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In the quest for superconductors with high transition temperatures (Tc s),

one emerging motif is that unconventional superconductivity is enhanced by fluc-

tuations of a broken-symmetry phase near a quantum-critical point. While re-

cent experiments have suggested the existence of the requisite broken symmetry

phase in the high-Tc cuprates, the signature of quantum-critical fluctuations in

the electronic structure has thus far remained elusive, leaving their importance

for high-Tc superconductivity in question. We use magnetic fields exceeding 90

tesla to access the underlying metallic state of the cuprate YBa2Cu3O6+δ over

an unprecedented range of doping, and magnetic quantum oscillations reveal a

strong enhancement in the quasiparticle effective mass toward optimal doping.

This mass enhancement is a characteristic signature of quantum criticality, and

identifies a quantum-critical point at pcrit ≈ 0.18. This point also represents the

juncture of the vanishing pseudogap energy scale and the disappearance of Kerr

rotation, the negative Hall coefficient, and the recently observed charge order,

suggesting a mechanism of high-Tc that is strongest when these definitive exper-

imental signatures of the underdoped cuprates converge at a quantum critical

point.

In several classes of unconventional superconductors, such as the heavy fermions, or-

ganics, and iron pnictides, the growing consensus is that superconductivity is linked to a

quantum critical point, where these systems undergo a phase transition at zero temperature,

and quantum fluctuations enhance the interactions that give rise to superconductivity (1, 2).

These fluctuations produce strong electronic correlations approaching the quantum critical

point (QCP), resulting in an experimentally-observable enhancement of the electron effective

mass (1, 3–6). It is widely believed that spin fluctuations in the vicinity of an antiferro-

magnetic QCP are important for superconductivity in many heavy-fermion, organic, and

pnictide superconductors(2, 7), leading to the ubiquitous phenomenon of a superconduct-

ing dome surrounding a QCP. The role of quantum-criticality in cuprate high-temperature

superconductors is more controversial (8): do the collapsing experimental energy scales(9),

enhanced superconducting properties(9, 10), and evidence for a change in ground-state sym-

metry near optimal doping(11–15) indicate an associated QCP with strong fluctuations that

are relevant to superconductivity(2, 16–18)? Alternative explanations for the phenomenol-
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ogy of the cuprate phase diagram focus on the physics of a lightly doped Mott insulator

(8, 19), rather than a metal with competing phases and a QCP. Establishing whether

there is a QCP near optimal doping is therefore crucial to find the right starting point

for a theory of high-Tc. Several investigations, both theoretical and experimental, suggest

that competing order is present in the cuprates, and is associated with the charge (rather

than spin) degree of freedom (such as charge density wave order, orbital current order, or

nematicity, see Figure 1)(12, 14–17, 20–27). What has been missing until now is direct,

low-temperature evidence that the change in ground-state symmetry near optimal doping is

accompanied enhanced electronic correlations in the ground state that would unambiguously

identify p ≈ 0.18 as a QCP.

A powerful technique for measuring low-temperature Fermi surface properties is the mag-

netic quantum-oscillation phenomenon, which directly accesses quasiparticle interactions

through the effective mass(28). While such measurements have been successful in identify-

ing QCPs in lower-Tc materials (e.g., CeRhIn5 and Ba(FeAsxP1−x)2 (3, 5)), the robustness

of superconductivity near optimal doping in the cuprates has impeded these measurements,

and ground-state signatures of a QCP, such as an enhanced effective mass, have remained

elusive. The Fermi surface in underdoped cuprates is known to be relatively small and

electron-like(29–33) in contrast to overdoped cuprates where a much larger hole-like surface

is observed (34). This suggests the existence of broken translational symmetry in the under-

doped cuprates that “reconstructs” the large hole-like surface into the smaller electron-like

surface: this translational symmetry breaking is likely related to the charge order observed

in the same doping range as the small Fermi pockets(14, 26). This makes a systematic

study of the doping dependence of these small pockets as they approach optimal doping

imperative, and in a single compound so that trends with doping are unambiguous. We

use high magnetic fields, extending to over 90 T, to suppress superconductivity and access

quantum oscillations of the underlying Fermi surface over nearly twice the range of dopings

than previously possible in a single compound (orange stars in Figure 1.) We report the first

observation of quantum oscillations in YBa2Cu3O6+δ at δ = 0.75, 0.80, and 0.86 (nominal

hole doping p = 0.135, 0.140, and 0.152), shown in Figure 2a. YBa2Cu3O6.86, with a Tc of

91± 1 K, brings our Fermi-surface measurements close to optimal doping (Tc ≈ 94K) where

superconductivity is most robust both in temperature and magnetic field(10). We observe a

continuous evolution of the small Fermi surface pocket area (Figure 2b), while the temper-
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ature dependence of the quantum oscillations reveals a strong enhancement of the effective

mass with increased hole doping (Figure 3). The weak change in Fermi surface area sug-

gests that the observed mass enhancement is not the result of evolving band structure, but

is instead a reflection of enhanced electronic interactions due to fluctuations in the vicinity

of a QCP.

The magnetoresistance of YBa2Cu3O6.86, YBa2Cu3O6.80, and YBa2Cu3O6.75 is shown in

the left panels of Figure 2a. Three regimes are clearly seen in the data: zero resistance up

to the vortex melting field; increasing resistance in the vortex-liquid regime; and, magne-

toresistance accompanied by oscillations in the normal state. We subtract a smooth and

monotonic background from the magnetoresistance to obtain the oscillatory component (see

S.I. for details of the background subtraction and the data analysis). Two trends with dop-

ing are immediately apparent: (1) at higher doping the oscillation amplitude grows faster

with decreasing temperature; and (2), the oscillation frequency changes very little between

p = 0.135 and p = 0.152. The first observation directly indicates an increasing effective

mass; the second observation constrains the doping where the reconstruction from large to

small Fermi surface takes place. We quantify these observations below.

The evolution of the quantum oscillation temperature dependence with doping, and how

it relates to the effective mass, can be understood quantitatively within the Lifshitz-Kosevich

formalism, which has been used successfully to analyse oscillations in cuprates at lower hole

doping(22, 31–33, 35). Quantum oscillations are suppressed with increasing temperature

via the ratio of thermal to cyclotron energy, kBT
~ω?c

, where ω?c ≡ eB
m?

is the frequency at which

a quasiparticle of effective mass m?, charge e, in a magnetic field B, completes a cyclotron

orbit. We extract the oscillation amplitude at each temperature and fit it to the functional

form of this thermal suppression(28) (see Methods),

A(T ) =
2π2 kBT

~ω?c

sinh
(

2π2 kBT
~ω?c

) , (1)

yielding the effective mass m? (see Figure 3a and Figure 3b). This effective mass is the

fully-renormalized, thermodynamic cyclotron effective mass, which is enhanced over the bare

“band mass” by interactions in the system(28). The effective mass is plotted as a function

of doping in Figure 3c, which reveals an increase in the mass of almost a factor of three from

p = 0.116 to p = 0.152, strongly suggesting mass enhancement due to increasing electronic

interactions in the ground state of YBa2Cu3O6+δ approaching a QCP near optimal doping.
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Note that electron-phonon coupling is generally observed to decrease with increasing hole

doping, ruling it out as the mechanism for mass enhancement (36).

The quantum oscillation frequency F gives the Fermi surface area through the Onsager

relation(28), Ak = 2πe
~ F , where Ak is the Fermi surface area in momentum space perpendic-

ular to the magnetic field. In contrast to the effective mass, which is strongly enhanced, the

Fermi surface area only evolves weakly toward optimal doping: Figure 2b shows F increasing

by roughly 20% from p ≈ 0.09 to p ≈ 0.152. The observation of the small Fermi surface

pocket up to p ≈ 0.152 requires that the reconstruction of the Fermi surface also persists

up to this doping, strongly suggesting that the reconstruction is related to the incommen-

surate charge order also observed in this doping range (14, 23, 25, 26). The large increase

in effective mass, with no accompanying large change in Fermi surface area, suggests that

the mass enhancement results from increasing electronic interactions in the proximity of a

QCP (1, 37), and not from a simple chemical potential shift in a rigid band structure.

The connection between the mass enhancement we observe in quantum oscillations and

high-Tc superconductivity is evident in Figure 4, which shows successive Tc curves in increas-

ing magnetic field. By 30 T—the third-highest curve in Figure 4—superconductivity persists

only in two small domes centred around p ≈ 0.08 and p ≈ 0.18; by 50 T only the region

around p = 0.18 remains. This phase diagram of YBa2Cu3O6+δ in high field, with Tc first

suppressed to zero around p ≈ 0.125, closely resembles that of La2−xBaxCuO4 in zero field,

where static charge and stripe order are observed(38). To emphasize the enhancement of the

effective mass, we plot 1/m? on this phase diagram (including previous m? measurements

at lower doping(39)). This shows a trend toward maximum mass enhancement at p ≈ 0.08

and p ≈ 0.18—the same dopings at which superconductivity is the most robust to applied

magnetic fields. This is consistent with the maxima observed in the upper critical field Hc2

(10), which is enhanced by a large density of states (proportional to the mass). The jump

in the specific heat at Tc, related to the condensation energy and also enhanced by a large

effective mass, also shows a peak near p ≈ 0.18 (9). This observation of maxima in several

thermodynamic quantities is characteristic of a QCP, having been observed in many heavy

fermion systems (37) and an iron pnictide (5) (see S.I for further discussion). One possible

scenario is that critical fluctuations surrounding pcrit ≈ 0.08 and pcrit ≈ 0.18 provide two

independent pairing mechanisms, analogous to the two superconducting domes in CeCu2Si2

that originate at antiferromagnetic and valence-transitions QCPs(40). A second scenario is
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a single underlying pairing mechanism whose strength varies smoothly with doping(41), but

which is enhanced at the critical points by an increased density of states as m? increases,

and/or by quantum-critical dynamics.

Given that our observed mass enhancement establishes pcrit ≈ 0.18 as a QCP, it is natural

to ask what the associated broken symmetry phase is. The hole doping pcrit ≈ 0.18 represents

the juncture of several doping-dependent phenomena associated with underdoped cuprates.

First, p ≈ 0.19 represents the collapse to zero of energy scales associated with the formation

of the pseudogap which onsets at temperature T ? (9). Second, the onset of an anomalous

polar Kerr rotation and neutron spin flip scattering both terminate at p ≈ 0.18 (11, 12), rep-

resenting an unidentified form of broken symmetry (that persists inside the superconducting

phase for the Kerr experiment). Third, in high magnetic fields, both the sign-change of Hall

coefficient, from positive to negative, and the onset of long-range order observed by NMR,

go to zero near p ≈ 0.18(23, 42), suggesting that Fermi surface reconstruction from electron-

like to hole-like occurs at this doping. Finally, p ≈ 0.18 represents the maximum extent of

incommensurate charge density wave (CDW) order reported in several different experiments

(14, 23, 26). While the Fermi surface reconstruction is likely related to this CDW order, its

short correlation length and the weak doping dependence of its onset temperature appears

to be at odds with the traditional picture of long range order collapsing to T = 0 at a QCP.

Two scenarios explaining fity at pcrit ≈ 0.18 immediately present themselves. In the first

scenario, the suppression of superconductivity by an applied magnetic field allows the CDW

to transition to long-range order, as suggested by X-ray, NMR, and pulsed-echo ultrasound

experiments.(23, 25, 43) In this first instance, we would be observing a field-revealed QCP.

In the second scenario, CDW order is co-existent with another form of order that also ter-

minates at pcrit ≈ 0.18. Such a coexistence is suggested by multiple experimental results,

including but not limited to Nernst anisotropy(21) and the anomalous polar Kerr effect(11).

In this second scenario, the CDW reconstructs the Fermi surface and the other hidden form

of order drives the quantum-criticality. That p ≈ 0.18 is a critical doping in zero magnetic

field(9, 11, 15) suggests that the quantum-critical fluctuations—that enhance the effective

mass—exist without an applied field. Regardless of the specific mechanism, the coincidence

of the diverging effective mass with region of most robust superconductivity implies that
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quantum-criticality is integral to high-Tc.
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FIG. 1. Fig. 1: High-Tc temperature-doping phase diagram. Superconductivity is in

blue(44), the antiferromagnetic (AFM) phase is in green (45), and the pseudogap is in orange.

Orange diamonds designate dopings where quantum oscillations have been observed previously(34,

46), and stars denote the new dopings presented in this paper. Short-range antiferromagnetic order

(green diamonds) terminates at a quantum critical point at p = 0.08 (39); beyond p = 0.08, short-

range charge order onsets above Tc (black diamonds)(14, 26). The charge order, the onset of the

pseudogap (as defined by neutron spin-flip scattering (pink circles)(12), the polar Kerr effect (pink

diamonds)(11), and the change in the slope of resistivity with temperature (pink triangles)(47))

terminate near p = 0.18, suggesting the possibility of a quantum critical point at this doping.
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FIG. 2. Fig. 2: Quantum oscillations of the magnetoresistance. The bare (left panels) and

oscillatory component (right panels) of the magnetoresistance (a). ĉ-axis transport was measured

for δ = 0.80 and 86; skin depth, measured via frequency shift of an oscillatory circuit (see S.I.), was

measured for δ = 0.75. A smooth, non-oscillatory background is removed from the data to extract

the oscillatory component (see S.I. for details of the analysis). The quantum oscillation amplitude

is suppressed by a factor of two between 1.5 and 6 K in YBa2Cu3O6.75, compared to a factor of

five over the same temperature range in YBa2Cu3O6.86, indicating an increased effective mass for

the higher doped sample. Quantum oscillation frequency, proportional to Fermi-surface area, as a

function of hole doping (b), with dopings below p = 0.12 taken from Sebastian et al. (48). The

frequencies and their uncertainties were obtained as described in the methods.
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FIG. 3. Fig. 3: The quasiparticle effective mass. Quantum oscillation amplitude as a function

of temperature, (a), and as a function of the ratio of thermal to cyclotron energy kBT/~ωc, (b). Also

included is detailed temperature dependence of YBa2Cu3O6.67—a composition at which oscillations

have previously been reported(46). Panel a illustrates the increase inm? with increased hole doping,

with fits to Equation 1. Panel b shows the same data versus kBT/~ω?c , where ω?c = eB/m?: this

scaling with m? shows the robustness of the fit across the entire doping and temperature range.

The effective mass as a function of hole doping is plotted in c—error bars are the standard error

from regression of Equation 1 to the data. The dashed line is a guide to the eye.
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FIG. 4. Fig. 4: A quantum critical point near optimal doping. The blue curves correspond

to Tc, as defined by the resistive transition (right axis), at magnetic fields of 0, 15, 30, 50, 70, and

82 T (data points taken from Grissonnanche et al. (10), Ramshaw et al. (49), and unpublished

data on YBa2Cu3O6.998 at 82 T). As the magnetic field is increased, the superconducting Tc is

suppressed. By 30 T two separate domes remain, centred around p ≈ 0.08 and p ≈ 0.18; by

82 T only the dome at p ≈ 0.18 remains. The inverse of the effective mass has been overlaid

on this phase diagram (left axis), extrapolating to maximum mass enhancement at at p ≈ 0.08

and p ≈ 0.18 (white points taken from Sebastian et al. (48)). This makes explicit the connection

between effective mass enhancement and the strength of superconductivity, which both converge

on QCPs (marked by cyan triangles).
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II. MATERIALS AND METHODS

Samples: YBa2Cu3O6+δ samples were prepared for transport measurements in the same

manner as in our previous studies.(22, 29) Prior to measurement, samples were heated above

the ortho-III and ortho-VIII phase transition temperatures(50) to disorder the oxygen in the

chains, and then quenched in liquid nitrogen. This process changes the nature of the oxygen

defects in YBa2Cu3O6+δ, and enables the observation of quantum oscillations by increasing

the quasiparticle lifetime.

Measurement: Four-point ĉ-axis electrical resistance was measured for YBa2Cu3O6.80

and YBa2Cu3O6.86 using a digital lock-in amplifier. Skin-depth, proportional to â−

b̂−plane resistance, was measured using a proximity diode oscillator on YBa2Cu3O6.67

and YBa2Cu3O6.75.(39) All pulsed field measurements—up to 92 T for YBa2Cu3O6.86,

YBa2Cu3O6.80, and YBa2Cu3O6.75; up to 65 T for YBa2Cu3O6.67—were made at the Na-

tional High Magnetic Field Laboratory–Pulsed Field Facility.

Analysis: The temperature-dependent amplitude A(T ) is extracted from the oscillatory

magnetoresistance by fitting the standard Lifshitz-Kosevich expression for a quasi-2D Fermi

surface(22) ∆R
R

= A(T ) e−
π
ωcτ cos

(
2πF
B

)
J0

(
2π∆F
B

)
at each temperature, keeping τ , F , and

∆F fixed for a particular doping. The mass is then obtained by fitting the amplitude A(T )

to Equation 1. More details of the data analysis, including the procedure for background

removal, can be found in the S.I.

Because of the small number of oscillations available at high doping, the frequency F was

obtained in three different ways to check for consistency: by fitting the oscillatory component

to the Lifshitz-Kosevich expression above; by Fourier-transforming the oscillatory data; and

by Landau-indexing the oscillation peak positions.(34) The uncertainties in F shown in

Figure 2b were obtained from the Fourier transform peak widths. While there are systematic

differences of about 3% between the three methods of frequency determination, the trend of

F with hole doping p is the same to within the uncertainty.
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