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Summary

Background Coronary heart disease (CHD) is one of the leading causes of death world-

wide, and global mortality rates are expected to continue to rise over the coming decades.

In Pakistan in particular, chronic diseases are responsible for 50 % of the total disease

burden. Circulating lipids are strongly and linearly associated with risk of CHD; how-

ever, despite considerable efforts to demonstrate causality, available evidence is conflicting

and insufficient. Study of the underlying metabolic pathways implicated in the associ-

ation between lipids and CHD would help to disentangle and elucidate these complex

relationships.

Objectives The primary objectives of this dissertation were to (1) identify the genetic de-

terminants of lipid metabolites and (2) advance understanding of the effect of perturbations

in lipid metabolite levels on CHD and its risk factors.

Methods Direct infusion high-resolution mass spectrometry was performed on 5662 par-

ticipants from the Pakistan Risk of Myocardial Infarction Study to obtain signals for 444

known lipid metabolites. Correlations and associations of the lipids with smoking, physical

activity, circulating biomarkers, and other CHD risk factors were assessed. Genome-wide

analyses were conducted to analyse the association of each lipid with over 6.7 million

imputed single nucleotide polymorphisms. Functional annotation and Gaussian Graphical

Modelling were used to link the variants associated with each lipid to the most likely medi-

ating gene, discern the underlying metabolic pathways, and provide a visual representation

of the genetic determinants of human metabolism. Mendelian randomisation was also

implemented to examine the causal effect of lipids on risk of CHD.

Results The lipids were highly correlated with each other and with levels of major cir-

culating lipids, and they exhibited significant associations with several CHD risk factors.

There were 254 lipids that had significant associations with one or more genetic variants

and 355 associations between lipids and variants, with a total of 89 sentinel variants from

23 independent loci. The analyses described in this dissertation resulted in the discovery

of four novel loci, identified novel relationships between genetic variants and lipids, and

revealed new biological insights into lipid metabolism.

Conclusion Analyses of lipid metabolites in large epidemiological studies can contribute

to enhanced understanding of mechanisms for CHD development and identification of novel

causal pathways and new therapeutic targets.
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Dedication

This dissertation is dedicated to my family.

“ Knowledge is as wings to man’s life, and a ladder for his ascent. Its
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September 2017
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CHAPTER1
Introduction and literature review:

Cardiovascular disease, genetics, and

metabolomics

Chapter summary

Cardiovascular disease (CVD) is one of the leading causes of mortality and morbidity

worldwide. Although advances in medicine, particularly the use of statins, have reduced

mortality rates from CVD in many Western countries during the past half-century, it

remains a major cause of death and morbidity, and the burden of coronary heart disease

(CHD), which is one of the most common forms of CVD, has been increasing at an

alarming rate in South Asian populations. In order to reduce the burden of CVD in our

society, a more thorough understanding of the various genetic, lifestyle, and environmental

risk factors is needed. This dissertation aimed to measure and analyse lipid profiles

in a Pakistani population, assess the association of hundreds of lipids with circulating

biomarkers and CHD risk factors, identify the genetic determinants of these lipids, and

determine their causal relevance and potential clinical applications.

This chapter provides an introduction and literature review of established risk factors

for CHD, with an emphasis on levels of major blood lipids. Introductions to genetics

and metabolomics are also provided, and the current state of knowledge is described

vis-à-vis the link between genetics, levels of lipid metabolites, and CHD. A literature

review is included that summarises all of the currently published metabolomics GWAS
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Chapter 1. Introduction

studies and their main findings. Additionally, an overview of Mendelian randomisation

(MR) is provided which describes some of the recent methodological advances in MR and

the application of these approaches to assessing the causal relevance of major lipids and

metabolites for risk of CHD. Finally, a conceptual framework of the overall approach used

in this dissertation is presented along with a summary of the contents of each chapter.
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1.1. Cardiovascular disease Chapter 1. Introduction

Figure 1.1: Map of global burden of CHD

The map shows the disability-adjusted life years (DALYs) lost per 1000 population, with the number
of healthy years of life lost due to CHD shown as a spectrum from 0-9 (coloured peach) to 30 and
above (dark purple). The bar charts show the top ten diseases resulting in the highest percentage of
DALYs lost in men (left) and women (right). Source: World Health Organization, 20043.

1.1 Cardiovascular disease

Infectious diseases and malnutrition-related childhood illnesses were once the primary

causes of death, but in recent decades, the global burden of disease has been gradually

shifting from communicable to non-communicable diseases, and there has been a concom-

itant rise in the incidence of chronic diseases1. Cardiovascular disease (CVD) is one of

the leading causes of death worldwide and mortality rates are expected to continue to rise

over the next twenty years2. As the map in Figure 1.1 illustrates, coronary heart disease

(CHD) and stroke, two of the most common forms of CVD, are among the top ten diseases

with the highest burden (in terms of healthy years of life lost) in both men and women.

Ischaemic heart disease (IHD), also known as coronary artery disease (CAD), occurs

when fatty deposits of plaque build up within the walls of the coronary arteries until

blood flow to the heart is restricted. This process is called atherosclerosis and results

in CHD. The terms IHD, CAD, and CHD are therefore often used interchangeably. A

3
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Figure 1.2: Build-up of plaque in the coronary arteries through atherosclerosis

Source: National Heart, Lung, and Blood Institute, 20154.

diagram depicting the difference between individuals with healthy arteries and those with

atherosclerosis in the coronary arteries is shown in Figure 1.2. In a healthy individual,

blood flows throughout the body delivering nutrients and oxygen to all the cells and vital

organs. However, when the blood flow has been obstructed due to the build-up of plaque

along the walls of the arteries, this can lead to a heart attack or stroke. A stroke is similar

to CHD, except instead of blood flow being restricted to the heart, the blood supply is

cut-off from reaching the brain.

1.1.1 Burden of CHD in South Asia

Throughout most of South Asia, lower respiratory infections, diarrhoeal diseases, and

congenital anomalies are among the leading causes of premature mortality1. However, in

Pakistan, chronic diseases are responsible for 50 % of the total disease burden5. Years of life

lost (YLLs) is a measure of premature mortality that provides an estimate of the average

number of years a person would have lived if he or she had not died prematurely. IHD and

stroke are two of the top ten causes of YLLs in Pakistan, and observed YLLs due to IHD

4
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Figure 1.3: Global map of age-standardised death rate of CVD

Countries with the lowest death rate due to CVD are shown in dark blue (91 to 220 deaths per
100 000 people), while countries with the highest death rate due to CVD are shown in dark red
(611 to 680 deaths per 100 000 people) (data as of 2015). Source: Roth GA, et al. J Am Coll
Cardiol. 2017;70(1):1-258.

are nearly twice as high as expected (ratio of 1.81 in 2015) based on socio-demographic

index1. Pakistan is also among the top ten countries in the world with the highest number

of people living with diabetes6.

The age-standardised mortality rate due to CVD increased in Pakistan between 2000

to 2012 from 250.6 to 274.2 per 100 000 population, with a more pronounced increase in

males than in females7. Over this time period, the CVD mortality rate decreased in 153

out of 172 countries; Pakistan was one of only 19 countries where the CVD mortality rate

actually worsened rather than improving7. Additionally, Pakistan was the only country in

South Asia where the CVD mortality rate increased7. A map of the CVD mortality rate

for each country is shown in Figure 1.3.

Studies have shown that South Asians who migrate to other countries are at in-

creased risk for CHD compared with the reference population of their adopted countries6,9.

Amongst males living in England and Wales, CHD is responsible for 27 % of all deaths

in South Asians compared with 18 % overall9. For women, the difference is less striking

but still noticeable, with CHD responsible for 18 % of all deaths in South Asian females,

compared with 13 % for the overall female population9. The prevalence of CHD is highest

in Pakistani men living in England than in any other ethnic group in this country9.

Understanding the reasons for the high burden of CHD in South Asians, and Pakistanis

in particular, would aid efforts to reduce CHD incidence in this population. The findings

could also have important applications and implications for reducing risk of CHD in other

parts of the world.
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1.1.2 Established risk factors for CHD

In addition to certain non-modifiable risk factors for CHD, such as age, gender, ethnicity,

and family history of CVD, a number of modifiable risk factors have been identified, which

can be influenced by the lifestyle choices that one makes. A few of the most common

modifiable risk factors are hypertension (high blood pressure), smoking or tobacco use,

diabetes, high cholesterol levels, lack of physical exercise, an unhealthy diet, and obesity4,7,

although stress and alcohol consumption are also contributing factors. The genes that one

inherits at birth can also influence both modifiable and non-modifiable risk factors and

prescribe a portion of an individual’s overall CHD risk (approximately 28 %10), regardless

of other environmental factors.

Despite existing knowledge of the major risk factors for CHD and the influence of

abnormal levels of major lipids, there is much less known about how levels of the hundreds

of individual lipid subfractions and other metabolic markers are involved in the development

of atherosclerosis and the onset of CHD11.

1.1.3 Major blood lipids and risk of CHD

Lipids are essential for life, and have several important biological functions. These include

(1) energy storage, since lipids are largely composed of fats; (2) formation of a phospholipid

bilayer that is a core part of the cellular membrane and protects the cell (Figure 1.4a);

(3) signalling, as lipids are used as messengers and form signalling molecules that influence

cellular responses; and (4) transport, since lipids assemble to form lipoproteins that carry

vitamins and nutrients throughout the body (Figure 1.4b)11. Given the important role

that lipids play in the body, the “lipidome”, which is the totality of lipid molecules in cells,

can therefore reflect underlying metabolic processes that may be influenced by dietary,

environmental, and genetic factors12.

Despite the diversity of lipid species and the wide array of functions that lipids are

involved in, most studies of lipids up until recent years have been relatively crude, as they

have mainly focused on major circulating lipids that can be easily measured by standard

assays, such as total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density

lipoprotein cholesterol (HDL-C), and triglycerides. Several lipid-related targets have been

studied as potential pathways that could be modified to reduce the risk of dyslipidaemia,

a condition in which abnormal levels of blood lipids contribute to the development of

atherosclerosis. Apolipoprotein A-V (ApoA5), apolipoprotein C-III (ApoC3), angiopoietin-

like 3 (ANGPTL3), and lipoprotein(a) [Lp(a)] have generated substantial interest in the

6
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Figure 1.4: Structure of phospholipid bilayer and apolipoproteins

(a) Phospholipid bilayer, a core part of the
cellular membrane. Source: Wilkin D &
Brainard J, 201613.

(b) Lipids forming an apolipoprotein.
Source: Mabtech, 201314.

scientific community15–19.

For triglycerides in particular, several large-scale prospective studies have demonstrated

that levels of triglycerides are strongly and linearly associated with CHD20,21, suggesting

that triglycerides should be considered an independent risk factor for CHD22. However, the

Emerging Risk Factors Collaboration (ERFC), in a meta-analysis of individual participant

data from 68 long-term prospective studies, demonstrated that despite the association

of triglycerides with CHD when adjusting for age and sex, the association is attenuated

after adjusting for conventional cardiovascular risk factors such as systolic blood pressure,

smoking status, and history of diabetes23, which would suggest that the association of

triglycerides with CHD is mediated by these other established risk factors. But in contrast

to these findings, a subsequent study, examining a genetic variant that regulates triglyceride

concentration, the APOA5 gene promoter (-1131T>C, rs662799), found evidence that is

consistent with a causal association between triglyceride-mediated pathways and risk of

CHD24. Therefore, further research is of paramount importance to shed clarity on the

nature of this association and the underlying mechanisms.

An analysis in the Pakistan Risk of Myocardial Infarction Study (PROMIS)25 found

that levels of major blood lipids—LDL-C, HDL-C, and triglycerides—are each strongly

associated with CHD26. Several lipid-related genetic variants were found to be common to

Pakistanis and Europeans, although they explained only a modest portion of the population

variation in lipid concentration; additionally, the study found that allelic frequencies

and effect sizes of lipid-related variants can differ between Pakistanis and Europeans26.

Additional research on lipid metabolism, especially in the Pakistani population, would

7



1.2. Genetics Chapter 1. Introduction

help elucidate these findings and further explain their significance.

It is now widely recognised that lowering levels of overall triglycerides is important for

reducing CHD risk; indeed, the question is no longer whether we should lower triglycerides,

but how we should lower triglycerides to reduce CHD risk. Evidence for the growing recog-

nition of this important question can be discerned by the launch of several phase III clinical

trials with the aim of reducing triglycerides in adults with severe hypertriglyceridemia.

Two trials of omega-3 fatty acids are nearing completion: the REDUCE-IT trial by Amarin

Pharma Inc. for the drug Vascepa, a highly purified ethyl ester of eicosapentaenoic acid

(EPA), which will be completed in December 2017 (with results expected to be available

before the end of Q3 2018)27, and the STRENGTH trial by AstraZeneca for the drug

Epanova, made up of omega-3 carboxylic acids, which will be completed in November

201928. In addition, the PROMINENT trial by Kowa Pharmaceutical was announced in

April 2016 for the drug PemaFibrate, which is a peroxisome proliferator-activated receptor

(PPAR) alpha agonist, a key regulator of lipid and glucose metabolism that has been

implicated in inflammation, which will be tested for the treatment of dyslipidaemia29.

The substantial attention (and capital) invested by the pharmaceutical industry supports

corresponding evidence in the scientific literature that the reduction of triglycerides is an

important (and marketable) health concern.

1.2 Genetics

1.2.1 Introduction to genetics

Deoxyribonucleic acid (DNA) consists of two long, twisted chains made up of nucleotides30.

The bases in DNA nucleotides are adenine (A), thymine (T ), cytosine (C ) and guanine

(G). Long strings of nucleotides form genes, and groups of genes are packaged tightly into

structures called chromosomes30. A diagram portraying the structure of DNA is shown in

Figure 1.5.

A gene is the basic unit of heredity and contains all of the information necessary to

synthesise a protein. It is estimated that humans have between 20 000 to 23 000 genes31.

The term genotype, then, refers to the genetic constitution of an individual, either overall

or at a specific locus (i.e. location on a chromosome). All people have two copies of

each chromosome, one from each parent. An allele refers to the existence of two or more

alternative forms of a gene that are found at the same position on a chromosome, which

arise by mutation (for example, A instead of G)30. Individuals are homozygous for a

8
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Figure 1.5: Structure of DNA

Deoxyribonucleic acid (DNA), which makes up genes, is spooled within chromosomes inside the
nucleus of a cell. Source: National Institute of General Medical Sciences. The New Genetics. 201030.

given locus if they have two identical alleles at that locus, and heterozygous if they have

two different alleles at that locus. Furthermore, if the alleles are identical, they can be

homozygous for either the major allele or the minor allele, which gives a total of three

possible genetic states for a given trait (i.e. AA, Aa, or aa, where A refers to the major

allele and a refers to the minor allele).

A phenotype or trait is an observable (i.e. measurable) characteristic of a cell or

organism. Phenotypes can be categorical, such as the presence or absence of a given disease,

or continuous, such as the measurement of a biomarker (e.g. blood pressure or body mass

index). Single nucleotide polymorphisms (SNPs) are small modifications in an individual

nucleotide of the genome. Another important concept is linkage disequilibrium (LD), which

is an assessment of the degree of correlation between nearby variants. Genetic loci are in LD

with each other when the frequency of association of their different alleles is higher or lower

than what would be expected if the loci were independent and associated randomly. The

theory behind LD is that every individual has a set of ancestral chromosomes, but eventually

a mutation will occur followed by recombination. After many generations through which

this mutation is propagated and new mutations occur, there will be a wide degree of

variation between variants. However, since they all derive from a common ancestry,

they should be mostly correlated. LD thus allows variants that have not been measured

to be imputed from these haplotypes. The uncertainty is represented by assigning the

probabilities of each of the three genotypes for each individual. Imputation is particularly

9
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Figure 1.6: Plot showing number of genome-wide association studies published per year

A PubMed search was conducted (last updated on 19 September 2017) using the following search term:
(“genome-wide association study”) OR (GWAS). A summary of the number of published studies that
were returned in each year was downloaded and used to produce this plot. Although some results
were returned for studies published prior to the first GWAS in 2005, an examination of the titles and
abstracts for these studies indicates that they only analysed at most a few hundred susceptibility
loci that were already known to be associated with the trait or disease of interest. Therefore, these
studies were not truly “genome-wide”, which typically refers to the analysis of a trait or disease with
millions of variants across the entire genome33.

useful for common and low-frequency variants.

Rigorously conducted association study designs typically involve two stages. First,

there is a discovery stage, where the goal is to capture as much common genomic variation

as possible by LD. Since a large number of statistical tests are conducted, this necessitates

using a stringent threshold for genome-wide significance. Second, there is a replication or

follow-up stage, which aims to assess many fewer SNPs that represent the top signals from

the discovery stage. A meta-analysis of the results from the two stages then leads to a

subset of significant variants that can be ultimately reported.

The first genome-wide association study (GWAS) was published in 2005 in the journal

Science. The study found that a variant in the CFH gene is strongly associated with

age-related macular degeneration (with an odds ratio of 7.4) and was discovered using only

100 000 SNPs with just 96 cases and 50 controls32. There have been incredible advances

in the pace of GWAS since then, and new associations are constantly being discovered

(nearly 30 000 GWAS publications in the past 10 years. A plot showing the number of

GWAS published each year is shown in Figure 1.6.

An overview of all reported SNP–trait associations has been compiled and is con-
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tinuously updated by the NHGRI-EBI GWAS Catalog34. The most recent version at

time of writing is shown in Figure 1.7, which includes 49 769 reported unique SNP–trait

associations34.
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1.2. Genetics Chapter 1. Introduction

1.2.2 Association of genetic loci with major lipids

In order to better understand the role that genetics plays in affecting lipid levels, a number

of association studies of major lipids have been conducted. One of the first large-scale

meta-analyses of circulating lipids was published in 2010, which reported the discovery

of 95 genetic loci significantly associated with plasma concentrations of total cholesterol,

LDL-C, HDL-C, and triglycerides19. Of these loci, 59 were novel at the time. A subsequent

large-scale meta-analysis resulted in the discovery of 62 additional novel loci, bringing the

total number of loci associated with major lipid traits to 15735. At present, association

studies19,35–40 have uncovered 175 genetic loci that affect lipid levels in the population,

which are listed in Table 1.1. Most of these variants reside in non-coding portions of the

genome, where the precise function is often not well known.

1.2.3 Association of genetic loci with risk of CHD

Genetics is a useful tool to provide information about the heritability of diseases, including

CHD. Due to the influence of inherited genes on expression of genes that regulate pathways

for CHD risk factors, family history of CHD is a strong risk factor for CHD.

Over time, genetic collaborations have identified an increasing number of loci associ-

ated with CAD, starting with nine loci in 2007 with the Wellcome Trust Case Control

Consortium (WTCCC)41, and increasing to 34 distinct loci by 201142. The CARDIo-

GRAMplusC4D Consortium then discovered additional loci in 2013, bringing the total

number of susceptibility loci for CAD to 46, of which 12 showed a significant association

with a lipid trait43. Today, using the latest information available at time of writing, 58

independent and replicated loci for CAD have been identified in European populations (see

Table 1.2), and from joint association analyses the total heritability of CAD is estimated

to be 28 %10. While these studies indicate that our genotype only explains a portion of

CHD risk, they nevertheless help elucidate how our genetic make-up is linked to CHD.

One example of the important role that genetics can play in disease development is

with hepatic glucokinase, which binds to glucokinase regulatory protein (GCKR) in the

presence of fructose 6-phosphate to regulate glucose storage and disposal in the liver. A

study revealed that carriers of the GCKR-L446 polymorphism were protected against type

2 diabetes (T2D) despite higher triglyceride levels and risk of dyslipidaemia, suggesting

that genetic differences in certain individuals can improve their ability to regulate insulin

and triglyceride levels44.
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Table 1.1: List of 175 genetic loci associated with major lipids

Gene Trait rsid Chr:Pos (GRCh37) EA/NEA

PIGV HDL rs12748152 chr1:27138393 T/C
PABPC4 HDL rs4660293 chr1:40028180 G/A
RRNAD1 HDL rs12145743 chr1:156700651 G/T
C1orf220 HDL rs4650994 chr1:178515312 A/G
ZNF648 HDL rs1689800 chr1:182168885 G/A
GALNT2 HDL rs4846914 chr1:230295691 A/G
COBLL1 HDL rs12328675 chr2:165540800 C/T
CPS1 HDL rs1047891 chr2:211540507 A/C
PRKAG3 HDL rs78058190 chr2:219699999 A/G
LOC646736 HDL rs2972146 chr2:227100698 T/G
ATG7 HDL rs2606736 chr3:11400249 T/C
NBEAL2 HDL rs2290547 chr3:47061183 T/C
MON1A HDL rs2013208 chr3:50129399 A/C
STAB1 HDL rs13326165 chr3:52532118 G/A
GSK3B HDL rs6805251 chr3:119560606 T/C
C4orf52 HDL rs10019888 chr4:26062990 C/G
FAM13A HDL rs3822072 chr4:89741269 A/G
LOC100507053 HDL rs2602836 chr4:100014805 G/A
SLC39A8 HDL rs13107325 chr4:103188709 T/C
ARL15 HDL rs6450176 chr5:53298025 A/G
RSPO3 HDL rs1936800 chr6:127436064 T/C
LOC645434 HDL rs605066 chr6:139829666 T/C
DAGLB HDL rs702485 chr7:6449272 G/A
SNX13 HDL rs4142995 chr7:17919258 T/C
C7orf72 HDL rs4917014 chr7:50305863 G/T
CD36 HDL rs3211938 chr7:80300449 G/T
KLF14 HDL rs4731702 chr7:130433384 T/C
TMEM176A HDL rs17173637 chr7:150529449 C/T
LOC157273 HDL rs9987289 chr8:9183358 G/A
TRPS1 HDL rs2293889 chr8:116599199 G/T
TTC39B HDL rs581080 chr9:15305378 C/G
ABCA1 HDL rs1883025 chr9:107664301 T/C
MARCH8-ALOX5 HDL rs970548 chr10:46013277 C/A
CAND1.11 HDL rs2923084 chr11:10388782 G/A
F2 HDL rs3136441 chr11:46743247 C/T
OR4C46 HDL rs11246602 chr11:51512090 C/T
PCNXL3 HDL rs12801636 chr11:65391317 A/G
MOGAT2 HDL rs499974 chr11:75455021 A/C
LOC100506393 HDL rs7134375 chr12:20473758 A/C
MMAB HDL rs7134594 chr12:110000193 T/C
SBNO1 HDL rs4759375 chr12:123796238 T/C
ZNF664,ZNF664-FAM101A HDL rs4765127 chr12:124460167 T/G
SCARB1 HDL rs838880 chr12:125261593 T/C
ZBTB42 HDL rs4983559 chr14:105277209 A/G
AQP9 HDL rs1532085 chr15:58683366 G/A
TPM1 HDL rs2652834 chr15:63396867 G/A
RMI2 HDL rs7188861 chr16:11454650 T/C
FTO HDL rs1121980 chr16:53809247 A/G
HERPUD1 HDL rs3764261 chr16:56993324 A/C
PSKH1 HDL rs16942887 chr16:67928042 A/G
CMIP HDL rs2925979 chr16:81534790 C/T
STARD3 HDL rs11869286 chr17:37813856 C/G
CD300LG HDL rs72836561 chr17:41926126 T/C
ABCA8 HDL rs4148008 chr17:66875294 A/G
PGS1 HDL rs4129767 chr17:76403984 A/G
LIPG HDL rs7241918 chr18:47160953 T/G
PMAIP1 HDL rs12967135 chr18:57849023 C/T
ANGPTL4 HDL rs7255436 chr19:8433196 A/C
DOCK6 HDL rs737337 chr19:11347493 C/T
FPR3 HDL rs17695224 chr19:52324216 A/G
MIR4752 HDL rs386000 chr19:54792761 C/G
HNF4A HDL rs1800961 chr20:43042364 T/C
PCIF1 HDL rs6065906 chr20:44554015 C/T
UBE2L3 HDL rs181362 chr22:21932068 T/C
PCSK9 LDL rs2479409 chr1:55504650 A/G
CELSR2 LDL rs629301 chr1:109818306 T/G
ANXA9 LDL rs267733 chr1:150958836 G/A
APOB LDL rs1367117 chr2:21263900 A/G
ABCG8 LDL rs4299376 chr2:44072576 T/G
EHBP1 LDL rs2710642 chr2:63149557 G/A
CCDC93 LDL rs10490626 chr2:118835841 A/G
LINC01101 LDL rs2030746 chr2:121309488 T/C
FN1 LDL rs1250229 chr2:216304384 C/T
CMTM6 LDL rs7640978 chr3:32533010 T/C
DNAJC13 LDL rs17404153 chr3:132163200 T/G
CSNK1G3 LDL rs4530754 chr5:122855416 A/G
DTNBP1 LDL rs3757354 chr6:16127407 T/C
HFE LDL rs1800562 chr6:26093141 A/G
SLC22A1 LDL rs1564348 chr6:160578860 C/T
MIR148A LDL rs4722551 chr7:25991826 C/T
SOX17 LDL rs10102164 chr8:55421614 A/G
PLEC LDL rs11136341 chr8:145043543 G/A
ABO LDL rs635634 chr9:136155000 T/C
ST3GAL4 LDL rs11220462 chr11:126243952 A/G
BRCA2 LDL rs4942486 chr13:32953388 C/T
NYNRIN LDL rs8017377 chr14:24883887 A/G
KPNB1 LDL rs7206971 chr17:45425115 A/C
APOH LDL rs1801689 chr17:64210580 C/A
GATA6 LDL rs79588679 chr18:19907770 T/C
LDLR LDL rs6511720 chr19:11202306 T/G
APOC1 LDL rs4420638 chr19:45422946 G/A
ZNF274 LDL rs117492019 chr19:58681861 T/G
LOC101929486 LDL rs364585 chr20:12962718 G/A
BANF2 LDL rs2328223 chr20:17845921 C/A
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Table: List of 175 genetic loci associated with major lipids (. . . continued)

Gene Trait rsid Chr:Pos (GRCh37) EA/NEA

TOP1 LDL rs6029526 chr20:39672618 A/T
MTMR3 LDL rs5763662 chr22:30378703 T/C
ASAP3 TC rs1077514 chr1:23766233 T/C
TMEM57 TC rs12027135 chr1:25775733 T/A
EVI5 TC rs7515577 chr1:93009438 A/C
FCGR2A TC rs1801274 chr1:161479745 G/A
MOSC1 TC rs2642442 chr1:220973563 G/A
IRF2BP2 TC rs514230 chr1:234858597 T/G
RAB3GAP1 TC rs7570971 chr2:135837906 A/C
ABCB11 TC rs2287623 chr2:169830155 A/G
FAM117B TC rs11694172 chr2:203532304 G/A
UGT1A1 TC rs11563251 chr2:234679384 T/C
RAF1 TC rs2290159 chr3:12628920 C/G
PXK TC rs13315871 chr3:58381287 A/G
ADAMTS3 TC rs117087731 chr4:73696709 T/A
MTHFD2L TC rs182616603 chr4:75084732 T/C
HMGCR TC rs12916 chr5:74656539 T/C
TIMD4 TC rs6882076 chr5:156390297 C/T
HLA-DRA TC rs3177928 chr6:32412435 A/G
SPDEF TC rs2814982 chr6:34546560 T/C
KCNK5 TC rs2758886 chr6:39250837 A/G
FRK TC rs9488822 chr6:116312893 T/A
HBS1L TC rs9376090 chr6:135411228 C/T
C7orf50 TC rs1997243 chr7:1083777 G/A
DNAH11 TC rs12670798 chr7:21607352 C/T
NPC1L1 TC rs2072183 chr7:44579180 C/G
UBXN2B TC rs2081687 chr8:59388565 C/T
VLDLR TC rs3780181 chr9:2640759 G/A
VIM-AS1 TC rs10904908 chr10:17260290 G/A
ERLIN1 TC rs11597086 chr10:101953705 C/T
GPAM TC rs2255141 chr10:113933886 G/A
SPTY2D1 TC rs10128711 chr11:18632984 C/T
PHLDB1 TC rs11603023 chr11:118486067 C/T
MIR100HG TC rs7941030 chr11:122522375 C/T
PHC1 TC rs4883201 chr12:9082581 G/A
ATXN2 TC rs11065987 chr12:112072424 G/A
HNF1A TC rs1169288 chr12:121416650 C/A
HPR TC rs2000999 chr16:72108093 A/G
ASGR1 TC rs314253 chr17:7091650 C/T
SUGP1 TC rs10401969 chr19:19407718 C/T
FUT2 TC rs492602 chr19:49206417 G/A
C20orf173 TC rs2277862 chr20:34152782 C/T
MAFB TC rs2902940 chr20:39091487 A/G
TOM1 TC rs138777 chr22:35711098 G/A
PPARA TC rs4253772 chr22:46627603 T/C
DOCK7 TG rs2131925 chr1:63025942 T/G
PROX1 TG rs340839 chr1:214161820 C/T
GCKR TG rs1260326 chr2:27730940 C/T
CEP68 TG rs2540948 chr2:65284623 C/T
MSL2 TG rs645040 chr3:135926622 T/G
DOK7 TG rs6831256 chr4:3473139 G/A
AFF1 TG rs442177 chr4:88030261 T/G
LOC101928448 TG rs9686661 chr5:55861786 T/C
HLA-C TG rs2247056 chr6:31265490 C/T
VEGFA TG rs998584 chr6:43757896 A/C
TYW1B TG rs13238203 chr7:72129667 T/C
TBL2 TG rs17145738 chr7:72982874 T/C
GPR85 TG rs2255811 chr7:112722196 G/A
MET TG rs38855 chr7:116358044 G/A
PINX1 TG rs11776767 chr8:10683929 C/G
NAT2 TG rs1495741 chr8:18272881 A/G
LPL TG rs12678919 chr8:19844222 G/A
TRIB1 TG rs2954029 chr8:126490972 T/A
AKR1C4 TG rs1832007 chr10:5254847 G/A
JMJD1C TG rs10761731 chr10:65027610 T/A
CYP26A1 TG rs2068888 chr10:94839642 A/G
FADS1 TG rs174546 chr11:61569830 T/C
ZPR1 TG rs964184 chr11:116648917 C/G
R3HDM2 TG rs11613352 chr12:57792580 T/C
CAPN3 TG rs2412710 chr15:42683787 A/G
FRMD5 TG rs2929282 chr15:44245931 T/A
PDXDC1 TG rs3198697 chr16:15129940 T/C
STX4 TG rs11649653 chr16:30918487 T/C
SERPINF2 TG rs2070863 chr17:1648502 T/C
TM4SF5 TG rs193042029 chr17:4667984 G/T
MPP3 TG rs8077889 chr17:41878166 C/A
INSR TG rs7248104 chr19:7224431 A/G
PEPD TG rs731839 chr19:33899065 A/G
COL18A1 TG rs114139997 chr21:46875775 A/G
PLA2G6 TG rs5756931 chr22:38546033 C/T
PNPLA3 TG rs738409 chr22:44324727 G/C

List of 175 genetic loci that have been identified by association studies (as of April 2017) that affect lipid levels in the population.
Abbreviations: EA = Effect allele; GRCh37 = Genome Reference Consortium human genome (build 37); HDL = High-density
lipoprotein cholesterol; LDL = Low-density lipoprotein cholesterol; NEA = Non-effect allele; TC = Total cholesterol; TG =
Triglycerides.
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Table 1.2: Replicated genome-wide significant loci for CAD

Chr Closest Gene(s) Putative Functions of Possible Relevance to CAD Lead SNP EAF OR

1 PPAP2B Regulation of cell–cell interactions rs17114036 0.92 1.13
1 PCSK9* Regulation of LDL receptor recycling rs11206510 0.85 1.08
1 SORT1 Regulate apoB secretion and LDL catabolism rs599839 0.78 1.11
1 IL6R IL-6 receptor, immune response rs4845625 0.46 1.05
1 MIA3 Collagen secretion rs17465637 0.73 1.08
2 LINC00954 LncRNA of unknown function rs16986953 0.07 1.09
2 APOB* Major apolipoprotein of LDL rs515135 0.78 1.07
2 ABCG5/G8* Cholesterol absorption and secretion rs6544713 0.29 1.05
2 VAMP5/8-GGCX Intracellular vesicle trafficking rs1561198 0.47 1.06
2 ZEB2-AC074093.1 ZEB2 : Transcriptional repressor rs2252641 0.44 1.03
2 WDR12 Component of nucleolar protein complex rs6725887 0.14 1.14
3 MRAS Cell growth and differentiation rs9818870 0.15 1.07
4 EDNRA Receptor for endothelin—vasoconstriction rs1878406 0.16 1.06
4 GUCY1A3 Nitric oxide signaling rs7692387 0.80 1.07
4 REST-NOA1 REST maintains VSMCs in a quiescent state rs17087335 0.21 1.06
5 SLC22A4/A5 Organic cation transporter rs273909 0.14 1.06
6 ANKS1A May inhibit PDGF-induced mitogenesis rs17609940 0.82 1.03
6 PHACTR1 Regulates protein phosphatase 1 activity rs12526453 0.71 1.10
6 KCNK5* Potassium channel protein rs10947789 0.78 1.05
6 TCF21 Transcriptional regulator rs12190287 0.64 1.06
6 SLC22A3-LPAL2-LPA Lipoprotein(a) rs2048327 0.35 1.06

rs3789220 0.02 1.42
6 PLG Fibrinolysis rs4252120 0.74 1.03
7 NOS3 Production of nitric oxide rs3918226 0.06 1.14
7 HDAC9 Represses MEF2 activity/beige adipogenesis rs2023938 0.10 1.08
7 ZC3HC1 Encodes NIPA, regulator of cell proliferation rs11556924 0.69 1.08
8 LPL* Lipolysis of TG-rich lipoproteins rs264 0.85 1.06
8 TRIB1* TG, MAPK signaling, SMC proliferation rs2954069 0.55 1.04
9 CDKN2BAS Cellular proliferation, platelet function rs10757274 0.48 1.21
9 ABO* IL-6, E-selectin, LDL-C levels rs579459 0.21 1.08
10 KIAA1462 Component of endothelial cell–cell junctions rs2505083 0.40 1.07
10 CXCL12 Endothelial regeneration; neutrophil migration rs501120 0.81 1.08

rs2047009 0.48 1.06
10 LIPA Intracellular hydrolysis of cholesteryl esters rs1412444 0.37 1.07

rs11203042 0.45 1.04
10 CYP17A1-CNNM2-NT5C2 CYP17A1 : Steroidogenic pathway rs12413409 0.89 1.08
11 PDGFD Role in SMC proliferation rs974819 0.33 1.07
11 SWAP70 Leukocyte and VSMC migration and adhesion rs10840293 0.55 1.06
11 ZNF259 APOA5 APOC3 TG-rich lipoprotein metabolism rs964184 0.18 1.05
12 SH2B3 Negative regulator of cytokine signaling rs3184504 0.42 1.07
12 ATP2B1 Intracellular calcium homeostasis rs7136259 0.43 1.04
12 KSR2 Suppressor of Ras2–cell proliferation; obesity rs11830157 0.36 1.12�
13 FLT1 VEGFR family; angiogenesis rs9319428 0.31 1.04
13 COL4A1/A2 Type IV collagen chain of basement membrane rs4773144 0.43 1.05

rs9515203 0.76 1.07
14 HHIPL1 Unknown rs2895811 0.41 1.04
15 ADAMTS7 Proliferative response to vascular injury rs7173743 0.56 1.08
15 SMAD3 Downstream mediator of TGF-b signaling rs56062135 0.79 1.07
15 MFGE8-ABHD2 MFGE8 : Lactadherin–VEGF neovascularization rs8042271 0.90 1.10
15 FURIN Endoprotease—TGF-b1 precursor and type I MMP rs17514846 0.44 1.05
17 BCAS3 Rudhira—EC polarity and angiogenesis rs7212798 0.15 1.08
17 RAI1-PEMT-RASD1 PEMT encoded protein converts PE to PC rs12936587 0.61 1.03
17 SMG6 Role in nonsense mediated RNA decay rs216172 0.35 1.05
17 UBE2Z Protein ubiquination; apoptosis rs46522 0.51 1.04
18 PMAIP1-MC4R* PMAIP1 : HIF1A-induced proapoptotic gene; MC4R:

Leptin signaling—obesity
rs663129 0.26 1.06

19 LDLR* LDL clearance rs1122608 0.77 1.08
19 APOE LDL and VLDL clearance rs4420638 0.17 1.10
19 ZNF507 Unknown rs12976411 0.09 0.67�
21 KCNE2 Maintains cardiac electric stability rs9982601 0.13 1.12
22 POM121L9P-ADORA2A Adenosine A2a receptor: infarct-sparing effects rs180803 0.97 1.20

List of independent and replicated loci for CAD based on published studies of CAD (as of April 2017). *Locus is also associated
with major lipids (see Table 1.1). �By recessive model. Abbreviations: CAD = Coronary artery disease; Chr = Chromosome;
EAF = Effect allele frequency; EC = Endothelial cells; HIF1A = Hypoxia inducible factor 1A; IL = Interleukin; LDL = Low-
density lipoprotein; LDL-C = Low-density lipoprotein cholesterol; LncRNA = Long noncoding RNA; MAPK = Mitogen-activated
protein kinase; MEF2 = Myocyte enhancer factor 2; MMP = Matrix metalloproteinase; NIPA = Nuclear interacting partner
of anaplastic lymphoma kinase; OR = Odds ratio; PC = Phosphatidylcholine; PDGF = Platelet-derived growth factor; PE =
Phosphatidylethanolamine; REST = RE-1 silencing transcription factor; SMC = Smooth muscle cell; SNP = Single-nucleotide
polymorphism; TG = Triglyceride; TGF-b = Transforming growth factor-b; VEGFR = Vascular endothelial growth factor receptor;
VLDL = Very low-density lipoprotein; VSMC = Vascular smooth muscle cells.

1.3 Metabolomics

1.3.1 Introduction to metabolomics

Metabolomics attempts to capture the complexity of metabolic networks by simultaneously

studying a range of metabolic markers, called metabolites, within biological fluids, cells, and

tissues45. Measurement of metabolites can provide a direct reflection of the physiological

state, making them an ideal method of tracking changes induced by disease or treatment.
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Figure 1.8: Role of genomics, metabolomics, and other types of “–omics” data in inform-
ing clinical outcomes

Genomics contributes to variations at the level of the transcriptome, proteome, and metabolome, which
influences clinical outcomes. In addition, environmental factors can influence all four “–omics” levels
leading to a clinical phenotype. The double-ended arrows indicate the interaction of metabolites with
clinical outcome measures and genomic variants, which could reveal novel pathways associated with
clinical phenotypes, which can then be validated by functional genomic studies and by investigating
the interaction of those genetic variants with clinical outcomes. Source: Neavin D, et al. Metabolomics.
2016;12(7):1-647.

Metabolomics can also be used to identify specific metabolic phenotypes that are associated

with given genetic modifications45. Since metabolites are closer in proximity to clinical

outcomes than proteins or genes, they contain more information on the health status of

individuals compared to other “–omics” technologies46. The relationship between genomics,

metabolomics, and other types of “–omics” data, and how this information can inform

clinical outcomes and the identification of novel metabolic pathways, is shown in Figure 1.8.

Lipidomics, a subset of metabolomics concerned with the study of lipid profiles, involves

profiling a biological sample to yield information on the composition and abundance of lipid

subfractions in the body. While lipidomics technically falls under the umbrella of metabo-

lomics, it can also be viewed as a stand-alone field due to the uniqueness of lipids and their

specific functions relative to other metabolites48. The field has seen recent technological

advances, particularly in mass spectrometry49,50 and data processing51. The various types

of platforms and processing methods used for lipidomics will be described in Section 3.1.

There are currently more than 30 000 unique identifiable lipid species52. Lipidomic analysis

of human blood has the potential to uncover novel biomarkers and identify the role of

specific lipids in diseases, including CVD53, cancer54, and neurodegenerative disorders55.

Lipidomics can also be used to identify dietary patterns and objectively assess adherence

to dietary programmes aimed at reducing obesity and dyslipidaemia56.

Although standard lipid biomarkers remain a fundamental part of everyday clinical

practice, lipidomics takes a more global view of lipid metabolism and can provide a
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detailed picture of abnormalities in lipid levels, in contrast to the measurement of isolated

lipoproteins11. Lipidomics can be used to describe specific lipids involved in dynamic

physiological changes and characterise any abnormalities in lipid metabolism that impact

disease aetiology11. Studies of the hundreds of different types of lipids that make up these

broad overall lipid classes have the ability to explore the underlying lipid pathways and

the association with CHD in much greater detail, and can lead to the identification of new

therapeutic targets and novel therapeutic agents11,57–59.

Lipid species share common characteristics as they are all made up of fatty acids

attached to a backbone. Lipid classes are defined based on a characteristic head group

within the backbone, while the diversity of lipid species within each lipid class derives from

the various combinations of fatty acids, which can vary in several characteristics, including

the length of each carbon chain, the number of double bonds on each chain, the position

of the double bonds, and the configuration (cis or trans) of the double bonds48,60.

To return to the specific triglyceride example mentioned earlier, most studies of triglyc-

erides have treated triglycerides as a single compound, whereas in reality triglycerides are

composed of three acyl chains esterified to a glycerol backbone and can take on a broad

range of molecular weights61. The generic structure of a triglyceride molecule is shown in

Figure 1.9. Together the diverse range of individual triglyceride metabolites make up the

overall lipid class for triglycerides that is measured by a standard clinical chemistry assay;

thus, through lipidomics the individual subtypes of triglycerides can be explored in much

greater detail. A study of triglyceride metabolites found that triglycerides with a fewer

number of acyl chain carbons and fewer acyl chain double bonds were associated with an

increased risk of T2D, whereas triglycerides with a higher number of acyl chain carbons and

more double bonds were associated with a decreased risk of T2D, even after adjustment

for age, sex, body mass index (BMI), fasting glucose, fasting insulin, total triglycerides,

and HDL-C61. In addition to T2D, the nature of the association of triglycerides with

CHD may depend on their structure—it is likely that some subtypes of triglycerides are

associated with increased risk of CHD while others are associated with decreased risk, but

the metabolic pathways involved are currently not well understood. Therefore, a more

thorough characterisation of triglyceride-mediated pathways and the associated risks of

various subtypes of triglycerides would contribute to a better understanding of the nature

of the association of triglycerides with risk of CHD. In addition to triglycerides, other

lipid species may also have different patterns of risk depending on their structure and the

metabolic pathways involved.
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Figure 1.9: Generic structure of a triglyceride molecule

A triglyceride molecule consists of a glycerol backbone with three fatty acid chains (labelled in this
diagram as R1, R2, and R3). The number of carbon atoms and double bonds on each chain can differ.
Each unique combination of carbon atoms and double bonds on the three chains results in a different
type of triglyceride. Source: Adapted from Quehenberger O, et al. J Lipid Res, 2010;51(11):3299-
330562.

1.3.2 Association of metabolites with risk of CHD

Clinicians currently use a relatively narrow set of blood chemistry analytes to assess

health and disease states, such as measuring glucose to monitor diabetes, circulating lipid

levels—cholesterol, LDL-C, HDL-C, and triglycerides—to assess cardiovascular health, and

markers such as creatinine to diagnose renal disorders. However, particularly in the case of

major lipids, these measures represent the sum of a complex mixture of molecular species

present in the lipoprotein particles, and although they capture the bulk components of the

lipodome and provide modest insight into the relative distributions of lipoproteins, they

do not capture the full complexity of the lipidome12. A partial map of metabolic pathways

between lipid subclasses is shown in Figure 1.10, which clearly illustrates the complexity

of lipid pathways. Metabolomics offers the ability to reveal a far more comprehensive

metabolic profile for individuals or patients, and lipid metabolites can offer improved CVD

risk prediction beyond that of traditional risk factors53. Given that many cardiovascular

pathologies have an underlying metabolic basis, metabolomics can reasonably be used

to estimate the relative risk of patients, understand pathophysiological mechanisms, and

monitor treatment progress45. Metabolomics and lipidomics are also expected to play an

important role in identifying and characterising disease states and in cardiometabolic drug

development52. The authors of a recent white paper indicated that including metabolomics

data in precision medicine initiatives is “vital and necessary”63, with the rationale that

future metabolic signatures will:

(1) provide predictive, prognostic, diagnostic, and surrogate markers of diverse

disease states; (2) inform on underlying molecular mechanisms of diseases;

(3) allow for sub-classification of diseases, and stratification of patients based

on metabolic pathways impacted; (4) reveal biomarkers for drug response phen-
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otypes, providing an effective means to predict variation in a subject’s response

to treatment (pharmacometabolomics); (5) define a metabotype for each spe-

cific genotype, offering a functional read-out for genetic variants; (6) provide

a means to monitor response and recurrence of diseases, such as cancers; and

(7) describe the molecular landscape in human performance applications and

extreme environments63.

Given the large scope and potential for metabolomics in informing CHD risk and

numerous other diseases, a deeper understanding of the metabolic pathways involved and

the genetic determinants of these metabolites is needed.

A number of studies have examined the association of metabolites with risk of CHD

and related traits, such as diabetes and hypertension. To give several examples, a nested

case-control study using samples from two large prospective cohorts found that the metabo-

lite 2-aminoadipic acid was associated with risk of developing diabetes, indicating that this

metabolite could be an important biomarker for diabetes risk and a potential modulator

of glucose homoeostasis64. Another study found significant differences in individuals with

impaired fasting glucose and T2D compared with healthy controls in levels of multiple me-

tabolites, including α-hydroxybutyrate, alanine, proline, phenylalanine, glutamine, several

branched-chain amino acids, several low-carbon number lipids, pyroglutamic acid, glycero-

phospholipids, and sphingomyelins65. Additionally, a nested case-cohort study within the

EPIC study found that odd-chain (C15:0 [pentadecanoic acid] and C17:0 [heptadecanoic

acid]) and long-chain (C20:0 [arachidic acid], C22:0 [behenic acid], C23:0 [tricosanoic acid],

and C24:0 [lignoceric acid]) saturated fatty acids were negatively associated with incident

T2D, while short-chain saturated fatty acids (C14:0 [myristic acid], C16:0 [palmitic acid],

and C18:0 [stearic acid]) were positively associated with incident T2D66. Another analysis

using the same cohort found that among long-chain ω-3 polyunsaturated fatty acids (PU-

FAs), α-linoleic acid (ALA) was inversely associated with T2D, but eicosapentaenoic acid

(EPA) and docosahexaenoic acid (DHA) were not significantly associated; among ω-6 PU-

FAs, linoleic acid (LA) and eicosadienoic acid (EDA) were inversely associated with T2D67.

Other studies have identified increased levels of certain metabolites in individuals with

hypertension compared with controls, as described in a review by Nikolic et al68. Regard-

ing CHD itself, a lipidomics analysis on a subcohort of the prospective population-based

Malmö Diet and Cancer study found that reduced levels of several species of lysophos-

phatidylcholines and triglycerides and increased levels of a sphingomyelin species were

associated with incident CVD69. Another analysis using metabolomics data from several
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Figure 1.10: Map of lipid subclass metabolic pathways

Partial metabolic map of lipid subclasses commonly measured in lipidomics studies. Source: Mundra
PA, Shaw JE & Meikle PJ. Int J Epidemiol. 2016;45(5):1329-133812.

population-based cohorts found that certain species of lysophosphatidylcholines and sphin-

gomyelins were negatively associated with incident CVD, while a monoacylglycerol species

was positively associated with incident CVD70. Additionally, a prospective population-

based lipidomics study found that species of cholesteryl esters, lysophosphatidylcholines,

phosphatidylcholines, phosphatidylethanolamines, sphingomyelins, and triglycerides were

associated with risk of CVD53.

1.4 Genetic determinants of metabolites

1.4.1 Published genetic associations with metabolites

Out of the 49 769 reported unique SNP–trait associations from the GWAS diagram shown

previously, 390 of these associations involve metabolite measurements as traits. Figure 1.11

shows associations with metabolites highlighted in blue, with all other traits greyed out.

The figure clearly demonstrates that various metabolites are associated with a wide range

of SNPs across the entire genome. This is important because it shows that not only is

there an enormous diversity of metabolites themselves, but they are also influenced by a

wide range of genetic determinants and they affect many different metabolic pathways.
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Figure 1.11: GWAS diagram of all SNP–trait associations with metabolite measurements highlighted

GWAS diagram of all SNP–trait associations, with P-values ≤ 5 × 10−8, mapped onto the human genome by chromosomal locations and displayed on the human
karyotype, with 390 SNP–trait associations for “metabolite measurements” highlighted (downloaded 01-Sep-2017 from http://www.ebi.ac.uk/gwas/). Source: Welter
D, et al. Nucleic Acids Res. 2014;42:D1001-634.
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1.4.2 Literature review of published mGWAS

A metabolite-based genome-wide association study (mGWAS) is defined as a GWAS where

metabolic traits are used as the phenotypic traits71. This is in contrast to a metabolome-

wide association study (MWAS), which investigates associations between metabolic phen-

otypes and disease risk so it can be used to identify disease-related biomarkers71. The

first-ever mGWAS investigating associations between genetic variants and metabolite pro-

files, published in 2008, involved quantitative measurement of 363 metabolites in serum

samples from 284 male participants in the KORA study72. Although four loci associated

with metabolites were discovered, the sample size was quite limited and there was no

replication data. However, a follow-up study was published in 2010 using a much larger

sample from the same population (1809 participants) along with a replication cohort of

422 participants from TwinsUK, which resulted in the discovery of eight replicated loci

associated with metabolites73. Building on this work, a study published in 2011 involving

1768 participants from KORA and 1052 participants from TwinsUK found significant

associations of metabolites with 37 loci. Meanwhile, several other studies were published

over this time period based on different populations, and lately the number of published

mGWAS has been continuing to steadily rise.

A recent review of mGWAS published in 2015 identified 21 such publications74. How-

ever, this review missed several important studies and numerous additional studies have

since been published75–84. In theory, one could say that any study involving metabolic

phenotyping using mass spectrometry (MS) or nuclear magnetic resonance (NMR) should

be included as an mGWAS. Indeed, a search for “metabolite measurement” using Exper-

imental Factor Ontology (EFO) (http://www.ebi.ac.uk/efo/) search terms identified

168 studies. However, this would end up including studies that only involve a single trait

measured using MS (e.g. vitamin D or Bisphenol A [BPA]), or that measured substances

not typically assayed by large-scale metabolomics platforms such as heavy metals or trace

minerals (e.g. copper, selenium, zinc, arsenic, or lead). While it is difficult to provide a

precise definition of mGWAS, the literature review used in this dissertation restricted the

definition of mGWAS so that it only included studies of high-dimensional metabolomics,

i.e. studies that measured a wide-variety of metabolic traits that are involved in human

metabolism. Therefore, some studies that measured traits such as heavy metals and trace

minerals were excluded if they only measured a handful of metabolites, while metabo-

lites classed as xenobiotics (foreign chemical substances in the body such as drugs) were

included if they were measured by a high-dimensional metabolomics platform that also
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assayed hundreds of other metabolites. Despite this inconsistency, this definition narrowed

the focus of the literature review to specific types of high-dimensional metabolomics stud-

ies, rather than including studies that measured any possible trait using MS or NMR. The

metabolites that were measured by these mGWAS studies, therefore, included all lipid-

related traits, apolipoproteins, amino acids, ketone bodies, glycolysis-related metabolites,

carbohydrates, cofactors and vitamins, energy-related metabolites, nucleotides, peptides,

and xenobiotics. The review paper was used to develop an initial list of references, and

additional studies75–84 were identified through further scanning of the literature. April

2017 was used as the cut-off date, so any mGWAS studies published on or before this date

were included. Although this approach was not technically a systematic review, it was still

quite thorough and comprehensive. Supplementary data from each of the published studies

were downloaded (except for a few studies where the data were unavailable), and the files

were compiled into a single database in a consistent format that contained information such

as the name of the study, trait, SNP, chromosome, position, effect allele, non-effect allele,

effect size, standard error, and P -value. In total, 31 published mGWAS were identified

through the literature review, which are listed in Table 1.3. A plot of the cumulative

number of mGWAS published per year is shown in Figure 1.12.

While all of the mGWAS studies used either MS or NMR (58 % used MS, 35 % used

NMR, and 6 % used both), a variety of different metabolomics platforms were employed to

obtain the metabolite measurements. Biocrates (typically the AbsoluteIDQ) was used by

five studies (16 %), Bruker (usually the Biospin Avance) was used by eight studies (26 %),

Metabolon (usually GC-MS, UHPLC-MS/MS2, and/or LC-MS) was used by six studies

(19 %), and four studies (13 %) used multiple metabolomics platforms. The mGWAS

studies also measured the samples in a range of different fluids: 17 (55 %) used serum, six

(19 %) used plasma, four (13 %) used urine samples, and the remaining four studies used

either whole blood or a combination of different biofluids. Each study measured a median

of 217 metabolites, and out of the 13 studies that also analysed ratios of metabolites,

a median of 15 180 ratios were used. The metabolites measured included amino acids,

acylcarnitines, phospholipids, sphingolipids, fatty acids, and NMR peaks. The median

number of participants in the discovery samples was 1960, and out of the nine studies that

included a replication cohort, there was a median of 923 participants in the replication

sample. Twenty-three (74 %) of the studies involved European participants and six (19 %)

involved study participants from North America.
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Table 1.3: Summary of mGWAS studies

First
author

Year Journal PMID Cohort(s) Metabolomics
Method(s)

Metabolomics
Platform(s)

Bio-
fluid(s)

Metabolic trait(s) No. me-
tabolites

Study pop-
ulation(s)

No.
partici-
pants

No.
loci

No.
SNPs

No.
unique
SNPs

Burkhardt 2015 PLoS Genet 26401656 LIFE Leipzig Heart
Study, Sorb Study

MS Applied Biosys-
tems

Blood Amino acids, acylcar-
nitines

62 + 34
ratios

German 2 107 +
923

16 4 522 876

Chasman 2009 PLoS Genet 19936222 Women’s Genome
Health Study (WGHS)

NMR LipoProtein-II Plasma NMR-based lipopro-
tein fractions

17 North Amer-
ican (Eu-
ropean
ancestry)

17 296 43 668 71

Demirkan 2012 PLoS Genet 22359512 ERF, MICROS,
NSPHS, ORCADES,
VIS

MS Micromass Plasma Phospholipids &
sphingolipids

153 +
ratios

European 4 034 35 1 122 35

Demirkan 2015 PLoS Genet 25569235 Erasmus Rucphen
Family (ERF)

NMR Bruker BioSpin
Avance II

Serum NMR-derived metabo-
lites

42 European 2 118 8 241 241

Draisma 2015 Nat Commun 26068415 TwinsUK, KORA,
EGCUT, LLS, QIMR,
ERF, NTR

MS Biocrates Abso-
luteIDQ p150

Serum Mainly phospholipids 129 European 7 478 +
1 182

31 123 59

Gieger 2008 PLoS Genet 19043545 KORA MS Biocrates Serum Targeted MS 363 +
131 769
ratios

German 284 4 30 432 2 906

Hartiala 2016 Nat Commun 26822151 Cleveland Clinic Gene-
Bank Study

MS Applied Biosys-
tems

Plasma Betaine 1 American 8 668 2 6 6

Hicks 2009 PLoS Genet 19798445 ERF, MICROS,
NSPHS, ORCADES,
VIS

MS Micromass Plasma
&
serum

Sphingolipids 33 + 43
ratios

European 4 400 5 483 53

Hong 2013 Hum Mutat 23281178 CAPS MS Proteomics &
Metabolomics
Facility at
Colorado State
University

Serum MS peaks 6 138 Swedish 402 +
489

7 15 825 3 644

Illig 2010 Nat Genet 20037589 KORA, TwinsUK MS Biocrates Abso-
luteIDQ

Serum Mainly phospholipids 163 +
26 406
ratios

German,
British

1 809 +
422

9 9 358 4 767

Inouye 2012 PLoS Genet 22916037 Young Finns Study
(YFS), Northern Fin-
land Birth Court 1966
(NFBC66)

NMR Bruker Biospin
Avance III

Serum Mainly lipid traits &
low-weight metabo-
lites

130 Finnish,
British

1 905 +
4 703

34 34 34

Kettunen 2012 Nat Genet 22286219 YFS, NFBC1966,
HBCS, GenMets,
DILGOM, Twins

NMR Bruker Biospin
Avance III

Serum Mainly lipid traits 117 + 99
ratios

Finnish 8 330 31 14 173 1 034

Kettunen 2016 Nat Commun 27005778 14 cohorts from Europe NMR Bruker Biospin
Avance III

Blood Lipoprotein lipids
& subclasses, fatty
acids, amino acids,
glycolysis precursors

123 European 24 925 62 8 8

Kraus 2015 PLoS Genet 26540294 CATHGEN MS Waters Corpora-
tion

Plasma FIA-MS derived,
mainly acylcarnitines
and amino acids

63 American 1 490 +
2 022

6 50 32

Krumsiek 2012 PLoS Genet 23093944 KORA MS Metabolon
UHPLC-MS-
MS2 & GC-MS

Serum Non-targeted MS
(unknowns)

517 German 1 768 34 948 474

Long 2017 Nat Genet 28263315 TwinsUK MS Metabolon
UHPLC-MS-
MS2

Serum Non-targeted MS 644 British 1 960 101 198 279 128 007

Montoliu 2013 Genes Nutr 23065485 São Paulo Brazil gen-
eral population

NMR Biocrates Abso-
luteIDQ

Urine NMR peaks 2 425 Brazilian 265 2 0 0
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Table: Summary of mGWAS studies (. . . continued)
First
author

Year Journal PMID Cohort(s) Metabolomics
Method(s)

Metabolomics
Platform(s)

Bio-
fluid(s)

Metabolic trait(s) No. me-
tabolites

Study pop-
ulation(s)

No.
partici-
pants

No.
loci

No.
SNPs

No.
unique
SNPs

Nicholson 2011 PLoS Genet 21931564 MolTWIN, MolObb NMR & MS Biocrates Ab-
soluteIDQ &
Bruker BioSpin

Urine
&
plasma

Urine: NMR peaks;
Plasma: mainly
phospholipids

Urine: 512,
plasma:
163 +
ratios

British 211 3 1 807 1 297

Petersen 2014 Hum Mol
Genet

24014485 KORA NMR & MS Biocrates, Meta-
bolon GC-MS &
LC-MS-MS, &
Lipofit

Serum Non-targeted MS
(knowns & un-
knowns); NMR-
derived lipid-related
traits

649 (151 +
483 + 15)

German 1 814 20 2 909 1 600

Raffler 2013 Genome Med 23414815 KORA NMR Biocrates Abso-
luteIDQ p150

Plasma NMR peaks 8 600 +
124 750
ratios

German 1 757 7 7 7

Raffler 2015 PLoS Genet 26352407 SHIP, KORA NMR Bruker BioSpin
GmbH

Urine NMR-derived me-
tabolites & NMR
peaks

15 379 fea-
tures (incl.
ratios)

European 3 861 +
1 691

26 35 29

Rhee 2013 Cell Metab 23823483 Framingham Heart
Study (FHS)

MS Applied Biosys-
tems

Plasma Amino acids, amines,
polar metabolites,
lipids

217 American
(European
ancestry)

2 076 31 6 730 31

Ried 2014 Hum Mol
Genet

24927737 KORA, TwinsUK MS Biocrates Abso-
luteIDQ p150 &
Metabolon

Serum Targeted MS: mainly
phospholipids; Non-
targeted MS: knowns

344 (151 +
193)

European 1 809 +
843

12 0 0

Rueedi 2014 PLoS Genet 24586186 Cohorte Lausannoise
(CoLaus), TasteSensom-
ics

NMR Bruker Biospin
Avance III

Urine NMR peaks 1276 European,
Brazilian

835 +
601

11 76 34

Shin 2014 Nat Genet 24816252 KORA, TwinsUK MS Metabolon
UHPLC-MS-
MS2 & GC-MS

Serum Non-targeted MS
(knowns & unknowns)

486 +
98 346
ratios

European 7 824 145 144 144

Suhre 2011 Nat Genet 21572414 SHIP, KORA NMR Bruker BioSpin
DRX-400

Serum NMR-derived metabo-
lites

59 + 1 661
ratios

German 862 +
992

5 575 628 544 540

Suhre 2011 Nature 21886157 KORA, TwinsUK MS Metabolon
UHPLC-MS-
MS2 & GC-MS

Urine Non-targeted MS
(knowns)

276 +
37 179
ratios

German,
British

1 768 +
1 052

37 15 475 12 874

Tukiainen 2012 Hum Mol
Genet

22156771 YFS, NFBC1966,
HBCS, GenMets,
DILGOM

NMR Bruker Biospin
Avance III

Serum Mainly lipid traits 117 + 99
ratios

Finnish 8 330 30 62 341 3 008

Yet 2016 PLoS Genet 27073872 TwinsUK MS Biocrates Ab-
soluteIDQ &
Metabolon

Serum Targeted & non-
targeted MS

605 unique
(160 +
488)

British 1 001 26 62 40

Yu 2013 Genet Epi-
demiol

23934736 ARIC MS Metabolon GC-
MS & LC-MS

Serum Non-targeted MS
(knowns & unknowns)

3 African
American

1 260 2 76 76

Yu 2014 PLoS Genet 24625756 ARIC MS Metabolon GC-
MS & LC-MS

Serum Non-targeted MS
(knowns & unknowns)

308 African
American

1 260 19 19 15

The list of metabolomics GWAS studies included in this table is based on a literature search conducted in April 2017, so only studies published on or prior to this date are included.
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Figure 1.12: Plot showing number of mGWAS published per year

A literature review was conducted to determine the number of metabolite-based genome-wide associ-
ation studies (mGWAS) published per year.

1.5 Overview of Mendelian randomisation

Mendelian randomisation (MR) is the use of genetic variants as proxies for increased or

decreased exposure to a modifiable phenotype (i.e. risk factor) to help judge whether

clinical or pharmaceutical interventions on the risk factor are likely to lead to changes

in a disease outcome85,86. MR is sometimes described as “nature’s randomised trial”

because genetic variants can be considered to be randomly distributed in a population

with respect to environmental and social factors which may be important confounders

(Figure 1.13)87. Since genetic polymorphisms are allocated approximately randomly at

the time of conception, inheriting an allele associated with lower levels of low-density

lipoprotein cholesterol (LDL-C), for example, is analogous to being randomly allocated

to an LDL-C-lowering therapy at birth, while inheriting the other allele is analogous to

being randomly allocated usual care88. Provided that the polymorphism is only associated

with LDL-C but not with any other traits, then the only difference between groups being

compared should be their LDL-C levels. Therefore, comparing the risk of CHD among

individuals with and without an LDL-C-lowering allele should provide an estimate of the

causal effect of LDL-C on risk of CHD in a manner analogous to a long-term randomised

trial88.

In addition to the analogy with randomised trials, MR is also akin to instrumental vari-

able (IV) approaches that are frequently utilised in econometrics, in which the instrument

is a variable that is related to the outcome only through its association with the modifiable
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Figure 1.13: Analogy between a Mendelian randomisation study and a randomised trial

Source: Burgess S, et al. BMJ. 2012;345:e732587.

exposure of interest89. There are three basic assumptions of IV analysis that are required

to be met in order for a genetic variant to be used to estimate a causal estimate for a risk

factor86. These assumptions are that:

1. The variant is associated with the risk factor,

2. The variant is not associated with any confounder of the risk factor–outcome associ-

ation, and

3. The variant does not affect the outcome, except possibly via its association with the

risk factor.

The first assumption ensures that the genetic variant is not a weak instrument for

evaluating the causal effect. Since the variant is used to define subgroups of individuals

who either have or do not have the effect allele, the second assumption ensures that all

other variables are distributed equally between the subgroups except for the risk factor of

interest. The third assumption ensures that the only causal pathway(s) from the genetic

variant to the outcome are via the risk factor, which means that the variant is not directly

associated with the outcome.

If G is the genetic variant, X is the exposure or risk factor of interest, Y is the outcome,

and U is any unmeasured confounder, then the IV assumptions can be stated as86:

1. G is not independent of X,

2. G is independent of U, and

3. G is independent of Y conditional on X and U.
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Figure 1.14: Directed acyclic graph of instrumental variable assumptions for univariable
and multivariable MR

Metabolite
Genetic
variants

CHD

Confounders

//

//

(a) Univariable Mendelian randomisation

Metabolite 1

Genetic
variants

CHD

Confounder 2

Metabolite 2

Confounder 1//

//

//

(b) Multivariable Mendelian randomisa-
tion

A blue arrow indicates that there should be an association between the two boxes under instrumental
variable (IV) assumptions; a red dashed arrow indicates that an association between the boxes would
violate IV assumptions.

MR can be performed using a single trait as the risk factor of interest or using multiple

traits. Since lipid metabolites are highly correlated, univariable MR for a single lipid

may not fully take into account the influence of modifications in lipid levels on disease

outcomes. In univariable MR of lipid metabolites, one or more genetic variants are used

as instrumental variables to help determine whether a single lipid has a causal effect on

a disease outcome, whereas in multivariable MR, multiple lipids are assessed for a causal

effect on a disease. A directed acyclic graph depicting the MR assumptions as random

variables for both the univariable and multivariable scenarios is shown in Figure 1.14. In

both situations, the assumptions of MR would be violated if any of the genetic variants

used as instrumental variables are directly associated with the outcome, or if they are

associated with any confounders of the association between the risk factor(s) and the

outcome. If any of the MR assumptions are violated, the genetic variants would have

a causal path to the outcome using a different route other than via the risk factor(s) of

interest, so they would not be suitable instrumental variables.

The simplest way of estimating the causal effect of a risk factor on a outcome is using

the ratio of coefficients method, or the Wald method86. To use this approach, the IV can

be thought of as a SNP where two of the three subgroups are merged together, which

would reflect either a dominant or recessive genetic model (e.g. for a dominant model,

the two subgroups would be AA [major homozygote] and Aa/aa [heterozygote/minor

homozygote])86. Under the assumption of linearity, the ratio estimate can be calculated

simply by dividing the average difference in the outcome between the two subgroups by

the average difference in the risk factor between the two subgroups ( ∆Y
∆X )86. The equation

for estimating the causal effect using the ratio method can therefore be expressed as:
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Ratio method estimate (continuous IV) =
β̂Y |G

β̂X|G
(1.1)

where β̂X|G is the coefficient of the gene (G) in the regression of the risk factor (X ) on

G, representing the change in X for a unit change in G, and β̂Y |G is the coefficient of G in

the regression of Y on G.

The standard error of the ratio estimate can then be approximated as:

Standard error of ratio estimate '

√√√√se(β̂Y |G)2

β̂2
X|G

+
β̂2
Y |G se(β̂X|G)2

β̂4
X|G

(1.2)

The ratio method only works for a single genetic variant, so more sophisticated ap-

proaches are needed when there are multiple IVs. One approach that has been developed

for combining summary-level data on multiple genetic variants that are not in LD is to

combine the ratio estimates from each variant in an inverse-variance weighted (IVW) meta-

analysis86. The combined IVW estimate (where k refers to each of the genetic variants

used as IVs) is:

β̂IV W =

∑
k β̂Xkβ̂Y kσ

−2
Y k∑

k β̂
2
Xkσ

−2
Y k

(1.3)

The approximate standard error of the IVW estimate is:

se(β̂IV W ) '
√

1∑
k β̂

2
Xkσ

−2
Y k

(1.4)

The most straightforward application of MR involves taking a single genetic variant

that is associated with the risk factor, but not associated with other risk factors that may

represent confounders or alternative causal pathways to the outcome90. Such a genetic

variant may be hard to find, but for protein biomarkers, such as fibrinogen or C-reactive

protein, genetic variants in or near the relevant coding region (in these cases, the FGB

and CRP gene regions, respectively91,92) have been shown to have good specificity of

association with the risk factor in a number of cases. An association between such a

genetic variant and the outcome under these circumstances is indicative of a causal effect
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of the risk factor on the outcome93. In other cases, such as for interleukin-194, genetic

variants may be associated with alternative risk factors, but so long as these risk factors

represent a single causal pathway—that is, they are upstream or downstream of the target

risk factor and there is no alternative causal pathway from the genetic variants to the

outcome that does not go via the target risk factor—the assumptions necessary for MR

would not be violated95.

Beyond simply determining whether or not an association is causal, an estimate of the

causal effect of the risk factor on the outcome can be obtained under further parametric

assumptions including linearity96. Although the causal estimate is likely to differ from the

impact of intervening on the risk factor in practice, and so the magnitude of the causal

estimate should not be taken too literally87, the causal estimate is a valid test statistic

for testing the causal hypothesis of whether there is a causal effect of the exposure on the

outcome. This enables information on multiple genetic variants to be combined into a

single causal estimate, which has greater power to detect a causal effect than a test of the

association of any of the individual genetic variants with the outcome97.

One recent innovation in MR is the use of summarised data on genetic associations

with the risk factor and the outcome to obtain a causal estimate98,99. These associa-

tions can come from a single dataset (one-sample setting), or from separate datasets

(two-sample setting)100. A practical advantage of the use of summarised data is the abil-

ity to analyse publicly-available data from large consortia101—such as the Global Lipids

Genetics Consortium (GLGC)35, which has made associations of genetic variants with

LDL-C, HDL-C, and triglycerides in over 188 000 individuals available (http://www.sph.

umich.edu/csg/abecasis/public/lipids2013/), and CARDIoGRAMplusC4D43, which

has made associations with CHD risk available in over 60 000 cases and 125 000 controls

(http://www.cardiogramplusc4d.org). These methods and data resources—in particu-

lar, the large sample sizes of consortium data and the ease of obtaining genetic association

estimates—have revolutionised the practice and power of MR investigations102.

1.5.1 MR analyses of major lipids on CHD risk

MR provides an invaluable tool to assess the causal effect of major circulating lipids on risk

of CHD. However, in fact, the genetic evidence for a link between hypercholesterolaemia

and CHD risk has a long history103 that precedes the popularisation of MR. Links between

LDL-C and CHD risk are well established for both common and rare genetic variants104,

and formal approaches for MR have clearly shown a deleterious causal effect of increased
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LDL-C on CHD risk105,106. In many ways, despite not being a protein biomarker, LDL-C

is an ideal risk factor for use in MR. Several genetic variants associated with LDL-C

are located in gene regions that also have corresponding pharmaceutical interventions,

such as the HMGCR gene region for statins107, and the PCSK9 gene region for PCSK9-

inhibitors108,109. Indeed, an MR analysis using variants in the NPC1L1 gene region110 was

published in advance of a large trial of ezetimibe (an NPC1L1-inhibitor)111, and correctly

predicted its result. The possible benefit of combination therapy by statin and ezetimibe has

been considered in a factorial MR analysis, comparing individuals with genetically-lowered

LDL-C due to (1) HMGCR variants alone, (2) NPC1L1 variants alone, and (3) the presence

of variants in both gene regions112. Genetic variants in different gene regions, as well as

genetic variants with varying strengths of association with LDL-C concentrations (including

rare gain-of-function and loss-of-function mutations with large effects on LDL-C) have been

shown to have associations with CHD risk that are proportional to their association with

LDL-C113, both strengthening the argument that LDL-C is the relevant causal risk factor,

and suggesting that all mechanisms of LDL-C-lowering seem to have similar effects on

CHD risk. However, the magnitude of the genetically-predicted causal effect of LDL-C on

CHD risk is much larger than the observed reduction in CHD risk from taking statins; the

MR estimate is 3.5 times larger than the estimate from trials87 (based on taking statins for

5+ years in primary prevention114). One explanation for this is that genetically-predicted

variation in LDL-C concentrations is lifelong, and so the MR estimate represents the effect

of long-term reduction in LDL-C. Genetic studies have corroborated the slight increases in

type 2 diabetes (T2D) risk that are observed in statin trials115 with several LDL-C-lowering

variants showing suggestive associations with increased T2D risk116. This suggests that

the increase in T2D risk is likely to be an on-target effect of statin drugs, rather than an

off-target effect; also that it may be a consequence of LDL-C-lowering more widely rather

than a specific effect of intervention on the HMGCR pathway.

A similar story can be told for lipoprotein(a) [Lp(a)]. The kringle IV type 2 size poly-

morphism (a copy number variant) is highly predictive of Lp(a) concentrations, explaining

21 % of variation in Lp(a)17—in contrast, no genetic variant for LDL-C, HDL-C, or tri-

glycerides explains more than 1 % of variation35. This polymorphism (and also variants in

the LPA region16) are also associated with CHD risk, suggesting a deleterious causal effect

of increased Lp(a) on CHD risk17. Similarly to that for LDL-C, the effect estimate from

the MR analysis is 2.5 times greater than that from a standard observational analysis17.

For triglycerides, the story is less clear due to a lack of genetic variants associated with
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triglycerides that do not also associate with LDL-C and/or HDL-C. A methodological

development to address this is multivariable MR, in which the causal effects of multiple risk

factors can be estimated simultaneously117. This requires genetic variants to be associated

with one or more of the risk factors, but not associated with other risk factors that may

represent confounders of any risk factor–outcome association or alternative causal pathways

to the outcome that are not via one of the target risk factors. Multivariable MR analyses

have suggested a deleterious causal effect of increased triglycerides on CHD risk118,119.

While there are genetic variants that have specific associations with HDL-C, these

variants are not associated with CHD risk120. However, an allele score based on all the

genetic variants known to be associated with HDL-C at a genome-wide level of significance

is associated with CHD risk, suggesting a protective causal effect of HDL-C provided that

the MR assumptions are satisfied121. Holmes et al. demonstrated an inverse association

with CHD risk for an unrestricted score that explained 3.8 % of the variance in HDL-C, but

no association for a restricted score omitting variants additionally associated with LDL-C

or triglycerides that explained 0.3 % of the variance in HDL-C121. One explanation for

the null finding with the restricted score is that the analysis lacked the power to detect a

causal effect. Multivariable MR is a useful tool in this case, as a multivariable analysis

focusing on HDL-C can include genetic variants that have pleiotropic associations with

either LDL-C or triglycerides. This provides robustness to pleiotropy but still reasonable

power to detect a causal effect. A multivariable MR analysis using a limited number of

genetic variants did not reveal a causal effect of HDL-C117, and neither did an initial

analysis including all genome-wide significant variants118. Although a more principled

multivariable MR analysis taking into account the relative weights of the genetic variants

did suggest a protective effect of HDL-C119, the magnitude of the effect was too small to

be clinically relevant; there is also the potential of some residual bias due to pleiotropic

associations of the 185 genetic variants.

1.5.2 Methodological advances in MR and relation to major lipids

There are two other pertinent methodological advances for using MR to assess the causal rel-

evance of major lipids. These are: (1) MR-Egger122 and (2) a weighted median method123.

MR-Egger is a method adapted from the meta-analysis literature on publication bias124.

In an MR setting, each genetic variant contributes an estimate of the causal effect, and a

pooled estimate is calculated based on all the genetic variants, which are treated similarly

to studies in a meta-analysis. However, if even one of the genetic variants violates the MR
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assumptions, then the causal estimate from that variant will be biased, and the usual pooled

estimate (known as the inverse-variance weighted estimate99) will be biased and have an

inflated Type 1 error rate. This may lead to false positive findings when genetic variants

are pleiotropic125. Rather than the standard approach, which assesses whether genetic

variants associated with the risk factor are also associated with the outcome, MR-Egger

assesses whether there is a dose–response relationship in the genetic associations with the

risk factor and with the outcome. This is a higher standard of proof than demanded in

a standard MR analysis, and so MR-Egger has reduced Type 1 error rates122. MR-Egger

also enables a test of “directional pleiotropy”, whether pleiotropic associations of genetic

variants are likely to bias causal estimates in one particular direction. Additionally, under

the assumption that genetic variants may have pleiotropic effects on the outcome, but that

these pleiotropic effects are uncorrelated with instrument strength126, MR-Egger provides

a consistent estimate of the causal effect122.

The second methodological advance, the weighted median method, is a simple idea:

rather than calculating a pooled estimate using a weighted mean of the causal estimates

based on each genetic variant individually, one can instead report a pooled estimate that

is calculated using a weighted median127. Unlike the mean, the median is not affected by

outlying results, so the weighted median estimate is not sensitive to a handful of pleiotropic

genetic variants. Formally, it is a consistent estimate of the causal effect if at least half of

the genetic variants (by weight) are valid instruments123.

Both the MR-Egger and weighted median approaches are worthwhile sensitivity ana-

lyses for MR when some genetic variants are suspected to be pleiotropic. The MR-Egger

estimate has the advantage that it allows all genetic variants to be pleiotropic, although

it makes an assumption on the distribution of these pleiotropic effects. However, the

MR-Egger estimate may be imprecise, and it is highly influenced if there are one or two

strong variants. The weighted median estimate is more precise and more stable, but relies

on the majority of the evidence in the analysis being reliable.

The application of these methods to major lipids is very revealing: using all genome-

wide significant variants, standard MR, MR-Egger, and weighted median analyses all

suggest causal effects of LDL-C and triglycerides on CHD risk, with no evidence of dir-

ectional pleiotropy. However, while the standard MR analysis using all genome-wide

significant variants for HDL-C suggests a protective effect of HDL-C on CHD risk, the

MR-Egger and weighted median analyses suggest a null effect, with evidence of directional

pleiotropy in the MR-Egger analysis123. This null finding is supported by trial evidence
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on CETP inhibitors, which raise HDL-C levels and lower LDL-C levels, but do not lower

CHD incidence128.

The above examples demonstrate that MR analyses can be simple or not, depending

on the available genetic variants and their specificity of association with the risk factor

under analysis. A näıve MR analysis, particularly one using a large number of genetic

variants, can be misleading. However, the development of new methods can help either

to add confidence in the finding from an MR analysis, or to call it into question129. The

diversity of methods available for conducting MR are especially useful when evaluating the

causal effect of lipid metabolites on CHD. The high degree of correlations between lipid

metabolites and extensive pleiotropy require careful application of various MR methods

to instil further confidence in the results.

1.5.3 Application of MR to metabolomics

As described in Chapter 1, the widespread measurement of high-dimensional phenotypic

traits brings novel opportunities to perform GWAS that can examine the associations

of millions of genetic variants with hundreds of metabolites or thousands of proteins130.

While numerous metabolomics GWAS have been performed in recent years as the literature

review showed Table 1.3, very few metabolomics studies have used an MR approach to

assess whether the associated phenotypic traits that they identified could have causal

effects on diseases or risk factors.

The studies that have employed MR on high-throughput data have taken either of

two approaches: (1) to determine the causal role of conventional risk factors on levels of

metabolites, or (2) to determine whether metabolites have a causal effect on diseases or

traits. As an example of the first approach, a meta-analysis of four Finnish population

cohorts obtained levels of 82 different metabolites and metabolic measures using nuclear

magnetic resonance, including lipoprotein lipids, fatty acids, and amino acids131. The

authors found evidence that strongly supports causal effects of adiposity on 24 metabolites

that are potential cardiometabolic risk factors131. Another study using mass spectrometry

in a British population determined that gene expression levels derived from expression

quantitative trait loci (eQTLs) in fat, skin, and lymphoblastoid cell lines could play a

causal role on levels of a wide range of metabolites132. The authors identified two loci

(THEM4 and CYP3A5 ) where the allele associated with increased metabolite levels was

significantly associated with decreased gene expression in one or more tissues, supporting

the notion that the underlying causal variants for these two loci could have regulatory
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consequences132.

To illustrate the second approach, a study using the same platform could not find any

evidence that the levels of three metabolites—urate, mannose, and unnamed metabolite

X12063—have a causal effect on relative appendicular lean mass133. However, a prospect-

ive cohort study that conducted mass spectrometry used summarised CHD association

results from CARDIoGRAMplusC4D43 to find four lipid-related metabolites (lysophos-

phatidylcholines 18:1 and 18:2, monoglyceride 18:2, and sphingomyelin 28:1) with evidence

for a causal role in CHD development70. An interesting approach used by another study

did not make any a priori assumptions on whether metabolites should be considered as

the risk factor or the outcome; they performed bidirectional analyses but could not detect

any causal associations in either direction between mRNAs and metabolites134.

Metabolomics and proteomics particularly stand to benefit from the availability of sum-

marised data for MR and a two-sample setting, where the associations of high-dimensional

phenotypic traits with genetic variants are measured in one population (usually a small

cross-sectional study of healthy individuals) and the associations of those variants with

diseases and risk factors are measured in another population such as large consortia (for

disease outcomes, usually a consortium of case–control studies)101. Furthermore, the mul-

tivariable MR approach will be particularly relevant to high-dimensional platforms, and

lipidomics in particular, as it may be difficult to find genetic variants having a specific

association with a single variable when the traits are highly correlated with each other135.

The greatest challenge of MR with lipidomics lies in identifying a suitable set of genetic

variants for a particular lipid metabolite (or several lipid metabolites for multivariable

MR) that will not violate the IV assumptions. Thus, the MR-Egger and weighted median

methods could be especially important to provide some robustness against pleiotropic

variants.

There is tremendous scope and untapped potential to apply MR in investigating plaus-

ible novel causal pathways of high-dimensional phenotypic traits with diseases and risk

factors. MR is a tool that can provide additional evidence to prioritise further research and

clinical applications, or just as importantly, to discourage additional resource allocation

towards a specific pathway. Over the coming years, MR is likely to be applied with increas-

ing regularity to high-dimensional phenotypic data where concomitant genetic information

is available, and in lipidomics in particular.
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1.6 Dissertation outline

The primary objectives of this dissertation were (1) to identify the genetic determinants of

lipid metabolites, and (2) to advance understanding of the effect of perturbations in lipid

metabolite levels on CHD and its risk factors. Through advancement of the knowledge

base in this important field, it is intended that the findings of this dissertation could lead

to further studies that would help advance mechanistic understanding and prioritise novel

therapeutic targets for drug development and personalised medicine. Each of the following

chapters of this dissertation seeks to address various facets of this overall goal and approach

it from different angles, such as the association of lipid metabolites with major lipids and

CHD risk factors (Chapter 4), the genetic determinants of lipid metabolites (Chapter 5

and Chapter 6), and the causal relevance of lipid metabolites with risk of CHD (Chapter 7).

The influence of various lifestyle factors such as smoking, diet, and physical activity on all of

these associations is also considered. A conceptual framework that portrays the connection

between all of these various aspects is shown in Figure 1.15. For clarity, whenever the

word “lipids” is used in this dissertation, it refers to lipid metabolites—it only refers to

major circulating lipids such as HDL-C and LDL-C if appropriately qualified as such.

The primary dataset that was used for analysis in this dissertation is the Pakistan

Risk of Myocardial Infarction Study (PROMIS). Chapter 2 provides a background of

PROMIS, presents descriptive statistics for the subset of PROMIS participants for whom

lipidomics measurements were taken, and describes the data management steps involved in

processing and cleaning the PROMIS phenotypic, biomarker, and genetic data. To provide

a wider context, demographic and clinical characteristics of the controls in PROMIS with

lipidomics measurements are also compared with the wider set of controls in PROMIS

and in Pakistan as a whole, and differences between the full set of cases and controls in

PROMIS are also compared.

The lipidomics platform is described in Chapter 3, including the methods used to

process the lipidomics data and the quality control steps that were performed.

Chapter 4 presents results of descriptive analyses of the lipidomics data, including heat

maps of cross-correlations of the lipid metabolites, correlations of the lipid metabolites

with major lipids and other circulating biomarkers, principal component analysis, partial

least squares discriminant analysis, and Gaussian graphical modelling on the lipidomics

data, and the association of the principal components of the lipid metabolites with CHD

risk factors.
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Figure 1.15: Conceptual framework of analysis approach in this dissertation
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This figure presents a conceptual framework of the analysis approach used in this dissertation. Genes
can influence levels of lipid metabolites, which in turn make up major lipids. Changes in levels of
these lipids can affect intermediate CHD outcomes such as obesity, hypertension, and diabetes, which
can eventually lead to an MI or CHD. Lifestyle factors can also play an important role in influencing
levels of individual lipid metabolites, major lipids, and the development of CHD outcomes. Examples
of the various aspect of the conceptual framework are given below each heading. Chapter 4 explores
cross-correlations of lipid metabolites, the association of lipid metabolites with major lipids, the
association of lifestyle and environmental factors (e.g. diet, physical activity, and smoking) with lipid
metabolites, and the association of lipid metabolites with intermediate CHD outcomes. Chapter 5 and
Chapter 6 explore the association of genetic factors with lipid metabolites, and Chapter 7 describes
a Mendelian randomisation study that was used to assess whether lipid metabolites have a causal
association with risk of CHD.

Chapter 5 describes the steps involved in conducting univariate genome-wide association

analyses on all 444 lipids that were measured using the lipidomics platform, and presents

the overall findings from the GWAS results.

Chapter 6 provides an analysis and interpretation of the GWAS results, including

variant annotation and incorporation of information from pharmacological and functional

databases to aid biological understanding of mechanisms through which genetic variants

influence metabolic pathways. Also included in this chapter is a description of the condi-

tional analyses and the steps that were involved to determine the number of independent

loci and how many of these loci are novel.

Chapter 7 provides an overview of MR and its use for determining the causal effect

of perturbations in levels of a risk factor on a disease outcome, particularly in the area

of circulating lipids and lipid metabolism. It then describes the application of MR using

several different methods to assess the causal relevance of the lipid metabolites in this

study for risk of CHD.
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Chapter 8 provides a summary of the key findings from this dissertation and their

potential implications. It also summarises the strengths and limitations of the dataset

used for this dissertation and fruitful avenues for future research. While the genetic

analyses described in this dissertation primarily focus on a single discovery stage from

one study, preliminary results from the replication of these findings in a different study

population with nearly a threefold increase in the number of participants, using the exact

same lipidomics platform, will be described in this final chapter.
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CHAPTER2
Description of the Pakistan Risk

of Myocardial Infarction Study

Chapter summary

This chapter provides a background and description of the main study that was used for

analysis in this dissertation, the Pakistan Risk of Myocardial Infarction Study (PROMIS),

which is a case-control study of myocardial infarction (MI) with over 35 000 participants

recruited from nine hospitals in urban Pakistan. This chapter also includes descriptive

statistics of the PROMIS data, explains the data management steps that were performed

in order to clean, process, and harmonise the data, and describes the steps that were

involved in quality control of the genetic information.

Lipidomics measurements were only obtained for controls who were free from MI at

recruitment, but this population was still at risk of chronic diseases since 56 % of the

participants were overweight, 17 % were obese, 18 % had hypertension, and 38 % had

diabetes. Genotyped data were imputed and cleaned to yield genetic information on over

6.7 million variants. The combination of lipid and other biomarker data, information on

CHD risk factors, and genetic data makes PROMIS a rich resource for investigating and

identifying emerging and established risk factors in Pakistan.
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2.1 Introduction

The burden of CVD has been increasing in South Asia at a greater rate than in any other

region of the world. While CVD mortality has decreased in most high-income countries

from 1990 to 2015, there has been no such decline in South Asia8. In many South Asian

countries, CHD manifests about 10 years earlier on average compared with the rest of the

world. Whereas CVD in Western countries is often considered a disease of late middle-

age and the elderly (i.e. about 77 % of CVD deaths occur above the age of 70), the vast

majority of CVD deaths in South Asian countries occur amongst people under 70 years

of age, resulting in substantial loss of productive working years due to premature CVD

morbidity and mortality1.

Large-scale population studies in South Asia provide a useful resource for the investig-

ation of locally relevant chronic disease risk factors in order to understand the reasons for

the high burden of chronic diseases in this setting and what steps can be taken to address

the problem.

2.2 Overview of PROMIS

The Pakistan Risk of Myocardial Infarction Study (PROMIS) is a case-control study in

Pakistan. The primary outcome is first-ever acute myocardial infraction (MI). An overview

of PROMIS and a summary of the key methodological features is provided in this chapter;

further details and specifics about the study can be found in the protocol paper25.

2.2.1 Recruitment of participants

PROMIS participants were recruited from participating hospitals in nine urban centres

in Pakistan. A map indicating the name of each recruitment centre and their geographic

location is shown in Figure 2.1; the number of participants recruited from hospitals in

each city is shown in Figure 2.2. Four hospitals in Karachi, which is the largest city in

Pakistan and the sixth largest city in the world136, collectively recruited over half (54 %)

of the PROMIS participants.

Cases were selected from hospital patients at each centre who had recently had an MI.

Patients were eligible for selection if they were between the ages of 30 to 80 years, they

had been admitted to the emergency room for an MI with sustained clinical symptoms

lasting at least 20 minutes within the 24 hours prior to hospitalisation, and they had

electrocardiogram changes typical of an MI and a positive troponin-T test. Controls were
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concurrently identified and recruited in the sample hospital as cases according to the

following order of priority: (1) visitors of patients attending the outpatient department;

(2) patients attending outpatient clinics for non-cardiac-related symptoms (e.g. routine

health check-ups; refraction and cataracts patients; minor ear, nose, and throat patients; or

individuals undergoing minor elective surgery), and (3) non-first-degree relative visitors of

MI cases. The controls were frequency-matched to cases based on sex and age in five-year

bands. The exclusion criteria included if participants had (1) any previous history of

CVD; (2) an onset of chest symptoms and hospitalisation for MI lasting longer than 24

hours; (3) a history of viral or bacterial infection in the past two weeks; (4) presence of

chronic conditions (e.g. tuberculosis, malaria, hepatitis, or renal failure); (5) pregnancy;

or (6) failure to give informed consent.

Recruitment of PROMIS participants took place from 2005 to 2011, and the date

that each survey was completed is shown in Figure 2.3. The study has now completed

recruitment, and the final sample size is approximately 16 700 cases and 18 600 controls.

Ethical approval was obtained from the ethics committees responsible for each of the

PROMIS recruitment centres, as well as from the Center for Non-Communicable Diseases

(CNCD) in Pakistan.

2.2.2 Questionnaire

All participants who were enrolled in the study received a questionnaire that was specifically

designed for the study population. The questionnaire consisted of approximately 150

questions and took about three hours to complete on average. However, response time

could vary since some of the questions pertained only to cases (i.e. in relation to their

hospitalisation for MI) or only to women (i.e. in relation to reproductive health). The

questionnaire assessed information about each participant concerning a range of different

factors, including demographics, socioeconomic status, tobacco and alcohol consumption,

and physical activity. There was also a dietary section, which obtained detailed information

about the frequency in which participants consumed various locally-relevant foods. All

of the questions, especially the ones related to smoking and diet, were tailored to the

specific setting in Pakistan to ensure that the questionnaire was culturally relevant. For

instance, participants were asked about their use of cigarettes, beedies, huqqa/chilum,

paan, naswar, gutka, and supari, which are all various types of tobacco products that

are commonly used in Pakistan. In the food frequency section, participants were asked

about their consumption of approximately 160 different types of locally relevant foods,
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Figure 2.1: Map of recruitment centres in PROMIS

Map was created using ArcGIS® software (ArcMap 10.4.1) by Esri137. Country level administrative
boundary shapefiles were obtained from GADM version 2.8138. Red circles are shown and labelled
with the city where each PROMIS recruitment centre is located. Abbreviations: DMIC = Deewan
Mushtaq Institute of Cardiology; FIC = Faisalabad Institute of Cardiology; KIHD = Karachi
Institute of Heart Diseases; LNH = Liaquat National Hospital & Medical College; MIC = Multan
Institute of Cardiology; NICVD = National Institute of Cardiovascular Diseases; RCH = Red
Crescent Hospital; PIC = Punjab Institute of Cardiology; THI = Tabba Heart Institute.

Figure 2.2: Number of PROMIS participants recruited from hospitals in each city
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Figure 2.3: Distribution of survey dates in PROMIS participants with lipidomics meas-
urements

including paratha, roti, daliya, daal, pakoray, kheer, and halwa, which were grouped into

54 categories by a local nutritionist.

In addition to the self-reported questions, other measurements were also taken that

are not susceptible to recall or social desirability bias. For example, anthropometry meas-

urements were taken to record the participants’ systolic and diastolic blood pressure (SBP

and DBP, respectively), resting heart rate, height, weight, and waist and hip circumfer-

ence. These measurements were all taken using standardised procedures and equipment

as described in the protocol paper25.

A full-length copy of the entire PROMIS questionnaire can be found in Appendix C.

All of the information extracted from the questionnaire, as well as measurement data,

was entered in duplicate into a central database in Pakistan, then sent to the data manage-

ment team at the University of Cambridge. The data were then extracted, cleaned, and

harmonised as described in subsection 2.2.6.
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2.2.3 Biomarker data

Non-fasting blood samples (with the time since last meal recorded) were drawn from each

participant and centrifuged within 45 minutes of venepuncture. Serum samples were stored

at −80 ◦C until use. The samples were assayed at the CNCD in Pakistan to measure values

of standard biomarkers, including total cholesterol, HDL-C, LDL-C, triglycerides, glu-

cose, creatinine, and HbA1c. Serum and ethylenediaminetetraacetic acid (EDTA) plasma

samples were also sent to various laboratories, including the University of Cambridge, the

University of Pennsylvania, Tufts University, and the University of Washington, for analysis

of over 150 additional biomarkers, including interleukin-1 receptor antagonist, interleukin-6,

interleukin-18, adiponectin, C-peptide, E-selectin, matrix metalloproteinase-9, serum amyl-

oid, intercellular adhesion molecule 1, alkaline phosphatase, alanine transaminase, aspart-

ate aminotransferase, and many others.

2.2.4 Lipidomics data

It was decided to prioritise the selection of participants for the lipidomics assay based on

several criteria. Participants had to be a control free from MI at baseline since the analysis

of lipid levels from blood samples taken immediately following an MI would not be an

accurate portrayal of normal lipid levels. In addition, participants needed to have available

genetic data from a GWAS platform to facilitate genetic analyses on the lipidomics data.

Furthermore, the participants needed to have complete information on age, sex, ethnicity,

centre from which they were recruited, and the date that the survey was completed. This

resulted in 5674 PROMIS participants for whom lipidomics measurements were taken using

direct infusion high-resolution mass spectrometry, of whom 5662 passed QC. An overview

of the process of selecting participants for this study is shown in Figure 2.4, which includes

details on the overall number of cases and controls in PROMIS, the number of participants

genotyped on each GWAS platform, and the final number of controls with lipidomics data

that were included in the analysis. A detailed description of the lipidomics platform will

follow in Chapter 3.

2.2.5 Genetics data

An overview of the quality control (QC) steps that were performed on the genetic data are

shown in Figure 2.5. DNA samples were extracted from leukocytes in Pakistan and geno-

typed at the Wellcome Trust Sanger Institute in Cambridge, UK. PROMIS participants

were genotyped on either of two GWAS platforms: (1) the Illumina 660-Quad GWAS
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Figure 2.4: Flowchart of participant selection for lipidomics study

Cases
16,728

Controls
18,564

PROMIS case-control study
35,309 participants

Participants (controls) with lipidomics assay
5,674 controls

Controls with lipidomics assay that passed QC
5,662 controls
2,241 genotyped on GWAS1
3,428 genotyped on GWAS2

GWAS1
9,200 participants
4,693 cases
4,504 controls

GWAS2
8,446 participants
4,405 cases
4,040 controls

GWAS1 refers to the Illumina 660-Quad GWAS platform; GWAS2 refers to the Illumina
HumanOmniExpress GWAS platform.

platform (referred to in this dissertation as GWAS1), which consisted of 527 925 genotyped

variants after QC steps were performed, or (2) the Illumina HumanOmniExpress GWAS

platform (referred to in this dissertation as GWAS2), which consisted of 643 333 genotyped

variants after QC. Overlapping samples were removed so that there was a distinct set of

individuals on each genetic platform: out of the controls with lipidomics measurements,

2241 participants remained that were genotyped on GWAS1, and 3428 participants re-

mained that were genotyped on GWAS2. Genetic samples were removed if they were

heterozygosity outliers (heterozygosity > mean ± 3-SD), if the call rate was less than 97 %,

if there was discordant sex between genotype and phenotype, or if they were duplicate

or related pairs (kinship coefficient > 0.375). Single nucleotide polymorphisms (SNPs)

were excluded if the call rate was less than 97 %, there was evidence of departure from

Hardy-Weinberg Equilibrium (HWE) at a P -value of less than 1× 10−7, or the minor

allele frequency (MAF) was less than 1 %.

The kinship coefficient mentioned above (0.375) was selected as the cut-off in this study

due to the high degree of consanguinity in marriages in Pakistan. More than half of all

marriages in Pakistan (56 %) are between first and second cousins139. A kinship coefficient
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of 1 indicates duplicate individuals or monozygotic twins, a value of 0.5 (1
2) indicates

first-degree relatives, a value of 0.25 (1
4) indicates second-degree relatives, and a value of

0.125 (1
8) indicates third-degree relatives. In most GWAS studies, it is typical to remove

one individual from each pair with a kinship coefficient > 0.1875, which is halfway between

the expected values for second- and third-degree relatives140. However, due to the extent

of intermarriage in the population, a less stringent threshold was necessary. Therefore, a

kinship coefficient > 0.375 (3
8) was chosen as the cut-off, which is halfway between the

expected values for first- and second-degree relatives.

Imputation was applied to both of the cleaned PROMIS genotyped datasets using the

1000 Genomes Project141 March 2012 (v3) release as the reference panel. Imputation was

conducted using IMPUTE v2.1.0142 using 5-Mb non-overlapping intervals for the whole

genome. Once imputation had been performed on GWAS1 and GWAS2 separately, there

were over 7.2 million directly genotyped or imputed SNPs available for analyses in either

dataset before further QC.

In total, 5662 individuals had concomitant information on lipidomics data and directly

genotyped or imputed SNPs. QC filters for SNPs were applied during the analysis stage

using SNPTEST v2.4.1143 to remove SNPs that were poorly imputed. The imputation

information score is a metric between 0 and 1 that provides an assessment of the level

of accuracy of imputation. A value of 1 indicates that there is no uncertainty in the

imputed genotypes whereas a value of 0 means that there is complete uncertainty about

the genotypes. SNPs were removed if they had an imputation information score < 0.80.

The results were then extracted from the output files and the original QC filters were

reapplied to the combined genotyped and imputed data (i.e. MAF, HWE P -value, or call

rate below specified cut-offs). After the final QC filters were applied, there were 6 720 657

SNPs remaining. Additional QC steps that were performed on the genetic data as part of

the GWAS analyses will be described in Chapter 5.

The two GWAS platforms that were described above (GWAS1 and GWAS2) are the only

sources of genetic data that were analysed for the purposes of this dissertation; however,

PROMIS participants have also been genotyped on several other platforms, including

the Metabochip array, a customised Metabochip array (known as Metabochip+), and a

customised Exome array (known as Exome+). PROMIS participants also underwent whole

genome sequencing (WGS) and whole Exome sequencing (WES). A significant proportion

of the PROMIS participants with lipidomics data were also assayed on these other genetic

platforms and the association of each lipid metabolite with SNPs on these platforms have
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Figure 2.5: Quality control steps performed on genetic data

also been analysed, but as that work is beyond the scope of this dissertation, only the

results pertaining to the two mentioned GWAS platforms will be described.

2.2.6 Data processing, cleaning, and harmonisation

Alongside doctoral research, the author of this dissertation also carried out data manage-

ment for PROMIS within the Cardiovascular Epidemiology Unit (CEU). The responsib-

ilities for this role included collating, cleaning, harmonising, and managing a database

of questionnaire and laboratory data for over 35 000 PROMIS participants, including the

socio-demographic, anthropometric, medical history, lifestyle, dietary, and biochemical

information described above. It also involved maintaining and continually updating a

reference file that enabled the phenotype data to be linked to the genetic data by mapping

each participant ID with the corresponding genetic sample(s) on each genetic platform.

Whenever new PROMIS data arrived, it was merged into the overall PROMIS database

by matching on both the variable names (columns) and the list of participants (rows).

If the variable already existed, then the new values were used to update the existing

values for each participant. However, if new variables were provided, then these were

added to the dataset. The values of each variable were also converted from the original

units (e.g. ng/mL for C-peptide) to a standard set of units used internally by the CEU
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(i.e. nmol/L for this example). Additionally, any duplicate participants or variables were

removed before merging in the data. Whenever there were any discrepancies in the new

dataset, queries were sent back to the provider of the data and followed up to ensure that

the issues were resolved.

Another important aspect of this role involved producing datasets containing specified

variables of interest on subsets of participants, and answering any queries that arose. Over

100 datasets were produced for colleagues in the CEU as part of this data management

role, each customised to meet the requirements of the specific project that the analysts

were working on, and updated datasets were created whenever new information became

available.

The statistical software SAS144 v9.3 was used for all data management tasks. A number

of SAS macro scripts, some specific to PROMIS and some applicable to all projects in the

CEU, were used to perform functions such as merging in new datasets, appending datasets,

checking for duplicate observations, comparing values between datasets, cleaning variables,

converting variables to consistent units, and producing cleaned datasets. These scripts

were instrumental in performing data management responsibilities.

2.3 Demographic and clinical characteristics of PROMIS

participants

Demographic and clinical characteristics of the 5662 PROMIS participants with lipidomics

information are shown in Table 2.1. The median age was 54 years, with a range from 27 to

87. Age and/or date of birth were self-reported on the questionnaire, and it appears that a

majority of participants rounded their age to the nearest five years since the top ten most

commonly reported ages of participants were 50, 60, 55, 52, 65, 45, 51, 58, 70, and 54; fully

53 % of the participants had ages that were divisible by five. There is no other reasonable

explanation for the fact that 928 participants were age 50, but only 67 participants were

49; likewise, 190 participants were 70, but only thirteen participants were 69 and thirteen

participants were 71. A histogram depicting this phenomenon is shown in Figure 2.6.

The majority of participants (79 %) were male. The most common ethnicities were Urdu

and Punjabi (37 % and 36 % of participants, respectively). The average BMI was 26 kg/m2,

which is rather high since any BMI over 25 is considered overweight. In fact, although

all participants in this analysis were controls without myocardial infarction at baseline,

they represent a population at increased risk of MI, since 56 % of the participants were
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Figure 2.6: Distribution of ages of PROMIS participants with lipidomics measurements

overweight, 17 % were obese, 18 % had hypertension, and the proportion of participants

with diabetes was 38 % according to elevated HbA1c levels, or 31 % based on elevated fasting

plasma glucose (FPG) levels. Hypertension was defined as SBP ≥ 140 mmHg or DBP

≥ 90 mmHg; overweight and obese were defined as body mass index (BMI) ≥ 25 kg/m2 or

BMI ≥ 30 kg/m2, respectively; and diabetes was defined as either FPG ≥ 126 mg/dL or

HbA1c ≥ 6.5 %.

There were significant differences in levels of CHD risk factors according to ethnicity.

Participants from Urdu and Punjabi ethnic backgrounds had significantly higher levels of

being overweight and having obesity, hypertension, and diabetes compared with partic-

ipants from other ethnic backgrounds (which includes Pathan, Balochi, Sindhi, Memon,

and Gujrati) (chi-square test P < 0.001 for all comparisons).

In order to validate the extent to which controls in PROMIS were indeed at elevated risk

of MI, the levels of demographic and clinical characteristics were also compared between

cases and the full set of controls in PROMIS (Table 2.2). There were statistically significant

differences (P < 0.0001) between cases and controls in all anthropometric markers, all

circulating lipid biomarkers, all categorical variables, and almost all CHD risk factors.

Compared with all MI cases, controls in the overall PROMIS study were slightly older
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and had slightly higher BMI, SBP, DBP, and levels of triglycerides. Also a significantly

higher proportion of controls were Punjabi (P < 0.0001), though the absolute difference

was marginal (40 % of controls versus 36 % of controls). On the other hand, controls

had slightly higher levels of HDL-C (the “good” cholesterol) and slightly lower levels of

LDL-C (the “bad” cholesterol), and were less likely to smoke, take diabetic or hypertensive

drugs, or have diabetes. Despite the statistically significant differences in many relevant

characteristics between cases and controls, levels of relevant CHD risk factors were still

elevated beyond the normal healthy range in a significant proportion of the controls, putting

them at increased risk of an MI.

To examine the representativeness of the sample with lipidomics measurements, these

results were compared to the broader population of Pakistan. The subset of PROMIS

controls selected for the lipidomics assay (n = 5662) were comparable to all controls

in the entire PROMIS study (n = 18 564) on the basis of the demographic and clinical

characteristics listed in Table 2.1. The PROMIS participants were also compared with the

general population of Pakistan (n = 13 558) using the latest available data obtained from

the Demographic and Health Survey for Pakistan139. This analysis showed that PROMIS

participants were older on average, and a higher proportion consumed tobacco and were

overweight, compared with the head of household in the general Pakistani population.

However, these differences are perhaps to be expected because the controls in PROMIS

were visitors and blood relatives of patients in the hospital who had recently been admitted

due to a heart attack, and the controls were matched to the cases according to sex and

age bracket. Therefore, since individuals are more likely to have a heart attack at an

older age, and are at higher risk for a heart attack if they are overweight and consume

tobacco, it makes sense that the controls in PROMIS had similar characteristics to the

MI patients themselves but different from the general population of Pakistan. One further

difference between the PROMIS and DHS datasets is that 22 % of the general Pakistan

population is Pashto, but no individuals with this ethnicity were recruited to PROMIS.

Besides Urdu and Punjabi, the other ethnicities of PROMIS participants included Pathan,

Balochi, Sindhi, Memon, and Gujrati, whereas for the overall Pakistan population the most

common other ethnicities are Sindhi, Pushto, Balochi, Barauhi, Siraiki, Hindko, Shina, and

Balti. Thus, the ethnicities of PROMIS participants, along with many other demographic

and clinical characteristics, were not especially representative of the country as a whole.
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Table 2.1: Demographic and clinical characteristics and coronary heart disease risk factors of
individuals assayed by DIHRMS in PROMIS

Variable
PROMIS con-
trols assayed by
DIHRMS (n=5662)

All PROMIS con-
trols (n=18 564)

DHS Pakistan
(n=13 558)

No. of
subjects

Mean
(SD) or %

No. of
subjects

Mean
(SD) or %

No. of
subjects

Mean
(SD) or %

Anthropometric markers
Age at survey (yrs) 5662 54 (9) 18 564 56 (9) 13 558 33 (9)
Body-mass index (kg/m2) 5562 26 (5) 18 290 26 (5) 4698 25 (6)
Waist-to-hip ratio 5590 0.96 (0.13) 18 344 0.95 (0.06) − −
Systolic blood pressure (mmHg) 5587 128 (17) 18 255 128 (17) − −
Diastolic blood pressure (mmHg) 5584 81 (9) 18 247 81 (10) − −

Circulating lipid biomarkers
Total cholesterol (mmol/L) 5542 4.63 (1.33) 17 935 4.68 (1.30) − −
HDL cholesterol (mmol/L) 5530 0.89 (0.27) 17 881 0.93 (0.28) − −
LDL cholesterol (mmol/L) 5459 2.77 (1.03) 17 491 2.81 (1.01) − −
Non-HDL cholesterol (mmol/L) 5530 3.75 (1.31) 17 884 3.75 (1.27) − −
Loge triglycerides (mmol/L) 5537 0.74 (0.53) 17 920 0.69 (0.53) − −

Categorical variables
Sex 5662 18 564 13 558

Male 4466 79 % 14 049 76 % 12 409 92 %
Female 1196 21 % 4515 24 % 1149 8 %

Ethnicity 5662 18 495 13 553
Urdu 2113 37 % 6160 33 % 1286 9 %
Punjabi 2039 36 % 7404 40 % 3062 23 %
Other* 1510 27 % 4931 27 % 9205 68 %

Tobacco consumption status 5651 18 512 13 542
Not current 3924 69 % 13 218 71 % 12 256 92 %
Current 1727 31 % 5294 29 % 1016 8 %

History of diabetes 5651 18 516 −
No 4871 86 % 16 081 87 % − −
Yes 780 14 % 2435 13 % − −

Diabetic drug use status 5654 18 540 −
No 5093 90 % 16 693 90 % − −
Yes 561 10 % 1847 10 % − −

Hypertensive drug use status 5655 18 539 −
No 4746 84 % 15 231 82 % − −
Yes 909 16 % 3308 18 % − −

CHD risk factors
Overweight 5562 18 290 4698

No 2446 44 % 7830 43 % 2807 60 %
Yes 3116 56 % 10 460 57 % 1891 40 %

Obese 5562 18 290 4698
No 4636 83 % 15 339 84 % 4031 86 %
Yes 926 17 % 2951 16 % 667 14 %

Hypertension 5587 18 257 −
No 4600 82 % 15 017 82 % − −
Yes 987 18 % 3240 18 % − −

Diabetes (HbA1c definition) 4212 8503 −
No 2600 62 % 5500 65 % − −
Yes 1612 38 % 3003 35 % − −

Diabetes (FPG definition) 5533 17 782 −
No 3828 69 % 12 337 69 % − −
Yes 1705 31 % 5445 31 % − −

Abbreviations: BMI = Body mass index; CHD = Coronary heart disease; DBP = Diastolic blood pressure; DHS
= Demographic & Health Surveys; FPG = Fasting plasma glucose; SBP = Systolic blood pressure; SD = Standard
deviation.
Definitions: Diabetes (FPG) = FPG ≥ 126 mg/dL; Diabetes (HbA1c) = HbA1c ≥ 6.5 %; Hypertension =
SBP ≥ 140 mmHg or DBP ≥ 90 mmHg; Obese = BMI ≥ 30 kg/m2; Overweight = BMI ≥ 25 kg/m2.
Data for the overall Pakistani population were obtained from the DHS139. A dash (−) indicates that data were not
available.
* “Other” ethnicity for PROMIS participants includes Pathan, Balochi, Sindhi, Memon, and Gujrati. For DHS
Pakistan, “Other” ethnicity category includes Sindhi, Pushto, Balochi, Barauhi, Siraiki, Hindko, Shina, and Balti.
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Table 2.2: Comparison of demographic and clinical characteristics and coronary heart
disease risk factors between cases and controls in PROMIS

Variable
Controls (n=18 564) Cases (n=16 728)

P-value

No. of
subjects

Mean
(SD) or %

No. of
subjects

Mean
(SD) or %

Anthropometric markers
Age at survey (yrs) 18 564 56 (9) 16 727 54 (10) <0.0001
Body-mass index (kg/m2) 18 290 26 (5) 15 162 26 (4) 0.0009
Waist-to-hip ratio 18 344 0.95 (0.06) 15 420 0.97 (0.06) <0.0001
Systolic blood pressure (mmHg) 18 255 129 (17) 16 099 126 (20) <0.0001
Diastolic blood pressure (mmHg) 18 247 81 (10) 16 082 80 (11) <0.0001

Circulating lipid biomarkers
Total cholesterol (mmol/L) 17 935 4.68 (1.30) 15 405 5.04 (1.31) <0.0001
HDL cholesterol (mmol/L) 17 881 0.93 (0.28) 15 372 0.91 (0.26) <0.0001
LDL cholesterol (mmol/L) 17 491 2.81 (1.01) 15 025 3.24 (1.10) <0.0001
Non-HDL cholesterol (mmol/L) 17 884 3.75 (1.27) 15 367 4.14 (1.26) <0.0001
Loge triglycerides (mmol/L) 17 920 0.69 (0.53) 15 404 0.63 (0.55) <0.0001

Categorical variables
Sex 18 564 16 728 <0.0001

Male 14 049 76 % 14 060 84 %
Female 4515 24 % 2668 16 %

Ethnicity 18 495 16 636 <0.0001
Urdu 6160 33 % 5905 36 %
Punjabi 7404 40 % 6007 36 %
Other* 4931 27 % 4724 28 %

Tobacco consumption status 18 512 16 355 <0.0001
Not current 13 218 71 % 8534 52 %
Current 5294 29 % 7821 48 %

History of diabetes 18 516 16 408 <0.0001
No 16 081 87 % 13 399 82 %
Yes 2435 13 % 3009 18 %

Diabetic drug use status 18 540 16 454 <0.0001
No 16 693 90 % 14 079 86 %
Yes 1847 10 % 2375 14 %

Hypertensive drug use status 18 539 16 455 <0.0001
No 15 231 82 % 10 063 61 %
Yes 3308 18 % 6392 39 %

CHD risk factors
Overweight 18 290 15 162 0.1592

No 7830 43 % 6607 44 %
Yes 10 460 57 % 8555 56 %

Obese 18 290 15 162 <0.0001
No 15 339 84 % 13 100 86 %
Yes 2951 16 % 2062 14 %

Hypertension 18 257 16 100 0.0010
No 15 017 82 % 13 020 81 %
Yes 3240 18 % 3080 19 %

Diabetes (HbA1c definition) 8503 9503 <0.0001
No 5500 65 % 463 43 %
Yes 3003 35 % 5440 57 %

Diabetes (FPG definition) 17 782 15 343 <0.0001
No 12 337 69 % 5013 33 %
Yes 5445 31 % 10 330 67 %

Abbreviations: BMI = Body mass index; CHD = Coronary heart disease; DBP = Diastolic blood
pressure; DHS = Demographic & Health Surveys; FPG = Fasting plasma glucose; SBP = Systolic blood
pressure; SD = Standard deviation.
Definitions: Diabetes (FPG) = FPG ≥ 126 mg/dL; Diabetes (HbA1c) = HbA1c ≥ 6.5 %; Hyper-
tension = SBP ≥ 140 mmHg or DBP ≥ 90 mmHg; Obese = BMI ≥ 30 kg/m2; Overweight = BMI ≥
25 kg/m2.
* “Other” ethnicity includes Pathan, Balochi, Sindhi, Memon, and Gujrati.
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2.4 Discussion

PROMIS has been established as a resource for the investigation and identification of

emerging and established risk factors in Pakistan. Over 35 000 participants have been

recruited, and information on a wide range of anthropometric measurements, demographic

characteristics, lifestyle factors, lipids, clinical chemistry biomarkers, genetics, and other

data are available.

Given that PROMIS used a case-control study design, it has certain inherent limita-

tions. For instance, most of the questions on the questionnaire were self-reported, which

has a potential for recall bias. Participants may lie about (or genuinely not remember)

information, as was clearly evidence with self-reported age (see Figure 2.6). Participants

may have also provided incorrect information about smoking habits, physical activity, the

types of food that they eat and the frequency that they consume them, or other factors,

though unlike with the age example, for lifestyle factors it is very difficult to detect whether

there is bias or the reported lifestyle habits are genuine. The consequence of these biases is

that most of the information on the questionnaire itself has to be taken with a healthy dose

of scepticism. However, the laboratory measurements and genetic data are not subject to

recall bias, and are therefore likely to be more reliable and accurate.

There is also a possibility of selection bias, which occurs when the outcome is influenced

by differences between groups. However, in PROMIS the controls were recruited from

hospital visitors and people admitted to outpatient clinics. They were likely to be fairly

similar to cases, who were admitted to the hospital for an MI, so the likelihood of this

type of bias is minimal. In the analyses for this dissertation, only controls were examined

since lipidomics measurements were not obtained in cases. However, because only controls

were analysed that had completion information on all variables used in the model, there is

a potential for selection bias caused by missing data. A related concern is that although

the cases and controls in PROMIS were relatively similar to each other, they were not

very representative of the Pakistani population as a whole. This potentially limits the

generalisations that can be made to extend the findings from this dissertation to the wider

population of Pakistan and South Asia.

Another limitation that emerged due to the study design is the lack of follow-up data.

Since PROMIS is a case-control study, the participants were only surveyed at baseline

without any follow-up. It would be very useful to know if controls with increased levels

of certain lipids, but who lacked symptoms of MI at the time of recruitment, ended up
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developing CHD in the period thereafter. Without follow-up data, it is not possible to

determine this information.

Despite these limitations, PROMIS is a large study in a population that has not been

widely studied, and has an extensive range of biological measurements available, including

an exceptional quantity of high-quality genetics and lipidomics data. The use of such a

befitting bioresource for this dissertation provides a unique opportunity to investigate and

identify novel therapeutic targets through the study of high-dimensional phenotypic traits.

The lipidomics platform that was analysed in this dissertation will be described in the next

chapter.
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CHAPTER3
Processing of lipidomics data

Chapter summary

Intact lipid profiling by direct infusion high-resolution mass spectrometry (DIHRMS) was

performed on 5662 serum samples from healthy PROMIS participants. A novel peak-

picking algorithm was developed to identify and record signals at mass-to-charge ratios

corresponding to 444 known lipids in positive and negative ionisation modes with an average

coefficient of variation of 13.44 %. The lipids belonged to five overall categories: fatty acyls,

glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. This chapter describes

the steps involved in assaying the serum samples on the lipidomics platform, extracting the

signal data using the peak-picking algorithm, performing quality control, and producing a

clean dataset for analysis. This newly developed open-profiling method is highly suitable to

provide detailed lipid profiles in large-scale epidemiological studies, with a wider coverage of

lipids than most other high-throughput profiling methods. The lipidomics data generated

by this platform can be utilised to provide many novel insights into the effect of physiology

and diet on lipid metabolism, the genetic determinants of lipids, and the relationship

between lipid subfractions and CHD.
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3.1 Introduction

3.1.1 Comparison of metabolomics platforms

There are important prerequisites for any method that uses profiles of serum lipids to

study lipid metabolism. Since by definition, an open-profiling method does not target

particular lipid classes or species within each class, it must have the ability to measure

and discriminate a wide range of lipids with minimal bias across different lipid species and

classes145. If such approaches are to be used on a large scale, such as in epidemiological

studies with thousands of samples that consist of multiple batches and may run over several

months, then the method needs to be high-throughput and reproducible. It is essential that

the profiling method is robust so that it can deal with slight variations and fluctuations in

the ionisation efficiency and ion transfer over time, and also overcome batch effects that

could be introduced as a result of regular cleaning of the instrument145.

Mass spectrometry

A variety of sample preparation and analytical techniques can be used to generate mass

spectra of lipid profiles. There are two commonly used metabolomics technologies for

obtaining mass spectral data. The first, mass spectrometry (MS), is a relatively inexpensive

and highly sensitive technique that measures the mass-to-charge ratios (m/z ) of ions

formed from molecules46. MS is often performed following liquid or gas chromatographic

separation, which reduces the complexity of the data by separating the metabolites in a

time dimension (recorded as the retention time for each metabolite)45,146,147. MS can detect

over 300 distinct metabolites using gas chromatography and over 1000 metabolites using

liquid chromatography; however, since each metabolite has to be measured individually,

MS is slower than other metabolomics approaches, especially when including the prior

chromatographic separation step45,146. Furthermore, MS breaks up the samples and

destroys them so that they are not usable for further analyses45,146.

Nuclear magnetic resonance

The second approach, nuclear magnetic resonance (NMR) spectroscopy, works by applying

a magnetic field to small molecules, taking advantage of the magnetic spin of certain

nuclei (e.g. 1H, 13C, and 31P) to record their energy levels using radio-frequency waves46.

It identifies molecules by the specific pattern in the chemical shift of specific atoms148.

NMR has a higher throughput than MS because it can measure all of the metabolites
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simultaneously, it is very accurate and replicable, and it does not destroy the samples

during the process45,146. However, NMR is much less sensitive than MS because it can only

detect around 30 to 100 metabolites; it is also much more expensive, and the measurements

are less precise45,146. Although 1H-NMR spectroscopy has been applied to a wide range of

studies due to its reproducibility and rapid analysis speed, it cannot measure metabolites

that are present in low concentrations, which require more sensitive techniques such as

MS to be identified and quantified46.

Direct infusion high-resolution mass spectrometry

Direct infusion coupled to high-resolution mass spectrometry (DIHRMS) is an alternative

metabolomics approach where the sample is introduced directly into the mass spectro-

meter58. DIHRMS benefits from a rapid analysis time, has high technical reproducibility,

and can detect a wide range of metabolites at a reasonable cost45,146,147,149. The measure-

ments are comparable to other mass spectrometry approaches and only minimal sample

biomass is needed45,149. It does not require a prior separation step using gas or liquid

chromatography, which is a significant advantage given that it speeds up the analysis time

substantially and does not destroy the biological sample if needed for further analysis149.

Despite these significant advantages, DIHRMS does have several limitations. First,

signals can be suppressed or enhanced when all the samples are introduced simultaneously

into the ionisation source149. This results in the ionisation capability of one metabolite

being modified because the charge is associated with another metabolite45,146.

Second, DIHRMS produces complex spectra that yield m/z and intensity values only,

without a retention time45,149. This makes the precise identification of lipid species chal-

lenging because chemical isomers cannot be distinguished, which would require chromato-

graphic separation45,146. DIHRMS uses a fingerprinting approach which means that the

lipids to be measured are not identified a priori, so they have to be identified on the basis

of their monoisotopic mass150. Using DIHRMS, lipids can be identified to a molecular

formula level but not beyond as it cannot separate isobaric species149. Therefore, for some

lipids it can be difficult even to determine their subclass, for instance whether they are a

phosphocholine (PC) or phosphoethanolamine (PE).

Despite the above limitation, identification at the chemical formula level using DIHRMS

still allows the modelling of changes within lipids according to biological processes such

as chain elongation and desaturation, while further characterisation of m/z peaks can be

performed using LC-MS/MS or GC-MS/MS45. Therefore, when DIHRMS is performed
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with consideration to these points and selection of lipids that can be identified more readily,

these limitations should not be an overwhelming cause for concern.

Regardless of the method used for obtaining mass spectral data, most metabolomics

equipment is subject to non-biological artefacts in measurements, which produces a batch

effect over time as each new plate is run (also known as “machine drift”)151. To compensate,

it is necessary to include blanks and quality control (QC) samples on each plate and add

internal standards to each sample to facilitate validation, cleaning, and normalisation of

the results151. It is also important to use a balanced randomisation which helps to avoid

batch effects so that any differences between lipid profiles of the various samples are real

rather than artefacts152.

3.1.2 Peak-picking to identify lipid metabolites

When using an open-profiling method, the complexity and large number of lipids that can

be recorded requires that a suitable data processing approach is used to obtain relevant

and specific information on the lipids in the samples. A single sample analysed using a

mass spectrometer often produces tens of thousands of data points, but the actual number

of lipids in the sample is typically only in the couple thousands. Therefore the majority of

data points are actually extraneous, the result of instrument noise, process artefacts, and

redundant ion features. This makes identifying true signals a laborious and time-consuming

process with a high risk of false positives150,151,153.

Most feature-selection algorithms are aimed at chromatographic approaches and are

not suitable for direct infusion. However, a type of feature selection that is effective

for this type of data is peak-picking, which is the algorithmic process of identifying a

particular distribution of a signal that is peak-shaped (i.e. Gaussian). Software algorithms

have been developed that aim to mimic the human process of identifying baseline signals,

examining the height and shape of a peak, recording a measurement of the peak width

and height (known as peak integration), and assigning the mean m/z value for that peak.

Various advanced methods of peak-picking apply algorithmic filters, such as the frequently

employed Gaussian filter, but signal processing methods such as wavelet analysis have also

been developed, which aim to extract all possible signals in a mass spectrum150,151. These

popular advanced methods can be prohibitively computationally intensive when applied

to thousands of mass spectra, with thousands of signals to analyse per spectra, and their

use is discouraged particularly when it is not entirely known what compounds are in a

particular sample. However, for large-scale studies where the composition of the samples
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is reasonably similar (such as human serum), the vast majority of the detected signals will

be similar. Therefore, a more targeted approach to signal processing can be used, focusing

on lipids that can be expected in human serum, and can be readily applied to studies with

large numbers of samples58.

Peak-picking is the approach that was used in this study. A comprehensive lipid list

was compiled using a well-established approach based on all lipids that could theoretically

be present in human serum48,154. The mass spectrometer measured all compounds within

a specified m/z window and a novel peak-picking algorithm developed for this analysis was

used to extract the lipid signals corresponding to all lipids on this list. The list was then

further refined based on a specific lipids that were actually detectable in this population.

3.2 Methods

3.2.1 Sample selection

Serum samples from 5674 PROMIS participants were pipetted into 1.2 mL Cryovial tubes

and manually arranged into 72 boxes according to a randomised block design so that each

box had no more than 80 samples. Each box corresponded to a 96-well plate, and each

tube within the box was assigned a corresponding well on that plate. Block randomisation

was performed using the “blockTools” package155 in R v3.1.2156, which assigned each of

the samples to experimental blocks, with one sample per factor, by creating a measure of

multivariate distance between all possible pairs of units. The factors used were participant

sex, age, ethnicity, recruitment centre, and time in years since date of survey. Therefore,

instead of a simple randomisation, which reorders participants in an arbitrary manner

and could end up with a clustering of participants with similar values on the same plate

by chance, block randomisation ensured that the values of each of the specified variables

were evenly distributed both within the 80 samples on each plate as well as across the 72

plates. Thus, block randomisation is not actually random in the true sense of the word;

rather, this approach ensured that all of the relevant factors were distributed in consistent

proportions across all of the plates as well as within each plate152.

A QC sample was created by pooling 100 µL of 200 randomly selected samples, which

was mixed and aliquoted to be used on each plate. A subset of the pooled sample was

diluted with phosphate buffered saline (PBS) solution to two different concentrations

giving three different QCs (QC1 was undiluted, QC2 was 1:1 diluted, and QC3 was 1:3

diluted). Samples were sent to the Medical Research Council (MRC) Human Nutrition
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Research (HNR) laboratory in Cambridge, UK, for lipid extraction and data acquisition

using DIHRMS.

3.2.2 Lipid extraction

An automated method for the extraction of lipids was developed using an Anachem Flexus

automated liquid handler (Anachem, Milton Keynes, UK). A total of 80 samples, four

blanks, and twelve QC samples in 1.2 mL Cryovials were placed on the Flexus, then 100 µL

of MilliQ H2O was added to each of the wells and mixed, and then 100 µL of the mixture

was transferred to a glass-coated 2.4 mL deep well plate (Plate+TM, Esslab, Hadleigh,

UK). Next, 250 µL of MeOH was added containing six internal standards (0.6 µm 1,2-di-O-

octadecyl-sn-glycero-3-phosphocholine, 1.2 µm 1,2-di-O-phytanyl-sn-glycero-3-phosphoeth-

anolamine, 0.6 µm C8-ceramide, 0.6 µm N -heptadecanoyl-D-erythro-sphingosylphosphoryl-

choline, 6.2 µm undecanoic acid, 0.6 µm trilaurin), followed by 500 µL of methyl tert-butyl

ether (MTBE). The plates were then sealed using Corning aluminium micro-plate sealing

tape (Sigma Aldrich Company, UK) and shaken for 10 min at 600 rpm, after which the

plate was transferred to a centrifuge and spun for 10 min at 6000 rpm. Each well in the

resulting plate had two layers, with an aqueous layer at the bottom and an organic layer

on top. A 96-head micro-dispenser (Hydra Matrix, Thermo Fisher Ltd, Hemel Hampstead,

UK) was used to transfer 25 µL of the organic layer to a glass coated 240 µL low well plate

(Plate+TM, Esslab, Hadleigh, UK), and 90 µL of MS-mix (7.5 µm NH4Ac IPA:MeOH [2:1])

was added using a Hydra Matrix, after which the plate was sealed and stored at −20 ◦C

until analysis.

3.2.3 Data acquisition

All samples were infused into an Exactive Orbitrap (Thermo, Hemel Hampstead, UK)

using a Triversa Nanomate (Advion, Ithaca, US). The Nanomate infusion mandrel was

used to pierce the seal of each well before analysis, after which, with a fresh tip, 5 µL

of sample was aspirated, followed by an air gap (1.5 µL). The tip was pressed against

a fresh nozzle and the sample was dispensed using 0.2 psi nitrogen pressure. Ionisation

was achieved with a 1.2 kV voltage. The Exactive started acquiring data 20 seconds after

sample aspiration began. After 72 seconds of acquisition in positive mode, the Nanomate

and the Exactive switched over to negative mode, decreasing the voltage to −1.5 kV. The

spray was maintained for another 66 seconds, after which the analysis was stopped and

the tip discarded, before analysis of the next sample began. Throughout the analysis the
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sample plate was kept at 15 ◦C. Samples were run in row order and repeated multiple

times if necessary to ensure accuracy. The mass spectrometer had a resolution of 65 000

at 400 m/z with an average mass accuracy error of 0.85 ppm in the measurement of the

m/z across all intact lipids.

3.2.4 Data processing and peak-picking

The Exactive provided spectral data in a compressed proprietary raw format. It was

necessary to repeat the assay for 259 samples where the first run produced poor quality

spectra. For these 259 duplicate samples, the sample with the highest quality mass spectral

data was retained, which was determined from visual inspection of the raw spectra. In

the event that the spectra appeared similar so that it was not possible to determine which

one to keep, the run with the latest time-stamp was retained. Once a clean list of 96

raw files was obtained for each of the 72 plates, including blanks and QC samples, the

files were decompressed and converted to an open-source spectral format (mzXML) using

the “msconvert” tool in ProteoWizard157,158. This tool was called from a Python159 script

to take advantage of multi-threading, which allowed multiple samples to be processed

in parallel on a Linux server. The computing cluster that was used for these analyses

was hosted by the High Performance Computing Service (HPCS) at the University of

Cambridge. The compressed raw data were approximately 180 GB, which expanded to

almost one terabyte when uncompressed and converted.

For each infusion an average spectrum was calculated from a user-defined retention

time window, which was set at 20 to 70 seconds for positive ionisation mode and 95 to

145 seconds for negative ionisation mode. The m/z window was set at 185 to 1000 for

both ionisation modes. The R156 package “xcms”51 was used to average fifty spectra per

mode, which was also called from a Python script on the same Linux server so that multi-

threading could be used. XCMS software51 has become a popular tool for peak alignment,

peak detection, and performing other aspects of mass spectrometry data processing, and

has been used in many non-targeted metabolomics studies70,160–165.

The list of m/z values, based on expected and possible lipids in serum, was extracted to

a file containing comma-separated values (CSV) and used to extract small windows of data

around the target m/z in the average spectrum. The peak maximum was recorded and

the two closest points to the half-height of the peak on either side were identified, yielding

a total of four points. The points with which a horizontal line at half-height intersected a

line connecting the two points on either side of the peak (one above the half-height of the
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Figure 3.1: Schematic of the peak-picking process

(a) XCMS was used to average fifty spectra in positive and negative ionisation modes, yielding (b) the
average mass spectrum for that particular polarity, for which signals were obtained using a peak-
picking algorithm that determined the (c) peak signal at the midpoint of a line drawn at half-height
for peaks near signals that correspond to known lipids. Signals and deviations that represented
known lipids were then (d) combined in a database, and split into separate files for (e) signals and
(f) deviations for each lipid. Source: Figure produced by Luke Marney for manuscript by Harshfield
E, et al. (Manuscript under review; see Appendix B).

peak and one below) was used to obtain a peak width calculation (distance of the line) and

a more accurate m/z value for the peak maximum (midpoint of the line). For all the m/z

values, the maximum intensity was recorded as well as the deviation of the peaks’ accurate

m/z. This was performed independently for each sample and run in parallel. The final

step was the combination of all the signals into one CSV file and the deviations in a second

CSV file. The technical set-up yielded average deviations of less than 4 ppm (1 000 000 Ö

m/z deviation / m/z target). An overview schematic of the peak-picking process is shown

in Figure 3.1.

As an illustrative example, lipid profiles for five PROMIS participants are shown in

Figure 3.2. These five individuals were chosen to be representative of the whole set of

participants, while allowing the differences in lipid profiles between individuals to be more

readily visible. The intensities are shown in a different colour for each participant. The

intensities were measured on a continuous scale across the mass spectrum, but peaks

corresponding to the various lipids can easily be seen. The intensity values at each of these
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Figure 3.2: Illustrative example showing relative intensities of mass spectra for five
PROMIS participants
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FreeFA(12:0)-H-
(m/z 199.1704)

FreeFA(16:0)-H-
(m/z 255.233)

FreeFA(18:1)-H-
(m/z 281.2487)

Cholesterol - loss of OH
(m/z 369.3514)

LysoPC(16:0)
(m/z 496.3404)

CE(18:2)
(m/z 666.6183)

PC(34:2)
(m/z 758.57)

PE(39:2)
(m/z 786.6012)

TG(52:2)
(m/z 876.8016)

SM(34:1)
(m/z 703.5747)

The normalised relative intensities for each lipid (calculated for each participant by dividing the signal
for each lipid by the total signal of all the lipids) are shown for five randomly selected participants.
Several of the lipids with the highest peaks for one or more participants are labelled according to
their name and m/z value.

peaks were then extracted according to the peak-picking process as described above.

The signals recorded for each sample are relative intensities, which represent the relevant

abundance of the ions that correspond to each lipid. Since most of the ions have a single

charge, the m/z value is usually equivalent to the mass of the ion itself. By subtracting

the mass of the adduct ion (e.g. [M+H]+, [M+NH4]+, [M−H]-, or [M+OAc]-) from the

observed peak, one can determine the exact mass of the lipid and thereby identify its

molecular structure and the number of carbon atoms and double bonds that it contains.

Because the open-profiling approach used in DIHRMS does not predetermine which

lipid species will be detected, data are provided on all ionisable molecules and the assay is

therefore very sensitive to contamination, especially of compounds with high ionisation effi-

ciencies. All plates contained a presence of adipates (m/z 371.316) and organophosphates

such as Tris(2,4-di-tert-butylphenyl) phosphite (m/z 647.459) and its oxidation products

(m/z 663.454), which leach from plastics into organic solvents. However, the use of glass-

coated well-plates minimised the contact time of the samples with the plastics, and using

blanks and three QC levels, the contamination ions (approximately half of all the signals)
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were able to be excluded from the final data set. The use of glass-coated well-plates was

therefore essential to obtain both precise and reliable data. Furthermore, as the method

relies on nano-flow, the contaminations had minimal impact on the ionisation efficiency.

The peak-picking algorithm described above enabled the extraction of signals and

deviations from 1305 lipids in positive ionisation mode and 3772 lipids in negative ionisation

mode for the 5674 participants plus blanks and QC samples, resulting in more than 69

million retrieved data values and nearly two terabytes of uncompressed data. Since the

method processed each file independently and could run the analyses in parallel, there was

no requirement to load all the files jointly into memory to perform the alignment, which

greatly increased processing speeds. In contrast, most other metabolomics processing

methods require loading the entire dataset for all metabolites and all samples into memory,

which requires an extensive amount of processing power and takes a long time to perform

the calculations. However, this peak-picking approach is only suitable to compare samples

that are very similar and where the same lipids are expected for each individual, since it

requires an input file with the expected m/z (target). The results also required manual

QC as in certain cases the m/z target could be too close to an isotope or adduct of another

lipid. The identities of all the ions that passed QC were therefore confirmed.

3.2.5 Refinement of lipid list

Although the original list of all known lipids consisted of 1305 lipids in positive ionisation

mode and 3772 lipids in negative ionisation mode, not all of these lipids were actually

detectable in the PROMIS serum samples using the lipidomics platform. Quality control

was therefore performed to remove lipids that were undetectable or did not align with

internal standards. All QC samples with poor signal strength, all contaminated blanks,

lipids with fewer than 700 detectable peaks, lipids that had a poor correlation with the

QC samples (Pearson correlation r < 0.95), and lipids where the total signal was less than

three standard deviations below the average of all the QC1 samples were removed. The

coefficient of variation (CV) for each QC sample was then determined for each lipid, and

the lowest of the three QC samples at each dilution was kept. Any lipids with a CV of

less than 25 % were omitted from further analysis. An overview of the QC steps that were

performed is shown in Figure 3.3.
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Figure 3.3: QC steps performed to obtain final list of 444 lipid metabolites

3.2.6 Data cleaning and quality control

The total signal was calculated separately for the lipid metabolites in each ionisation mode

as the sum of the signals of all lipids in that mode. Participants were excluded from

analysis in a particular ionisation mode if the total signal for the lipids in that mode

was less than 5 000 000 (relative units), which indicated a poor infusion. This cut-off was

based on the lower QC value so that only samples with proven robustness were included.

Each lipid was normalised by expressing the signal as a proportion of the total signal for

each participant. This was applied to reduce the batch effect and facilitate meaningful

comparisons of relative intensities of lipids across different plates. Since the distributions

of the normalised signals for most of the lipids showed approximate log-normality, natural

log-transformation was applied to each lipid. Lipid signals for individual participants were

considered outliers and thus excluded if the normalised, log-transformed signal was more

than 10 standard deviations (SD) from the mean for that lipid across all the participants.

An assumption of the models used to run the GWAS is that the data are approximately

normally distributed, so it is common practice in most metabolomics analyses to deal with

outliers. Many metabolomics studies treat any values more than 3 to 5 SD from the mean

as outliers75,80,83,166–169. However, since the majority of PROMIS participants were not

fasting at time of blood draw, their lipid levels could have spiked if they had recently

consumed a high-fat meal, so to avoid being overly conservative, a cut-off of 10-SD from

the mean was used. It is unlikely that lipids would actually have true values more than
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10-SD from the mean, so these measurements were either below the lower limit of detection

(which would be expected when the distribution of the measurements for that particular

lipid showed that it could be expected to overlap with the limit of detection) or the

measurement was false, perhaps due to a contaminant or another unknown reason. For

the GWAS analyses (described in Chapter 5) it was reasonable to set these outliers to

missing to ensure that the assumptions of approximate log-normality held, but for the

Gaussian Graphical Modelling (GGM) analyses (described in Chapter 4 and Chapter 6),

which required complete cases, all missing values were imputed with the median value for

that lipid.

3.2.7 Scatter plot of lipid signals

In order to observe the distribution of each lipid across the full set of participants, the

normalised relative intensities of each lipid for each participant were plotted across the

m/z spectrum. These were displayed as a scatter plot with the m/z of each lipid on the

x-axis, and the normalised relative intensity of the signal of each lipid on the y-axis.

3.3 Results of lipidomics processing

Lipid profiles obtained using DIHRMS were available for 5662 PROMIS participants

following data processing, cleaning, and QC; 123 out of the original 5674 samples (2 %)

were excluded during the QC stage. The extent of missing data is shown in Figure 3.4. As

shown in Figure 3.4a, 5328 participants (94 %) were missing data from less than 10 % of

the 444 lipids, and as Figure 3.4b shows, 427 lipids (96 %) were missing data in less than

10 % of the participants. There were only 17 lipids that were missing data in more than

10 % of the participants.

A scatter plot showing the normalised relative intensities of all the lipids according to

their m/z, grouped by participant, is shown in Figure 3.5. The wide distribution of the

signals across certain lipids, such as cholesterol with loss of −OH, CE(18:2), PC(34:2), and

TG(52:2) (see Figure 3.2), suggests that the levels of these lipids vary significantly across

individuals, whereas the levels of other lipids are more consistent.

A distinct advantage of DIHRMS is its low cost (approximately £10 per sample) and

rapid data collection. The high throughput of the method means that with an analysis

time of just over two minutes per sample, it is possible to run a full plate within four hours.

The automated sample preparation of one plate is possible in 1.5 hours, which makes this

approach especially useful for large-scale lipid profiling.
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Figure 3.4: Extent of missing data according to the number of lipids and participants

(a) Percentage of lipids with missing data per participant

(b) Percentage of participants with missing data per lipid

Figure 3.4a shows the number of participants with lipidomics data according to the proportion of
lipids with missing data (e.g. 5328 participants had between 0 % to 9 % missing data). Figure 3.4b
shows the number of lipids that were measured according to the proportion of participants with
missing data (e.g. 427 lipids had complete signal data measured in all except 0 % to 9 % of
participants).

69



3.3. Results of lipidomics processing Chapter 3. Lipidomics data processing

Figure 3.5: Normalised relative intensities of lipid metabolites

3.3.1 Lipid classification

This DIHRMS method for lipidomics covers a wide range of lipids, including fatty acyls,

glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids (Figure 3.6), and does

not require a prior selection of specific lipids or lipid classes, in contrast to fragmentation-

based approaches using tandem mass spectrometry.

The DIHRMS method included measurement of neutral lipids such as triglycerides and

cholesteryl esters, which are not covered by the commercial platforms that are currently

most widely used in large-scale metabolite phenotyping for genome-wide association stud-

ies74. This study included analysis of approximately 125 metabolic features that have not

yet been assessed in any of the major genome-wide association studies of human metabol-

ism74. Additionally, the platform included measurement of lipids that contain odd-chain

fatty acids, which have generally been ignored in previous metabolic profiling efforts170,

while this analysis shows that these lipids are important to human metabolism.

The classification scheme that was employed for the lipids measured by this plat-

form is based on the taxonomy used by a number of lipid databases, including Lipid

Metabolites and Pathways Strategy (LIPID MAPS, http://www.lipidmaps.org)62,154,

Swiss Lipids (http://www.swisslipids.org)171, and the Human Metabolome Database
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Figure 3.6: Classification of lipid metabolites according to overall lipid category, main
class, and subclass
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Table 3.1: Categorisation of lipid metabolites in positive and negative ionisation
mode measured by DIHRMS in PROMIS

Overall lipid category Lipid subclass No. (%) of lipid
metabolites

Fatty acyls (FA) Free fatty acids (FreeFA) (−) 22 (5.0)

Glycerolipids (GL)
Diacylglycerols (DG) (+) 19 (4.3)
Triacylglycerols (TG) (+) 56 (12.6)

Glycerophospholipids (GP)

Lysophosphatidylcholines (LysoPC) (+) 8 (1.8)
Phosphatic acids (PA) (−) 20 (4.5)
Phosphatic acids (PA) (+) 13 (2.9)
Phosphatidylcholines (PC) (−) 52 (11.7)
Phosphatidylcholines (PC) (+) 54 (12.2)
Phosphatidylethanolamines (PE) (−) 24 (5.4)
Phosphatidylethanolamines (PE) (+) 16 (3.6)
Phosphatidylglycerols (PG) (−) 5 (1.1)
Phosphatidylinositols (PI) (−) 25 (5.6)
Phosphatidylserines (PS) (−) 22 (5.0)

Sphingolipids (SP)
Ceramides (Cer) (−) 16 (3.6)
Sphingomyelins (SM) (−) 51 (11.5)
Sphingomyelins (SM) (+) 27 (6.1)

Sterol lipids (ST)
Cholesterol & derivatives (Chol) (+) 2 (0.5)
Cholesteryl esters (CE) (+) 12 (2.7)

Total lipid metabolites 444 (100%)

(+) denotes lipid metabolite measured in positive ionisation mode; (−) denotes lipid metabolite
measured in negative ionisation mode.

(HMDB, http://www.hmdb.ca). While there are slight differences between these classific-

ation schemes, they all include the five overall lipid categories that were measured using

DIHRMS, which are then subdivided into various lipid classes and subclasses (Figure 3.6).

For instance, two of the lipid subclasses that were measured using the platform, lyso-

phosphatidylcholines and phosphatidylcholines, are both a type of glycerophosphocholine,

which in turn is one of the six types of glycerophospholipids that were measured using the

platform. The number of lipids that were measured within each lipid subclass, in both

positive and negative ionisation modes, are listed in Table 3.1. It is worth noting that

beyond the five overall categories of lipids listed here, there are also several broad lipid

categories that were either not measured by this platform or were not detectable in this

population—these include prenol lipids (such as Vitamin E and Vitamin K), saccharolipids

(such as disaccharides), and polyketides (such as erythromycins and tetracyclines).

As a brief introduction to lipid biology and structure, the five overall lipid categories

and their constituent lipid classes and subclasses will be described. The structures of

these classes are shown in Figure 3.7. Lipids in the first category, fatty acids, consist of a

hydrocarbon chain that terminates with a carboxylic acid group. Fatty acids are commonly

used as building blocks of more structurally complex lipids. A few well-known examples

are linoleic acid, alpha-linoleic acid, eicosapentaenoic acid (EPA), and docosahexaenoic
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Figure 3.7: Chemical structure of overall lipid categories

Relationships among the major lipid categories are shown starting with the 2-carbon precursor acetyl CoA,
which is a building block in the biosynthesis of fatty acids. Fatty acyl substituents in turn may be transferred
to form complex lipids, namely sphingolipids, glycerolipids, glycerophospholipids, and sterols (as steryl esters).
Some fatty acids are converted to eicosanoids. A second major biosynthetic route from acetyl CoA generates
the 5-carbon isoprene precursor isopentenyl pyrophosphate, which provides the building blocks for the prenol
and sterol lipids. Fatty acyl-derived substituents are coloured green; isoprene-derived atoms are coloured
purple; glycerol and serine-derived groups are coloured red and blue, respectively. Arrows denote multi-step
transformations among the major lipid categories starting with acetyl CoA. Source: Figure and caption are
adapted from Quehenberger O, et al. J Lipid Res. 2010;51(11):3299-330562.

acid (DHA).

Diacylglycerols and triacylglycerols consist of two or three fatty acid chains, respectively,

bound to a glycerol backbone. These fall into the second category, glycerolipids, which are

especially important for storing fat.

The third category, glycerophospholipids, are phospholipids with a glycerol backbone,

and are major constituents of membrane bilayers. A phospholipid consists of two hydro-

phobic fatty acid tails and a hydrophilic head, which is a phosphate group. The phosphate

groups can be modified with simple organic molecules such as choline or ethanolamine. For

instance, phosphatidylcholines are simply glycerophospholipids with choline head groups,

while phosphatidylethanolamines are glycerophospholipids with ethanolamine head groups.

The fourth category, sphingolipids, are a class of lipids that contain a backbone of

sphingoid bases. A ceramide is a specific type of sphingolipid where the head group

consists of only a hydrogen atom. Finally, sterol lipids are another important component
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of cellular membranes. While all steroids are derived from the same fused four-ring core

structure, which consists of three cyclohexane rings and one cyclopentane ring, they can

have different biological roles such as hormones and signalling.

Each lipid metabolite can be classified according to the total number of carbon atoms

and double bonds that it contains. This is denoted by a:b, where a is the number of

carbons in the side chain(s) and b is the number of double bonds. As an example, CE(14:0)

(m/z 614.587) is a cholesteryl ester that contains 14 carbon atoms and zero double bonds, so

it is fully saturated. It only has one side chain which consists of a single fatty acid, FA(14:0),

also known as myristic acid. Another example is PC(34:2) (m/z 758.57), which consists

of 34 carbon atoms with two double bonds so it is polyunsaturated. While the most likely

combination of fatty acid chains that makes up this phosphocholine is [FA(16:0/18:2)]

(palmitic acid and linoleic acid, respectively), it is possible that other combinations of

fatty acids could exist for a lipid with this m/z. A more complex example is TG(54:4)

(m/z 900.8015), which contains three fatty acid chains. The most likely combination of

fatty acids for a triglyceride with this m/z is [FA(18:0/18:2/18:2)] (stearic acid and two

linoleic acids); however, it is also quite possible that this triglyceride could consist of a

different combination of fatty acids, such as [FA(16:0/18:0/20:4)] (palmitic acid, stearic

acid, and arachidonic acid).

As the above examples illustrate, a drawback of the DIHRMS assay is that the precise

fatty acids that make up each lipid cannot be determined, nor can the location of the

double bonds on each fatty acid chain be identified. However, despite this limitation,

the lipids can be grouped according to the total number of carbon atoms and double

bonds on the entire lipid. Figure 3.8 shows each lipid plotted according to the number

of carbon atoms and double bonds that make up that lipid. Lipids measured in positive

ionisation mode are shown in blue, while lipids measured in negative ionisation mode are

shown in red. The lipids are plotted semi-transparently, so that a darker shade of blue

indicates that multiple lipids with the same number of carbon atoms and double bonds in

positive ionisation mode exist at a single location, while a darker shade of red indicates a

large number of lipids in negative ionisation mode with the same number of carbon atoms

and double bonds. In contrast, a purple colour indicates that lipids in both positive and

negative ionisation mode with the same number of carbon atoms and double bonds were

measured, so these are plotted on top of each other. The lipids have been grouped into

the five overall lipid categories.

The majority of fatty acyls were fully saturated (i.e. zero double bonds), while the
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majority of sphingolipids were either fully saturated, monounsaturated (with one double

bond), or polyunsaturated with two double bonds. For all of the lipid classes, but especially

for the glycerolipids and glycerophospholipids, a clear pattern emerged, which is that as the

number of carbon atoms increased, the number of double bonds also increased. Figure 3.8

confirms the information listed in Table 3.1, namely that all of the glycerolipids and sterol

lipids were detected only in positive ionisation mode, while all of the fatty acyls were

detected only in negative ionisation mode. The glycerophospholipids and sphingolipids,

meanwhile, consisted of a range of lipids in both positive and negative ionisation modes.

3.3.2 Correction for batch effect

There was a significant observable batch effect (machine drift) in the pre-normalised (raw)

data across the 72 plates that were measured using DIHRMS. The batch effect was relatively

minor for the first few plates, but became more pronounced after plate 14 and especially

apparent from plate 23 upwards, as seen in the box plots (Figure 3.9) and scatter plots

(Figure 3.10) of the raw (pre-normalised) relative intensities for each plate. This can also

be seen in the plot of the first two principal components for each plate (Figure 3.11), which

together explained 69 % of the variance in the relative intensities (PCA analysis will be

described in Chapter 4). In the scatter plot and PCA plot, the QC samples and blanks

are represented by black tick marks, while the samples on each plate are each portrayed in

different colours. As each successive plate was run, the variance in the relative intensities

became more prominent. It is likely that a significant contributor to the observed batch

effect, particularly the extreme shift in the average relative intensity between plates 22

and 23, was the cleaning of the instrument heads. However, after normalising the lipids

by dividing the signal of each lipid for each participant by the total signal (sum of all the

lipids) for that participant, the batch effect was no longer apparent (Figure 3.12) since the

average relative intensity was consistent across each plate.

3.3.3 Quality control results

Quality control of the lipid metabolites resulted in a list of 207 lipids in positive ionisation

mode and 237 lipids in negative ionisation mode, all with unique mass-to-charge ratios

and identifiers. However, since no chromatography step was used in the method, each

m/z could theoretically represent a number of individual isobaric lipid species. The CVs

for each lipid that were retained in each ionisation mode are shown in Figure 3.13. The

precision was higher in positive mode (average CV 13.01 %, median CV 11.48 %) than in
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Figure 3.8: Number of carbon atoms and double bonds for each lipid by ionisation mode
within each lipid class

The lipids are plotted semi-transparently so that circles with darker shades of colour indicate that
multiple lipids in either positive (blue) or negative (red) ionisation mode were measured with the
same number of carbon atoms and double bonds. A purple colour indicates that lipids with the same
number of carbon atoms and double bonds were measured in both positive and negative ionisation
mode, which are plotted on top of each other.
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Figure 3.9: Box plots of raw (pre-normalised) relative intensities of lipids for each par-
ticipant across each plate

Figure 3.10: Scatter plot of raw (pre-normalised) relative intensities of lipids for each
participant across each plate

This figure was produced using MetaboAnalyst 2.0 (http://www.metaboanalyst.ca)172.
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Figure 3.11: Score plot of first and second principal components of raw (pre-normalised)
relative intensities of lipids for each participant for each plate

This figure was produced using MetaboAnalyst 2.0 (http://www.metaboanalyst.ca)172.
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Figure 3.12: Box plots of normalised relative intensities of lipids for each participant
across each plate

negative mode (average CV 23.67 %, median CV 22.34 %). However, the CVs demonstrate

that the normalisation gave reproducible data on par with other high-throughput metabolic

profiling methods57,73.

3.4 Discussion

DIHRMS was used to record signals across a broad spectrum of mass-to-charge ratios in

5662 individuals. Raw signal data were converted and signals corresponding to known

lipids were extracted using a specialised peak-picking algorithm. The lipid signals were

normalised to reduce the batch effect and facilitate meaningful comparisons of relative

intensities of lipids across different plates. After applying the normalisation and additional

QC steps, the resulting cleaned signal data were available for 444 lipids.

The newly developed method described in this chapter used DIHRMS to yield the

intensities of several thousand features. Although the platform itself is non-targeted and

measures all signals within a specified m/z window, a customised peak-picking approach

was used, which is scalable to studies with large-scale epidemiological data, to obtain

signals for a targeted set of lipids that can reasonably be expected from human serum.
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Figure 3.13: Coefficient of variation for each lipid in positive and negative ionisation
mode

This newly developed open-profiling method is highly suitable to provide detailed lipid

profiles in large-scale epidemiological studies, with a wider coverage of lipids than most

other high-throughput profiling methods.

One of the apparent limitations of the method described in this chapter is that a large

number of measured lipids were excluded from the analysis. The lipidomics platform was

untargeted in the sense that it measured all signals within a mass-charge ratio window from

185 to 1000, but it would be impractical to include all signals within that range since the

size of the dataset would essentially be infinite. The peak-picking algorithm was therefore

implemented to extract all signals corresponding to known lipids that were theoretically

detectable in human serum (1305 lipids in positive ionisation mode and 3772 lipids in

negative ionisation mode). However, in practice, not all of these lipids were detectable in

this specific population, and some of the detected lipids were excluded if they failed QC,

so this resulted in a final dataset of 207 lipids in positive ionisation mode and 237 lipids

in negative ionisation mode. Although this can be perceived as a major reduction in the

overall number of lipids compared to the total number of signals that were extracted, in

reality, the fact that 444 lipids were detectable and passed QC with low CVs is reasonable

and to be expected for this lipidomics platform.

Another potential limitation is the method that was used to address the batch effect,
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which was readily apparent from the raw signal data. The strategy that was selected for

batch correction was chosen because it was straightforward to implement and reasonably

effective at reducing the batch effect across the 72 plates. The approach involved expressing

the signal for each lipid as a proportion of the total signal (the sum of the signals for

all the lipids within that ionisation mode). MetaboAnalyst 2.0 software172 was used to

evaluate the extent to which the batch effect was a concern and how well it was able to

be addressed. An alternative strategy for batch correction that could have been used is

Quality Control-Robust Spline Correction (QC-RSC), which is based on an adaptive cubic

smoothing spline algorithm149, but since the approach that was used sufficiently addressed

the batch effect it was not necessary to implement a more complex approach. The genetic

analyses also adjusted for plate to further account for any remaining batch effect.

Signals were annotated to a molecular formula on the basis of the accurate mass. The

resolution of 65 000 at 400 m/z, as used in this study, allowed for the baseline separation of,

for instance, molecular formulae C41H78NPO8+H+ (m/z 744.554) and C42H82NPO7+H+

(m/z 744.590), but was unable to determine if the former was PC(33:2) or PE(36:2) as the

species are isobaric. The average mass accuracy error in the measurement of the m/z was

0.85 ppm across all intact lipids, with the highest difference for detected lipids of 2.69 ppm

for PC ae (37:4). However, this did not mean that only one lipid species contributed to

a specific m/z. For example, the ion which was identified as TG(52:2) with m/z 876.802

could be many different triglyceride lipids [e.g. TG(16:0/18:2/18:0), TG(14:0/16:0/22:2) or

TG(16:0/18:1/18:1)], which all have the same molecular weight. Interpretation of species

at the level of chemical formulas allows one to model changes within lipid pools according

to biological processes such as chain elongation and desaturation. One can assume that a

given signal peak was likely to be a combination of several lipid species. The annotation

was further based on fragmentation data for the most predominant ion through additional

LC-MS/MS analyses.

Because the open-profiling approach did not predetermine which lipid species would be

detected, as the name suggests, it provided data on all ionisable molecules and was therefore

very sensitive to contamination, especially of compounds with high ionization efficiencies.

In all analyses, there was evidence of adipates (m/z 371.316) and organophosphates, such as

Tris(ditert-butylphenyl)phosphite (m/z 647.459) and its oxidation products (m/z 663.454),

which leached from plastics into the organic solvents. However, using glass-coated well-

plates minimised the contact time of the samples with the plastics, and by using blanks

and QCs at three different concentrations, the contaminating ions (approximately half of
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all the signals) were excluded from the final data set. The use of glass-coated well plates

was essential to obtain both precise and reliable data. Furthermore, as the method relied

on nanoflow, contaminants had minimal impact on the ionisation efficiency.

The developed peak-picking algorithm enabled the processing of almost seven thousand

data files in about two minutes per sample. The analysis time was greatly sped up by

processing each file independently and performing analyses in parallel, since unlike other

metabolomics processing techniques, there was no requirement to load all files jointly into

memory to perform the alignment. This approach is only suitable to compare similar

samples where the same lipids are expected, as it requires known lipids with their target

m/z. The results required manual curation as in certain cases the target m/z was too

close to an isotope or adduct of another lipid. Therefore, the identity of all the ions that

passed the QC filter was confirmed, and selected samples were analysed by high-resolution

LC-MS/MS to confirm lipid annotations.

The approach that was used has three practical advantages over most published ap-

proaches: (1) The method is extremely fast, so that with an analysis time of just over

two minutes per sample it is possible to run several hundred samples per day; (2) as a

consequence of the high throughput, the cost per sample is greatly reduced; and (3) by

virtue of the simplicity of the method it is also robust, with low CVs achievable for many

of the lipid species detected. This opens up the possibility of applying the method to

much larger studies or exploring possible applications in routine assessment of patients

and health screenings.

Open-profiling lipidomics using DIHRMS, combined with a novel peak-picking al-

gorithm, proved highly effective for obtaining concentrations of 444 lipid metabolites

in 5662 individuals from PROMIS. The following chapters describe the analyses of the

lipidomics signal data.
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CHAPTER4
Descriptive analyses of lipidomics

data

Chapter summary

The analyses in this chapter focus on characterising the lipid metabolites and their associ-

ation with CHD risk factors such as smoking, physical activity, levels of major circulating

lipids, diabetes, hypertension, and obesity. While dimension reduction techniques were

employed to facilitate analysis of the overall patterns in the signal data across lipids, the

lipids were also analysed on an individual basis to examine their characteristics and asso-

ciations more comprehensively. However, rather than displaying results for the association

of hundreds of individual lipids with dozens of different traits, which would produce an

overload of information that is not particularly informative, this chapter presents a selected

set of descriptive results that best illustrates the diversity of the lipids and the utility of

this platform to facilitate a deeper understanding of lipid metabolism.

Descriptive analyses were conducted on the cleaned lipidomics dataset, which consisted

of signal data for 444 lipid metabolites in 5662 individuals, to examine cross-correlations

of each pairwise combination of lipids. The lipids were analysed for their association with

lifestyle and environmental factors such as smoking and physical activity, and their associ-

ation with major lipids such as HDL-C, LDL-C, and triglycerides. Principal component

analysis was performed as a dimension reduction technique to reduce the complexity of

the data and identify patterns, and then principal components of the lipids were analysed

for their association with CHD risk factors such as obesity, hypertension, and diabetes.

Partial least squares discriminant analysis was implemented to determine whether levels of
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lipid metabolites could be used to classify individuals according to their body mass index

and Framingham 10-year risk of cardiovascular disease. Gaussian graphical modelling

(GGM) was also employed to obtain partial correlations of the lipid metabolites. A heat

map and network map were produced of the observed GGM edges compared with the

number of GGM edges that would be expected due to chance. Specific results are also

shown for a subset of the triglyceride metabolites and for lipids associated with a variant

in the APOA5 locus that is known to be associated with major lipids and CAD. Overall,

these analyses showed that the lipid metabolites are highly correlated with each other and

display associations with major lipids and several CHD risk factors.
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4.1 Introduction

Lipidomics can provide a wealth of useful information on lipid profiles in the body and the

metabolic pathways that are involved in lipid metabolism, which are closely linked to the

onset of many chronic diseases as described in Section 1.3. Analyses of the epidemiological

associations between lipids and CHD risk factors can yield valuable insights into lipid

metabolism and the onset of disease.

Lipidomics and other high-throughput analytical platforms lead to the production of

extensive amounts of data149. In addition, metabolic pathways are enormously complex,

so understanding and interpreting the relative composition and abundance of metabolites

across a set of samples can be challenging, especially when aiming to translate lipid

metabolites into meaningful biomarkers with useful clinical applications173,174. A number

of statistical methods, such as data reduction techniques to reduce the complexity and

dimensionality of the data, are needed to analyse these types of datasets in a thorough

and consistent manner.

One of the most commonly used methods to analyse biological high-throughput data is

principal component analysis (PCA)58,150,175. PCA is an approach to capture the structure

of multidimensional data by reducing it into a series of artificial variables (i.e. “principal

components”) that explain a moderate proportion of the variation in the data, which may

then be used as predictors or covariates in subsequent analyses176. PCA is performed on a

matrix of correlation coefficients and requires that the variables are normally distributed

and that pairs of variables display a bivariate normal distribution176. In order to meet

these assumptions, mass spectral data need to undergo log transformation, data centring,

and statistical normalisation techniques such as Pareto Scaling, in which each variable

is divided by the square root of its standard deviation150,177. Depending on the type

of centring, scaling, and transformation techniques used, researchers can obtain vastly

different results that highlight completely different findings177; thus, these data preparation

steps mask the essential structure of the data and the associated quality control information

that is critical for high-throughput analyses. Additionally, the projection of the original

spectral data onto a multivariate space of lower dimensionality, albeit allowing for spectral

clustering, produces a loading matrix that displays correlations but whose values have no

real-world interpretation150,176. Therefore, while PCA is useful for verifying the accuracy

of quality control samples, detecting outliers, and initially examining clusters and patterns

in the data, this analytical technique is otherwise limited in its applicability178. For this
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reason, PCA can be helpfully employed to initially identify patterns in the lipidomics

data, and the associations of these principal components with CHD risk factors can

also be assessed, but further analyses are also needed that delve deeper into individual

lipids with interesting associations, which can provide detailed information that is more

straightforward to interpret175.

Another approach, Gaussian graphical modelling (GGM), is an established technique

that can lead to insights into the dependency structure between lipids, such as (1) which

lipids might influence each other, and (2) which lipids might be under shared regulatory

mechanisms132,179,180. GGMs are also known as partial correlation networks, for which the

partial correlations are obtained by determining the correlation between two metabolites

while holding all other metabolites constant, and repeating this for each pair of metabo-

lites179. The partial correlation between metabolites A and B while holding C constant is

determined by performing normal linear least-squares regression with A as the target and

C as the predictor, then performing a normal linear least-squares regression with B as the

target and C as the predictor, then calculating the residuals for each regression and the

correlation coefficient between the two sets of residuals179.

PCA and GGM are “unsupervised” statistical techniques for pattern recognition be-

cause they are not based on any prior knowledge about the samples, such as phenotype or

outcome information, so the results depend solely on the structures inherent in the underly-

ing data58. In contrast, when using “supervised” methods, additional external details are

included that help arrange or group the data according to the provided characteristics58.

A variety of supervised methods are useful for analysis of high-throughput metabolomics

data. One such technique is partial least squares discriminant analysis (PLS-DA), which is

a regression extension of PCA. PLS-DA involves selecting a set of coefficients that define

the single linear combination of factors (e.g. phenotype data and lipid levels) that best

differentiates (i.e. discriminates) between groups based on a chosen outcome of interest181.

PLS-DA has been widely used in metabolomics studies to sharpen the distinction between

groups according to shared characteristics175. For example, PLS-DA has been applied in

order to identify differences in levels of metabolites according to chronic kidney disease

and hyperlipidaemia status in rats182,183, to distinguish individuals with dietary patterns

at increased risk of chronic diseases based on levels of metabolites56, and to characterise

differences in levels of metabolites according to the flesh colour of a potato184. The use

of supervised techniques to identify a specific set of lipid metabolites that distinguishes

between individuals with various CHD risk factors (e.g. obese individuals compared to
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those with normal adiposity) has important clinical applications for personalised medicine

and prevention of CHD and could be used in risk prediction models.

4.2 Methods

4.2.1 Descriptive analyses and data reduction

Histograms and quantile-quantile plots of lipid metabolites

Histograms and quantile-quantile (Q-Q) plots were constructed to examine the distributions

of each lipid metabolite. The lipid signals on the raw scale were compared with the

normalised, log-transformed scale in order to confirm approximate log-normality.

Principal component analysis

PCA176 was conducted on the normalised relative intensities of the lipids. The matrix

loadings were orthogonally rotated and the first four principal components were retained

based on examination of the scree plot of the eigenvalues (Figure 4.1). These four principal

components explained 55.1 % of the variance in the relative intensities of the lipids, while

altogether, 56 principal components explained 95 % of the variance. Since PCA is more

effective when the input data matrix has complete information on all variables included

in the calculation of principal components, the 17 lipids (3.8 %) that had more than 10 %

missing data (as described in Chapter 3) were excluded from the analysis. Scatter plots

were produced comparing the first versus second principal components and third versus

fourth principal components.

Partial least squares discriminant analysis

PLS-DA was also conducted on the normalised relative intensities of the lipids in order to

separate individuals according to CHD risk factors using a score comprised of all lipids. The

PLS-DA analysis was performed in R using the “mixOmics” package185,186. Individuals

were categorised according to whether their body mass index (BMI) was underweight

(< 18.5 kg/m2), normal (18.5 kg/m2 to 24.9 kg/m2), overweight (25 kg/m2 to 29.9 kg/m2),

or obese (≥ 30 kg/m2). PLS-DA was then applied to separate individuals based on their

lipid levels into these BMI categories.

PLS-DA was also applied to separate individuals according to their Framingham 10-year

relative risk for cardiovascular disease (CVD)187. Using the standard Framingham CVD

algorithm187, each individual was assigned points based on their age, sex, high-density
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Figure 4.1: Scree plot of eigenvalues from PCA

lipoprotein cholesterol (HDL-C) levels, total cholesterol levels, systolic blood pressure

(SBP), smoking status, and diabetes status, which were then converted to a 10-year CVD

risk score and classified as low (< 10 %), moderate (10 % to 20 %), or high (≥ 30 %) risk.

4.2.2 Assessment of correlations between metabolites

Cross-correlations of lipid metabolites

Initially, Pearson correlation coefficients were calculated to determine cross-correlations

of each of the lipid metabolites within each ionisation mode. Ward’s minimum variance

agglomerative method188, which minimises the sum of squared distance of pairs of objects,

was applied iteratively to determine the hierarchy of the entire set of lipids. A heat map

was produced to display the correlation coefficient for each pairwise combination of lipids.

However, Pearson correlation coefficients have limitations, as they are generally unable to

distinguish between direct and indirect metabolic interactions179, so further techniques

were also employed.

Gaussian graphical modelling

In order to better resolve lipid cross-correlations, a GGM was estimated on the normalized

relative intensities of the lipids. This was performed between each pair of lipid metabolites

while holding all other metabolites constant. The GGM resulted in a set of edges in which

each edge connected two detected lipids if their cross-correlation conditioned on all other

lipids was significantly different from zero. Participants with more than 10 % missing
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lipids, as well as lipids with more than 20 % missing participants, were removed from the

analysis. The “genenet” R package was used to infer the GGM189. A similar approach

for metabolomics data has been suggested previously179. To focus on strong effects, edges

in the model were only retained if they met a false discovery rate (FDR) cutoff of 0.05

and had a partial correlation coefficient greater than 0.2. This resulted in a network of

the partial correlations between all metabolites. The results were also summarised and

combined within each lipid class to produce a heat map of the partial correlations between

each of the lipid classes.

The heat map was constructed by first calculating the partial correlation between each

pairwise combination of lipids, then counting the number of GGM edges between lipids

that belong to the same lipid subclass. Next, the connections between lipids and subclasses

were randomly shuffled and the number of GGM edges was then counted; this process was

repeated for 1000 permutations so that an average number of expected GGM edges was

obtained. The actual (observed) number of GGM edges was then compared to the expected

number of GGM edges if this assignment was random. These were then summarised within

lipid subclasses. Each cell of the heat map showed the ratio of the observed number of

GGM edges for all lipids within that subclass to the total number of connections between

lipids within that subclass. The cells were coloured red or blue according to whether the

observed number of GGM edges was more or less than expected due to chance alone.

Fatty acid chain enrichment analysis

The detected lipids were also manually annotated with respect to their constituent fatty

acid chains. To test whether edges from the GGM were enriched for any combination

of fatty acid chains, the annotations were permuted 1000 times, keeping the number of

annotations per lipid and fatty acid chain constant using the R package “BiRewire”190.

For each combination of fatty acid chains, the number of GGM edges connecting lipids with

that specific combination were counted using the true annotation as well as the permuted

versions. These counts were then used to directly estimate P -values of enrichment and

depletion.

4.2.3 Association of lipid metabolites with CHD risk factors

There are a range of established CHD risk factors, which include hypertension, smoking,

diabetes, LDL-C, HDL-C, physical activity, diet, and obesity. As set out in Figure 1.15,

one of the goals of this dissertation was to determine whether these factors influence levels
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of lipid metabolites, or whether levels of lipid metabolites can result in increased risk

of CHD due to undesirable modifications in these risk factors. The association of lipid

metabolites with these CHD risk factors was analysed in three groups: (1) Lifestyle and

behavioural factors such as diet, physical activity, and smoking; (2) Circulating biomarkers

such as LDL-C and HDL-C; and (3) Intermediate outcomes such as hypertension, diabetes,

and obesity.

It is often challenging to portray the results from the association of 444 lipid metabolites

with a range of different risk factors as there are simply too many data points to process

and present in an understandable and interpretable format. Examination of a few traits

across all of the lipids can easily produce thousands of association statistics. Therefore, a

number of the following analyses in this and subsequent chapters have focused on a subset

of lipid metabolites from a particular subclass, such as triglycerides, or on a subset of

lipids that are associated with a particular genetic region of interest that is known to be

associated with risk of CHD. As will be described in Chapter 5 and Chapter 6, the GWAS

analyses resulted in the discovery of a number of lipid metabolites that were significantly

associated with known genetic regions. Some of the analyses have focused on the lipid

metabolites that are associated with rs662799, a common polymorphism in the APOA5

region that is known to be associated with major lipids and CAD (Table 1.2). While the

actual genetic analyses will be described in the following chapters, this chapter describes

the epidemiological (non-genetic) associations of the lipids that are significantly associated

with this variant.

Association with lifestyle factors

It is already well established that lifestyle factors such as diet, smoking, and physical activity

can influence levels of major circulating lipids. Therefore, this analysis aimed to examine

the association of these behavioural factors on concentrations of lipid metabolites, for

which less is known. Logistic regression models adjusted for age and sex were constructed

examining the association of smoking and physical activity with a wide range of lipid

metabolites. The variables for smoking status and physical activity were reclassified as

binary variables (i.e. smoker versus non-smoker and physically active at any level versus

not physically active).

Although a detailed food frequency questionnaire was obtained from PROMIS partici-

pants as described in Chapter 2, the information was self-reported and subject to recall

bias. Furthermore, although the survey was comprehensive and asked about consumption
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of approximately 160 different foods, the nutritional content and make-up of each type

of food on the questionnaire has not been determined, so it is difficult to identify overall

dietary patterns that can be linked to lipid levels without the use of PCA, which is again

subject to limitations. For these reasons, dietary patterns were not examined and the

analysis of lifestyle factors focused on smoking and physical activity.

Association with circulating biomarkers

PROMIS is a rather unique bioresource in that not only does it measure standard major

lipids such as total cholesterol, HDL-C, LDL-C, and triglycerides, and it has detailed in-

formation on hundreds of lipids using a novel lipidomics platform, additionally, it has meas-

urements on hundreds of clinical chemistry biomarkers, as described in Chapter 2. These

include glucose, creatinine, C-reactive protein, HbA1c, C-peptide, ferritin, apolipoprotein

B, interleukin-6, alkaline phosphatase, alanine transaminase, aspartate aminotransferase,

and many others.

The lipid metabolites that were most strongly associated with APOA5 within each lipid

category were examined to determine their cross-correlations with a range of circulating

biomarkers. Partial correlation coefficients were calculated with adjustment for age and

sex.

Association with intermediate outcomes

The association of lipid metabolites with several intermediate outcomes, which are soft clin-

ical endpoints that can eventually lead to MI or CHD, were also examined. Unconditional

logistic regression models adjusting for age and sex were used to assess the association of the

second, third, and fourth principal components with having hypertension, being overweight

or obese, and having diabetes. Hypertension was defined as SBP ≥ 140 mmHg or DBP

≥ 90 mmHg; overweight and obese were defined as body mass index (BMI) ≥ 25 kg/m2 or

BMI ≥ 30 kg/m2, respectively; and diabetes was defined as HbA1c ≥ 6.5 %.

4.3 Results

4.3.1 Cross-correlations of lipid metabolites

A heat map with hierarchical clustering of Pearson correlation coefficients showed significant

clustering of lipid metabolites in both positive and negative ionisation modes (Figure 4.2).

Although the lipids were clustered broadly into three overall groups, they were correlated
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Figure 4.2: Heat map of Pearson correlations of lipid metabolites with hierarchical clus-
tering
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Both axes show the full list of 444 lipids, which have been ordered using hierarchical clustering.

with other lipids both within and across lipid classes and subclasses.

The correlations between lipid metabolites can be seen more clearly in a separate

heat map on a subset of just the triglyceride-related metabolites (Figure 4.3). As one

would expect, triglycerides with the same carbon number but differing numbers of double

bonds were strongly positively correlated with each other. Interestingly, while most of the

triglycerides with lower carbon numbers and fewer double bonds were strongly positively

correlated with each other, these triglycerides were strongly negatively correlated with the

triglycerides with higher carbon numbers and more double bonds. Additionally, peroxidised

triglycerides [e.g. TG oxid(52:3) and TG oxid(53:3)] were negatively correlated with their

regular triglycerides counterparts [TG(52:4) and TG(53:4), respectively].
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Figure 4.3: Heat map of Pearson correlations of triglyceride-related metabolites with
hierarchical clustering
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While most lipid metabolites were correlated with levels of major lipids, confirming the

validity of the platform, the direction of the correlation varied according to the structure

of individual metabolites. A graph of the partial correlation coefficients and 95 % CIs for

each of the triglyceride-related metabolites with circulating triglyceride levels is shown in

Figure 4.4. While most of the triglyceride-related metabolites with fewer carbon atoms and

fewer double bonds in their fatty acid side-chains were positively correlated with circulating

triglycerides, many of the triglyceride-related metabolites with comparatively more carbon

atoms and double bonds in their fatty acid side-chains were inversely correlated with

circulating triglycerides.

For many of the triglycerides, as the number of double bonds increased or the level of

saturation decreased [e.g. from TG(48:1) to TG(48:2) to TG(48:3), or from TG(50:1) to

TG(50:2) to TG(50:3)], the correlation with circulating triglycerides decreased, indicating

an inverse correlation between the number of double bonds and circulating triglycerides.

Likewise, for triglycerides that had an inverse correlation with circulating triglycerides, the

same trend was observed: as the number of double bonds increased [e.g. from TG(54:3) to

TG(54:4) to TG(54:5), or from TG(56:6) to TG(56:7) to TG(56:8)], the correlation with

circulating triglycerides decreased. The explanation for this pattern is unclear, but the

correlation of triglycerides with circulating triglycerides provides validation of the platform

and demonstrates the diversity of lipids with varying characteristics.

4.3.2 Gaussian graphical modelling

The GGM approach employed partial correlations to determine if specific lipids were

still strongly correlated after adjusting for all other lipids, and if lipid signals that were

assigned to specific lipids were in fact dominated by isotopologues of other lipids or signals

present as artefacts. The relationships between the lipid subclasses are shown in a heat

map (Figure 4.5). From the 314 GGMs, there were ten correlations that were purely

M+1 isotopes (the same lipid that contained one 13C isotope) of other lipid signals and

four correlations that were purely M+2 isotopes (the same lipid that contained two 13C

isotopes), based on very high correlations (r > 0.997) and correct isotope ratios. There

were 26 correlations where the M+1 isotope contributed considerably to the signal and

four where the M+2 isotope contributed predominantly to the signal. However, those

signals also showed contributions of different lipid signals, for which the correlations were

not as high (r < 0.997) or the isotope ratio was incorrect. There were 36 correlations

where the signals came from the same lipid in both positive and negative ionization modes,
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Figure 4.4: Partial correlation coefficients of triglyceride-related metabolites with circu-
lating triglyceride levels
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and two sets of lipids for which the signals overlapped and the peak-picking algorithm

was unable to distinguish the signals. The remaining 222 significant correlations were not

caused by any technical artefacts and were therefore most likely driven by biology, such

as correlations between lipids containing the same fatty acids (Figure 4.6).

4.3.3 PCA of lipid metabolites

PCA of overall lipids

The overall differences in lipid metabolism were assessed in the cohort using PCA. Scatter

plots were produced of the matrix loadings of the first versus second (Figure 4.7a) and third

versus fourth (Figure 4.7b) principal components. The individual lipids are distinguished

by colour on the figures according to the overall lipid category to which they belong.

The first principal component (which explained 31.8 % of the variance in the lipid

levels) correlated with differences between the positive and negative ionisation modes. The

dynamic range of the negative mode data was more limited than the positive mode data, and

due to the lower ionisation efficiency, the data were more prone to ion suppression. These

differences between the ionisation modes were amplified when the data were expressed

relative to total signal intensity. The first principal component was therefore excluded

from further data analysis.

The second component (which explained 11.7 % of the variance) was dominated by

triglycerides containing shorter and more saturated fatty acids, which had the highest

positive loadings, versus fatty acids (e.g. free linoleic acid) and cholesterol esterified with

polyunsaturated fatty acids [e.g. CE(18:2)], which had the strongest negative loadings

Figure 4.7a).

The third component (which explained 6.9 % of the variance) differentiated saturated

phosphatidylcholines [e.g. PC(32:0), PC(34:0), PC(32:0)] from triglycerides containing

longer, unsaturated fatty acids [e.g. TG(54:5), TG(54:7), TG(56:7)] (Figure 4.7b).

The fourth component (which explained 4.8 % of the variance) differentiated the odd-

chain fatty acid–containing sphingomyelins with the highest positive loadings [e.g. SM(39:1),

SM(41:1), SM(37:1)] versus saturated free fatty acids and triglycerides with the strongest

negative loadings [e.g. TG(52:2), TG(54:2)] (Figure 4.7b).

PCA of triglycerides

In addition to the PCA analysis on the full set of lipids, PCA was also performed on a

subset of lipids consisting of only the triglycerides. The corresponding scatter plots of
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4.3. Results Chapter 4. Descriptive analyses

Figure 4.5: Heat map showing relationships between lipid subclasses based on partial
correlations derived using Gaussian Graphical Modelling
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This heat map shows the relationships between lipid subclasses based on the inferred Graphical
Gaussian Model (GGM). The number in each cell shows the observed number of GGM edges connecting
two lipids in subclasses specified on the x- and y-axes. The cells are coloured red or blue according
to whether the observed number of GGM edges is more or less than expected due to chance alone,
and a box is drawn around the cell if there is a significant difference between the number of observed
versus expected GGM edges.
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4.3. Results Chapter 4. Descriptive analyses

Figure 4.6: Heat map showing partial correlations between constituent fatty acid chains
of lipids based on partial correlations derived using Gaussian Graphical
Modelling
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This heat map shows the relationships between the constituent fatty acid chains based on the inferred
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4.3. Results Chapter 4. Descriptive analyses

Figure 4.7: Scatter plot showing matrix loadings of normalised relative intensities of
lipids from PCA, coloured by overall lipid category

(a) First and second principal components

(b) Third and fourth principal components
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4.3. Results Chapter 4. Descriptive analyses

these principal components are shown in Figure 4.8. There is much that can be learned by

examining individual lipid subclasses. The first principal component of the triglycerides

appeared to distinguish triglycerides with an odd number of carbon atoms [e.g. TG(49:3),

TG(51:4), TG(55:9)], shown in the blue oval on the right side of Figure 4.8a, from those

with an even number of carbon atoms [e.g. TG(50:0), TG(52:1), TG(54:3)], shown in the

green oval on the left side. Odd-chain fatty acids primarily derive from dairy consumption,

while even-chain fatty acids are predominantly synthesised in the liver through de novo

lipogenesis.

The second principal component appeared to differentiate triglycerides with saturated

and monounsaturated fatty acid chains [e.g. TG(44:1), TG(47:1), TG(49:2)], shown in the

green and blue ovals at the top of the figure, from triglycerides containing ω-3 and ω-6

polyunsaturated fatty acids [e.g. TG(54:4), TG(58:9), TG(57:10)], shown in the orange

oval at the bottom of the figure. These polyunsaturated fatty acids come primarily from

fish consumption. There are also two pink ovals in Figure 4.8a, which represent a dis-

tinct category (or possibly multiple categories) from dairy consumption, fish consumption,

and hepatic synthesis. However, further research is needed to determine the biological

significance of the triglycerides in this grouping.

The third principal component appeared primarily to distinguish triglycerides con-

taining polyunsaturated fatty acids from triglycerides containing even-chain fatty acids

(Figure 4.8b), while the interpretation of the fourth principal component of the triglycerides

was not readily apparent.

PCA of lipids associated with APOA5

PCA was performed on a subset of the lipids that were significantly associated with the

rs662799 (chr11:116663707) variant in the APOA5 gene at P < 8.9× 10−10. The scatter

plots of these principal components are shown in Figure 4.9. The first principal component

is difficult to interpret, but it is clear that bar a few exceptions, the second, third, and fourth

principal components were very effective at differentiating glycerolipids (i.e. diglycerides

and triglycerides) from the other lipid classes.

4.3.4 Association of lipids with lifestyle factors

As shown in Figure 4.10, out of the top twenty lipids that are most strongly associated

with APOA5, some lipids had significantly positive associations with smoking and physical

activity, while other lipids had significant inverse associations. For instance, smoking was
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4.3. Results Chapter 4. Descriptive analyses

Figure 4.8: Scatter plot showing matrix loadings of normalised relative intensities of
triglycerides from PCA
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Figure 4.9: Scatter plots showing matrix loadings of normalised relative intensities of
lipids from PCA that are significantly associated with rs662799 in the APOA5
locus

(a) First and second principal components

(b) Third and fourth principal components
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associated with decreased levels of TG(52:4) but increased levels of TG(52:2) (Figure 4.10a).

Since both of these triglycerides have the same number of carbon atoms on their fatty acid

chains, the only difference is the level of saturation, since TG(52:4) has two additional

double bonds on its three fatty acid chains. Thus, TG(52:2) has either two saturated

fatty acids (zero double bonds) and a polyunsaturated fatty acid (two double bonds), or

two monounsaturated fatty acids (one double bond each) and a saturated fatty acid (zero

double bonds). In contrast, TG(52:4) most likely has a mixture of monounsaturated and

polyunsaturated fatty acids but probably does not have any saturated fatty acids, which

could explain why it was more likely to be present in the blood samples of non-smokers.

Although this does not imply that smoking causes changes in lipid profiles, the adverse

behaviour of smoking quite likely has a mediating effect.

Similar patterns in lipids with differing directions of effect can be observed for the

association with physical activity, although the majority of the associations were not

statistically significant (Figure 4.10b). However, one aspect to keep in mind is that

although all of these lipids are significantly associated with APOA5, not all of them are

influenced by lifestyle choices such as smoking or being physically active. Other factors are

likely to play an important role as well and are more likely to be the main causal drivers.

4.3.5 PLS-DA of lipid metabolites

A PLS-DA model was used to discriminate individuals according to their BMI category.

However, lipid metabolites were unable to distinguish individuals who were underweight,

normal weight, overweight, or obese due to the significant overlap between BMI categories.

A plot of the first and second components are shown in Figure 4.11a. A PLS-DA model

was also applied to distinguish individuals according to their Framingham 10-year risk for

CVD. However, again, lipid metabolites were unable to effectively discriminate individuals

who were at low, moderate, or high risk of CVD, as shown in the plot of the first and

second components in Figure 4.11b.

4.3.6 Association of lipid metabolites with circulating biomarkers

For the lipids within each overall lipid category that were most strongly associated with

rs662799 (chr11:116663707) in the APOA5 region [i.e. TG(53:3) (m/z 888.8016) for glyc-

erolipids, PC-O(39:3) or PC-P(39:2) (m/z 812.6532) for glycerophospholipids, SM(42:3)

(m/z 811.6688) for sphingolipids, and CE(20:3) (m/z 692.6339) for sterol lipids], the cross-

correlation of each lipid metabolite with a wide range of major lipids and other circulating
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4.3. Results Chapter 4. Descriptive analyses

Figure 4.10: Association of lipid metabolites with smoking status and physical activity

(a) Smoking status

(b) Physical activity

All analyses were adjusted for age and sex. Out of the lipids that were associated with rs662799
in the APOA5 locus, results are shown for the top twenty lipids that were most significantly
associated with smoking status and the top twenty lipids that were most significantly associated
with physical activity.
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4.3. Results Chapter 4. Descriptive analyses

Figure 4.11: Separation of individuals according to body mass index category and Fram-
ingham 10-year CVD risk based on a lipid score using partial least-squares
discriminant analysis
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(b) PLS-DA model to classify individuals according to Framingham 10-year
CVD risk category based on levels of lipid metabolites

Body mass index (BMI) was classified as underweight (< 18.5 kg/m2), normal (18.5 kg/m2 to
24.9 kg/m2), overweight (25 kg/m2 to 29.9 kg/m2), or obese (≥ 30 kg/m2). Framingham 10-year
relative risk for cardiovascular disease (CVD) was calculated using an algorithm based on age,
sex, high-density lipoprotein cholesterol (HDL-C) levels, total cholesterol levels, systolic blood
pressure (SBP), smoking status, and diabetes status187. The CVD risk score was then classified
as low (< 10 %), moderate (10 % to 20 %), or high (≥ 30 %) risk.
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biomarkers was determined. The biomarkers that were examined included total cholesterol,

LDL-C, HDL-C, HbA1c, apolipoprotein B, and C-reactive protein (Figure 4.12).

The free fatty acid was inversely associated with total cholesterol, non-HDL cholesterol,

LDL-C, triglycerides, ApoB, ApoC3, ApoE, and several other biomarkers (Figure 4.12a).

Triglyceride TG(53:3) (Figure 4.12b) showed a significant positive correlation with

levels of major circulating triglycerides, as would be expected, but also with ApoB, ApoC3

and ApoE, total cholesterol, non-HDL cholesterol, and several other biomarkers. This

triglyceride also exhibited a significant negative correlation with HDL-C and ApoA1.

For both sphingolipids (Figure 4.12d) and sterol lipids (Figure 4.12e), the strongest

inverse associations were found with major circulating triglycerides, ApoC3, and ApoE.

Sphingolipids had the strongest correlation with HDL-C, while sterol lipids esters had the

strongest association with LDL-C.

4.3.7 Association of lipid metabolites with intermediate outcomes

A plot displaying graphical representations of the ORs and associated 95 % CIs for asso-

ciations of the second, third, and fourth principal components with several intermediate

outcomes that are risk factors for CHD (i.e. overweight, obese, hypertension, and diabetes)

is shown in Figure 4.13.

Individuals who were overweight or diabetic—i.e. with high levels of CHD risk factors—

were more likely to have lipid profiles similar to those corresponding to the second principal

component, whereas individuals who were not overweight or diabetic and did not have

hypertension—i.e. at reduced risk of CHD—were more likely to have lipid profiles matching

the third or fourth principal components. For example, a 1-SD increase in the loading

scores of the lipids that made up the third principal component resulted in a 20 % reduction

in the risk of being overweight (OR = 0.80, 95 % CI 0.76–0.84) and a 33 % reduced risk

of having diabetes according to levels of HbA1c (OR = 0.77, 95 % CI 0.72–0.81), which is

a reflection of long-term blood glucose levels rather than short-term fluctuations that are

measured by fasting plasma glucose levels.

Individuals with a pattern of lipid metabolite levels that could primarily be explained

by the third principal component had a more than 20 % reduced risk of being overweight

(OR = 0.80, 95 % CI 0.76–0.84). According to HbA1c levels, the third and fourth principal

components were both associated with a 33 % reduced risk of having diabetes (OR = 0.77,

95 % CI 0.72–0.81 and 0.73–0.82, respectively).
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Figure 4.12: Cross-correlations of circulating biomarkers with the lipids within each
overall lipid category most strongly associated with rs662799 in the APOA5
locus

(a) Fatty acyls: TG(53:3) (m/z 888.8016)

(b) Glycerolipids: TG(53:3) (m/z 888.8016)
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(c) Glycerophospholipids: PC-O(39:3) or PC-P(39:2) (m/z 812.6532)

(d) Sphingolipids: SM(42:3) (m/z 811.6688)
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(e) Sterol lipids: CE(20:3) (m/z 692.6339)

For the lipids within each overall lipid category that were most strongly associated with rs662799
(chr11:116663707) in the APOA5 region, the correlations of these lipids with a range of circulating
biomarkers are shown. Analyses were adjusted for age and sex.
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Figure 4.13: Association of established coronary heart disease risk factors with principal
components of lipid levels

All analyses were adjusted for age and sex. Odds ratios (OR) and 95 % confidence intervals (CI)
for each principal component are expressed per 1-SD increase in the loading scores of the lipids
that make up that component. Abbreviations: BMI = body mass index; CHD = coronary
heart disease; DBP = diastolic blood pressure; SBP = systolic blood pressure. Definitions:
Diabetes = HbA1c ≥ 6.5 %; Hypertension = SBP ≥ 140 mmHg or DBP ≥ 90 mmHg; Obese
= BMI ≥ 30 kg/m2; Overweight = BMI ≥ 25 kg/m2.
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4.4 Discussion

The analyses conducted in this chapter showed that lipid metabolites were highly correlated

with each other and with levels of major circulating lipids. PCA was used to identify the

principal components that explained the majority of the variance in the levels of the

metabolites. These principal components were associated with increased levels of several

CHD risk factors.

The second principal component revealed a contrast between free fatty acid levels versus

small, saturated triglycerides. Several factors could have contributed to this differentiation.

Volunteers were recruited at different hospitals and blood samples were taken directly after

consent. This means that there was significant variation in the time since participants

had eaten their last meal, which would have strongly affected both the free fatty acid

and triglyceride pools. The lipid species that contributed most to the second principal

component are also affected by obesity and insulin secretion/sensitivity. At the same time,

adiposity and insulin secretion will have an effect on free fatty acids levels. The second

principal component also demonstrated a significant positive association with the relative

likelihood for being overweight and having diabetes.

The third principal component was most closely characterized by unsaturated triglycer-

ides. The loadings of the fourth principal component showed that linoleic acid, whether as

a free fatty acid or as one of the fatty acid chains that made up a triglyceride, had negative

loading scores, while sphingomyelins containing odd-chain fatty acids and desaturated

phospholipids had positive loading scores. Both the third and fourth principal components

showed a negative association with the relative risk for being overweight and having dia-

betes, while only the fourth principal component also showed a negative association with

the relative risk for hypertension.

Despite the findings that were able to be drawn from the PCA analysis, PCA does have

some inherent limitations. The data are required to be normally distributed, which despite

normalisation and log transformation may have not been fully addressed. Furthermore, the

principal components can be difficult to interpret and they reflect overall trends and general

patterns in the distribution of the variance between the levels of the metabolites, rather

than the actual lipid levels, so they have no direct real-world interpretation. Nevertheless,

PCA provided a useful tool to examine clusters and patterns in the data and detect

interesting associations that can be explored further.

In order to further investigate patterns in the levels of lipid metabolites, PLS-DA was
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conducted to study the ability of lipid levels in discriminating individuals according to their

levels of CHD risk factors and risk of CVD. PLS-DA has been successfully applied to other

metabolomics studies56,182–184,191, so it was anticipated that this approach might expand

the knowledge base of the role of lipids in risk of CHD. However, the PLS-DA analysis in this

study did not yield any meaningful insights since the risk categories overlapped very closely,

even for the Framingham risk score which was partially calculated from levels of major

circulating lipids (HDL-C and total cholesterol). Although numerous studies have shown

that there are important metabolic differences between individuals with different vascular

risk profiles56,65–67,131,192, in this study it was not possible to disentangle the role that

levels of lipid metabolites play in this process, although lipid metabolites are undoubtedly

still either directly involved or implicated in atherosclerosis and the onset of cardiovascular

diseases. Therefore, the null findings from the PLS-DA indicate that although the principal

components obtained using PCA were significantly associated with CHD risk factors, these

associations are not sufficient to infer biological or clinical relevance193 and further research

is needed to elucidate the role that lipids play.

In addition to the dimension reduction analysis approach, analyses were also conducted

on individual lipids. However, it was beyond the scope of this dissertation to examine

the association of each of the 444 lipids with a range of risk factors, as this would have

resulted in too many data points that would not have been possible to interpret and

present in a concise and coherent manner. This is one of the challenges of working with

high-dimensional phenotypic data. Therefore, analyses of individual lipids were limited to

subsets that were most likely to be of scientific interest, such as triglycerides and lipids

that were significantly associated with a common polymorphism in the APOA5 cluster

known to be associated with major lipid loci and CAD.

The lipids exhibited a range of different associations with circulating biomarkers. Ad-

ditionally, the analyses of lifestyle factors revealed that that some lipids were positively

associated with smoking status and physical activity, while other lipids exhibited an inverse

association. For triglycerides, the overall trend was that triglycerides with fewer numbers

of double bonds were associated with increased levels of smoking, while triglycerides with

a higher number of double bonds were associated with decreased levels of smoking. This

trend was also observed somewhat for physical activity although most of the associations

were not significant.

The focused analyses that were performed for a subset of the triglycerides and a subset

of the lipids significantly associated with APOA5 could have also been performed for other
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lipid subclasses and gene regions, so the analyses in this chapter were not by any means

comprehensive. However, it provides a detailed overview of the characteristics of the lipid

metabolites, their cross-correlations, their correlation with major circulating lipids and

with CHD risk factors, and the association of principal components of the lipids with CHD

risk factors, as well as insights into a few specific subsets of the lipids.

The GGM analyses that were performed for the lipid subclasses and constituent fatty

acid chains of the lipids could have also been performed for each individual lipid or subsets

of lipids from various subclasses, which would provide much greater detail and insights

into the partial correlations between lipids. However, such analyses were beyond the scope

of the epidemiological investigations conducted in this chapter.

This lipidomics platform provides many novel insights into the effect of physiology and

behavioural choices on lipid metabolism, and detailed information about the relationship

between lipid subfractions and CHD risk factors. This chapter has described the epidemi-

ology of lipid metabolites. In the following chapters, the genetic associations with the lipid

metabolites will be examined in detail.
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CHAPTER5
Genome-wide association study of

lipid metabolites

Chapter summary

After presenting the epidemiology of lipid metabolites in the last chapter, the current

and subsequent chapters focus on the genetic epidemiology of these lipids. This chapter

presents results from genome-wide association analyses of the lipids, Chapter 6 describes

the annotation of the genetic associations and interpretation of the biological insights

that emerged, and Chapter 7 describes the causal relevance of lipids for coronary heart

disease (CHD) using genetic variants associated with both lipids and CHD as instrumental

variables.

Before conducting the GWAS analyses, the distributions of the log-transformed lipids

were examined to ensure approximate log-normality, an appropriate set of adjustment

variables was determined, and the covariates were regressed out by calculating the residuals

for each model. GWAS analyses were run on the residuals of the regression models for

the association of each of the 444 lipids with over 6.7 million genetic variants in 5662

individuals. Manhattan plots and quantile–quantile plots were produced to summarise

the overall GWAS results for each lipid, and regional association plots were produced for

all gene regions containing one or more genome-wide significant associations. Conditional

analyses were then conducted to identify the total number of conditionally independent

loci, and finally stringent post-analysis quality control filters were applied.

Out of the 444 lipids that were analysed, 254 lipids (57 %) were significantly associated

with one or more genetic variant(s). From the final results of the conditional analyses, there
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were 355 associations between SNPs and lipids, with a total of 89 sentinel variants from 23

independent loci. For each lipid, the sentinel variant within each locus was defined as the

variant with the strongest P -value of association. Heat maps were produced summarising

the association of the most strongly associated lipid within each lipid subclass with each

genetic locus as a visual representation of the overall genetic findings. The association of

lipid metabolites with the 175 genetic loci that are known to be associated with major

circulating lipids is also presented in the form of a heat map. Only 13 out of the 175 loci

associated with major lipids were also associated with lipid metabolites.

In addition to the primary association analyses of the individual lipids, GWAS were

also performed on principal components of the lipids and selected ratios of lipid metabolites

with known biological significance. The second, third, and fourth principal components

were associated with variants in the FADS1-2-3 and APOA5-APOC3 loci, which had

already been detected in the univariate GWAS. However, seventeen ratios were significantly

associated with one or more variants, and four additional independent loci were identified

from analysis of the ratios that were not associated with the individual lipids that made

up that ratio.

116



5.1. Introduction Chapter 5. Lipidomics GWAS

5.1 Introduction

As described in Section 1.2, the first genome-wide association study (GWAS) was conducted

in 2005, and ever since then the number of GWAS studies conducted per year and the

number of identified associated traits has been rapidly increasing. At a most basic level,

the output from a GWAS is a list of association results between SNPs and one or more

traits. This information can then be further analysed and interpreted to lead to more

insightful conclusions about the significance of the results and how they can be applied to

clinical and pharmacological settings.

GWAS have collectively identified 49 769 unique SNP–trait associations34. Out of

these, 390 associations involve metabolite measurements as traits. The GWAS analyses

described in this chapter for 444 lipids, using a novel lipidomics platform for which results

have never before been published, may help contribute towards increasing the number of

known associations between lipid metabolites and genetic variants.

5.2 Methods

Genome-wide association analyses were run on the residuals of each lipid using linear

regression. An analysis plan was developed in advance and followed to ensure that the

process was rigorous and not prone to researcher bias. An overview of the procedure used

to perform each stage of the GWAS analyses is provided in Figure 5.1 and described in

more detail below. For each step of the flowchart, the procedure that was followed for one

lipid, TG(52:2) (m/z 876.8016), is shown as an example.

5.2.1 Regression models used to perform GWAS

Histograms and Q-Q plots were produced to examine the distributions of the lipids. Since

some of the lipids were not normally distributed, natural log transformation was applied

to all of the lipids to achieve approximately normal distributions.

An appropriate level of adjustment for all of the lipids was determined based on both

prior knowledge and input from exploratory analyses. In addition to consideration of

factors that could lead to differences in lipid profiles between individuals, such as age,

sex, date of blood sample collection, and fasting status, other technical factors were also

considered such as plate number, date and time of assay, and the technician who ran the

assay. Linear regression models were constructed with progressive adjustment for each

of the potential variables to determine which factors were significant. An additive linear
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Figure 5.1: Flow chart of procedure used to perform GWAS
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- Examine distributions of log-transformed metabolites 
using histograms and Q-Q plots to ensure approximate 
log-normality.
 
- Based on prior knowledge and input from exploratory 
analyses, determine appropriate adjustment variables.
 
- Keep adjustment variables that are significant in each 
model, assessed using linear regression with examination 

 

- Calculate residuals for each model.
 
- Examine distributions of residuals using histograms and 
Q-Q plots to ensure approximate normality.
 
- Run GWAS on observed genotypes to determine 
association of each metabolite with genotyped SNPs.
 
- Examine inflation factors to ensure genomic inflation is 
reasonable (λ < 1.05).

- Choose most parsimonious model by re-running GWAS 
on genotyped SNPs with just 1 PC for ancestry.
 
- Examine inflation factor for new model and compare to 
inflation factor for previous model.
 
- If < 1% difference in inflation factors, proceed with a 
single PC in the model. If > 1% difference between the 
inflation factors, try re-running GWAS with adjustment for 
one additional PC to see how inflation factor changes.
 
- Continue increasing the number of PCs until 
appropriate adjustment is determined.

- Optimise models by removing poorly imputed SNPs 
before running analysis.
 
- Run GWAS on combined genotyped and imputed data.
 
- Examine inflation factors to ensure that they are 
reasonable (λ < 1.05).
 
- Examine Manhattan plots and Q-Q plots of results to 
ensure they are as expected.
 
- Use LocusZoom to generate regional association plots 
of gene regions where SNPs are associated with 
metabolites at genome-wide significance.
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Using a single lipid, TG(52:2) (m/z 876.8016), as an example, a flow chart is shown of the steps used
to perform the GWAS: (1) The distributions of the lipids were examined and appropriate adjustment
variables were determined to construct the models used in the GWAS; (2) The initial GWAS was
run using the residuals of the adjusted model on the genotyped data; (3) The model was evaluated
based on the inflation factor, Manhattan plot, and Q-Q plot of the GWAS results; (4) Once the
model was optimised, the full GWAS was run on the combined genotyped and imputed data, and
then Manhattan plots, Q-Q plots (inset), and regional association plots were created.
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model was used, which assumes a linear additive effect of the minor alleles on the lipid

concentrations148. For consistency, comparability, and practicality of implementation, the

models used for each lipid were adjusted for the same set of covariates.

Since the date of blood sample collection had missing data for some of the participants

(12 %), the date of completion of the questionnaire was used instead, which had no missing

data. Blood samples were nearly always taken on the same day that the survey was

completed, so using the date of survey instead was a suitable approximation. The reason

that the date of sample collection was considered to be important is because while the

lipidomics assay was conducted in 2013, some of the samples had been collected several

years prior—the range of survey dates was from 2005 to 2011 (see Figure 2.3). A concern,

especially if the blood samples were subjected to repeated thawing and refreezing in order

to conduct various assays and biomarker measurements, was that the length of storage time

could have had an important impact on the lipid profiles since levels of lipids in human

serum can deteriorate over time. Thawing and refreezing was kept to a minimum over the

duration of the study (although the number of times this occurred was not recorded), but

adjusting for date of sample collection attempted to take this into account. Otherwise,

if levels of some lipids deteriorated more rapidly than others, or certain samples were

thawed and refrozen more frequently than other samples, this could have introduced bias

or confounding of the genetic associations with each lipid.

Fasting status was an important source of variability to consider because individuals

who have recently eaten a high-fat meal would have much higher levels of triglycerides

and other lipids, known as postprandial lipaemia194,195. Fasting status was categorised as

fasting for less than eight hours, fasting for eight or more hours, or fasting for unknown

duration (i.e. on the questionnaire they responded that they had fasted but did not provide

a length of time since they had eaten their last meal). There were significant differences

in fasting status between the two GWAS platforms when including all individuals (chi-

square test P < 0.001), but when excluding the 266 (5 %) individuals who fasted for an

unknown duration, there was no significant difference between fasting status (chi-square

test P = 0.916) or fasting duration recorded in hours since last meal (t-test P = 0.744).

Nevertheless, fasting status was included as a variable in the model because of the direct

impact that fasting has on lipid levels.

The final set of adjustment variables for each log-transformed lipid was age, sex, date

of survey, fasting status, and plate number (batch). Continuous adjustment variables were

converted to categorical: age was categorised as <40, 40–49, 50–59, 60–69, or ≥70; date of
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Figure 5.2: Histogram of inflation factors across all lipids
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survey was categorised by quarter-years (e.g. 2005q1, 2005q2, 2005q3, . . . , 2011q3); and

fasting status was categorised as fasting for eight or more hours, less than eight hours, or

unknown duration. To account for population stratification and genetic substructure in

the data, principal component analysis (PCA) was conducted on the multi-dimensional

scaling matrix created from autosomal SNPs (chromosomes 1 to 22, excluding the X and

Y sex chromosomes) as implemented in PLINK196; the first six principal components

were subsequently added to each model. The number of principal components to use was

determined by adding each principal component to the model, running the linear regression

model to assess whether the factors were significant (P < 0.05), and conducting the GWAS

to examine the inflation factor. The first six principal components were significant in the

majority of the lipids examined and all of the genomic inflation factors (λ) were less

than 1.05. Inflation factors were calculated using the “GenABEL” package v1.8-0197 in the

statistical programme R156. A histogram of the inflation factors across all lipid metabolites

is shown in Figure 5.2, which naturally form a Gaussian distribution centred close to 1.0,

as expected. The mean (SD) of the inflation factors was 1.014 (0.013), and all values were

between 0.974 and 1.046.

Residuals were calculated from the adjusted models for each lipid, since regressing

out the covariates from the models enhanced performance speed and efficiency. The
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distributions of the residuals were examined using histograms and Q-Q plots in order to

ensure that the residuals were approximately normal. A Q-Q plot is a graphical method

of comparing probability distributions by plotting the negative logarithm of the observed

versus expected P -value for each SNP, which can be used to determine whether there

are deviations from the expected P -value distribution. An over-representation of highly

significant P -values in the tail area indicates possible true positive associations and that

population stratification was adequately controlled148.

5.2.2 Univariate GWAS

As shown in Figure 5.1, once the models were constructed and residuals were calculated,

the GWAS was performed first on the genotyped variants and then on the full set of 6.7

million directly genotyped and imputed variants. This provided the opportunity to confirm

that the results of the genotyped SNPs were as expected, double-check the inflation factors,

and ensure that the most parsimonious model was being used before scaling up to the full

analysis.

Initial GWAS using genotyped SNPs

Linear regression was used to determine the association of each lipid with genotyped SNPs

using SNPStats v1.12.0198, which was performed separately for the samples genotyped on

each of the two platforms, GWAS1 and GWAS2. As described in Chapter 2, there were

527 925 genotyped variants on GWAS1 and 643 333 genotyped variants on GWAS2. Q-Q

plots of the results were constructed for each lipid and the inflation factors were checked

to ensure that the values were not too extreme (λ < 1.05). Manhattan plots were also

constructed to examine the associations of genotyped SNPs with each lipid across the

entire genome.

It was important to use the most parsimonious model as possible since over-adjustment

with too many inflation factors could lead to reduced statistical power to detect true

associations. Therefore, the models that were used for the genotyped SNPs were rerun

with adjustment for just a single principal components for ancestry, and the inflation

factors between the simple model (one principal component) and the most comprehensively

adjusted model (six principal components) were compared. If there was a difference of less

than 1 % between the two inflation factors, that would have suggested that adjustment for

just a single principal component would have been sufficient. However, since the difference

was greater than 1 %, the GWAS on the genotyped SNPs was rerun with adjustment for
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two principal components to determine how the inflation factors changed. This process

was continued until the appropriate number of principal components to adjust for was

determined. The end result was that six principal components were retained in the models.

Full GWAS using genotyped and imputed SNPs

After confirming that the results from the genotyped SNPs were sensible and as expected,

datasets were generated with the participant IDs listed in the same order as the samples

imputed on GWAS1 and GWAS2. SNPTEST v2.4.1143 was then used to conduct linear

regression assessing the association of each lipid with over 6.7 million variants, which

consisted of the combined directly genotyped and imputed SNPs. The models that were

used for analysis of the genotyped SNPs were also used when analysing the combined

genotyped and imputed SNPs, with adjustment for the same set of covariates including

six principal components for ancestry.

A missing data likelihood score test was used when testing for association at imputed

SNPs to account for genotype uncertainty. This involved calculating an observed data like-

lihood in which the contribution of each possible genotype was weighted by its imputation

probability143. The score test then attempted to maximise the likelihood by evaluating

the first and second derivatives of the likelihood under the null hypothesis that there is

no association, which works well when the log-likelihood is close to a quadratic143. If the

score test did not produce a sensible result then an EM algorithm was used instead143.

The imputed data files on each GWAS platform had been split into 566 chunks across

all 22 autosomal chromosomes, each chunk consisting of a 5-Mb region of the genome. The

analyses were conducted separately and in parallel for each of the 566 chunks on each

platform and then the SNPTEST output results were combined into a single results file

for GWAS1 and GWAS2. This file was also formatted by extracting relevant statistics and

filtered based on cut-offs that were established as part of the analysis plan. The following

information was obtained: chromosome, position, SNP name, call rate, Hardy–Weinberg

equilibrium (HWE) P -value, imputation information score, effect allele, non-effect allele,

effect allele frequency, non-effect allele frequency, MAF, beta (b), standard error, and

P -value. Variants were excluded if the HWE P -value was < 1× 10−7, the call rate was

< 0.97, the minor allele frequency (MAF) was < 0.01, or the information (imputation)

score was < 0.80.

Since by definition a GWAS is conducted on a genome-wide basis, it implies the

hypothesis-free testing of millions or tens of millions of associations of SNPs with a single
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trait. The now-standard P -value threshold for assessing whether an association result

has reached genome-wide significance is 5× 10−8, which corresponds to P < 0.05 after

adjusting for the number of independent variants among the HapMap phase II genotyped

SNPs199. However, in the advent of high-dimensional phenotyping platforms, it has now

become common to conduct multiple GWAS of related traits, thereby requiring a more

conservative threshold for genome-wide significance. A straightforward means of adjusting

the threshold for genome-wide significance is to apply a Bonferroni correction by dividing

the standard genome-wide significance threshold by the number of traits being analysed,

which controls the family-wise error rate to reduce the probability of making a type I

error (false positives)12. However, in the case of metabolomics, where the traits are all

highly correlated, this may result in an overly stringent significance threshold, which

would yield false negatives since it is likely that many true associations between SNPs

and metabolites would be discounted. An approach that was implemented in a recent

metabolomics study78, which has been validated using a permutation test200, is to conduct

PCA on the metabolites and determine the number of principal components that explain

at least 95 % of the variance in the levels of the metabolites, and to use this as the

correction factor. Although this only serves as an approximation of the effective number

of independent tests, it provides a highly accurate estimation of the threshold for multiple-

testing correction that would be achieved using the permutation approach, while greatly

reducing the computing-time and resources required200. To correct for multiple testing

in this analysis, a Bonferroni correction was applied using a cut-off for statistical genome-

wide significance of P < 8.929× 10−10, which was calculated by dividing the standard

genome-wide significance level (5× 10−8) by the number of principal components (56) that

explained over 95 % of the variance in the levels of the lipids, as described in Chapter 4.

Manhattan plots are an approach that is commonly employed to graphically display

the results of a GWAS. Typically, the position of each analysed SNP in base pairs along

each chromosome is displayed on the horizontal axis, while the − log10 P -value for the

association of the SNP with the trait of interest is displayed on the vertical axis. The

“towers” that may emerge on the figure when there are a large number of highly significant

SNPs clustered within particular loci are said to resemble the Manhattan skyline, which

is how this style of figure gets its name.

Regional association plots also show − log10 P -values versus chromosomal positions,

but they focus on specific genetic regions of interest. Regional association plots are often

called “LocusZoom” plots because this is the name of the software package that is most
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commonly used to produce the plots. They show the lead SNP or “sentinel SNP” (i.e. the

SNP with the strongest P -value) along with other SNPs in the same gene region. The

location of the genes is annotated, allowing one to examine nearby genes and identify

potential causal candidate(s). The other SNPs in the region are coloured according to

their degree of linkage disequilibrium (LD) with the lead SNP. A high LD r indicates a

non-random association between neighbouring genetic variants, which is used to describe

a region of high correlation between SNPs148.

For all lipids, Manhattan plots and Q-Q plots were constructed and inflation factors

were verified. Regional association plots were produced in LocusZoom v1.3201 using the

meta-analysed results for 200-Kb regions upstream and downstream of any SNPs with

Bonferroni-corrected genome-wide significant P -values, and summary results were compiled

for all significant SNPs.

Computing resources used for genetic analyses

Conducting the genetic association analyses described above required a substantial amount

of computing resources. The imputed genetic files for GWAS1 and GWAS2 were each over

100 GB, and these files had to be read into memory for each of the 444 traits analysed. Over

6.7 million association analyses were conducted for each of the 444 traits. On a normal

desktop computer, this would have taken several years of computing time to complete

the analyses; however, through the use of parallel jobs that were submitted to a high-

performance computing cluster, the full set of GWAS results for each lipid was obtained

in less than four hours, and analysis of the full set of lipids only took a few days.

For the analyses using only the genotyped data, which had smaller file sizes with

fewer variants and thus ran much more quickly, “cardio” was used, which is a computing

cluster at the Cardiovascular Epidemiology Unit (CEU) hosted by the High Performance

Computing Service (HPCS) at the University of Cambridge. Cardio has six compute nodes

connected by 10 Gbit ethernet: one high memory Dell PowerEdge R820 node (1 TB RAM,

4x8 cores, 2.40 GHz Intel Xeon E5-4640), two Dell PowerEdge R720 nodes (256 GB RAM,

2x12 cores, 2.40 GHz Intel Xeon E5-4640) and three Dell PowerEdge R630 nodes (256 GB

RAM, 2x10 cores, 2.60 GHz Intel Xeon E5-2660). The cluster is linked to a Lustre file

system with 291 TB of usable storage space on Dell MD disk vaults.

For the analyses using the combined genotyped and imputed data, which had signif-

icantly larger file sizes with many more variants and thus required increased computing

power, the Darwin computing cluster hosted by HPCS was used. 9600 Sandy Bridge cores
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are provided by a 600 quad server Dell C6220 chassis. Each node consists of two 2.60 GHz

eight core Intel Sandy Bridge E5-2670 processors, giving sixteen cores in total, forming

a single NUMA (Non-Uniform Memory Architecture) server with 64 GB of RAM (4 GB

per core), 376 GB of local storage, and Mellanox FDR ConnectX3 interconnect. Thus,

rather than being limited to six computing nodes as was the case on Cardio, the Darwin

computing cluster enabled access to up to 600 nodes—albeit shared with many other users

across the University of Cambridge—which dramatically sped up the analysis time.

Meta-analysis of univariate GWAS results

Beta estimates and standard errors from the association results of the two genotyping

platforms were combined in a fixed-effect inverse-variance weighted meta-analysis using

the latest version of METAL (2011-03-25)202. This approach took into account the sample

sizes and direction of effect of the results obtained using each genotyping platform. For each

variant, a reference allele was selected and a z -statistic was calculated that summarised

the magnitude and direction of effect relative to the reference allele. The results for both

genotyping platforms were aligned to the same reference allele. An overall z -statistic and

P -value were calculated from the weighted sum of the individual statistics, with the weights

proportional to the square-root of the number of participants in each sample and selected

such that the sum of the squares of the weights equalled 1.0.

Although the effect allele and non-effect allele were specified when running METAL,

the program has been designed to ignore this information and meta-analyse the results

from each study according to its own criteria of which allele should be the effect allele.

Fortunately, the programme does align the results to keep the alleles consistent across all

the studies that are included in the meta-analysis, but the downside of this approach is

that the effect allele that was output from the meta-analysis was sometimes different from

the effect allele from the individual studies. For example, if in the input dataset for a

given variant, G is the effect allele and A is the reference allele, METAL flips it around

so that the b estimate is with respect to A. Therefore, after running the meta-analysis, if

the effect allele from the meta-analysis output did not match the effect allele from the two

individual studies, then the reference allele and effect allele in the meta-analysis results

were swapped and the sign of the b estimate was reversed (i.e. from negative to positive, or

vice-versa), while the magnitude was left the same. This ensured that the effect alleles and

b coefficients in the combined output results were consistent with the SNPTEST results

from the two GWAS platforms.
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Compilation of summary GWAS results

Similar procedures that were performed for each of the individual GWAS platforms were

also followed for the combined results. Using the meta-analysis results for each lipid,

Manhattan plots and Q-Q plots were constructed and inflation factors were verified to

ensure that they were reasonable. Regional association plots were produced in LocusZoom

v1.3201 using the meta-analysed results for any SNPs with significant − log10 P -values less

than the genome-wide significance level of 5× 10−8 and any SNPs within 200-Kb of the

lead SNP. A Bonferroni correction was applied using a cut-off for statistical genome-wide

significance of P < 8.929× 10−10. Summary results were compiled for any SNPs with

− log10 P -values less than the corresponding Bonferroni-corrected P -values.

Conditional analyses of univariate GWAS results

Conditional analyses provide a means to examine GWAS results in further detail by determ-

ining if the significant variants within a particular genetic region (locus) are harbouring

any secondary, tertiary, or higher-level signals in that same locus or nearby. These further

signals can be detected when the original model is conditioned on the sentinel variants.

Any variants that are highly correlated with the sentinel variants will drop away (i.e. lose

statistical significance), while variants that are not correlated with the sentinel variants,

which represent a conditionally independent signal, will still be significant. In order to

perform conditional analyses, first genetic association analyses are performed as normal,

and then the same models are rerun with adjustment for the same set of covariates along

with conditional adjustment for each of the sentinel SNPs, which is used to determine if any

secondary signals can be detected. If so, one can adjust for both the primary and secondary

signals to determine if there are any tertiary signals, and this process can continue to be

repeated until there are no more significant variants.

In this dissertation, the conditional analysis approach described above was applied

by manually re-running SNPTEST for each lipid metabolite that had a significant SNP,

with conditioning on the SNP with the most significant P -value. Several programmes

exist which can perform this process in a semi-automated fashion. One such programme

is GCTA (Genome-wide Complex Trait Analysis, http://cnsgenomics.com/software/

gcta/). However, this programme requires as input the summary-level statistics from

the meta-analysis results since it conducts the conditional analyses genome-wide. Since

the imputed genetic files from PROMIS were separated into 5-Mb chunks within each

chromosome for convenience and analysis efficiency, it would have been necessary to
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combine each of the separate chunks into one enormous file for each chromosome in order

to feed this into the programme. Instead, it was decided for this dissertation to manually

conduct the conditional analyses within each 5-Mb chunk on each chromosome for each

lipid in order to keep the workflow more manageable. These regions were wide enough

that all of the significant SNPs in each gene region were contained within a single chunk.

A limitation of this approach is that it was not possible to test for SNPs in long-range LD

that fell outside the 5-Mb chunk, which could theoretically become significant once the

sentinel SNPs were conditioned on. However, apart from this, there were not any situations

where significant SNPs in the same gene region as the sentinel SNP were excluded because

they were on a separate chunk, so the decision to conduct the conditional analyses within

5-Mb chunks was sufficient and fairly robust.

For each lipid, conditional analyses were run based on the results of the meta-analysis

following the GWAS. The first round of conditional analyses was completed as follows.

From the meta-analysis GWAS results, all SNPs were selected where P < 8.9× 10−10,

the 5-Mb chunks were identified where each of these SNPs were located, and the lead

SNPs were selected within each chunk that had the strongest P -value. On an individual

lipid basis, for each 5-Mb chunk that was identified, SNPTEST was run on the genotyped

and imputed data for each GWAS platform using the same model as before, except also

conditioning on the sentinel SNP in the identified chunk. The results from the samples

analysed on each genotyping platform were combined in a meta-analysis using METAL as

described in subsection 5.2.2, and all SNPs were identified where P < 8.9× 10−10.

In order to complete the second round of conditional analyses, the sentinel SNP from

the meta-analysed results of the first conditional analysis was identified, and the above

process was repeated for each chunk. In other words, the original model that was used

in the univariate GWAS was implemented for each lipid, with adjustment for both the

first sentinel SNP (the most significant variant from the univariate GWAS) and the second

sentinel SNP (the most significant variant after conditioning on the first sentinel SNP).

The script was written in such a manner that if there were still significant SNPs

remaining, further rounds of conditional analyses would be conducted in the same manner,

by continuing to add additional sentinel SNPs to the model for each lipid until there

were no more significant SNPs remaining. The final list of SNPs that were conditionally

independent for each lipid was identified and combined into a single list across all lipids.
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Post-analysis quality control of univariate GWAS results

To verify the robustness and validity of the GWAS results, a number of post-analysis

quality control (QC) steps were performed. Essentially, this involved checking the results

for the individual GWAS results on each platform and comparing them to the meta-analysis

results.

It was important to perform post-analysis QC because the association results contra-

dicted each other for some of the variants on the GWAS1 and GWAS2 platforms. For

example, regarding the association of m/z 947.5866 with rs7234716 (chr18:68795397) and

the association of m/z 950.6128 with rs66801830 (chr22:29350750), the SNP measured on

the GWAS1 array had a strongly significant inverse association with the lipid, while the

same SNP measured on the GWAS2 array had a non-significant positive association with

the lipid (see Figure 5.3). This suggests that the significant GWAS1 result for this variant

may have been a spurious finding (i.e. false positive).

A number of statistics were extracted from the raw SNPTEST results output from both

GWAS platforms (“batches”), including the beta coefficient (b), standard error, P -value,

effect allele, non-effect allele, MAF, HWE P -value, imputation information score, and

call rate. These statistics were compared across the two batches for consistency, and the

regional association plots were also checked for each locus to ensure that they had sensible

peaks. The Q-Q plots, Manhattan plots, and inflation factors were also re-verified.

Several QC filters had already been applied to the GWAS data from each platform

(i.e. HWE P < 1× 10−7, call rate < 0.97, MAF < 0.01, and imputation information score

< 0.80), but for the post-analysis QC, additional filters were applied. The lead SNPs from

the meta-analysis were only retained if they (1) had b estimates in the same direction

on both platforms (i.e. b estimates were both negative or both positive); and (2) had P

< 0.01 on both platforms, with P < 8.9× 10−10 in the meta-analysis. All of the genetics

results presented in this dissertation are based on the associations that passed QC.

Grouping independent SNPs into loci

Once the SNPs were identified for both the univariate GWAS results and the condi-

tional analysis results, each set of variants were grouped into loci using ±500-Kb “rolling

windows”. To define the loci, the variants were sorted in order of position within each

chromosome; SNPs on the same chromosome were assigned to the same locus if the 500-Kb

windows on either side of two adjacent variants overlapped (in other words, if the vari-

ants were within 1-Mb of each other). Additional variants were added to each locus if
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Figure 5.3: Examples of spurious SNP associations with lipids

Examples of associations of lipids with SNPs where the results on GWAS1 and GWAS2 differed sig-
nificantly. Shown in this figure are the association of PI(38:3)+AcO- (m/z 947.5866) with rs7234716
(chr18:68795397) (top), and the association of PS(44:6)+AcO- (m/z 950.6128) with rs66801830
(chr22:29350750) (bottom). In both cases, the SNP measured on the GWAS1 array had a highly
significant inverse association with the lipid, but the same SNP measured on the GWAS2 array had
a non-significant positive association with the lipid. This calls into question whether the association
for GWAS1 was legitimate or a false positive; therefore, these associations were excluded from the
analysis.

the next variant on the list (in order of position on each chromosome) was within 1-Mb

of the previous variant, so that the size of the locus kept expanding (hence the name

“rolling windows”) until there were no more variants with windows that overlapped the

locus. Initially, the name of each locus was determined by concatenating the names of the

nearest genes of all the significant variants within each locus (e.g. if the nearest genes to

the conditionally independent variants within the locus were APOA5, APOA4, APOC3,

and APOA1, then the gene was named as APOA5-APOA4-APOC3-APOA1 ). However,

after utilising a functional annotation pipeline to identify the most likely causal gene(s) for

each variant (which will be described in Chapter 6), the names of each locus were renamed

accordingly. For this example, the locus was named APOA5-APOC3, which is quite similar

and can be understood intuitively, but in the case of rs71661463, although the nearest gene

was ZNRF3, the predicted causal gene was XBP1. The most likely causal genes rather

than the nearest genes are presented throughout the remainder of this dissertation.

5.2.3 Association of lipid metabolites with major lipid loci

Table 1.1 lists 175 genetic loci that are known to be associated with major circulating

lipids. In order to examine these loci in detail, the GWAS results for all lipid metabolites

that were significantly associated (P < 8.9× 10−10) with one or more of the 175 variants
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in these loci were extracted. These results were plotted in the form of a heat map.

5.2.4 GWAS of lipid principal components

Secondary discovery analyses were conducted to analyse the association of the first four

principal components of the lipid metabolites with genetic variants. Although the traits

themselves were different, the adjustment factors used in the models were exactly the

same as for the univariate GWAS analyses of the lipids. A meta-analysis was performed

to combine results from the two genotyping platforms using a fixed-effect inverse-variance

weighted meta-analysis. Since there were fewer statistical tests than for the univariate

lipids, the combined results file for each principal component was filtered using the standard

threshold for genome-wide significance of P < 5× 10−8. Conditional analyses of the

principal components were not performed.

5.2.5 GWAS of ratios of lipid metabolites

A third discovery step was carried out by testing genome-wide associations on 26 pair-

wise ratios of lipid concentrations, which are listed in Table 5.1. Ratios were identified

through expert curation based on those that had strong biological rationales and that

acted through thoroughly understood metabolic pathways. It has been proposed that all

pairwise combinations of metabolite ratios can be analysed to gain further biochemical

insights into metabolic pathways72,130,168,203,204, but this requires a much more stringent

threshold for genome-wide significance due to the extensive number of statistical tests

performed. Although the use of ratios decreases the variance and can therefore lead to de-

creased P -values72,73,130, previous mGWAS that have examined all possible combinations

of ratios have not found very many additional significant traits since often the metabolites

in the numerator and denominator were already identified from the univariate GWAS132.

Therefore, a subset of ratios with known biological importance was analysed.

Following the same procedures that were implemented for the univariate GWAS of each

lipid and the principal components of lipids, likewise for the ratios a meta-analysis was

performed and the results that reached the standard threshold for genome-wide significance

were analysed. Conditional analyses of the ratios were not performed.

130



5.3. Results Chapter 5. Lipidomics GWAS

Table 5.1: Ratios of lipid metabolites that were analysed and their biological significance

Numerator Denominator
Classification

Name m/z Name m/z

FreeFA(16:1) 253.2174 FreeFA(18:2) 279.233 Adipose tissue activity
FreeFA(18:3) 277.2174 FreeFA(18:2) 279.233 Desaturase activity
FreeFA(20:3) 305.2487 FreeFa(18:3) 277.2174 Elongase activity
LysoPC(16:0) 496.3404 PE(37:0) 762.6012 Cardiovascular disease risk
LysoPC(17:0) 510.356 LysoPC(18:2) 520.3404 Alpha oxidation
LysoPC(18:2) 520.3404 PC(34:2) 758.57 Lipase activity
PC(32:0) 734.5699 TG(52:3) 874.7859 Insulin production
PC(32:1) 732.5541 CE(18:2) 666.6183 Insulin production
PC(32:1) 732.5541 PC(34:2) 758.57 Palmitolate production
PC(32:1) 732.5541 TG(52:3) 874.7859 Insulin production
PC(34:3) 756.5541 PC(34:2) 758.57 Desaturase
PC(34:3) 756.5541 PE(41:4) 810.6012 Cardiovascular disease risk
PC(36:4) 782.5699 LysoPC(16:0) 496.3404 Inflammation
PC(36:4) 782.5699 PC(34:2) 758.57 ω-6 production
PC(38:5) 808.5851 PC(34:2) 758.57 Eicosapentaenoic acid (EPA) levels
PC(38:6) 806.5694 PC(34:2) 758.57 Docosahexaenoic acid (DHA) levels
PE(34:2) 716.523 CE(20:4) 690.6183 Glucose control
PE(39:2) 786.6012 PC(34:2) 758.57 Elongase
SM(32:1) 675.5434 SM(39:1) 773.6531 Dairy fat intake
SM(42:1) 815.7001 TG(48:2) 820.739 Insulin production
TG(46:0) 796.7393 TG(54:4) 900.8015 De novo lipogenesis
TG(48:1) 822.7546 TG(54:5) 898.7856 De novo lipogenesis
TG(52:5) 870.7544 TG(52:4) 872.7702 Desaturase
TG(53:2) 890.8172 TG(52:2) 876.8016 Alpha oxidation
TG(54:3) 902.8175 TG(52:3) 874.7859 Elongase
TG(54:5) 898.7856 CE(18:2) 666.6183 C-peptide level

5.3 Results

5.3.1 Univariate GWAS results

When the meta-analysis results of the univariate GWAS were combined, there were 14 423

significant associations between SNPs and lipids at the Bonferroni-corrected significance

threshold. There were 1727 significant SNPs, and 254 lipids that had at least one significant

association.

A global Manhattan plot depicting the combined association of each of the lipids

with each SNP is shown in Figure 5.4. Unlike an ordinary Manhattan plot, which shows

genome-wide association results for a single trait, in this “global” Manhattan plot the

association results were first combined for all 444 traits, then they were plotted together

according to P -value and chromosomal position in a single figure. The name of some of

the most significant genes are labelled on the diagram. A few of the loci containing SNPs

with the strongest association with one or more lipids were FADS1-2-3, APOA5-APOC3,

PIGH-TMEM229B, LIPC, MBOAT7, and SPTLC3.

A modified version of this global Manhattan plot, displaying instead on the y-axis

the number of lipids associated with each SNP at the Bonferroni-corrected significance
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threshold, is shown in Figure 5.5. One can clearly see that SNPs in the FADS1-2-3 and

APOA5-APOC3 regions were associated with the most number of lipids (over 100), which

is often referred to as pleiotropy.
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Figure 5.4: Global Manhattan plot showing association of 444 lipid metabolites with 6.7 million variants

Manhattan plot of combined results from GWAS analysis for all lipids. P-values are shown for association of each SNP with each lipid. Red line indicates
Bonferroni-corrected P-value for genome-wide significance (8.9 × 10−10).
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Figure 5.5: Number of lipids associated with each SNP

As an alternative to a traditional Manhattan plot, this figure, using the combined results from the GWAS analysis for all lipids, shows on the y-axis the number of
lipids significantly associated with each SNP at the Bonferroni-corrected significance threshold (P < 8.9 × 10−10).
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5.3.2 Conditional analysis results

The conditional analyses performed for each lipid, when combined across lipids, identified

355 genome-wide significant SNP–lipid associations at 89 statistically independent SNPs,

which corresponded to 23 loci using a distance-based measure of ±500-Kb. A summary

of the overall findings from the univariate GWAS and conditional analyses is shown in

Figure 5.6.

Most of the genetic loci did not reveal any secondary signals. However, one locus (LIPC )

harboured secondary conditionally independent associations with 13 lipids and even a

tertiary conditionally independent association with one lipid [PE(36:4)-H- (m/z 762.5079)].

Regional association plots from the conditional analyses of this lipid with variants in the

LIPC region are shown in Figure 5.7 as an example. From the univariate GWAS, the lead

SNP was rs1077835 (chr15:58723426), which had a P -value of 6.036× 10−51 (Figure 5.7a).

After adjusting for this SNP in the first round of conditional analyses, the new lead SNP

was rs2043085 (chr15:58680954), which had a P -value of 2.45× 10−41 (Figure 5.7b). Then

after adjusting for both the first and second sentinel variants in the second round of

conditional analyses, the new lead SNP was rs11071371 (chr15:58576226), which had a P -

value of 7.083× 10−14 (Figure 5.7c). Finally, after adjusting for the first, second, and third

sentinel variants in the third round of conditional analyses, the lead variant was rs79341002

(chr15:58707990), which had a P -value of 2.012× 10−8 (Figure 5.7d). Since there were

no longer any SNPs remaining that reached genome-wide significance for association with

PE(36:4)-H-, the conditional analyses for this lipid stopped after the third round.

The number of significant variants from the conditional analyses that were associated

with each lipid subclass is shown in Table 5.2. There were 42 variants from 13 independent

loci that were significantly associated with phosphatidylcholines, and 20 variants from 11

independent loci that were significantly associated with sphingomyelins.

A heat map of the effect size and P -value for the association of the most strongly

associated lipid within each subclass with the sentinel SNPs within each locus is shown in

Figure 5.8. Colours indicate the magnitude of the P -value from light to dark blue, where

genome-wide significant associations (P < 8.9× 10−10) are shown in the darkest colour. It

is evident from the heat map that for certain loci such as FADS1-2-3, independent SNPs

in this region were associated with lipids in nearly all of the subclasses. Lead SNPs in

the APOA5-APOC3 region were also associated with a wide range of lipid subclasses. In

contrast, SNPs in the PNPLA3 region were only associated with two triglycerides, but not

with lipids from any other subclass. The heat map also shows that phosphatidylcholines
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Figure 5.6: Results from univariate GWAS and conditional analyses

were associated with one or more lead SNPs in the majority of the gene regions, while lipids

in other subclasses had greater specificity, as they were only associated with lead SNPs

in a single locus. For example, ceramides were only significantly associated with SNPs in

the SPTLC locus, and cholesterol and derivatives were only significantly associated with

SNPs in the APOA5-APOC3 locus.

5.3.3 Lipidome scan of conditional analysis loci

In Chapter 4, cross-correlations of lipid metabolites with circulating biomarkers were shown

for the lipids within each subclass that were most strongly associated with a variant in the

APOA5 locus, and other results were shown for a subset of lipids that were significantly

associated with APOA5. Following on from those analyses, in this chapter the genetic

associations of lipids with all of the significant loci from the conditional analyses were

examined in detail. The plots for each locus are shown in Figure 5.9.

For five of the loci (ANGPTL3, APOE-C1-C2-C4, CERS4, GCKR, MLXIPL), there

were consistent associations in the same direction with a similar magnitude for nearly all

of the top twenty lipids that were associated with that locus. However, for the remaining

18 loci (APOA5-APOC3, CETP, ELOVL2, FADS1-2-3, GAL3ST1, LIPC, LPL, MBOAT7,

PAQR9, PCTP, PIGH-TMEM229B, PLA2G10-NTAN1-NPIPA5, PNPLA3, SCD, SGPP1,

SPTLC3, UGT8, and XBP1 ), the direction and magnitude of the associations varied.
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Figure 5.7: Regional association plots showing conditional analyses of PE(36:4)-H- in
LIPC locus

(a) Association from univariate GWAS
(b) Round 1: Association after conditioning on

rs1077835 (chr15:58723426)

(c) Round 2: Association after conditioning on
rs1077835 (chr15:58723426) and rs2043085
(chr15:58680954)

(d) Round 3: Association after condition-
ing on rs1077835 (chr15:58723426),
rs2043085 (chr15:58680954), and rs11071371
(chr15:58576226)

Regional association plots show the association of PE(36:4)-H- (m/z 762.5079) with variants in the
LIPC locus from the univariate GWAS and after conditioning on the sentinel SNP from each round
of the conditional analyses. There were no longer any significant variants associated with PE(36:4)-H-

after the third round of conditional analyses.

Table 5.2: Number of variants and loci significantly associated with each lipid subclass

Lipid subclass No. lip-
ids

No. lipids significantly
associated with one or
more variants

No. signifi-
cant variants

No.
loci

Free fatty acids (FreeFA) 22 5 (23 %) 5 2
Diacylglycerols (DG) 19 14 (74 %) 5 2
Triacylglycerols (TG) 56 25 (45 %) 11 4
Phosphatic acids (PA) 33 19 (58 %) 21 9
Lysophosphatidylcholines (LysoPC) 8 2 (25 %) 2 2
Phosphatidylcholines (PC) 106 68 (64 %) 42 13
Phosphatidylethanolamines (PE) 40 22 (55 %) 23 5
Phosphatidylglycerols (PG) 5 3 (60 %) 5 4
Phosphatidylinositols (PI) 25 18 (72 %) 17 5
Phosphatidylserines (PS) 22 5 (23 %) 5 2
Ceramides (Cer) 16 9 (56 %) 4 1
Sphingomyelins (SM) 78 52 (67 %) 20 11
Cholesterol & derivatives (Chol) 2 1 (50 %) 1 1
Cholesteryl esters (CE) 12 11 (92 %) 8 4

Total unique 444 254 89 23

Results are shown for the conditional analyses.
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Figure 5.8: Heat map showing associations between lipid subclasses and significant loci
from conditional analyses
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The effect estimates of the associations between significant variants and lipid subclasses are plotted as a heat
map for the conditional analysis results. Results are shown for the association of the most strongly associated
(smallest P-value) lipid within each lipid subclass with the lead variant within each locus. The rows show the 23
loci while the columns show the 14 lipid subclasses. The magnitude of the P-values of association are indicated
by the colour scale from light to dark blue, where genome-wide significant associations (P < 8.9× 10−10) are
shown in the darkest colour. The P-values are capped at a maximum of P < 1× 10−12 so as to make the
differences between significant and non-significant associations more readily apparent. The lipid subclasses are
arranged according to their classification by overall category, main class, and then alphabetically by subclass.
The loci are arranged in order of the number of lipids significantly associated with each locus, with ties ordered
alphabetically.
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Some of the lipids were positively associated with the lead variant in that locus and other

lipids had an inverse association with the lead variant in that locus.

The association of each lipid with a gain-of-function variant in the LPL gene (rs328)

(Figure 5.9k) revealed that the magnitude and direction of the association of different lipids

with these variants varied significantly. The effect allele for this variant was associated

with genome-wide significant decreases (P < 8.9× 10−10) in levels of multiple diglyceride

and triglyceride species and increases in the levels of several different cholesterol esters,

sphingomyelins, and phosphocholines (Figure 5.9k). Within the triglycerides, those con-

taining monounsaturated fatty acids within the fatty acid side chains had the greatest

magnitude of effect and significance.

The association of each lipid with a common polymorphism (rs662799) in the APOA5-

APOC3 cluster also revealed differences in the magnitude and direction of the association

according to overall lipid category (Figure 5.9b). The four glycerolipids (diglycerides and

triglycerides) had inverse associations with the effect allele for this variant, while the cho-

lesterol esters, phosphocholines, sphingomyelins, and cholesterol had positive associations.

Meanwhile, in the APOE-C1-C2-C4 region, the two significantly associated digly-

cerides had positive associations with the lead variant (rs483082), while the remaining

phosphocholines and sphingomyelins had inverse associations (Figure 5.9c).

In the CETP region, there was a similar division. Phosphoholines and a phosphatic acid

had significant positive associations with the lead variant (rs711752), while diglycerides

and triglycerides had significant inverse associations (Figure 5.9e).

5.3.4 Association of lipid metabolites with major lipid loci

As related in Chapter 1, at present GWAS have identified 175 genetic loci that are asso-

ciated with major circulating lipids19,35–40 (listed in Table 1.1). The majority of these

variants reside in non-coding portions of the genome, where the precise function is often not

well known. By examining the association of lipid metabolites with these major lipid loci,

further insights into lipid metabolism can be identified, which can aid efforts to determine

gene functions.

Figure 5.10 shows a heat map of the GWAS results for all lipid metabolites significantly

associated with one or more of the 175 variants in these loci. Only 13 of the 175 loci

(FADS1-2-3, APOA5-APOC3, LOC101929486, LPL, LIPC, PLA2G10, GCKR, ANGPTL3,

DOCK6, PNPLA3, TBL2, TRIB1, and HERPUD1 ) were significantly associated with one

or more lipids.
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Figure 5.9: Association of the top twenty most significantly associated lipids with the
lead variant in each significant locus from the conditional analyses

(a) ANGPTL3 (b) APOA5-APOC3

(c) APOE-APOC1-APOC2-APOC4 (d) CERS4

(e) CETP
(f) ELOVL2
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(g) FADS1-FADS2-FADS3 (h) GAL3ST1

(i) GCKR (j) LIPC

(k) LPL (l) MBOAT7
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(m) MLXIPL (n) PAQR9

(o) PCTP (p) PIGH-TMEM229B

(q) PLA2G10-NTAN1-NPIPA5 (r) PNPLA3
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(s) SCD (t) SGPP1

(u) SPTLC3 (v) UGT8

(w) XBP1

Note: * = P < 0.001; ** = P < 5 × 10−8; *** = P < 8.9 × 10−10.
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Figure 5.10: Heat map showing associations between lipid subclasses and significant loci
from the 175 major lipid loci
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The effect estimates of the associations between lipid subclasses and significant variants from the 175
major lipid loci are plotted as a heat map. Results are shown for the association of the most strongly
associated (smallest P-value) lipid within each lipid subclass with each locus. The rows show the
subset of the 175 loci with at least one significantly associated variant while the columns show the 14
lipid subclasses. The magnitude of the P-values of association are indicated by the colour scale from
light to dark blue, where genome-wide significant associations (P < 8.9 × 10−10) are shown in the
darkest colour. The P -values are capped at a maximum of P < 1 × 10−12 so as to make the differences
between significant and non-significant associations more readily apparent. The lipid subclasses are
arranged according to their classification by overall category, main class, and then alphabetically by
subclass. The loci are arranged in order of the number of lipids significantly associated with each
locus, with ties ordered alphabetically.
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5.3.5 Results of GWAS of principal components

Following on from the PCA of the lipid metabolites described in Chapter 4 and the

association of these principal components with CHD risk factors, a GWAS was conducted

on the second, third, and fourth principal components. The Manhattan plots summarising

the genetic associations for these principal components are shown in Figure 5.11, and the

regional association plots for the variants that reached genome-wide significance are shown

in Figure 5.12. Table 5.3 presents a summary of the associations for the variants that

reached genome-wide significance.

There was only one variant (rs662799, chr11:116663707) in the APOA5-APOC3 genetic

locus that showed a genome-wide significant association with the second principal com-

ponent (Figure 5.11a and Figure 5.12a), but there were 74 variants that were associated

with the third and fourth principal components (Table 5.3).

Although the third principal component was most closely characterised by unsaturated

triglycerides, it did not show any significant associations with variants in the FADS1-2-3

locus, and was only associated with variants in the APOA5-APOC3 region (Figure 5.11b

and Figure 5.12b). In contrast, variants in both the FADS1-2-3 and APOA5-APOC3

regions were significantly associated with the fourth principal component (Figure 5.11c,

Figure 5.12c and Figure 5.12d).

Conditional analyses were not performed on the GWAS of the principal components

because the sentinel variants in the FADS1-2-3 and APOA5-APOC3 regions had already

been identified from the conditional analyses of the univariate GWAS. Therefore, con-

ditional analyses of the principal components would not have yielded much additional

information.

5.3.6 Results of GWAS of ratios of lipid metabolites

Twenty-six ratios of lipids were identified and selected that had strong biological rationales

and acted through thoroughly understood metabolic pathways. Seventeen of the ratios

had one or more genome-wide significant associations, for which the Manhattan plots

are shown in Figure 5.13. A summary of the associations for the most strongly associ-

ated variant within each locus that was associated with each ratio is shown in Table 5.4.

The analysis of these ratios resulted in the identification of four additional independent

loci that were not detected in the univariate GWAS. First, the ratio LysoPC(18:2) /

PC(34:2) (m/z 520.3404 / 758.57), which is indicative of lipase activity, was significantly

associated with variants in the MYCL1-MFSD2A locus (Figure 5.13i). Major facilitator
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Figure 5.11: Manhattan plots of principal components of lipid levels

(a) Second principal component

(b) Third principal component

(c) Fourth principal component
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Figure 5.12: Regional association plots of principal components of lipid levels

(a) Second principal component: APOA5-
APOC3 locus

(b) Third principal component: APOA5-
APOC3 locus

(c) Fourth principal component: FADS1-2-3 lo-
cus

(d) Fourth principal component: APOA5-
APOC3 locus
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Table 5.3: Summary of genetic associations of principal components of lipids

Principal
compo-
nent

rsID Chr:Pos
(GRCh37)

EA NEA b SE P-value Locus

Second rs662799 chr11:116663707 A G −0.9963 0.1819 4.3× 10−8 APOA5-APOC3
Third rs651821 chr11:116662579 T C 1.2532 0.1647 2.7× 10−14 APOA5-APOC3
Third rs662799 chr11:116663707 A G 1.2561 0.1653 3.0× 10−14 APOA5-APOC3
Third rs6589566 chr11:116652423 A G 1.1600 0.1614 6.6× 10−13 APOA5-APOC3
Third rs10790162 chr11:116639104 A G −1.1522 0.1612 8.9× 10−13 APOA5-APOC3
Third rs6589565 chr11:116640237 A G −1.1488 0.1611 1.0× 10−12 APOA5-APOC3
Third rs964184 chr11:116648917 C G 1.0656 0.1496 1.1× 10−12 APOA5-APOC3
Third rs2160669 chr11:116647607 T C 1.1438 0.1607 1.1× 10−12 APOA5-APOC3
Third rs10750096 chr11:116656788 A C 1.1443 0.1618 1.5× 10−12 APOA5-APOC3
Third rs2075290 chr11:116653296 T C 1.1359 0.1608 1.6× 10−12 APOA5-APOC3
Third rs3825041 chr11:116631707 T C −1.1263 0.1595 1.6× 10−12 APOA5-APOC3
Third rs6589564 chr11:116624153 C G −1.1207 0.1596 2.2× 10−12 APOA5-APOC3
Third rs7930786 chr11:116624727 C G −1.1135 0.1591 2.6× 10−12 APOA5-APOC3
Third rs1558860 chr11:116607368 A C −1.1160 0.1610 4.1× 10−12 APOA5-APOC3
Third rs9326246 chr11:116611733 C G −1.1046 0.1604 5.8× 10−12 APOA5-APOC3
Third rs2072560 chr11:116661826 T C −1.1511 0.1679 7.1× 10−12 APOA5-APOC3
Third rs2266788 chr11:116660686 A G 1.0834 0.1584 8.0× 10−12 APOA5-APOC3
Third rs1558861 chr11:116607437 T C 1.0867 0.1604 1.3× 10−11 APOA5-APOC3
Third rs7483863 chr11:116652491 A G −1.0649 0.1589 2.1× 10−11 APOA5-APOC3
Third rs11604424 chr11:116651115 T C 0.8792 0.1319 2.6× 10−11 APOA5-APOC3
Third rs3741298 chr11:116657561 T C 0.8822 0.1337 4.1× 10−11 APOA5-APOC3
Third rs7350481 chr11:116586283 T C −0.8967 0.1479 1.3× 10−9 APOA5-APOC3
Third rs180327 chr11:116623659 T C 0.7048 0.1269 2.8× 10−8 APOA5-APOC3
Fourth rs964184 chr11:116648917 C G 1.2218 0.1428 1.2× 10−17 APOA5-APOC3
Fourth rs662799 chr11:116663707 A G 1.2808 0.1577 4.7× 10−16 APOA5-APOC3
Fourth rs3741298 chr11:116657561 T C 1.0166 0.1274 1.5× 10−15 APOA5-APOC3
Fourth rs651821 chr11:116662579 T C 1.2499 0.1571 1.8× 10−15 APOA5-APOC3
Fourth rs2072560 chr11:116661826 T C −1.2342 0.1602 1.3× 10−14 APOA5-APOC3
Fourth rs6589566 chr11:116652423 A G 1.1734 0.1540 2.6× 10−14 APOA5-APOC3
Fourth rs11604424 chr11:116651115 T C 0.9542 0.1258 3.3× 10−14 APOA5-APOC3
Fourth rs2160669 chr11:116647607 T C 1.1589 0.1534 4.2× 10−14 APOA5-APOC3
Fourth rs6589565 chr11:116640237 A G −1.1592 0.1538 4.8× 10−14 APOA5-APOC3
Fourth rs2075290 chr11:116653296 T C 1.1567 0.1536 5.0× 10−14 APOA5-APOC3
Fourth rs10790162 chr11:116639104 A G −1.1591 0.1539 5.0× 10−14 APOA5-APOC3
Fourth rs10750096 chr11:116656788 A C 1.1604 0.1544 5.8× 10−14 APOA5-APOC3
Fourth rs6589564 chr11:116624153 C G −1.1287 0.1523 1.3× 10−13 APOA5-APOC3
Fourth rs9326246 chr11:116611733 C G −1.1344 0.1531 1.3× 10−13 APOA5-APOC3
Fourth rs3825041 chr11:116631707 T C −1.1264 0.1522 1.4× 10−13 APOA5-APOC3
Fourth rs7930786 chr11:116624727 C G −1.1225 0.1519 1.5× 10−13 APOA5-APOC3
Fourth rs1558860 chr11:116607368 A C −1.1264 0.1536 2.3× 10−13 APOA5-APOC3
Fourth rs2266788 chr11:116660686 A G 1.1044 0.1514 3.0× 10−13 APOA5-APOC3
Fourth rs1558861 chr11:116607437 T C 1.0976 0.1531 7.5× 10−13 APOA5-APOC3
Fourth rs7483863 chr11:116652491 A G −1.0820 0.1515 9.1× 10−13 APOA5-APOC3
Fourth rs71462009 chr11:116671824 T C −0.9782 0.1445 1.3× 10−11 APOA5-APOC3
Fourth rs7350481 chr11:116586283 T C −0.9501 0.1411 1.6× 10−11 APOA5-APOC3
Fourth rs180327 chr11:116623659 T C 0.8018 0.1210 3.5× 10−11 APOA5-APOC3
Fourth rs11216140 chr11:116672013 T C −0.9199 0.1453 2.5× 10−10 APOA5-APOC3
Fourth rs6589569 chr11:116671476 T C −0.9135 0.1447 2.7× 10−10 APOA5-APOC3
Fourth rs9667814 chr11:116671823 C G −0.9108 0.1449 3.3× 10−10 APOA5-APOC3
Fourth rs180326 chr11:116624703 T G 0.7828 0.1250 3.8× 10−10 APOA5-APOC3
Fourth rs4938313 chr11:116671005 A G −0.8937 0.1437 5.0× 10−10 APOA5-APOC3
Fourth rs6589567 chr11:116670676 A C −0.8835 0.1432 6.9× 10−10 APOA5-APOC3
Fourth rs174568 chr11:61593816 T C −1.0686 0.1582 1.4× 10−11 FADS1-2-3
Fourth rs174553 chr11:61575158 A G 1.0427 0.1564 2.6× 10−11 FADS1-2-3
Fourth rs174545 chr11:61569306 C G 1.0406 0.1563 2.8× 10−11 FADS1-2-3
Fourth rs174546 chr11:61569830 T C −1.0395 0.1562 2.8× 10−11 FADS1-2-3
Fourth rs174547 chr11:61570783 T C 1.0395 0.1562 2.8× 10−11 FADS1-2-3
Fourth rs174550 chr11:61571478 T C 1.0395 0.1562 2.8× 10−11 FADS1-2-3
Fourth rs174554 chr11:61579463 A G 1.0382 0.1565 3.3× 10−11 FADS1-2-3
Fourth rs174576 chr11:61603510 A C −1.0250 0.1548 3.5× 10−11 FADS1-2-3
Fourth rs1535 chr11:61597972 A G 1.0334 0.1562 3.7× 10−11 FADS1-2-3
Fourth rs35473591 chr11:61586328 CT C −1.0295 0.1568 5.1× 10−11 FADS1-2-3
Fourth rs174562 chr11:61585144 A G 1.0283 0.1567 5.3× 10−11 FADS1-2-3
Fourth chr11:61594920 chr11:61594920 CT C 1.0243 0.1568 6.4× 10−11 FADS1-2-3
Fourth rs174583 chr11:61609750 T C −0.9909 0.1520 7.0× 10−11 FADS1-2-3
Fourth chr11:61596322 chr11:61596322 CA C 1.0201 0.1567 7.5× 10−11 FADS1-2-3
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Table: Summary of genetic associations of principal components of lipids (. . . continued)

Principal
compo-
nent

rsID Chr:Pos
(GRCh37)

EA NEA b SE P-value Locus

Fourth rs174580 chr11:61606642 A G 1.0100 0.1553 7.9× 10−11 FADS1-2-3
Fourth rs174581 chr11:61606683 A G −1.0102 0.1553 7.9× 10−11 FADS1-2-3
Fourth rs174578 chr11:61605499 A T −1.0045 0.1552 9.6× 10−11 FADS1-2-3
Fourth rs174577 chr11:61604814 A C −1.0013 0.1550 1.1× 10−10 FADS1-2-3
Fourth rs174551 chr11:61573684 T C 1.0622 0.1646 1.1× 10−10 FADS1-2-3
Fourth rs174564 chr11:61588305 A G 1.0204 0.1586 1.3× 10−10 FADS1-2-3
Fourth rs174549 chr11:61571382 A G −1.0376 0.1637 2.4× 10−10 FADS1-2-3
Fourth rs174567 chr11:61593005 A G 0.9949 0.1574 2.6× 10−10 FADS1-2-3
Fourth rs174555 chr11:61579760 T C 1.0359 0.1641 2.8× 10−10 FADS1-2-3
Fourth rs174536 chr11:61551927 A C 0.9513 0.1513 3.3× 10−10 FADS1-2-3
Fourth chr11:61602460 chr11:61602460 CA C 1.0333 0.1647 3.5× 10−10 FADS1-2-3
Fourth rs174566 chr11:61592362 A G 0.9810 0.1564 3.5× 10−10 FADS1-2-3
Fourth rs102274 chr11:61557826 T C 0.9506 0.1517 3.7× 10−10 FADS1-2-3
Fourth rs174537 chr11:61552680 T G −0.9432 0.1509 4.1× 10−10 FADS1-2-3
Fourth rs174561 chr11:61582708 T C 1.0210 0.1643 5.2× 10−10 FADS1-2-3
Fourth rs174544 chr11:61567753 A C −1.0301 0.1658 5.3× 10−10 FADS1-2-3
Fourth rs99780 chr11:61596633 T C −0.9723 0.1565 5.3× 10−10 FADS1-2-3
Fourth rs174556 chr11:61580635 T C −1.0183 0.1640 5.3× 10−10 FADS1-2-3
Fourth rs174574 chr11:61600342 A C −0.9653 0.1555 5.4× 10−10 FADS1-2-3
Fourth chr11:61602459 chr11:61602459 CCA C 1.0396 0.1676 5.6× 10−10 FADS1-2-3
Fourth rs174533 chr11:61549025 A G −0.9309 0.1508 6.8× 10−10 FADS1-2-3
Fourth rs174538 chr11:61560081 A G −0.9934 0.1615 7.6× 10−10 FADS1-2-3
Fourth rs28456 chr11:61589481 A G 1.0099 0.1676 1.7× 10−9 FADS1-2-3
Fourth rs174548 chr11:61571348 C G 0.9823 0.1631 1.7× 10−9 FADS1-2-3
Fourth chr11:61591995 chr11:61591995 G GAA −0.9896 0.1645 1.8× 10−9 FADS1-2-3
Fourth rs174535 chr11:61551356 T C 0.8947 0.1507 2.9× 10−9 FADS1-2-3
Fourth rs174560 chr11:61581764 T C 0.9703 0.1636 3.0× 10−9 FADS1-2-3
Fourth rs174534 chr11:61549458 A G 0.9292 0.1581 4.1× 10−9 FADS1-2-3
Fourth rs102275 chr11:61557803 T C 0.8650 0.1495 7.1× 10−9 FADS1-2-3
Fourth rs174559 chr11:61581656 A G −0.9890 0.1712 7.7× 10−9 FADS1-2-3
Fourth rs174530 chr11:61546592 A G 0.8397 0.1483 1.5× 10−8 FADS1-2-3

The association of the second, third, and fourth principal components of lipids with genetic variants is shown in
order of P-value of significance within each principal component and genetic locus. The sentinel variant (SNP
most strongly associated with each principal component) within each locus is highlighted. Abbreviations: EA =
Effect allele; GRCh37 = Genome Reference Consortium human genome build 37; NEA = Non-effect allele; SE =
Standard error; SNP = Single nucleotide polymorphism.

superfamily domain-containing 2A (MFSD2A) is a transmembrane protein and lysophos-

phatidylcholine transporter, so the association with a ratio containing LysoPC(18:2) is

not surprising. The significant variants in this region are known to be associated with

HDL cholesterol205 and several lipid metabolites (1-oleoylglycerophosphoethanolamine,

ratio of 1-eicosatrienoylglycerophosphocholine / 2-oleoylglycerophosphocholine, and ratio

of phenyllactate / pyroglutamylglycine)57.

Second, the ratio PE(39:2) / PC(34:2) (m/z 786.6012 / 758.57), which is indicat-

ive of an elongase enzyme, was significantly associated with variants in the LPGAT1

locus (Figure 5.13m). Lysophosphatidylglycerol acyltransferase 1 (LPGAT1 ) encodes a

member of the lysophospholipid acyltransferase family and catalyses the reacylation of

lysophosphatidylglycerols to phosphatidylglycerols. The significant variants in this locus

are known to be associated with stearic acid206 and other metabolites (ratio of arabinose

/ propionylcarnitine and ratio of catechol sulfate / hippurate)57.
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Third, the ratio TG(48:1) / TG(54:5) (m/z 822.7546 / 898.7856), which is indicative

of de novo lipogenesis, was significantly associated with rs71487172 (chr10:86891371) in

the LOC100507470 locus (Figure 5.13p). This variant has been reported for association

with two metabolites (erthronate and glutamate)132, but has not previously been reported

for association with triglycerides.

Finally, the ratio TG(54:3) / TG(52:3) (m/z 902.8175 / 874.7859), which is also

indicative of an elongase enzyme, was significantly associated with variants in the HAPLN4-

TM6SF2-PBX4 region (Figure 5.13l). Transmembrane 6 superfamily member 2 (TM6SF2 )

is a regulator of liver fat metabolism influencing triglyceride secretion, so the association

with a ratio of two triglycerides is expected. Additionally, the significant variants in this

region have been previously reported for association with several major circulating lipids,

specifically total cholesterol, LDL cholesterol, and triglycerides35.
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Figure 5.13: Manhattan plots of ratios of lipid metabolites that had significant associa-
tions with one or more variants

(a) Ratio of TG(52:5) / TG(52:4)
(m/z 870.7544 / m/z 872.7702)

(b) Ratio of PC(34:3) / PE(41:4)
(m/z 756.5541 / m/z 810.6012)

(c) Ratio of PC(38:6) / PC(34:2)
(m/z 806.5694 / m/z 758.57)

(d) Ratio of PC(36:4) / LysoPC(16:0)
(m/z 782.5699 / m/z 496.3404)

(e) Ratio of PC(36:4) / PC(34:2)
(m/z 782.5699 / m/z 758.57)

(f) Ratio of PC(32:0) / TG(52:3)
(m/z 734.5699 / m/z 874.7859)
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(g) Ratio of FreeFA(16:1) / FreeFA(18:2)
(m/z 253.2174 / m/z 279.233)

(h) Ratio of SM(32:1) / SM(39:1)
(m/z 675.5434 / m/z 773.6531)

(i) Ratio of LysoPC(18:2) / PC(34:2)
(m/z 520.3404 / m/z 758.57)

(j) Ratio of PC(38:5) / PC(34:2)
(m/z 808.5851 / m/z 758.57)

(k) Ratio of TG(54:5) / CE(18:2)
(m/z 898.7856 / m/z 666.6183)

(l) Ratio of TG(54:3) / TG(52:3)
(m/z 902.8175 / m/z 874.7859)
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(m) Ratio of PE(39:2) / PC(34:2)
(m/z 786.6012 / m/z 758.57)

(n) Ratio of PE(34:2) / CE(20:4)
(m/z 716.523 / m/z 690.6183)

(o) Ratio of PC(32:1) / TG(52:3)
(m/z 732.5541 / m/z 874.7859)

(p) Ratio of TG(48:1) / TG(54:5)
(m/z 822.7546 / m/z 898.7856)

(q) Ratio of SM(42:1) / TG(48:2)
(m/z 815.7001 / m/z 820.739)
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Table 5.4: Summary of genetic associations of ratios of lipid metabolites

Lipid ratio
rsID

Chr:Pos
(GRCh37)

EA / NEA b SE P-value Locus

Name m/z Classification

FreeFA(16:1) / FreeFA(18:2) 253.2174 / 279.233 Adipose tissue activity rs603424 chr10:102075479 A / G −0.1653 0.0167 4.65 × 10−23 PKD2L1

LysoPC(18:2) / PC(34:2) 520.3404 / 758.57 Lipase activity rs4381172 chr1:40400397 T / C 0.1194 0.0212 1.86 × 10−8 MYCL1-MFSD2A

SM(32:1) / SM(39:1) 675.5434 / 773.6531 Dairy fat intake rs62126382 chr19:8272916 T / C −0.1354 0.0194 3.23 × 10−12 CERS4

SM(32:1) / SM(39:1) 675.5434 / 773.6531 Dairy fat intake rs12532251 chr7:111821556 T / G −0.1744 0.0313 2.42 × 10−8 DOCK4

SM(32:1) / SM(39:1) 675.5434 / 773.6531 Dairy fat intake rs12880341 chr14:64236191 T / C −0.1567 0.0272 8.12 × 10−9 SGPP1

SM(32:1) / SM(39:1) 675.5434 / 773.6531 Dairy fat intake rs364585 chr20:12962718 A / G −0.1299 0.0200 9.07 × 10−11 SPTLC3

PE(34:2) / CE(20:4) 716.523 / 690.6183 Glucose control rs662799 chr11:116663707 A / G −0.1521 0.0248 8.63 × 10−10 APOA5-APOC3

PE(34:2) / CE(20:4) 716.523 / 690.6183 Glucose control rs1535 chr11:61597972 A / G −0.4726 0.0244 2.19 × 10−83 FADS1-2-3

PE(34:2) / CE(20:4) 716.523 / 690.6183 Glucose control rs1077835 chr15:58723426 A / G −0.2258 0.0222 3.29 × 10−24 LIPC

PC(32:1) / TG(52:3) 732.5541 / 874.7859 Insulin production rs964184 chr11:116648917 C / G 0.1986 0.0221 2.84 × 10−19 APOA5-APOC3

PC(32:1) / TG(52:3) 732.5541 / 874.7859 Insulin production rs9644639 chr8:19884947 C / G −0.1904 0.0346 3.72 × 10−8 LPL

PC(32:0) / TG(52:3) 734.5699 / 874.7859 Insulin production rs662799 chr11:116663707 A / G 0.2831 0.0247 2.32 × 10−30 APOA5-APOC3

PC(32:0) / TG(52:3) 734.5699 / 874.7859 Insulin production rs174546 chr11:61569830 T / C −0.1952 0.0244 1.14 × 10−15 FADS1-2-3

PC(32:0) / TG(52:3) 734.5699 / 874.7859 Insulin production rs9644639 chr8:19884947 C / G −0.2095 0.0351 2.47 × 10−9 LPL

PC(34:3) / PE(41:4) 756.5541 / 810.6012 Cardiovascular disease risk rs174566 chr11:61592362 A / G −0.4993 0.0240 1.57 × 10−96 FADS1-2-3

PC(36:4) / LysoPC(16:0) 782.5699 / 496.3404 Inflammation rs174550 chr11:61571478 T / C 0.3616 0.0227 2.43 × 10−57 FADS1-2-3

PC(36:4) / PC(34:2) 782.5699 / 758.57 ω-6 production rs174564 chr11:61588305 A / G 0.6929 0.0250 5.47 × 10−169 FADS1-2-3

PC(36:4) / PC(34:2) 782.5699 / 758.57 ω-6 production rs4122352 chr16:15174571 A / G 0.1543 0.0261 3.34 × 10−9 NTAN1-RRN3

PE(39:2) / PC(34:2) 786.6012 / 758.57 Elongase rs72747041 chr1:211914153 A / G 0.1452 0.0249 5.34 × 10−9 LPGAT1

PC(38:6) / PC(34:2) 806.5694 / 758.57 DHA level rs174566 chr11:61592362 A / G 0.3027 0.0243 1.61 × 10−35 FADS1-2-3

PC(38:6) / PC(34:2) 806.5694 / 758.57 DHA level rs6920155 chr6:11047956 A / C −0.1089 0.0190 9.83 × 10−9 ELOVL2

PC(38:5) / PC(34:2) 808.5851 / 758.57 EPA level rs174567 chr11:61593005 A / G 0.4339 0.0237 4.04 × 10−75 FADS1-2-3

SM(42:1) / TG(48:2) 815.7001 / 820.739 Insulin production rs662799 chr11:116663707 A / G 0.1940 0.0246 3.46 × 10−15 APOA5-APOC3

SM(42:1) / TG(48:2) 815.7001 / 820.739 Insulin production rs115129770 chr8:19844439 C / G −0.1856 0.0326 1.25 × 10−8 LPL

TG(48:1) / TG(54:5) 822.7546 / 898.7856 De novo lipogenesis rs71487172 chr10:86891371 T / C 0.1735 0.0318 4.73 × 10−8 LOC100507470

TG(52:5) / TG(52:4) 870.7544 / 872.7702 Desaturase rs174567 chr11:61593005 A / G 0.2203 0.0241 7.29 × 10−20 FADS1-2-3

TG(54:5) / CE(18:2) 898.7856 / 666.6183 C-peptide level rs79626409 chr19:45417638 CTTCG / C 0.1975 0.0353 2.21 × 10−8 APOC1

TG(54:5) / CE(18:2) 898.7856 / 666.6183 C-peptide level rs662799 chr11:116663707 A / G −0.2635 0.0246 9.02 × 10−27 APOA5-APOC3

TG(54:5) / CE(18:2) 898.7856 / 666.6183 C-peptide level rs9644639 chr8:19884947 C / G 0.2035 0.0349 5.29 × 10−9 LPL

TG(54:3) / TG(52:3) 902.8175 / 874.7859 Elongase rs8107974 chr19:19388500 A / T −0.2159 0.0313 5.68 × 10−12 HAPLN4-TM6SF2-PBX4

This table shows only the most strongly associated variant within each locus that was associated with each ratio. Abbreviations: EA = Effect allele; GRCh37 = Genome Reference Consortium human genome build
37; NEA = Non-effect allele; SE = Standard error.
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5.4 Discussion

The GWAS conducted on 444 lipid metabolites in 5662 individuals revealed a considerable

number of associations between SNPs and lipid metabolites, particularly in the FADS1-2-3

and APOA5-APOC3 regions. The FADS1-2-3 locus impacts fatty acid desaturase and has

previously been shown to be associated with lipid metabolites130,132. The APOA5-APOC3

locus is also a well-known CHD gene region. These and other findings helped confirm that

the GWAS results were as expected and validated existing findings.

Overall, the conditional analyses identified 254 lipids that were significantly associated

with one or more genetic variant(s) and 355 associations between SNPs and lipids, with a

total of 89 lead variants from 23 loci.

A potential limitation of this analysis is that the sentinel variants identified within

each locus were lipid-specific, so this means that while the list of significant variants for

each lipid were independent, the combined list of sentinel variants across all lipids included

variants that were in LD with each other. This could have been avoided by selecting one

sentinel variant for each locus across all lipids, but this would have meant that for many

lipids the sentinel variant would not be the variant with the strongest P -value.

For the vast majority of the significant loci from the conditional analyses, there were

differences in the magnitude and direction of the associations of lipids from different subclas-

ses with the lead variant in each locus. For LPL in particular, there were 13 lipids that had

significant associations with variants in the LPL region, which is also a well-characterised

CHD locus. This lipidomics platform showed that individuals with genetically lower LPL

activity have increased levels of triglycerides—especially those containing monounsaturated

fatty acids—and decreased levels of sphingomyelins and cholesterol esters. This is the first

analysis to show a link between LPL activity and sphingomyelin levels.

Out of the 175 loci associated with major circulating lipids, it was observed that lipid

metabolites were only significantly associated with 13 of these loci. However, this may be

due to the fact that the 175 major lipid loci were identified from large consortia such as

the GLGC35, which included 188 577 individuals in its analysis. The analysis using this

lipidomics platform may not have had sufficient power to detect these associations.

The analyses of principal components and ratios of lipids also provided new biological

insights into lipid metabolism. As described in Chapter 4, the PCA of the lipid metabo-

lites showed that the second principal component revealed a contrast between free fatty

acid levels versus small, saturated triglycerides. The significant variation in length of
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fasting status prior to blood draw would have strongly affected the levels of both free fatty

acids and triglycerides, but may have also obscured the genetic associations. Indeed, in

the GWAS of the first four principal components there was only one variant (rs662799,

chr11:116663707) in the APOA5-APOC3 genetic locus that showed a genome-wide signif-

icant association with the second principal component (Figure 5.11a and Figure 5.12a).

Variants in the APOA5-APOC3 region have been associated with type 2 diabetes15, fatty

liver disease207, hypertrigylceridemia208,209, and dyslipidaemia210. This gene region has

also been associated with metabolites such as 1-linoleoylglycerol in previous metabolomics

studies132. However, as only one variant was significantly associated with the second

principal component compared to 74 variants that were associated with the third and

fourth principal components (Table 5.3), this suggests that the second component was

largely driven by dietary patterns rather than genetic differences. As described earlier, the

lipid species that contributed most to the second principal component are also affected

by obesity and insulin secretion/sensitivity, and this principal component is significantly

associated with being overweight and having diabetes.

Although the third principal component was most closely characterised by unsatu-

rated triglycerides, it did not show any significant genetic associations with variants in

the FADS1-2-3 locus, and was only associated with variants in the APOA5-APOC3 re-

gion (Figure 5.11b and Figure 5.12b). In contrast, variants in both the FADS1-2-3 and

APOA5-APOC3 regions were significantly associated with the fourth principal component

(Figure 5.11c, Figure 5.12c and Figure 5.12d). The APOA5-APOC3 locus has been previ-

ously highlighted in other lipidomics studies70 and previous GWAS18,211,212. As described

in the previous chapter, the loadings of the fourth principal component showed that li-

noleic acid–containing lipids had negative loading scores, while sphingomyelins containing

odd-chain fatty acids and desaturated phospholipids had positive loading scores. The as-

sociation between SNPs in the FADS1-2-3 region with sphingomyelins has been described

previously213, although not explained, and has not previously been described for odd-

chain fatty acid–containing sphingomyelins. The impact on triglycerides also explained

the association of SNPs in the APOA5-APOC3 locus with the fourth principal component.

Both the third and fourth principal components showed negative associations with the

relative risk for being overweight and having diabetes, while only the fourth principal

component showed a negative association with the relative risk for hypertension. When

considering the additional evidence that the genetic findings bring, this last observation is

striking since sphingomyelins have thus far been implicated in hypertension as precursors
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to ceramide production, but odd-chain fatty acid–containing sphingomyelins have mostly

been unexplored.

Previous mGWAS have shown that genetic analyses of ratios of metabolites can yield

additional insights that are not detected from analysis of the individual metabolites that

make up the ratio57,72,73,82,132,168. For instance, one study identified eight additional loci

from metabolite ratios that were not detected from the GWAS of the individual metabo-

lites132. In several cases, the metabolite ratio appeared to reflect flux through a particular

metabolic reaction that was influenced by the associated variant, while in other cases, the

metabolites in the ratio were linked to either a substrate or a product, so the genetic

variant may have caused one molecule to be consumed or acted on faster than the other132.

Ultimately, despite testing 98 346 pairwise metabolite ratios, the study only detected eight

additional loci132, which is a limited gain for substantial effort. The analysis of such a

large number of ratios also required a more stringent penalty for the Bonferroni-corrected

P -value, which may have resulted in discarding true signals that could been identified

with a more focused approach. For these reasons, in the analyses for this dissertation it

was decided to limit the analysis to 26 pairwise ratios, identified through expert curation,

that had strong biological rationales and acted through thoroughly understood metabolic

pathways. Testing all possible pairwise ratios between lipid metabolites may have led

to the identification of additional loci associated with lipids and their ratios, but such

intensive analyses were beyond the scope of the genetic analyses presented in this chapter.

This platform can provide many novel insights into the genetic determinants of lipids

and detailed information about lipid metabolism. The genetic findings that were described

in this chapter will be explored further in Chapter 6. Additionally, the significantly

associated variants will be annotated to identify the most likely causal gene(s), the biological

insights will be interpreted, and novel lipids will be identified which have not previously

been reported in GWAS of major circulating lipids or metabolomics.
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CHAPTER6
Identification of novel loci and

interpretation of genetic findings

Chapter summary

This chapter provides an in-depth analysis and interpretation of the genome-wide asso-

ciation study (GWAS) results of the lipid metabolites. The pipeline that was used to

annotate the significant variants is described, including the incorporation of information

from pharmacological and functional databases to aid biological understanding of mechan-

isms through which variants influence metabolic pathways. The GWAS findings were also

compared to previously published studies of metabolomics and circulating major lipids

to identify novel loci, which had not previously been reported for association with major

lipids or metabolites. This resulted in the discovery of four novel loci: UGT8, XBP1,

GAL3ST1, and PNPLA3. Novel relationships between genetic variants and lipids were also

identified, and new biological insights into lipid metabolism for existing loci were revealed.
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6.1 Introduction

Metabolomics GWAS (mGWAS), which were described in Chapter 1, are genome-wide

association studies using multiple metabolites measured on high-dimensional phenotyping

platforms as phenotypic traits71. The literature review of published mGWAS identified 31

studies, which are listed in Table 1.3. The supplementary data from each of these studies

were downloaded and combined into a single dataset, which provides a valuable resource

to compare against when identifying novel loci from a newly conducted GWAS.

The translation of genetic findings from isolated variants to gene function and impact

on diseases is challenging. Genetic association studies essentially do little more than

identify a genomic location related to a trait or disease, but provide meagre evidence

of gene function unless the single nucleotide polymorphisms (SNPs) have been found to

exhibit predictable effects on gene expression33. Efforts to discern the most likely causal

gene and its associated function have included examining of known variants in high linkage

disequilibrium (LD) with the associated SNP to identify variants with plausible biological

effects, studying gene expression from tissue samples or cell lines, and conducting other

functional studies such as knockouts in cell or animal models33. A wealth of functional

information is now available in large databases, which can be utilised effectively to annotate

significant variants identified from a GWAS and determine the most likely causal genes

and relevant biological pathways that may be implicated in disease outcomes.

6.2 Methods

6.2.1 Functional annotation pipeline

In order to annotate SNPs with potential causal genes, a two-pronged strategy was im-

plemented consisting of a bottom-up and top-down approach. The approach described

here was customised specifically for the analysis presented in this dissertation, but a more

generalised version of the functional annotation pipeline has been published214 and is

publicly available (https://github.com/ds763/ProGeM) to facilitate implementation in

other projects. An overview of the functional annotation pipeline is shown in Figure 6.1.

In the bottom-up approach, SNPs were annotated according to their putative effects

on proximal gene function by examining whether these SNPs influence protein sequencing,

gene splicing, and/or mRNA levels of a local gene. Conversely, in the top-down approach,

SNPs were annotated according to previous knowledge concerning local gene function by

160

https://github.com/ds763/ProGeM


6.2. Methods Chapter 6. Interpretation of GWAS results

examining whether proximal genes have been previously implicated in lipid metabolism. In

cases where (1) SNPs were purported to exert effects on more than one local gene, and/or

(2) more than one local gene was previously implicated in lipid metabolism, SNPs were

assigned to multiple genes rather than force-assigning each to a single gene. In cases where

it was not possible to annotate SNPs using either the bottom-up or top-down approach,

the SNPs were assigned to their nearest gene.

For the bottom-up approach, SNPs were annotated based on their putative effects

on proximal gene function if any of the following conditions were met: (1) the SNP

resided within an exonic sequence of a gene; (2) the SNP resided within a splice-site

(±2-bp from an intron-exon boundary); (3) the SNP was in high LD (r2 ≥ 0.8) with a

non-synonymous SNP; and/or (4) the SNP was a cis-eQTL for a local gene. To identify

any exonic and splice site SNPs within the SNP list, Variant Effect Predictor (VEP)215

(http://www.ensembl.org/common/Tools/VEP/) was run on the list of variants with the

“pick” option (which outputs one block of annotation per variant), and Ensembl transcripts

used as the reference for determining consequences. SNPs in high LD with the list of

associated SNPs were identified within the imputed dataset and run through VEP to

select only non-synonymous SNPs. Cis-eQTLs within the list of associated SNPs were

identified using eQTL data provided by the Genotype-Tissue Expression (GTEx) project216

(http://www.gtexportal.org), keeping significant SNP–gene associations only (filename:

<GTEx Analysis V6 eQTLs.tar.gz>). SNPs were only annotated if they were significant

eQTLs in at least one of the following tissues that were deemed most relevant for lipid-

related phenotypes: subcutaneous adipose tissue, visceral adipose tissue, liver, and/or

whole blood.

In the top-down approach, for each of the associated SNPs, a list of all proximal

genes located ≤ 500-Kb upstream or downstream was first identified using the ANNO-

VAR tool (http://annovar.openbioinformatics.org). All genes previously associated

with a lipid-related biological process or function were then identified from the follow-

ing databases: (1) LIPID MAPS Proteome Database (LMPD) (http://www.lipidmaps.

org/data/proteome/LMPD.php); (2) Gene Ontology (GO) (http://geneontology.org);

(3) Online Mendelian Inheritance in Man (OMIM) (http://www.omim.org); (4) Mouse Ge-

nome Informatics (MGI) (http://www.informatics.jax.org); (5) Kyoto Encyclopedia

of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/); and/or (6) Ingenuity

Pathway Analysis (IPA) (http://www.ingenuity.com/products/ipa/).

LMPD is an object-relational database of lipid-associated genes and proteins across
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multiple species including human, mouse, and fruit fly; all human genes (1116 in total)

were simply extracted from this database (accessed 16-Mar-2016). For GO and OMIM,

all terms or Mendelian diseases containing one or more lipid-related keyword(s) using

HumanMine (http://www.humanmine.org) were identified, then all human genes associ-

ated with one or more of these terms were extracted (accessed 01-Apr-2016 and 07-Apr-

2016, respectively). Similarly, for MGI all mouse genes were extracted using MouseMine

(http://www.mousemine.org/mousemine/) (accessed 31-Mar-2016) that were associated

with the following manually-selected lipid-related terms and their children: (1) abnormal

lipid homeostasis (MP:0002118); (2) abnormal lipoprotein level (MP:0010329); (3) ab-

normal lipid metabolism (MP:0013245); and (4) adipose tissue phenotype (MP:0005375).

From the KEGG database all lipid compounds (with “C” number IDs) with biological

roles were first extracted in order to then identify all genes associated with reactions

(with “R” number IDs) involved in lipid biology using MitoMiner (http://mitominer.mrc-

mbu.cam.ac.uk/release-3.1/) (accessed 31-Mar-2016). Finally, from IPA the interac-

tion networks were downloaded for all fourteen of the lipid subclasses in order to extract

all genes in a compound-specific manner (accessed 13-Apr-2016).

Once the lists of lipid-related genes were obtained from the aforementioned databases,

HUGO Gene Nomenclature Committee (HGNC) symbols were used to search for overlap

with the list of proximal (≤ 500-Kb) genes, thereby annotating SNPs with proximal genes

where there was evidence that at least one might be involved in lipid-related biology. For

each lead SNP, it was first recorded whether there was any compound-specific evidence

from IPA for a SNP–gene assignment whereby both the SNP (from this study) and

the gene (from IPA) were associated with the same lipid subclass. Then from the five

remaining (compound non-specific) databases, the overlapping genes were categorised as

either (1) recurrent candidates, in that they were highlighted in at least two different

databases, or (2) single candidates. Further, the recurrent candidates were assigned a

score out of five for prioritisation purposes, with one point awarded for each database

highlighting them as being lipid-related.

After performing comprehensive annotation of SNPs as per the bottom-up and top-

down procedures described above, this information was then integrated to predict the most

likely causal gene(s) using a hierarchical approach as follows: (1) For those lead SNPs

where the same gene was highlighted by both the bottom-up and top-down approach,

this gene was selected as the putative causal gene; (2) If both the SNP (from this study)

and the proximal gene (from IPA) were associated with the same lipid subclass, further
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SNP–gene assignments were made accordingly; (3) Finally, for each of the remaining lead

SNPs, the highest scoring top-down gene and any bottom-up genes were assigned as the

likely causal gene(s).

Separately, an expert-curated causal gene was assigned to each variant and compared

to the predicted causal genes identified by the functional annotation pipeline to assess

concordance and validate the pipeline.
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Figure 6.1: Flow diagram outlining strategy for causal gene prioritisation

Bottom-up
Identify local genes most likely to be impacted 

functionally by the polymorphic locus

Does the 
gene contain a 
proxy (r² ≥ 0.8) 
variant that is 

protein-
altering?

Is the gene 
proximal 

(±5-Kb) to the 
sentinel 
variant?

Is the gene
a significant cis-
eQTL* target of 

the sentinel 
variant?

Does the 
gene contain a 
sentinel variant 
that is exonic or 

at a splice 
site?

* GTEx data 
(v6p) from all 
available tissues

Identify all protein-coding genes that reside 
within ±500-Kb from the lead variant 

KEGG MGI OMIM
Lipid

MAPS

Top-down

Have any of them previously been implicated 
in a metabolic-related phenotype by any of 

the following databases?

GO

If YES: extract them as candidates
 Top-down candidate genes

If YES: extract them as candidates
 Bottom-up candidate genes

If YES: prioritise these candidate 
genes above all others

 Primary candidate genes

Do candidate 
genes co-occur?

Integration

A proxy is defined as those variants with r2 ≥ 0.8 with the lead variant (EUR population, 1000 Genomes). GTEx data (v6p) from all available tissues were used as a
source for identifying cis-eQTLs. Abbreviations: eQTL = Expression Quantitative Trait Locus; GO = Gene Ontology; GTEx = Genotype–Tissue Expression;
KEGG = Kyoto Encyclopedia of Genes and Genomes; Lipid MAPS = Lipid Metabolites and Pathways Strategy; MGI = Mouse Genome Informatics; OMIM =
Online Inheritance in Man. Source: Adapted from Stacey D, et al. BioRxiv, 2017;230094214.
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6.2.2 Identification of novel loci

In order to determine the number of novel loci from the univariate GWAS and conditional

analyses, the raw results files from a GWAS of circulating lipids published by the Global

Lipids Genetics Consortium (GLGC)35 were downloaded and combined with the published

results from the metabolomics GWAS papers. The published results database was filtered

to only include results significant at P < 5× 10−8, the standard level for genome-wide

significance.

In order to be thorough and comprehensive, several different approaches were devised

and compared to identify novel loci. First, all variants from the combined univariate GWAS

of each lipid and the conditional analyses that were significant at P < 8.929× 10−10 were

compared to the published SNPs to identify novel SNPs that were more than 500-Kb

from any published SNPs—in other words, SNPs that had not previously been reported

in GWAS of either metabolomics or circulating lipids.

A second approach that was used to identify novel loci was based on simply determining

if the variants matched any previously published variants or any proxies of those variants.

Proxy SNPs in linkage disequilibrium (LD) with the published SNPs were identified using

PhenoScanner217, an in-house resource developed by the Cardiovascular Epidemiology

Unit, which has also been made publicly accessible online (http://www.phenoscanner.

medschl.cam.ac.uk). PhenoScanner was used to search for proxies of published variants

found in dbSNP version 138218 and 1000 Genomes phase 3141 with a maximum distance of

±500-Kb and an LD r2 ≥ 0.6. SNPs with a MAF ≥ 0.5 %, that were biallelic, or that had

small insertions or deletions (indels) (< 5 bases) were also included. Using this approach,

any variants that did not match previously published variants or proxies of those variants

were considered to be novel.

A third approach was also used to identify novel loci that combined information about

both distance and LD. All published results from the GWAS of circulating lipids (GLGC)

and metabolomics GWAS were selected and filtered to only include variants reached

genome-wide significance (P < 5× 10−8). A window was then established around each

published variant, with the size of the window determined by the distance of the farthest

proxy SNP upstream and downstream of the published SNP with an LD r2 ≥ 0.6. Again,

the proxies were searched using PhenoScanner with the same criteria as described in the

previous approach. If no proxies were found for the published SNP, a default distance

of ±500-Kb was used for the size of the window around the published SNP. Finally, all

PROMIS variants were selected (P < 8.929× 10−10) that fell outside those windows, and
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these were determined to be novel.

6.2.3 Network of genetic and metabolic associations

Cytoscape v3.4.0219 was used to generate a network of associations between genes and

lipids. Using the approach described in Chapter 4, a Gaussian graphical model (GGM)

was constructed to connect lipids with other lipids based on partial correlation coeffi-

cients130,179,180. Metabolites were also connected with genetic loci using the univariate

GWAS results, with one link for each genome-wide significant association. The full net-

work facilitates visualisation of the genetic determinants of human metabolism and the

relationships between genetic loci and lipids.

The network diagrams were created by combining two parts to integrate different

sources of information. The first part was created by loading the reported associations

between lipids and genes into Cytoscape. Lipid species were clustered according to the

lipid subclass they belong to, resulting in fourteen distinct lipid nodes in the network. The

89 identified lead SNPs from the conditional analyses were clustered according to their

corresponding predicted causal gene(s).

For the second part, a functional interaction network consisting solely of the list

of predicted causal genes/loci was created in Cytoscape using interaction network data

downloaded from Ingenuity Pathway Analysis (IPA) that had been merged using in-house

R156 scripts to create a .sif file. For loci with multiple potential causal genes, interaction

networks for all genes were extracted from IPA and an edge was drawn if at least one gene

at that locus functionally interacted with another of the lipid-associated genes according to

IPA. Finally, these two parts were merged together by node names (i.e. gene symbols). No

enrichment statistics (e.g. KEGG pathways or GO terms) or other statistical information

was used to produce the network, since this information was already incorporated to

inform the predictions of the most likely causal genes, and would therefore invalidate the

conclusions if also used to inform the network.

In order to examine the associations between genes and lipids in the network more

closely, a second network diagram was created showing the individual lipid species rather

than just the lipid subclasses as a whole. However, since a network displaying hundreds of

lipids and their associated genetic loci would have been overly complex and too difficult

to read or interpret, only a portion of the network was drawn focusing on just the triglyc-

erides and their genetic associations. Thus, this network diagram portrayed the partial

correlations of the triglycerides with each other and the association of each triglyceride
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with genetic loci.

6.3 Results

6.3.1 Annotation of significant variants from conditional analyses

The functional annotation pipeline was used to annotate the 89 sentinel variants (i.e. those

with the strongest P -values) from the conditional analyses. Table 6.1 shows the lipid

subclasses associated with each variant, summarises the consequence of each variant on

the protein sequence, and indicates the predicted causal locus based on integration of

information from the bottom-up and top-down SNP annotation approaches together with

expert curation. The concordance between the predicted causal genes identified by the

functional annotation pipeline and the expert-curated causal genes was 85 %, demonstrating

that the pipeline exhibited high sensitivity.

Once a predicted causal locus had been identified for each sentinel variant, further

steps were taken to annotate the loci and summarise known associations with the variants

in each locus. A list of the 23 significant loci from the conditional analyses is provided

in Table 6.2. The names and putative functions of the genes in each locus are described,

along with a list of the lipid-related biomarkers, diseases, and tissues from gene expression

data that are associated with the significant variants and their proxies in each locus, which

were looked up from PhenoScanner217 and the mGWAS literature review of published

metabolomics GWAS, and supplemented with a further literature search. Data on CAD

were contributed by CARDIoGRAMplusC4D investigators (downloaded from http://www.

cardiogramplusc4d.org)43; data on other outcomes were obtained from the NHGRI-EBI

GWAS Catalog34; gene expression tissue data were obtained from the GTEx Consortium216.

An exhaustive list of all the associations can be downloaded from PhenoScanner, but

Table 6.2 provides an overview of the principle associations that are reported for each locus.

Additionally, a few summary results from PROMIS are shown to facilitate comparison

of the lipidomics analysis from this dissertation with the published data. The last two

columns provide a list of lipid subclasses and the number of lipid metabolites from PROMIS

that are significantly associated with the sentinel variants in each locus.

One of the findings from this table is that the SCD locus, which has been shown to be

associated with phosphocholines and sphingomyelins, was only associated with free fatty

acids and lysophosphocholines in this study. The putative gene function for SCD is fatty

acid biosynthesis, so the association with free fatty acids is not surprising, but the lack of
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Table 6.1: Functional annotation of significant variants from conditional analyses

Locus rsID Chr:Pos
(GRCh37)

EA/NEA Associated lipid subclas-
ses

SNP consequence Predicted causal locus

1 rs6657050 chr1:63105253 G/A PC, PI Intronic ANGPTL3 §#
2 rs1260326 chr2:27730940 C/T SM Missense, splice site GCKR *�#
3 rs9821138 chr3:142659837 G/A PI Intronic PAQR9

rs4683715 chr3:142664819 G/A PA Downstream PAQR9
4 rs28870381 chr4:115478499 T/G PG Intergenic UGT8
5 rs9468308 chr6:11044068 G/T PE Intronic ELOVL2

rs6920155 chr6:11047956 A/C PI Upstream ELOVL2
rs9393915 chr6:11072322 T/C PA, PC Intronic ELOVL2

6 chr7:73042302 chr7:73042302 G/GCTTT SM Upstream MLXIPL �#
7 rs117199990 chr8:19820916 T/C DG, SM, TG Intronic LPL �¶#

rs17482753 chr8:19832646 T/G CE Intergenic LPL �#
rs115129770 chr8:19844439 G/C PC Intergenic LPL �#
rs77237194 chr8:19865455 T/A DG Regulatory region LPL �#
rs9644639 chr8:19884947 G/C SM, TG Intergenic LPL �¶#

8 rs603424 chr10:102075479 A/G FreeFA, LysoPC Intronic SCD §¶#
9 rs174530 chr11:61546592 G/A PA, PC Intronic FADS1-2-3 §#

rs174533 chr11:61549025 A/G PC, PE, PI Intronic FADS1-2-3 §#
rs102275 chr11:61557803 C/T PC Intronic FADS1-2-3 §#
rs174544 chr11:61567753 A/C PC, PE, PI 3' UTR FADS1-2-3 *§#
rs174545 chr11:61569306 G/C PA, PC, PS 3' UTR FADS1-2-3 *§#
rs174546 chr11:61569830 T/C CE, PI 3' UTR FADS1-2-3 *§#
rs174548 chr11:61571348 G/C PE, PI Intronic FADS1-2-3 §#
rs174549 chr11:61571382 A/G PA, TG Intronic FADS1-2-3 §¶#
rs174551 chr11:61573684 C/T PC Intronic FADS1-2-3 §#
rs174553 chr11:61575158 G/A CE, PC, PE, PI Intronic FADS1-2-3 §#
rs174554 chr11:61579463 G/A PA Intronic FADS1-2-3 §#
rs174560 chr11:61581764 C/T PA, PC, PE, PI, PS Intronic FADS1-2-3 §#
rs174561 chr11:61582708 C/T FreeFA, PC Intronic FADS1-2-3 §¶#
rs28456 chr11:61589481 G/A PA, TG Upstream FADS1-2-3 §¶#
rs174565 chr11:61591636 G/C PA, PE Upstream FADS1-2-3
rs174566 chr11:61592362 G/A PC, PE, PG, SM Upstream FADS1-2-3 §#
rs174567 chr11:61593005 G/A PA, PC, PE, PS Upstream FADS1-2-3 §#
rs174568 chr11:61593816 T/C PC Upstream FADS1-2-3 §#
chr11:61594920 chr11:61594920 C/CT PS Upstream FADS1-2-3 �
rs968567 chr11:61595564 T/C PE 5' UTR FADS1-2-3 *§#
chr11:61596322 chr11:61596322 C/CA PA, PC Intronic FADS1-2-3 �
rs99780 chr11:61596633 T/C FreeFA Intronic FADS1-2-3 §¶#
rs1535 chr11:61597972 G/A PC, PG Intronic FADS1-2-3 §#
rs61897793 chr11:61599347 A/G FreeFA Intronic FADS1-2-3 §¶#
rs174574 chr11:61600342 C/A FreeFA, LysoPC Intronic FADS1-2-3 §¶#
chr11:61602460 chr11:61602460 C/CA PA, PC, PI Intronic FADS1-2-3
rs174576 chr11:61603510 A/C PA, PC, PI Intronic FADS1-2-3 §#
rs174578 chr11:61605499 A/T PC Intronic FADS1-2-3 §#
rs174580 chr11:61606642 G/A PA, PC, PE Intronic FADS1-2-3 §#
rs174581 chr11:61606683 A/G PC Intronic FADS1-2-3 §#
rs174582 chr11:61607168 G/A PE Intronic FADS1-2-3 §#
rs61897795 chr11:61618169 G/A PE Intronic FADS1-2-3 §#

10 rs964184 chr11:116648917 C/G CE, DG, PA, PC, SM, TG 3' UTR APOA5-APOC3 *¶#
rs11604424 chr11:116651115 T/C CE Intronic APOA5-APOC3 ¶
rs6589566 chr11:116652423 A/G SM, TG Intronic APOA5-APOC3 ¶
rs2075290 chr11:116653296 T/C TG Intronic APOA5-APOC3 ¶
rs3741298 chr11:116657561 T/C TG Intronic APOA5-APOC3 ¶
rs651821 chr11:116662579 T/C CE, DG, PC, SM, TG 5' UTR APOA5-APOC3 *¶#
rs662799 chr11:116663707 A/G CE, Chol, DG, PC, SM, TG Upstream APOA5-APOC3 ¶§

11 rs7160525 chr14:64232220 A/G SM Downstream SGPP1
rs7157785 chr14:64235556 T/G SM Regulatory region SGPP1

12 rs11158671 chr14:67965452 A/G PG Intronic PIGH-TMEM229B §
rs1885041 chr14:67976325 T/C PA, PC, SM Intronic PIGH-TMEM229B §

13 rs11071371 chr15:58576226 T/C PE Intronic LIPC �#
rs2043085 chr15:58680954 C/T PC, PE Intronic LIPC
rs1532085 chr15:58683366 G/A PA, PC, PE Intronic LIPC
rs1077835 chr15:58723426 G/A PC, PE Intronic LIPC
rs1077834 chr15:58723479 C/T PE Intronic LIPC
chr15:58723675 chr15:58723675 T/C PC, PE Intronic LIPC
rs2070895 chr15:58723939 A/G PC, PE Intronic LIPC

14 rs4985124 chr16:15125441 G/T PA Intronic PLA2G10-NTAN1-NPIPA5 �§
rs1135999 chr16:15131962 G/A PE Missense PLA2G10-NTAN1-NPIPA5 *§
rs34955778 chr16:15139594 C/T PC, PE Intronic PLA2G10-NTAN1-NPIPA5 ¶§
rs11644601 chr16:15172118 C/T CE Intronic PLA2G10-NTAN1-NPIPA5 §

15 rs711752 chr16:56996211 A/G PC Intronic CETP ¶
16 rs11079173 chr17:53487664 C/A PA Intronic PCTP
17 rs11666866 chr19:8285607 A/G PC, SM Intronic CERS4 §#
18 rs75627662 chr19:45413576 T/C SM Upstream APOE-C1-C2-C4 ¶

rs483082 chr19:45416178 T/G PC, SM Upstream APOE-C1-C2-C4 ¶
19 rs4806498 chr19:54674742 T/C PA, PE, PI Intronic MBOAT7 ¶§

rs641738 chr19:54676763 T/C PA, PC, PI Missense MBOAT7 *¶§
rs34564463 chr19:54676814 GC/G PC, PI 5' UTR MBOAT7 *¶
rs626283 chr19:54677001 C/G PC, PI Upstream MBOAT7 ¶§
rs8736 chr19:54677189 T/C PC, PI 3' UTR MBOAT7 *¶#
rs10416555 chr19:54677897 A/G PI, PS Synonymous MBOAT7 *¶

20 rs438568 chr20:12958687 G/A Cer, PC, SM Intergenic SPTLC3 §#
rs4814175 chr20:12959094 T/A Cer Intergenic SPTLC3 §#
rs4814176 chr20:12959398 C/T PC, SM Intergenic SPTLC3 §#
rs364585 chr20:12962718 G/A Cer, SM Intergenic SPTLC3 §#
rs168622 chr20:12966089 G/T Cer Intergenic SPTLC3 §#
rs686548 chr20:12973521 T/A PC, SM Intergenic SPTLC3 §#

21 chr22:29339470 chr22:29339470 T/TTCTC SM Intronic XBP1
22 rs2267161 chr22:30953295 T/C PG Missense GAL3ST1 *#
23 rs12484809 chr22:44325631 T/C TG Intronic PNPLA3 ¶§

This table shows annotation of 89 significant variants from conditional analyses, including the lipid subclasses significantly associ-
ated with each variant, the consequence of each variant on the protein sequence, and the predicted causal locus, which is based on
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integration of information from the bottom-up and top-down SNP annotation approaches (see subsection 6.2.1) together with expert
curation. Chromosomal loci (defined using ±500-Kb rolling windows around each SNP) are indicated in the table by alternating
white background and grey shading. *SNP is exonic. �SNP is located at a splice site. �SNP is in high LD with a non-synonymous
SNP. §SNP is in high LD with a significant cis-eQTL. ¶There is lipid compound-specific evidence from IPA supporting the SNP-gene
annotation. #Gene symbol was highlighted by both the bottom-up and top-down approaches. Abbreviations: ANNOVAR =
ANNOtate VARiation; CE = Cholesterol ester; Cer = Ceramide; DG = Diacylglycerol; eQTL = Expression Quantitative Trait
Loci; FA = Fatty acids; GL = Glycerolipid; GLGC = Global Lipids Genetics Consortium; GP = Glycerophospholipid; GRCh37 =
Genome Reference Consortium human genome build 37; IPA = Ingenuity Pathway Analysis; LD = Linkage Disequilibrium; LPC =
Lysophosphatidylcholine; PA = Phosphatidate; PC = Phosphatidylcholine; PE = Phosphatidylethanolamine; PG = Phosphatidyl-
glycerol; PI = Phosphatidylinositol; PS = Phosphatidylserine; SL = Sphingolipid; SM = Sphingomyelin; SNP = Single Nucleotide
Polymorphism; ST = Steroids and derivatives; TG = Triacylglycerol; VEP = Variant Effect Predictor.

associations with other lipid subclasses that have been reported in previous studies could

be due to lack of statistical power or the fact that this study was conducted in a Pakistani

population, whereas all of the published mGWAS studies are based in European, American,

or Brazilian populations. Although the GLGC included fine-mapping in a South Asian

population, SCD was not one of the 157 significant loci identified in this paper35.

Additionally, the CERS4 has previously been reported to be associated with ceramides

and sphingomyelins, whereas in this analysis it was associated with phosphocholines and

sphingomyelins. Another difference is that the PIGH-TMEM229B locus has only been

reported to be associated with phosphocholines, whereas this analysis extends further what

is known about this gene region, as associations were also found with phosphatic acids,

phosphoglycerols, and sphingomyelins.

The APOA5-APOC3 locus is the only gene region from the conditional analyses that

was significantly associated with CHD. Together with FADS1-2-3, these two loci have been

widely studied and are associated with a large number of different lipid-related traits in the

published literature, including apolipoproteins, cholesterol esters, free cholesterol, HDL-C,

LDL-C, linoleic acid, triglycerides, and omega-3 and omega-6 fatty acids. Accordingly,

they were each associated with over 100 lipids in PROMIS from a wide diversity of lipid

subclasses.
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Table 6.2: Summary of known and novel information about conditional analysis loci

Genetic locus Published associations with locus Associations in PROMIS

Cyto-
ge-
netic
band

Locus name Full gene name(s) Gene function(s) Biomarkers Diseases Gene expression tissues Lipid sub-
classes

No.
lipid
species

1p31.3 ANGPTL3 Angiopoietin-like 3 Angiogenesis Cholesterol esters, free choles-
terol, LA, w-6 fatty acids, phos-
phoglycerides, total cholesterol,
triglycerides, VLDL

CAD Lymphoblastoid cell lines, skin,
transformed fibroblast cells

PC, PI 2

2p23.3 GCKR Glucokinase regulator Glucokinase inhibi-
tion

Alanine, albumin, ApoA1,
ApoB, ApoC3, blood pro-
teins, cholesterol, CRP, fasting
glucose, HDL, LDL, LA, metab-
olite levels, w-3 fatty acids, w-6
fatty acids, polyunsaturated
fatty acids, phospholipids,
total cholesterol, total fatty
acids, triglycerides, VLDL

CKD, gout, hypertri-
glyceridemia, T2D,
NAFLD, Crohn’s
disease

Liver, lymphoblastoid cell
lines, peripheral blood, skeletal
muscle, transformed fibroblast
cells, thyroid, whole blood

SM 2

3q23 PAQR9 Progestin and adipoQ re-
ceptor family member 9

Receptor activity Phospholipids, phosphoetha-
nolamines

N/A N/A PA, PI 2

4q26 UGT8 Uracil-diphosphate glucose
(UDP) glycosyltransferase 8

Galactose to ceramide
catalysis

N/A N/A Transformed fibroblast cells PG 1

6p24.2 ELOVL2 Elongation of very long chain
(ELOVL) fatty acid elongase
2

Fatty acid elongation Blood metabolite ratios, DHA N/A Testis PA, PC, PE,
PI

4

7q11.23 MLXIPL Max-like protein X (MLX) in-
teracting protein like

Transcriptional
repressor

Cholesterol esters, free choles-
terol, phospholipids, total cho-
lesterol, total lipids, triglycer-
ides, VLDL

CAD Esophagus mucosa, pancreas,
skin, subcutaneous adipose,
thyroid, transformed fibroblast
cells

SM 2

8p21.3 LPL Lipoprotein lipase Triglyceride hydro-
lysis, ligand/bridging
factor for receptor-
mediated lipoprotein
uptake

ApoB, cholesterol esters, free
cholesterol, HDL, phospholip-
ids, total cholesterol, triglycer-
ides, VLDL

CAD, hypertriglyceri-
demia, metabolic syn-
drome

Peripheral blood, peripheral
blood monocytes

CE, DG, PC,
SM ,TG

13

10q24.31 SCD Stearoyl-CoA desaturase Fatty acid biosynthe-
sis

Blood metabolite levels, lyso-
phosphocholines, palmitate,
palmitoleic acid, phosphocho-
lines, sphingomyelins

N/A Peripheral blood FreeFA,
LysoPC

2

11q12.2 FADS1-
FADS2-
FADS3

Fatty acid desaturase 1-2-3 Fatty acid desatura-
tion, fatty acid biosyn-
thesis

ApoA1, blood metabolite
levels, cholesterol esters, free
cholesterol, DPA, EPA, fast-
ing glucose, HDL, LDL, LA,
w-3-fatty acids, phosphocho-
lines, plasma oleic acid, red
blood cell fatty acids, total
cholesterol, triglycerides

Crohn’s disease, in-
flammatory bowel
disease, laryngeal
squamous cell car-
cinoma, lung cancer,
rheumatoid arthritis

Adipose omental, brain cerebel-
lum, esophagus mucosa, heart
left ventricle, liver, lympho-
blastoid cell lines, pancreas,
peripheral leukocytes, skeletal
muscle, spleen, thyroid, tibial
nerve, transformed fibroblast
cells, transverse colon, whole
blood

CE, FreeFA,
LysoPC, PA,
PC, PE, PG,
PI, PS, SM,
TG

110
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Table: Summary of known and novel information about conditional analysis loci (. . . continued)
Genetic locus Published associations with locus Associations in PROMIS

Cyto-
ge-
netic
band

Locus name Full gene name(s) Gene function(s) Biomarkers Diseases Gene expression tissues Lipid sub-
classes

No.
lipid
species

11q23.3 APOA5-
APOC3

Apolipoprotein A5-C3 Plasma triglyceride
regulation, lipopro-
tein and hepatic
lipase inhibition

ApoB, blood metabolite levels,
cholesterol esters, free choles-
terol, HDL, IDL, LDL, LA,
LpPLA2 activity, mono unsat-
urated fatty acids, w-3 fatty
acids, w-6 fatty acids, phospho-
cholines, phosphoglycerides,
sphingomyelins, total choles-
terol, triglycerides, vitamin E,
VLDL

CAD, CHD, hyper-
triglyceridemia, meta-
bolic syndrome

Peripheral blood, peripheral
blood monocytes

Chol, CE, DG,
PA, PC, SM,
TG

105

14q23.2 SGPP1 Sphingosine-1-phosphate
phosphatase 1

Intracellular and
extracellular
sphingosine-1-
phosphate (S1P)
regulation

Blood metabolite levels, sphin-
gomyelins

N/A N/A SM 4

14q24.1 PIGH-
TMEM229B

Phosphatidylinositol glycan
anchor biosynthesis class H,
transmembrane protein 229B

Glycosylphosphati-
dylinositol anchor
biosynthesis

Phosphocholines Breast cancer, Parkin-
son’s disease

N/A PA, PC, PG,
SM

4

15q21.3 LIPC Lipase C, hepatic type Triglyceride hydro-
lysis, ligand/bridging
factor for receptor-
mediated lipoprotein
uptake

ApoA1, blood metabolite
levels, cholesterol esters, free
cholesterol, DHA, HDL, IDL,
LA, w-3 fatty acid, w-6 fatty
acids, phosphoethanolamines,
total cholesterol, triglycerides,
VLDL

Advanced age-related
macular degeneration,
Alzheimer’s disease,
amyotrophic lat-
eral sclerosis (ALS),
schizophrenia, gout,
ischaemic stroke,
metabolic syndrome

N/A PA, PC, PE 14

16p13.11,
16p13.12

PLA2G10-
NTAN1-
NPIPA5

Phospholipase A2 group X, N-
terminal asparagine amidase,
nuclear pore complex inter-
acting protein family member
A5

Glycerophospholipid
hydrolysis

Dihomo linolenate, double
bonds in fatty acids, LA,
PUFA

N/A Blood, lymphoblastoid cell
lines, skin, transformed fibro-
blast cells

CE, PA, PC,
PE

11

16q13 CETP Cholesteryl ester transfer pro-
tein

Cholesteryl ester
transfer

ApoA1, cholesterol esters, free
cholesterol, HDL, LDL, phos-
phocholines, total cholesterol,
triglycerides, VLDL

Advanced age-related
macular degeneration,
CAD

Peripheral blood, transformed
fibroblast cells

PC 1

17q22 PCTP Phosphatidylcholine transfer
protein

Lipid binding, phos-
phatidylcholine trans-
fer

N/A N/A Lymphoblastoid cell lines, peri-
pheral blood

PA 1

19p13.2 CERS4 Ceramide synthase 4 Sphingosine N -
acyltransferase
activity

Ceramides, sphingomyelins N/A Adipose subcutaneous, eso-
phagus muscularis, skeletal
muscle, skin, tibial artery,
transformed fibroblast cells

PC, SM 2
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Table: Summary of known and novel information about conditional analysis loci (. . . continued)
Genetic locus Published associations with locus Associations in PROMIS

Cyto-
ge-
netic
band

Locus name Full gene name(s) Gene function(s) Biomarkers Diseases Gene expression tissues Lipid sub-
classes

No.
lipid
species

19q13.32 APOE-
APOC1-
APOC2-
APOC4

Apolipoprotein E-C1-C2-C4 Protein homodi-
merization activity,
receptor binding, cho-
lesteryl ester transfer
protein inhibition,
phosphatidylcholine
binding, phospholi-
pase inhibitor activity,
lipoprotein lipase
activation, lipid
transporter activity

Cholesterol esters, free cho-
lesterol, LDL, phospholipids,
total cholesterol, triglycerides,
VLDL

Advanced age-related
macular degeneration,
Alzheimer’s disease,
CAD, carotid in-
tima media thickness,
cognitive decline,
T2D

Lymphoblastoid cell lines PC, SM 8

19q13.42 MBOAT7 Membrane bound O-
acyltransferase domain
containing 7

Lysophospholipid ac-
yltransferase activity

Blood metabolite levels, phos-
phoinositols

Alcohol-related cir-
rhosis

Adipose subcutaneous, adipose
visceral omentum, adrenal
gland, aorta artery, breast
mammary tissue, coronary
artery, esophagus mucosa, eso-
phagus muscularis, heart atrial
appendage, heart left ventricle,
sigmoid colon, skeletal muscle,
spleen, testis, thyroid, trans-
formed fibroblast cells, tibial
artery, tibial nerve, whole
blood

PA, PC, PE,
PI, PS

22

20p12.1 SPTLC3 Serine palmitoyltransferase
long chain base subunit 3

Pyridoxal phosphate
binding, transaminase
activity

Blood metabolite levels, LDL,
phosphocholines, sphingomye-
lins

N/A N/A Cer, PC, SM 27

22q12.1 XBP1 X-box binding protein 1 Transcription factor
activity, sequence-
specific DNA binding

N/A Esophageal squamous
cell carcinoma, pan-
creatic cancer

N/A SM 1

22q12.2 GAL3ST1 Galactose-3-O-
sulfotransferase 1

Sulfotransferase
activity, galactosylcer-
amide sulfotransferase
activity

N/A N/A Peripheral blood monocytes PG 1

22q13.31 PNPLA3 Patatin-like phospholipase
domain containing 3

Phospholipase A2
activity, mono-olein
transacylation activ-
ity

N/A Alcohol-related cir-
rhosis, NAFLD,
metabolic disease,
obesity

N/A TG 2

The list of associations of biomarkers, diseases, and tissues from gene expression data in this table is based on lookups performed in PhenoScanner217 and the mGWAS database that was compiled from a literature review
of published metabolomics GWAS studies, but has also been supplemented by further literature searches for each locus. Nevertheless, the associations listed in this table are undoubtedly still incomplete and are meant
to provide a representative overview of the type of associations that exist for the significant variants in each locus from the conditional analyses, rather than providing a comprehensive list of all known associations with
all variants in these loci (which can be downloaded from PhenoScanner itself). In particular, certain traits that are not directly lipid-related, such as body mass index, height, and waist circumference, for instance, have
been excluded to conserve space in the table. Associations with CAD and CHD are highlighted in bold. Abbreviations: CAD = Coronary artery disease; CHD = Coronary heart disease; CRP = C-reactive protein;
DHA = Docosahexaenoic acid; EPA = Eicosapentaenoic acid; HDL = High-density lipoprotein cholesterol; IDL = Intermediate-density lipoprotein cholesterol; LA = Linoleic acid; LDL = Low-density lipoprotein
cholesterol; NAFLD = Non-alcoholic fatty liver disease; PUFA = Polyunsaturated fatty acid; T2D = Type 2 diabetes; VLDL = Very low density lipoprotein cholesterol.
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6.3.2 Novel loci

As described in Chapter 5, there were 89 sentinel variants that belonged to 23 independent

loci. The next step was to identify novel loci that had not previously been reported in

the GLGC for circulating lipids or published in previous metabolomics GWAS papers at

time of writing (Table 1.3). When using a simple distance-based measure of ±500-Kb

to define novel loci—that is, the variant had to be more than 500-Kb from a previously

published variant to be considered novel—two novel loci were identified: XBP1 and

GAL3ST1. However, this approach was probably overly conservative since 1-Mb around

each published variant is a rather wide region, so there were likely to be other novel variants

that were not picked up by this method.

The second approach that was used to identify novel loci was based on simply determ-

ining if the variants matched any previously published variants or any proxies of those

variants. PhenoScanner217 was used to search for proxies of published variants. Using this

approach, six novel loci were identified: UGT8, PCTP, MBOAT7, XBP1, GAL3ST1, and

PNPLA3. However, this approach was likely too relaxed since variants could have been

within the same gene region and only a few base-pairs away from a previously published

variant or proxy, but still be considered novel if they were not in LD.

Therefore, the third approach tried to strike a balance between the two methods

described above by incorporating information about both LD and distance to determine

the size of the window around each published SNP. Again, the variants from the conditional

analyses were compared to the variable windows around each published SNP to identify

novel SNPs. Since PhenoScanner does not have any LD information on proxy SNPs more

than 500-Kb in either direction from the specified variant or proxies with an R2 < 0.6,

this meant that all of the resulting windows upstream and downstream from the specified

variants were now less than or equal to 500-Kb. However, as mentioned above, the distance-

based approach may have been overly conservative and the proxy method was too relaxed,

so defining the windows using the LD-based distance method was likely to be the most

rigorous and accurate. Using this approach, there were four novel loci: UGT8, XBP1,

GAL3ST1, and PNPLA3. While results from all three approaches have been presented

here for comparability, all of the figures and tables in this chapter that display the number

of novel variants are based on the latter approach.

As noted in subsection 5.3.4, rs738409, a missense variant in the PNPLA3 locus which

was already known to be associated with non-alcoholic fatty liver disease, was found in

an exome-wide association analysis to also be significantly associated with circulating
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levels of triglycerides40, and it was therefore included as one of the 175 major lipid loci in

Figure 5.10. However, despite this published association with triglycerides, PNPLA3 was

considered to be a novel locus in this dissertation because it was not significantly associated

with either major lipids or metabolites in the GWAS databases that were searched, namely

the GLGC and literature review of mGWAS studies. The lead variant in PROMIS was

rs12484809, which although it is different, has an LD r2 of 0.738 with the previously

published variant.

Table 6.2 correctly identifies UGT8, XBP1, GAL3ST1, and PNPLA3 as novel loci

since they were not associated with any lipid-related biomarkers. However, the table also

indicates that PCTP is not known to be associated with any lipid-related biomarkers. In

fact, this is correct, but the reason that the significant variant from the conditional analyses

in the PCTP locus was not considered to be novel is because this variant (rs1107917,

chr17:53487664) is just 23-Kb from a published SNP (chr17:533511321) from an mGWAS

study81 that is significantly associated with tryptophan. However, given that there was no

LD information available for the published variant at time of writing, and tryptophan is

not closely related to lipid metabolism, it is possible that PCTP should also be considered

among the novel loci discovered in this dissertation. Interestingly, although the putative

function of PCTP is catalysing the transfer of phosphatidylcholines between membranes, in

PROMIS a phosphatic acid, rather than a phosphatidylcholine, was significantly associated

with a variant in this locus.

A summary of the novel variants in these regions is shown in Table 6.3. The association

of each lipid with the variants within each novel locus are shown in regional association

plots that were produced using LocusZoom201 (Figure 6.2). The plots have been annotated

to distinguish between coding and non-coding variants, and the LD information that is

shown between the sentinel variant and nearby variants within the region was calculated

based on the PROMIS data itself rather than importing LD information from an external

database such as 1000 Genomes141.
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Table 6.3: Association of lipids with loci not previously known to be associated with major lipids or metabolites

Lipid name (m/z) rsid (GRCh37 Chr:Pos) EA / NEA MAF
(GWAS1
& GWAS2)

Info score
(GWAS1 &
GWAS2)

b SE P-value SNP conse-
quence

Predicted
causal
gene

SM(37:1) (745.6216) rs71661463 (chr22:29339470) T / TTCTC 0.01580 0.8786 −0.2298 0.0345 2.67× 10−11 Intronic XBP1
0.01272 0.8646

PG(32:1)+AcO- (779.5078) rs28870381 (chr4:115478499) T / G 0.28302 0.9749 0.1316 0.0174 4.60× 10−14 Intergenic UGT8
0.28946 0.9974

PG(32:1)+AcO- (779.5078) rs2267161 (chr22:30953295) T / C 0.21539 1.0000 −0.1197 0.0192 4.86× 10−10 Missense GAL3ST1
0.22002 1.0000

TG(56:6) (924.801) rs12484809 (chr22:44325631) T / C 0.19835 0.9854 0.0700 0.0092 3.37× 10−14 Intronic PNPLA3
0.20544 0.9956

TG(56:5) (926.817) rs12484809 (chr22:44325631) T / C 0.19835 0.9854 0.0657 0.0087 5.85× 10−14 Intronic PNPLA3
0.20544 0.9956

For a description of how predicted causal genes were determined, see subsection 6.2.1. Abbreviations: EA = Effect allele; GRCh37 = Genome Reference Consortium human
genome build 37; MAF = Minor allele frequency; m/z = Mass-to-charge ratio; NEA = Non-effect allele; SE = Standard error; SNP = Single nucleotide polymorphism.
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The four novel loci identified from this study will be described. First, patatin-like

phospholipase domain containing protein 3 (PNPLA3 ) is a multifunctional enzyme that

encodes a triacylglycerol lipase, which mediates triacylglycerol hydrolysis in adipocytes, and

also has acylglycerol O-acyltransferase activity. A recent meta-analysis provided strong

and unequivocal evidence for a significant role of rs738409, a nonsynonymous variant

(p.Ile148Met) in the PNPLA3 gene, in the progression of alcohol-related liver disease

(ALD)220. Isoleucine to methionine substitution at position 148 in the PNPLA3 gene

(I148M) is a loss-of-function allele that has been shown to impair triglyceride hydrolysis

in the liver and secretion of triglyceride-rich very low density lipoproteins, leading to

altered fatty acid composition of liver triglycerides. However, the mechanisms by which

this PNPLA3 variant and other variants in the TM6SF2 and MBOAT7 genes confer

risk for ALD, and the nature of the functional interplay between them, has not yet

been determined221. Paradoxically, although this PNPLA3 variant is associated with

increased risk of liver disease, it is also associated with reduced risk of CHD. This suggests

that targeting hepatic pathways to reduce cardiovascular risk may be complex, despite

the clustering of cardiovascular and hepatic diseases in people with metabolic syndrome.

The results from the conditional analysis in this dissertation found associations of two

triglycerides—TG(56:6) (m/z 924.801) and TG(56:5) (m/z 926.817)—with rs12484809 in

the PNPLA3 locus, a variant in LD with rs738409 (r2 = 0.738) that has not been previously

reported. Therefore, this newly discovered association with a variant in PNPLA3 could

play an important role in ALD, non-alcoholic steatohepatitis (NASH), or non-alcoholic

fatty liver disease (NAFLD), but a more thorough understanding of the pathways involved

are needed.

Further investigation of the rs738409 (I148M) variant was also undertaken to study

the associations of lipids with PNPLA3 in greater detail. The loss-of-function variant

was focused on since more is known about its role, and therefore it is more likely to have

clinical applications than the novel variant that was identified. As shown in Figure 6.3,

the PNPLA3 I148M allele was associated with increased levels of lipids of higher carbon

number and double-bond content, and consistently, with decreased levels of lipids of lower

carbon number and double-bond content. This allele is associated with reduced risk of

CHD but increased risk of non-alcoholic fatty liver disease (NAFLD). There were also

significant differences between the mean level of lipids between individuals according to

whether they were homozygous for the major allele, heterozygous, or homozygous for the

minor allele (Figure 6.4).
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Figure 6.2: Regional association plots for association of each lipid with novel loci

(a) Association of SM(37:1) (m/z 745.6216) with
rs71661463 (XBP1 )

(b) Association of TG(56:6) (m/z 924.801) with
rs12484809 (PNPLA3 )

(c) Association of TG(56:5) (m/z 926.817) with
rs12484809 (PNPLA3 )

(d) Association of PG(32:1) (m/z 779.5078) with
rs28870381 (UGT8 )

(e) Association of PG(32:1) (m/z 779.5078) with
rs2267161 (GAL3ST1 )

The association of each lipid with the variants within the loci not previously reported to be associated
with major lipids or metabolites is shown in a regional association plot produced using LocusZoom201.
Coding variants are indicated with a filled triangle, while non-coding variants are indicated with a
filled circle. The coding variant rs2267161 in the GAL3ST1 region is the only sentinel variant that
was directly genotyped; the other sentinel variants were imputed. Linkage disequilibrium (LD) was
calculated based on the correlation (r2) of each SNP, and is indicated by the colour of the fill of each
plotted variant. The lead SNP within each locus is shown in purple and labelled with the chromosomal
position.
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The second novel locus, galactose-3-O-sulfotransferase 1 (GAL3ST1 ), catalyses the

sulfation of membrane glycolipids and the synthesis of galactosylceramide sulfate (sulfatide),

a major lipid component of the myelin sheath. It also acts on lactosylceramide, galactosyl

1-alkyl-2-sn-glycerol, and galactosyl diacylglycerol. The conditional analysis results found

that rs2267161, a missense variant in the GAL3ST1 locus, is associated with PG(32:1)

(m/z 779.5078). Variations for this same SNP have been linked to reduced insulin resistance

and increased risk of T2D222, but it has not been previously reported in any associations

with circulating lipids or mGWAS, so it is an interesting finding from this study that

the variant is also associated with a phosphatidylglycerol. Sulfonation is an important

step in the metabolism of many drugs, so it is possible that this novel variant could be a

useful pathway for new drugs targeting insulin resistance through this metabolic pathway,

although further research in this area is needed.

The third locus, uracil-diphosphate glucose (UDP) glycosyltransferase 8 (UGT8 ) cata-

lyses the transfer of galactose to ceramide, a key enzymatic step in the biosynthesis of

galactocerebrosides, which are abundant sphingolipids of the myelin membrane of the cent-

ral nervous system and peripheral nervous system. The conditional analysis results found

that rs28870381, an intergenic variant in the UGT8 locus, was associated with PG(32:1)

(m/z 779.5078). Again, there has not been much research on UGT8, but it is surprising

to find an association with a phosphatidylglycerol since one would expect that variants in

UGT8 would be associated with ceramides. This is another area that would be useful for

follow-up research.

Finally, X-box binding protein 1 (XBP1 ) functions as a transcription factor during

endoplasmic reticulum stress by regulating the unfolded protein response. It also functions

as a major regulator of the unfolded protein response in obesity-induced insulin resistance

and type 2 diabetes for the management of obesity and diabetes prevention, and recent

studies have shown that compounds targeting the XBP1 pathway are a potential approach

for the treatment of metabolic diseases223. In addition, XBP1 protein expression, which is

induced in the liver by a high carbohydrate diet, is directly involved in fatty acid synthesis

through de novo lipogenesis, so compounds that inhibit XBP1 activation may also be

useful for treatment of NAFLD224. The conditional analysis results found that rs71661463,

an intronic variant in the XBP1 locus, was associated with SM(37:1) (m/z 745.6216).
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Figure 6.3: Association of lipids with rs738409 variant in PNPLA3

Association of G allele of rs738409 in PNPLA3 locus with levels of various lipids. The black lines
denote 95 % confidence intervals.
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Figure 6.4: Box plots displaying levels of three triglycerides in individuals grouped by
their genotypes at the variant rs738409 in PNPLA3

(a) TG(57:10) (m/z 930.754) (b) TG(46:0) (m/z 796.7393)

(c) TG(56:6) (m/z 924.801)

ANOVA test of difference in mean levels of triglycerides by genotype: (a) TG(57:10): P = 0.013; (b)
TG(46:0): P < 0.001; and (c) TG(56:6): P < 0.001.
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6.3.3 Novel relationships and new biological insights into lipid metabol-

ism

This analysis replicated and confirmed known associations between lipids and genetic loci

while also further extending what is known about these loci, thus providing new biological

insights into lipid metabolism for known loci. For instance, the associations of lipids with

apolipoprotein A5 (APOA5 ) were described in Chapter 5, and the associations of those

lipids with CHD risk factors were presented in Chapter 4. Additionally, membrane bound

O-acyltransferase domain containing 7 (MBOAT7 ), which contributes to the regulation of

free arachidonic acid in the cell through the remodelling of phospholipids, was reported as

being associated with the metabolite 1-arachidonoylglycerophosphoinositol [i.e. PI(36:4)]

in a previous mGWAS132, but this analysis found that the lead SNP in this locus, rs8736

(chr19:54677189), was associated with a wide range of phosphatic acids [e.g. PA(40:5)

and PA(44:6)], phosphocholines [e.g. PC(36:6) and PC(42:11)], phosphoethanolamines

[e.g. PE(39:7)], and phosphoinositols [e.g. PI(34:1) and PI(36:1)] (see Figure 5.9l).

Another significant example where this analysis extends the knowledge base of lipid

metabolism is hepatic type lipase C (LIPC ). LIPC is an important enzyme in HDL

metabolism that has the capacity to catalyse hydrolysis of phospholipids, mono-, di-,

and triglycerides, and acyl-CoA thioesters. LIPC has been reported as being associated

with several different metabolites, including linoleic acid, docosahexaenoic acid (DHA),

1-linoleoylglycerophosphoethanolamine, and others78,132; however, this analysis reports ad-

ditional associations with an even wider range of metabolites, including PA(39:1), PC(35:4),

PE(36:4), PE(36:5), and PE(38:6) (see Figure 5.9j).

Apolipoprotein E-C1-C2-C4 (APOE-C1-C2-C4 ) is a well-studied locus that has been

reported for association with cholesterol esters, free cholesterol, LDL-C, phospholipids,

total cholesterol, triglycerides, and VLDL-C35,78. However, the previous studies that

looked at this locus were based on an NMR metabolomics platform, which differentiates

lipids based on particle size78, and the association with major circulating lipids35, which

does not examine individual species of lipid metabolites. In comparison, this analysis found

associations with six specific sphingomyelins [SM(34:0), SM(40:0), SM(40:1), SM(40:2),

SM(42:0)+AcO-, and SM(42:1)] and two phosphocholines [PC-O(37:1) and PC-O(39:1)]

(see Figure 5.9c), which are defined based on the number of carbon atoms and double

bonds rather than the particle size. Thus, these results contribute valuable information to

the body of existing knowledge regarding this locus.

Sphingosine-1-phosphate phosphatase 1 (SGPP1 ) has been previously been reported
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for association with overall blood metabolite levels132 and sphinomyelins in particular225.

The analyses in this dissertation found associations of SGPP1 with four additional sphingo-

myelins [SM(31:1)-H-, SM(32:1), SM(32:1)+AcO-, and SM(39:1)] that were not discovered

in those studies (see Figure 5.9t).

Likewise, serine palmitoyltransferase long chain base subunit 3 (SPTLC3 ) has pre-

viously been reported for association with blood metabolite levels132, LDL-C35, phos-

phocholines73, and sphingomyelins73. This analysis also found associations with three

phosphocholines and fifteen sphingomyelins, but different ones that have not been previ-

ously reported [e.g. PC-P(38:1), SM(31:1)-H-, SM(32:1), and SM(37:1)]. Additionally, this

analysis found significant associations with nine ceramides [Cer(40:0)-H-, Cer(40:1)-H-,

Cer(40:2)-H-, Cer(41:0)-H-, Cer(41:1)-H-, Cer(41:2)-H-, Cer(42:0)-H-, Cer(42:1)-H-, and

Cer(42:2)-H-] which have not ever been reported in relation to this locus (see Figure 5.9u).

6.3.4 Network diagrams

Genetic associations with lipid metabolite concentrations were summarised within each

lipid subclass and combined with partial correlations from the GGM to produce a network

of associations between genes and lipid subclasses, which is shown in Figure 6.5. The

network diagram facilitates visualisation of the genetic determinants of human metabolism

and the relationships between genetic loci and lipid subclasses.

The network shows the connections between the various lipid subclasses and their

association with genetic loci. For example, it is evident that diglycerides and triglycerides

had strong over-representation in the GGM, which means that there were more connections

between diglycerides and triglycerides than would have been expected due to chance alone,

whereas sphingomyelins and triglycerides had strong under-representation in the GGM,

which means that there were fewer connections between lipid species in these subclasses

than would have been expected due to chance alone.

Another observation that can be drawn from the network diagram is that sphingo-

myelins are associated with two loci that are also associated with a range of other lipid

subclasses, namely SPTLC3 and FADS1-2-3, but they are also associated with exclusively

with four loci that are not associated with any other lipid subclasses: GCKR, SGPP1,

MLXIPL, and XBP1. Sphingomyelins have previously been shown to be associated with

SGPP1, but the associations of sphingomeylins with the other three loci have not ever

been reported prior to this analysis.

A second network diagram was also generated for a subset of the triglyceride species
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(Figure 6.6) showing the partial correlations of individual triglycerides and the detailed

associations between triglycerides with genetic loci. A number of observations can also be

drawn from this second diagram. First, the network shows that variants in the APOA5-

APOC3 locus, which is in the centre of the figure, are associated with a wide range of

triglycerides. Apolipoprotein A-V (ApoA5) is an apolipoprotein encoded by the APOA5

gene that regulates levels of circulating triglycerides, but the mechanisms as to how it does

this are unclear. It is thought that either ApoA5 regulates the catabolism of triglyceride-

rich lipoprotein particles by LPL, or that ApoA5 plays a role in the assembly of VLDL

particles, or perhaps both play a role205,210,226–228. Figure 6.6 mainly shows links with

triglyerides containing polyunsaturated fatty acids but no direct links with completely

saturated triglycerides, suggesting that variants in the APOA5-APOC3 locus mainly affect

the catabolism of triglyceride-rich lipoproteins and not so much the assembly of VLDL

particles in the liver, where we would expect an association with saturated triglycerides

that are produced in the liver.

Second, fatty acid desaturase is key in the production of polyunsaturated fatty acids,

so differences in the activity of FADS1-2-3 will most clearly be seen in triglycerides with a

large number of double bonds that also have a large number of carbon atoms. That is why

this diagram shows that FADS1-2-3 is only linked to TG(56:6), TG(56:7), and TG(58:9).

Third, it is unclear why variants in the PNPLA3 locus also have the strongest as-

sociations with some of the same largest triglycerides, namely TG(56:5) and TG(56:6).

Presumably the variants in the PNPLA3 locus that have significant effects are changing

the substrate specificity so that there is a shift in the relative amounts of triglycerides that

are exported from the liver.

Fourth, as described in Chapter 5, LPL is mainly active on monounsaturated fatty

acids in triglyceride species, which is what can be seen in Figure 6.6. LPL links to the

triglycerides TG(52:2), TG(52:3), TG(53:2), and TG(53:3), which have a high probability

of containing one or more mono-unsaturated fatty acids within their fatty acid side chains.

A final observation is that completely saturated triglycerides such as TG(44:0), TG(46:0),

and TG(50:0) do not show any evidence of direct genetic associations, which suggests that

the main driver of these lipids is de novo lipogenesis and that this process is independent

of these genes.
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Figure 6.5: Combined network view of genetic and lipid metabolite associations

Genetic association

GGM over-representation

GGM under-representation

Nodes Edges

Nodes representing genetic loci are labelled with the most likely causal gene at that locus according to the functional annotation approach (see subsection 6.2.1). In order for an
edge to be drawn between a genetic locus and a lipid subclass, there must have been a minimum of one variant at that locus significantly (P < 8.929× 10−10) associated with
a minimum of one lipid species belonging to the lipid subclass. Edges between lipid subclasses indicate whether there was either a significant over-representation (green edges)
or under-representation (red edges) of GGM connections between lipid species belonging to different lipid subclasses (see subsection 6.2.3), with the magnitude indicated by the
thickness of the edges. Likewise, “self-loops” indicate either under- or over-representation of connections between lipid species belonging to a single lipid subclass. Loci not previously
known to be associated with major lipids or metabolites are indicated with a black border around the oval. Abbreviations: CE = Cholesteryl Esters; Cer = Ceramides; Chol =
Cholesterol and derivatives; DG = Diacylglycerols; FreeFA = Free Fatty Acids; LysoPC = Lysophosphatidylcholines; PA = Phosphatic Acids; PC = Phosphatidlycholines; PE
= Phosphatidylethanolamines; PG = Phosphatidylglycerols; PI = Phosphatidylinositols; PS = Phosphatidylserines; SM = Sphingomyelins; TG = Triacylglycerols.
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Figure 6.6: Combined network view of genetic and lipid metabolite associations for individual triglycerides
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GGM over-representation
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Nodes Edges

Nodes representing genetic loci are labelled with the most likely causal gene at that locus according to the functional annotation approach (see subsection 6.2.1).
In order for an edge to be drawn between a genetic locus and a triglyceride, there must have been a minimum of one variant at that locus significantly (P
< 8.929 × 10−10) associated with a minimum of one lipid species belonging to the lipid subclass. Edges between triglycerides indicate whether there was either a
significant over-representation (green edges) or under-representation (purple edges) of GGM connections between lipid species belonging to different lipid subclasses
(see subsection 6.2.3), with the magnitude indicated by the thickness of the edges. Loci not previously known to be associated with major lipids or metabolites are
indicated with a black border around the oval.
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6.4 Discussion

In this chapter, a functional annotation pipeline was used to annotate the 89 significant

variants from the conditional analyses and identify the probable causal genes for each of

the 23 significant loci. Detailed information about the consequence of each variant on the

protein sequence and the predicted causal gene were determined by integrating information

from the bottom-up and top-down approaches together with expert curation.

As described in subsection 6.2.2, three different approaches were utilised to identify

novel variants. The first only considered variants more than 500-Kb from published variants

to be novel, the second approach only considered published variants and their proxies to be

novel, and the third method, which was the preferred approach for this dissertation, defined

the size of the region around each published variant based on available LD information,

therefore considering variants outside this variable window size to be novel. As would be

expected, the significant variant from the conditional analyses in the PCTP locus was not

considered to be novel using the third method since it was only 23-Kb from a published

variant. However, no LD information was available for the published variant, and the trait

that it is associated with, tryptophan, is an amino acid that is used in biosynthesis of

proteins, which is not very closely related to lipid metabolites or circulating major lipids,

despite being a metabolite that was published in an mGWAS81. Therefore, although it

was thought that the first approach was too conservative in identifying novel variants and

the second approach was too liberal, while the third struck a good balance, it turns out

that the second approach was actually more reliable in this instance. This demonstrates

how challenging it can be to accurately determine what is truly novel. The definition of

novelty can vary tremendously depending on which criteria are used.

Another limitation of the approach used to identify novel loci is that the only database

of major circulating lipids that was used to compare against the PROMIS results was the

GLGC. While 157 loci were identified by the GLGC35, subsequent studies have identified

175 major lipid loci at the time of writing (listed in Table 1.1), so including additional

studies would have been more comprehensive. This is why PNPLA3 was reported as a

novel locus in this dissertation, even though it had been reported for association with

levels of circulating triglycerides in another study of major lipids that was not included in

the comparison40. Likewise, while 31 published mGWAS were identified at time of writing

based on a previous review74, with additional studies identified through further scanning

of the literature (listed in Table 1.3), a comprehensive systematic review may have been
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able to identify additional studies.

A genome-wide threshold (P < 5× 10−8) was used to identify previously published

variants and determine whether these variants were successfully replicated in this study.

Use of a lower threshold would enable identification of additional variants that variants at

known loci that successfully replicated, but on the other hand, since additional published

results would be included that did not reach genome-wide significance, this would result

in potentially failing to identify loci in this study that were truly novel.

Although several limitations have been noted, the overall approach to identify novel

loci was rigorous and robust. Based on the literature review of published GWAS of

metabolomics and circulating lipids, four novel loci not previously reported for association

with major lipids or metabolites were discovered (XBP1, PNPLA3, UGT8, and GAL3ST1 ).

However, based on the above findings, while not consistent with the analysis plan that was

followed and hence why this change was not formally adopted, an argument could be made

for including PCTP amongst the novel loci identified by this dissertation while discarding

the novel discovery in the PNPLA3 locus.

The in-depth analyses of the GWAS results presented in this chapter help enhance

understanding of lipid biology and genetic associations. This study found that a wide range

of glycerophospholipids are associated with variants in the MBOAT7 locus. This is the first

analysis to report associations of these lipids with this locus. Additionally, while LIPC is

known to be associated with several metabolites, this analysis found additional associations

with other lipids (phosphatic acids, phosphocholines, and phosphoethanolamines) that have

not been previously reported. Novel associations were also identified for sphingomyelins

and phosphocholines with variants in the APOE-C1-C2-C4 region, and four additional

sphingoymelins were identified that are associated with variants in the SGPP1 locus, which

has not been previously reported. Furthermore, this analysis identified phosphocholines,

sphingomyelins, and ceramides that have not been previously reported for association with

variants in the SPTLC3 locus. Finally, as noted in the previous chapter, this is the first

analysis to show a link between LPL activity and sphingomyelins.

The network diagrams shown in this chapter incorporated information from a GGM

of lipid metabolites and genetic associations with lipids to provide visual representations

of the genetic determinants of human metabolism. This resulted in a number of interest-

ing findings. Diglycerides and triglycerides had strong over-representation in the GGM,

indicating that there were more connections between diglycerides and triglycerides than

would be expected due to chance alone, whereas sphingomyelins and triglycerides had
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strong under-representation in the GGM, indicating that there were fewer connections

between lipid species in these subclasses than would be expected due to chance alone. The

network analysis also showed links with triglyerides containing polyunsaturated fatty acids

but no direct links with completely saturated triglycerides, suggesting that variants in the

APOA5-APOC3 locus mainly affect the catabolism of triglyceride-rich lipoproteins but

have less of an impact on the assembly of VLDL particles in the liver. Another finding from

the network analysis is that variants in the PNPLA3 locus had the strongest associations

with some of the same largest triglycerides [i.e. TG(56:5) and TG(56:6)]. This may have

been due to the effects of these variants on changing the substrate specificity so that there

is a shift in the relative amounts of triglycerides that are exported from the liver.

Follow-up efforts are currently under way to investigate the association of lipid metab-

olites with the PNPLA3 locus in greater detail. A proposal for a recall-by-genotype study

has been submitted and successfully approved to recall 60 (initially) healthy volunteers

registered in the NIHR Cambridge BioResource based on their PNPLA3 genotype (i.e. 30

volunteers per homozygous group) matched for sex (50 % men), age (30–40 years), and

BMI (25–32 kg/m2). Recruitment for this study is expected to start soon.

As part of the recall-by-genotype study, the BMI, blood pressure, heart rate, height,

weight, medical history, lifestyle factors, and demographics of each individual will be

assessed. A baseline blood sample will be taken on the first day, the participants will

consume an energy-balanced dinner of standard macronutrient composition at 7pm, and

drink deuterium-labelled water (3 g/kg body water) at 8pm and 10pm (i.e. 2-hour gap

between the loading doses) divided into two portions of equal sizes. The participants will

be told that they should not exercise, have any further meals, or consume alcohol after

dinner.

The participants will have an overnight fast, and then a fasting blood sample will be

taken at 8am (i.e. 12 hours after the first loading dose of deuterated water) to measure

de novo lipogenesis by gas chromatography mass spectrometry (GC-MS), lipid profiles

using direct infusion high-resolution mass spectrometry (DIHRMS) and size exclusion

chromatography coupled to electrospray ionisation mass spectrometry (SEC-ESI-MS), and

other biochemical parameters. The participants will then take a maintenance dose of

deuterium-labelled water (0.04 g/kg body water) at 8:15am and eat breakfast at 8:30am

(approximately 70 % fructose co-ingested with glucose [CHO], 10 % fat; 30 % overfeeding).

A postprandial blood sample will then be taken after 3.5 hours (at 12:00pm) to again

measure de novo lipogenesis by GC-MS, lipid profiles using DIHRMS and SEC-ESI-MS,
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and other biochemical parameters.

The use of deuterium incorporation from enriched drinking water allows for the quanti-

fication of palmitate, synthesised via de novo lipogenesis within blood plasma triglycerides

during high-carbohydrate feeding. Thus, the data would implicate triglycerides involved in

de novo lipogenesis most likely produced in the liver (rather than adipose tissue). Without

in vitro or in vivo experiments, it would be difficult to establish the exact molecular mech-

anism or function of PNPLA3. However, the newly generated DIRHMS data that this

study will measure would confirm and improve the qualitative lipid measurements in the

PROMIS cohort.

Overall, the genetic analyses in this chapter identified several novel relationships

between genetic variants and lipids and also revealed numerous new biological insights into

lipid metabolism for existing loci. These findings strengthen and expand the knowledge

base for understanding the genetic determinants of lipid metabolites and their association

with metabolic disease-related loci, and highlight useful areas for follow-up studies to

identify possible therapeutic targets. In the next chapter, the causal relevance of these

lipids for risk of coronary heart disease will be investigated.
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CHAPTER7
Mendelian randomisation study:

Causal effect of lipid metabolites on risk

of coronary heart disease

Chapter summary

This chapter provides an overview of Mendelian randomisation (MR) and its use for

determining the causal effect of perturbations in levels of a risk factor on a disease outcome.

First, a literature review is presented summarising the available evidence for a causal

association between modifications in levels of major lipids and risk of coronary heart disease

(CHD). Next, although the application of MR to metabolomics is still an emerging field, the

few studies that have been published thus far assessing the causal relevance of metabolites

for risk of CHD are described. Finally, as a natural succession to previous chapters that

described the association of lipid metabolites with CHD risk factors and genetic variants,

MR is employed in this chapter to investigate the causal paths of lipid metabolites in

relation to risk of CHD. A comprehensive MR analysis strategy was developed and tested

to assess several different research questions, namely the causal effect on CHD risk of levels

of (1) individual lipids, (2) lipids grouped according to their corresponding subclasses, and

(3) weighted linear combinations of lipids. To address pleiotropy, which occurs when a

genetic variant is associated with multiple risk factors and could lead to a violation of

the instrumental variable assumptions, the most highly pleiotropic variants were pruned

from the set of variants used as instrumental variables and the causal estimates were
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compared before and after pruning. Additionally, multiple MR approaches were employed,

in particular the inverse-variance weighted, MR-Egger, and weighted median methods, and

the results were compared. The use of several different methods to address each research

question helped to provide robustness of the causal estimates.

There were eighteen lipids with evidence of a causal effect. However, there was extensive

pleiotropy for which the methods employed were unable to fully account, and the majority

of the lipids did not have a sufficiently large number of signficantly associated variants

that could be used as instrumental variables. Therefore, the precise individual lipid species

that have a causal effect on CHD could not be determined, although broad generalisations

about the nature of the causal pathways could be observed from the association of lipids

within particular subclasses. Fatty acids, sphingolipids, and sterol lipids appeared to have a

protective effect on risk of CHD, while increased levels of glycerolipids were associated with

increased risk of CHD. Elevated levels of glycerophospholipids with fewer double bonds

predominantly increased the risk of CHD, while higher levels of glycerophospholipids with

more double bonds had a protective effect on CHD.
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7.1 Introduction

Mendelian randomisation (MR), as described in Chapter 1, is the use of genetic variants

as instrumental variables to determine whether increased or decreased exposure to a risk

factor is causally associated with a disease outcome85,86. While MR has been widely used in

assessing whether major lipids have a causal effect on CHD, the use of MR in metabolomics

is much less common. However, since mGWAS have identified a large number of loci that

are associated with numerous metabolites, this presents an ideal opportunity to examine

whether any of these metabolites have causal effects on CHD or its risk factors.

Good candidates for MR analyses are metabolites where variations in their concentra-

tions are associated with loci in or near genes encoding metabolic enzymes or carriers, which

are also linked to CHD and related metabolic diseases. A few examples of loci that meet

these criteria are APOA5-APOC3, FADS1-2-3, GCKR, LPL, and LIPC. For example, SNP

rs1260326 in the GCKR loci is known to lower fasting glucose and triglyceride levels and

reduce the risk of T2D, and this loci is also associated with phosphatidylcholine ratios73.

Therefore, an MR study could be conducted to determine whether variations in levels of

phosphatidylcholine ratios have a causal effect on T2D. Additionally, SNP rs964184 in

the apolipoprotein cluster APOA5-APOC3 is strongly associated with blood triglyceride

levels and is a well-known CHD loci, but is also associated with ratios between different

phosphatidylcholines, which are biochemically related to triglycerides by the intermediary

of only a few enzymatic reaction steps73.

7.2 Methods

A two-sample MR analysis was conducted using summarised statistics from genetic associa-

tions with CHD risk in over 60 000 cases and 125 000 controls from the CARDIoGRAMplusC4D

consortium43. MR-Egger and the weighted median method were used to provide some

robustness against pleiotropic variants.

The overall objective of the MR analysis was to address three principal research ques-

tions concerning the causal effect of lipid metabolites (considered either individually or

in combination) with CHD risk. An analysis plan was developed prior to conducting

the analyses that would seek to address these research questions, which is summarised in

Figure 7.1. The first question was whether levels of individual lipids have a causal effect

on CHD risk. This was assessed using a crude approach, which included all significantly

associated variants as instrumental variables, and a pruned approach, which omitted the
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most highly pleiotropic variants. The pruned approach was performed using three different

methodological approaches (which were described in more detail in Section 1.5): (1) the

inverse-variance weighted (IVW) method, which is a standard regression with inverse-

variance weights and the intercept term set to zero; (2) the MR-Egger method, which is a

standard regression with inverse-variance weights and the intercept term estimated; and

(3) the weighted median method, which determines the median of the causal estimates

based on the individual candidate instruments, using inverse-variance weights so that more

precise estimates receive more weight in the analysis229. As part of the analysis plan for

the first research question, it was also decided that a multivariable approach would be used,

which would still consider each lipid individually but allow for variants to be associated

with multiple lipids.

The second research question was whether subclasses of lipids have a causal effect on

risk of CHD. The analysis plan for this question involved combining the lipid subclasses

and using a multivariable MR approach to obtain effect estimates for each lipid within

each of the subclasses.

Finally, the third research question assessed whether weighted linear combinations of

correlated lipids, which accounted for most of the variance in the levels of the lipids, have

a causal effect on risk of CHD. In order to address this question, it was decided that

principal component analysis (PCA) would be used to reduce the number of lipids to a

smaller number of principal components that account for the majority of the variance in

the levels of the lipids, and determine whether these principal components are causally

related to risk of CHD.

7.2.1 Causal effect of lipids on risk of CHD

The first research question examined whether levels of individual lipids have a causal effect

on CHD risk. A crude univariable approach was initially applied to provide a “first pass”

in determining whether each lipid, when considered on an individual basis, was causally

related to risk of CHD while ignoring correlations between lipids and not accounting for

pleiotropy. This approach was conducted for each lipid by selecting all lead variants from

the conditional analyses that were associated with the lipid at the Bonferroni-corrected

P -value of 8.929× 10−10, then calculating the MR estimate using the IVW method. This

method assumes all SNPs are valid instrumental variables, which is equivalent to a gene

score when variants are uncorrelated. An adaptation of this method was used to correct

for correlations between variants. The association of each variant with CHD was looked up
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Figure 7.1: Flow chart of planned MR analysis approach

Research question 1: Do levels of lipid metabolites have a potential causal effect on CHD risk?

Research question 2: Do groups (subclasses) of lipid metabolites have a potential causal effect on CHD risk?

Research question 3: Do weighted linear combinations of lipid metabolites have a potential causal effect on CHD risk?

For each lipid
Crude univariable MR approach 
(no correction for pleiotropy): 
IVW

Pruned univariable MR 
approaches omitting highly 
pleiotropic variants:
IVW, MR-Egger, 
Weighted median

Multivariable MR approaches 
(adjust for other lipids 
in same subclass):
MV-IVW, MV-MR-Egger

For each set 
of lipids

For each set 
of lipids
(using PCA 
to group lipids)

Crude univariable MR approach 
(no correction for pleiotropy): 
IVW

Pruned univariable MR 
approaches omitting highly 
pleiotropic variants:
IVW, MR-Egger, 
Weighted median

Multivariable MR approaches 
(group lipids in same subclass):
MV-IVW, MV-MR-Egger

Abbreviations: CHD = Coronary heart disease; IVW = Inverse-variance weighted; MR = Men-
delian randomisation; MV = Multivariable; PCA = Principal component analysis.

from the 2015 version of CARDIoGRAMplusC4D, using proxy variants (correlated with

the lead variant with an LD r2 > 0.6) if the lead variant was not available. Lookups of

genetic associations with the outcome and identification of proxy variants were performed

using PhenoScanner217.

A pruned univariable MR approach was then used in order to progress the lipids

that were significant in the crude approach, accounting for pleiotropy by omitting highly

pleiotropic variants. Multiple SNPs in the APOA5-APOC3 and FADS1-2-3 regions were

associated with more than 100 lipids, whereas SNPs in all other regions were associated

with fewer than 30 lipids. Since these two regions were not likely to be informative for MR

of specific lipids due to extensive pleiotropy, and were likely to drive significant results for

a large number of lipids, they were omitted from the analysis to prioritise the discovery of

novel associations with disease risk. For this approach, the IVW method was used for all

lipids, and the MR-Egger and weighted median method were also used for lipids associated

with more than two variants in the conditional analyses.

Given that lipids within the same subclass have similar biological structures and may

affect similar biological pathways, it was planned that a multivariable MR approach would

be used to determine whether each lipid, when taking into account the effect of other lipids

within the same subclass, is causally related to risk of CHD. For each lipid subclass, all

lead variants from the conditional analysis would be selected that were associated with

any of the lipids within the subclass at the Bonferroni-corrected P -value of 8.929× 10−10,

and MR would be run using a multivariable analogue of the IVW method.
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7.2.2 Causal effect of lipid subclasses on risk of CHD

A separate set of MR analyses were also developed as part of the analysis plan to address the

second research question, whether subclasses of lipids have a causal effect on risk of CHD.

It was planned that a univariable MR approach would be used to consider whether the

entire lipid subclass as a whole, rather than the individual lipids assessed in a univariable

or multivariable analysis, have a causal effect on risk of CHD.

In the first instance, a GWAS was run on each of the five overall lipid categories before

assessing the fourteen lipid subclasses. The signals for each of the individual lipids that

make up each overall lipid category were aggregated by adding them together, then a

rank-based inverse normal transformation was performed. Histograms and Q-Q plots of

each lipid category were examined to ensure approximate normality. A univariate GWAS

was then performed on each lipid category with adjustment for the same set of variables

as was used in the GWAS of the individual lipids (see Chapter 5). MR could then be

conducted using the same approach as was used for the individual lipids.

7.2.3 Causal effect of linear combinations of lipids on risk of CHD

The third research question assessed whether linear combinations of correlated lipids, which

account for most of the variance in levels of the lipids, have a causal effect on risk of CHD.

Given that most of the lipids are highly correlated, this analysis aimed to reduce the

number of lipids to a smaller number of principal components that account for most of the

variance in the levels of the lipids, and to determine whether these principal components

are causally related to risk of CHD. The rationale for this approach is that for highly

correlated lipids, the causal effect estimates may be imprecise for both lipids if both are

included, so dimension reduction through PCA is an effective way to address this. PCA

was performed on all lipids and the number of components were selected that explain at

least 95 % of the variance. A GWAS was run on each principal component (as described

in Chapter 5), and it was planned that MR would be run using a multivariable analogue

of the IVW method, where the risk factors would be each of the principal components,

and the variants identified from the GWAS that were associated with any of the principal

components would be used as instrumental variables.
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7.3 Results

The MR analyses described in this chapter were conducted to assess whether changes in

lipid concentrations have a causal effect on risk of CHD. The causal effect of lipids was

assessed for each lipid individually, for subgroups of lipids by subclass, and for principal

components of lipids.

7.3.1 Causal effect of lipids on risk of CHD

The univariable MR analysis identified eighteen lipids with evidence of a causal effect on

CHD. A summary of the most significantly associated lipids is shown in Table 7.1. The

results for both the crude and pruned approach are presented in the table, but only the

causal effect estimates that were obtained using the ratio (if only one variant was used as

an instrumental variable) or IVW method (if two or more variants were used) are shown.

The more sophisticated approaches, namely the MR-Egger and weighted median methods,

were also used to obtain causal estimates, but these methods could only be employed when

there were three or more variants used as instrumental variables. The majority of the

lipids were not eligible for these approaches because they were only significantly associated

with one or two independent genetic variants that were also associated with CHD.

Likewise, the multivariable MR approach was not able to be conducted due to the lack

of sufficient variants to use as instrumental variables. Multivariable MR requires at least

one more variant used as instrumental variables than there are risk factors (i.e. if n is the

number of lipids, then the number of variants used as instrumental variables must be at

least n+ 1). Since most lipid metabolites were only associated with a few genetic variants

and there was significant overlap of associations due to pleiotropy, the lipidomics dataset

did not meet the minimum requirements needed to run multivariable MR.

Figure 7.2 shows representative scatter plots of the b estimates for each SNP that

was used as an instrumental variable for two of the lipids with significant causal effect

estimates, PE(36:4)-H- (m/z 738.5079) and PE(38:6)-H- (m/z 762.5079). The figures show

the b estimate for the effect of the SNP on the lipid on the x -axis, and the b estimate for

the effect of the SNP on CHD on the y-axis. Confidence intervals for the b estimates are

shown around each plotted SNP in both the x and y directions. Lines are shown based on

the intercept and slope for each MR method that was used, namely the crude and pruned

approach (which are the same for these two lipids because no SNPs were removed from

the pruned approach), the MR-Egger method, and the weighted median approach.
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The causal effect of the lipids on CHD, grouped according to the five overall lipid

categories, is shown in Figure 7.3. Results using both the crude and pruned approaches

are presented. Loci are underlined if the SNPs in that locus were used as instrumental

variables in both the crude and pruned approaches, whereas loci that are not underlined

were only used in the crude approach. It is readily apparent that a large number of lipids

have a causal effect on CHD through the same pathways. For instance, nearly all of the

sphingomyelins have a protective effect for CHD through the LPL gene (Figure 7.3a), while

diglycerides and triglycerides have a significant positive effect on CHD through the LPL

and APOA5-APOC3 genes (Figure 7.3b). Phosphocholines and phosphoethanolamines,

on the other hand, have a significant positive causal effect on CHD through the LIPC

pathway (Figure 7.3c). Unfortunately, due to extensive pleiotropy, it was not possible to

identify which lipids are actually causal for CHD, since it could be any of the lipids with

a significant causal effect, or perhaps multiple lipids working together to influence the

pathway. Therefore, the MR analysis did not yield anything particularly informative as to

the causal effect of individual lipid metabolites on risk of CHD.

A notable finding that emerged from this analysis is that TG(56:5), which is one of

the lipids that was significantly associated with the novel variant in the PNPLA3 gene (as

described in subsection 6.3.2), had a significant protective causal effect for CHD using the

pruned approach (Figure 7.3b), which would suggest that individuals with elevated levels

of this triglyceride are at reduced risk of CHD. However, since this association was only

just barely significant, this finding should not be overemphasised.

7.3.2 Causal effect of lipid subclasses on risk of CHD

The next stage of the analysis plan was to address the second research question, which

aimed to determine whether lipid subclasses have a causal effect on risk of CHD. The

GWAS results of the overall lipid categories revealed that fatty acyls and glycerophospho-

lipids did not have any associations that reached genome-wide significance (Figure 7.4).

Glycerolipids, sphingolipids, and sterol lipids were associated with variants in the LPL and

APOA5-APOC3 loci. Additionally, sphingolipids were also associated with variants in the

ANGPTL3, MLXIPL, and APOE-C1-C2-C4 regions, and sterol lipids were also associated

with variants in the APOE-C1-C2-C4 locus. Regrettably, these associations for the overall

lipid categories were also found for the individual lipids. Due to the extensive pleiotropy

that was found for many of the metabolites (particularly with the APOA5-APOC3 and

LPL regions, which were associated with most of the lipid classes), there was little ad-
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Figure 7.2: Scatter plot of MR results for the association of two lipids with CHD
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Figure 7.3: Results of MR analysis to assess causal effect of lipids on risk of CHD

(a) Fatty acids, sphingolipids, and sterol lipids

200



7.3. Results Chapter 7. MR Study

(b) Glycerolipids
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(c) Glycerophospholipids

The inverse-variance weighted (IVW) method was used to assess the causal effect of each lipid on
coronary heart disease (CHD). The predicted causal locus is listed for each SNP used as an instrumental
variable in the MR analysis. The SNPs were selected from the conditional analysis results following
QC for which P < 0.05 for either the crude or the pruned approach using the IVW method. The
crude approach included all variants, while the pruned approach excluded highly pleiotropic variants
associated with 100 or more lipids (i.e. FADS1-2-3 and APOA5-APOC3 ). SNPs belonging to loci
with underlined names were used as instrumental variables in both the crude and pruned approaches
to estimate the causal effect.
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Table 7.1: Results of MR analysis to assess causal effect of lipid metabolites on risk of
coronary heart disease

Lipid name
Lipid
m/z

Crude approach Pruned approach

Ratio/IVW results Ratio/IVW results

No.
vari-
ants

b SE P-value No.
vari-
ants

b SE P-value

FreeFA(16:1)-H- 253.2174 1 -0.54 0.18 2.1 × 10−3 1 -0.54 0.18 2.1 × 10−3

LysoPC(16:1) 494.3245 1 -0.84 0.27 1.8 × 10−3 1 -0.84 0.27 1.8 × 10−3

DG-H20(34:2) 575.5039 2 0.66 0.14 2.1 × 10−6 1 0.71 0.25 4.4 × 10−3

DG-H20(34:1) 577.5193 2 0.63 0.14 3.6 × 10−6 1 0.60 0.22 6.5 × 10−3

DG-H20(34:0) 579.5352 2 0.58 0.13 4.1 × 10−6 1 0.51 0.19 6.7 × 10−3

DG-H20(36:3) 601.5195 2 0.59 0.12 1.2 × 10−6 1 0.73 0.25 3.3 × 10−3

DG-H20(36:2) 603.5352 2 0.64 0.13 5.3 × 10−7 1 0.71 0.26 6.6 × 10−3

DG-H20(36:1) 605.5508 2 0.61 0.13 3.6 × 10−6 1 0.57 0.21 6.7 × 10−3

CE(16:1) 640.6024 2 -0.62 0.12 3.2 × 10−7 1 -0.83 0.27 2.7 × 10−3

CE(18:3) 664.6026 3 -0.58 0.11 2.3 × 10−7 2 -0.58 0.16 3.6 × 10−4

CE(18:1) 668.6339 3 -0.77 0.18 1.5 × 10−5 2 -0.71 0.34 3.4 × 10−2

CE(18:0) 670.6496 3 -0.70 0.21 9.8 × 10−4 2 -0.67 0.31 3.1 × 10−2

CE(20:4) 690.6183 2 0.07 0.19 7.0 × 10−1 1 -0.86 0.30 3.5 × 10−3

CE(20:3) 692.6339 3 -0.58 0.15 7.2 × 10−5 2 -0.50 0.21 1.6 × 10−2

PC(30:1)-H- or PE(33:1)-H- 702.5079 2 -0.47 0.30 1.2 × 10−1 1 -0.30 0.15 4.4 × 10−2

PE(34:2)-H- 714.5079 3 0.08 0.17 6.3 × 10−1 2 0.28 0.07 1.6 × 10−4

Cer(44:11)+AcO- 716.523 3 0.08 0.13 5.3 × 10−1 2 0.22 0.06 9.6 × 10−5

PC-O(33:1) 732.5904 2 -1.05 0.28 1.4 × 10−4 1 -1.11 0.38 3.4 × 10−3

SM(36:0) 733.6219 2 -0.88 0.17 3.0 × 10−7 1 -1.06 0.38 5.2 × 10−3

PE(36:5)-H- 736.4922 2 0.14 0.04 2.0 × 10−3 2 0.14 0.04 2.0 × 10−3

PE(36:4)-H- 738.5079 4 0.34 0.16 3.9 × 10−2 4 0.34 0.16 3.9 × 10−2

PE(36:4) 740.5229 2 0.23 0.06 1.5 × 10−4 2 0.23 0.06 1.5 × 10−4

PC(33:3)-H- or PE(36:3)-H- 740.5236 3 0.07 0.29 8.1 × 10−1 2 0.53 0.20 8.1 × 10−3

PC(33:3) or PE(36:3) 742.5386 3 0.08 0.16 6.2 × 10−1 2 0.29 0.07 1.1 × 10−4

PC(33:2) or PE(36:2) 744.5543 3 0.08 0.33 8.1 × 10−1 2 0.61 0.19 1.7 × 10−3

PE(37:4)-H- or PC(34:4)-H- 752.5235 2 0.30 0.20 1.3 × 10−1 1 0.67 0.23 3.2 × 10−3

PE(38:6)-H- 762.5079 4 0.19 0.05 5.8 × 10−5 4 0.19 0.05 5.8 × 10−5

PC(35:5)-H- or PE(38:5)-H- 764.5236 3 0.30 0.11 3.9 × 10−3 2 0.43 0.15 5.5 × 10−3

PC(35:4) or PE(38:4) 768.5543 3 0.30 0.07 1.7 × 10−5 2 0.37 0.10 1.3 × 10−4

PE(40:7)-H- 788.5236 2 0.33 0.09 4.7 × 10−4 2 0.33 0.09 4.7 × 10−4

PC(37:6) or PE(40:6) 792.5537 2 0.40 0.12 9.7 × 10−4 2 0.40 0.12 9.7 × 10−4

SM(42:4) 809.6531 2 -0.73 0.14 1.2 × 10−7 1 -0.73 0.24 2.4 × 10−3

SM(42:3) 811.6688 2 -0.72 0.16 3.6 × 10−6 1 -0.75 0.27 6.6 × 10−3

PC-O(39:3) or PC-P(39:2) 812.6532 2 -0.73 0.15 2.4 × 10−6 1 -0.78 0.28 4.9 × 10−3

SM(42:2) 813.6844 2 -0.74 0.16 2.9 × 10−6 1 -0.89 0.33 6.2 × 10−3

PC-P(39:1) 814.6688 2 -0.74 0.16 2.8 × 10−6 1 -0.89 0.32 6.1 × 10−3

TG(48:3) 818.7236 2 0.51 0.14 3.2 × 10−4 1 0.49 0.18 5.3 × 10−3

TG(50:3) 846.7546 2 0.64 0.13 1.7 × 10−6 1 0.66 0.23 4.6 × 10−3

TG(50:2) 848.77 2 0.64 0.13 1.8 × 10−6 1 0.60 0.22 5.2 × 10−3

TG(51:3) 860.7703 2 0.63 0.17 2.5 × 10−4 1 0.61 0.21 4.4 × 10−3

TG(51:2) 862.7857 2 0.58 0.13 4.1 × 10−6 1 0.52 0.20 7.6 × 10−3

TG(52:3) 874.7859 2 0.63 0.13 1.1 × 10−6 1 0.73 0.24 2.6 × 10−3

TG(52:2) 876.8016 2 0.61 0.13 3.6 × 10−6 1 0.62 0.23 6.8 × 10−3

TG(52:1) 878.8172 2 0.63 0.12 5.2 × 10−7 1 0.68 0.25 7.5 × 10−3

TG(53:3) 888.8016 2 0.58 0.13 3.6 × 10−6 1 0.59 0.22 6.6 × 10−3

TG(53:2) 890.8172 2 0.58 0.13 3.8 × 10−6 1 0.54 0.20 6.7 × 10−3

TG(54:4) 900.8015 2 0.56 0.12 1.2 × 10−6 1 0.69 0.24 3.6 × 10−3

TG(54:3) 902.8175 2 0.57 0.12 4.2 × 10−6 1 0.68 0.25 8.1 × 10−3

TG(54:2) 904.8326 2 0.50 0.12 4.9 × 10−5 1 0.51 0.19 7.3 × 10−3

TG(56:5) 926.817 2 -0.03 0.38 9.4 × 10−1 1 -0.40 0.19 3.4 × 10−2

Abbreviations: IVW = Inverse-variance weighted; m/z = Mass-to-charge ratio; SE = Standard error.

ditional information that could be gleaned from performing an MR of the overall lipid

categories or fourteen lipid subclasses.

7.3.3 Causal effect of linear combinations of lipids on risk of CHD

Finally, the third research question aimed to address whether weighted linear combinations

of lipids, which were derived using PCA, have a causal effect on risk of CHD. The results

of the GWAS of the principal components of the lipids were presented in subsection 5.3.5

and the Manhattan plots were shown in Figure 5.11.
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Figure 7.4: Manhattan plots from GWAS of overall lipid categories

(a) Fatty acyls (b) Glycerolipids

(c) Glycerophospholipids (d) Sphingolipids

(e) Sterol lipids
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The second principal component was significantly associated with only one variant in

the APOA5-APOC3 locus. The third principal component was also only associated with

variants in the APOA5-APOC3 locus, and the fourth principal component was associated

with variants in both the FADS1-2-3 and APOA5-APOC3 loci. However, as discussed,

these two loci were associated with over 100 lipid metabolites, and were excluded from

the pruned approach that was used for MR of the individual lipids. Thus, even more so

than for the lipid subclasses, extensive pleiotropy made it impossible to conduct an MR

analysis on the principal components of the lipids.

7.4 Discussion

An MR analysis was conducted to assess the causal relevance of lipid metabolites for risk of

CHD. It was intended that this would be performed by investigating lipids when considered

on an individual basis, for each lipid subclass as a whole, and for linear combinations of

lipids. For each of these distinct research questions, a detailed analysis plan was devised

that employed several different MR methods, namely IVW, MR-Egger, and the weighted

median approach.

The MR analyses identified eighteen lipids with evidence of a causal effect. However,

there was extensive pleiotropy since the variants that were used as instrumental variables

were associated with numerous lipids, which violates the assumptions of MR since there

was not a single causal pathway from the genetic variants to the outcome that occurred

only via the risk factor(s) under investigation. Therefore, it was not possible to determine

which lipids are actually causally associated with CHD. Instead, only broad generalisations

about the general direction of the association of lipids within particular subclasses can be

made.

It appears that free fatty acids, cholesterol esters, and sphingomyelins have a protective

effect on risk of CHD, while diglycerides and triglycerides have a positive association with

risk of CHD. All of these associations are predominantly driven by variants in the LPL

locus. Meanwhile, the association of glycerophospholipids with risk of CHD appears to vary

depending on the lipid structure, which is predominantly driven by variants in the LIPC

locus. Phosphocholines and phosphoethanolamines with a larger number of double bonds

[e.g. PE(37:6), PE(40:7), PC(35:5)-H-, and PE(37:4)-H-] generally have a positive effect

on CHD, while monounsaturated phosphocholines and phosphoethanolamines (i.e. with

only one double bond) [e.g. PC-P(39:1), LysoPC(16:1), and PC-O(33:1)] appear to have a

protective effect on CHD.
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It was interesting that one of the triglycerides that was significantly associated with

the newly discovered novel variant in the PNPLA3 locus had a significant protective

causal effect for CHD using the pruned approach, suggesting that individuals with elevated

levels of this triglyceride are at reduced risk of CHD. However, this finding should not

be overemphasised until it is explored further. The planned recall-by-genotype study

described in Chapter 6 may be able to shed additional light on this finding.

Only the lipids that exhibited evidence of a significant causal effect on risk of CHD at

P < 0.05 are shown in Figure 7.3; therefore, one can discern that predominantly diglycerides

and triglycerides with zero, one, two, or three double bonds had significant causal effects.

The same also holds for cholesterol esters and sphingomyelins. These lipids mostly contain

saturated or monounsaturated fatty acids in their constituent side chains. Therefore, the

overall takeaway from this MR analysis, although extensive pleiotropy prevents making

any definite conclusions regarding causality, is that saturated and monounsaturated fatty

acids are associated with reduced risk of CHD when they are found in the bloodstream

either as free fatty acids or as part of cholesterol esters, sphingomyelins, phosphocholines,

or lysophosphocholines, but they are associated with increased risk of CHD as constituents

of diglycerides and triglycerides.

MR has been successfully utilised in other metabolomics studies; however, it was not

possible to sufficiently address pleiotropy concerns in this analysis, even when considering

alternative approaches such as examining the lipid subclasses as a whole, using principal

component analysis, and using more sophisticated techniques that are more effective at

addressing pleiotropy such as MR-Egger and the weighted median approach. It is likely

that the high degree of pleiotropy in PROMIS occurred because of the particular lipidomics

platform that was used. Other metabolomics platforms that use nuclear magnetic resonance

(NMR) or mass spectrometry measure traits that are less closely correlated and therefore

encounter less pleiotropy. The DIHRMS platform only measured lipids that belong to five

overall categories, so it is unsurprising that the traits are highly correlated.

In addition to the lipid traits being highly correlated, there were an extremely limited

number of genetic variants that were significantly associated with each lipid that could

be used as instrumental variables in the MR analysis. Many of these variants included

established CHD loci so the finding that these lipids have a significant causal effect for

CHD is to be expected, but provides little added value and does not facilitate drawing

any specific inference about the causal relevance of individual lipids due to the extensive

pleiotropy. The nature of the lipidomics platform that was used and the modest number
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of significant genetic associations with these lipids meant that there was very little that

could be done to overcome this limitation.

Another potential limitation of this two-sample MR analysis is that the GWAS associ-

ation results came from very different populations, which could make them less suitable to

be combined. The PROMIS GWAS results came from a Pakistani population, whereas the

CHD results came from the CARDIoGRAMplusC4D consortium, which involves GWAS

summary statistics from a meta-analysis of cases and controls of European descent. If the

association results for the exposure and outcome come from different underlying popula-

tions then the inferences could be misleading if the variant is not a valid instrumental

variable in both samples101. However, the genotyped samples in PROMIS were imputed

to the 1000 Genomes reference panel, which is representative of a wide-range of ethni-

cities including South Asian and European, so this should help to overcome some of the

differences in ethnicities between the two populations used in the MR analysis.

Despite the lack of evidence to identify a causal effect, the significant associations of

lipid metabolites with CHD risk factors and genetic variants that were discussed in the

previous chapters still hold. Even though specific individual lipids can not be pinpointed

that are the key to causality, the overall findings show that specific lipid subclasses do have

a causal effect on CHD. Future applications of this work could involve efforts to develop

drugs that target the modification of levels of lipids that belong to specific subclasses.
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CHAPTER8
Summary of findings and potential

implications

Chapter summary

This chapter summarises the aims of this dissertation, the methods that were followed,

and the analyses that were conducted, and provides an overview of the key findings and

their potential implications. Additionally, this chapter summarises the strengths of this

analysis and a few of the limitations that were not able to be addressed. Furthermore,

opportunities to further extend the analyses described in this dissertation in ongoing and

future studies is discussed.
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8.1 Summary of key findings

The aim of this dissertation was the identification of novel therapeutic targets through

the study of high-dimensional phenotypic traits from blood lipids. Direct infusion high-

resolution mass spectrometry yielded signal data for 444 lipid metabolites in 5662 individ-

uals from the Pakistan Risk of Myocardial Infarction Study (PROMIS) following sample

processing, data cleaning, and quality control (QC) filtering. Analyses of the Pearson and

partial correlations between lipids showed that the lipids were highly correlated with each

other and with levels of major circulating lipids and other biomarkers. Principal com-

ponents of the lipids were also associated with increased levels of several coronary heart

disease (CHD) risk factors. The lipids also exhibited associations with smoking status and

physical activity. Triglycerides with fewer numbers of double bonds were associated with

increased levels of smoking, while triglycerides with a higher number of double bonds were

associated with decreased levels of smoking.

Analyses of the genetic determinants of the lipids led to the identification of 254

lipids that were significantly associated with one or more genetic variant(s) and 355

associations between single nucleotide polymorphisms (SNPs) and lipids. In total, these

analyses identified 89 sentinel variants from 23 independent loci that were significantly

associated with lipid metabolites. Four of these loci were considered novel as they had

not previously been reported for association with major circulating lipids or metabolites.

Genetic analyses of principal components and ratios of the lipids also led to the discovery

of further associations.

The analyses conducted in this dissertation yielded a number of new biological insights

into lipid metabolism. In addition to replicating and confirming known associations

between lipids and genetic loci, this study also further extended what is known about these

loci by identifying new associations. Several of the key novel genetic findings identified by

this study are that: (1) decreased levels of sphingomyelins are associated with genetically

lower LPL activity; (2) a wide range of glycerophospholipids are associated with variants

in the MBOAT7 locus; (3) several newly identified phosphatic acids, phosphocholines,

and phosphoethanolamines are associated with variants in the LIPC region; (4) several

novel associations were identified for sphingomyelins and phosphocholines with variants

in the APOE-C1-C2-C4 cluster; (5) four newly identified sphingomyelins are associated

with variants in the SGPP1 locus; and (6) several previously unreported phosphocholines,

sphingomyelins, and ceramides are associated with variants in the SPTLC3 locus. This is
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just a sample of the many novel associations that were identified as part of the analyses

for this dissertation.

It was not possible to identify individual lipids with a causal effect on CHD, but general

trends in the direction of association of lipid subclasses were noted. It was observed that

saturated and monounsaturated fatty acids are associated with reduced risk of CHD when

they are found in the bloodstream either as free fatty acids or as part of cholesterol esters,

sphingomyelins, phosphocholines, or lysophosphocholines, but they are associated with

increased risk of CHD as constituents of diglycerides and triglycerides.

As will be described in subsection 8.3.2, the preliminary results from a GWAS of

INTERVAL participants using the same lipidomics platform helps to validate the PROMIS

results as well as identify additional loci associated with these lipids. Further research

is needed to extend the findings from these two studies and apply them to clinical and

pharmacological settings.

A question that researchers are currently trying to answer is how should we go about

lowering triglycerides to reduce risk of CHD? As discussed in Chapter 1, several phase III

clinical trials are currently ongoing to investigate the reduction of triglyceride levels in

adults with severe hypertriglyceridemia. Through the research described in this disserta-

tion, a distinct pattern was identified in the association of triglyceride metabolites with

major circulating triglycerides, and novel associations between triglycerides and genetic

loci were also discovered. In particular, the detailed information about how associations

vary according to the diversity of triglycerides and their constituent fatty acids sheds

further clarity on this important topic. These insights could help inform further studies of

triglyceride-lowering drugs.

8.2 Strengths and limitations of this dissertation

8.2.1 Strengths

This dissertation differs from previous studies of the genetic determinants of lipids in several

important ways that enhance its scientific merit. First, the research involved participants

from a novel population in Pakistan, thereby enhancing scientific understanding of lipid

levels in this relatively understudied population. Second, the analysis was based on a

relatively large dataset of 5662 participants, thereby increasing statistical power to detect

associations. Third, the analyses were performed on individuals free from known myocardial

infarction (MI) at baseline, which avoids the impact of having recently had an MI on the
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lipidome, the effects of which are largely unknown. Fourth, a newly developed open-

profiling lipidomics platform was utilised to provide detailed lipid profiles, with a wider

coverage of lipids than most other high-throughput profiling methods. Fifth, the genetic

analyses resulted in the identification of novel loci and new biological insights into lipid

metabolism. Sixth, a novel Mendelian randomisation (MR) approach was developed for

analysing high-dimensional data, which has not ever been employed by other metabolomics

studies. Finally, the attempt to implement this MR analysis plan led to the realisation

that MR with lipidomics in particular is difficult to implement successfully due to a high

degree of correlation between lipids and the resulting pleiotropy, although other high-

dimensional –omics platforms such as metabolomics or proteomics may have more success

with implementing the methods that were developed as part of this dissertation.

8.2.2 Limitations

The limitations of this dissertation also merit consideration. First, since PROMIS is a

case-control study of MI, the usual limitations of case-control data apply, namely recall bias

and selection bias. Recall bias could easily arise since the majority of the questionnaire was

self-reported information. However, while recall bias did likely impact the questionnaire

data to some extent, it could not have had an impact on the blood samples that were used

to obtain the lipidomics measurements and genetic data. Furthermore, since controls were

recruited from visitors and patients of people attending out-patient clinics and unrelated

visitors of cardiac patients, this minimises the risk of selection bias amongst the controls

who were used for this study. Another inherent limitation of the case-control study design

is that participants were surveyed at baseline but there was not any available follow-up

data. It would have been useful to know if some of the controls, even though they were free

from cardiovascular disease (CVD) at baseline, actually ended up developing CVD later

on, which could have been in part due to their lipid levels. However, it was not possible

to obtain this information since the participants were not followed up.

Second, the serum samples were stored in freezers for several years before aliquots were

taken for the lipidomics measurements. Although attempts were made to account for this

by adjusting the analyses by the number of years that the samples had been stored, residual

confounding may still be an issue, but even more importantly, the lipid profiles may have

deteriorated, making an accurate assessment of the lipid signals difficult. However, since

the samples were stored at −80 ◦C until use, this should not be an overwhelming concern.

A third limitation is that a majority of the participants were not fasting at time of
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blood draw (76 %), and there was also a small proportion of participants that reported

having fasted but the duration was unknown (7 %). Recent food consumption may have

had a significant impact on lipid levels and influenced the results. Although the analyses

were adjusted for fasting status, a more strongly-powered study would be able to stratify

by participants who were fasting versus non-fasting, thereby facilitating a comparison of

the lipid profiles between these sets of individuals and a determination of whether there

was a significant difference in lipid levels. Unfortunately, there was not enough statistical

power to do so.

Fourth, the data consisted of participants from multiple centres in urban Pakistan, but

it is unclear whether the findings from this study would be applicable to individuals living

in rural villages and other parts of Pakistan, or in other South Asian countries—or more

broadly, to the rest of the world. Since many characteristics of the PROMIS participants

were markedly different from the overall population of Pakistan, the sample analysed

in this dissertation many not be very representative. However, since many of the same

lipids from this study were associated with known genetic regions such as APOA5-APOC3

and FADS1-2-3, which have already been shown to be associated with multiple lipids in

Western populations, this helps validate the legitimacy of the findings from this study.

Fifth, since most of the lipids were only associated with a small number of genetic

regions, and there was significant pleiotropy in these regions, it was not possible to obtain

causal estimates of individual lipid metabolites for CHD, which was one of the primary

aims of this dissertation. However, the identification of novel loci using this platform, and

the observation of consistent trends for the association with CHD amongst lipid subclasses,

provides an impetus for further work.

Finally, the genetic analyses did not include a replication study to validate the findings.

Ideally, the analyses would have been replicated in another cohort to ensure that the

signals were legitimate and not false positives. Although especially stringent procedures

were followed, highly conservative cut-offs were used to determine statistical significance,

and rigorous pre-analysis and post-analysis QC was performed, there is still a possibility

that some of the findings were false positives that arose due to artefacts rather than being

true signals.

8.3 Ongoing and future studies

The present study has provided a comprehensive assessment of the genetic determinants

of lipid metabolites and the association of lipid metabolites with CHD risk factors, and
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attempted to identify the causal relevance of these lipids for risk of CHD. Nevertheless,

as outlined above and in the discussion sections of the individual chapters, there are

opportunities to address some of the limitations of the present study and extend the

analyses further.

8.3.1 Further analyses of lipidomics data in PROMIS

Many of the analyses that were conducted in this dissertation could have been extended

further, which would be excellent for follow-up work.

First, while principal component analysis was used as a dimension reduction technique

to facilitate analyses of the lipidomics data, other more sophisticated techniques such as

Bayesian Hierarchical Clustering, Random Forests, or Support Vector Machines could be

employed in follow-up analyses. These approaches could lead to additional insights into

the correlations between lipids and the patterns that emerge in the data.

Second, while genetic analyses were performed using GWAS data, which can only

detect variants with a minor allele frequency (MAF) of greater than 1 % (i.e. between 0.01

and 0.50), fine-mapping could be performed using Exome+ data, which can detect much

rarer variants with a MAF of much less than 1 % (i.e. between 0.0001 and 0.01). This is

important because coding variants with deleterious effects on corresponding proteins can

help identify causal genes, but such variants are usually rare and the power to robustly

detect the effect of such variants is small, even in a study with a moderate sample size.

Gene burden tests on coding variants, which group rare variants together, can improve the

analytical power and facilitate the identification of causal genes. By zeroing in on specific

genetic regions of interest and exploring the associations with extremely rare variants using

Exome+ genotypes, novel insights into the genetic determinants of lipid metabolism can

be uncovered and potentially causal genes associated with various lipid metabolites can

be more readily identified.

Third, recall-by-genotype studies can be employed to compare lipid levels in individuals

with and without genetic mutations. By recruiting participants to take an oral fat challenge

test or glucose challenge test and measuring their lipid metabolite levels both before and

afterwards, their metabolic response to fat and glucose can be determined and the role

that genetic mutations play in lipid metabolism can be studied in greater detail. Studies

of knockout mice can also be employed effectively. As discussed in Chapter 6, a study to

recall healthy volunteers registered in the NIHR Cambridge BioResource based on their

PNPLA3 genotype has been approved and will soon begin recruitment. These types of
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studies can be used to shed further light on the genetic determinants of lipid metabolism.

Finally, an approach known as statistical co-localisation can be used in situations where

specific genetic variants may be causative of multiple phenotypes (i.e. pleiotropy). This

approach involves integrating information on gene regulation, gene expression, metabolic

pathways, and complex diseases under the assumption that genetic association signals

shared between phenotypes are supportive of a causal genomic region230. Co-localisation

has been successfully applied to test for overlapping genetic association signals across the

entire genome with gene expression, CVD risk factors, and coronary artery disease (CAD)

simultaneously230. Given the extensive pleiotropy amongst the lipidomics data, which

made it difficult to assess causality using MR (see Chapter 7), this lipidomics platform

may present an ideal opportunity to implement statistical co-localisation to provide further

information about candidate causal genes for lipid metabolites and help prioritise metabolic

pathways for functional follow-up.

8.3.2 Lipidomics analyses in INTERVAL

As mentioned, ideally a replication study would have been performed using the same

lipidomics platform in a different but similar population, keeping only the genetic variants

that were found in both the discovery dataset and the replication dataset. Although

this was not possible for the present study, an assay is currently in progress to conduct

DIHRMS in all 50 000 participants from the INTERVAL study. Data collection is still

taking place in INTERVAL, but a few preliminary analyses have already been conducted,

which are described here.

Background

INTERVAL was established as a randomised trial of whole blood donors enrolled from

25 centres of the National Health Service (NHS) Blood and Transplant in England231.

The original purpose of the study was to determine whether the recommended length of

time between blood donations can be “safely and acceptably decreased to optimise blood

supply whilst maintaining the health of donors”231. However, the study was re-purposed

by taking advantage of the bioresource of blood samples that had been collected from the

study participants and conducting multiple types of assays from these samples, including

genomics, proteomics, metabolomics, and lipidomics. Since the INTERVAL study recruited

healthy blood donors from England, it is a considerably different population from urban

Pakistan, but the use of the same lipidomics platform that was used in PROMIS will
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facilitate a proper replication study to take place. At the time of this writing, lipidomics

data have only been measured in about 15 000 participants in INTERVAL, but this is

already nearly triple the sample size compared to the number of PROMIS participants

with available lipidomics data.

Methods

A univariate GWAS was conducted for each lipid metabolite measured in INTERVAL. One

major difference in how the genetic analyses were conducted in PROMIS and INTERVAL

is that to analyse the INTERVAL data BOLT-LMM was used instead of SNPTEST.

The BOLT-LMM algorithm uses a linear mixed-model (LMM) association method that

has been specifically designed to improve efficiency and increase the power to detect

associations, particularly for GWAS conducted in large cohorts232. SNPTEST would have

struggled to conduct this analysis in 15 000 individuals, and would not be able to handle

the full 50 000 participants from INTERVAL when the complete lipidomics data becomes

available, so BOLT-LMM is the best option. In contrast to SNPTEST, the algorithms

used in BOLT-LMM rely on approximations that hold only at large sample sizes, but

the programme does not work reliably with sample sizes of fewer than 5000 samples, so

it would not have been suitable for analysis with the PROMIS data, which was only

just over 5000 participants. Although the analyses from the two studies were conducted

using different software packages, previous analyses comparing the output from the two

programmes shows that the results are nearly identical.

Results

A Manhattan plot (Figure 8.1) was produced showing the combined genome-wide asso-

ciations from these 558 lipids. So far the analyses have only been conducted using the

genotyped data, but already the association of multiple lipids with variants in the FADS1-

2-3 locus is P < 10−250. The Bonferroni-corrected P -value for genome-wide significance

is 4.5× 10−10 for INTERVAL, so these P -values in the FADS1-2-3 locus are extremely

highly significant. It is expected that a significant number of additional loci will reach

genome-wide significance when these lipids are analysed using the imputed data. There

were 37 loci in INTERVAL that reached genome-wide significance using the genotyped

data, of which four of these were novel. Eighteen of these loci were the same ones that had

been detected in PROMIS, and can therefore be considered to have replicated, which helps

to validate the PROMIS results. The remaining 19 loci were only found in INTERVAL
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but not in PROMIS, which can be attributed not only to the fact that INTERVAL was

conducted in a different study population but also that it has a larger sample size.
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Figure 8.1: Global Manhattan plot using INTERVAL data showing association of 558 lipid metabolites with genotyped variants

Manhattan plot of combined results from genome-wide association study analysis using INTERVAL data for all lipids. P-values are shown for association of each
SNP with each lipids. Red line indicates Bonferroni-corrected P-value for genome-wide significance (4.5 × 10−10).
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Comparison with PROMIS

More detailed analyses of the lipidomics data in INTERVAL awaits completion of data

collection. Although lipidomics data on 15 000 participants has already been assayed,

cleaned, and analysed, lipidomics measurements for the remaining 35 000 participants still

needs to take place.

In addition to the substantially larger sample size, another significant advantage of

INTERVAL is that multiple –omics assays were conducted in the same set of participants,

facilitating the overlay of different sources of information. Demonstrating that high quality

and reliable data can be obtained using different metabolomics approaches and assessing

the differences between them would help to (1) enable cross-validation of findings res-

ulting from analyses of data generated from multiple metabolomics assays, (2) generate

hypotheses of biological mechanisms and metabolic pathways underlying CHD association

signals, and (3) demonstrate robustness of measurements and quality of results. Proteo-

mics data (3283 analytes derived from 2995 unique proteins) were obtained from 3301

INTERVAL participants using the Sysmex array, metabolomics data were collected using

both ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC-

MS/MS2) (995 metabolites in 8536 participants) and nuclear magnetic resonance (NMR)

spectroscopy (225 metabolites in 46 190 INTERVAL participants), and lipidomics data

(558 lipid metabolites in 13 992 participants) were collected using DIHRMS. Furthermore,

in terms of genetics data in INTERVAL there is GWAS, exome, whole genome sequencing

(WGS) data, and whole exome sequencing (WES) data. This enables rich comparisons to

take place, especially since some of the same lipids and other metabolites were measured

using DIHRMS, UHPLC-MS/MS2, and NMR. The overlap between metabolites measured

on the three lipidomics/metabolomics platforms is shown in Figure 8.2.

By measuring the same metabolites on multiple platforms, the between-platform cor-

relation in the levels of these overlapping metabolites can be assessed. Additionally, the

strength of the association of these overlapping metabolites with previously identified

genetic loci can be compared across platforms to assess the potential of each platform for

large-scale discovery.

8.4 Conclusion

The primary objectives of this dissertation were (1) to identify the genetic determinants

of lipid metabolites, and (2) to advance understanding of the effect of perturbations

219



8.4. Conclusion Chapter 8. Discussion

Figure 8.2: Overlap of metabolites assayed by different metabolomics platforms

This Venn diagram shows types of metabolites that are measured by different metabolomics plat-
forms. Abbreviations: DIHRMS = Direct Infusion High-Resolution Mass Spectrometry; NMR
= Nuclear Magnetic Resonance spectroscopy; UHPLC-MS/MS2 = Ultra-High Performance Liquid
Chromatography–Tandem Mass Spectrometry.
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in lipid metabolite levels on CHD and its risk factors. The analyses conducted in this

dissertation involved research in a novel population in Pakistan using a newly developed

high-throughput open-profiling lipidomics platform. The diversity of lipids were analysed

and their cross-correlations and associations with circulating biomarkers, lifestyle factors,

and CHD risk factors was assessed. The analyses yielded many new biological insights

into lipid metabolism, replicated and confirmed known associations between lipids and

genetic loci, and further extended what is known about these loci by identifying new

genetic associations. The findings in this dissertation have made important contributions

to the advancement of the knowledge base in genetic epidemiology, lipid metabolism, and

understanding the onset and development of coronary heart disease. It is hoped that

further studies will follow on from this work to help advance mechanistic understanding of

the genetic determinants of lipid metabolism and prioritise novel therapeutic targets for

drug development and personalised medicine.
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PROMIS 

1
 

Pakistan Risk Of Myocardial Infarction Study (PROMIS) 

         Check every option appropriately 

FOR DATA ENTRY ONLY: 

 Date Name and Signature 

Entry of selected variables   

Complete entry (1st time)   

Complete entry (2nd time)   

Data rechecked   

Inclusion criteria for Cases 

• First time ever acute MI                                          

• Age range (30-80 years)                                         

• 1 mm or more ST elevation in any two or 
more contiguous limb leads with Trop.Positive      

• Non ST elevation MI with Trop. Positive             

• Troponin  levels                                                     

• New onset LBB with Trop. positive 
(previous ECG req)                                       

 

Exclusion criteria for Cases 

• Onset of chest symptoms and 
hospitalization for MI more than 24 hours             

• Presence of cardiogenic shock                                

• Presence of chronic conditions (malignancy, , 
infection such as TB, Malaria, hepatitis, renal 
failure, leprosy and etc.)                                         

• Viral or bacterial infection in past 2 weeks            

• Pregnancy                                                               

• Any prior cardiac event                                          

• Failure to give Informed consent                             

Source of Controls 

1. Attendants and visitors/relatives of patients 
      presenting with non-cardiac reasons                     

2. unrelated (not first-degree relative) visitors of a
       cardiac patient                                                      
3. individuals undergoing routine health checkup    

4. Refraction and Cataracts patients                          

5. Minor ear, nose and throat patients                       

6. Individuals undergoing elective minor surgery  
      (skin disorders, orthopaedic surgery,  
      haemorrhoids and hernia)                                     

Exclusion criteria for Controls 

• Any prior cardiac event                                        

• Pregnancy                                                             

• Presence of chronic conditions (malignancy,   
      infection such as TB, Malaria, hepatitis, renal  
      failure, leprosy, TIA, Stroke and etc.)                   

• Viral or bacterial infection in past 2 weeks          

• Onset of chest symptoms and hospitalization for 
      MI more than 24 hours                                         

• Failure to give informed consent                          
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English translation: 

You are being invited to take part in a major medical research project called the “Pakistan Risk of Myocardial Infarction Study” 
(PROMIS). The aim of this study is to help better understand the causes of heart attacks in Pakistan, and it is the biggest such 
study ever done in Pakistan. 
 
Cardiovascular diseases such as heart attacks are the leading cause of deaths worldwide. Deaths due to heart attacks are higher 
in South Asia than in any other part of the world. Research has shown that heart attacks are caused by a combination of genetic 
and environmental factors. We invite you to participate in this study to help us better understand the causes of heart attacks in 
the Pakistani population.  
 
Your participation in this research will involve you being asked some questions about your medical history, lifestyle and your diet. 
About 32cc of blood will be collected from a vein in your arm. This blood will be used for conducting genetic research and 
measuring markers in your blood. Your name will be kept confidential. You can refuse to participate in this research and this will 
not by any means affect your treatment at the hospital. You will not be asked to pay any money if you agree to participate in our 
research. 
 
I have had the chance to discuss and ask any questions about the research I agree 
  
I have received satisfactory answers to my questions I agree 
  
I understand that my participation is voluntary and that I am free to withdraw at any time 
without giving any reason 

I agree 

  
I give permission for access to my medical records, and for long-term storage and use of this 
and other information about me for purposes of health-related research (even after my 
incapacity or death) 

I agree 

  
I give permission for long-term storage and use of my blood samples for health-related 
research (even after my incapacity or death), and I relinquish all rights to these samples 
which I am donating to PROMIS 

I agree 

  
I understand that, except for some measurements taken during this interview, none of my 
results will be given to me and that I will not benefit financially in anyway from taking part 

I agree 

  
I agree to take part in PROMIS I agree 

 
For the Research Medical Officer: 
The above statement has been read to the participant. He/she has agreed to each of the above statements and has agreed to 
participate in this research 
 
 
Name :   Signature:    Date: 
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Date of  Interview                                                                        Interviewer’s  Name: _______________ 
                                      day       month          year 
 

1. Study ID#                                        2. Status:               

3.   Centre _____________                                                        Hospital ID. ______________   

Shifted to Ward:  _____________            Bed Number_______________  

 
4. Name__________________________________________________________________________________ 
5.Address________________________________________________________________________________ 
________________________________________________________________________________________  
6. Patient’s Mobile #: _______________________________Patient’s Land Line #: _________________________ 
Pt.’s Relative Mobile #:______________________________ Pt.’s Relative Land Line #:_______________________ 
 
7. Gender:   Male (1)          Female (2)            DOB:                                                    or 8.Age _______ 
        
 9. Onset of Symptoms     Date                              Time        : 

    day       month       year                                             hour        mm 
10. Arrived at hospital     Date                              Time        : 

   
day       month       year                                             hour        mm 

11. Last meal                   Date                              Time       :                                        
 
day       month       year                                             hour        mm 

12. Sampling                   Date                              Time       :                                        
 

13.  ER- Thrombolysis time                                               14. Thrombolytic infusion:   Yes               No            NA                    
                                             hour        mm 

15. Sample taken within 24 hours of symptoms   Yes                 No                                                                

16.  Source of Information: Patient      Attendant                                                No   Yes                                

17. Aspirin Intake 

18. Nitroglycerine Intake 

19. Did the patients symptoms resolve on aspirin intake?         

20.   Did the patients symptoms resolve on nitroglycerine intake?        
 
ECG Changes 
                                                                                                                                      No   Yes 
21) ST segment elevation in two or more contiguous leads                                  
    with reciprocal changes > 1mm.                                                                                       
22) New onset left bundle branch block 
23) New pathological Q waves 
24) Any other ECG changes_____________________________ 
 
25) S in lead V1+ R in V5/ V6 = > 35 mm       Y                N 
 
26)SV3 + R avl > 28 mm in men                      Y                N 
 
27) SV3 + R avl > 20 mm in women                Y                N  

Control Case
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28) R avl > 11mm       Y        N    R V4-6 > 25mm   Y       N  
 
29) S V 1-3 > 25 mm  Y        N    R I + S III > 25 mm  Y         N      
 
30) R V5 or V6 > 35 mm   Y         N    S V1 or V2   Y             N   
 
 
31) Type of MI (1) Anterior        (2) Antero-Septal         (3) Inferior            (4) Lateral         (5) Posterior  
                          (6) Right ventricle         (7) NSTEMI        
 
32) Reversal of symptoms on streptokinase infusion                       Y               N 
 
33) Reversal of ST- segment elevation by > 50% on streptokinase infusion                  Y               N 
 
34) Troponin                                                    Y                N            NA  
 
35) Medications (for non-hospital controls, complete the Pre-Admission section only) 

  Pre              In   Duration            Pre           In             Duration 
Admission    Hospital    Pre-admission    Admission  Hospital  Pre-admission 
   No   Yes      No  Yes     days months        No   Yes       No  Yes    days months 

a)  ACE-i                           i)  Heparin 

b)  ASA                                                                          j)   Hormones   

c)  Beta Blocker                          k)  Insulin  

d) Ca Channel                                                                l)  Nitrates 
     Blocker        
e) Cholesterol ↓              m) Oral Hypoglycemics 

f) Digoxin              n) Thrombolysis 

g) Thiazides              o)  Warfarin  

h) Diuretics                                                                    p) Platelet antagonist  

Homeopathic                                                   q) Angiotensin Receptor  
                                                                                            Blocker 

 

36) Past medical history ______________________________________________________________________ 

___________________________________________________________________________________________ 

Currently   Approx.                Approx.               Approx.                         Sudden 
                           Age of           on Ins?      age of                    age of                age of                             Death 

HTN    diag. DM   (Y/N)  diag.      Angina   Ml    diag.    Stroke  diag.      CLD      CA  Site 
Subject             

Mother  

Father  

Sister(s)  

Brother(s)  

Son(s)  

Daughter(s) 

LDH
 FDH
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37) Do you feel pain in your lower extremities while walking?  No             Yes         
      (only Calf muscles).  

38) Does this pain go away at rest immediately?                         No            Yes 

38b) If yes how long does it take for the pain to get relieved       ________ minutes          

39) Does this pain occur every time when you walk?                  No            Yes            

 

Does your heart beat increase or become irregular quite often?    No             Yes 

Have you ever been diagnosed of atrial fibrillation?                      No             Yes 

40) Past Surgical history (most recent) 

Procedure Performed______________________                 Year of Surgery  ________________  

                            

                                                                   TOBACCO USAGE 

41) Which best describes subject’s history of tobacco use? 

                 I) Ever used                                2)Currently uses                           3) Never used                  
         tobacco Product                      tobacco products                          tobacco products 
42) Does/did subject use any of the following tobacco products? (check all that apply) 

    Cigarettes               Beedies                                      Paan   Naswar            Gutka          Supari            

(check pann, gutka and Supari only if they are used in a tobacco form) 

 

43) If yes to Cigarettes and Beedies                     44) How many per day? 

 

44) Type of cigarettes? (Check one only)          1)Filter              2)Non-Filter                3)Both 

45) What brand of cigarettes does/did subject most commonly smoke? ______________________________ 
46) How many years patient has smoked                    47) At what age did subject quit?                Yrs N/A      

48) Has subject smoked > 100 cigarettes/ beddies in your life?       No              Yes 
 
 
49) If yes to Huqqa/Chilum, how many years patient has smoked  
50) At what age did subject quit Huqqa/Chilum                    yrs      N/A      

        
51) If yes to Paan                       1) Tambako                                2) Non-Tambako  
52) How many per day?        

53) At what age did subject start?                Yrs       54) At what age did subject quit?                Yrs     N/A 

 

55) If yes to Gutka                       Tambako             Non-Tambako  

56) How many per day?        

57) At what age did subject start?                Yrs       58) At what age did subject quit?                Yrs     N/A 

 (0)              (1)  

Huqqa/ 
Chilum        
 

        (1)                               (2)                                                  (3)                        (4)                         (5)                           (6)                (7)                              
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59) If yes to Supari such as “city”                      Tambako             Non-Tambako  

60) How many per day?        

61) At what age did subject start?                Yrs       62) At what age did subject quit?                Yrs     N/A 

 

63) If yes to Naswar                      Black                             Green                            Kashmiri 

64) How many packets per day? 

65) At what age did subject start?                Yrs       66) At what age did subject quit?                Yrs    N/A 

66) Are you exposed to other people’s smoke?   
1. Never                 2. Work Place              3. Home                  4. With Friends  
 

67) Has subject had an acute febrile illness within the previous six months? 

      1.  >4 days             2. Required antibiotics regularly          3. Required hospitalization        4.None. 

 

68) How many jobs does subject currently have? (1)  1        (2)  2+     (3) Unemployed        (4) Retired          (5) N/A 

69) Which category below best describes subject’s main occupation? (Select one only) 

Professional              Skilled Labour              General Labour                   Housewife                Farmer 

Business                    Clerical                         Self employed                    Other (specify)  ___ ____________ 

 
PHYSICAL ACTIVITY 
 
70. At work:   (1) Light              (2) Moderate                (3) Active              (4) N/A    
 
Key: light (physically very easy, sitting office work or sitting shop work or secretary) 
         Moderate (Standing and walking, eg. Store assistant, light industrial worker) 
         Active (walking and lifting, heavy manual labor eg. mazdoor, high weight industrial worker, Farmer) 
 
71. Daily Commuting:  
a) Using motorized transport: Personal Car         Motor Bike          Bus         Reksha/Taxi        or no walk or cycling  
b) Walking or bicycling 1 to 29 minutes          (6) 
c) Walking or bicycling > 30 minutes        (7)                           d)     N/A             (8) 
   
72. Leisure Time:     Low             Moderate              Heavy 
Key: Low (almost completely inactive eg reading, watching TV, doing some minor physical activity) 
        Moderate (some physical activity for > 4 h/week eg. Walking, cycling, light gardening but excluding travel to 
                            work) 
        High (vigorous physical activity for > 3 h/week, eg. Running, jogging, swimming, weight lifting) 
 
73. In case of exercise                         1. Aerobic             2. Anaerobic          (weight lifting or sprinting) 
74. If aerobic:  
Type I – 15-20 min. 3x week (hiking, jogging, running, treadmill, stationary cycling) 
 
Type II -- 30 min. 3x week (bicycling, swimming, tennis, walking briskly) 
 
Type III cricket, football, badminton, volley ball. 

 

   (1)                                          (2)                                              (3)                                                         (4)                                   (5) 
  
   (6)                                          (7)             (8)                                                       (9) 

(1)                                   (2)                          (3)                     (4)                                         (5)                        

(1)                             (2)                               (3)                   

252



 

PROMIS 

8
75. Place of birth:  

    
 

Ethnicity               76) Subject#                          77) Mother#                              78) Father#  

1. Urdu  5. Sindhi 
2. Punjabi  6. memon 
3. Pathan  7. Gujrati 
4.   Balochi             8. Others 

79. Were Subject’s father and mother first degree relatives?  No                   Yes 

80. Is subject’s spouse his/her first degree relative?                No                   Yes 
81) Religion:       1. Islam               2. Hinduism           3. Christianity             4. Sikhism           5. Athiest  

                                6. Others  

82) Do you practice religion regularly? (Incase of Islam, do you pray namaz regularly) No           Yes  

The number of years of formal education completed (check highest level only): 

83) Subject  None  Number of years of formal education              Number of years of Madarsah education 

84) Mother   None  Number of years of formal education          Number of years of Madarsah education 

85) Father    None  Number of years of formal education               Number of years of Madarsah education. 

 

86) Marital Status 

1. Single              2. Married            3. Divorced             4. Separated                   5. Widow 

87) How many children do you have __________________ 

88) Has the subject experienced any of the following in the past year? 

1. Marital separation/Divorce      No        Yes    4.Major personal injury or illness            No            Yes 

2. Loss of job/retirement     No           Yes   5.Death/major illness of a close               No            Yes 
            family member 
3. Loss of crop       No            Yes   6. Death of a spouse                                No            Yes 
 

88) Monthly income of the Family: 

89) How many household members (including children) are there: 
 

90) Note which of the following objects are owned by household members: (check all that apply) 

Home            Car/Auto          Motorcycle/Scooter             Bicycle                 Radio/Stereo               Television 

Other Land/Property              Computer         Livestock/Cattle             Mobile            AC           Number of servants ___ 

                                                                                                               (1)                     (2)                    (3)             (4) 
91) What level of stress                                                                   None/Mild   Moderate High/Severe   N/A 
      does the subject feel:    a) At work:       i) Mental/Emotional:  
           ii) Physical:                             
         b) At home:     i) Mental/Emotional:  
                      ii) Physical 
 
         c) Financial: 

Province    Country 

   (1)                               (2)                                      (3)                                                 (4)                                     (5)                                         (6)  
 
   (7)                                                                    (8)                (9)                                    (10)                               (11)                   (12) 

1. Sindh, 2. Punjab, 3. 
Serhad, 4. Balochistan 
5. Other 
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For Women Only (Questions 92-99) 

92. Has subject ever used birth control pills or had birth control depot injections? 

  Yes    No       93. Age when began                      years old   95. Brand: ________________ 

94. For how many years?          Years 

96. Has the subject had a menstrual period in the last 12 months? 

            Yes          No  97. At what age did they stop?          Years 

98. Why did they stop?   Menopause               Hysterectomy            Radiation 
(check only one) 4.Other (specify)__________________________ 

99. Has subject ever used female hormone replacements? 

              Yes              No                      100. How long?              Years                                            yes              no 
102. Which type of replacement have you used the most? 

       Estrogen alone Estrogen + Progesterone 

 
103. Type of oil/fat used most often in cooking.  

 Desi Ghee (1)                    Ghee (2)   Oil (3)  

 Butter (4)                          margarine (5) 
 
104. Note down the brand of ghee/oil _____________ (note down separately) 
105a. How much ghee is bought per month for cooking purposes ____________ 
105b. How much oil is bought per month for cooking purposes ______________ 
106. For How many people (aged 6 years and above) it is used for preparing food _____________.          
107. During the past 12 months, has subject had a drink of beer, wine, liquor or any other alcoholic beverage? 
              No           Yes How often            once a year       once a month            2-3 times          once a week 
             (mark one box only)                                                                       a month  
                                        2-3 times a         4-6 times a              everyday 
 
 

Food Item 1) > 
4 per 
day 

2) 2-4 
per 
day 

3) 1/ 
day 

4) > 3 
times/ 
week 

5) 2-3 
times/ 
week 

6) 1/ 
week 

7)< a 
week but 
once or 
more 
/month 

8) 1/ 
mont
h 

9) <1/ 
month 
or 
occasio
-nal 

10) In 
ramaz-
an 
only 

11) 
 
none 

1. Tea            

2. Coffee            

3. Qahwa            

4. Herbal tee            

10. Do you add extra salt to tea/Qahwa/lassi? No         Yes             
111. Do you add extra salt to food?            No         Yes           

 

 

 

101. Are you still 
taking them? 

  (1)                             (2)                                (3)                    

108. 
(1)                           (2)                                       (3)             (4) 
 
          (5)                    (6)                        (7) 
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  Food Item 1) 

>4/ 
day 

2) 2-4 
per 
day 

3) 1/ 
day 

4) > 3 
times/ 
week 

5) 2-3 
times/ 
week 

6) 1/ 
week 

7)< a 
week but 
once or 
more 
/month 

8) 1/ 
month 

9) <1/ 
month 
or 
occasi-
onal 

10) In 
ramaz
-an 
only 

11) 
 none 

1. Khameri or Nan            

2. Paratha/Puri            

3. Roti (Safed 
Aaata) 

           

4. Roti (Laal 
Aaata/chakki) 

           

5. Roti (mixed 
aata) 

           

6. Daliya            

7. Eggs            

8. Dark green leafy 
vegetables and 
yellow Vegetables  
(COOKED) 

           

9. Cruciferous 
vegetables (Gobi, 
phool gobi, band 
gobi, sursoon, 
others) 
(COOKED) 

           

10. Other 
vegetables 
excluding potatoes 
(COOKED) 

           

11. Dark green 
leafy vegetables 
and yellow 
Vegetables  
(SALAD) 

           

12. Cruciferous 
vegetables (Gobi, 
phool gobi, band 
gobi, sursoon, 
others) (SALAD)  

           

13. Other 
vegetables 
excluding potatoes 
(SALAD) 

           

14. Cooked 
Potatoes 

           

15. Fried potatoes, 
French fries 
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Food Item 

 

1) 
>4/ 
day 

 

2) 2-4 
per 
day 

 

3) 1/ 
day 

 

4) > 3 
times/ 
week 

 

5) 2-3 
times/ 
week 

 

6) 1/ 
week 

7)< a 
week but 
once or 
more 
/month 

 

8) 1/ 
month 

9) <1/ 
month 
or 
occasi
o-nal 

10) In 
ramaz
-an 
only 

 

11) 
 none 

16. Tomatoes as 
Salad 

           

17. Onion raw            

18. Rice            

19. Chicken 
Biryani 

           

20. Beef or Mutton 
Biryani 

           

21. Daal, lobia, 
channa, cholay 

           

22. Fruits            

23. Fruit juice            

24. Kata kut or 
organ meet 

           

25. Beef Salan            

26. Mutton Salan            

27. Chicken Salan            

28. Fish salan            

29.Beef boti, tikka, 
kabab, Beef 
shawarma and 
others 

           

30.Chicken boti, 
tikka, kabab, 
chicken roll, 
chicken shawarma 
and others 

           

31. Chicken Fried, 
Broast 

           

32. Fried fish            

33. Paya             

34.Nehari            

35. Pakoray, other 
basen products 

           

36. Samosay            

37. Burger, Bun 
kebab 

           

38. Wisky            
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Food Item 

 

1) 
>4/ 
day 

 

2) 2-4 
per 
day 

 

3) 1/ 
day 

 

4) > 3 
times/ 
week 

 

5) 2-3 
times/ 
week 

 

6) 1/ 
week 

7)< a 
week but 
once or 
more 
/month 

 

8) 1/ 
month 

9) <1/ 
month 
or 
occasi-
onal 

10) In 
ramaz
-an 
only 

 

11) 
 none 

39. Beer            

40. Bhang            

41. Tharra (desi 
sharab) 

           

42. Milk             

43.Makkhan, 
Margarine. 

           

44. Other dairy 
products  (Lassi, 
Curd) 

           

45. Sugars (Gurh, 
Shakkar, honey, 
Jam, marmalade) 

           

47. Carobonated 
beverages.pepsi 

           

48. NonCarbonated 
beverages (rooh 
afza) 

           

49. Pickels.            

50. Bakery Items 
(Bagarkhani, 
Papay, cakes, 
biscuits others) 

           

51. Kheer, Custard, 
Milk shakes and 
other milk based 
sweet dishes, ice 
cream 

           

52. Halwa, Mithai, 
Jalabe chocolate 

           

53. Nimko and 
other fried items 

           

54. Nuts/Seeds            

 

112) Do you have any addictions?                                             No                Yes 

113) If yes please describe________________ 

For how long have you been taking? ____________ 
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Physical Measurements       First Reading      Second Reading 

     Blood                                114) systolic                                                      
    Pressure           
                                               115) Diastolic             
     

         116) Waist (cm)      117) Hip (cm) 

                                                       #1                        #1                         118) Weight                        .          kg 
     
 120) Heart Rate                                          #2                        #2                        119) Height                       .          cm 
   (beats/minute)  

 

121) QT Interval __________                                                              

Sample Information: 

Sample ID#:      - 
 

 

Blood Sample collected:      YES   NO   

No. of EDTA tubes            

No. of Serum tubes      

 

Shifting date of samples to AKUH ___________________ 

Time of Departure at the collection center _______________ 

Time of delivery at AKUH _________________ 
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