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SUMMARY

Mutations activating KRAS underlie many forms of
cancer, but are refractory to therapeutic targeting.
Here,wedevelopPoloppin, an inhibitorofprotein-pro-
tein interactions via the Polo-box domain (PBD) of the
mitotic Polo-like kinases (PLKs), in monotherapeutic
and combination strategies to target mutant KRAS.
Poloppin engages its targets in biochemical and
cellular assays, triggering mitotic arrest with defec-
tive chromosome congression. Poloppin kills cells ex-
pressingmutant KRAS, selectively enhancing death in
mitosis. PLK1 or PLK4 depletion recapitulates these
cellular effects, as does PBD overexpression, corrob-
oratingPoloppin’smechanismof action. Anoptimized
analog with favorable pharmacokinetics, Poloppin-II,
is effective against KRAS-expressing cancer xeno-
grafts. Poloppin resistance develops less readily
than to an ATP-competitive PLK1 inhibitor; moreover,
cross-sensitivity persists. Poloppin sensitizes mutant
KRAS-expressing cells to clinical inhibitors of c-MET,
opening opportunities for combination therapy. Our
findings exemplify the utility of smallmoleculesmodu-
lating the protein-protein interactions of PLKs to ther-
apeutically target mutant KRAS-expressing cancers.

INTRODUCTION

Human Polo-like kinase 1 (PLK1) regulates multiple events that

lead to accurate chromosome segregation during cell division
Cell Chemical Biology 24, 1017–1028, Aug
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(reviewed in Bruinsma et al., 2012). It comprises an N-terminal

kinase catalytic domain, and a C-terminal segment with tan-

dem motifs that form the Polo-box domain (PBD). The PBD en-

gages pSer/pThr phosphopeptide substrates to recruit PLK1 to

mitotic structures (Elia et al., 2003a), direct PLK1 kinase activity

(Kang et al., 2006), and mediate reaction-diffusion mechanisms

for centrosome assembly (Mahen et al., 2011). Homologous

PBDs, in which key residues implicated in phosphopeptide sub-

strate recognition are conserved, also occur in the related human

Polo-like kinases PLK2, PLK3, and PLK4 (reviewed in Archam-

bault and Glover, 2009).

PLK1’s essential role in mitosis, and its dysregulation in

several different forms of human cancer, has prompted efforts

to create small-molecule inhibitors (reviewed in Liu, 2015).

Potent ATP-competitive small-molecule inhibitors of PLK1 ki-

nase activity are in clinical development (reviewed in Gjertsen

and Schoffski, 2015). Moreover, compounds that inhibit PBD

binding to phosphopeptide substrates are reported to induce

mitotic arrest and apoptosis in cancer cell lines at micromolar

concentrations (Reindl et al., 2008; Scharow et al., 2015; Wata-

nabe et al., 2009; Yuan et al., 2011); but several have recently

been identified as non-specific protein alkylators (Archambault

and Normandin, 2017).

Mutations activating the small GTP-binding protein KRAS,

which occur frequently in human cancers, have proven largely

refractory to therapeutic targeting (reviewed in McCormick,

2015). Inhibitors unique to the G12C KRAS mutant have been

described (Ostrem et al., 2013), as have inhibitors of an essential

interaction between KRAS and the prenyl-binding protein, PDEd

(Chandra et al., 2012; Zimmermann et al., 2013). An RNAi screen

for factors whose depletion inhibits the growth of mutant

KRAS G12D-expressing cancer cell lines identified PLK1 and

components of the APC/C ubiquitin-conjugating holoenzyme
ust 17, 2017 ª 2017 The Authors. Published by Elsevier Ltd. 1017
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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C Figure 1. Poloppin Is a Drug-like Inhibitor of

Phosphopeptide Binding by PLK1 PBD

(A) Structure of Poloppin.

(B) Poloppin competitively inhibits the binding of

a TAMRA-labeled substrate peptide to the PLK1

PBD in an FP assay.

(C) Isothermal titration calorimetry of Poloppin

binding to the PBD domain of PLK1.

(D) Poloppin stabilizes PLK1 in a cellular thermal

shift assay (CeTSA) in HeLa cell lysates.

(E) ITDRFCETSA at a constant temperature of 67�C in

HeLa lysates treated with Poloppin.

(F) Poloppin induces dose-dependent mitotic

arrest.

(G) Representative images of U2OS cells treated

with Poloppin. Green, tubulin; blue, DNA; red, ki-

netochores. Scale bars, 15 mm.

(H) Quantification of Poloppin-induced mitotic phe-

notypes in U2OS cells. The frequency of observed

mitotic phenotypes is displayed.

Data represent the mean of three independent

experiments ± SEM. See also Figure S1.
(Luo et al., 2009). Genetic modulation of the pathway linking

PLK1 to APC/C activation curtailed the proliferation of mutant

KRAS G12D-expressing cancer cells, while ATP-competitive

PLK1 inhibitors suppressed their growth as xenografts.

Here, we identify compounds that modulate protein-protein

interactions of the structurally related PLK kinases via the PBD

domain, and demonstrate their utility in strategies to target

mutant KRAS. Poloppin (Polo protein-protein interaction inhibi-

tor) kills cells expressing mutant KRAS in two-dimensional or

organoid cultures. An optimized analog (Poloppin-II) is effec-

tive against KRAS-expressing cancer xenografts after systemic

oral administration. Notably, Poloppin sensitivity persists in can-
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cer cells resistant to an ATP-competitive

PLK1 inhibitor, and Poloppin sensitizes

mutant KRAS-expressing cells to clinically

used inhibitors of the MET tyrosine kinase,

opening opportunities for combination

therapy.

RESULTS

A Drug-like Inhibitor of
Phosphopeptide Binding by
PLK1 PBD
We screened a diversity library of 120,000

drug-like molecules (Huggins et al., 2011),

using a fluorescence polarization (FP)

assay (Figures S1A–S1C), to identify com-

pounds that inhibit the binding of the

human PLK1 PBD with a tetramethyl-

6-carboxy-rhodamine (TAMRA)-labeled

PLK1 PBD consensus binding phospho-

peptide. Close analogs of the primary hits

were selected by Tanimoto similarity using

extended-connectivity fingerprints (Xia

et al., 2004), before experimental valida-

tion. Poloppin (Figure 1A), a 438 Da com-
pound identified in this way, is lipophilic but soluble at up to

1 mM in 5% DMSO, contains no obvious chemical toxicophores

or reactive groups, and thereforewas regarded as a suitable start-

ing point for development. Poloppin exhibits a half maximal inhib-

itory concentration (IC50) of 26.9 mM by FP (Figure 1B), while

isothermal titration calorimetry reveals that it directly binds to the

PLK1 PBD with a Kd of 29.5 mM (Figure 1C).

Poloppin Engages PLK1 to Trigger Mitotic Arrest with
Non-congressed Chromosomes
We tested whether Poloppin engages cellular PLK1 using the

recently described cellular thermal shift assay (CeTSA). CeTSA
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Figure 2. Poloppin Preferentially Kills Cells

Expressing Mutant KRAS in Two-Dimen-

sional and Organoid Cultures

(A) Cell viability in SW48 isogenic parental or

KRASG12D cell lines.

(B) Cell viability in MEFs from either a KRAS wild-

type, p53R172H (KRAS WT p53 MUT), or a mutant

KRASG12D, p53R172H (KRASMUT p53MUT) strain.

(C) Viability in murine pancreatic organoids from

either a KRAS wild-type, p53R172H (KRAS WT p53

MUT) or mutant KRASG12D, p53R172H (KRAS MUT

p53 MUT 1 and 2) strain.

Data represent the mean of three independent

experiments ± SEM unless otherwise stated.
detects cellular target engagement via changes in the thermal

stability of the drug-bound target, but does not track directly

with the potency of compounds in biochemical or phenotypic

assays (Jafari et al., 2014; Martinez Molina et al., 2013; Martinez

Molina and Nordlund, 2016). PLK1 protein exhibits increased

thermal stability following treatment with a fixed dose of

1 mM Poloppin compared with control (Figure 1D). Moreover,

exposure of cell lysates at a constant 67�C to increasing doses

of Poloppin, using isothermal dose-response fingerprint

(ITDRF)-CeTSA, demonstrates that cellular PLK1 is stabilized

at >40 mM (Figure 1E). Together, these results provide evidence

that Poloppin engages PLK1 in the cellular milieu.

Further evidence comes from the cellular phenotypes induced

by Poloppin. Poloppin triggers dose-dependent mitotic arrest

in human cell lines (Figure 1F), inducing multiple anomalies

in mitosis. At a 12.5 mM concentration, <5% of cells exhibit

normal metaphase chromosome alignment, instead arresting

with bipolar or disordered spindles and non-congressed chro-

mosomes (Figures 1H and 1G). Poloppin-induced mitotic arrest

with non-congressed chromosomes is dissimilar from that

induced by ATP-competitive PLK1 inhibitors, which typically
Cell Chemical Biol
suppress bipolar spindle formation (Gil-

martin et al., 2009; Hanisch et al., 2006;

Lenart et al., 2007).

Collectively, these findings suggest

that an early requirement for PLK1 ki-

nase activity during mitotic progression

is distinct from the role of substrate

engagement by the PBD (Hanisch et al.,

2006). Indeed, Poloppin elicits mitotic

phenotypes at relatively low concentra-

tions compared with its apparent activity

in biochemical assays, consistent with

the notion that the compound competi-

tively inhibits PBD binding to function-

ally relevant substrates present at low

cellular abundance, rather than acting

as an ATP-competitive catalytic inhibitor.

Poloppin Kills Cells Expressing
Mutant KRAS in Two-Dimensional
and Organoid Cultures
Mutant KRAS expression sensitizes cells

to genetic or pharmacologic modulation
of PLK1 (Luo et al., 2009) by �2-fold over controls. Similarly,

SW48cells expressingKRASG12Dexhibit�2-foldgreater sensi-

tivity to Poloppin than isogenic controls (Figure 2A), as doprimary

murine embryonic fibroblasts (MEFs) genetically engineered to

acutely expressmutantKRASG12Dwhen treatedwith 4-hydroxy

tamoxifen (Figure 2B). Poloppin has a greater (�4- to 5-fold;

average, 4.7-fold) inhibitory effect on the growth of pancreatic or-

ganoids formed by pancreatic epithelial cells derived from mice

genetically engineered to express mutant KRAS G12D in the

pancreas (KRAS MUT p53 MUT 1 and 2) compared with KRAS

wild-type (KRAS WT p53 MUT) controls (Figure 2C).

Poloppin Exerts its Cellular Effects via the PBDDomains
of PLKs
Poloppin does not bind (Figure S1D) to the kinase catalytic

domains of either PLK1 or its homologs, PLK2, PLK3, or PLK4,

using the DiscoverX KinomeScan assay (Fabian et al., 2005;

Karaman et al., 2008). No significant binding was observed

to 51 other protein kinases bearing structural or functional

similarity to the Polo-like kinases. However, Poloppin inhibits

phosphopeptide substrate engagement to the PBD of PLK1
ogy 24, 1017–1028, August 17, 2017 1019
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Figure 3. Poloppin Exerts Its Cellular Effects via the PBD Domains of PLKs

(A) Thermal stability assay for PLK1–4 using NanoLuc fusion proteins.

(B) Mitotic index assay in HeLa Flp-In T-REx cells.

(C) Cell viability in the SW48 isogenic parental or KRASG12D cell lines following depletion of PLKs using indicated siRNAs.

(D) Quantitation of mitotic phenotypes. HeLa cells engineered to overexpress PLK1-PBD upon addition of doxycycline were treated with compounds at EC50

concentrations or with doxycycline (PBD O/E) for 16 hr. Mitotic phenotypes were quantified by immunofluorescence imaging. Green, tubulin; blue, DNA; red,

kinetochores. Scale bars, 15 mm.

(E) Cell viability of HeLa cells expressing doxycycline-inducible PLK1-PBD, with or without constitutively overexpressed mCherry-KRAS G12D.

Data represent the mean of three independent experiments ± SEM. See also Figure S2.
(Figure 1B; IC50 = 29 mM), and with 3-fold less activity (Fig-

ure S1E; IC50 = 88 mM), to the closely related PBD domain of

human PLK2when tested by FP. Since PLK1–4 all harbor homol-

ogous PBD domains (van de Weerdt et al., 2008), we tested

whether Poloppin might exert its cellular effects via the inhibition

of PLK2, PLK3, or PLK4, besides PLK1.

In cells transiently expressing fusions between PLK1–4 and

the reporter Nanoluciferase (NanoLuc) (Hall et al., 2012; Masser

et al., 2016), Poloppin at 100 mM increases the thermal stability

of all four NanoLuc-PLK fusion proteins (Figure 3A), but not an

irrelevant NanoLuc-p38aMAPK fusion protein (Figure S2). These

results suggest that Poloppin engages PLK1–4.

We therefore testedwhether the selective depletion of PLK1–4

using RNAi could recapitulate Poloppin-induced phenotypes.

Depletion of PLK1 or PLK4 but not PLK2 or PLK3 triggers mitotic

arrest (Figure 3B). Moreover, PLK1 or PLK4 depletion preferen-
1020 Cell Chemical Biology 24, 1017–1028, August 17, 2017
tially decreased the survival of SW48 cells expressing KRAS

G12D over that of isogenic control cells (Figure 3C), whereas

PLK2 or PLK3 depletion had no such effect. Thus, our findings

suggest that PLK1 and PLK4 inhibition underlies the activity of

Poloppin in triggering mitotic arrest, and in preferentially killing

cancer cells that express mutant oncogenic KRAS.

Next, we tested whether inducible overexpression of the PLK1

PBD in cells, which is expected to mimic the effects of Poloppin

by competitively inhibiting substrate engagement to the PBD

domains, could recapitulate these phenotypic effects. Indeed,

cells induced to overexpress the PBD by treatment with doxycy-

cline (Figure 3D) undergo a characteristic metaphase arrest with

non-congressed chromosomes, which is typical of the effect

induced by Poloppin (Figures 1G and 1H). Inducible PBD expres-

sion also preferentially reduces in a dose-dependent manner the

viability of cells co-expressing mutant KRAS, over that of the
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Figure 4. Poloppin Sensitizes Cells Ex-

pressing Mutant KRAS to Death in Mitosis

(A and B) Live-cell imaging of (A) parental HeLa

cells and (B) HeLa cells expressing KRASG12D

treated with DMSO or with Poloppin at their GI50
dose. Each horizontal bar represents the fate of a

single cell visualized by serial time-lapse imaging.

Colors indicate the different cell fates.

(C) Quantitation of the percentage and type of cell

death.

(D) Graph showing time spent in mitosis.

***p < 0.001. Error bars represent the 95% confi-

dence interval from the mean.
parental cells (Figure 3E), by �2-fold, as expected. Thus, collec-

tively, our findings provide genetic evidence to corroborate that

the cellular effects of Poloppin aremediated via the PBDdomain.

Poloppin Sensitizes Mutant KRAS-Expressing Cells to
Death in Mitosis
Using live-cell imaging to track the fate of single wild-type HeLa

cells exposed to Poloppin (Figure 4), we find that Poloppin

exposure prolongs mitosis from an average of 60 to 100 min

(compare black segments in Figures 4A and 4B; tabulated in Fig-

ure 4D), and increases the frequency of aneuploid divisions to

38% (purple segments and yellow segments), compared with

4% after DMSO treatment. Typically, Poloppin-treated wild-

type cells exit mitosis to form binucleate or anucleate daughters,

which undergo death during the subsequent interphase (yellow

segments).

By contrast, Poloppin treatment sensitizes mutant KRAS-ex-

pressing HeLa cells to death inmitosis. Induction of a chromoso-

mally integrated, doxycycline-inducible KRAS G12D transgene
Cell Chemical Bio
increases the time taken for mitosis

from 100 to 200 min (compare black

segments in Figure 4A versus 4B; tabu-

lated in Figure 4D), consistent with the

notion that mutant KRAS dysregulates

mitotic progression as recently reported

(Perera and Venkitaraman, 2016). How-

ever, when mutant KRAS-expressing

HeLa cells are exposed to Poloppin (Fig-

ure 4B), there is also a sharp increase

in the frequency of death in mitosis (red

segments) when compared with DMSO-

exposed controls (Figure 4C, 3% versus

36%). Collectively, these results suggest

that Poloppin preferentially sensitizes

mutant KRAS-expressing cells, but not

controls, to death in mitosis.

An Optimized Poloppin Analog Is
Effective In Vivo against Mutant
KRAS-Expressing Xenografts
An optimized synthetic analog, Polop-

pin-II (Figure 5A), is soluble at up

to �100 mM in 5% DMSO, and exhibits

no binding at 5 mM to the kinase catalytic

domains of PLK1–4, or to 51 other related
kinases using the DiscoverX KinomeScreen assay (Figure S3A).

It induces mitotic arrest with non-congressed chromosomes

similar to that induced by Poloppin (Figure 5B). Poloppin-II ex-

hibits a half maximal effective concentration of 61 nM in a cellular

assay for mitotic arrest compared with 14.6 mM for Poloppin,

whereas a structurally related analog of Poloppin-II (PB114) is

inactive (Figure 5B). Poloppin-II engages PLK1 and PLK4, as de-

tected using NanoLuc fusion proteins, whereas PB114 is less

active (Figure S3C). Poloppin-II sensitizes cells expressing

mutant KRAS in two-dimensional or organoid cultures by

approximately 5-fold (Figures 5C and 5D).

Despite its potency in cellular assays, Poloppin-II competi-

tively inhibits substrate binding to the PLK1 PBD with an

apparent IC50 of only 41 mM using an FP assay, less than that

of Poloppin, and is also active against PLK2 PDB with an IC50

of 105 mM (Figure S3D). Although the hydrophobicity of the

compounds has precluded validation of their binding modes

using X-ray crystallography, two possible explanations may ac-

count for the disconnect between their apparent potencies in
logy 24, 1017–1028, August 17, 2017 1021
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Figure 5. The Optimized Analog Poloppin-II Is Effective by Systemic Oral Administration In Vivo Against Mutant KRAS-Expressing

Xenografts

(A) Synthetic chemistry route from Poloppin to Poloppin-II. The EC50 value of each analog in a cellular assay for mitotic arrest is given below its designation, with

the maximum percentage of mitotic cells in brackets.

(B) Mitotic index assay in HeLa cells treated for 16 hr with Poloppin, Poloppin-II, or the structurally related analog, PB114.

(C) Cell viability in KRAS wild-type murine pancreatic organoids (KRAS WT p53 MUT), or organoids expressing KRAS G12D (KRAS MUT p53 MUT).

(D) Cell viability in SW48 parental and KRAS G12D isogenic cell lines at 72 hr. Data represent the mean of three independent experiments ± SEM.

(E) Mass spectrometric analysis of changes in phosphopeptide abundance induced by Poloppin-II versus Nocodazole or the ATP-competitive PLK1 inhibitor,

Volasertib. Pairwise comparisons of the relative abundance of phosphopeptides detected in this analysis are plotted logarithmically to the base 2 (top panels).

Green dots indicate phosphopeptides that contain the PLK1 phosphorylation consensusmotifs. The boxed, yellow-shaded area in the bottom left-hand quadrant

marks phosphopeptides that exhibit a R2-fold reduction in abundance in both conditions. The tables below each dot plot show the total number of

(legend continued on next page)
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biochemical versus cellular assays. First, switching from an acid

(Poloppin) to an amine (Poloppin-II) may alter cell permeability

or retention. Second, recent data (Zhu et al., 2016) suggest

that the PBD domain assumes ordered dimeric conformations

in the cellular milieu to regulate PLK1 activity, raising the possi-

bility that the relevant target conformer in cells is distinct from

the recombinant PBD proteins used in the FP assay. Neverthe-

less, we cannot exclude entirely the possibility that Poloppin-II

acts via targets additional to the PLK PBD.

To further corroborate Poloppin-II’s cellular mechanism of

action, we used stable isotope labeling using amino acids in

culture coupled to mass spectrometry (see STAR Methods) to

compare the patterns of changes induced in the human phos-

phoproteome after mitotic arrest triggered by Poloppin-II with

the spindle poison, Nocodazole, or with the ATP-competitive

PLK1 inhibitor, Volasertib (Figure 5E). The abundance of 95

phosphopeptides is decreased R2-fold after both Poloppin-II

and Nocodazole exposure (yellow box, left-hand plot), of which

only one (1.05%) contains the PLK1 phosphorylation consensus

motifs (D/E)-X-(S/T)-(F), (F)-(D/E)-X-(S/T)-(F), and (F)-X-(D/E)-X-

(S/T)-(F), where F is a hydrophobic residue (Oppermann et al.,

2012). By contrast, 238 phosphopeptides decrease by R2-fold

after both Poloppin-II and Volasertib exposure (yellow box,

right-hand plot), of which 42 (17.65%) contain consensus PLK1

motifs. These findings suggest that Volasertib and Poloppin-II,

but not Nocodazole, preferentially inhibit the phosphorylation

of a common set of cellular proteins containing consensusmotifs

for PLK1-dependent phosphorylation. Since phosphopeptide

engagement via the PBD is a critical step that directs PLK kinase

activity to its substrates (Elia et al., 2003a, 2003b), these data

strengthen the evidence supporting Poloppin-II’s mechanism

of action in cells.

Poloppin-II is inactive against the hERG ion channel, and

is stable in human (CLint = 10 mL/min/million cells; T1/2 =

136 min) and mouse (CLint = 18 mL/min/million cells; T1/2 =

77 min) hepatocytes. Upon oral administration in mice (Fig-

ure S3E), Poloppin-II maintains an in vivo plasma concentra-

tion >100 nM for >24 hr following a single dose of 10 mg/kg.

Oral bioavailability exceeds 90%, with a half-life of 15 hr, calcu-

lated clearance of 17 mL/min/kg and a volume of distribution

of 23 L/kg. These favorable attributes prompted us to test the

efficacy of Poloppin-II in an in vivo xenograft model using the

mutant KRAS G13D-expressing colorectal cancer cell line,

HCT116 (Figure 5F). Poloppin-II at 50 mg/kg (Figure S3F) was

well tolerated during the study, with no adverse health obser-

vations or recorded weight loss (Figure S3G). At this dose,

Poloppin-II reduced the growth of xenografted tumors in a

statistically significant manner (Figures 5F and S3H). Xeno-

grafts exposed to Poloppin-II exhibit increased levels of phos-

pho-Ser10 histone H3 expression within 24 hr compared with

vehicle-treated controls (Figure S3I), providing a pharmaco-

dynamic marker of xenograft exposure, and linking reduced

tumor growth to mitotic arrest.
phosphopeptides, the number of PLK1 motif-containing phosphopeptides, and th

defined by (log2) abundance values.

(F) Tumor progression in a xenograft model of HCT116 cells expressing KRASG1

indicate mean ± SD.

See also Figure S3.
Poloppin Resistance Develops Less Readily than to an
ATP-Competitive PLK1 Inhibitor
Mutant KRAS-expressing HCT116 colorectal carcinoma cells

have previously been used to investigate resistance to PLK1 in-

hibition by the ATP-competitive PLK1 inhibitor, BI2536 (Wacker

et al., 2012). When treated with 5 times the half maximal growth

inhibition (GI50) concentrations of either Poloppin or BI2536 (Fig-

ure 6A), BI2536-resistant, but not Poloppin-resistant, colonies

are readily observed (Figure 6B). BI2536-resistant cells harbor

the known resistance mutation, PLK1 R136G (Wacker et al.,

2012) (Figure S4A). Mutations affecting PLK2 or PLK3 were not

detected. Interestingly, BI2536-resistant cells retain sensitivity

to Poloppin (Figure 6C).

Poloppin Sensitizes Mutant KRAS-Expressing Cells to
Clinically Used Inhibitors of the c-MET Tyrosine Kinase
The proto-oncogene c-MET, a bona fide therapeutic target in

human malignancies, including pancreatic cancer (reviewed

in Cecchi et al., 2012), is upregulated in KRAS-mutant SW48

cells versus isogenic controls (Figure 7A). c-MET depletion using

small interfering RNA (siRNA) (Figure S5A) selectively increased

sensitization to Poloppin at the GI25 dose in mutant KRAS-

expressing SW48 cells but not their parental counterparts (Fig-

ure 7B; charcoal and red bars). This effect does not occur

with Poloppin alone (black and blue bars). In addition, several

different cancer cell lines bearing mutant oncogenic KRAS

were sensitized by 2- to 4-fold to Poloppin after depletion of

c-MET using siRNA (Figure S5B).

We tested several c-MET inhibitors, including Crizotinib

(Xalkori), an FDA-approved compound (Rodig and Shapiro,

2010), for late-stage non-small-cell lung cancers that express

the abnormal anaplastic lymphoma kinase. SW48 KRAS-G12D

cells are approximately 7-fold more sensitive to Crizotinib in

the presence of Poloppin compared with SW48 parental cells

(Figures 7C and 7D). A similar but greater effect is also observed

in murine pancreatic organoids expressing mutant oncogenic

Kras compared with controls (Figure 7E). In addition, several

different KRAS-mutant cell lines were sensitized to Crizotinib

in the presence of Poloppin (Table S1). Similar effects were

apparent using two alternative MET inhibitors, Foretinib (Qian

et al., 2009) or Tivatinib (Yap et al., 2011), currently in clinical

development (Figure S5C). RNAi depletion of PLK1, but not other

PLKs, sensitized mutant KRAS-expressing cells to Foretinib,

whereas depletion of PLK1–4 induced sensitization to Crizotinib,

supporting the proposed mechanism of action (Figure S5D).

Poloppin and Crizotinib are synergistic at doses below both

their respective GI50 values for cell killing in Panc-1 cells, using

the BLISS independence method, which assumes that the

agents may act via independent mechanisms (Figure 7F). In a

similar manner, Poloppin-II also sensitizes Panc-1 cells to Crizo-

tinib at doses below their respective GI50 for cell killing, acting in

a synergistic manner (Figure 7G). These results indicate that

combining the c-MET inhibitor, Crizotinib, with either Poloppin
e percentage of PLK1 motif-containing phosphopeptides in nine different bins

3D after systemic treatment via oral administration with Poloppin-II. Error bars
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Figure 6. Poloppin Resistance Develops Less Readily than to an ATP-Competitive PLK1 Inhibitor

(A) Experimental schedule employed to generate drug-resistant HCT116 KRAS G13D cells; qualitative observations for BI2536 and Poloppin are noted.

(B) Representative bright-field images are shown of cultures after continuous BI2536 or Poloppin treatment.

(C) Viability of drug-sensitive parental HCT116 cells (HCT116 WT) and BI 2536-resistant clones (HCT116 BI 2536-Res. Clones) treated with BI2536 or Poloppin.

(D) The GI50 dose for each compound is shown for each cell line.

Data represent the mean of three independent experiments ± SEM. See also Figure S4.
or Poloppin-II arrests the growth ofmutant KRAS-bearing cancer

cells with greater efficacy than when the compounds are used

independently, and suggest that c-MET inhibition acts synergis-

tically with inhibition of the PLK PBD.

DISCUSSION

Here, we report the development of Poloppin and Poloppin-II

as chemical leads that inhibit phosphopeptide binding by

the PBD motifs conserved in the human Polo-like kinases,

PLK1–4. Neither compound shares chemical features with

several previously reported PBD inhibitors recently reported to

be non-specific protein alkylators (Archambault and Normandin,

2017). Moreover, both compounds lack reactive groups likely to

induce irreversible inhibition, and do not detectably interact with

a panel of 51 structurally or functionally related protein kinases.

Notably, Poloppin and Poloppin-II trigger mitotic arrest

with non-congressed chromosomes consistent with blockade

of the essential functions of PLK1 PBD during cell division,

and distinct from the monopolar spindle phenotype induced by

ATP-competitive PLK1 inhibitors. Both compounds also kill can-

cer cells expressing mutant oncogenic KRAS. Several lines of
1024 Cell Chemical Biology 24, 1017–1028, August 17, 2017
evidence speak to themechanism bywhich Poloppin and Polop-

pin-II elicit these cellular effects.

Both compounds inhibit phosphopeptide substrate binding to

the homologous PBD domains of PLK1 and PLK2 in biochemical

assays, and engage PLK1–4 in the cellular milieu when tested by

cellular thermal shift. Depletion using RNAi of PLK1 or PLK4 but

not PLK2 or PLK3 can recapitulate mitotic arrest and the killing

of mutant KRAS-expressing cells. These findings collectively

suggest that the Poloppins selectively engage the PBD1–4 target

domains, and, furthermore, that suppression of PLK1 and PLK4

underlies their key cellular effects in triggering mitotic arrest, and

in killing cancer cells that express mutant oncogenic KRAS.

Overexpression of the PLK1 PBD elicits similar cellular effects,

further supporting the proposed mechanism of action.

Whereas Poloppin-II is highly potent in inducing these cellular

phenotypes, it is perplexingly less active in biochemical assays,

raising the possibility that the compound acts via cellular targets

additional to the Polo-like kinases. However, like its parental

compound Poloppin, Poloppin-II does not bind detectably to a

DiscoverX KinomeScan panel, comprising 51 human protein ki-

nases that exhibit structural or functional similarity with PLK1.

Moreover, mass spectrometric analyses indicate that Volasertib
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Figure 7. Poloppins Sensitize Mutant KRAS-Expressing Cells to Clinically Used Inhibitors of the c-MET Tyrosine Kinase via a Synergistic

Mechanism

(A) c-MET transcript is upregulated �12-fold in SW48 KRAS G12D cells compared with their isogenic parental counterparts.

(B) Viability measured after c-MET was depleted by siRNA in SW48 KRAS wild-type or KRAS-G12D expressing cells and treated with DMSO or Poloppin at GI25.

Depletion was confirmed by western blots (see Figure S5).

(C and D) SW48 KRAS wild-type (C) and SW48 KRAS G12D (D) cells were treated with the c-MET inhibitor, Crizotinib, in combination with either DMSO or

Poloppin at GI25. Cell viability was measured in an SRB assay after 72 hr treatment.

(E) Viability of murine pancreatic organoids treated with Crizotinib plus DMSO (black and blue) or Crizotinib plus Poloppin at GI25 (gray and red).

(legend continued on next page)
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(an ATP-competitive PLK1 inhibitor) and Poloppin-II, but not

Nocodazole (a mitotic spindle poison), preferentially decrease

the phosphorylation of cellular proteins containing consensus

motifs for PLK1-dependent phosphorylation. These observa-

tions discount the likelihood that Poloppin-II exerts its observed

cellular effects via additional targets.

Mutant KRAS expression is proposed to trigger abnormalities

in progression throughmitosis (‘‘mitotic stress’’) that render can-

cer cells sensitive to PLK1 inhibition (Luo et al., 2009). Consistent

with this proposal, induction of mutant KRAS G12D expression

in HeLa cells suffices to delay the completion of mitosis (Perera

and Venkitaraman, 2016), although it does not by itself signifi-

cantly increase cell death. Similarly, Poloppin treatment of both

wild-type and mutant KRAS G12D-expressing cells also delays

mitosis; however, Poloppin treatment preferentially sensitizes

mutant KRAS but not wild-type cells to death in mitosis. Thus,

our results suggest that the inhibition of substrate recognition

by the PBD of PLKs cooperates with mutant oncogenic KRAS

expression to trigger death in mitosis.

The in vivo bioavailability and favorable pharmacokinetic

properties of Poloppin-II, when coupled to its low nanomolar

potency in cellular assays, enable for the first time an analysis

of tolerability and efficacy by systemic oral administration in an

in vivo xenograft model, representing an advance over previ-

ously reported PBD inhibitors suitable only for intra-tumor injec-

tion (Yuan et al., 2011). Poloppin-II has a modest, �4- to 5-fold,

selectivity for the killing of cells expressing mutant KRAS over

wild-type cells. Nevertheless, the compound is relatively well

tolerated in mice, and exhibits in vivo activity against mutant

KRAS-expressing xenografts, with concomitant mitotic arrest

within the tumor, suggesting that its therapeutic index for the

treatment of mutant KRAS-expressing cancers may exceed

that observed in cellular assays.

Cancer therapy using ATP-competitive kinase inhibitors

frequently triggers drug resistance via point mutations in the

active site (Van den Bossche et al., 2016; Wacker et al., 2012).

Interestingly, resistance to Poloppin is undetectable in mutant

KRAS-expressing HCT116 cells, which, however, readily ac-

quire resistance to an ATP-competitive PLK1 inhibitor, BI2536,

through their mutator phenotype. This finding may reflect that

Poloppin inhibits both PLK1 and PLK4 to kill mutant KRAS-

expressing cells. BI2536-resistant cells remain sensitive to

Poloppin, suggesting the potential utility of PBD-inhibitory com-

pounds in overcoming drug resistance to ATP-competitive PLK1

inhibitors.

Notably, Poloppin and Poloppin-II sensitize mutant KRAS-

expressing cancer cells to inhibition of the tyrosine kinase re-

ceptor c-MET. Since c-MET inhibitors are already in clinical

development for the treatment of cancers of the lung, pancreas,

or other organs in which KRAS mutations are also frequent, our

findings suggest further interesting opportunities for combina-

tion therapy.
(F and G) An analysis of synergy between Crizotinib in combination with Poloppin (

graphs show the percentage change in cell viability after treatment with the in

checkerboard titration indicating dose ranges for synergy (indigo) or antagonism

doses of Crizotinib with Poloppin (F) or Crizotinib with Poloppin-II (G), compared

Results are typical of at least three independent experiments. Data represent the

also Figure S5 and Table S1.
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SIGNIFICANCE

Mutations activating the KRAS oncogene drive human can-

cers affecting the pancreas, lung, colon, and other tissues.

We report here that Poloppin and Poloppin-II, compounds

that target the protein-protein interactions of human Polo-

like kinases, suppress the growth of KRAS-mutant cancer

cells as single agents, or in combination with c-MET inhibi-

tors. The cellular phenotypes evoked by Poloppins speak

to amechanism of action that exploits mitotic vulnerabilities

triggered by mutant KRAS expression, via the interruption

of phosphopeptide substrate recognition by the Polo-box

domains of PLK1 or PLK4. Structure-activity relationships

defined by the features of Poloppin-II, a potent analog with

favorable pharmacokinetics active in vivo against KRAS-

mutant xenografts, indicate avenues for further develop-

ment. Poloppin is less susceptible to in vitro drug resistance

compared with an ATP-competitive PLK1 inhibitor, and

retains activity against cells resistant to the ATP-competi-

tive compound, suggesting methods to combat drug resis-

tance. Poloppin and Poloppin-II act synergistically with

Crizotinib, a clinically used inhibitor of the c-MET receptor,

against mutant KRAS-expressing cancer cells, revealing

an approach for combination therapy. Thus, we implicate

the protein-protein interactions of PLK1 and PLK4 in

the maintenance of mutant KRAS-expressing cancers, and

illustrate the use of compounds that block these interac-

tions in single-agent or combination therapies. Our findings

endorse the future potential of strategies to target substrate

recognition by human protein kinases for drug development.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti- PLK1 Invitrogen 33-1700

anti-phospho-histone H3 (Ser10) Abcam ab5176

Hoechst 33342 Invitrogen H3570

anti-GAPDH Santa Cruz sc137179

anti-alpha tubulin Santa Cruz sc32293

anti-CREST Europa 90C-CS1058

anti-c-MET Cell Signalling Technology 8198

Chemicals, Peptides, and Recombinant Proteins

Poloppin this study

Poloppin II this study

PLK1-PBD345-603 this study

PLK2-PBD356-681 this study

TAMRA-MAGPMQTS(pThreonine)PKNGAKK Designer Bioscience

BI 2536 SelleckChem S1109

Nocodazole Sigma M1404

Superscript III Life Technologies 18080044

Rnase H digest New England Biolabs M0297S

Amplitaq Gold Polymerase Applied Biosystems N8080241

Acetic acid VWR 20104.334

Sulforhodamine B sodium salt Sigma S1402-5G

Trizma base Sigma T6066

Trichloroacetic acid solution Sigma T0699-100ml

Critical Commercial Assays

Rneasy Mini Kit Qiagen 74104

Nextera XT Kit Cambridge Genomic Services

CellTitre Glo 3D assay Promega

Experimental Models: Cell Lines

HeLa Parental (Flp-In T-Rex) Tighe et al., 2004

HeLa KRAS G12D Perera and Venkitaraman, 2016

HeLa PLK1-PBD326-603 this study

HeLa ATCC

U2OS ATCC

Panc-1 ATCC

HPAF II ATCC

DLD-1 ATCC

SW1116 ATCC

HT29 ATCC

Panc 02.03 ATCC

Panc 05.04 ATCC

SW48 Parental (KRAS WT) Horizon Discovery

SW48 KRAS G12D Horizon Discovery

Experimental Models: Organisms/Strains

Mouse: LSL-Trp53R172H/+ Hingorani et al., 2005; Boj et al., 2015

Mouse: LSL-KrasG12D/+ Hingorani et al., 2005; Boj et al., 2015

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: Pdx-1-Cre Hingorani et al., 2005; Boj et al., 2015

Athymic nude mice, male Harlan (UK)

Oligonucleotides

Primer: PLK1F 5’-TTGTAACGTTCCCAGCGC

Primer: PLK1R 5’-GGCACACTGCAGACATGGC

Primer: PLK2F 5’-TGCTAGTCGGCACCAGAGG

Primer: PLK2R 5’-TTCGTACCACCACATGTCCA

Primer: PLK3F 5’-CGCAGCGTAGCAAATCCAG

Primer: PLK3R 5’-AAAGCTGGTCCCTGATTCCC

HS_Met_SG QuantiTect Primer Assay Qiagen QT00023408

HS_PLK1_SG QuantiTect Primer Assay Qiagen QT00049749

HS_PLK2_SG QuantiTect Primer Assay Qiagen QT00049406

HS_PLK3_SG QuantiTect Primer Assay Qiagen QT00025207

HS_PLK4_SG QuantiTect Primer Assay Qiagen QT00029967

HS_Actin_SG QuantiTect Primer Assay Qiagen QT01680476

siRNA: c-Met-AACACCCATCCAGAATGTCAT Qiagen

siRNA: c-Met-AAGCCAATTTATCAGGAGGTG Qiagen

siRNA: c-Met-AAGTATCAGCTTCCCAACTTC Qiagen

siRNA: Plk1-CAACGGCAGCGTGCAGATCAA Qiagen

siRNA: Plk2-SMARTpool Dharmacon

siRNA: Plk3-SMARTpool Dharmacon

siRNA: Plk4-AAGGACTTGGTCTTACAACTA Qiagen
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to the LeadContact, Ashok R. Venkitaraman (arv22@

mrc-cu.cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
Doxycycline (DOX)-inducible HeLa KRASG12D and PLK1-PBD326-603 cells were generated using the Flp-In T-REx system (Life Tech-

nologies) (Tighe et al., 2004). The human KrasG12D or PLK1-PBD326-603 transgene was subcloned into a modified pcDNA5/FRT/TO

vector containing a single amino-terminalMyc tag, followedbyco-transfectionwith aplasmidencoding Flp recombinase (pOG44) into

HeLa FRT/TO cells (a kind gift from Stephen Taylor, University of Manchester). Stable integrants were then selected with 200 ug/ml

hygromycin (Roche) and 4 ug/ml blasticidin (Invivogen). Transgene expression was induced by treatment with 100 ng/ml doxycycline

(Sigma). HeLa, U2OS, Panc-1, HPAF II, DLD-1, SW1116, HT29, Panc 02.03 and Panc 05.04, cells were obtained from the American

TypeCulture Collection (ATCC). HeLa, U2OS andPanc-1were cultured inDMEMcontaining 10% (v/v) fetal bovine serum (FBS). Panc

02.03 and Panc 05.04 were cultured in RPMI medium containing 15% FBS and 10 units/ml Insulin. DLD-1, SW1116, HT29 were

cultured in RPMI medium containing 10% FBS. The SW48 isogenic cell lines (KRAS wild-type and KRASG12D) were purchased

from Horizon Discovery and cultured in RPMI medium containing 10% FBS. All cells were maintained at 37�C with 5% CO2.

Primary Cell Cultures
KrasWT mouse embryonic fibroblasts (MEFs) were derived from conditional LSL-Trp53R172H/+ embryos. LSL-Trp53R172H/+, LSL-

KrasG12D/+ (Hingorani et al., 2005) strains were interbred to obtain LSL-KrasG12D/+, LSL-Trp53R172H/+ KrasG12D embryos for MEF

preparation. Briefly, MEFs were derived from E13.5 embryos after decapitation and evisceration. Finely minced tissue was passed

through a 16-G needle two or three times before dissociated cells were cultured in DMEM with 10% FBS. Cre-mediated recombi-

nation to activate the KrasG12D allele was induced via addition of 500nM 4-OH Tamoxifen to the culture media overnight.

Organoid cultures were prepared from the pancreas of LSL-Trp53R172H/+, Pdx-1-Cre (for KrasWT organoids) or LSL-Trp53R172H/+,

LSL-KrasG12D/+, Pdx-1-Cre (for KrasG12D organoids KPC3760 and KPC26684) strains (Hingorani et al., 2005). Pancreatic ducts were

manually picked after tissue mincing and overnight enzymatic digestion with 0.012% (w/v) collagenase XI (Sigma) and 0.012% (w/v)

dispase (GIBCO) in DMEM media containing 1% FBS (GIBCO), before seeding in growth-factor-reduced (GFR) Matrigel (BD) (Boj

et al., 2015).
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In Vivo Animal Studies
Male athymic mice were purchased from Harlan (UK) and acclimatised for 7 days prior to study commencement. Animals were

housed in IVC cages (5 per cage) with individual mice identified by tail marking. All animals were allowed free access to a standard

certified commercial diet and sanitised water during the study. The holding room was maintained under standard conditions:

20-24�C, 40-70% humidity and a 12h light/dark cycle. All experiments were performed under approved ethical and procedural

guidelines.

METHOD DETAILS

Engineering of PLK1-PBD and PLK2-PBD Fusions
A region of the human PLK1 cDNA sequence (residues 345–603) or human PLK2 cDNA sequence (residues 356-681) was amplified

by PCR and cloned into a pGEX-6P1 vector (Invitrogen, Carlsbad, CA) to generate recombinant protein in C41 strain E. coli (Garcia-

Alvarez et al., 2006). Bacteria were disrupted using an Emulsiflex c5 homogenizer (Avestin) and lysates were passed onto a gluta-

thione S-transferase (GST)-Sepharose column in the presence of 50mM Hepes pH 7.5, 200mM NaCl, 1 mM EDTA, 1mM EGTA

and 1mM DTT. Bound fractions were cleaved on column at 4�C overnight with PreScission protease (GE healthcare). Purified frac-

tions were polished by gel chromatography using a Sephadex G25 (GE healthcare) column, collected and concentrated. Fractions

were tested by Western blotting using PLK1 antibody (Invitrogen 33-1700) to validate protein purification.

Fluorescence Polarisation Assay
Final concentrations of assay components used in binding assays were as follows: TAMRA-labelled consensus PLK1 PBD binding

phosphopeptide, 5-TAMRA-MAGPMQS(pThreonine)PLMGAKK-acid 10nM; PLK1 PBD (aa345-603) 84nM (2.5ng/ml). Assays were

carried out in PBS (pH 7.4) plus 0.03% tween. DMSO controls were run alongside all experimental compounds and% inhibition nor-

malised to these controls. Compounds were titrated 2 fold from a top concentration of 250mM giving a maximum final concentration

of DMSO in the assay of 0.25%; however the assay can tolerate DMSO up to 5%. Compound and PBD protein were incubated

together at 22�C for 1 hour prior to addition of the TAMRA labelled binding phosphopeptide. The total assay volume per well was

45ml. All experiments were performed in NBS black 384-well microtiter plates (Corning). Fluorescence Polarisation (FP) was read us-

ing a BMG PheraStar plate reader with a 540/590/590nm FP module and unbound 10nm TAMRA-labelled peptide set to a FP value

of 35mP.

For FP assays using PLK2 PBD (aa356-681), the same procedure was applied except that TAMRA-MAGPMQTS(pThreonine)

PKNGAKK was used as the consensus binding phosphopeptide.

For PLK1 PBD FP high-throughput screen the assay components were as above, compounds were screened at an approximate

final concentration of 125mM and final DMSO concentration of 1%. Appropriate volumes of TAMRA-labelled phosphopeptide and

Plk1 PBD at 3X final concentration were made up in PBS + 0.1% tween and PBS + 1mM DTT respectively and placed in reservoirs

on the Beckman Coulter Biomek FXp AutomatedWorkstation deck in the positions indicated by the scheduling software. Compound

dilution plates, black 384 well NBS assay plates and tip racks were loaded into the Cytomat as indicated by the scheduling software.

The appropriate Fluorescence Polarisation program was initiated on the BMG PheraStar plate reader and was manually set using an

assay plate and 10nm TAMRA-labelled peptide to a FP value of 35mP. All labware was checked to ensure that it is correctly posi-

tioned before the scheduling software was enabled and the HTS run was initialised. Test compounds were diluted to 3X final con-

centration in the dilution plates. 15ml of diluted compoundwas added into eachwell of the assay plate followed by 15ml of PBD protein

and 15ml of TAMRA-phosphopeptide. Plates were incubated at room temperature for between 20 and 40min on the robot’s deck or in

the Cytomat before the Fluorescence Polarisation was read using the BMGPheraStar plate reader. Test compoundswere assayed in

triplicate. Mean % inhibition normalised to DMSO control (1%) was calculated for each compound.

Isothermal Titration Calorimetry
In all titrations, PBDaa345-603 protein was used at 25 mM and buffered in HEPES (50 mM, pH 7.4), NaCl (200 mM), and DTT (1mM).

Protein was diluted into buffer with DMSO at 5% (v/v). Poloppin was prepared by diluting from DMSO stock into the same buffer

containing DMSO at 5% (v/v). Great care was taken tomatch the concentration of DMSO in the ligand and protein samples as closely

as possible. In a typical experiment, protein (25 mM) was loaded in the sample cell, and a total of 20 injections of 8mL were made at

2min intervals from a 200 mL syringe rotating at 1000 rpmand loadedwith ligand solution (0.5mM). In all titrations, an initial injection of

2 mL ligand was made, and these data were discarded during data analysis. The thermodynamic parameters were obtained by fitting

the data to a single-site binding model with a stoichiometry of 1. ITC experiments were performed at 20 �C with a MicroCal ITC200

instrument, and all data were analysed with the software implemented in Origin (version 7) (Scott et al., 2015).

Mitotic Index Assay
Cells were plated at 10 000/well in 96-well plates and incubated overnight. The following day compound stocks in DMSOwere diluted

in medium then added to cells with a maximum final DMSO concentration on cells of 0.2%. Cells were incubated with compound for

24 h then fixed in 3.7% formaldeyde. Cells were permeabilised with 0.1% Triton X-100 then incubated with anti-phospho-histone H3

(Ser10) antibody (Abcam ab5176). The cells were washed with PBS then incubated with AlexaFluor 488 labelled goat anti-rabbit IgG

(Invitrogen A11034) in the presence of 4ug/ml Hoechst 33342 (Invitrogen H3570). Cells were washed in PBS then imaged on an
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Arrayscan VTi HCS instrument (Thermo Fisher) using the Target Activation V4Bioapplication. A user-defined thresholdwas applied to

identify mitotic cells based on the intensity of phospho-histone H3 staining.

Cellular Thermal Shift Assay (CeTSA)
Two million HeLa cells were assessed for viability using Trypan blue and aliquoted into PCR tubes for lysate preparation and CeTSA.

Aggregation temperature (Tagg) was determined for PLK1 PBD with a Biorad Tetrad gradient maker, using a final concentration

of 1mM or 0.5mM for Poloppin or Poloppin-II, respectively, in 5% DMSO (Jafari et al., 2014). Samples were assessed using PLK1

antibodies (Invitrogen 33-1700) and GAPDH (Santa Cruz sc137179) and Li-Cor antibody (926-32252). Quantification was done

with Odyssey Li-Cor technology.

NanoLuc� Thermal Shift Assay
HeLa cells were transfected with plasmids encoding NanoLuc fused to the N-termini of full-length human PLK1, PLK2, PLK3, PLK4 or

p38a MAPK. Twenty-four h after transfection, the thermal stability of the fusion proteins was tested using a modified version of the

assay protocol supplied by Promega. Briefly, cells were harvested by tyrpsinisation and centrifugation, counted, and resuspended to

200,000 cells/ml in 3mls of serum-free OptiMEM media. Cells were then permeabilised using with 50ug/ml digitonin in DMSO for

5 min and incubated with test compounds at 100uM, plus protease inhibitor cocktail (Promega G6521), in a final concentration of

5% DMSO for 1 h at 37�C. After incubation, 100 ml/well of cells were aliquoted into a 96-well, thin-walled PCR plate and then heated

for 3minutes using a pre-warmedMJ Tetrad DNAEngine set to run a temperature gradient of 42 to 66�C. The plates were then cooled

to room temperature for 10 min, and then 80ml of each sample was transferred to a white-walled 96-well Nunc plate before

NanoBRET� NanoGlo Substrate diluted in Opti-MEM was added. NanoLuc enzyme activity was read out within 10 min using a

BMG Clariostar plate reader.

DiscoverX KINOMEscan Assay
A panel of 55 proteins (comprising 51 human kinases structurally or functionally related to the PLKs, plus the kinase catalytic domains

of PLK1, PLK2, PLK3 and PLK4) were selected for testing by DiscoverX using the KINOMEscan assay platform. Compounds were

supplied as 40x DMSO stocks and were tested at a final concentration of 50mM for Poloppin and 5mM for Poloppin-II. Binding inter-

actions were reported as percentage of control where lower numbers indicate stronger binding. A cut-off of <35% was applied to

report significant binding.

Immunofluorescence
Cells were plated on glass coverslips and incubated overnight. Cells were treated with compound diluted in medium for 24hrs. Me-

dium was then removed and cells fixed in 20mM PIPES pH8, 20mM HEPES pH8, 5mM EGTA, 2mM MgCl, 0.2% Triton X-100 and

3.7% formaldehyde. Cells were washed in PBS containing 0.1% Tween-20 then incubated with anti-alpha tubulin antibody (Santa

Cruz sc-32293) and anti-CREST antibody (Europa 90C-CS1058). Cells were washed then incubated with Alexa Fluor 568 labelled

goat anti-mouse IgG (Invitrogen A11031) or Alexa Fluor 633 labelled goat anti-mouse IgG (Invitrogen A21052) and Alexa Fluor 488

goat anti-human IgG (Invitrogen A11013). Cells were washed and then mounted on glass slides in Vectashield mounting medium

containing DAPI.

Western Blotting
Total protein was isolated by directly lysing the cells in non-denaturing lysis buffer (20mMTris HCl pH 8, 137mMNaCl, 10%glycerol,

1% Nonidet P-40 (NP-40), 2 mM EDTA). Protein lysates were resolved on SDS-PAGE, transferred onto a Immobilon-P, PVDF mem-

brane (Millipore), and probed with: Plk1 antibody (Invitrogen 33-1700), c-MET antibody (Cell Signalling Technology 8198). Secondary

HRP-conjugated antibodies were used and the signal was detected using an Amershamenhanced chemiluminescence system (ECL,

GE Healthcare).

Viability Assays
SW48 Parental, SW48 G12D, Panc-1, HPAF-II, Panc 02.03 and Panc 05.04 cell lines were seeded overnight at 5000 cells per well in a

96 well plate in recommendedmedia (ATCC). Compounds were added the following day and viability was measured at 72h using the

sulforhodamine B (SRB) colorimetric assay as follows. Cells were fixed by replacing media with 1% v/v Trichloroacetic Acid (TCA)

(Sigma-Aldrich) at 4�C and incubated for 1h also at 4�C. Wells were washed thoroughly with copious amounts of deionised water

before staining with Sulforhodamine B (SRB) (Sigma-Aldrich) solution (0.057% w/v in 1% v/v Acetic Acid (VWR)) for 30 min. Stain

was aspirated and wells washed with several changes of 1% v/v Acetic Acid until unbound stain was removed, before air-drying.

Bound stain was solubilized with 100ml / well 10mM Tris (pH 8.0) (Trizma Base (121.1) Sigma-Aldrich) with agitation for 10 min. Fluo-

rescence intensity was recorded at Ex540nm / Em590nm using a BMG Pherastar Plus plate reader (Vichai and Kirtikara, 2006).

Pancreatic organoids were extracted and cultured as detailed above (Boj et al., 2015). In brief, pancreatic organoids were seeded

at 600 cells per well in a 96 well plate and allowed to grow for 7 days with media replenishment on the 3rd day. Full-grown organoids

were then treated with compounds for 72h and viability determined using CellTitre Glo 3D assay (Promega). For viability assays with

c-MET siRNA, cells were reverse transfected in a 6 cm dish using Dharmafect 1 (GE Dharmacon) per manufacturer’s instructions. On

the following day, cells were trypsinised and plated onto 96 well plates or 6 well plates. The 96 well plates were treated with a dose
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range of compounds or DMSO, and viability was determined via SRB colorimetric assay. Cells in the 6 well plates were collected at

the end of experiment to corroborate knockdown of c-MET by Western blotting.

PBD Overexpression in KRASG12D Cells
HeLa cells engineered to inducibly overexpress Plk1-PBD (HeLaPBD-326) were transfected with mCherry tagged KRAS G12D

(HeLaPBD-326 mCherry KRAS G12D). After selection in Puromycin (0.3ug/ml) for one month, the mCherry positive population

was sorted by FACS and alongside the parental cells subjected to a viability assay. HeLaPBD-326 and HeLaPBD-326 mCherry

KRAS G12D cells were seeded at 2.5x103 cells/well in 96-well plates. The following day cells were treated with a titration of doxy-

cycline. At the end of 72h incubation period SRB colorimetric assay was performed to assess viability.

Live Cell Imaging
Five x104 cells were seeded on each well of 4-well coverglass Lab-Tek chambers in a volume of 800 ml. HeLa-G12D cells were

induced with Doxycycline (Dox) 24h before seeding and kept in Dox for the rest of the experiment. The day after seeding, DMSO

or Poloppin (at the respective GI50 for cell killing: 10mM (HeLa) or 5mM (HeLa-KRASG12D) was added to thewells and live cell imaging

was performed using a fully motorised Leica DMI6000 B inverted microscope equipped with Evolve� 512 EMCCD Camera with an

exposure time of 98ms. Bright field images were takenwith a HCX PL APO 40x/0.85 CORRCSDRY objective every 5min for duration

of 48h.

Pharmacokinetic Study
Mice were dosed orally with 10mg/kg Poloppin-II, and blood samples were taken from 3mice per time point, and frozen until all sam-

ples were available. Plasma was prepared from each sample and Poloppin-II levels analysed by a pre-established methodology

(UHPLC-TOF MS using electrospray ionisation).

Xenograft Study
Tumours were established by sub-cutaneous implantation of 2 x 106 HCT116 cells suspended in 50% Matrigel into the flanks of a

cohort of mice. When a sufficient number of mice had developed tumours of approximately 100mm3, they were randomly assigned

to three groups: Vehicle, 50mg/kg Poloppin-II or 200mg/kg Poloppin-II, with 10mice per group.Mice were treated orally according to

their treatment group once every three days. Tumour volume was measured three times per week with calipers. Body weight was

measured three times per week. In addition to mice assigned to tumour volume efficacy arm of the study, 16 mice with established

HCT116 xenografts were assigned to either Vehicle or 200mg/kg oral dosing groups, with 8 mice per group. 24 hours after a single

dose, mice were euthanised, tumours removed, snap frozen and 30-50microgram of lysates were analysed by Western blotting on

4-12% Bis-Tris acrylamide gels, and transferred using the Invitrogen iBlot dry system. Phospho-Histone H3 was detected using

Abcam antibody ab5176, beta-actin with Sigma antibody a5316. Secondary detection was achieved with the appropriate HRP-con-

jugated antibodies from Cell Signalling Technology. HRP was visualised with ECL-Plus (GE Healthcare).

SILAC and mass spectrometry Samples were processed for phosphoproteomic analysis as follows. In order to generate light, me-

dium and heavy stable isotope-labelled HeLa S3 cells, arginine and lysine free DMEM medium (Dundee Cell Products) was supple-

mented with 10% dialysed FBS (GIBCO), 200 mg/L L-proline and either L-lysine (Lys0) together with L-arginine (Arg0), L-lysine-2H4

(Lys4) with L-arginine-U-13C6 (Arg6) or L-lysine-U-13C6-
15N2 (Lys8) with L-arginine-U-13C6-

15N4 (Arg10) at final concentrations of

28 mg/L for the arginine and 146 mg/L for the lysine until fully metabolically labelled. For SILAC experiments, 2 x 15 cm dishes

per condition were treated with PLK inhibitors or DMSO and mitotic cells isolated by shake-off. To increase the yield for DMSO

treated control cells, media was replaced after initial shake-off and plates returned to the incubator. A second round of shake off

was performed after a further 1 hour incubation. Cells were washed in cold PBS, lysed in lysis buffer (100 mM Tris pH 7.6, 2%

SDS, 50 mM NaF, 1 x PhosStop [Roche], 1 x mammalian protease inhibitor [Sigma]), quantified and 1.67 mg of each lysate mixed

1:1:1 (Hammond et al., 2015; van den Biggelaar et al., 2014).

Filter-aided sample preparation (FASP) was used to trypsin digest and isolate peptides (Hammond et al., 2015; van den Biggelaar

et al., 2014). For proteome analysis, 5% of the material was removed after FASP. Phosphopeptides were fractionated from the

remaining 95% using strong cation exchange (Resource S, GE Healthcare), and enriched using TiO2 (van den Biggelaar et al.,

2014). All samples were cleaned up using C18 stage tips before analysis by LC-MS. Samples were analysed by the University of War-

wick Proteomics Research Technology Platform. Samples were fractionated by reversed phase chromatography using an Ultimate

3000 RSLCnano system (Dionex) coupled to a Thermo Orbitrap Fusion (Thermo Scientific). Samples were loaded onto an Acclaim

PepMap m-precolumn cartridge 300 mm i.d. x 5 mm, 5 mm, 100 Å for 8 min at 10 mL/min in 2% acetonitrile, 0.1% trifluoroacetic acid.

For proteome the peptides were then eluted onto an Acclaim PepMap RSLC 75 mm i.d. x 50 cm, 2 mm, 100 Å (Thermo Scientific) at

250 nL/min,using a 110 minute gradient of 8-25% acetonitrile in 0.1% formic acid followed by a 22 minute gradient from 25-35%

acetonitrile in 0.1% formic acid. For phosphopeptides sample was eluted from the precolumn at 300 nL/min onto an AcclaimPepMap

RSLC 75 mm x 25 cm, 2 mm, 100 Å (Thermo Scientific) using a 37 min gradient from 8-25% acetonitrile in 0.1% formic acid, then an

8min gradient from 25-35%acetonitrile in 0.1% formic acid. Eluting peptides were converted to gas-phase ions bymeans of electro-

spray ionization and analysed on a Thermo Orbitrap Fusion (Thermo Scientific). Survey scans of peptide precursors from 375 to

1500m/zwere performed at 240K resolution (at 200m/z) with a 2x105 or 4x105 ion count target for proteomes or phosphoproteomes,

respectively. Themaximum injection time was set to 150ms. TandemMSwas performed by isolation at 1.2 Th using the quadrupole,
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HCD fragmentation with normalized collision energy of 30, and rapid scan MS analysis in the ion trap. The MS2 ion count target was

set to 3x103 or 104 for proteomes or phosphoproteomes, respectively. The maximum injection time was 200 ms. Precursors with

charge state 2–6 were selected and sampled for MS2. Dynamic exclusion duration was set to 60 s for proteomes or 50 s for phos-

phoproteomes, with a 10 ppm tolerance around the selected precursor and its isotopes. Monoisotopic precursor selection was

turned on. The instrument was run in top speed mode.

Resistance to PLK1 Inhibitors
HCT116wild-type cells (Horizon Discovery Ltd.) cultured inMcCoy’s 5A (Life Technologies #26600) medium supplemented with 10%

Foetal Calf Serum (Life Technologies #10270) were treated on three occasions with titrations of the PLK1ATP-competitive inhibitor BI

2536 (Selleckchem #S1109) or Poloppin in order to determine the 2.5xGI50, 3xGI50 and 5xGI50 values for each compound required to

initiate the development of resistance. Cells were subsequently treated with 2.5x GI50, 3x GI50 and 5x GI50 concentrations of either

compound, changing media and compound every three to four days until resistant colonies emerged or no viable cells remained.

Single cell clones were isolated from cells resistant to 5x GI50 BI 2536. Equivalent experiments using 3x GI50 or 2.5x GI50 doses

of Poloppin or BI2536 yielded identical results (data not shown). BI 2536-resistant clones (HCT116 BI 2536-Res. Clones) were

treated with BI2536 or Poloppin, alongside drug-sensitive parental HCT116 cells (HCT116 wt), and viability was assessed after

72 h. Viability is represented as percentage survival normalised to DMSO control. For PLK1 mutation analysis resistant clones

were enriched for mitotic cells by treatment for 16h with Nocodazole (SigmaM1404) prior to harvesting by scraping and RNA extrac-

tion using Qiagen RNeasy Mini Kits (Qiagen: 74104). cDNA was synthesized using Life Technologies First Strand Synthesis pro-

tocols with Superscript III (Life Technologies 18080044), RNase H digested (New England Biolabs M0297S) and subject to PCR

for the PLK1 following amplicon. Primers were designed to accommodate additional UTR cDNA in order for Nextera XT kits (Cam-

bridge Genomic Services, University Of Cambridge) to append tagging information without subsequent loss of sequence integrity, as

follows: PLK1F 5’-TTGTAACGTTCCCAGCGC, PLK1R 5’-GGCACACTGCAGACATGGC, PLK2F 5’-TGCTAGTCGGCACCAGAGG,

PLK2R 5’-TTCGTACCACCACATGTCCA, PLK3F 5’-CGCAGCGTAGCAAATCCAG, and PLK3R 5’-AAAGCTGGTCCCTGATTCCC

PCR reactions were carried out using Amplitaq Gold polymerase (Applied Biosystems N8080241) with a 25-cycle programme.

PCR products were gel-purified (Qiagen 28704) before being mixed in equimolar quantities in the case of each cell line and sub-

mitted for sequencing. Prepared samples were submitted for next generation sequencing using MiSeq Nano run with Nextera XT

library preparation. Sequencing and subsequent bioinformatics were performed by Cambridge Genomic Services (University Of

Cambridge).

RT-qPCR Assay
Total RNA from cultured cells was extracted using TRIzol reagent following the manufacturer instructions (Qiagen). Total RNA sam-

ples were submitted to Cambridge Genomic Services (CGS) for whole-transcript profiling on the Affymetrix Gene ST plate arrays and

subsequent bioinformatics analysis. For relative quantification of gene expression levels and microarray validation experiments,

equal amounts of cDNA were synthesized using SuperScript� III Reverse Transcriptase kit (Invitrogen). qPCR was performed using

QuantiTect SYBR� Green PCR Kit and cycling conditions used were 94�C for 15 sec, 55�C for 30 sec, and 70�C for 30 sec for 40

cycles. The specificity of the reaction was verified by melt curve analysis. Experiments were performed using StepOne Real-

Time PCR Systems (Applied Biosystems). Primers used in this assay are: c-Met (QT00023408), PLK1 (QT00049749), PLK2

(QT00049406), PLK3 (QT00025207), PLK4 (QT00029967) and beta-actin (QT01680476) from Qiagen.

siRNA Sensitization
Cells were reverse-transfected with 50nM (SW48 parental, SW48 KRAS G12D and Panc-1) or 25nM (HeLa Flp-In T-REx parental

cells) siRNA using Dharmafect (GE Dharmacon) as manufacturer’s recommendations. Where transfected cells were subsequently

treated with compounds, the cells were allowed to settle overnight and then treated with compound at the indicated concentration

the following day. Viability was assessed after 72 hrs, with the SRB colorimetric assay. Knockdown efficiencies were determined

by Western blot or RT-qPCR. Oligos against the following target sequences were used. c-MET (Qiagen): AACACCCATCCAGAAT

GTCAT, AAGCCAATTTATCAGGAGGTG, AAGTATCAGCTTCCCAACTTC. PLK1 (Qiagen): CAACGGCAGCGTGCAGATCAA. PLK2

(SMARTpool; Dharmacon): ACACAGAAGGAGAACGAUA, CAUCAAUGAGGAUAGGAUA, CUGCCUAGUGUUACUGAUA, ACAAA

GUCUACGCCGCAAA. PLK3 (SMARTpool; Dharmacon): GCGAGAAGAUCCUAAAUGA, GCAAGUGGGUUGACUACUC, GCACAU

CCGUUGGCCAUCA, GACCUCAAGUUGGGAAAUU. PLK4 (Qiagen): AAGGACTTGGTCTTACAACTA.

QUANTIFICATION AND STATISTICAL ANALYSIS

For live cell imaging analysis image sequences were viewed using ImageJ software and cell fate was analysed manually. Time spent

in mitosis for different groups was compared with a Kruskal-Wallis test and Dunn’s multiple comparison correction.

For phosphoproteomics analysis rawMS peak lists were searched against the Uniprot database (downloaded July 2016) using the

Andromeda search engine and processed with the MaxQuant software suite (version 1.5.5.1).

Nanoluciferase enzyme activity of PLK1- or PLK4-Nanoluc fusion protein was analysed using GraphPad Prism. Data were normal-

ised as follows: (treatment A RLU value at X�C temp/treatment A RLU value at 42�C temp) x 100. Using the Boltzmann sigmoidal

equation, a curve was then fitted to the normalised data. From this non-linear fit, a V50 value was generated, which in this context
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represents the aggregation onset temperature (Tagg), at which 50% of the PLK1- or PLK4-Nanoluc fusion protein has aggregated.

Bliss model independence synergy was performed as follows: 96-well plates were treated with a dilution series of each drug in an

83 8 checkerboard pattern of combinations (Lin et al., 2012). After SRB staining to obtain the growth inhibition data, we used Com-

benefit software to identify synergistic drug combinations, focusing on BLISS independence (Di Veroli et al., 2016). The single-agent

inhibition values were used to calculate a drug combination surface under the assumption of an additive effect. Regions of synergy

were then detected by comparing obtained data from a combination with the calculated additive effect (derived by subtracting the

calculated additive inhibition values from the measured inhibition to obtain the final difference values). In the final synergy surface,

positive values hence indicate synergy regions, whereas negative difference values identify antagonistic effects.
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