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 13 

Abstract  Coastal protections, such as dykes, seawalls, breakwaters and natural beaches 14 

can often be considered as porous structures. The accurate prediction of wave motion 15 

around porous structures is necessary for the effective design of durable coastal 16 

protections. Smoothed particle hydrodynamics (SPH) is a meshless particle-based method 17 

suitable for the simulations of violent free-surface flows and their interaction with 18 

structures. In this paper, an incompressible SPH (ISPH) model is applied to the 19 

simulations of solitary wave runup on permeable slopes. The apparent density concept is 20 

introduced to allow the smooth particles’ volume to change when shifting between the 21 

pure-fluid region and porous region. The present simulations consider both the triangular 22 

beaches with uniform permeability and the solid beaches with overlying porous layers. 23 

The study focuses on the influence of permeability on the maximum wave runup heights. 24 

New runup laws are proposed, which offer guidelines for the design of porous coastal 25 

protections. 26 

 27 
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 29 

1. Introduction 30 

    Wave runup height is a critical factor for designing coastal structures, such as 31 

revetments, breakwaters and seawalls. These structures are often constructed to mitigate 32 

the risk of wave attacks, including storm surges and tsunami waves. As the wavelength 33 

of tsunamis is long, its phase speed is proportional to the square root of the water depth. 34 
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In shallow waters, the height of a tsunami grows, while the propagation speed decreases. 35 

Tsunami waves moving in shallow waters can break and cause severe damage on coastal 36 

structures (Lo and Shao, 2002). Among the most catastrophic events in recent history is 37 

the Sumatra Tsunami on 26 December 2004. Induced by an underwater earthquake, this 38 

tsunami hit Indonesia, Thailand, Malaysia, Myanmar, Bangladesh, India, Sri Lanka, 39 

Maldives and coastal countries in Africa; the number of dead and missing was over 40 

226,000. Similarly, a 9.0 MW earthquake occurred off the Pacific coast of Tohoku, Japan, 41 

on 11 March 2011. The resulting tsunami inundated over 400 km2 of land, leaving more 42 

than 20,000 people dead or missing. These mega disasters highlight the importance of 43 

effective management of coastal areas. 44 

    Tsunami waves have traditionally been conveniently modelled as solitary waves (Lin 45 

et al., 1999; Chang et al., 2009, Liang et al. 2013b). Large-scale experiments of solitary 46 

wave runup on idealised slopes have been conducted to investigate the tsunami wave 47 

interaction with beaches. Hall and Watts’s (1953) experiment is among the earliest studies 48 

of solitary wave runup on a plane slope. Later, Synolakis (1986) conducted a series of 49 

classical experiments on solitary wave propagation over a 1:19.85 sloped beach. In his 50 

study, wave profiles were captured and compared with the analytical solutions. Chang et 51 

al. (2009) conducted similar experiments to re-examine the behaviour of breaking waves 52 

with improved and detailed measurement on a 1:20 slope. As for very mild beaches, Hsiao 53 

et al. (2008) conducted large-scale experiments of wave runup on a 1:60 slope.  54 

    Various numerical models have been applied to the study of the interaction between 55 

solitary waves and coastlines. Lin et al. (1999) investigated solitary wave runup and 56 

rundown on a 1:20 slope using a Reynolds-Averaged Navier–Stokes (RANS) model. 57 

They analysed the pressure and velocity fields during the runup and rundown processes. 58 
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The wave profiles were compared with those obtained in experiments, the solutions to the 59 

Boussinesq equations and the results of the shallow water equations. Xiao and Huang 60 

(2008) also utilised a RANS model, with the k-ε turbulence closure, to investigate solitary 61 

wave runup on a 1:20 slope. Liang et al. (2013a, 2013b) coupled the Boussinesq and non-62 

linear shallow-water equations to investigate solitary wave and N-wave interactions with 63 

uniform slopes. Owing to its capability of capturing violent free-surface deformations, 64 

Smoothed Particle Hydrodynamics (SPH) has also been applied to solitary wave runup 65 

problems. Monaghan and Kos (1999), for instance, studied the wave impact on typical 66 

Cretan beach using a numerical wave flume based on the weakly compressible SPH 67 

(WCSPH) method. Meanwhile, Kim and Ko (2008) and Memarzadeh and Hejazi (2012) 68 

investigated the solitary wave runup on a relatively steep slope with the incompressible 69 

SPH (ISPH) method. The ISPH model was also used by Shadloo et al. (2015) to study the 70 

wave dynamics on a mild slope.  71 

    Almost all the above-mentioned studies assume a solid impermeable slope as a 72 

representation of the natural beach. Actual beaches generally consist of sand, pebbles, 73 

cobbles, gravels or vegetations. Shao (2010) presented an innovative investigation to 74 

apply the ISPH method to flows through porous media. In his model, the effect of the 75 

porous media on the flow is described by an additional friction force. An imaginary grid 76 

line is defined at the interface between the porous region and the fluid region. Ren et al. 77 

(2016) implemented a WCSPH framework to simulate wave motion and turbulent flow 78 

around porous media. They set the background porosity points which contained porosity 79 

information and proposed a transition zone between fluid and porous regions. The gradual 80 

transition of porosity helped avoid numerical instabilities. Many efforts have been made 81 

to improve porous flow modelling in the last decade (Pahar and Dhar, 2017; Khayyer et 82 
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al. 2018; Kazemi et al. 2020a; Kazemi et al. 2020b; Wen et al. 2020). Qu et al. (2019) 83 

applied a nonhydrostatic model to the simulations of wave runup through gravel layers 84 

overlaying an impermeable slope. Tsurudome et al. (2020) simulated solitary wave 85 

propagation over a permeable beach using the ISPH method, which contained only 86 

limited steep slope cases. Lucy et al. (2021) investigated the solitary wave interactions 87 

with sandy seawalls and uniformly sloped beaches with a Material Point Method (MPM), 88 

which is another type of meshfree method.  89 

    For sandy beaches or beaches covered with thick vegetation layers, they do not 90 

behave as solid boundaries and their permeability has to be considered in order to 91 

accurately estimate the runup heights. In this paper, an ISPH model is established to 92 

simulate the solitary wave runup on permeable slopes of different gradients. Firstly, wave 93 

runup on a solid slope is briefly reviewed and verified. Then, permeable triangular 94 

beaches are considered in both steep and mild slopes. Finally, the situation of a permeable 95 

layer overlying a solid beach is considered. The empirical relationship between the runup 96 

height and beach permeability is established. 97 

 98 

2. ISPH model for flows inside and outside porous media 99 

2.1 Governing equations  100 

    The governing equations are the momentum-conservation equation and mass-101 

conservation equation. Ren et al. (2016) derived the precise equations governing the 102 

porous flow, which have also been used in Akbari and Toarbbeigi (2021), Kazemi et al. 103 

(2020) and Wen et al. (2020). The current study adopts a simplified version of those 104 

equations by disregarding the spatial and temporal variations of the porosity. Because the 105 

porous media are immobile in this study, the time derivative of the porosity is indeed zero. 106 
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The spatial derivative of the porosity is non-zero only at the boundary of the porous media, 107 

i.e., the interface between the pure liquid region and porous region. Since all numerical 108 

simulations need to introduce an artificial transition layer between the pure-liquid region 109 

and the porous region to maintain numerical stability, the spatial variation of the porosity 110 

is numerical rather than physical. As a result, the accurate evaluation of the spatial 111 

derivative of the porosity is not crucial for the present study.  112 

𝐷𝒖

𝐷𝑡
= −

1

𝜌
∇𝑃 + 𝒈 + 𝜈∇2𝒖 +

1

𝜌
∇ ∙ 𝝉 +

𝑹

𝜌
  , (1) 

1

𝜌

𝐷𝜌

𝐷𝑡
+ ∇ ∙ 𝒖 = 0, (2) 

where 
𝐷

𝐷𝑡
 represents the material derivative, u is the liquid velocity, ρ is the density, P is 113 

pressure, 𝒈  represents the gravity acceleration vector, ν is the kinematic viscosity 114 

coefficient, τ is the turbulent stress tensor that will be discussed later on, and R is the 115 

extra resistance force for the fluid flow inside the porous media that will be discussed in 116 

the next paragraph. In our model, the porous media are immobile and only the liquid 117 

movement inside and outside the porous media is computed. In the pure liquid region, the 118 

definitions of the velocity and density are apparent. Inside the porous media, the velocity 119 

in Equations (1-2) should be understood as the actual pore liquid velocity or the intrinsic 120 

velocity, which is equal to the Darcy velocity divided by porosity, while the density should 121 

be taken to be the apparent density as detailed in the next section. When a liquid particle 122 

moves from the pure liquid region to the porous region, its mass does not change. 123 

However, its apparent density and volume shall increase to take into account that liquid 124 

can only occupy the intergranular pores. Consequently, liquid particles move in the 125 

porous region according to the intrinsic velocity.  126 
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    Inside the porous media, the effect of the solid skeleton on the fluid flow can be 127 

modelled by an additional resistance force R, whose value can be calculated with Ergun’s 128 

law (Peng et al., 2017; Khayyer et al., 2018). 129 

𝑹 = −
𝜇

𝐾𝑝
𝒖 −

1.75

√150

𝜌

√𝐾𝑝𝑁𝑤
3
2

|𝒖|𝒖  (3) 

where μ is the dynamic viscosity coefficient, Kp is the intrinsic permeability, and Nw is 130 

the porosity. For flow inside a porous structure, R calculated by Equation (3) represents 131 

the drag force imposed on the liquid by the solid skeleton of the porous media. For flow 132 

outside the porous medium, R is set to zero and thus this extra resistance force vanishes 133 

from the momentum equation.  134 

    It should be noted that the porous media may be considered to be made of sediment, 135 

such as sandy beaches and rubble mound breakwaters, vegetation layer, such as coastal 136 

forests and mangrove swamps, or engineering materials, such as permeable bricks and 137 

pavements. This study focuses on the isolated influence of permeability on the wave 138 

runup, while porosity is fixed and the surface of the porous media is assumed to be smooth. 139 

We are currently undertaking studies on the influences of porosity and surface roughness 140 

of porous media and will report the findings in another paper.  141 

 142 

2.2 ISPH algorithm 143 

    The detailed explanation of the ISPH algorithm can be found in Lo and Shao (2002), 144 

Shao and Lo (2003) and Khayyer et al. (2009, 2018). The pressure is obtained by the 145 

solution of the Pressure Poisson Equation (PPE). In this study, the source term for the 146 

PPE is a combination of the standard source term and the higher-order source (HS) term. 147 

The HS scheme was first developed by Khayyer et al. (2009). The modified PPE thus 148 

becomes:  149 
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∇ ∙ (
1

𝜌∗
∇𝑃𝑡+1)

𝑖

= 𝛾
1

𝜌0∆𝑡
(∑ 𝑚𝑗∇𝑖𝑊𝑖𝑗 ∙ 𝒖𝑖𝑗

𝑗

)

𝑖

∗

+ (1 − 𝛾)
𝜌0 − 𝜌∗

𝜌0∆𝑡2
, (4) 

where γ is the combination ratio, mj is the mass of the smooth particle j, Wij is the value 150 

of the kernel function between particles i and j, ∇𝑖𝑊𝑖𝑗  is the gradient of the kernel 151 

function with respect to the coordinates of particle i, uij represents 𝒖𝑗 − 𝒖𝑖 , i.e., the 152 

velocity difference between particles i and j, Δt is time step, the subscript t+1 represents 153 

quantity at the next time level, the subscript 0 denotes the initially specified reference 154 

values, and * denotes the quantities at the intermediate stage. The computational results 155 

are sensitive to the value of the combination ratio γ. The present numerical experiments 156 

show that γ = 0.97 leads to the best results, which is consistent with the findings by Gui 157 

et al. (2015). In this study, a C2 Wendland kernel (Wendland, 1995) is adopted. The 158 

complete implementation of the ISPH algorithm can be found in Liang et al. (2017) and 159 

Tsurudome (2020).  160 

 161 

2.3 Apparent density  162 

    As the fluid particles can only occupy the void in the solid skeleton, the apparent 163 

density concept (Akbari, 2014) is adopted to modify the fluid particle density in the 164 

porous region of the computational domain. The apparent density and volume of a fluid 165 

particle at location i are defined as: 166 

𝜌𝑖 = 𝑁𝑤𝑖𝜌𝑤 , (5) 

𝑉𝑖 =
𝑚𝑖

𝜌𝑖
, (6) 

where 𝜌𝑤 is the density of the fluid in the region without porous media and 𝑁𝑤𝑖 is the 167 

porosity at location i. Hence, if a fluid particle is located inside the porous media, the 168 

apparent density becomes less than 𝜌𝑤 , which increases the apparent volume of the 169 
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particle. Therefore, particles are more sparsely distributed in the porous region than those 170 

in the pure fluid region. According to the smooth particle interpolation algorithm, a 171 

variable at position j can be approximated as:  172 

𝜙𝑗 = ∑ 𝜙𝑖𝑊𝑖𝑗

𝑚𝑖

𝜌𝑖
 (7) 

where ϕ can be any variable, such as pressure or velocity, while the summation is over a 173 

compact neighbourhood where the kernel function is non-zero. It can be seen that the 174 

weight of the interpolation is increased in the porous medium region, as the fluid particles 175 

there have a smaller density and thus a larger volume. Hence, the sparser distribution of 176 

liquid particles in the porous region, as compared to the pure-fluid region, still satisfies 177 

the consistency condition. 178 

 179 

Figure 1 Schematic of the porous particle deployment 180 

 181 

    The porosity in the pure liquid region can be regarded to be one. In the current ISPH 182 

framework, the presence of the porous media is solely determined by existence of less-183 

than-one porosity in the computational domain. The location of the porous media is 184 

prescribed by deploying dummy particles. Hereafter, these dummy particles are referred 185 
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to as porous particles. It should be noted that these porous particles are only used to 186 

indicate the location of the porous region and the calculation of the apparent densities at 187 

different positions. They are never involved in the ISPH computation. As seen in Figure 188 

1, the fluid particles are initially configurated with spacing dp in the pure liquid region 189 

and with spacing 
𝑑𝑝

√𝑁𝑤
 in the porous region. Immobile porous particles are placed at the 190 

outer boundary of and inside the porous media at spacing 
𝑑𝑝

√𝑁𝑤
. The smoothing length is 191 

fixed at 
1.2𝑑𝑝

√𝑁𝑤
 in the entire region, which ensures the consistent integral interpolation. 192 

    The apparent porosity at the position of a water particle i, 𝑁𝑤𝑖 , is calculated 193 

according to the following equation. 194 

𝑁𝑤𝑖 = 1 − (1 − 𝑁𝑤)
𝜌𝑝𝑖

𝜌𝑝
, (8) 

where 𝜌𝑝 is density of the porous material. 𝜌𝑝𝑖 denotes the density of porous media at 195 

the position of the water particle i, which can be evaluated to be:  196 

𝜌𝑝𝑖 = ∑ 𝑚𝑝𝑗𝑊𝑖𝑗

𝑗

, (9) 

where 𝑚𝑝𝑗 is the mass of the porous particle j. If no porous particles can be found in the 197 

neighbourhood centred at particle i, then the value of 𝜌𝑝𝑖 is set to zero.  198 

    The actual mass 𝑚𝑝 and density 𝜌𝑝 of porous particles are not important, since 199 

only the dimensionless porosity Nwi is used in the ISPH solution of the governing 200 

equations. In the pure liquid region, the values of 𝜌𝑝𝑖 and 𝑁𝑤𝑖 are 0 and 1, respectively, 201 

according to Equations (8-9), except in a thin layer adjacent to the boundary of the porous 202 

region. Similarly, in the porous region, the values of 𝜌𝑝𝑖  and 𝑁𝑤𝑖  are 𝜌𝑝  and Nw, 203 

respectively, except in a thin layer close to the porous boundary. As a liquid particle 204 

moves from the middle of the pure liquid region to the middle of the porous region, the 205 
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porosity associated with this particle changes from 1 to Nw. There is a transition layer 206 

centred at the interface between the pure liquid region and porous region, through which 207 

porosity gradually transits from 1 to Nw. The thickness of the transition layer is around 208 

two times the smoothing length, as indicated in Figure 1. Corresponding to the variation 209 

of porosity through this transition layer, the density of this liquid particle decreases from 210 

𝜌𝑤  to 𝑁𝑤𝜌𝑤 , and the volume of this liquid particle increases from 𝑚𝑖 𝜌𝑤⁄  to 211 

𝑚𝑖 (𝑁𝑤𝜌𝑤)⁄ .  212 

 213 

2.4 Turbulence model 214 

The Sub-Particle Scale (SPS) turbulence model (Gotoh et al., 2001, 2004) is 215 

coupled with the present ISPH method. In the SPS model, the additional turbulent stress 216 

tensor 𝝉 is considered in the governing equation. The eddy viscosity assumption is 217 

adopted to express the turbulent stress tensor. After merging the turbulent kinetic energy 218 

term into the pressure term, the turbulent stress can be expressed as:  219 

𝝉

𝜌
= 2𝜈𝑡𝑺 (10) 

where 𝜈𝑡 is the eddy viscosity coefficient. The SPS strain rate tensor 𝑺 is:  220 

𝑺 =
1

2
(∇𝒖 + ∇𝒖𝑻) (11) 

The widely-used Smagorinsky model is adopted hereby to determine the turbulence eddy 221 

viscosity coefficient as follows: 222 

𝜈𝑡 = (𝐶𝑠 𝑑𝑝)2|𝑺| (12) 

where Cs is the Smagorinsky constant set to 0.1 in this study, and dp is the initial particle 223 

spacing in the pure liquid region. The local strain rate magnitude |𝑺| is defined by 224 

|𝑺| = √2𝑺: 𝑺 (13) 
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The developed model has been applied to a dam-break flow through a porous block 225 

and found to agree well with the experimental results of Liu et al. (1999). For further 226 

details about the numerical model and model verifications, readers are referred to 227 

Tsurudome et al. (2020). 228 

 229 

2.5 Free surface particles 230 

    The particles located at the free surface need to be determined, whose pressure is set 231 

to zero before solving the Poisson pressure equation. Particle density has often been used 232 

to find free surface particles. If the density of particle i is smaller than a threshold value, 233 

then particle i is identified as a particle at the free surface. Traditionally, the particle 234 

density, associated with the free surface detection, is calculated by the following equation.  235 

𝜌𝑖
𝐹𝑟𝑒𝑒−𝑠𝑢𝑟𝑓𝑎𝑐𝑒

= ∑ 𝑚𝑗𝑊𝑖𝑗

𝑗

 (14) 

However, in the porous region, the fluid particles are more sparsely distributed and the 236 

particle density defined in this way will always be smaller than the threshold value. Hence, 237 

the traditional way will lead to the false detection of free surface particles. In this study, 238 

Equation (14) is modified based on the porosity and apparent density of neighbouring 239 

fluid particles: 240 

𝜌𝑖
𝐹𝑟𝑒𝑒−𝑠𝑢𝑟𝑓𝑎𝑐𝑒

= ∑ 𝜌𝑗

𝑗

(
𝑑𝑝

√𝑁𝑤𝑗

)

2

𝑊𝑖𝑗 (15) 

The reference density for particle i is calculated at each time step according to the 241 

instantaneous porosity and apparent density of particle i. In calculating the reference 242 

density for particle i, it is assumed that all the neighbouring fluid particles have the same 243 
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density as particle i and are regularly placed around the target particle i with spacing 244 

𝑑𝑝

√𝑁𝑤𝑗 
 , as shown in Figure 2. 245 

𝜌𝑖
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = ∑ 𝜌𝑗

𝑗

(
𝑑𝑝

√𝑁𝑤𝑗

)

2

𝑊𝑖𝑗
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

𝑊𝑖𝑗
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑊(|𝒓𝑗

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝒓𝑖|, ℎ) 

(16) 

 246 

 247 

Figure 2 Virtual neighbouring particle distribution for calculating the reference density 248 

 249 

The reference density calculated in this way basically assumes that the target particle i is 250 

an inner particle. The non-dimensional modified criterion is:  251 

𝜌
𝑖
𝐹𝑟𝑒𝑒−𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝜌𝑖
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

< 𝜃 (17) 

where the threshold ratio θ is a constant between 0.95 and 1.0. If this criterion is met, then 252 

particle i is regarded as a free surface particle. This method of judging the free surface 253 

particles is universally applicable to the porous region, pure fluid region and the transition 254 

region.  255 

 256 



13 

 

  257 

 258 

2.6 Wave-generation theory 259 

    A solitary wave is a single bulge of water above the still-water depth. Theories to 260 

describe the wave profile have been proposed by Boussinesq. A solitary wave can be 261 

generated in a wave flume by a piston (Goring, 1978). In this paper, such a piston-type 262 

wavemaker is used to generate solitary waves in the simulation.  263 

    Based on the Rayleigh wave theory, Katell and Eric (2002) propose the following 264 

equation for the paddle displacement: 265 

𝑋𝑅(𝑡) =
2𝜀

𝛽𝑅
tanh [

𝛽𝑅(𝑐𝑅𝑡 − 𝑋𝑅(𝑡))

2
] ,  𝜀 =

𝐻

ℎ0
  , (18) 

where XR is the horizontal position of the paddle, H is the initial wave height, h0 is the 266 

mean water depth, 𝛽𝑅 is the outskirts decay coefficient and 𝑐𝑅 is the wave speed given 267 

by:  268 

𝛽𝑅 =
1

ℎ0

√
3𝜀

1 + 𝜀
, 

𝑐𝑅 = √𝑔(𝐻 + ℎ0). 

(19) 

If the displacement of the paddle is small, then Equation (18) can be solved explicitly 269 

after linearisation: 270 

𝑋𝑅(𝑡) =
2𝜀

𝛽𝑅

tanh (
𝛽𝑅𝑐𝑅𝑡

2 )

1 + 𝜀 [1 − tanh2 (
𝛽𝑅𝑐𝑅𝑡

2 )]
. (20) 

The total stroke of the wave paddle will then simply become:  271 

𝑆𝑅 = 4√
𝐻(𝐻 + ℎ0)

3
. (21) 

 272 
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3. Model verification: Wave runup on solid slopes 273 

3.1 Wave runup laws  274 

    Many studies have been undertaken to predict wave runup height on solid beaches. 275 

Carrier and Greenspan (1953) obtained solutions of the non-linear shallow-water 276 

equations concerning the wave propagation over a slope. They presented findings of the 277 

nonbreaking waves during their climbing up a slope. Synolakis (1986) extensively 278 

investigated solitary wave runup height through experiments and analyses in his PhD 279 

thesis, with all key findings summarised in Synolakis (1987). He proposed the following 280 

law for nonbreaking waves: 281 

𝑅

ℎ0
= 2.831(cot𝜑)

1

2 (
𝐻

ℎ0
)

5

4
, (22) 

and the following law for breaking waves on a 1:20 slope:  282 

𝑅

ℎ0
= 1.109 (

𝐻

ℎ0
)

0.582

. (23) 

In Equations (22) and (23), R is the maximum wave runup height, φ is a slope angle. R is 283 

defined as the maximum elevation that water reaches on the slope during runup, with the 284 

still water level coinciding zero elevation. Synolakis also found the critical wave heights 285 

beyond which waves would break on the slope, which were dependent on the slope angle. 286 

𝐻

ℎ0
= 0.8183(cot𝜑)−

10
9 . (24) 

    Since then, numerous improvements have been made to the above formulae. Li and 287 

Raichlen (2001) modified Synolakis’s (1986) runup-height law for nonbreaking waves as 288 

follows. 289 

𝑅

ℎ0
= 2.831(cot𝜑)

1
2 (

𝐻

ℎ0
)

5
4

+ 0.293(cot𝜑)
3
2 (

𝐻

ℎ0
)

9
4

. (25) 
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Equation (25) provides more accurate estimation of the runup heights, which agrees better 290 

with the experimental data in both relatively steep (1:2.08) and mild slopes (1:20). In 291 

estimating the runup height, Hughes (2004) first evaluated the nondimensional wave 292 

momentum flux 𝑀𝐹, using the first-order solitary wave theory:  293 

(
𝑀𝐹

𝜌𝑔ℎ0
2)

𝑚𝑎𝑥

=
1

2
[(

𝐻

ℎ0
)

2

+ 2 (
𝐻

ℎ0
)]

+
𝑁2

2𝑀
(

𝐻

ℎ0
+ 1) {tan [

𝑀

2
(

𝐻

ℎ0
+ 1)]

+
1

3
tan3 [

𝑀

2
(

𝐻

ℎ0
+ 1)]}. 

(26) 

The coefficients M and N in Equation (26) can be approximated by the following 294 

empirical relationships: 295 

𝑀 = 0.98 {tanh [2.24 (
𝐻

ℎ0
)]}

0.44

 

𝑁 = 0.69tanh [2.38 (
𝐻

ℎ0
)]. 

(27) 

Hughes (2004) then derived the following runup law for nonbreaking solitary waves from 296 

the momentum flux: 297 

𝑅

ℎ0
= 1.82(cot𝜑)

1
5 (

𝑀𝐹

𝜌𝑔ℎ0
2) (28) 

Meanwhile, the following runup law for breaking solitary waves was obtained according 298 

to the momentum flux: 299 

𝑅

ℎ0
= (1.39 − 0.027cot𝜑) (

𝑀𝐹

𝜌𝑔ℎ0
2)

1
2

. (29) 

 300 

3.2 A 1:2.08 slope 301 

    In this section, wave runup on a steep solid slope is examined. The setup of the 302 

computational domain is sketched in Figure 3. All of the walls and bottoms are solid. The 303 
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flat-bed section is 2.07 m long, which is followed by a plane beach with a 1:2.08 slope. 304 

The total horizontal length of the numerical wave flume is approximately 3.0 m. The 305 

water depth was set to 0.21 m. Solitary waves were generated at the left end, with different 306 

relative wave heights 𝐻 ℎ0⁄  of 0.100, 0.163, 0.200, 0.250 and 0.300. Based on Equation 307 

(24), the wave height needs to be more than 1.8 times the water depth for the wave to 308 

break. Hence, all the considered waves are expected to be nonbreaking during the runup 309 

process. The essential parameters are listed in Table 1. 310 

 311 

Figure 3. Setup of a 1:2.08 solid slope 312 

Table 1. Computational parameters for wave runup on solid slopes 313 

Parameters Values 

Diameter of particles (m) 0.005  

Initial particle spacing (m) 0.005  

Smoothing length (m) 0.006  

Initial time step (s) 0.00025  

 314 

    Figure 4 compares the present ISPH simulation results with several past researches 315 

including the experimental measurements and the theoretical solutions. In our study, we 316 
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have checked that the wave height is kept nearly constant as the wave propagates over 317 

the flat-bed section, indicating insignificant numerical dissipation in the current 318 

simulations. As waves do not break on this steep slope, the mechanical energy of the 319 

system is expected to be conserved during the propagation and runup. Using the ISPH 320 

model, the computed relative runup height 𝑅 ℎ0⁄  is predicted to be 0.469 with the wave 321 

𝐻 ℎ0⁄  = 0.163, and 0.848 with the wave 𝐻 ℎ0⁄  = 0.25. Three runup-height theories show 322 

slightly different trends as 𝐻 ℎ0⁄  increases. Li and Raichlen’s (2001) law provides the 323 

closest match with the experimental results, whereas Synolakis’s (1986) and Hughes’ 324 

(2004) laws underestimate the runup height. The results of the present ISPH show good 325 

agreement with the theories and measurements for 𝐻 ℎ0⁄  = 0.10 and 0.163. The relative 326 

difference between the present simulation and the experimental measurement is less than 327 

7 % for these two cases. The present model tends to slightly overestimate runup height, 328 

as the incident wave height grows. However, the present results support the good 329 

performance of the Li and Raichlen’s (2001) solution. 330 

 331 

Figure 4. Runup heights on a 1:2.08 solid slope 332 
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 333 

 334 

3.3 A 1:20 slope   335 

    In this section, wave runup on a mild solid slope is investigated. The setup of the 336 

computational domain is illustrated in Figure 5. The flat-bottomed length is 2.00 m, 337 

followed by a 1:20 slope. The total horizontal length of the wave flume is approximately 338 

10.0 m owning to the mild slope. The mean water depth is 0.21 m. A series of solitary 339 

waves are generated at the left end with the relative heights of 𝐻 ℎ0⁄  = 0.100, 0.188, 340 

0.280, or 0.416. From Equation (24), the threshold relative wave height is 0.0295, 341 

meaning that all the generated waves are expected to break when climbing up the slope. 342 

The simulation parameters are listed in Table 1. 343 

 344 

Figure 5. Setup of a 1:20 solid slope 345 

 346 

    Figure 6 compares the runup heights obtained from the present ISPH simulations, 347 

the experimental data, and the theoretical solutions. The relative difference between the 348 

ISPH simulations and the experimental data is around 14%, which is two times as large 349 

as the cases of nonbreaking waves. The runup heights simulated by the present ISPH tend 350 

to be lower than those observed in the experiments. However, the trend follows the 351 
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analytical solutions, and the ISPH results generally agree well with the runup-height law 352 

of Synolakis (1986). 353 

 354 

Figure 6. Runup heights on a 1:20 solid slope 355 

 356 

4. Model Application 1: Permeable triangular beach 357 

4.1 A 1:2.08 slope 358 

    In this section, wave runup on a mild permeable slope is simulated. The wave flume 359 

is 3.0 m long, and a triangle-shaped porous medium is located at x = 2.07 m − 3 m. The 360 

slope is 1:2.08 (φ ≈ 25.68°). The dimensions of the domain are the same as those shown 361 

in Figure 3, but the slope is entirely permeable in this case. As seen in Equation (3), the 362 

interacting force between the porous beach structure and the moving water is affected by 363 

the beach permeability and porosity. In the following simulations, the permeability is 364 

varied, but the porosity of the slope is fixed at 0.49. The computational parameters are 365 

listed in Table 2. The mean water depth is 0.21 m, and two wave heights are tested: 366 

0.03423 m (𝐻 ℎ0⁄  = 0.163) and 0.0525 m (𝐻 ℎ0⁄  = 0.25). In these simulations, the runup 367 
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height is defined as the highest point of the wave at the water-porous boundary. Although 368 

the same computational domain and settings were used in Tsurudome et al. (2020), further 369 

analysis and discussion on runup height are shown in this section. 370 

 371 

Table 2. Computational parameters for wave runup on a 1:2.08 sloped porous beach 372 

Parameters Values 

Diameter of particles (m) 0.005  

Initial particle spacing of fluid particles (m) 0.005  

Particle spacing of porous particles (m) 0.007  

Smoothing length (m) 0.0085  

Initial time step (s) 0.00025  

Permeability of porous media (m2) 

1.21 × 10−10, 1.88 × 10−10, 7.54×

10−10, 3.02× 10−9, 1.21 × 10−9, 3.02×

10−7, 1.21 × 10−6, 7.54× 10−6, 3.02×

10−5, 1.21 × 10−4 

     373 

    Figures 7 and 8 show typical snapshots of solitary wave runup on a permeable beach, 374 

with the permeability Kp = 3.02 × 10−7 m2 and 1.88 × 10−10 m2, respectively. The 375 

initial wave height is 0.03423 m (𝐻 ℎ0⁄  = 0.163). When the permeability is Kp = 3.02 ×376 

10−9m2, the wavefront reaches the permeable slope at t = 3.50 s. The wave is partly 377 

blocked by the permeable beach as it is partially transmissive. At t = 4.05 s, the flow 378 

reaches the highest point on the permeable slope. Some fluid particles can be observed in 379 

the porous media located between the mean water level and the wave crest. These fluid 380 

particles penetrate through the permeable beach from the pure fluid region. In Figure 8, 381 

the wavefront appears to be chopped and discontinuous around the water-porous 382 

boundary due to low permeability. During runup, the water table keeps its initial level, at 383 
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0.21 m. Fluid particles slide on the permeable beach, and no particles penetrate through 384 

the water-porous boundary. 385 

 386 

(a) t = 3.50 s 387 

 388 

(b) t = 4.05 s 389 



22 

 

Figure 7. Wave propagation through a 1:2.08 sloped permeable beach (Kp = 3.02 ×390 

10−9m2 391 

 392 

 393 

(a) t = 3.25 s 394 

 395 

(b) t = 3.95 s 396 

Figure 8. Wave propagation through a 1:2.08 sloped permeable beach (Kp =1.88 ×397 

10−10m2) 398 
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 399 

    Figure 9 summarises the runup heights of the two different wave heights on beaches 400 

of various permeabilities. The horizontal axis is in logarithmic. The runup height 401 

decreases nearly linearly, as the permeability increases logarithmically. Therefore, there 402 

exists a power law between the runup height and the permeability.  403 

    Based on the data presented in Figure 9, the runup height law on permeable beaches 404 

can be expected to be:  405 

𝑅 = 𝑘1𝐾𝑝𝑘2 , (30) 

where 𝑘1 and 𝑘2 are coefficients. In our study, 𝑘2 can be estimated at around −0.026 406 

and k1 can be estimated to be:   407 

𝑘1 = 44.7    for 𝐻 = 0.03423 m, 

𝑘1 = 77.1   for 𝐻 =  0.0525 m, 
(31) 

In order to derive a universal formula, we assume that k1 can be written as 408 

𝑘1 = 𝑘3

𝑅𝑠

(ℎ0
2)𝑘2

, (32) 

where 𝑅𝑠 is the runup height on the corresponding solid slope with the same incoming 409 

wave height H. Then, 𝑘3 can be estimated to be 0.481 for both waves. The runup law 410 

for the wave propagating on a 1:2.08 permeable slope can be derived to be:  411 

𝑅 = 0.481𝑅𝑠 (
𝐾𝑝

ℎ0
2 )

−0.026

. (33) 

 412 

    In Figure 9, the dashed lines represent the estimated runup heights obtained through 413 

Equation (33) for two waves considered. With regard to the wave height of H = 0.03423 414 

m, the estimated runup height agrees well with the simulated runup height for all grain 415 

diameters. Although Equation (33) tends to slightly overestimate height when the grain 416 
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size is relatively large for the wave height of H = 0.0525 m, the overall estimation is 417 

satisfactory. Hence, we can expect the equation (33) to describe a universal relationship 418 

for non-breaking waves.  419 

 420 

Figure 9. Empirical law for non-breaking wave runup height on a 1:2.08 sloped 421 

permeable beach 422 

 423 

4.2 A 1:20 slope 424 

    The runup heights on a mild slope of various permeability are investigated in this 425 

section. A triangle-shaped porous medium is located at x = 2 m – 10 m, and the slope is 426 

now 1:20.0 (φ ≈ 2.86°). The computational domain is the same as that shown in Figure 427 

5, except that the slope material is porous in this case. The porosity of the porous media 428 

is fixed at 0.49, as in the previous section. The permeability varies from 1.21 × 10−10m2 429 

to 1.21 × 10−4m2,. The computational parameters are listed in Table 2. The initial water 430 

depth was 0.21 m, and the generated wave height is 0.0588 m (𝐻 ℎ0⁄  = 0.28). 431 
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    Figures 10 (a-b) and 11 plot the snapshots of solitary wave runup on permeable 432 

beaches with permeability of 3.02 × 10−9 m2 and 1.88 × 10−10 m2, respectively. 433 

Smooth and continuous pressure fields are obtained for both cases, thanks to the hybrid 434 

source term. At t = 6.00 s, the generated wave reaches the toe of the permeable beach and 435 

begins to run up. The shape of the wave becomes asymmetric at this instant. At t = 10.25 436 

s, the wavefront reaches its highest point on the beach surface. While most of the fluid 437 

particles are blocked out of the porous medium, some particles can penetrate through the 438 

water-porous boundary when the permeability of the porous medium is 3.02 × 10−9m2. 439 

Conversely, if the permeability is 1.88 × 10−10m2, fewer particles can move from the 440 

pure fluid region into the porous area. Two example particle configurations are plotted in 441 

Figures 10(c-d), which show an enlarged part of Figures (a) and (b), respectively. The 442 

solid line represents the top porous boundary. Although the particle shifting technique 443 

(Lind et al., 2012; Khayyer et al., 2017) is not included in the present SPH model, particles 444 

are seen to be largely regularly distributed. The plots also highlight that the liquid particles 445 

are more sparse in the porous media, as part of the space is taken by the solid skeletons 446 

of the porous media. 447 

 448 



26 

 

(a) t = 6.00 s 449 

 450 

(b) t = 10.25 s 451 

 452 

(c) A close-up of the particle configuration at t = 6.00 s 453 

 454 

(d) A close-up of the particle configuration at t = 10.25 s 455 
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Figure 10. Wave propagation on a 1:20 permeable beach (Kp = 3.02 × 10−9m2) 456 

 457 

(a) t = 6.00 s 458 

 459 

(b) t = 10.25 s 460 

Figure 11. Wave propagation on a 1:20 permeable beach (Kp = 1.88 × 10−10m2) 461 

 462 

    Figure 12 summarises the runup height for various permeability. Notably, the axes 463 

are in logarithmic scale. The runup height decreases nearly linearly as the permeability of 464 

the porous beach increases logarithmically. The decrease of runup height can be 465 
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significant. When Kp = 1.88 × 10−10 m2, the runup height on the permeable slope 466 

decreases by 42% compared with the runup height on a solid slope.  467 

    Similar to the case of the steep slope, the runup height on this permeable beach can 468 

be expected to be: 469 

𝑅 = 𝑘1𝑅𝑠 (
𝐾𝑝

ℎ0
2 )

𝑘2

, (34) 

where 𝑘1 and 𝑘2 are nondimensional coefficients. In our study, 𝑘2 is around −0.059, 470 

whereas 𝑘1 can be estimated to be around 0.164. The empirical runup law on this mild 471 

slope can be obtained as follows.  472 

𝑅 = 0.164𝑅𝑠 (
𝐾𝑝

ℎ0
2)

−0.059

 (35) 

    In Figure 12, the dashed line represents the estimated runup height obtained through 473 

Equation (34) on a 1:20 permeable slope. The estimated runup height strongly agrees with 474 

the simulated runup height. As evidenced in the previous section, Equation (35) can be 475 

expected to be applicable to different wave heights and even slopes, as long as the incident 476 

wave breaks during runup. The term 𝑅𝑠 is the runup height on the corresponding solid 477 

slope with the same wave height H. As a consequence, Equation (35) considers the effects 478 

of both the slope angle and wave height. 479 

 480 
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Figure 12. Empirical law for breaking solitary runup height on a 1:20 permeable beach 481 

 482 

5. Model Application 2: Permeable layered beach 483 

5.1 A 1:2.08 slope 484 

    This section considers a steep slope covered with different permeable layers. The 485 

schematic of the computational domain is presented in Figure 13. The parallelogram-486 

shaped porous layer is placed with its bottom left corner at x = 2.07, and the beach slope 487 

is 1:2.08 (φ ≈ 25.68°). The generated wave heights are H = 0.03423 m (𝐻 ℎ0⁄  = 0.163) 488 

or H = 0.0525 m (𝐻 ℎ0⁄  = 0.25) in different runs. The porosity of the porous layers is 489 

fixed at 0.49, while various values of permeability are tested. The thickness of the porous 490 

layer also varies from 13.0 cm, 19.5 cm, to 43.3 cm. The highest point of the flow on top 491 

of the porous layer is defined as the runup height. The numerical parameters are listed in 492 

Table 3. 493 

 494 

Figure 13. Setup of a 1:2.08 sloped porous layer 495 

 496 

 497 

 498 
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Table 3. Computational parameters for wave runup on 1:2.08 sloped porous layers 499 

Parameters Values 

Diameter of particles (m) 0.005 

Initial particle spacing of fluid particles (m) 0.005 

Particle spacing of porous particles (m) 0.007 

Smoothing length (m) 0.0085 

Initial time step (s) 0.00025  

Permeability of porous media (m2) 

1.21 × 10−10, 1.88 × 10−10, 7.54×

10−10, 3.02× 10−9, 1.21 × 10−9, 3.02×

10−7, 1.21 × 10−6,  2.71× 10−6, 

4.82× 10−6, 7.54× 10−6, 3.02× 10−5, 

1.21 × 10−4 

Bottom length of porous layers (cm) 30, 45, 100 

Thickness of porous layers (cm) 13.0, 19.5, 43.3 

 500 

Figure 14 shows the snapshots of the solitary wave runup on 13.0-cm-thick porous layers, 501 

with the permeability 3.02× 10−9m2 and wave height H = 0.03423 m (𝐻 ℎ0⁄  = 0.163). 502 

The smooth pressure field is obtained over the entire domain, demonstrating good 503 

performance of the present ISPH model. While some fluid particles penetrate through the 504 

water-porous boundary at t = 3.92 s, most particles can only slide against the porous layer 505 

because of the different time scales of the movement inside and outside the porous layer. 506 

 507 
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 508 

(a) t = 3.25 s 509 

 510 

(b) t = 3.92 s 511 

Figure 14. Wave runup on a 13.0-cm thick porous layer with Kp =3.02× 10−9m2 and H 512 

= 0.03423 m 513 

 514 
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    When the incoming wave height is H = 0.03423 m (𝐻 ℎ0⁄  = 0.163), Figure 15 515 

compares the runup height variations at three thickness values (13.0 cm, 19.5 cm, and 516 

43.3 cm) and over a broad range of permeability values. The axes are in logarithmic scale. 517 

Overall, the runup height decreases nearly linearly as the permeability increases 518 

logarithmically. Almost the same height is obtained, regardless of the thickness of the 519 

porous media, until the permeability exceeds 2.71 × 10−6 m2. When the permeability is 520 

greater than 4.82 × 10−6  m2, the runup height on the 43.3-cm-thick layer becomes 521 

lower than those on thinner layers. There are only slight differences in the runup heights 522 

on layers of 13.0 cm and 19.5 cm in thickness, even when the permeability is larger than 523 

4.82 × 10−6 m2. 524 

 525 

Figure 15. Runup height on 1:2.08 sloped porous layers with H = 0.03423 m 526 

 527 

    When the incoming wave height is increased to H = 0.0525 m (𝐻 ℎ0⁄  = 0.25), the 528 

results are summarised in Figure 16. The runup height decreases more rapidly with the 529 

increase of permeability, as compared to the case with a smaller wave height of H = 530 
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0.03423 m (𝐻 ℎ0⁄  = 0.163). The thickness of porous media does not affect the runup 531 

height until the permeability exceeds 3.02 × 10−7 m2. If the permeability is 1.21 ×532 

10−6 m2 or larger, the 43.3-cm-thick layer yields lower runup than the other two thinner 533 

layers. The lower runup can be attributed to the fact that the fluid particles penetrate more 534 

deeply into the layer and spread out more widely. 535 

 536 

Figure 16. Runup height on 1:2.08 sloped porous layers with H = 0.0525 m 537 

 538 

5.2 A 1:20 slope 539 

    This section simulates the wave runup on a mild slope covered with a porous layer 540 

of different thickness and permeability. The schematic of the computational domain is 541 

illustrated in Figure 17. The porous layer is placed with its bottom left corner at x = 2.0 542 

m, and the beach slope is 1:20. The wave of height H = 0.0588 m is generated at the left 543 

end by the piston-type wavemaker. The porosity of the porous layers is fixed at 0.49, and 544 

the permeability ranges from 1.21× 10−10m2 to 1.21× 10−4m2. The thickness of the 545 
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porous layers varies from 7.5 cm, 20.0 cm, to 40.0 cm. The numerical parameters are 546 

listed in Table 4. 547 

 548 

Figure 17. Setup of a 1:20 sloped porous layer 549 

Table 4. Computational parameters for wave runup on 1:20 sloped porous layers 550 

Parameters Values 

Diameter of particles (m) 0.005  

Initial particle spacing of fluid particles (m) 0.005  

Particle spacing of porous particles (m) 0.007  

Smoothing length (m) 0.0085  

Initial time step (s) 0.00025 

Permeability of porous media (m2) 

1.21 × 10−10, 1.88 × 10−10, 7.54×

10−10, 3.02× 10−9, 1.21 × 10−9, 3.02×

10−7, 1.21 × 10−6,  2.71× 10−6, 

4.82× 10−6, 7.54× 10−6, 3.02× 10−5, 

1.21 × 10−4 

Bottom length of porous layers (cm) 150, 400, 800 

Thickness of porous layers (cm) 7.5, 20.0, 40.0 

 551 

    Figure 18 captures the snapshots of solitary wave runup on a 7.5-cm-thick porous 552 

layer, with the permeability Kp = 3.02× 10−9m2. The wave begins to break while running 553 

up the porous layer at t = 5.5 s, and is seen to reach the highest point at t = 8.60 s. Some 554 
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fluid particles plunged into the porous layer. Despite some small pressure disturbances 555 

observed at the toe of the slope, the overall obtained pressure field is smooth and rational. 556 

 557 

(a) t = 5.50 s 558 

 559 

(b) t = 8.60 s 560 
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Figure 18 Wave runup on 7.5-cm-thick porous layers with Kp = 3.02× 10−9 m2  561 

 562 

    Figure 19 compares the runup heights on the porous layers of different thickness and 563 

permeability. Similar to the results for nonbreaking waves, the runup height decreases 564 

with the increasing permeability. On this logarithmic graph, the relationship is nearly 565 

linear. The runup height is seen to be insensitive to the layer thickness, even when the 566 

permeability is very large. This result differs from the trend of nonbreaking waves as 567 

discussed in the previous section. On a mild slope, energy dissipates significantly when 568 

the wave breaks. Fluid particles can penetrate the porous boundary but cannot move over 569 

a long distance due to the weakened momentum after wave breaking, which yields almost 570 

the same runup height regardless of the layer thickness. 571 

 572 

Figure 19. Runup height on a 1:20 sloped porous layers slope 573 

 574 

    A summary of the wave runup heights on triangular permeable beach and permeable 575 

layered beach is shown in Figure 20. It confirms that the runup height on such a mild 576 
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slope is insensitive to the thickness of the porous layer or the shape of the porous region. 577 

The wave breaking occurs on the mild slope, and the runup is seen to be the same as long 578 

as the permeability is the same, regardless of where the whole beach is permeable or the 579 

beach is just covered with a permeable layer. Consequently, the empirical equation (35), 580 

proposed for triangular permeable beaches, is also applicable to permeable layers 581 

overlying a solid slop.  582 

 583 

 584 

Figure 20 A summary of the wave runup on different types of 1:20 slopes (𝐻 ℎ0⁄  = 585 

0.28) 586 

 587 

6. Conclusions 588 

    Solitary wave runup on permeable beaches has been simulated using an ISPH model. 589 

In the present model, the location of the porous structure is described by porous particles 590 

which facilitate the determination of the apparent density and apparent volume of the fluid 591 

particle inside the porous structure. These apparent values take into account the fact that 592 
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fluid particles can only occupy the intergranular space. The current treatment guarantees 593 

the consistency of SPH interpolation. 594 

After model verification against the runup on solid beaches, two different types of 595 

porous slopes have been extensively studied: one with the entire beach being porous and 596 

the other where the solid beach is covered by a porous layer. The runup height is found 597 

to decrease with the permeability according to a power law. Fluid particles cannot 598 

penetrate into a porous region if the permeability is sufficiently small. Empirical formulae 599 

have been proposed to predict the wave runup heights on porous beaches, using the runup 600 

heights on solid beaches as references. By substituting the solid slope runup equations of 601 

Synolakis (1986) into these empirical formulae, the direct relationships between the runup 602 

heights on permeable slopes and the water depth, wave height and slope angle can be 603 

derived. On beaches covered with a layer of porous medium, the runup height of 604 

nonbreaking waves is dependent on both the layer permeability and the thickness. Once 605 

the permeability exceeds a threshold value, then a thicker layer results in a lower runup 606 

height. For breaking waves, the runup height is not sensitive to the thickness of the porous 607 

layer and thus the permeability is the dominant influencing factor. 608 

    The present paper contributes to the insufficient numerical study of wave interaction 609 

with porous structures, but many issues demand further study. Because of the high 610 

computational cost, our parametric studies do not cover a large space. In the future, we 611 

will examine a broad range of parameters, including the beach slope, water depth, wave 612 

height and permeable layer thickness to further confirm the findings obtained in this study. 613 

It should be noted that the present study only focuses on the influence of permeability, 614 

while porosity is kept constant. It also assumes the smooth surface of the porous structure 615 

and the constant transition length between the pure fluid region and porous region. These 616 
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assumptions may not be applicable to many natural porous structures, as permeability, 617 

porosity, surface roughness and transition length are often altered simultaneously with the 618 

grain size or stem diameter. Further complications will arise when considering the 619 

heterogeneity of the porous structure, which may require the use of variable smoothing 620 

length. More advanced turbulence models (Wang and Liu, 2020) shall also be 621 

incorporated to improve the present results.  622 
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