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Gastruloids are three-dimensional aggregates of embryonic stem cells (ESCs) that display key 18 

features of mammalian post-implantation development, including germ layer specification and 19 

axial organization1–3. So far, the expression pattern of only a small number of genes in gastruloids 20 

has been explored with microscopy, but it is still unclear to what extent genome-wide expression 21 

patterns mimic those in embryos. Here, we compared mouse gastruloids with mouse embryos 22 

using single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (tomo-seq). We 23 

identify various embryonic cell types that were not known to be present in gastruloids, and show 24 

that key regulators of somitogenesis are expressed similarly between embryos and gastruloids. 25 

Using live-imaging we then show that the somitogenesis clock is active in gastruloids with 26 

dynamics resembling those in vivo. Since gastruloids can be grown in large quantities, we 27 

perform a small screen that revealed how reduced FGF signalling induces a short-tail phenotype 28 

in embryos. Finally, we demonstrate that Matrigel-embedding induces gastruloids to generate 29 

somites with correct rostral-caudal patterning, which appear sequentially in anterior to posterior 30 

direction over time. This study thus shows the power of gastruloids as a model system to explore 31 

development and somitogenesis in vitro in a high-throughput manner. 32 

It has previously been shown that transcriptomes of entire gastruloids at 120 hours after 33 

aggregation (120 h) resembles that of E8.5 mouse embryos3. To extend this characterization to the 34 

single-cell level, we applied scRNA-seq to more than 25,000 cells obtained from 100 gastruloids (120 h) 35 

that were generated using either E14-IB10 or LfngT2AVenus mouse ESCs (Extended Data Fig. 1a-b, 36 

Methods), and clustered cells based on highly variable genes (Fig. 1a, Extended Data Fig. 1c-f, 37 

Supplementary Tables 1-2). To annotate the 13 resulting clusters, we compared their transcriptomes to a 38 

recently published scRNA-seq dataset from E8.5 mouse embryos4 (Fig. 1b, Methods, Supplementary 39 

Table 3). We confirmed the absence of anterior neuronal cell types and the presence of ectodermal cells 40 
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resembling embryonic spinal cord1,3 (cluster 8; Extended Data Fig. 1g-h and 2). Additionally, we for the 41 

first time identified endothelial and haematoendothelial cells (cluster 10), and found a cluster with 42 

signatures of primordial germ cells and extra-embryonic ectoderm (cluster 12). Cluster 13 correlates with 43 

the visceral endoderm (VE); however, we suggest that this represents definitive endoderm (DE) since 44 

previous studies showed that VE has been incorporated into DE in E8.5 mouse embryos5,6. We find the 45 

olfactory receptor genes Olfr959 and Olfr129 upregulated in cluster 9, suggesting the presence of 46 

sensory neuron precursors. This cluster also expresses markers linked to head mesenchyme, pharyngeal 47 

pouches, branchial arches and neural crest and correlates with mesenchyme in embryos. Cluster 11 48 

might represent allantoic cells, as it expresses Tbx4, which in E8.5 embryos is expressed exclusively in 49 

the allantois4,7. A comparison between both mouse ESC lines revealed that some cell types are more 50 

prevalent in one of the two lines (Extended Data Fig. 1e, Supplementary Tables 1,4), indicating that 51 

genetic background can skew the composition of gastruloids. 52 

Many of the cells in gastruloids correspond to mesodermal subtypes, including neuro-53 

mesodermal progenitors (NMPs), caudal, paraxial, somatic, pharyngeal and cardiac mesoderm (clusters 54 

1-7; Fig. 1b). After careful examination, we concluded that the cells in clusters 1-8 are ordered along 55 

neural and mesodermal differentiation trajectories. To further explore this, we linearized the part of the 56 

UMAP containing clusters 1-8 (Methods) and plotted the expression of genes linked to neural and 57 

mesodermal differentiation processes along this linearized UMAP (Fig. 1c). First, we observed an NMP to 58 

neural differentiation trajectory from cluster 7 to 8 that starts with the expression of the tail bud genes T 59 

(Brachyury), Nkx1-2, Cyp26a1 and that is followed by the expression of neural differentiation markers 60 

such as Sox2, Hes3, Sox1 and Pax68. Second, we observed a mesodermal differentiation trajectory from 61 

cluster 6 to 2. In good agreement with what happens in embryos, the expression levels of tail bud and 62 

Wnt/FGF signalling genes (Fgf8, Fgf17 and Wnt3a) gradually decline in cells that differentiate towards a 63 

pre-somitic fate (characterized by the expression of Tbx6 and Hes79), with expression levels being lower 64 

in the somite differentiation front (which expresses Ripply2). Upon somitic differentiation, cells first 65 

express Uncx4.1 and Tbx18, and later express markers more differentiated somites, such as Meox2 and 66 

Pax39. Finally, cluster 1 expresses heart markers (Gata6 and Hand210). 67 

In embryos, neural and mesodermal differentiation trajectories have a strong spatial component, 68 

with NMPs being located within the tail bud and differentiated tissues being located more anteriorly8. To 69 

determine whether the differentiation trajectories detected in gastruloids also have a spatial anterior-70 

posterior (AP) component, we performed tomo-seq11 on 120 hours E14-IB10 and LfngT2AVenus 71 

gastruloids (Methods, Extended Data Fig. 3-5). For each cell line, we selected reproducible genes 72 

between replicates, and clustered these according to their AP expression pattern (Methods, 73 

Supplementary Tables 5-6). The overall gene expression patterns between gastruloids generated from 74 

the two ESC lines are similar (Fig. 1d, Extended Data Fig. 6, Supplementary Tables 6-8). To annotate the 75 

various expression domains, we projected the mean expression of the genes in each tomo-seq cluster 76 

onto the UMAP (Fig. 1e). This revealed that NMPs (cluster 7 in Fig. 1a and cluster II in Fig. 1e) are 77 
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located in the most posterior tip of gastruloids. More differentiated neural cells are found slightly more 78 

anterior (Extended Data Fig. 3e). Furthermore, mesodermal clusters in the UMAP are sequentially 79 

ordered along the AP axis of gastruloids, with 6 being the most posterior and 2 the most anterior (cluster 80 

V-VIII in Fig. 1d-e; see also Extended Data Fig. 3e). This revealed that the neural and mesodermal 81 

differentiation trajectories in gastruloids are linked to their AP axis, which agrees with what occurs in 82 

embryos8,9. Additionally, we found that the anterior domain in gastruloids (clusters VI-VIII) contains 83 

cardiac, endothelial and head mesenchymal cells (Fig. 3d-e, Extended Data Fig. 3e). This is consistent 84 

with the locations of these tissues in embryos. 85 

To further investigate to what extent AP gene expression patterns in gastruloids recapitulate 86 

those in embryos, we applied tomo-seq to E8.5 embryos (Fig. 1f, Extended Data Figs. 3-6, 87 

Supplementary Tables 5-8 and Methods). This revealed that mesoderm genes and genes that regulate 88 

somitogenesis, are expressed very similarly between embryos and gastruloids. We detected cardiac and 89 

brain domains in embryos (cluster VII and I in Extended Data Figure 5b, respectively) that are not clearly 90 

defined and absent, respectively, in gastruloids. We found additional differences and similarities between 91 

embryos and gastruloids that are presented in detail in the supplement (Extended Data Fig. 5 and 92 

Supplementary Tables 7-8; for visualization, see https://avolab.shinyapps.io/962095337353856/). We 93 

also compared our gastruloid tomo-seq dataset to a previously published microarray dataset where the 94 

posterior mesoderm (from the tail bud to the newly formed somite) of E9.5 mouse embryos was 95 

dissected12 (Fig. 1g, Extended Data Figs. 4-5 and Supplementary Tables 5-8). This comparison reveals a 96 

striking similarity between gastruloids and the mesoderm of embryos. 97 

In embryos, the organization of the mesoderm is established by dynamic gene regulatory 98 

networks that are tightly linked to the process of somitogenesis9. During somitogenesis, AP retinoic acid 99 

and opposing Wnt/FGF signalling gradients determine the position of the differentiation front, which 100 

induces the differentiation of the mesoderm into epithelial blocks called somites (Fig. 2a). These somites 101 

have defined rostral and caudal halves, and appear sequentially in AP direction. During this process, the 102 

tail bud of the embryo grows, and consequently, the signalling gradients and differentiation front move 103 

posteriorly over time. A second component of somitogenesis entails oscillations of Wnt, Notch and FGF 104 

signalling, where signalling waves travel from the tail bud towards the differentiation front every ~2 hours 105 

in mice9,13. This cyclic component of the somitogenesis process is known as the “segmentation clock” and 106 

is thought to regulate the timing of somite formation9,14. To investigate whether the segmentation clock is 107 

active in gastruloids, we monitored Notch signalling activity by performing fluorescence time-lapse 108 

imaging on gastruloids generated from LnfgT2AVenus mouse ESCs15 (Methods). Similar to what has 109 

been seen in embryos15, we observed a dynamic differentiation front, which expresses high levels of Lfng 110 

and regresses posteriorly as the gastruloids extend (Fig. 2b, Extended Data Fig. 7-8, Supplementary 111 

Video 1). Additionally, we observed oscillating waves with low expression of Lfng and a period of about 2 112 

hours that travel from the tip of the tailbud towards the differentiation front, where they stall (Fig. 2c-e). 113 

The expression of Lfng disappears in the presence of the Notch inhibitor DAPT (Extended Data Fig. 7, 114 
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Supplementary Video 2), confirming that the reporter expression is dependent on Notch signalling in 115 

gastruloids, as it is in embryos16. These experiments indicate that the segmentation clock is active in 116 

gastruloids with dynamics that are very similar to the in vivo situation. 117 

Gastruloids can be easily generated in large numbers, opening the possibility to perform screens. 118 

To exemplify this, we performed a small compound screen on LfngT2AVenus gastruloids and 119 

investigated the effect of inhibitors and agonists of FGF, Wnt, and BMP signalling pathways on the speed 120 

of the differentiation front (Supplementary Videos 3, Extended Data Figs. 7 and 8e-f). This revealed that 121 

the application of the MEK/ERK pathway inhibitor PD03, which inhibits FGF signalling, speeds up the 122 

differentiation front in a dose-dependent manner without altering the speed by which gastruloids grow 123 

posteriorly (Fig. 2f, Extended Data Fig. 9a, Supplementary Video 4). This imbalance between the speed 124 

of the differentiation front and gastruloid growth results in a progressive decrease in the length of the 125 

presomitic mesoderm, and in gastruloids that stop growing prematurely (Fig. 2g). Similar results were 126 

obtained with the FGF receptor inhibitors PD17 and BGJ398 (Extended Data Figs. 7 and 8f, 127 

Supplementary Video 5). Our observations provide an explanation for the observed short-tail phenotype 128 

of FGF-mutant mouse embryos17 and posteriorly shifted differentiation fronts after FGF inhibition18,19. 129 

Even though our experiments reveal that key regulators of somitogenesis are expressed in the 130 

correct location and that the segmentation clock is active in gastruloids, gastruloids that are generated 131 

with previously published protocols do not form somites1,3,20. Remarkably, during our real-time imaging 132 

experiments, we occasionally observed small “indentations” that appeared anteriorly to the differentiation 133 

front (Supplementary Video 4). These segments were only visible in gastruloids mounted in Matrigel at 96 134 

h, which was done prior to the real-time imaging experiments to stabilize them (Methods). We then 135 

performed in situ hybridization (ISH) stainings for Uncx4.1 (a marker for the caudal halves of somites9; 136 

Fig. 2a) and found that Uncx4.1 was expressed in a stripy pattern in 4% (4 out of 100) of the 120 h 137 

gastruloids that were embedded in 100% Matrigel at 96 h (Fig. 3a). Such a pattern was never detected in 138 

120 h gastruloids cultured without Matrigel. To explore the effect of the concentration of Matrigel, we 139 

performed a titration experiment. We found that embedding 96 h gastruloids in 10-25% Matrigel resulted 140 

in the formation of clear segments of which the posterior half is marked by Uncx4.1 expression in up to 141 

50% of the gastruloids (ISH and hybridization chain reaction (HCR21) stainings; Fig. 3a-b, Extended Data 142 

Fig. 9b). Time-lapse imaging movies on these gastruloids revealed that the segments appear sequentially 143 

in AP direction, anteriorly to the Lfng expression domain (Fig. 3c, Supplementary Video 6 and Extended 144 

Data Fig. 9c). Lastly, double stainings for Uncx4.1 and Ripply2 (which is expressed in the newly forming 145 

somite) and for Uncx4.1 and Tbx18 (a marker of rostral somites9) revealed that Uncx4.1 and Tbx18 are 146 

expressed in an alternating pattern (Fig. 3d), and it is indeed the caudal half of the segments that 147 

expresses Uncx4.1 (Extended Data Fig. 10). At 120 h of culture (after 24 h in 10% Matrigel), gastruloids 148 

have ~10-11 somites (Fig. 3d, Extended Data Fig. 10), whose size decreases in the AP direction, from on 149 

average 183 to 43.4 μm (Extended Data Fig. 10c-e). In embryos, the size of these somites decreases 150 

from 120 to 80 μm (Methods). Our experiments thus reveal that embedding gastruloids in low-percentage 151 
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Matrigel induces the formation of somites, which have correct rostral-caudal patterning and appear 152 

sequentially along the AP direction over time. We have so far not observed gastruloids with two 153 

neighbouring rows of somites, and it will be interesting to explore why this is the case in future studies. 154 

Using single-cell and spatial transcriptomics we demonstrate that gene expression in murine 155 

gastruloids is very similar to embryos. Gastruloids can therefore be used as a model system for 156 

embryology, and have some key advantages over embryos: they can be grown in large quantities 157 

allowing screens, are easier to genetically modify as they can be grown directly from ESCs, and can be 158 

used to study human development (see accompanying manuscript22). We utilized several of these 159 

advantages to study somitogenesis in vitro. Recent pioneering studies have explored ex vivo and in vitro 160 

models for somitogenesis, such as monolayer-PSM cultures23,16 and cultures of embryoid body-like 161 

aggregates of mouse ESCs that display travelling somitogenesis waves in vitro24. However, such cultures 162 

do not form proper somites, lack a correctly defined AP axis and do not elongate in posterior direction. 163 

Here, we have shown that gastruloids overcome these limitations, and thus provide a powerful tool to 164 

study somitogenesis in vitro. In general, in vitro mimics of development, such as gastruloids, are 165 

promising systems with which we are starting to obtain new insights that could not readily be obtained 166 

with embryos. We therefore anticipate many applications of this system, which will aid to unravel the 167 

complex processes that regulate embryogenesis. 168 

 169 

  170 
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Figure legends 228 

Fig. 1 | scRNA-seq and tomo-seq on mouse gastruloids and comparison to embryos. a, Uniform 229 

manifold approximation and projection (UMAP) plot showing cells isolated from 120 h gastruloids (26 and 230 

74 gastruloids grown using E14-IB10 and LfngT2AVenus15 ESC lines, respectively) cultured in 231 

standard1,20 conditions. Cells are coloured and numbered by their cluster annotation. b, Dot plot showing 232 

overlapping genes between significantly upregulated genes for each gastruloid cluster and each E8.5 233 

mouse embryonic cell type4. Dot colour indicates the probability of finding such a number of overlapping 234 

genes between the two sets by random chance (P-value). Dot size represents the number of overlapping 235 

genes. c, Linearized UMAP of clusters 1-8 (top) and expression profiles of genes related to neural and 236 

mesodermal differentiation8,9 (bottom). Green and grey shades indicate location of cardiac cells and 237 

NMPs, respectively. The position of each cell along the x-axis relates to its differentiated state towards a 238 

neural or mesodermal fate. d, Heatmap showing the average AP expression pattern of 514 genes 239 

detected by tomo-seq11 in 120 h gastruloids generated from E14-IB10 and LfngT2AVenus15 mouse ESCs 240 

using standard1,20 culture protocols. Only genes reproducible between all replicates of E14-IB10 (n = 5) 241 

and LfngT2AVenus (n = 3) gastruloids are shown. Genes are clustered based on AP expression pattern 242 

(Supplementary Tables 5-6); Roman-numbered bars represent tomo-seq clusters. e, Mean log expression 243 

of genes present in each tomo-seq cluster plotted on the UMAP. f, g, As in d, but showing 222 genes (f) 244 

or 239 genes (g) found reproducible between replicates of E14-IB10 and LfngT2AVenus gastruloids, and 245 

(f) E8.5 mouse embryos (n = 3); or (g) posterior mesoderm of E9.5 mouse embryos12 MD, mesoderm; 246 

ExE, extra-embryonic; EcD, ectoderm; EnD, endoderm; PGC, primordial germ cells; prog, progenitors; 247 

Haemato, haemato-endothelial; NMP, neuro-mesodermal progenitors; PSM, presomitic mesoderm; E14, 248 

E14-IB10; Lfng, LfngT2AVenus. 249 

 250 

Fig. 2 | Real-time imaging and perturbation of the segmentation clock in mouse gastruloids. a, 251 

lllustration of somitogenesis in mouse embryos. Dark blue, retinoic acid (RA) gradient; red area and 252 

arrows, dynamic expression of Lfng; green, FGF/Wnt signalling gradient in PSM (presomitic mesoderm); 253 

magenta/cyan blocks, somites; blocks with dotted lines, newly forming somites; posterior dotted line, 254 

posterior elongation of the PSM. b, Real-time imaging of a LfngT2AVenus15 gastruloid embedded in 255 

100% Matrigel at 96 h and subsequently imaged for 17 hours (Supplementary Video 1). Blue arrowheads 256 

show the AP displacement of the differentiation front (Lfng expressing; red). c, Kymograph along the AP 257 

axis of a LfngT2AVenus gastruloid embedded in 100% Matrigel at 96 h and subsequently imaged for 30 258 

h. Highest intensity signal reflects the posteriorly moving differentiation front (blue arrowhead in b); white 259 

arrowheads indicate periodic oscillations in the PSM. d, Detrended LfngT2AVenus intensity along the 260 

dashed white line in d. A.U., arbitrary units. e, Periodogram of the Lfng oscillations detected in 13 261 

LfngT2AVenus gastruloids, as determined by Lomb-Scargle decomposition (Methods). f, Speed of 262 

elongation and differentiation front in LfngT2AVenus gastruloids treated with PD03. Box plots: center line, 263 

median; box limits, 1st and 3rd quartiles; whiskers, range. Each point is one replicate. g, Illustration 264 
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explaining the effect of FGF inhibition, which increases the speed of the differentiation front (red arrows, 265 

VDiff) without altering the elongation rate (blue arrows, VPSM) of gastruloids. Three timepoints (t1, t2, t3) are 266 

depicted. White tissue, non-differentiated tissue (PSM), grey tissue, differentiated tissue; A, anterior; P, 267 

posterior; scale bar, 200 μm.  268 

 269 

Fig. 3 | Stainings and real-time imaging of somite formation in gastruloids embedded in low 270 

percentages of Matrigel. a, ISH staining for Uncx4.1 on 120 h LfngT2AVenus gastruloids that were not 271 

embedded in Matrigel (0%; standard, previously published protocol1,20) or that were embedded in 25% or 272 

100% Matrigel at 96 h. Numbers below panels indicate number of gastruloids where stripy Uncx4.1 273 

expression patterns were observed. b, Somites in a LfngT2AVenus gastruloid (zoomed in; Extended Data 274 

Fig. 9b) embedded in 10% Matrigel at 96 h and stained for Uncx4.1 using HCR21 at 120 h. Magenta 275 

arrowheads, segment boundaries. c, Real-time imaging (Supplementary Video 6) of LfngT2AVenus 276 

gastruloids embedded in 10% Matrigel at 96 h. Blue arrowheads, differentiation front (Lfng expressing, 277 

red); magenta arrowheads, appearing segment boundaries. d, HCR21 double staining for Uncx4.1 (cyan) 278 

and Tbx18 (magenta) (Fig. 2a)9, on a 120 h LfngT2AVenus gastruloid embedded in 10% Matrigel at 96 h 279 

and to which 1.3 μM of PD03 was added at 96.5 h. White asterisks mark Uncx4.1 expression stripes. A, 280 

Anterior; P, Posterior; scale bar in panels a and d: 200 μm; scale bar in panels b and c, 100 μm. 281 

 282 

Methods  283 

Mouse gastruloid culture, with and without Matrigel. E14-IB10 (subclone of 129/Ola-derived E14 ES 284 

cells from The Netherlands Cancer Institute), LfngT2AVenus15 (Notch-signalling reporter; contains a 285 

single copy of Venus that was inserted in the endogenous Lfng locus15; the selection cassette was 286 

removed), BrachyuryGFP(25), Wnt/β-catenin transcriptional reporter TCF/LEFmCherry(26,27) and NodalYFP(28) 287 

mouse ESCs were maintained in standard conditions in serum + LIF (ESLIF medium) on gelatinized 6-288 

well plates and in a humidified incubator (5% CO2, 37 °C) as described before20,26,29–32. Gastruloids for 289 

scRNA-seq and tomo-seq experiments were generated as described previously1,20, with the following 290 

minor modifications: after neutralization of trypsin with ESLIF, cells were washed with PBS (containing 291 

Ca2+ and Mg2+) twice. Next, cells were resuspended in N2B27 medium (NDiff 227 medium, Takara, 292 

Y40002), and the cell concentration was determined only after resuspension in N2B27 medium. Cells 293 

were then diluted in N2B27 to a concentration of 7.5 cells/µl, and 40 µl (with ~300 cells) of this 294 

suspension was transferred to each well of a U-bottomed 96-well plate (Greiner Bio-One, 650185). 295 

N2B27 aliquots were stored at -20 °C and thawed by rocking them at 4 °C for several hours, after which 296 

aliquots were transferred to a cell culture flask in a CO2-controlled 37 °C incubator for pH-equilibration 297 

one day before gastruloid formation. Aggregates that did not elongate and that did not form gastruloids 298 

were excluded from this study, and curved gastruloids were excluded from tomo-seq experiments. For the 299 

scRNA-seq and tomo-seq experiments, 120 h gastruloids generated with the original gastruloids 300 

protocol1,20 were used, as these gastruloids were in our hands more reproducible (significantly less 301 
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variation in morphology between wells) than more recent versions of the protocol, that allow culture up to 302 

168 h3. For ISH and HCR staining and real-time imaging experiments, gastruloids were cultured as 303 

described above, but then embedded in Matrigel at 96 h. To embed gastruloids in 50-100% Matrigel 304 

(Corning, 356231, lot number 6137007, protein concentration 9.8 mg/mL), Matrigel was thawed on ice, 305 

mixed with the required amount of cold N2B27 medium, and 60 µl was added to each well of a multi-well 306 

imaging chamber (Sigma, EP0030741021 or M9312) on ice. 96 h gastruloids were then transferred to the 307 

Matrigel using a 20 µl pipet and allowed to settle for approximately 5 min before the chamber was 308 

incubated at 37 °C for 10 min, allowing the Matrigel to solidify. After this, 500 µL N2B27 medium was 309 

added to each well. Embedding gastruloids in diluted 10-25% Matrigel was done by first pooling the 310 

gastruloids in a 5 mL low binding Eppendorf tube on ice, replacing the N2B27 medium with fresh cold 311 

medium and then adding the correct volume of Matrigel. The gastruloids were then transferred to a 24 312 

wells plate (Sigma, EP0030741021 or M9312) using a p1000 pipet with the tip cut off, at a concentration 313 

of ~8 gastruloids per mL, 500 µL per well. 314 

Dissociation and FACS of gastruloids prior to scRNA-seq. To dissociate gastruloids for scRNA-seq, 315 

gastruloids were washed with PBS 2x, incubated in Trypsin-EDTA at 37 °C for 5 min and titrated with a 316 

p200 pipette, after which ESLIF (see above) was added to neutralize the Trypsin. After centrifugation 317 

(170g, 3 min), cells were resuspended in PBS with 10% serum and filtered through a 35 μm filter (Falcon, 318 

352235). Prior to FACS, DAPI (Thermo Fisher) was added to assess cell viability. For SORT-seq, 319 

individual live cells were sorted into the wells of a 384-well plate as described previously33 using a BD 320 

FACSJazzTM Cell Sorter (BD Biosciences) that was equipped with BD FACS software (version 1.2.0.124). 321 

For 10x Genomics scRNA-seq, washes were done using PBS0 (PBS without calcium and magnesium), 322 

and 100,000 live cells were sorted into 1.5 ml DNA lowbind tubes (Eppendorf, 022431021) that were pre-323 

filled with 50 μl PBS0, after which cells were centrifuged for 3 min at 200g, resuspended in 80 μl PBS0 324 

containing 5-10% serum, and filtered through a 35 μm filter (Falcon, 352235). After resuspension and 325 

filtering, the cell concentration was determined using a counting chamber (Bürker-Türk, Marienfeld). 326 

scRNA-seq (SORT-seq and 10x Genomics). For scRNA-seq, cells extracted from 120 h gastruloids 327 

(120 h; generated with a previously published, non-Matrigel based protocol1,20) were processed using 328 

either SORT-seq (CEL-seq2 based scRNA-seq on cells that were sorted into 384-well plates33) or using 329 

the 10x Genomics Chromium Single Cell 3' (v3 Chemistry) gene expression kit, according to 330 

manufacturer's instructions.  331 

Animal experimentation. Mouse embryos (n = 3) used for tomo-seq were derived from crosses between 332 

CD-1 females and CD-1 stud males. Experiments were performed in accordance with EU guidelines, 333 

under the authority of appropriate UK governmental legislation. Use of animals for this project was 334 

approved by the Animal Welfare and Ethical Review Body for the University of Cambridge. Relevant 335 

Home Office licenses are in place. 336 

Tomo-seq. Tomo-seq was performed using a robotized (SORT-seq33 based) version of a previously 337 

published tomo-seq protocol11. Briefly, 120 h gastruloids (n = 3 E14-IB10 gastruloids sectioned using 20 338 
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μm sections; n = 2 E14-IB10 gastruloids sectioned using 8 μm sections; n = 3 LfngT2AVenus gastruloids 339 

sectioned using 20 μm sections, generated with previously published, non-Matrigel based gastruloid 340 

protocols1,20) or E8.5 mouse embryos (n = 3 sectioned using 20 μm sections) were embedded in 341 

cryosolution (Leica, 14020108926), snap-frozen on dry-ice, stored at -80 °C and sectioned using a 342 

cryotome. Sections were collected in the wells of a Hard-Shell PCR Low-profile, semi-skirted 96-well plate 343 

(Bio-rad, HSL9601) that was already prefilled with mineral oil (Sigma, M8410-1L) and CEL-seq2 primers. 344 

For each well, a unique, barcoded CEL-seq2 primer was used, which allowed us to pool the content of 345 

the wells after second strand synthesis. To sequence the mRNA content of the wells, SORT-seq 346 

(robotized CEL-seq2 based scRNA-seq33) was performed using a Nanodrop II liquid handling platform 347 

(GC biotech). 348 

Sequencing. Sequencing was performed on the Illumina Next-seq sequencing platform. For SORT-seq 349 

and tomo-seq, paired end (75 bp) sequencing was performed; for 10x Genomics, sequencing was 350 

performed according to 10x Genomics manufacturer’s instructions (Read1, 28 cycles; Index i7, 8 cycles; 351 

Read2, 91 cycles). 352 

Mapping sequencing data. For SORT-seq and tomo-seq, the first 6 bases of read 1 contain the unique 353 

molecular identifier (UMI) and the next 7 bases contain the cell or section barcode. For 10x Genomics, 354 

the first 16 bases of read 1 contain the cell barcode, and the next 12 contain the UMI. For all sequencing 355 

experiments, read 2 contains the biological information. Reads 2 with a valid cell/section barcode were 356 

selected, trimmed using TrimGalore-0.4.3 with default parameters, and mapped using STAR-2.5.3a with 357 

default parameters to the mouse mm10 genome (Ensembl 93). Only reads mapping to gene bodies 358 

(exons or introns) were used for downstream analysis. Reads mapping simultaneously to an exon and to 359 

an intron were assigned to the exon. For each cell or section, the number of transcripts was obtained as 360 

previously described34. We refer to transcripts as unique molecules based on UMI correction. 361 

Mappabilities for both scRNA-seq and tomo-seq experiments range from 35% to 60%. Spike-ins, 362 

ribosomal, and mitochondrial genes were removed from downstream analysis, together with Kcnq1ot1, 363 

Mir5109, Lars2, Malat1, Rn45s, because these genes seem to be linked to mapping errors and have 364 

been shown to be erroneous in earlier studies34. 365 

Processing single-cell data. scRNA-seq analysis was performed using the Scanpy package35 (v1.4.3). 366 

In each experiment, cell barcodes with more than 1,000 transcripts and fewer than 6,000 genes were 367 

selected. Genes detected in fewer than 3 cells were excluded. Expression levels for each cell were size-368 

normalized to 10,000 transcripts. Highly variable genes were defined as those with a mean expression 369 

value between 0.0125 and 5, and with a minimum dispersion, and used to generate the UMAPs shown in 370 

Fig. 1 and Extended Data Figs. 1, 2, 4, 5. Next, cells from the three independent experiments were 371 

analysed together. Here, we kept cells with more than 700 and fewer than 8,000 genes, and more than 372 

1,000 and fewer than 40,000 transcripts. Selection of highly variable genes and cell normalization were 373 

performed as described above. To remove batch effects, we used the combat function from Scanpy (a 374 

Python implementation (https://github.com/brentp/combat.py) of the R-package Bioconductor36,37). Cells 375 
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were clustered using a combination of k-medoids and Leiden algorithms38 (Supplementary Table 1). 376 

Differentially expressed genes in each cluster were determined using the t-test (Supplementary Table 2). 377 

Comparison between gastruloid cell types and mouse embryonic cell types. Common genes 378 

between marker genes detected in the gastruloid cell clusters (Supplementary Table 1, P-value < 0.01 379 

and log2(fold-change) > 1.01) and markers genes found for the different embryonic cell types defined in a 380 

previously published mouse embryo scRNA-seq dataset4 were found. P-value for significance was 381 

assigned using a binomial test, where the probability of sharing a number of common marker genes 382 

between a gastruloid cell type and an embryonic cell type was determined by randomizing the list of 383 

marker genes for the embryonic cell type from the full list of marker genes in the embryonic cell types (n = 384 

200). Fig. 1 only shows comparison to embryonic cell types found at E8.5. Extended Data Fig. 1h shows 385 

the comparison to all embryonic cell types detected from E7.0 until E8.5. Only embryonic cell types with 386 

at least one cluster comparison with a P-value below 0.2 are shown. Using different P-value thresholds to 387 

define up-regulated genes does not have a significant impact on the results of the comparison between 388 

gastruloid cell populations and embryonic cell types. 389 

Linearization of the UMAP. Cells in clusters 1-8 were projected on the symmetry axis along the clusters 390 

1-8 in the UMAP (Extended Data Fig. 1d). The position of each cell along this symmetry axis defines the 391 

x-position in Fig. 1c. To plot gene expression along the linearized UMAP, 1,000 evenly spaced bins were 392 

defined along the x-axis for which the expression average of all cells per respective bin was scaled and 393 

plotted. For visualization, a LOESS smoother was used with span set to 0.2. 394 

Processing tomo-seq data. 20 μm sectioned slides with fewer than 3,200 genes and 8 μm sectioned 395 

slices with fewer than 6,000 genes were filtered out (Extended Data Fig. 3). In each tomo-seq sample, 396 

data was normalized to the median number of unique transcripts per slide. Sequencing libraries contain a 397 

maximum of 96 slices. In samples with more than 96 sections, several libraries were generated. For these 398 

samples, we corrected batch effects between sequenced libraries by imposing the continuity of 399 

expression profiles along the AP axis for each gene separately.  400 

Gene reproducibility analysis between replicates. The Pearson correlation coefficient between the AP 401 

expression pattern (in z-score units) of two different samples is computed for all possible pairs of 402 

replicates. Linearly interpolated gene expression profiles are used when the number of sections is 403 

different between replicates. To assess for significant correlations, we randomly generate 10,000 404 

expression profiles with the same number of sections as in the pair of replicates and determine a 405 

threshold for the correlation value at which less than n random profiles have larger correlation values (n = 406 

100 for P-value < 0.01; n = 500 for P-value < 0.05, etc; Supplementary Table 5). Only genes that are 407 

significantly correlated (P-value < 0.01) in at least five possible pairs of replicates are considered as 408 

reproducible between replicates (Supplementary Tables 6 and 9). Custom made code was used for this 409 

analysis. 410 

Clustering genes based on AP expression patterns. Genes were first clustered based on z-score AP 411 

expression pattern using self-organizing maps with an initial number of clusters set to ~5√N, where N is 412 
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the total number of genes. Average z-score expression patterns for each cluster were then hierarchically 413 

clustered using Euclidean distances and the Wart.D method. 414 

Comparison between tomo-seq data of mouse embryos and mouse gastruloids. Gene 415 

reproducibility analysis between the individual replicates of the systems that are being compared are 416 

performed independently, as described above (Supplementary Tables 5-9). For heatmaps in Fig. 1d, f-g, 417 

only genes present in the two separate lists of significantly correlated genes are used for downstream 418 

analysis (Supplementary Tables 7 and 9). For heatmaps in Extended Data Fig. 5, genes that were 419 

present in only one of the two separate lists were included as well (Supplementary Tables 8-9). Genes 420 

were clustered based on their AP expression pattern in the systems that are being compared 421 

simultaneously, as described above. The Pearson correlation coefficient for each gene is calculated 422 

between the AP expression pattern of two different samples (in z-score units). To assess for significantly 423 

correlated genes, we randomly generate 10,000 expression profiles with the same number of sections as 424 

in the pair of replicates and determine the correlation value at which less than 500 random profiles have 425 

larger correlation values (P-value < 0.05). 426 

Comparison between genes in tomo-seq clusters and mouse embryonic cell types. As above, but 427 

then calculating the number of overlapping genes, and the P-value of this overlap, by comparing the 428 

genes in each tomo-seq cluster with the list of genes upregulated in the cell types of a previously 429 

published E8.5 mouse embryo scRNA-seq dataset4 (Supplementary Tables 5-9). 430 

Wide field microscopy. Widefield images of gastruloids made from BrachyuryGFP 25, NodalYFP 28 and 431 

TCF/LEFmCherry (TLC226,27) mouse ESCs were acquired at 120 h using a Zeiss AxioObserver Z1 in a 432 

humidified CO2 incubator (5% CO2, 37 °C) and a 20x LD Plan-Neofluar 0.4 NA Ph2 objective with the 433 

correction collar set to image through plastic, as previously described2. Illumination was provided by an 434 

LED white-light system (Laser2000, Kettering, UK) in combination with filter cubes GFP-1828A-ZHE 435 

(Semrock, NY, USA), YFP-2427B-ZHE (Semrock, NY, USA) and Filter Set 45 (Carl Zeiss Microscopy Ltd. 436 

Cambridge, UK) used for GFP, YFP and RFP respectively. Emitted light was recorded using a back-437 

illuminated iXon888 Ultra EMCCD (Andor, UK) and images were processed using FIJI39. 438 

Multi-photon time-lapse imaging of gastruloids. Gastruloids were embedded in 10-100% Matrigel in 439 

24-well plates (Sigma, EP0030741021 or M9312) at 96 h as described above, and imaged immediately 440 

following embedding at 37 °C, 5% CO2 with humidified air influx on a Leica SP8 multi-photon microscope 441 

system using an HC PL APO 20x/0.75 air CS2 objective, a Coherent Chameleon Vision-S multi-photon 442 

laser tuned to 960 nm and the pinhole maximally opened. The brightfield channel was recorded using a 443 

488 nm laser set at low intensity in combination with a transmission PMT. A z-stack of around 4 images 444 

with a z-interval of 15 µm was taken every 15 min (10 images per stack and at 12 min interval (Fig. 3c)) 445 

for each individual gastruloid (frame accumulation 2 times, pixel dwell time 2.425 µs). Photons with a 446 

wavelength between 505-555 nm, and 555-680 nm were collected with two separate hybrid detectors and 447 

assigned to a 16-bit pixel range. Alternatively, in Extended data Fig. 7d, a 514 nm solid state laser was 448 

used during which photons were collected with a wavelength between 524-575 nm, and 600-700 nm with 449 
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two separate hybrid detectors and assigned to a 16-bit pixel range. In this case the brightfield channel 450 

was recorded simultaneously with the other channels using a transmission PMT. 451 

Treatment of Matrigel-embedded gastruloids with inhibitors. Gastruloids were embedded in 10-100% 452 

Matrigel at 96 as described above, and real-time imaging was started immediately after embedding. After 453 

recording at least 2 timepoints and at most 4 timepoints for each replicate (~30-60 min in total) the 454 

microscope was paused and inhibitors were added without removing the culturing plate from the stage. 455 

DAPT (Sigma, D5942; stock 10 mM in DMSO; used at 27 µM); PD0325901 (Sigma, PZ0162; stock 10 456 

mM in DMSO); BGJ398 (Selleckchem, S2183; stock 1 mM in DMSO; used at 0.2 µM); PD173074 457 

(Peprotech, 2191178; stock 10mM in DMSO; used at 0.5 µM); FGF1 (Peprotech, 100-17A; stock 10 458 

µg/mL in H2O; used at 0.02 µg/mL); FGF10 (Peprotech, 100-26; stock 100 µg/mL in H2O; used at 0.2 459 

µg/mL); Chiron (CHI99021; Sigma, SML1046; stock 10 mM in DMSO; used at 10 µM); IWP-2 (Sigma, 460 

I0536; stock 2 mM in DMSO; used at 2 µM); IWR-1 (Sigma, I0161; stock 10 mM in DMSO; used at 10 461 

µM); LDN193189 (Sigma, SML0559; stock 0.1 mM in H2O; used at 0.2 µM). 462 

Analysis of multi-photon time-lapse imaging data. Image analysis was done similar to previously 463 

described image-analysis methods15,23. Time-lapse imaging data was analysed using the ImageJ data 464 

processing package FIJI39. To filter out autofluorescence, the first channel (555-680 nm) was multiplied 465 

by 0.3 and subtracted from the second channel (505-555 nm). Then, a sum projection of all z-slices was 466 

generated for all timepoints. The resulting image was convolved using a gaussian filter with a sigma value 467 

of 1 µm. Kymographs were generated using the plug-in KymoResliceWide 468 

(https://github.com/ekatrukha/KymoResliceWide) by tracing the path of the differentiation front as it 469 

moves along the AP axis with a segmented line (60 pixels wide) and then blurred using a gaussian filter 470 

with a sigma value of 1 pixels. The intensity profile of the oscillations was measured at a constant 471 

distance from the differentiation front (dashed white line Fig. 2c) on the kymograph. The intensity profile 472 

of the oscillations was decomposed into a trend- and a cycle-component using Hodrick-Prescott filtering 473 

with an l of 800. Trend and cycle component for all replicates are shown in Extended Data Fig. 8. To 474 

make an estimation of the period of the Lfng oscillations, Lomb-Scargle analysis was performed with the 475 

maximum scanned frequency at half the temporal resolution and over-sampling set to 340. The speed of 476 

the differentiation front and the elongation speed of the gastruloid were measured by first drawing a line 477 

along the differentiation front or posterior tip of the gastruloid on the kymograph, respectively, and then 478 

measuring the angle, as explained in Extended Data Fig. 9a. 479 

Sample fixation for stainings. For gastruloids grown in 100-50 % Matrigel, the medium was removed 480 

and the samples were washed twice for 5 min in PBS before fixation in 4% PFA/PBS overnight at 4 °C. 481 

For gastruloids grown in 25-10% Matrigel, the medium/Matrigel was not removed in the first washing step 482 

with PBS. After fixation, all samples were washed 3 times for 5 min in PBS-Tween (0.1% Tween-20 (v/v)) 483 

and washed 3 times for 3 min in TBS-Tween (0.1% Tween-20 (v/v)) before digesting for 4 min with 25 484 

µg/mL Proteinase-K in TBS-Tween. The samples were then rinsed briefly 3 times with 2 mg/mL Glycine in 485 
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TBS-Tween20, washed with TBS-Tween once, refixed for 30 min in 4% PFA and 0.05% GA in PBS at 486 

room temperature and washed 3 times in TBS-Tween. 487 

In situ hybridization. ISH was performed as described before3,15. Briefly, samples were incubated for 4-5 488 

hours in hybridization mix (5 mg/ml torula RNA (Sigma, R6625), 50% deionized formamide (Sigma, 489 

AM9342) (v/v), 1.33x SSC, 0.1% BSA (w/v), 125 µg/ml Heparin (Sigma, H3393), 10 mM EDTA 0.5 pH = 490 

8.0, 0.1% Tween 20 (v/v)) at 68 °C followed by incubation overnight in 150 ng/mL DIG-labelled probe in 491 

hybridization mix at 68 °C. Carryover Matrigel that was still present degraded during this incubation step 492 

in most instances. The hybridization mix with the probe was pre-incubated for 10 min at 80 °C. Samples 493 

were then washed twice for 30 min in pre-heated hybridization mix at 68 °C, 4 times for 20 min in pre-494 

heated 2x SSC-Tween (0.1% Tween-20 (v/v)) at 68 °C, allowed to cool down and washed twice for 5 min 495 

in MAB-Tween (0.1% Tween-20 (v/v)) at room temperature. The samples were blocked for 1.5 hours in 496 

blocking buffer (10% heat inactivated sheep serum (Sigma, S3772) (v/v) and 1% BSA (w/v) in MAB-497 

Tween) at room temperature, incubated for 4-5 hours in blocking buffer containing 1:2,000 anti-DIG-AP 498 

antibody (Sigma, 11093274910) at room temperature and washed 5 times for 10 min followed by washing 499 

overnight in MAB-Tween. Finally, the samples were washed 3 times in TBS-Tween, washed 3 times for 500 

10 min in AP-buffer (100 mM Tris-HCl pH 8.0, 100 mM NaCl, 50 mM MgCl2, 0.1% Tween-20), stained for 501 

several hours in 1 mL BM purple (Sigma, 11442074001), washed 3 times for 5 min in TBS-Tween and 502 

refixed in 4% PFA/PBS for 20 min at room temperature. 503 

Imaging of gastruloids stained with in situ hybridization. In situ samples were imaged on a Leica 504 

M165FC stereo microscope with DMC5400 digital camera (Fig. 3a, right panel) or using a Nikon 505 

SMZ800N microscope (Fig. 3a left two panels) in TBS-Tween. 506 

Hybridization chain reaction of 10% Matrigel-embedded gastruloids. In situ whole mount HCR V3 507 

was performed as described previously21 using reagents from Molecular Instruments. Briefly, each 508 

condition (up to 100 gastruloids) was incubated in 200-500 µL of probe hybridization buffer for 5 min at 509 

room temperature and 30 min at 37 °C before incubation with 4 pM of each probe stock in 200-500 µL 510 

probe hybridization buffer for 12-16 hours at 37 °C. Next, samples were washed 4x with 500 µL probe 511 

wash buffer for 15 min at 37 °C, 2x with 1 mL 5x SSC-Tween for 10 min at room temperature and 1x with 512 

200-500 µL amplification buffer for 5 min at room temperature. The hairpin mixture was prepared by 513 

separately heating both h1 and h2 of each hairpin to 95 °C for 90 seconds and incubating these at room 514 

temperature for 30 min in the dark. All the hairpin mixtures were then added to 200-500 µL amplification 515 

buffer at a concentration of 48 pM, which was then added to the samples and incubated for 12-16 hours 516 

at room temperature in the dark. Samples were then washed at least 2x with 1 mL SSC-Tween for 30 min 517 

before imaging. HCR probe design: Uncx4.1 (Accession NM_013702.3, hairpin B1); Tbx18 (Accession 518 

NM_023814.4, hairpin B3); Ripply2 (Accession NM_001037907, hairpin B2); hairpin B1 was labelled with 519 

Alexa 594 and B2 and B3 with Alexa 488. 520 

Multi-photon microscopy of HCR-stained gastruloids. HCR stained samples were imaged in TBS-T 521 

on a Leica SP8 multi-photon microscope system using an HC PL APO 20x/0.75 air CS2 objective, a 522 
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Coherent Chameleon Vision-S multi-photon laser tuned to 810 nm for the Alexa-594 dye, a 488 nm OPS-523 

laser for the Alexa-488 dye and the pinhole maximally opened. A z-stack of around 30 images with a z-524 

interval of 5 µm was taken with frame accumulation set to 4. Photons with a wavelength between 505-555 525 

nm, and 555-680 nm were collected with two separate hybrid detectors and assigned to a 16-bit pixel 526 

range for the Alexa-594 channel; photons with a wavelength between 498-550 nm were collected with a 527 

hybrid detector and assigned to a 16-bit pixel range for the Alexa-488 channel. The brightfield channel 528 

was recorded simultaneously with the Alexa-488 channel using a transmission PMT detector. 529 

HCR data analysis. HCR imaging data was analysed using the ImageJ data processing package FIJI39. 530 

First, all the images in a single stack were aligned using the ImageJ plug-in Correlescence 531 

(https://github.com/ekatrukha/Correlescence), after which a maximum projection was generated for the 532 

fluorescence channels. The posterior region of gastruloids was identified visually (the anterior end of 533 

gastruloids is darker than the posterior end), and confirmed with Ripply2 stainings. To plot the intensity 534 

profile along the AP axis, a segmented line with a width of 100 pixels was drawn, and the intensity was 535 

measured along this line. To measure the peak-to-peak distances in the Uncx4.1 intensity profiles, a 536 

LOWESS smoother (0.002 span) was applied, after which the maximal values corresponding to the peaks 537 

were selected in R. 538 

Somite-size measurements in embryos. Somite-sizes were measured in 10 somite-stage paraffin-539 

embedded mouse embryos that were sectioned with 6 µm sections, stained using a standard 540 

haematoxylin and eosin staining and imaged with a Leica dm 4000 b led microscope with Leica DFC450 541 

camera that was size-calibrated using a microscope calibration slide (Pyser-SGI). Somite-sizes were next 542 

measured using Fiji. Measurements were validated by comparing results to somite-sizes in the EMAP 543 

eMouse Atlas Project (http://www.emouseatlas.org)41. 544 
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Extended Data Fig. 1 | scRNA-seq on 120 h mouse gastruloids and comparison to embryos. a, 546 

Fluorescence-activated cell sorting (FACS) gating strategy prior to scRNA-seq. Live cells were selected 547 

based on DAPI staining. Four sequential gates (P1-P4) were used; cells from gate P4 were used for 548 

scRNA- seq. SSC, side scatter; FSC, forward scatter; H, height; W, width; A, area. b, Box plot showing 549 

the median number of transcripts (left) and genes (right) detected per cell for SORT-seq experiments on 550 

E14-IB10 (E14-S) and LfngT2AVenus gastruloids (Lfng-S), and for 10x Genomics experiments on 551 

LfngT2AVenus gastruloids (Lfng-10x). The box extends from the lower to the upper quartile. Whiskers, 552 

1.5x interquartile range; flier points are those past the end of the whiskers. c, Uniform manifold 553 

approximation and projection (UMAP) plot for each experiment separately. Colour of each cell is the 554 

same as the colour of that particular cell in Fig. 1a. d, UMAP obtained by analysing all the cells from the 555 

different experiments together, where cells are coloured according to their batch (Methods, 556 

Supplementary Table 1). The black line indicates the symmetry line in clusters 1-8 used to generate the 557 

linearized UMAP in Fig. 1c (Methods). e, Fraction of E14-IB10 and LfngT2AVenus cells in each scRNA-558 

seq cluster from Fig. 1a. Blue, green and black numbers, number of E14-IB10, LfngT2AVenus and total 559 

cells in each cluster (Supplementary Tables 1, 4). f, Fraction of cells for each cell type in each plate in 560 

SORT-seq experiments (Lfng-S, E14-S), and in each experimental batch in 10x Genomics experiments 561 

(Lfng-10x). Box plots: center line, median; box limits, 1st and 3rd quartiles; whiskers, range. g, Fraction of 562 

cells detected in the E8.5 mouse embryo scRNA-seq dataset4 used to compare our gastruloid scRNA-seq 563 

data with. Exact numbers in each cluster are indicated. h, Dot plot showing overlapping genes between 564 

significantly upregulated genes for each gastruloid scRNA-seq cluster (Supplementary Table 2), and 565 

upregulated genes for each E7.0-E8.5 mouse embryonic cell type4. Dot colour indicates the probability of 566 

finding such a number of overlapping genes between the two sets by random chance (P-value, Methods), 567 

and dot size represents the number of overlapping genes. Blue colouring, embryonic stage. E14, E14-568 

IB10; Lfng, LfngT2AVenus; S, SORT-seq33; 10x, 10x Genomics; MD, mesoderm; EcD, ectoderm; NMP, 569 

neuro-mesodermal progenitors; ExE, extra-embryonic; EnD, endoderm; Haemato, haemato-endothelial; 570 

prog, progenitors; PGC, primordial germ cells; Ant, anterior; PSM, presomitic mesoderm. 571 

 572 

Extended Data Fig. 2 | Expression of relevant markers in gastruloid scRNA-seq dataset. a, Mean 573 

log expression of relevant markers of outlier populations (clusters 9-13) plotted on the UMAP from Fig. 574 

1a. Olfr129 and Onecut1, head mesenchyme (cluster 9); Etv2, haemato-endothelial progenitors (bottom 575 

part of cluster 10); Kdr, haemato-endothelial progenitors and endothelium (cluster 10); Cdh5 and Tie1, 576 

endothelium (top part of cluster 10); Tbx4, Hoxa11, Ass1 and Bmp7, allantois (cluster 11); Ephx2, Mt1, 577 

Utf1 and Pou5f1, primordial germ cell like or extra-embryonic ectoderm (cluster 12); Col4a1, Epcam and 578 

Sox17, endoderm (cluster 13). b, Mean log normalized expression of relevant markers of clusters 1-8 579 

plotted on the UMAP from Fig. 1a. Hand2 and Gata6, heart (cluster 1); Meox2 and Pax3, differentiated 580 

somite (cluster 3); Aldh1a2 and Uncx4.1, somite (cluster 4); Lfng, Mesp2, Ripply2 and Dll1, differentiation 581 

front (cluster 5); Hes7 and Tbx6, presomitic mesoderm (cluster 6); Wnt3a, Fgf17, Fgf8, Cyp26a1, Nkx1-2 582 



 

 

21 

and T, tail bud containing neuro-mesodermal progenitors (cluster 7); Pax6, Sox1, Hes3 and Sox2, 583 

differentiated neural cells (spinal cord; cluster 8). Expression was first count-normalized to 10,000 for 584 

each cell (Methods), and then log-transformed. Additional markers of all clusters are provided in 585 

Supplementary Table 2.  586 

 587 

Extended Data Fig. 3 | Number of genes and reads in gastruloid and embryo tomo-seq datasets, 588 

and comparison to microscopy data. a-c, Number of unique transcripts and genes detected in 3 E14-589 

IB10 120 h mouse gastruloids that were sectioned using 20 μm sections and 2 E14-Ib10 120 h mouse 590 

gastruloids that were sectioned using 8 μm sections (a); in 3 LfngT2AVenus 120 h mouse gastruloids that 591 

were sectioned using 20 μm sections (b); and in 3 E8.5 mouse embryos that were sectioned using 20 μm 592 

sections (c). Due to their length, embryo sections were collected in two sequential 96-well plates. d, 593 

Validation of tomo-seq data with microscopy. Top panels, BrachyuryGFP, Wnt signalling activity (as 594 

reported using a TCF/LEFmCherry mouse ESC line) and NodalYFP expression in 120h mouse gastruloids as 595 

measured by microscopy (Methods). Barplots showing the normalized expression levels of Brachyury, 596 

Wnt3a and Nodal in 120 h E14-IB10 gastruloids, 120 h LfngT2AVenus gastruloids and E8.5 mouse 597 

embryos as determined by tomo-seq (Methods), and in the posterior mesoderm of E9.5 mouse embryos 598 

as determined by microarray12. e, Scaled average z-score of significantly upregulated genes detected in 599 

each single cell cluster from Fig. 1a (Supplementary Table 2) as measured in the averaged 600 

LfngT2AVenus tomo-seq gastruloid. Scale bar, 100 μm; A, anterior; P, posterior.  601 

 602 

Extended Data Fig. 4 | Individual replicates of gastruloids, E8.5 embryo tomo-seq and E9.5 603 

posterior mesoderm datasets, and comparison to gastruloid and E8.5 embryonic scRNA-seq 604 

datasets. a, Heatmaps showing the AP expression patterns of 1,199 genes as detected by tomo-seq11 in 605 

individual replicates of 120 h E14-IB10 gastruloids (n = 3 gastruloids, 20 μm sections and n = 2 606 

gastruloids, 8 μm sections) that were cultured in standard1,20 (non-Matrigel based) conditions; average 607 

heatmap of the 5 replicates; average expression of genes found in each tomo-seq domain in the E14-608 

IB10 tomo-seq dataset, projected in the UMAP from Fig. 1a; dot plot showing overlapping genes between 609 

genes detected in each tomo-seq domain in the E14-IB10 tomo-seq dataset, and upregulated genes for 610 

each E8.5 mouse embryonic cell type4. Dot colour represents the probability of finding such a number of 611 

overlapping genes between the two sets by random chance (Methods), and dot size represents the 612 

number of overlapping genes. Only genes that were reproducible between all replicates are shown 613 

(Methods). Genes are clustered based on their AP expression pattern (Methods); Roman-numbered bars 614 

represent tomo-seq clusters. b, Similar to panel a, but for 1,456 genes in 120 h LfngT2AVenus15 (n = 3 615 

gastruloids; 20 μm sections) gastruloids that were cultured in standard1,20 (non-Matrigel based) 616 

conditions. c, Similar to panel a, but for 1,553 genes in E8.5 embryos (n = 3 embryos, 20 μm sections). d, 617 

Similar to panel a, but for 1,989 genes in an E9.5 mouse embryo posterior mesoderm dataset (tail bud to 618 

newly formed somite; n = 3 embryos; previously published microarray data; ~100 μm sections12. All genes 619 
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are in Supplementary Table 6. E14, E14-IB10; Lfng, LfngT2AVenus; AP, anterior-posterior; MD, 620 

mesoderm; NMP, neuro-mesodermal progenitors; EcD, ectoderm; Def, definitive; EnD, endoderm; 621 

Haemato, haemato-endothelial; prog, progenitors; ExE, extra-embryonic; FMH, fore- mid - hindbrain.  622 

 623 

Extended Data Fig. 5 | Comparisons between mouse gastruloid and mouse embryo datasets, 624 

including genes that are reproducible in at least one system. a, Heatmap showing the average AP 625 

expression pattern of 2,065 genes as detected by tomo-seq11 in 120 h mouse gastruloids that were 626 

generated from E14-IB10 and LfngT2AVenus15 mouse ESCs and that were cultured in standard1,20 (non-627 

Matrigel based) conditions; average expression of genes found in each tomo-seq domain in the E14-628 

IB10- LfngT2AVenus comparison heatmap, projected in the UMAP from Fig. 1a; dot plot showing 629 

overlapping genes between genes detected in each tomo-seq domain in panel a, and upregulated genes 630 

for E8.5 mouse embryonic cell types4. Dot colour represents the probability of finding such a number of 631 

overlapping genes by random chance (Methods), and dot size represents the number of overlapping 632 

genes. In contrast to the heatmaps in Fig. 1, this heatmap contains genes that were reproducible in either 633 

E14-IB10 (n = 3 gastruloids, 20 μm sections and n = 2 gastruloids, 8 μm sections) or LfngT2AVenus (n = 634 

3 gastruloids; 20 μm sections) gastruloids (Methods, Supplementary Tables 5-6, Extended Data Fig. 4). 635 

This means that genes that are reproducible in E14-IB10 replicates but not in LfngT2AVenus replicates, 636 

and vice versa, are included. Genes are clustered based on their AP expression pattern (Methods); 637 

Roman-numbered bars represent tomo-seq clusters, which are also indicated with the gray-black barplot. 638 

The red-to-white barplots indicate the P-value of reproducibility of each gene in each heatmap. The order 639 

of these barplots correspond to the order of the heatmaps. b, Similar to panel a, but for 2,804 genes in 640 

that were reproducible in E14-IB10 (n = 3 gastruloids, 20 μm sections and n = 2 gastruloids, 8 μm 641 

sections) or LfngT2AVenus (n = 3 gastruloids; 20 μm sections) or E8.5 mouse embryos (n = 3 embryos; 642 

20 μm sections). c, Similar to panel a, but for 3,086 genes in that were reproducible in E14-IB10 (n = 3 643 

gastruloids, 20 μm sections and n = 2 gastruloids, 8 μm sections) or LfngT2AVenus (n = 3 gastruloids; 20 644 

μm sections) or the E9.5 mouse embryo posterior mesoderm dataset (tail bud to newly formed somite; n 645 

= 3 embryos; previously published microarray data; ~100 μm sections12. Here, only the first 15 tomo-seq 646 

clusters are projected onto the UMAPs. Gene lists are provided in Supplementary Table 8. E14, E14-647 

IB10; Lfng, LfngT2AVenus; AP, anterior-posterior; MD, mesoderm; NMP, neuro-mesodermal progenitors; 648 

EnD, endoderm; Haemato, haemato-endothelial; prog, progenitors; PGC, primordial germ cells; EcD, 649 

ectoderm; Def, definitive; ExE, extra-embryonic.  650 

 651 

Extended Data Fig. 6 | Gene expression profiles in gastruloid and embryo tomo-seq datasets. 652 

Lineplots for the normalized AP expression of genes emphasized in Fig. 1d, f and g for the E14-IB10 and 653 

LfngT2AVenus gastruloids, and for the E8.5 mouse embryo, as measured by tomo-seq11. Each color is a 654 

different replicate.  655 

 656 
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Extended Data Fig. 7 | Kymographs of time-lapse experiments performed on LfngT2AVenus 657 

gastruloids that were embedded in 100% Matrigel at 96 h. a-d, Kymographs (space-time plots) of 658 

brightfield channel and LfngT2AVenus signal along the AP axis of all replicates from all time-lapse 659 

experiments (Experiments 1-4) that are presented in Fig. 2f and in Extended Data Fig. 8e,f. These 660 

gastruloids were embedded in 100% Matrigel (Methods) to stabilize them during imaging, and 661 

subsequently imaged for at least 17 hours (Supplementary Video 1-2, 4-5). Inhibitors were added at the 662 

start of the time-lapse (Methods) and are indicated above the kymographs, together with their 663 

concentration. Asterisks refer to gastruloids used to generate Fig. 3e and Extended Data Fig. 8b. e, Real-664 

time imaging of a LfngT2AVenus gastruloid that was embedded in 100% Matrigel at 96 h and to which the 665 

Notch-inhibitor DAPT was added at 96.5 h (Supplementary Video 2; Lfng signal disappears ~6 hours after 666 

DAPT addition). Corresponding kymographs in panel a. A, Anterior; P, Posterior. 667 

 668 

Extended Data Fig. 8 | Detrending procedure and Lomb-Scargle analysis of replicates from Fig. 2, 669 

and measurements of elongation and differentiation front speed in small panel screening and 670 

upon BGJ389 and PD17 treatment. a, Black line, measured intensity of the Lfng signal along the white-671 

dashed line in Fig. 2c; blue line, trend (Methods) of this signal, and periodogram of the Lfng oscillations in 672 

Fig. 2d, as determined by Lomb-Scargle decomposition. b, As in a, but then for the 13 DMSO-control 673 

LfngT2AVenus gastruloid replicates shown in Extended Data Fig. 7c-d. c, cyclical component of the 674 

scaled intensity of the LfngT2AVenus oscillations relative to the trendline shown in b. A.U., arbitrary units. 675 

d, Periodogram of the Lfng oscillations in c, as determined by Lomb-Scargle decomposition (Methods). 676 

Gastruloids used for this experiment were embedded in 100% Matrigel at 96 h, and subsequently imaged 677 

for at least 17 hours (Supplementary Video 6). e-f, Speed of posterior gastruloid elongation (VPSM) and 678 

speed of posteriorly moving differentiation front (VDIFF; see explanation in Extended Data Fig. 9a) in 679 

LfngT2AVenus gastruloids treated with DMSO (control), or with various inhibitors (Supplementary Videos 680 

3, 5). Points refer to replicates; kymographs of replicates in Extended Data Fig. 7. Box plots: center line, 681 

median; box limits, 1st and 3rd quartiles; whiskers, range. 682 

 683 

Extended Data Fig. 9 | Explanation on how elongation and differentiation front speed were 684 

measured, and HCR stainings and live-imaging kymographs of gastruloids embedded in 10% 685 

Matrigel. a, Kymographs (space-time plots) of brightfield channel and LfngT2AVenus signal along the AP 686 

axis of a DMSO-treated (control) and a PD03-treated (MEK/ERK inhibitor) LfngT2AVenus gastruloid. 687 

Gastruloids were embedded in 100% Matrigel at 96 h; DMSO or PD03 (66.7 μM) was added at 96.5 h. 688 

Kymographs were used to measure the elongation speed of the gastruloid (angle of blue dashed line; 689 

VPSM; Methods) and the speed of the differentiation front (angle of red dashed line; VDIFF). b, 690 

LfngT2AVenus gastruloids that were embedded in 10% Matrigel (Methods) at 96 h and stained for 691 

Uncx4.1 using HCR21 at 120 h. Zoom in of the left gastruloid is shown in Fig. 3b. c, Kymographs of 692 

LfngT2AVenus signal and brightfield channel along the AP axis of gastruloids that were embedded in 693 
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10% Matrigel at 96 h, and subsequently imaged for 20 hours (Supplementary Video 6). Top kymograph 694 

belongs to the gastruloid that is shown in Fig. 3c. A, Anterior; P, Posterior; Scale bar, 200 μm.   695 

 

Extended Data Fig. 10 | Uncx4.1/Tbx18/Ripply2 stainings and somite size measurements. a, HCR21 696 

double staining for Uncx4.1 (cyan) and Tbx18 (magenta) on a 120 h LfngT2AVenus gastruloids 697 

embedded in 10% Matrigel at 96 h. To replicate 4, 1.3 μM of PD03 was added at 96.5 h. b, Similar to 698 

panel a, but now for Uncx4.1 (cyan) and Ripply2 (yellow). c, Intensity of Uncx4.1 and Tbx18 signal along 699 

the AP axis of the gastruloids in panel a. Peaks (circles) are called on the smoothened Uncx4.1 profile 700 

(dark blue; Methods). d, Similar to panel c, but now for the Uncx4.1 and Ripply2 stained gastruloids from 701 

panel b. e, Distance between Uncx4.1 peaks in the 120 h LfngT2AVenus gastruloids (n = 7) from 702 

replicates 1-6 in panels a-d and in replicate 7 (which is shown in Fig. 3d). Replicate 8 was excluded from 703 

quantification and both replicate 4 and 7 were incubated in 1.3 μM PD03 from 96 - 120 h. A, Anterior; P, 704 

Posterior; Scale bar, 200 μm. 705 


