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On electrically tunable stacking domains and ferroelectricity
in moiré superlattices
Daniel Bennett 1✉ and Benjamin Remez 1

It is well known that stacking domains form in moiré superlattices due to the competition between the interlayer van der Waals
forces and intralayer elastic forces, which can be recognized as polar domains due to the local spontaneous polarization in bilayers
without centrosymmetry. We propose a theoretical model which captures the effect of an applied electric field on the domain
structure. The coupling between the spontaneous polarization and field leads to uneven relaxation of the domains, and a net
polarization in the superlattice at nonzero fields, which is sensitive to the moiré period. We show that the dielectric response to the
field reduces the stacking energy and leads to softer domains in all bilayers. We then discuss the recent observations of
ferroelectricity in the context of our model.
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INTRODUCTION
Twistronics, the study of layered systems with a relative twist
angle or lattice mismatch between the layers, resulting in moiré
superlattices, is one of the most exciting new topics in condensed
matter physics. It was predicted about a decade ago that
introducing a small relative twist in a layered system such as
bilayer graphene could lead to flat electronic bands, and strongly
correlated behavior1,2. Moiré superlattices have since been shown
to exhibit superconductivity3,4, metal–insulator transitions5, as well
as magnetic6, topological7–10, and excitonic11,12 behavior, facili-
tated by the tuning of the twist angle or lattice mismatch.
Recently, ferroelectricity was observed in bilayer graphene13 and
hexagonal boron nitride (hBN)14, which is highly unusual, because
the constituent materials are nonpolar, and bilayer graphene is
normally metallic. The ferroelectricity was found to be sensitive to
the twist angle and lattice mismatch, with some samples
exhibiting no hysteresis and some exhibiting strong hysteresis.
The ferroelectricity is clearly very unconventional, and the physical
mechanism is currently not well understood.
Structural phenomena in moiré superlattices are generally well

understood. It is known that the interlayer separation ripples in
space due to the local misalignment of the atoms, which can
influence physical properties15,16. In addition, lattice relaxation
occurs due to the competition between the in-plane strains and
out-of-plane van der Waals interactions, leading to stacking
domains17–23. The elastic energy depends on the twist angle
and lattice mismatch quadratically, meaning the domains can be
tuned. The domain structures have been shown to have a large
influence on the properties of the system17–19,24–27, leading to the
opening of band gaps and enhanced Fermi velocity, for example.
Polar effects have been given less consideration because the
typical materials use to fabricate moiré superlattices, graphene,
hBN, and transition metal dichalcogenides (TMDs) such as MoS2
(see Fig. 1a–c), are nonpolar.
There are two main mechanisms by which polar phenomena

can manifest in moiré systems. The first is a local spontaneous
out-of-plane polarization28, which occurs in bilayers without
centrosymmetry and averages to zero over the moiré period.
The second is couplings between strain and polarization, namely

piezoelectricity29–31 and flexoelectricity29,32–37. The strain gra-
dient is largest across the domain walls, and via flexoelectricity,
they have an inherent polarization. The flexoelectric response in
2D materials can be estimated by measuring the potential drop
across the wall of a nanotube in the large radius limit29,38–40, and
it has been estimated that the flexoelectric coefficients in bilayer
graphene are similar in magnitude to the clamped-ion flexo-
electric response in oxide perovskites29,38,41. The flexoelectric
polarization is localized within the relatively narrow domain
walls, however.
If we identify the stacking domains as polar domains via the two

aforementioned mechanisms, then the stacking domains may
serve as the basis for understanding polar phenomena in moiré
materials. Thus, in order to understand the observed ferroelec-
tricity, it is essential to understand how the stacking domains
respond to an electric field. It is known that the domain structures
in moiré materials can lead to interesting effects such as the
opening of band gaps, and topologically protected states or
channels when an electric field is applied7–9,42,43. To our knowl-
edge, the influence of an applied electric field on the domains
themselves has not been considered. It is known that an electric
field can modify the interlayer separation and lead to a breakdown
of TMD bilayers, for example44,45. The stacking domains are a
result of lattice relaxation, which describes the delicate competi-
tion between the interlayer interactions and the intralayer
elasticity. Since the interlayer interactions are sensitive to an
applied field, it is reasonable to expect that the field would change
the delicate balance and affect the resulting domain structure.

RESULTS
Physical model
In this paper, we introduce a model of lattice relaxation in a moiré
superlattice which includes the effect of an applied field on the
bilayer. The total energy is an integral of the energy density over a
moiré supercell

V tot ¼ 1
Asc

Z
Asc

VtotðrÞdr; (1)
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where Asc is the area of the supercell. For a bilayer system, Eq. (1) is
a discrete sum over atomic sites but generalizes to a continuum
field theory when the moiré period is much larger than the lattice
constants of the monolayers.
We can model moiré superlattices at different levels of theory

depending on the contributions we include in Eq. (1). The stacking
energy Vstack captures the weak van der Waals interactions
between the layers in terms of the layer separation d. The elastic
energy Velastic allows for in-plane displacements of the atoms in
the layers. Together, the stacking and elastic energies provide a
good description of the atomic structure in moiré superlattices,
namely lattice relaxation and the formation of stacking domains.
Having obtained a realistic description of the structure, one could
proceed to obtain the electronic bands from tight-binding theory.
In order to consider the effect of an electric field on the atomic

structure, we also include the electrostatic energy induced by an
electric field E perpendicular to the bilayer (see Fig. 1d). The total
energy density is then

Vtot ¼ Velastic þ Vstack þ Velec

Velastic ¼ Cijklϵijϵkl

Vstack ¼ V0ðrÞj j d0ðrÞ
d

� �12
� 2 d0ðrÞ

d

� �6
� �

Velec ¼ �Ep0ðrÞ � 1
2 ϵ0 α0ðrÞ þ α1ðrÞ d

d0ðrÞ � 1
� �� �

E2:

(2)

Each contribution is derived and discussed in detail in Section I
of the Supplementary Information. In the elastic energy,
summation is assumed, C is the linear elasticity tensor and ϵij ¼
1
2 ∂iUjðrÞ þ ∂jUiðrÞ
� �

is the strain tensor, written in terms of a
relative in-plane displacement U.
The stacking energy can be included in a number of ways. The

simplest is to use the cohesive energy as a function of space,
V0ðrÞ, assuming that at each point in the supercell the layer
separation takes the value that minimizes the local stacking
energy: d(r)= d0(r). Other studies have allowed the layer
separation to vary by performing a harmonic expansion about
the equilibrium layer separation15. When considering the effect of
an applied field, it is necessary to include the full van der Waals
potential because some phenomena cannot be captured at
the harmonic level, such as the breakdown of the bilayer for
stronger fields44. A detailed study of the stacking energy of
bilayer MoS2 in the presence of an electric field, both
theoretically and verified by first-principles calculations, is
provided in Appendices A and B, respectively.

The first term in Velec is the coupling between the electric field
and the out-of-plane spontaneous dipole moment of the bilayer28.
Bilayer systems without centrosymmetry, such as 3R MoS2
(Fig. 1b), have a local dipole moment throughout the supercell
which averages to zero, whereas systems with centrosymmetry
have no local dipole moment anywhere in the supercell, such as
2H MoS2 (Fig. 1c).
The second term describes the dielectric response of the bilayer

to the electric field, where α0 and α1 are the first two coefficients
in the expansion of the polarizability α about the equilibrium layer
separation. A bilayer system cannot simply be treated as a pair of
capacitor plates; due to the overlap of states in the vacuum region
between the layers, it is more appropriate to treat the system as a
single slab with a nonuniform charge density (see Fig. 1e). Thus,
changing the layer separation will affect the polarizability of the
system, so we perform a Taylor expansion in d. In Section II of the
Supplementary Information, we show with first-principles calcula-
tions that the polarizability is linear in d. In addition, the
polarizability will vary throughout the superlattice due to the
different local stacking configurations and equilibrium layer
separations. The dielectric response occurs in all layered systems,
irrespective of symmetry.
The typical lattice relaxation procedure is as follows: the local

energy densities in Eq. (2) are parameterized using first-principles
calculations. Practically, this is done using the mapping between
real space and ‘configuration space’20, where all of the local
stacking configurations in real space are condensed into a single
unit cell of relative translations between the layers (see Section II of
the Supplementary Information). Configuration space can be
traversed using first-principles calculations with only a single
primitive cell (six atoms for bilayer MoS2), and translating one layer
over the other. Quantities such as V0, d0, etc., can be parameterized
in configuration space, and Eq. (1) can then be minimized with
respect to the layer separation d and in-plane displacements U in
order to obtain the relaxed structure.
The parameterization of V0, d0, α0, α1, and P0 for 3R and 2H

MoS2 was done using SIESTA46 and is shown in Fig. 2. Starting from
the metal over metal configuration (AA), one layer was fixed and
the other was translated along primitive cell diagonal in small
increments, and the aforementioned quantities were measured
at each point. By taking advantage of the C3 rotation symmetry
of the moiré superlattices, the data were interpolated by a low
order 2D Fourier expansion throughout configuration space,
greatly reducing the number of calculations required. The
stacking energy and equilibrium layer separation both vary by

Fig. 1 Atomic and electrostatic sketches of bilayer Mos2. a Atomic structure of a MoS2 monolayer. The two stacking configurations are
shown below: b Alignment of the layers (3R stacking) and c the two layers mirrored with respect to one another (2H stacking or a twist of
180∘). d Sketch of the electrostatics of bilayer MoS2. The dashed lines indicate the vertical positions of the atoms, and the vectors show the
applied field E and resulting polarization P and internal field E int. e Sketch of the charge density of bilayer MoS2 along the out-of-plane
direction averaged in the in-plane directions.
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about 1Å/0.1 eV, respectively, which is expected. We also found
that both polarizability parameters vary significantly throughout
the configuration space. In addition, 3R MoS2 has a small

nonvanishing local dipole density with zero mean, see Fig. 2e,
whereas 2H MoS2 does not.

Lattice relaxation
The lattice relaxation at finite electric fields was then performed in
configuration space, including an additional in-plane displace-
ment u(s) in the stacking and electrostatic energies, and
minimizing the total energy numerically. The two terms in Velec
were included separately in order to illustrate their individual
effects. The quadratic term does not break any symmetries, and
thus we can study its effect on the domain structures by mapping
the 2D moiré superlattice to a 1D Frenkel–Kontorova (FK)
model21,47,48, with a single domain wall across the path AB→
SP→ BA (see Section III of the Supplementary Information for
more details). The linear term breaks the C6 rotation symmetry of
the 3R moiré superlattice, leading to a splitting between the AB
and BA domains, which cannot be captured by a 1D FK model.
The 1D FK model, including only the dielectric response to the

field, was solved for a fixed lattice mismatch θ, and for several
values of the electric field, see Fig. 3, with similar results at zero
field for various lattice mismatches shown in Supplementary Fig
S10. At zero field, decreasing θ increases the displacement u(s) in
between AB/BA and SP points, leading to a domain structure with
wide AB/BA regions and narrow SP regions, separated by a
domain wall, with width proportional to θ in configuration space.
The domain structure is also evident from the stacking energy and
equilibrium layer separation profile in configuration space, shown
in Fig. 3c and d. When an electric field is applied, the equilibrium
layer separation increases everywhere in configuration space,
which decreases the stacking energy. With the stacking energy
reduced, it is not as favorable for the atoms to relax; the
displacement decreases, and the domain walls soften.
The 2D relaxation including only the coupling between the field

and spontaneous polarization was done for a range of twist angles
0. 1∘≤ θ ≤ 1. 0∘ and field strengths 0 � E � 2 VÅ−1. The results are
summarized in Fig. 4, and additional plots for all angles and
electric field strengths can be found in Section IV of the

Fig. 3 Lattice relaxation from the 1D FKmodel, including the quadratic electrostatic term. a Total displacement in configuration space s+ u(s),
b gradient of displacement ∂su(s), c stacking energy as a function of total displacement Vstack(s+ u(s)), and d equilibrium layer separation as a
function of total displacement dminðsþ uðsÞÞ.

Fig. 2 Parameterization of Eq. (2) along the configuration space
diagonal for 3R- and 2H-stacked bilayer MoS2. a, c, e 3R-stacked
bilayer MoS2: a d0 (black) and V0j j (red); c α1 (black) and α0 (red); e P0
(black) and p0 (red). The hollow markers are results from first-
principles calculations, and the solid curves show the corresponding
Fourier interpolations. Black refers to the leftmost vertical axis and
red to the rightmost vertical axis. The configurations AA s ¼ 0; 1ð Þ,
AB s ¼ 1

3

� �
, SP s ¼ 1

2

� �
, and BA s ¼ 2

3

� �
are marked and sketched

above the plots. b, d, f The same quantities, computed for 2H
stacking.
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Supplementary Information. In Fig. 4a and b, we show the stacking
energy in 3R MoS2 in configuration space obtained from first-
principles calculations, at electric field strengths of 0 and 2 VÅ−1,
respectively. The electric field increases the depth of the well at AB
and decreases the depth of the well in BA by the same amount,
breaking the C6 rotation symmetry. The panels below, Fig. 4c and
d, show the corresponding stacking energies after lattice
relaxation for a twist angle of θ= 0. 1∘. At zero field, the relaxation
reduces the area of the AA regions and increases the area of the
AB/BA regions, leading to a triangular domain structure with sharp
domain walls. When an electric field is applied, the AB and BA
regions relax unevenly, leading to larger AB regions and smaller
BA regions reducing the rotation symmetry to C3. When the AB
and BA domains are no longer equal in area, the polarization no
longer averages to zero. In Fig. 4e, we show the average
spontaneous polarization <P0ðsÞ> in configuration space as a
function of field for different twist angles. We can see that the
response to the field is very sensitive to the twist angle. In Fig. 4f,
we show the susceptibility of the moiré superlattice χM as a
function of twist angle, which was obtained by taking the slope of
the polarization about zero field. We can see that the susceptibility
increases dramatically as the twist angle decreases.

DISCUSSION
We have introduced a model which illustrates the effect of an
applied electric field on lattice relaxation in moiré superlattices.
The model contains two electrostatic contributions. The first is a
linear coupling between the field and the local spontaneous
polarization in bilayers without centrosymmetry, which breaks the
degeneracy between the AB- and BA-stacking domains. Under an
electric field, the AB and BA regions will relax unevenly with one
growing and the other shrinking with respect to the relaxed
structure at zero field. This leads to a nonzero average out-of-
plane polarization in the superlattice. The second contribution is
the dielectric response to the field, which occurs in all bilayers.

This term leads to a nonuniform increase the layer separation,
which reduces stacking energy, leading to softer domains
structures under lattice relaxation.
Finally, as our theory does not predict a ferroelectric response,

we offer some thoughts on the recent experimental observations
of ferroelectricity in the context of our model.
For a system to be considered ferroelectric, it (i) must exhibit a

spontaneous polarization at zero field which (ii) must be switch-
able with an electric field. However, neither the individual stacking
domains nor the moiré superlattice as a whole satisfies both
conditions: The stacking domains indeed have a local sponta-
neous polarization at zero field, and while the average polarization
of a domain can change via lattice relaxation under an electric
field, the sign of the polarization in each cannot be switched.
Therefore, the stacking domains in moiré superlattices are in
general not ferroelectric. Conversely, the moiré superlattice itself
exhibits an average polarization, the direction of which can be
changed by the field, but has zero average polarization at zero
field. Therefore, under ideal conditions, moiré superlattices are
also not ferroelectric.
This idealized picture may not hold in experimental settings,

and defects, mislocations or strain induced by the finite size of
samples may lead to uneven domains at zero field. Also, the
direct couplings between strain and polarization, piezoelectricity
and flexoelectricity, have not been considered, which may make
it energetically favorable for the domains to relax unevenly and
the superlattice to have a nonzero average polarization at zero
field. We leave the consideration of these effects for future work.
To summarize, for an ideal system, when considering the
spontaneous local polarization and lattice relaxation under an
electric field, neither the moiré superlattice nor the stacking
domains are ferroelectric, since the former does not have a
spontaneous polarization at zero field and the latter does not
have a switchable polarization.
There have also been reports of a switching of the polarization

in a single stacking domain by a sliding of the atoms by half a

Fig. 4 Electrically tunable lattice relaxation and resulting polarization for 3R-stacked MoS2. a–d Lattice relaxation in configuration space
for 3R MoS2, including the linear electrostatic term. The top panels show the stacking energy before lattice relaxation at electric field strengths
of (a): 0 VÅ−1 and (b): 2 V Å−1. c, d show the corresponding stacking energies after lattice relaxation at a twist angle of θ= 0. 1∘. The AA
regions (yellow) shrink and the AB/BA regions (purple) expand. When an electric field is applied, the AB and BA regions relax unevenly, one
increasing in area and the other decreasing. e Average polarization as a function of electric field for several twist angles. f Susceptibility of the
moiré superlattice χM as a function of twist angle, obtained from the slopes from (e) about E ¼ 0.
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monolayer lattice constant when a local field was applied to the
domain using biased atomic force microscopy (AFM) tip14. This
sliding change the stacking configuration: AB↔ BA, leading to a
first-order switching of the polarization. This is a separate
mechanism to the one mediated by lattice relaxation, which
results in a second-order change in the polarization. We can
understand this sliding in the context of our model. When a field is
applied to the domain, the linear coupling between the field and
polarization will lower the energy if the two are aligned and result
in a large energy penalty if they are anti-aligned. In either case, the
dielectric response will reduce the stacking energy by the same
amount, making it easier for one layer to slide with respect to
the other. When the field and polarization are anti-aligned,
the energy can be lowered considerably via a sliding by half a
monolayer unit cell, flipping the polarization so that it becomes
aligned with the field. However, the field is applied to the domain
locally via an AFM tip, and it is not clear whether the sliding occurs
locally under the tip, or throughout the entire domain. It is also
not clear whether or not the domain will remain flipped once the
field is removed, or relax back to its original orientation. Thus, it is
not clear whether or not this mechanism for a first-order switching
of polarization in a stacking domain is truly ferroelectric either.
The model introduced in this paper illustrates, clearly and

intuitively, the effect an electric field can have on lattice relaxation
in moiré superlattices. We propose an electric field as a third
quantity with which the domain structures in moiré superlattices
can be tuned. Unlike the twist angle and lattice mismatch which
are fixed for a given sample, an electric field can be applied
dynamically to tune a sample in situ. Thus, it may serve as a more
practical approach to achieve control in moiré superlattices. We
have also discussed how our theoretical model can be used to
understand the recent observations of ferroelectricity in moiré
superlattices. We believe it is inaccurate to consider moiré
materials to be truly ferroelectric via lattice relaxation or sliding
under an electric field. However, this motivates further study into
polar phenomena in moiré materials.

METHODS
First-principles calculations
First-principles density functional theory (DFT) calculations were per-
formed using the SIESTA code46 using PSML49 norm-conserving50 pseudo-
potentials, obtained from pseudo-dojo51. SIESTA employs a basis set of
numerical atomic orbitals (NAOs)46,52, and double-ζ polarized (DZP) orbitals
were used for all calculations. The basis sets were optimized by hand,
following the methodology in ref. 53.
A mesh cutoff of 1200Ry was used for the real space grid in all

calculations. A Monkhorst–Pack k-point grid54 of 12 × 12 × 1 was used for
the initial geometry relaxations, and a mesh of 18 × 18 × 1 was used to
calculate polarizabilities. Calculations were converged until the relative
changes in the Hamiltonian and density matrix were both less than 10−6.
For the geometry relaxations, the atomic positions were fixed in the in-
plane directions, and the vertical positions and in-plane stresses were
allowed to relax until the force on each atom was less than 0.1 me VÅ−1.
The layer separation d was taken to be the distance between the carbon
atoms in bilayer graphene an the distance between the metals in bilayer
MoS2 (see Fig 1e), and the stacking energy is calculated as
Vstack ¼ Vbilayer � 2Vmono, where Vbilayer and Vmono are the total energies
of the bilayer and monolayer systems, respectively. The polarizability to
zeroth order in d, α0, was obtained by fixing the relaxed geometry,
applying an electric field large enough to overcome internal field effects,
and measuring the change in the out-of-plane dipole moment of the
bilayer. The polarizability to first order in d, α1, was obtained by changing
the layer separation by ± 1% with respect to d0 and measuring the relative
change in the polarizability. A detailed first-principles study is provided in
Section II of the Supplementary Information.

Lattice relaxation calculations
Equation (1) can be minimized by using variational methods and solving
the resulting differential equations. This can be relatively demanding in 2D.

Instead, we minimized the total energy using numerical optimization
methods. Equation (1) is a function of the in-plane displacement
u in configuration space. If we perform a plane-wave expansion,
u(s)= ∑GuGeiG⋅s, where G is the reciprocal lattice vectors of the
commensurate bilayer, then the total energy becomes a function of
{uG}, and can be minimized numerically with respect to the coefficients:
∇UGV tot ¼ 0. This was done in JULIA, using the OPTIM package to do the
optimization.
We can take advantage of the C3 symmetry of our model to greatly

reduce the number of independent G vectors:

uðsÞ ¼ P3
n¼1

P
G
Cn�1
3 ðuG þ u�GÞ cos Cn�1

3 G � s� ��

þ iðuG � u�GÞ sin Cn�1
3 G � s� �	

:

(3)

When there is a C6 symmetry, i.e., for 3R MoS2 at zero field, we have
u−G =−uG, and the cosine terms vanish. The optimization was done
using the independent G in the first five shells (10 vectors) for θ ≥ 0. 5∘,
six shells (21 vectors) for 0. 5∘ > θ ≥ 0. 3∘ and seven shells (28 vectors) for
0. 3∘ > θ ≥ 0. 1∘. The total energy was optimized using the limited
memory BFGS algorithm (L-BFGS), until the gradient was below
1 × 10−5 eV.
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