

narrow and the interclavicle has a rounded corpus with a short posterior process (Fig. 

2n,o); both bones somewhat resemble the corresponding elements in Ichthyostega18, 

whereas Acanthostega and Ventastega have broader clavicles and kite-shaped 

interclavicles29,32. The scapulocoracoid is ossified in two parts: a dorsal scapular part 

coossified with the cleithrum (Fig. 3i), and a posterior coracoid ossification that 

carries the glenoid (Fig. 3p). As in Ichthyostega, Elginerpeton and Hynerpeton, the 

subscapular fossa is deep with a narrow apex; in Acanthostega and Ventastega, by 

constrast, the fossa is shallow and broad5,18,29,32,43. Limbs, pelvis, vertebrae and ribs 

are not preserved. 

 

Phylogenetic analysis 

The phylogenetic position of Parmastega was evaluated with maximum parsimony 

and Bayesian inference analyses applied to a data matrix of 26 taxa and 113 

characters (see Methods; character list and data matrix are provided in 

Supplementary Information files 2-4).  

 The resolution of the strict consensus unweighted parsimony analysis was 

poor: all Devonian tetrapods including Parmastega formed a polytomy together with 

'whatcheeriid-grade' Carboniferous taxa (Extended Data Fig. 7a).  However, in 70% 

of the trees, Parmastega was the sister group to all other tetrapods. A range of 

different approaches (character reweighting by Rescaled Consistency Index and K 

values; calculation of agreement subtrees from consensus trees) was used to 

investigate the phylogenetic signal in the data set (Extended Data Fig. 7b-c,e-h). This 
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revealed consistent patterns. If the position of Parmastega was resolved, it was 

always placed as the sister group to all other tetrapods; if Ventastega was resolved, it 

was placed immediately crownward to Parmastega. Ichthyostega was resolved 

crownward to Acanthostega in the Adams consensus of unweighted trees, but in the 

reweighted analyses Acanthostega was crownward to Ichthyostega. The Bayesian tree 

(Extended Data Fig. 7d) also recovered these positions for Parmastega and 

Ventastega, but failed to resolve Ichthyostega and Acanthostega. 

 

Discussion 

Parmastega is morphologically intermediate between the elpistostegids Tiktaalik, 

Elpistostege and Panderichthys on the one hand, and previously known Devonian 

tetrapods on the other, but the primitive and derived characters are not evenly 

distributed across the anatomy. The lower jaw and pectoral girdle are tetrapod-like, as 

are the external dermal bone pattern of the snout region, the absence of gular plates, 

and the relative size of the orbits, whereas elpistostegid-like characteristics persist in 

the palate and the dermal ornamentation of the cleithrum and anocleithrum. Although 

no appendage bones are known, the morphology of the pectoral girdle strongly 

suggests that Parmastega possessed limbs rather than paired fins. Particularly 

significant is the scapulocoracoid, which forms the proximal attachment for many 

forelimb muscles and undergoes substantial shape change from elpistostegids44,45 to 

tetrapods5,18,29,32,34: Parmastega conforms to the tetrapod pattern. The shape and 

construction of the lower jaw, and the absence of gular plates, suggest that gill 

ventilation and prey capture worked in the same way as in more crownward Devonian 

tetrapods. The reconfiguration of the palate and the loss of dermal ornament on the 

shoulder girdle evidently lagged behind these transformations. 

 Until now, one of the most puzzling aspects of Devonian tetrapod anatomy has 

been the specialised ear region of Ichthyostega, which differs greatly from those of 

other early tetrapods18,20. The braincase of Parmastega is morphologically 

intermediate between Ichthyostega on the one hand and Acanthostega and Ventastega 

on the other, providing a plausible hypothetical ancestor for both patterns (Extended 

Data Fig. 6a). However, these transformations cannot be mapped parsimoniously onto 

the phylogeny, indicating the presence of non-trivial homoplasy either in the 

braincases or in other parts of the skeleton (Extended Data Fig. 6b). 
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 The three-dimensional preservation and apparent absence of post-mortem 

transport makes the Parmastega fossils palaeobiologically informative. The 

environment of preservation, which was probably also the living environment of 

Parmastega, was a coastal lagoon with brackish water and a rich fish fauna including 

the placoderm Bothriolepis and various sarcopterygians46. The concentration of the 

tetrapod remains to a small area of the site (Extended Data Fig. 1) suggests that 

Parmastega may have been a schooling animal. The vertebrate-bearing bed, Bed 40 

(the “fish dolomite”), is composed of two consecutive tempestites; possibly a school 

of Parmastega was killed by the first storm event and their skeletons partly 

disarticulated by the second. Schooling behavior is also implied by the mass 

occurrence of Acanthostega on Stensiö Bjerg, East Greenland47.    

Raised orbits and a lack of lateral line canals on the skull table in Parmastega 

(Fig. 3a) suggests a surface-skimming position in the water, with emergent eyes, 

similar to crocodilians (Extended Data Fig. 8)47. The increase in orbit size across the 

fish-tetrapod transition has been linked to a shift from aquatic to aerial vision48; the 

relative orbit size of Parmastega falls well within the tetrapod range (Extended Data 

Fig. 5) and its eyes were thus probably adapted for use in air. Although all known 

Devonian tetrapods have dorsally positioned eyes, Parmastega shows the most 

extreme condition (Extended Data Fig. 4). The nostrils of Parmastega face ventrally, 

suggesting that the nose was not used for air-breathing (Extended Data Fig. 8). The 

dorsally placed spiracles may have taken on this function, as previously argued for 

Panderichthys49 and more crownward Devonian tetrapods20, 50. Like in Ventastega, 

Acanthostega31 and Ichthyostega18 the lower jaw does not match the upper jaw in 

curvature, either in lateral or ventral view (Extended Data Fig. 9).  

  Surprisingly, the Parmastega material contains no vertebrae, ribs, pelvic 

girdles or limb bones. The lack of evidence for post-mortem transport, the partially 

ossified nature of the scapulocoracoid even in the largest individuals, and the 

preservation of the delicate isolated coracoid ossifications (Fig. 2i-l,p), suggests that 

this absence is not a taphonomic artefact but reflects a very lightly ossified or even 

cartilaginous axial and appendicular skeleton. Ventastega may also have had a lightly 

ossified postcranial skeleton32. Acanthostega and Ichthyostega became fully ossified 

as adults2,18,19,21,27,29, but Acanthostega appears to have had a long juvenile stage with 

unossified endoskeleton47. Functionally, the poor ossification of Parmastega suggests 

little or no capacity for terrestrial locomotion. However, it contrasts strangely with the 
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cranial morphology, which suggests that the eyes were habitually held above the 

surface of the water and thus implies some kind of engagement with the terrestrial 

environment. Even more puzzling is the fact that this poorly ossified postcranial 

skeleton is apomorphic: elpistostegids are well ossified, as are the majority of 

tetrapodomorph fishes39,40.  

 Parmastega gives us the earliest detailed glimpse of a tetrapod: an aquatic, 

surface-skimming predator, just over a metre in length, living in a lagoon on a tropical 

coastal plain. It is phylogenetically least crownward of the non-fragmentary tetrapods, 

but is not necessarily representative of primitive conditions for the group. The slightly 

earlier Elginerpeton, which was also probably aquatic and even larger than 

Parmastega (Extended Data Fig. 4), had well ossified girdles and limb bones as well 

as a distinctive head shape with a narrow snout7,30,43. Moreover, the trackway record 

shows that tetrapods originated at least 20 million years before Parmastega35,36, and 

the very existence of the trackways – which implies weight-bearing limbs, even if the 

prints were made in water – points to these forms having well ossified postcranial 

skeletons. Together with the evidence for significant morphological homoplasy 

among Devonian tetrapods, this hints at a tangled and still elusive early history for 

limbed vertebrates.   
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Figure 1 | Parmastega aelidae: skull roof, cheek and palate. a-c, IG KSC 705/1, 

holotype of Parmastega aelidae; articulated ethmosphenoid with associated prefrontal 

in ventral (a), dorsal (b) and lateral (c) views. The 10 mm scale bar of this specimen 

applies to the whole figure except f-g. d-e, 705/2, skull table in dorsal (d) and ventral 

(e) views. f-g, 705/17, skull table and partial braincase in ventral view. g is a false 

colour image identifying the components of the specimen. h, 705/18, right frontal, 

dorsal view. i, 705/19, left postorbital, external view. j, 705/20, left jugal, external 

view. k, 705/25, left lacrimal, lateral (top) and dorsal (bottom) views. l, 705/26, right 

squamosal, external view. m, 705/5, right prefrontal, external view. n, 705/4, left 

postfrontal, lateral (top) and dorsal (bottom) views. o, 705/28, right maxilla in internal 
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(top), ventral (middle) and external (bottom) views. p, 705/29 (left dermopalatine), 

705/30 (ectopterygoid) and 705/31 (pterygoid) in ventral view. q, 705/32, left 

dermopalatine in lateral (top) and ventral (bottom) views. cho, choana; fr, frontal; 

m.ro, median rostrals; na, nasal; orb.mar, orbital margin; pa, parietal; pi, pineal 

foramen; pmx, premaxilla; pop.contact, preopercular contact; postorb.lat.line, 

postorbital lateral line; postorb.overlap, postorbital overlap; posttemp.fossa, 

posttemporal fossa; pp, postparietal; prf, prefrontal; psp, parasphenoid; qj.contact, 

quadratojugal contact; semi. canals, semicircular canals; socc, supraoccipital; spir.rec, 

spiracular recess; su, supratemporal; ta, tabular; te, tectal; vo, vomer. 
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Figure 2 | Parmastega aelidae: lower jaw and pectoral girdle. a, IG KSC 705/21, 

right adsymphysial plate in mesial (bottom) and dorsal (top) views. b, 705/22, right 

anterior coronoid in mesial (bottom) and dorsal (top) views. c, 705/33, right middle 

coronoid in mesial (bottom) and dorsal (top) views. d, 705/36, left posterior coronoid 

in mesial (bottom) and dorsal (top) views. e, 705/37, articulated left splenial and 

adsymphysial plate in ventrolateral (top) and mesial (bottom) views. f, 705/34, 

articulated left postsplenial, angular and surangular in lateral view. g, 705/76, left 

prearticular in mesial view. h, 705/67, right dentary in lateral (top), dorsal (middle) 

and mesial (bottom) views. i-k, 705/15, left cleithrum and partial scapulocoracoid in 
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mesial (i), anterior (j) and lateral (k) views. l, 705/95 (right cleithrum) and 705/98 

(anocleithrum) in lateral view. m, 705/98, right anocleithrum in lateral view. n-o, 

705/92 (right clavicle) and 705/89 (interclavicle) in anterior (n) and ventral (o) views. 

p, 705/102, left coracoid in lateral view. e-p are shown to the same scale. 
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Figure 3 | Parmastega aelidae: reconstructions. a, skull, lower jaw and pectoral 

girdle of Parmastega in right lateral view. b, skull in dorsal view. c, skull and pectoral 

girdle in anterior view. d, skull in ventral view. e, right lower jaw ramus in mesial 

view. adsym, adsymphysial plate; an, anocleithrum; ang, angular; ant.cor, anterior 

coronoid; art, articular; cho, choana; cla, clavicle; clei, cleithrum; cor, coracoid; de, 
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dentary; dpal, dermopalatine; ect, ectopterygoid; fr, frontal; gle, glenoid; ju, jugal; la, 

lacrimal; mid.cor, middle coronoid; m.ro, median rostrals; mx, maxilla; na, nasal; no, 

nostril; orb, orbit; ot.br, otoccipital braincase; pa, parietal; pi, pineal foramen; pmx, 

premaxilla; po, postorbital; pof, postfrontal; pospl, postsplenial; post.cor, posterior 

coronoid; pp, postparietal; prf, prefrontal; psp, parasphenoid; pter, pterygoid; qj, 

quadratojugal; scap, scapula; socc, supraoccipital; spl, splenial; sq, squamosal; su, 

supratemporal; suf, subtemporal fossa; sur, surangular; ta, tabular; te, tectal; vo, 

vomer. Vertical hatching indicates missing element with unknown outline, horizontal 

hatching damaged object with known outline. Scale of reconstruction determined by 

largest individual. a-d are shown to the same scale. 
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Methods 

 

Preparation and illustration of specimens 

The specimens were collected from the Sosnovskiy Geological Monument, right bank 

of the river Izhma opposite Sosnogorsk Town, Komi Republic, Russia, during a series 

of field seasons from 2002 to 2012. The bulk of the material was collected during the 

large-scale excavation in 2009-2012, when approximately 50 m2 of the bone-bearing 

“fish dolomite” bed was dug out and then broken into small blocks using hammers, 

chisels, angle grinder, drill and portable jackhammer. Blocks containing parts of the 

same bone fragments glued together. The bones were freed from the limestone matrix 

using dilute (7-10 %) acetic acid alternating with drying and covering by consolidants 

PVB (before 2010) and Paraloid® B-72 (after 2010). The reconstructions of the skull 

and lower jaw were assembled by hand on the basis of photographs of individual 

bones, taken at appropriate angles. The pectoral girdle reconstruction was produced 

by sticking together the right anocleithrum, cleithrum, clavicle and interclavicle of 

one individual, making a three-dimensional virtual model of the assembly using 

photogrammetry (Agisoft PhotoScan), and importing this model into 3-matic 

(Materialise) where it was duplicated, mirrored and assembled into a complete girdle. 

The drawings of the girdle in Fig. 4 were traced directly from lateral and anterior 

projections of the model. 

  

Phylogenetic analysis 

The phylogenetic position of Parmastega was evaluated with maximum parsimony 

and Bayesian inference analyses applied to a data matrix of 26 taxa and 113 

characters (Supplementary Files 1-3), based on a recent matrix published by Chen et 
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al.51 with the addition of four new characters (nos. 7, 27, 28, 29). Prior to all analyses, 

we explored the occurrence of possible “taxonomic equivalents”52 by subjecting the 

matrix to safe taxonomic reduction using the Claddis package53 in the R environment 

for statistical computing and graphics (https://cran.r-project.org). No taxon was 

identified as being suitable for safe deletion. 

 For all parsimony analyses, we used PAUP* version 4.0a (build 164)54 with 

the following search settings. The “collapse branch” option was enforced for branches 

possibly attaining a minimum length of zero. Tree searches employed a heuristic 

option with tree bisection-reconnection branch swapping algorithm, saving no more 

than a single tree of length greater than/equal to 1 step in each replicate, and using a 

maximum of 5000 random step-wise taxon addition replicates while holding a single 

tree in memory at each step. Following this initial round of tree searches, an 

additional branch-swapping round was conducted on all trees saved in memory, this 

time with the option of saving multiple trees in effect. This second round of tree 

searches was repeated 10 times. No shorter or additional trees were found at the end 

of this second round in any of the parsimony analyses. Three analyses were carried 

out under maximum parsimony, each with the settings specified above. 

 In the first analysis, all characters were treated as unordered and of equal unit 

weight. We obtained 23 shortest trees at 278 steps, with an ensemble consistency 

index (C.I.) of 0.5 (0.4908 excluding 5 parsimony-uninformative characters), an 

ensemble retention index (R.I.) of 0.6911, and an ensemble rescaled consistency 

index (R.I.) of 0.3456. A permutation-tail probability test55 using 1000 replicates 

showed that the length of the shortest trees differed significantly from random (p ~ 

0.001). The strict consensus (Fig. 5a) was poorly resolved. The Adams consensus 

(Fig. 5b) had greater resolution, placing Parmastega and Elginerpeton as the joint 
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(unresolved) sister groups to all other tetrapods. The agreement subtree (a pruned 

topology including only those taxa for which all most parsimonious trees agree upon 

mutual relationships) included 18 out of the 26 original taxa (Extended Data Fig. 7a; 

deleted: Acanthostega; Dendrerpeton; Densignathus; Elginerpeton; Greererpeton; 

Metaxygnathus; Ossinodus; Tantallognathus). Node support value was evaluated via 

bootstrapping56 and jackknifing57 in PAUP*, in each case using 50% character 

resampling, and 50,000 random resampling replicates with the fast step-wise addition. 

In both cases, very few nodes receive support, namely post-Panderichthys taxa, post-

elpistostegalian taxa, baphetids, and a clade of Eoherpeton plus Proterogyrinus. 

 In the second analysis, characters were re-weighted by the largest values of 

their rescaled consistency indexes from the initial analysis. PAUP* yielded a single 

tree (Fig. 5c) 112.3561 steps long, with C.I. = 0.6804 (0.6655 excluding 

uninformative characters), R.I. = 0.8297, and R.C. = 0.5645. This tree was 3 steps 

longer than the trees from the unweighted analysis and did not represent a 

significantly better fit for the data, in terms of tree length, than the unweighted trees, 

based upon Templeton, Kishino-Hasegawa, and Winning-sites tests in PAUP* The 

weighted analysis confirmed the status of Parmastega as the most basal tetrapod. 

 In the third analysis, we used implied weighting58, experimenting with 

different integer values of Goloboff’s constant of concavity K. We ran analyses with 1 

£ K £ 10 (e.g. ref. 59). For each K value, we saved all trees generated at the end of the 

analysis. The separate tree files obtained from all K-weighted analyses were stored in 

PAUP* after filtering out duplicated tree topologies. This process resulted in 5 K-

weighted trees, which were summarised with a strict consensus (Extended Data Fig. 

7b), an agreement subtree (Extended Data Fig. 7c), and an Adams consensus 
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(Extended Data Fig. 7d). The agreement subtree included 22 taxa (deleted: 

Densignathus; Elginerpeton; Metaxygnathus; Ossinodus). 

 For the Bayesian inference analysis, we employed MrBayes v. 3.2.6 (ref 60), 

with the following settings: variable coding; gamma-distributed rate model; 107 

generations and four chains; discarding the first 25% of sampled trees. Convergence 

diagnostic was evaluated through inspection of the Potential Scale Reduction Factor 

values61 output by MrBayes. These values approached or were identical to 1, 

indicating successfully convergent runs (Supplementary File 4). Credibility values for 

nodes in the Bayesian results (Fig. 5c) were moderate to strong for most nodes.  
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Data Availability  

In total, 132 specimens comprising 183 skeletal elements have been collected during 

the entire period of excavations (2002-2012). 106 specimens, all of them figured in 

Supplementary Table 1, have been deposited in the collection of the Institute of 

Geology, Komi Science Centre, Ural Branch of the Russian Academy of Sciences, 

Syktyvkar, Russia under the collection number IG KSC 705/ and are available for 

examination. Other specimens have been reserved for sharing with other museums. 

The LSID for Parmastega is urn:lsid:zoobank.org:act:76B5BB03-42FE-4F46-A284-

F95E973CEE96. 
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Extended Data Figure 1 | The distribution of Parmastega at the Sosnogorsk fossil 

site. a-b, Maps of increasing resolution showing the location of Sosnogorsk within 

northwest Russia. The box around Ukhta and Sosnogorsk in a indicates the region 

shown in b In b, the brown belt extending from north to south indicates the outcrop of 

Famennian (D3fm) deposits in the region, and the yellow arrow points to the 

Sosnogorsk fossil site (Sosnovskiy Geological Monument). c, Stratigraphic column 
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through the Sosnogorsk Formation and part of the overlying marine Izhma Formation. 

Note the possible position of the Frasnian-Famennian boundary (D3f / D3fm) in the 

lower part of the Sosnogorsk Formation. The vertebrate-bearing part of the formation 

is shown in detail on the right, with the tetrapod-bearing level indicated with a red 

vertical bar. d, general view of outcrop #20 (Sosnovskiy Geological Monument) from 

the opposite bank of the Izhma River. 1 - limestone, 2 - dolomite, 3 - clay, 4 - nodular 

limestone, 5 - scree, 6 - landslide. D3sn - Sosnogorsk Formation, D3iž - Izhma 

Formation. Distance A'-B' indicates the area of main excavation in 2010-2012. e, 

main excavation. Distance A-B indicates the area where all tetrapod bones were found 

during the excavation in 2012. The photo was taken on 2 August 2012. f, sketch-map 

of the main excavation, 2012, showing the distribution of tetrapod bones within the 

bed. The cluster numbers are indicated in orange. Background maps of a and b taken 

from https://yandex.ru/maps, geological features of b from open-access State 

Geological Map at  https://vsegei.ru/. 
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Extended Data Figure 2 | Frontal bones of Parmastega. The figure shows all the 

complete and near-complete frontals of Parmastega (8 out of 9 known frontals), to 

scale, oriented with anterior at the top and aligned on the centre of radiation 

(horizontal line). Right frontals have been reversed so that all bones have the 

appearance of left frontals. From left to right the specimens are IG KSC 705/3 

(reversed), 705/40, 705/44 (reversed), 705/43, 705/45, 705/18 (reversed), 705/42 and 

705/41. Scale bar, 10mm. 
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Extended Data Figure 3 | Bone associations. a, b, diagrammatic images showing, in 

orange, associated bones of two individual skulls. a, the holotype, IG KSC 705/1. b, 

the largest individual, IG KSC 705/2 - 705/14 and 705/99. Note that in the lateral 

view of b, the preserved frontal and nasal are shown even though they are in fact on 

the other side of the skull. c, diagrammatic representation of the number of specimens 

of different bones in the sample.  
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Extended Data Figure 4 | Size and shape of Devonian tetrapods. Silhouette 

reconstructions, drawn to the same scale, of the heads of the known reconstructable 

Devonian tetrapods. The lower jaw of Elginerpeton, the largest known Devonian 

tetrapod (for which the skull cannot be reconstructed), is also included. All 

reconstructions except Acanthostega are assembled from more than one specimen; 

specimen numbers indicate the specimen used to determine the scale. The right-hand 
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column shows the largest known individuals. The left-hand column shows the 

smallest individuals of Parmastega (all from Sosnogorsk) and Ichthyostega (based on 

the entire East Greenland collection, reviewed in ref. 64). Note similarity of size range 

despite very different nature of samples. Ventastega and Acanthostega show narrow 

size ranges, which are not illustrated. Reconstructions modified from the following 

sources: Ichthyostega, ref 19; Acanthostega, ref 31; Ventastega, ref 32; Elginerpeton, 

ref. 63.  

  



	 36	

 

 

Extended Data Figure 5 | relative orbit size. Plot of orbit length vs. skull length for 

a range of tetrapodomorph fishes, elpistostegids, Devonian tetrapods and post-

Devonian tetrapods. Data taken from ref. 47, except Parmastega, which is based on 

the largest known individual (see Extended Data Fig. 3). Post-Devonian tetrapods 

from ref. 47 not included in our phylogenetic analysis are not shown. Ac, 

Acanthostega; Ba b, Baphetes bohemicus; Ba k, B. kirkbyi; Ba l, B. lintonensis; Bal, 

Balanerpeton; Be, Beelarongia; Br, Bruehnopteron; Cab, Cabonnichthys; Can, 

Canowindra; Cl, Cladarosymblema; Cra, Crassigyrinus; Den, Dendrerpeton; Ed, 

Edenopteron; Elp, Elpistostege; Eoh, Eoherpeton; Eu, Eusthenopteron; Gog, 
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Gogonasus; Goo, Gooloogongia; Gre, Greererpeton; Gy, Gyroptychius; He, 

Heddleichthys; Ich, Ichthyostega; Ko, Koharalepis; Man, Mandageria; Mar, 

Marsdenichthys; Meg, Megalocephalus; Oss, Ossinodus; Ost, Osteolepis; Pal, 

Palatinichthys; Pan, Panderichthys; Par, Parmastega; Ped, Pederpes; Pro, 

Proterogyrinus; Scr, Screbinodus; Sil, Silvanerpeton; Tik, Tiktaalik; Tin, Tinirau; 

Ven, Ventastega; Wha, Whatcheeria. 
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Extended Data Figure 6 | Otoccipital morphologies of Devonian tetrapods. a, 

Comparative diagram of the otoccipial regions of Parmastega, Ichthyostega (new 

reconstruction, based on data from ref. 18, 20), Ventastega (modified from ref. 32) 

and Acanthostega (modified from ref. 20, semicircular canals modified from ref. 50) 

in ventral view. Note that the basiocipital-exoccipital complex is only preserved in 

Ichthyostega and Acanthostega; in these genera the inner ear is shown only on one 

side. Drawings are scaled to the same length from pineal region to posterior margin of 



	 39	

otic capsule. The inner ear is represented by the grooves for the anterior and posterior 

oblique semicircular canals, except in Ichthyostega where it is represented by the 

sacculus (modified from ref. 20). The braincases are arranged by morphological 

similarity, so that a minimum number of transformations are required along each 

branch. b, Consensus phylogeny from the analyses presented in this paper. The 

phylogenetic topology does not match the similarity dendrogram.  
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Extended Data Figure 7 | Phylogenetic analysis. a, unweighted strict consensus 

tree. b, unweighted Adams consensus tree. c, single tree resulting from reweighting 

characters by Rescaled Consistency Index. d, Bayesian tree, with credibility values at 

nodes. e, Maximum agreement subtree of unweighted parsimony analysis. f, Strict 

consensus of K-weighted trees. g, Maximum agreement subtree of K-weighted 

parsimony analysis. h, Adams consensus of all trees from all K-weighted analyses.  
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Extended Data Figure 8 | Parmastega and caiman. Comparison in left lateral view 

of spectacled caiman (Caiman crocodilus) on the left and Parmastega on the right, 

drawn to the same size, showing inferred similar cruising posture at the surface. Note 

the different positions of the nostrils. The caiman image is based on a CT scan in the 

Digimorph Archive (http://www.digimorph.org/specimens/Caiman_crocodilus/). 
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Extended Data Figure 9 | fit of dentary against upper jaw. a, dentary 

of Parmastega (IG KSC 705-67) fitted against palatal reconstruction to show the 

difference in curvature between the spade-shaped snout and the relatively straight 

dentary. b, lateral view of skull reconstruction of Parmastega with closed mouth, 

showing mismatch in curvature between upper and lower jaws. c, composite 

reconstruction of Ventastega, superimposing lower jaw rami (from ref. 30) on skull 

reconstruction (from ref. 32), showing shape relationship similar to a. Not to scale.  

 


