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Abstract

We introduce manifold-based basis functions for isogeometric analysis of surfaces with arbitrary smoothness, pre-

scribed C0 continuous creases and boundaries. The utility of the manifold-based surface construction techniques in

isogeometric analysis was demonstrated in Majeed and Cirak (CMAME, 2017). The respective basis functions are

derived by combining differential-geometric manifold techniques with conformal parametrisations and the partition

of unity method. The connectivity of a given unstructured quadrilateral control mesh in R3 is used to define a set

of overlapping charts. Each vertex with its attached elements is assigned a corresponding conformally parametrised

planar chart domain in R2 so that a quadrilateral element is present on four different charts. On the collection of

unconnected chart domains, the partition of unity method is used for approximation. The transition functions required

for navigating between the chart domains are composed out of conformal maps. The necessary smooth partition of

unity, or blending, functions for the charts are assembled from tensor-product B-spline pieces and require in contrast

to earlier constructions no normalisation. Creases are introduced across user tagged edges of the control mesh. Planar

chart domains that include creased edges or are adjacent to the domain boundary require special local polynomial

approximants in the partition of unity method. Three different types of chart domain geometries are necessary to con-

sider boundaries and arbitrary number and arrangement of creases. The new chart domain geometries are chosen so

that it becomes trivial to establish the local polynomial approximants that are always C0 continuous across the tagged

edges. The derived non-rational manifold-based basis functions correspond to the vertices of the mesh and may have

an arbitrary number of creases and prescribed smoothness. This makes them particularly well suited for isogeometric

analysis of Kirchhoff-Love thin shells with kinks, which require C1 continuous basis functions that are C0 continuous

across the kinks. We demonstrate the convergence and utility of the new basis functions with linear and nonlinear

beam, plate and shell examples.
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1. Introduction

Smooth approximation schemes for unstructured meshes are crucial for isogeometric design and analysis of parts

with arbitrary topology. Until recently isogeometric analysis was dominated by NURBS basis functions, which is

the prevailing technology in present CAD systems. To represent the bounding surface of parts with arbitrary topol-

ogy CAD systems resort to trimmed NURBS. Trimming involves the computation of the intersection between spline

surfaces with other surfaces or curves. The respective nonlinear root-finding problems look deceptively simple but

are extremely hard to robustly solve and lead to non-watertight geometries [1–3]. In the analysis context, the non-

watertight geometries obtained from trimming pose unique challenges. Without turning to trimming, unstructured

meshes with extraordinary vertices, i.e. vertices with different than four attached patches inside the domain, are re-

quired to represent parts with arbitrary topology. In computer-aided design numerous techniques have been developed

to deal with extraordinary vertices, including geometrically Gk and parametrically Ck continuous constructions and

subdivision surfaces. The application and further development of these techniques is currently a very active area of

research in isogeometric analysis, see e.g. [4–15]. Unfortunately, none of the techniques from computer-aided de-

sign seems to give optimal finite element convergence rates without further modifications, especially when applied to

Kirchhoff-Love thin shells with arbitrary geometry. Hence, the search for easy to implement and optimally convergent

schemes is still open. In a complementary line of research, there has been progress in isogeometric analysis of shells

based on trimmed surfaces and weak enforcement of mechanical continuity conditions across patch boundaries, see

e.g. [16, 17].

Manifold techniques for mesh-based construction of Ck continuous surfaces were first introduced in Grimm and

Hughes [18]. In contrast to most other smooth surface construction techniques, which essentially rely on glueing

of surface patches along their edges, in manifold techniques a surface is created by blending of overlapping surface

patches. The surface patches are first defined over unconnected planar chart domains in R2 and subsequently mapped

to R3. On the collection of the unconnected planar chart domains, the partition of unity method [19] is used to

construct the smooth surface patches. To that end, on each planar chart domain a local polynomial approximant

and a partition of unity, or blending, function is needed. In addition, transition functions are required in order to be

able to navigate between the different chart domains. In manifold techniques the planar chart domains, the transition

functions, the local polynomial approximants and the blending functions can all be relatively freely chosen, which

makes them extremely versatile. Based on the seminal work of Grimm and Hughes a number of complementary

mesh-based manifold approaches have been proposed in geometric modelling [18, 20–23]. Most of these approaches

differ in the choice of the planar chart domains. For instance, in [18] each vertex, edge and face of the mesh have

a corresponding planar chart domain with a suitably chosen geometry. In [21] and [22] only the vertices have a

corresponding planar chart domain in the form of a conformally mapped star-shaped polygonal disk or a circular disk,

respectively. In [20] the chart domains are chosen similar to the characteristic map in subdivision surfaces [24]. Each

of the mentioned choices for the chart domains implies a corresponding choice for the transition functions. Following
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the construction proposed in Ying and Zorin [21], Majeed and Cirak [25] introduced a new set of manifold-based

basis functions which can yield high convergence rates in finite element analysis. From a finite element viewpoint,

the manifold-based basis functions resemble spline basis functions in the sense that each basis function has a local

support and has one corresponding vertex.

In this paper, we derive new manifold-based basis functions for the isogeometric design and analysis of smooth

surfaces with boundaries and with C0 continuous sharp features, like creases and corners, by extending [25]. The

crease edges are tagged as such on the control mesh by the user and during the finite element analysis different

mechanical continuity conditions can be imposed across the crease edges and along the boundary edges, see Figure 1.

In mesh-based construction of surfaces using manifold techniques creases have previously been considered in Della

Vecchia and Jüttler [26] and boundaries in Tosun and Zorin [27]. The essential idea can be reduced to the choice

of special local polynomials in the partition of unity approximation. That is, the local polynomials on each chart

domain have to consist out of several polynomial pieces that are C0 continuously connected across the crease edges.

As in [25], in our present construction each vertex and its attached elements have a corresponding star-shaped planar

chart domain consisting of images of conformally mapped unit squares placed around a centre vertex. There is one

chart domain per vertex and each quadrilateral element is present on four different chart domains. The choice of the

special C0 continuous local polynomials can be simplified by slightly modifying the geometry of the chart domains.

The new chart domains are chosen such that they are rotationally symmetric with respect to the arrangement of

crease edges. Or expressed differently, the crease edges must partition the domain into equiangular sectors. The C0

continuously connected polynomial pieces can subsequently be obtained by mapping a tensor-product basis, like the

Lagrange or Bernstein basis, into each of the sectors of the chart domain. The new chart domains are parameterised

with a quasi-conformal map so that each element on it can have a different shape depending on the arrangement of

the crease edges. In contrast to the conformal map used in [25] the proposed quasi-conformal map is not angle-

preserving but still provides easily computable smooth transition functions. The proposed new construction leads to

three different types of chart domains. One of them is specifically designed to deal with crease arrangements which

lead to creased sectors with concave corners. As in [25] we assemble the smooth partition of unity blending functions

from tensor-product B-spline segments defined over a unit square. However, similar to [27], the knot-interval and the

B-spline coefficients are chosen such that the assembled blending functions do not require normalisation. Hence, the

new manifold-based basis functions derived in this paper are non-rational.

The outline of this paper is as follows. In Section 2 the manifold-based basis functions introduced in [25] are

briefly reviewed. The treatment of sharp features is discussed in Section 3. Depending on the arrangement of crease

edges we distinguish between rotationally symmetric and asymmetric chart domains. In addition, the case of crease

arrangements leading to concave sectors on the chart domain is discussed. Each of the three cases requires a different

quasi-conformal map for parametrisation. Section 4 introduces the finite element analysis of thin shells with normal

control along boundaries and across crease edges. In Section 5 the new manifold-based basis functions are applied

to several Bernoulli beam and linear and nonlinear Kirchhoff-Love shell problems. The numerical convergence of L2
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(a) Control mesh with tags (b) Manifold surface (c) Deformed manifold surface

Figure 1: Isogeometric analysis of a genus 2 surface with creased C0 continuous edges and sharp corners. (a) The control mesh with all the edges

to be creased marked in red. (b) The manifold surface with the faithfully reproduced creases. (c) The deformed surface obtained with (nonlinear)

thin-shell finite element computation. In the computation the creases are modelled as rigid so that the angle across two adjacent surface pieces is

maintained during the deformation.

and energy norm errors with decreasing element sizes is demonstrated.

2. Review of manifold-based basis functions

In the following we briefly review the construction of univariate and bivariate manifold-based basis functions. The

discussion is focused on their application in finite elements, so that the underlying manifold concepts from differential

geometry and the partition of unity interpolation are only mentioned in passing. For a more comprehensive discussion

on manifold-based basis functions and surface construction in geometry we refer to [18, 21, 25].

2.1. Univariate basis functions

It is instructive to first review the derivation of the univariate manifold-based basis functions. We consider

the dash-dotted control polygon in Figure 2 representing a part of a finite element mesh consisting of vertices

xI ∈ R3 and elements between consecutive vertices. Our aim is to derive the basis functions for a representative

element [xI , xI+1] ∈ R3, highlighted in Figure 2. As in conventional finite elements we define a reference ele-

ment � B [0, 1] ∈ R that will serve as an integration domain for evaluating the finite element integrals. In the

manifold-based approach the basis functions are obtained by smoothly blending local polynomials defined over sev-

eral overlapping charts, or patches as they were called in [25]1. In the following two chart domains Ω̂1 B [−1, 1] ∈ R

and Ω̂2 B [−1, 1] ∈ R are introduced for the element [xI , xI+1]. Ω̂1 is associated with the vertex xI and its 1-

neighbourhood and Ω̂2 is associated with the vertex xI+1 and its 1-neighbourhood. The 1-neighbourhood of a vertex

is defined as the union of elements that contain the vertex. Hence, the basis functions in the element [xI , xI+1] will be

obtained by blending local polynomials defined over Ω̂1 and Ω̂2.

1We refrain in this paper from using the term patches because in computer-aided design literature patches denote what are the elements in

computational mechanics.
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Figure 2: Univariate manifold construction over a reference element � and the approximation of a given control mesh (dash-dotted). The reference

element � maps into the two elements (solid lines) in the two chart domains Ω̂1 and Ω̂2. The local polynomial basis on Ω̂1 is a quadratic and on Ω̂2

it is a piecewise linear Lagrange basis. The blending functions w1(ξ1) = w1(Ψ1(η)) and w2(ξ2) = w2(Ψ2(η)) sum up to one for η ∈ �. The same

vertex in different domains has the same colour.

As shown in Figure 2, the reference element � maps to elements in both chart domains Ω̂1 and Ω̂2. The respective

maps are defined as

Ψ1 : η ∈ � 7→ ξ1 ∈ [0, 1] ∈ Ω̂1 ,

Ψ2 : η ∈ � 7→ ξ2 ∈ [−1, 0] ∈ Ω̂2 .
(1)

In this specific univariate construction both maps are simple translations. The two maps imply the transition map

between the two chart domains given by

Ψ2 ◦ Ψ
−1
1 : ξ1 ∈ Ω̂1 7→ ξ2 ∈ Ω̂2 . (2)

Subsequently, we choose on each chart domain a polynomial approximant of the form

f j(ξ j) = pT
j (ξ j)α j with j ∈ {1, 2} , (3)

where the vectors pj(ξ j) contain a local polynomial basis, like the power, Lagrange or Bernstein basis, and the vec-

tors α j contain their coefficients. In the present example a Lagrange basis is chosen, see Figure 2. The local basis on

the chart Ω̂1 is quadratic and on the chart Ω̂2 it is piecewise linear. In addition to the polynomial approximant f j(ξ j),

on each chart a smooth blending, or weight function w j(ξ j) is chosen. The two non-zero blending functions over the

reference element must satisfy the partition of unity property, i.e.,
2∑

j=1

w j(ξ j) = 1 ∀η ∈ � with ξ1 = Ψ1(η) , ξ2 = Ψ2(η) . (4)
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Figure 3: Construction of smooth blending functions w1(ξ1) and w2(ξ2) as the linear combination of cubic B-splines defined over a parameter space

with knot-distance 1/4. The coefficients for w̃1(η) and w̃ j(η) are indicated above the B-splines.

The blending functions can be conveniently combined from suitably defined B-spline basis functions. In Figure 3

the construction of C2-continuous blending functions from cubic B-splines is illustrated. The uniform knot interval

length of the B-splines is 1/4. The blending functions are defined as the linear combinations

w̃1(η) = B1(η) + B2(η) + B3(η) +
B4(η)

2
,

w̃2(η) =
B4(η)

2
+ B5(η) + B6(η) + B7(η) ,

(5)

and yield after mapping the blending functions

w j(ξ j) = w̃ j(Ψ−1
j (ξ j)) . (6)

Evidently, both functions satisfy the partition-of-unity property (4) given that a complete B-spline basis sums up to

one. It is worth emphasising that the blending functions proposed here are polynomial in contrast to the rational

ones in [21, 25], see also Appendix B. Moreover, the tensor products of the new univariate blending functions yield

the corresponding multivariate blending functions. Note different from the chosen knot interval of 1/4, as proposed

in [27], a knot interval of 1/3 yields also blending functions which sum up to one without normalisation.

Finally, the approximant over the reference element � is obtained by blending the approximants over the two

charts

f (η) =

2∑
j=1

w j(ξ j)pT
j (ξ j)α j with ξ j = Ψ j(η) . (7)

Due to the choice of the Lagrange basis for pj(ξ j) the coefficients α j can be interpreted as vertex coefficients. The

coefficients α j of each chart are formally obtained with

α j = P j f , (8)
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where f is the array of coefficients of all control polygon vertices and P j is a gather matrix, filled with ones and zeros.

This introduced in (7) yields the array of manifold-based basis functions

f (η) =

2∑
j=1

(
w j(ξ j)pT

j (ξ j)P j

)
f = NT(η) f with ξ j = Ψ j(η) , (9)

where N(η) is the array of non-zero basis functions over the considered element. The number of non-zero basis

functions in N(η) depends on the cardinality of the set of vertices in the two chart domains Ω̂1 and Ω̂2, and the specific

local approximants on them.

To investigate the smoothness of the basis functions N(η) it is necessary to consider their derivatives. According

to definition (9), their smoothness depends on the blending functions w j(ξ j), the local basis pj(ξ j) and the maps

Ψ j(η). To obtain Ck-continuous basis functions each of these functions has to be k-times differentiable over each chart

domain; and, in addition, the blending functions w j(ξ j) and their up to k-th derivatives must vanish at the chart domain

boundaries, i.e.,

dlw j(−1)
dξ j

=
dlw j(1)

dξ j
= 0 ∀ l ≤ k . (10)

Moreover, the differentiability of the mappings Ψ1(η) and Ψ2(η) requires that they satisfy at the centre of the chart

domain

dlΨ1(0)
dηl =

dlΨ2(1)
dηl ∀ l ≤ k . (11)

The smoothness of the basis functions N(η) can be pointwise reduced by selecting a suitable local polynomial

basis pj(ξ j), as in Figure 2 with piecewise linear basis on chart Ω̂2. The resulting basis functions N(η) and their

first derivatives are plotted in Figure 4. The smoothness of the basis is reduced to C0 at the vertex xI+1. This has

also an effect on the number of non-zero basis functions in an element. For instance, in the two elements [xI , xI+1]

and [xI+1, xI+2] with the linear piecewise C0 continuous local basis pj(ξ j) there are three non-zero basis functions. In

elements with a quadratic local basis on each chart there are four non-zero basis functions. Finally, with the generated

manifold-based basis functions points on the reference element η ∈ � are mapped onto the manifold according to

x(η) =
∑

I

NI(η)xI . (12)

2.2. Bivariate basis functions

The bivariate manifold-based basis functions provide smooth approximants even on unstructured surface meshes

with extraordinary vertices. We consider the construction of the manifold-based basis functions for a representative

element in the quadrilateral finite element mesh shown in Figure 5. The reference element is now defined as the unit

square � := [0, 1] × [0, 1] ∈ R2. Similar to the univariate case each of the four vertices of the considered element and

their 1-neighbourhoods have an associated chart domain Ω̂ j ∈ R2 with j ∈ {1, 2, 3, 4}. The number of elements in a
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(a) Basis functions (b) First derivatives

Figure 4: Univariate basis functions and their derivatives over four elements. Five basis functions (solid) are non-zero over the two elements of the

centre chart.

chart Ω̂ j depends on the number of elements v j connected to the respective vertex, which is called the valence of the

vertex. In quadrilateral meshes, the interior vertices with v j , 4 are the extraordinary vertices. The basis functions

will be obtained by smoothly blending local polynomials defined over each of the four overlapping charts Ω̂ j.

As shown in Figure 6, the reference element � maps to elements in the four chart domains Ω̂ j according to

Ψ I
j : η = (η1, η2) ∈ � 7→ ξ = (ξ1

j , ξ
2
j ) ∈ Ω̂ j . (13)

The construction of these maps requires special care and will be detailed further below. The bivariate approximant

over the reference element � is obtained by blending the approximants over the four charts

f (η) =

4∑
j=1

w j(ξ j) f j(ξ j) =

4∑
j=1

w j(ξ j)pT
j (ξ j)α j with ξ j = Ψ I

j(η) , (14)

where w j(ξ j) and pj(ξ j) are the blending function and the vector of local basis functions on the chart domain Ω̂ j,

respectively. As mentioned in Section 2.1, the blending functions w j(ξ j) are obtained by taking the tensor-product

of the univariate blending functions (5). Next, the coefficients α j are to be expressed in dependence of the vertex

coefficients collected in the array f . The number of unique vertices in the union of the four charts ∪4
j=1Ω̂ j is not fixed

and depends on the valences v j of the four vertices of the element. Hence, a least-squares projection is applied to

express (14) in dependence of the vertex coefficients

f (η) =

4∑
j=1

(
w j(ξ j)pT

j (ξ j)A j P j

)
f , (15)

where we used α j = A j P j f on each chart Ω̂ j. Here, P j is the gather matrix and A j the least-squares projection matrix.

It is evident that the number of polynomial coefficients in α j must not be greater than the number of vertices in the

chart domain Ω̂ j. It is worth mentioning that the projection matrix A j depends only on the valence v j of the vertex

and the chosen local approximant pj so that it can be precomputed and tabulated. Finally, the array of basis functions

are defined with

NT(η) =

4∑
j=1

w j(ξ j)pT
j (ξ j)A j P j . (16)
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Figure 5: An unstructured mesh with extraordinary vertices of valence v ∈ {3, 5}. The shaded element is overlapped by four charts and the union

of the four charts have 16 unique vertices in total. The reference element and the chart domains corresponding to the shaded element are shown in

Figure 6.

Figure 6: The reference element � (centre) and its four overlapping chart domains Ω̂ j with j ∈ {1, 2, 3, 4}. The reference element � is mapped

with Ψ I
j to the blue shaded faces in the four charts Ω̂ j. The variables n j denote the face number of the shaded face and v j the valence of the centre

vertex. Notice that the parameter lines in the charts (with η1 = const. or η2 = const.) are always orthogonal to the spoke edges which guarantees

that the derivatives of the maps Ψ I
j are continuous over the entire chart domain.
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Figure 7: The map from the reference element to a chart domain corresponding to a vertex with valence v j = 3 as denoted Ψ I
4 in Figure 6. The

values j = 4, v j = 3, n j = 3 are substituted into (20) and (21) to obtain the expressions for Λt r and ΛI
qr.

As in the univariate case, the smoothness of the basis functions N(η) depends on the blending functions w j(ξ j), the

local basis pj(ξ j) and the mappings Ψ I
j(η). In the presented construction conformal maps are critical for the smooth

parametrisation of the chart domains and the composition of the blending functions w j(ξ j). Specifically, the map Ψ I
j

is composed of several conformal maps. To write conformal maps more succinctly, the coordinates η = (η1, η2) of

points in the reference element � are expressed as a complex number

z = η1 + iη2 = |z|(cos φ + i sin φ) = |z|eiφ with |z| =
√

(η1)2 + (η2)2 and φ = arctan(η2/η1) , (17)

where |z| is the radius and φ the angle in the complex plane. In the complex plane the coordinates of the four corners

of the reference element are given by[
z1 z2 z3 z4

]T
=

[
0 + 0i 1 + 0i 1 + 1i 0 + 1i

]T
. (18)

As illustrated in Figure 7, the map Ψ I
j : η ∈ � 7→ ξ j ∈ Ω̂ j is composed of two maps, i.e.,

Ψ I
j = ΛI

qr ◦ Λt r . (19)

The auxiliary linear map Λt r is only responsible for translating and rotating the reference element and is given by

Λt r(z; j) = (z − z j)e−iπ( j−1)/2 , (20)

where (z − z j) is a translation and e−iπ( j−1)/2 a (rigid body) rotation. The quasi-conformal map ΛI
qr maps the reference

element into a wedge-shaped domain and is chosen as

ΛI
qr(z; v j, n j) =

|z|β

|z|4/v j
z4/v j ei2π(n j−1)/v j = |z|βeiφ4/v j ei2π(n j−1)/v j , (21)

where β is a free parameter, v j denotes the valence of the centre vertex and n j is the number of the sector onto which

the reference element is mapped. According to the first expression in (21), the map ΛI
qr is composed of a standard

conformal map z4/v j , a scaling of the radius with |z|β−4/v j and a rotation ei2π(n j−1)/v j . The parameter β can be chosen

relatively freely [21]. For instance, when β = 4/v j the scaling term drops and the map ΛI
qr is composed of a conformal

map and a rotation as in [25]. The second expression in (21) shows that the radius |z| will remain constant when β = 1.
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(a) Type 1 crease (b) Type 2 crease (c) Type 3 crease

Figure 8: Genus 2 surface with creased edges and sharp corners. The creased edges are marked in red. Each subfigure indicates the type of crease

treatment to be used around the marked vertices.

Hence, in this paper we choose β = 1 to obtain a more uniform mappingΨ I
j with smaller entries in its Jacobian matrix.

As it will become clear, the choice β = 1 also simplifies the parametrisation of the asymmetric chart domains and

chart domains with concave corners in Sections 3.2 and 3.3. See Appendix A for a review on conformal maps and a

discussion on the choice of β.

With the mapping Ψ I
j at hand, we can now evaluate the manifold-based basis functions defined in (16). For

instance, for a given integration point η in the reference element, first its image ξ j = Ψ I
j(η) in each of the four

overlapping charts is found and after that the blending functions w j(ξ j) and local polynomials pj(ξ j) are evaluated.

3. Creased bivariate manifold-based basis functions

We introduce domain boundaries and C0 continuous creases by modifying the local polynomials p(ξ j), and, as nec-

essary, the chart domains Ω̂ j. Creases are introduced along the edges of the control mesh prescribed by the user. The

local polynomials p(ξ j) are chosen to be C0 continuous across the creases. The new chart domains require new maps,

i.e. Ψ II
j : η ∈ � 7→ ξ j ∈ Ω̂ j, from the reference element to the chart domains. In turn, the blending functions w j(ξ j)

are combined from tensor-product B-splines using the new maps Ψ II
j . The remaining steps in manifold-based basis

construction are identical to the non-creased case.

Depending on the number and arrangement of creases meeting at a vertex three different crease types are possible.

As discussed in the following, each of them requires a different treatment. In Figure 8 the three different crease types

are illustrated with the help of a sample geometry.

3.1. Crease Type 1: Rotationally symmetric chart domains

Type 1 creases have, as shown in Figure 9, a rotationally symmetric chart domain with respect to the arrangement

of the creased edges. The centre vertex of a chart Ω̂ j can have k j ≥ 2 attached edges tagged as crease2. The k j crease

edges split the chart domain into k j equiangular sectors, and the number of elements in each of the sectors must be the

same.

2In this section, k is used for the number of creased spoke edges, which is different from its meaning in Gk and Ck continuity.
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(a) v j = 6 and k j = 2 (b) v j = 6 and k j = 3

Figure 9: Two examples of Type 1 creases. The k j creased edges tagged by the user (marked in red) divide the chart domain into k j equiangular

sectors shaded in different colours. Notice the rotational symmetry of the crease sectors.

To introduce the basic idea in defining a suitable local approximant f j(ξ j), at first the case with two creased

edges, k j = 2 , as depicted in Figure 9a is considered. The crease splits the chart domain into the two sectors s j = 1

and s j = 2 along the ξ1
j coordinate axis. The local approximant is chosen as the piecewise continuous function

f j(ξ j) =


f s j=1

j (ξ j) if ξ2
j ≥ 0

f s j=2
j (ξ j) if ξ2

j < 0
with f s j=1

j (ξ1
j , ξ

2
j = 0) = f s j=2

j (ξ1
j , ξ

2
j = 0) . (22)

As in the non-creased case both approximants are given by

f s j

j (ξ j) = ps j

j (ξ j) · α
s j

j . (23)

The coefficients αs j=1
j and αs j=2

j must be matched so that f j(ξ j) is piecewise continuous. Especially for a tensor-

product Lagrange basis ps j

j (ξ j), it is straightforward to determine a new set of coefficients α j from the coefficients αs j=1
j

and αs j=2
j which ensure piecewise continuity. The two Lagrange approximants must share the same coefficients along

the common crease edge.

In chart domains with three or more creases, k j ≥ 3, the bases ps j

j (ξ j) are obtained by mapping a tensor-product

Lagrange basis b(θ) to each sector. The respective local approximants f s j

j (ξ j) in two adjacent sectors meet C0 contin-

uously because they share the same coefficients along the common crease edge. The Lagrange basis b(θ) is mapped

onto a sector s j using the quasi-conformal map (21) introduced earlier

ps j

j (ξ j) = b(θ) with θ =
(
ΛI

qr

)−1
(ξ j; k j, s j) . (24)

This mapping is best understood in conjunction with Figure 9b. Each of the three sectors in different colours represent

the image of a square mapped with ΛI
qr(θ; k j, s j) : θ ∈ � 7→ ξ j ∈ Ω̂ j with s ∈ {1, 2, 3}. Obviously, the polynomial
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degree of b(θ) must be chosen such that the degrees of freedom is less than or equal to the number of vertices in each

sector. More vertices have to be added, e.g. by refining the elements in each chart domain, if a higher degree basis

is requested. Although we chose in our implementation a Lagrange basis for b(θ) it is possible to use other boundary

interpolating tensor-product basis, like the Bernstein basis.

3.2. Crease Type 2: Asymmetric chart domains

Type 2 creases have a rotationally asymmetric chart domain with respect to the arrangement of crease edges.

Again, the centre vertex of a chart Ω̂ j can have k j ≥ 2 attached edges tagged as crease. However, the k j crease edges

split the chart domain into k j sectors, which are not equiangular and have different number of elements. This makes it

difficult to establish C0 continuous local approximants f j(ξ j) following the approach introduced for Type 1 creases.

Therefore, Type 2 creases are first mapped onto a chart domain, which is equiangular with respect to the ar-

rangement of crease edges, see Figures 10 and 11. This is possible in a manifold-based approach because the chart

domains Ω̂ j can be freely chosen, subject to some smoothness and invertibility constraints. The respective map

Ψ II
j : η ∈ � 7→ ξ j ∈ Ω̂ j has the same structure like for non-creased charts (19), i.e.,

Ψ II
j = ΛII

qr ◦ Λt r , (25)

whereΛt r consists as defined in (20) of a translation and rotation andΛII
qr is a quasi-conformal map with the arguments

of ΛI
qr in (21) replaced according to

ΛII
qr(η; k j, s j, ls, ms) = ΛI

qr(η; k jls, (s j − 1)ls + ms) . (26)

Here, k j is the number of creases, s j ∈ {1, 2, . . . , k j} is the sector number, ls is the number of elements in the sector s j

and ms ∈ {1, . . . , ls} is the local element number in the sector s j. The meaning of the introduced variables is further

clarified in Figure 12. After the equiangular chart domain for Type 2 creases is established, as in Figures 10 and 11,

the local approximants f s j

j (ξ j) in each sector are obtained following the approach for a Type 1 crease chart. That is,

they are defined as (22) in case of two creases or otherwise mapped according to (24) from a tensor-product Lagrange

basis b(θ). The local approximant f j(ξ j), composed from the local approximants in each of the sectors f s j

j (ξ j), is C0

continuous across the crease edges when the approximants share the same coefficients along the edges.

3.3. Crease Type 3: Chart domains with concave corners

The arrangement of creases in Type 2 chart domains can lead sometimes to non-convex sectors on the chart

domain. There is, however, no regular mapping from a convex to a non-convex domain with a non-zero determinant

of the Jacobian. Therefore, when the map Ψ II
j defined in (25) is used in a non-convex sector it leads to an unwanted

folding-over of the surface as visible in Figure 13. This behaviour is similar to the one observed with isoparametrically

mapped non-convex Lagrange finite elements.
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Figure 10: Example of a Type 2 crease. The centre vertex has the valence v j = 5 and k j = 2 crease edges (marked in red). The number of elements

in each of the two sectors is different, i.e. two and three respectively.

Figure 11: Example of a Type 2 crease. The centre vertex has the valence v j = 5 and k j = 3 crease edges (marked in red). The number of elements

in each of the three sectors is different, i.e. two, one and two respectively.

(a) Sector number s j (b) Number of elements in

a sector ls

(c) Local element number

ms

Figure 12: Illustration of the numbering used to define the map ΛII
qr in (26) with the help of the Type 2 crease chart shown in Figure 10. The number

of creases k j = 2 takes the same value for every element.
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Figure 13: Behaviour of the manifold surface at concave corners. Edges are tagged as crease according to Figure 8. The close-up image in the blue

box (middle) shows that the surface develops a fold when incorrectly a Type 2 mapping is used at the concave corner. The same behaviour can be

observed when, for instance, Lagrange or Bézier elements are mapped to non-convex domains. The close-up image in the black box (right) shows

that using a Type 3 mapping does not lead to a fold.

The folding-over can be avoided by composing the non-convex sector from several smoothly connected convex

patches. To this end, the chart domain depicted in Figure 14 is introduced. The respective mapΨ III
j : η ∈ � 7→ ξ j ∈ Ω̂ j

has the same structure like the previously introduced maps, c.f. (19) and (25),

Ψ III
j = ΛIII

qr ◦ Λt r (27)

with the quasi-conformal map ΛIII
qr obtained by replacing the arguments of ΛI

qr in (21) in the following way

ΛIII
qr(η; k j, s j, ls, ms) =


ΛI

qr(η; 4(k j − 1)ls, (s j − 1)ls + ms) if s j < k j

ΛI
qr(η; 4ls/3,ms) · eiπ/2 if s j = k j

, (28)

where k j is the number of creases, s j ∈ {1, 2, . . . , k j} is the sector number, ls is the number of elements in a sector

and ms is the local element number in a sector. All the mentioned variables have the same meaning as in Section 3.2

and are clarified in Figure 15. As shown in Figure 14, with the introduced map Ψ III
j the concave sector with s j = k j

is mapped to an L-shaped domain and all other sectors are mapped to the first quadrant. For obtaining the local

approximant f j(ξ j) a similar approach as discussed for the Type 1 and 2 crease charts is followed with the exception

of the non-convex sector. The local approximants f s j<k j

j (ξ j) on each convex sector are mapped according to (24) from

a tensor-product Lagrange basis b(θ) using θ = (ΛI
qr)
−1(ξ j; 4(k j − 1), s j). The local approximant on the non-convex

sector f s j=k j

j (ξ j) is composed out of three (cubic) Bézier patches that are smoothly connected within the sector while

they are matched C0 continuously with polynomial pieces in other sectors across the crease edges.

3.4. Examples of manifold surfaces with creases

We consider the construction of the manifold-based basis functions for one of the elements in the unstructured

quadrilateral control mesh shown in Figure 16. The element is adjacent to a prescribed crease and belongs to four

overlapping chart domains as illustrated in Figure 17. Two of the charts domains, Ω̂1 and Ω̂2, contain each two crease

edges and the other two, Ω̂3 and Ω̂4, contain no crease edges. In the chart domain Ω̂2 the arrangement of the crease
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Figure 14: Example of Type 3 crease chart domain. The centre vertex has valence v j = 5 and k j = 3 creased edges (marked in red). One of the

three sectors is non-convex (highlighted in red).

(a) Sector number s j (b) Number of elements

in a sector ls

(c) Local element num-

ber ms

Figure 15: Illustration of the numbering used to define the map Ψ III
c in (28), taking the example of the Type 3 crease chart shown in Figure 14. The

number of creases k j = 3 takes the same value for every element.

edges is rotationally symmetric so that it is Type 1 and in the chart domain Ω̂1 it is asymmetric so that it is Type 2. For

the chart Ω̂1 the mapping (25) and for the chart Ω̂2 the mapping (19) is to be used. Hence, in comparison to the smooth

case illustrated in Figure 6 only the mapping for the chart Ω̂1 is different while the other mappings are the same. The

presence of creased edges only changes the chart parametrisation for the construction of local polynomials pj(ξ j).

The construction of blending functions w j(ξ j) is the same for all charts regardless of the presence of crease edges.

The tensor-product B-spline blending functions are defined in the reference element and mapped to each element in

the chart domains, see (5).

In Figure 18 the application of the manifold-based basis functions in representing a smooth surface with sharp

features is demonstrated. The blending functions are assembled from tensor-product cubic B-splines and the local

polynomial basis is a cubic tensor-product polynomial. The relatively coarse unstructured quadrilateral mesh has a

number of tagged crease edges. The location and arrangement of creases have been chosen in order to obtain as many

as possible distinct chart configurations. The eight charts with valence v = 6 include a smooth chart, four Type 1

crease charts and three Type 2 crease charts. The rendered manifold surface x(η) is obtained by first projecting the

control vertices xI on a Catmull-Clark subdivision surface

xS
I =

∑
I

LIJ xJ , (29)

where LIJ is the limit matrix (or, mask) of the subdivision surface. The multiplication of the control vertices with the

limit matrix involves only the one-neighbourhoods of the vertices xI and projects them onto a Catmull-Clark limit
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Figure 16: An unstructured mesh with extraordinary vertices of valence v ∈ {3, 5}. The shaded element is overlapped by four charts and the union

of the four charts have 16 unique vertices in total. Edges tagged as crease are marked in red.

Figure 17: The reference element � (centre) and its four overlapping chart domain Ω̂ j with j ∈ {1, 2, 3, 4}. The reference element is mapped with

Ψ j to the blue shaded elements in the four charts Ω̂ j. Notice that the parameter lines in the charts (with η1 = const. and η2 = const. ) are always

orthogonal to the spoke edges which guarantees that the derivatives of the maps Ψ j are continuous over the entire chart.
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Figure 18: Three different views of a manifold surface (top) approximating a given control mesh (bottom). In the control mesh, crease edges are

marked as red. The mesh includes eight valence v = 6 vertices and the corresponding charts are categorised as a smooth chart (empty dot) and

Type 1 (red dot) or Type 2 (blue dot) crease charts. Across the indicated crease edges the manifold surface is C0 continuous and otherwise it is C2

continuous.

surface. The entries of the limit matrix depend on the valence of the vertex and can be found, for instance, in [28].

There are also so-called tuned subdivision masks available which can provide better shapes [15, 24, 29]. Moreover,

note that the Catmull-Clark subdivision surface reduces to cubic B-splines on structured meshes. With the projected

control vertices the image of a reference element � on the manifold surface is obtained as

x(η) =
∑

I

NI(η)xS
I , (30)

where NI(η) are the introduced manifold-based basis functions. The manifold construction ensures that the images

of the reference elements on the surface are connected with the required smoothness. The projection of the control

vertices onto a Catmull-Clark surface is only used to obtain a visually pleasing surface. It is inconsequential when

manifold-based basis functions are used as finite element basis functions.

Finally, evidently, the geometry shown in Figure 18 can be modelled using subdivision surfaces, or even using

collections of B-spline patches, without manifold constructions. The obtained smooth manifold-based basis functions

are however essential for the finite element discretisation, in particular, of higher-order partial differential equations,

such as the Kirchhoff-Love thin shell equations.
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4. Thin-shell formulation and discretisation

This section provides a brief review of the Kirchhoff-Love thin-shell equations and their discretisation with

manifold-based basis functions. Also, the boundary and crease constraints used in the presented numerical exam-

ples are introduced. Further details of our specific Kirchhoff-Love implementation may be found in [30–32].

We denote the reference and deformed mid-surfaces of the shell with Ω0 and Ω, respectively, and the corresponding

boundaries with Γ0 = ∂Ω0 and Γ = ∂Ω. Any configuration of the shell is assumed to be defined as

ϕ(η1, η2, η3) = x(η1, η2) + η3a3(η1, η2) with η3 ∈

[
−

t
2
,

t
2

]
, (31)

where ϕ(η1, η2, η3) is the position vector of a material point with the convective coordinates (η1, η2, η3). Simi-

larly, x(η1, η2) is the position vector of a material point with the convective coordinates (η1, η2) on the shell mid-

surface. Furthermore, a3(η1, η2) is the unit normal to the mid-surface x(η1, η2) and t is the shell thickness. The

corresponding vectors in the reference configuration are denoted with uppercase letters Φ(η1, η2, η3), X(η1, η2)

and A3(η1, η2) so that the reference configuration reads

Φ(η1, η2, η3) = X(η1, η2) + η3 A3(η1, η2) . (32)

The covariant basis vectors of the tangent space of the mid-surface are defined as3

Aα =
∂X
∂ηα

and aα =
∂x
∂ηα

(33)

with the corresponding normal vectors

A3 =
A1 × A2

|A1 × A2|
and a3 =

a1 × a2

|a1 × a2|
. (34)

The contravariant basis vectors Aα and aα follow from the relations

Aα · Aβ = δ
β
α and aα · aβ = δ

β
α , (35)

where δβα is the Kronecker delta. The contravariant metric of the reference configuration needed in the following is

defined as

Aαβ = Aα · Aβ . (36)

The deformation gradient can now be expressed as

F =
∂ϕ

∂Φ
=
∂ϕ

∂η j ⊗
∂η j

∂Φ
= a j ⊗ A j , (37)

3Throughout Section 4, the Greek indices take the values {1, 2}, the lowercase Latin indices take the values {1, 2, 3}, a comma denotes differ-

entiation and the summation convention over repeated indices applies.
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and a straightforward calculation yields the Green-Lagrange strain tensor

E =
1
2

(FTF − I) = α + η3β +
(
η3

)2
. . . (38)

with the membrane and bending strain tensors

α =
1
2

(aα · aβ − Aα · Aβ) Aα ⊗ Aβ (39a)

β =
1
2

(aα · a3,β + aβ · a3,α − Aα · A3,β − Aβ · A3,α) Aα ⊗ Aβ . (39b)

As usual, the quadratic terms in the Green-Lagrange strain tensor E are neglected for thin shells.

The potential energy of a hyper-elastic shell is given by

Π(x) =

∫
Ω0

W(α, β) dΩ0 + Πext(x)

=

∫
Ω0

(
1
2

Et
1 − ν2 Hαβγδααβαγδ +

1
2

Et3

12(1 − ν2)
Hαβγδβαββγδ

)
dΩ0 + Πext(x) ,

(40)

where W(α, β) is the internal energy density and Πext(x) is the potential of the external forces. The internal energy

density depends, in addition to the two strain tensors α and β, on the Young’s modulus E, the Poisson’s ratio ν and a

geometry related fourth-order tensor with the components

Hαβγδ = νAαβAγδ +
1
2

(1 − v)(AαγAβδ + AαδAβγ) .

When rigid joints or clamped boundaries are present, it is necessary to constrain the surface normals. The intro-

duced manifold-based basis functions are interpolating at the boundaries so that it is straightforward to impose dis-

placement boundary conditions. Along the clamped boundaries Γ0,c the change of the mid-surface normal (a3− A3) is

required to be zero. Along the joints Γ0, j, the C0 continuity of the basis functions ensures that the displacements to the

left (l) and to the right (r) are the same. When the joints are structurally rigid the relative change of the mid-surface

normals a(l)
3 · a(r)

3 − A(l)
3 · A(r)

3 is constrained to be zero. In our current implementation the rigid joint and clamped

boundary constraints are enforced with the penalty method

ΠC[x] = Π[x] +
γ1

2

∫
Γr

(
a(l)

3 · a
(r)
3 − A(l)

3 · A(r)
3

)2
dΓ︸                                      ︷︷                                      ︸

rigid joints

+
γ2

2

∫
Γc

(a3 − A3) · (a3 − A3) dΓ︸                                   ︷︷                                   ︸
clamped edges

, (41)

where γ1 and γ2 are penalty parameters. It is straightforward to consider alternative constrain enforcement techniques,

like the Nitsche method [33, 34] or Lagrange multipliers [31, 35].

As usual, the discrete finite element equilibrium equations are derived by first writing the potential (41) as a sum

over the set of reference elements {�e} using the Jacobian |∂X/∂η|. Here, the index e denotes the number of an

element. It is emphasised that each element corresponds to a quadrilateral in the control mesh, as in isogeometric

analysis with B-splines. The charts considered in the manifold construction are only used for obtaining the basis
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functions. With the determined basis functions the reference and deformed mid-surface of a reference element �e are

approximated by

Xh(η1, η2) =
∑

I

NI(η1, η2)XI and xh(η1, η2) =
∑

I

NI(η1, η2)xI , (42)

where XI and xI are the coordinates of the control vertex coordinates. After introducing Xh(η1, η2) and xh(η1, η2)

into the element-wise expressed potential energy (41) and numerical integration the discrete equilibrium equations

follow from the stationarity principle

∂Π(xh)
∂xI

=
∂Πint(xh)
∂xI

+
∂Πext(xh)
∂xI

= 0 . (43)

We solve this set of nonlinear equations iteratively with the Newton-Raphson method. That is, at each iteration step (n)

the linear equation

∂2Π
(
x(n−1)

I

)
∂xI∂xJ

(
x(n)

J − x(n−1)
J

)
= −

∂Π
(
x(n−1)

I

)
∂xI

(44)

is solved to determine x(n)
J for a given x(n−1)

J . The expression ∂2Π/∂xI∂xJ on the left is the stiffness matrix whereas

the expression ∂Π/∂xI on the right is the residual vector. The full expression for (44) can be found in [4, 36].

5. Examples

We consider beam, plate and shell examples to demonstrate the utility and convergence of the proposed creased

manifold-based basis functions in finite element analysis. In all the examples the Kirchhoff-Love model reviewed

in Section 4 is discretised with manifold-based basis functions. The blending functions are assembled from tensor-

product cubic B-splines and the local polynomial basis is a quadratic tensor-product polynomial. In convergence

studies all the finite element integrals are integrated with 9 × 9 Gauss quadrature points. The used standard Gauss

integration rules do not take into account that the introduced polynomial manifold-based basis functions consist in

each element out of 4 × 4 piecewise polynomials. For the geometrically nonlinear simulation of a pinched tube we

use 3 × 3 quadrature points to save computing time.

In constructing the basis functions all element edges on the domain boundaries are tagged as crease. This elimi-

nates the need for ghost cells as originally used in [25]. As discussed, the number of basis functions in a chart domain

has to be equal or less than the number of vertices. Hence, to be able to use a quadratic tensor-product basis in

all charts, mid-face and mid-edge vertices are introduced. This increases the number of vertices in a chart domain

from 2v j +1 to 6v j +1, where v j is the valence of the centre vertex. In all examples, the rigid joint and clamped bound-

ary constraints are enforced with the penalty method. The penalty parameters are chosen to be γ = O(E), where E is

the Young’s modulus.
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Figure 19: Geometry and loading of the propped cantilever beam. The left end is clamped and the right end is simply supported. Different

treatments are considered for the hinge at the midspan.

5.1. Propped cantilever beam

As an introductory example, we compute the deflection of a beam subjected to a uniformly distributed transversal

loading, see Figure 19. To be able to use bivariate basis functions the beam is modelled as a plate with uniform width

and is discretised with a structured quadrilateral mesh. The chosen boundary conditions, loading and the Poisson ratio

of ν = 0 ensure that the structure deflects like a beam. Both the left and right ends of the beam are tagged as crease,

eliminating the need for ghost cells. The left end is clamped so that the displacement and the change of the beam axis

normal are required to be zero. The right end is simply supported so that only the displacement is required to be zero.

In the computations the beam midspan is modelled either as continuous, hinged or rigidly-jointed hinged. The

considered meshes have always a vertex at the midspan. For the continuous beam (with no hinge) the chart domain

corresponding to the midspan vertex is treated in the same way like the other chart domains. In the two cases with

a hinge the midspan vertex is tagged as a crease. In geometric terms, across a hinge the displacement is continuous

but its derivative may be discontinuous. And, in structural terms, across a hinge only shear forces may be transferred

while the bending moment at the hinge is zero. In the case of the rigidly-jointed hinged beam, the two beam axis

normals across the hinge are enforced to be weakly continuous with the penalty method so that it becomes possible to

transfer moments.

As can be obtained by a straightforward integration the analytical deflection of the continuous propped cantilever

is

u(x) =
q

4Et3 (2x4 − 5Lx3 + 3L2x2) , (45)

and the deflection of the propped of the cantilever with a hinge is

u(x) =


q

2Et3 (x4 − 3Lx3 + 3L2x2) if x < L/2

q
2Et3 (x4 − 3Lx3 + 3L2x2 − 2L3x + L4) if x ≥ L/2

. (46)

In Figure 20 the convergence of the relative L2 norm and energy norm errors with decreasing mesh size are plotted.

As can be seen, both L2 and energy norm errors converge in all cases with the optimal rate. The errors for the beam

with the hinge are slightly smaller. As to be expected, the continuous beam and rigidly-jointed hinged beam give very

similar results. This confirms the soundness of the enforcement of rigid joint constraints with the penalty method.
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Figure 20: Convergence of the relative L2 and energy norm errors for the propped cantilever beam. The rigidly-jointed and hinged beams contain

a hinge at the midspan while the continuous beam does not. For the rigidly-jointed beam the beam axis normals across the hinge are constrained to

be weakly continuous.

5.2. Square plate

Next, we consider the deflection of a square plate with different boundary conditions subjected to uniformly

distributed transversal loading, see Figure 21. Two different types of boundary conditions are considered. In the

first case all boundary edges are simply supported and in the second case two opposite boundary edges are simply

supported and the other two are clamped. At the simply supported boundary edges the displacements are constrained

to be zero and at the clamped edges both the displacements and their derivatives are constrained to be zero. Similar

to the propped cantilever example also a hinge line is introduced along the centre of the plate, which is considered

to be present in only some of the computations. If a hinge line is considered to be present, it is always modelled as

rigidly-jointed.

The structured and unstructured coarse meshes used in the computations are depicted in Figure 22. The un-

structured mesh has eight extraordinary vertices, with four vertices of valence v j = 3 and the other four of va-

lence v j = 5. In the convergence studies the refined meshes are obtained by subdividing the shown coarse meshes

with the Catmull-Clark subdivision. The analytical deflections for both boundary conditions can be found in Timo-

shenko and Woinowsky-Krieger [37, Chapters 5 and 6]. Two representative finite element solutions for the considered

two boundary conditions are shown in Figure 23. As to be expected the deflection of the plate with two clamped edges

is much smaller than the deflection of the fully simply supported plate.

In Figure 24 the convergence of the relative L2 norm error with decreasing mesh size is plotted. In all cases

the errors converge with the optimal rate of two. Figure 24a depicts the convergence for the structured mesh and

Figure 24b for the unstructured mesh. Both plots contain the convergence of the fully simply supported plate as well
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Figure 21: Definition of the square plate problem. Two types of boundary conditions are considered, with either all edges simply supported (left),

or two opposite edges are simply supported while the other two are clamped (centre). The dashed vertical line at the centre indicates a hinge, which

is present in some of the computations. If a hinge is present, the mid-surface normals across the hinge line are constrained to be weakly continuous.

(a) Structured (b) Unstructured

Figure 22: Coarse control meshes used in square plate computations.

(a) Simply supported (b) Partially clamped

Figure 23: Deflected shapes of the square plate with two different boundary conditions. The deflections are scaled with the same factor in both

cases.
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Figure 24: Convergence of the relative L2 norm error for the simply supported and the partially clamped square plates. The results for the continuous

and rigidly-jointed plates are almost identical.

as the partially clamped plate. In addition, the convergence of the plates with rigidly-jointed hinges are included. The

continuous and rigidly-jointed plates yield the same results providing an evidence for the soundness of the proposed

weak enforcement of rigid joint constraints. Similar as in the propped cantilever example, the results for the less

constrained fully simply supported plate are smaller than the errors for the partially clamped plate. It is noteworthy

that the manifold-based basis functions can achieve the optimal convergence order even on an unstructured mesh.

Moreover, the magnitude of the relative errors for the structured and unstructured meshes is almost the same.

5.3. Pinched square tube

This last example involves the geometrically nonlinear analysis of a pinched square tube subjected to two diamet-

rically opposite concentrated forces, see Figure 25. The tube consists out of two horizontal and two vertical plates that

are rigidly connected along their edges. It is discretised either with a uniform structured mesh with an element size

h = L/16 or with an unstructured mesh as shown in Figure 26. The structured and unstructured meshes have 4352

and 6400 nodes, respectively. To simulate the rigid joints between the plates the relevant edges in the mesh are tagged

as a crease and the angle between two normals across a crease are constrained to remain constant during deformation.

This example is an adaptation of the pinched cylinder benchmark example widely used for comparing the performance

of shell elements. The square tube has also been previously considered in [31]. The deflected shapes at three different

load values are shown in Figure 26. As can be inferred from the deflected shapes, the tube exhibits large membrane

deformations and localised bending deformations around the rigid creases and two load application points. Further-

more, it is evident that the right angle between the plates is preserved during deformation. In the load-displacement

curve depicted in Figure 27 the results for the structured and unstructured meshes are visually indistinguishable. Both
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Figure 25: Geometry and loading of the pinched square tube.

Figure 26: Deflected shapes of the pinched tube at load values F = 10, F = 50 and F = 100 (from left to right).

are in close agreement with the reference solution obtained with the commercial finite element software Abaqus. The

Abaqus result is for a structured fine mesh with 10612 nodes and a six-parameter Reissner-Mindlin type shell theory.

Figure 27: Load-displacement curve of the pinched square tube for the load attachment point.
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6. Conclusions

We have presented, by extending Majeed and Cirak [25], new manifold-based basis functions for isogeometric

design and analysis of surfaces with arbitrary smoothness, prescribed sharp features and boundaries. The surface is

described with a quadrilateral control mesh and C0 continuous creases are introduced along mesh edges tagged by

the user. Manifold techniques are extremely versatile in the sense that the chart domains, their respective transition

functions, local polynomial approximants, and blending functions can all be chosen to fit the needs of the specific

application at hand. We introduce creases by choosing polynomial approximants that are piecewise C0 continuous

along the element edges and, in addition, modifying the geometry of the chart domains. Due to the similarities between

the C0 continuous creases and boundaries, the new basis functions also simplify the treatment of boundaries. That is,

different from [25], the boundaries can be described without introducing additional layers of ghost elements outside

the domain. The chart domains have the shape of polygonal disks with curved boundaries and are composed out of

quasi-conformally mapped unit squares representing the reference finite elements. The respective transition functions

are easily computed by expressing the parametric coordinates of a unit square as a complex number. Furthermore, a

new type of blending function is used which is assembled from tensor-product cubic B-spline pieces. In contrast to

the ones in [25], the new blending functions do not require normalisation so that the partition of unity approximation

leads to non-rational basis functions. Finally, in order to obtain a mesh-based approximation scheme, the coefficients

of the local polynomials are expressed as vertex coefficients using a least-squares procedure. The degree of the local

polynomials has to be chosen so that there are no more coefficients than vertices in a chart domain. The number of

vertices in a chart domain can be increased by introducing more vertices, i.e. refining the control mesh, while keeping

the chart domain size constant. The obtained basis functions have a closed form analytic description, are locally

supported and are polynomial in regular regions of the mesh.

In closing, we note that the introduced manifold-based basis function construction may be interpreted as the

extension of the partition of unity method [19] to manifold surfaces. As detailed in [38], depending on the choice

of the local polynomials and blending functions univariate manifold-based basis functions can be made to either

reproduce B-splines or are identical to B-splines. Their convergence properties can be deduced from standard partition

of unity results [19, 39]. Hence, manifold-based constructions may serve as a bridge between isogeometric analysis

using splines [40] and the many partition of unity method inspired discretisation techniques, such as the generalised

finite element method [41], hp-clouds [42] or the extended finite element method [43]; see also the recent review [44].

Specifically, manifold-based constructions can facilitate the consideration of industrial CAD geometries, in the form

of NURBS and other spline representations, in the partition of unity methods. In turn, the very many enrichment

techniques developed for partition of unity methods can be applied to isogeometric analysis by utilising them as local

polynomial approximants in the manifold construction. The exploration of these links suggests itself as a promising

direction for future research.
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(a) Complex plane (b) Rotation and scaling in the complex plane

Figure A.28: Illustration of a complex number in the complex plane and the operations of rotation and scaling.

Appendix A. Conformal maps

In this section we briefly motivate the quasi-conformal map used throughout this paper; see also [45] for a general

visually orientated introduction to complex analysis. In contrast to the conformal map used in Majeed and Cirak [25]

the quasi-conformal map is not angle-preserving, but it is infinitely smooth except at the extraordinary vertex. With

a conformal map an infinitesimal circle is mapped to a circle whereas with a quasi-conformal map it is mapped to

an ellipse. The quasi-conformal map is essential for the introduced new chart domains, which are necessary for the

construction of the creased basis functions. As discussed, three different quasi-conformal maps Ψ I
j , Ψ

II
j and Ψ III

j are

needed to map the reference element � onto elements in the chart domains Ω̂ j according to

{
Ψ I

j , Ψ
II
j , Ψ

III
j

}
: η = (η1, η2) ∈ � 7→ ξ = (ξ1

j , ξ
2
j ) ∈ Ω̂ j .

In the complex plane the reference element coordinates η = (η1, η2) can be, as be depicted in Figure A.28a, expressed

either in Cartesian or polar form

z = η1 + iη2 = |z|(cos φ + i sin φ)

with the radius and the phase

|z| =
√

(η1)2 + (η2)2 , φ = arctan(η2/η1) .

With the Euler’s formula the polar form is equivalently expressed by

z = |z|eiφ .

Considering a complex number as a vector from the origin to the point with the coordinates z, a multiplication by

a scalar represents a scaling and a multiplication by eiθ represents a rotation. For instance, Figure A.28b illustrates
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(a) Conformal map with β = 4/v j

(b) Quasi-conformal map with β = 1

Figure A.29: Comparison of the iso-parameter lines for the conformal and the quasi-conformal map depending on the value of the parameter β for

valences v ∈ {3, 4, 6}.

that zeiθ is obtained by rotating z anticlockwise by an angle θ and that 1/2z is obtained by scaling the radius of z by

one half.

In the quasi-conformal map introduced in (21), repeated here for convenience,

ΛI
qr(z; v j, n j) =

|z|β

|z|4/v j
z4/v j ei2π(n j−1)/v j = |z|βeiφ4/v j ei2π(n j−1)/v j ,

the parameter β controls how the radius of z is scaled. For β = 4/v j the mapping reduces to the conformal map used

in [25], i.e.,

ΛI
qr(z; v j, n j) = z4/v j ei2π(n j−1)/v j = |z|4/v j ei4φ/v j ei2π(n j−1)/v j ,

which scales the radius of z to |z|4/v j . In the present paper we choose β = 1 so that the radius is not scaled. The choice

of β on the conformal maps is illustrated in Figure A.29. As visible, for β = 1 the parameter lines are not orthogonal

to each other within the elements and the map is not angle-preserving. Therefore, it is called a quasi-conformal map.

For the introduced maps Ψ II
j and Ψ III

j , i.e. (26) and (28), it is important that the radius of z is not scaled. This is

necessary because each creased sector may have different number of elements. Not scaling the radius ensures that the

quasi-conformal map and its derivatives across crease edges are continuous c.f. Figures 10, 11 and 14.

Appendix B. Blending functions

The blending functions proposed in this paper are polynomial in contrast to the rational blending functions used

in Majeed and Cirak [25]. The difference between the two constructions is best understood by comparing the two
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Figure B.30: Construction of smooth rational blending functions from cubic B-splines defined over a parameter space with a knot-distance 1/2.

Figures 3 and B.30. In Figure B.30 the construction process of the rational blending functions is illustrated. Notice

that the cubic B-spline basis used within the reference element is not complete so that it does not add up to one.

Therefore, normalisation is necessary to satisfy the partition of unity property, resulting in rational blending functions.

With the numbering introduced in Figure B.30 the rational blending functions are given by

w̃ j(η) =
B2 j(η)∑2

k=1 B2k(η)
with w j(ξ j) = w̃ j(Ψ−1

j (ξ j)) and j ∈ {1, 2} .

It is straightforward to extend this construction to the bivariate case. As a final remark, the rational blending functions

have one knot and the polynomial blending functions used in this paper have three knots within the reference element.
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[16] M. Breitenberger, A. Apostolatos, B. Philipp, R. Wüchner, K.-U. Bletzinger, Analysis in computer aided design: Nonlinear isogeometric

B-Rep analysis of shell structures, Computer Methods in Applied Mechanics and Engineering 284 (2015) 401–457.

[17] Y. Guo, J. Heller, T. J. Hughes, M. Ruess, D. Schillinger, Variationally consistent isogeometric analysis of trimmed thin shells at finite

deformations, based on the STEP exchange format, Computer Methods in Applied Mechanics and Engineering 336 (2018) 39–79.

[18] C. M. Grimm, J. F. Hughes, Modeling surfaces of arbitrary topology using manifolds, in: SIGGRAPH 1995 Conference Proceedings, 359–

368, 1995.
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[41] T. Strouboulis, I. Babuška, K. Copps, The design and analysis of the generalized finite element method, Computer methods in applied

mechanics and engineering 181 (2000) 43–69.

[42] C. A. Duarte, J. T. Oden, An h-p adaptive method using clouds, Computer Methods in Applied Mechanics and Engineering 139 (1996)

237–262.
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