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Abstract

We perform individual-based Monte Carlo simulations in a community consisting of two
predator species that compete for a single prey species, with the purpose of studying
biodiversity stabilization in this simple model system. Predators are characterized with
predation efficiency and death rates, to which evolutionary adaptation is introduced.
Competition for limited prey abundance drives the populations’ optimization with respect
to predation efficiency and death rates. We study the influence of various ecological
elements on the final state, finding that both indirect competition and evolutionary
adaptation are insufficient to yield a stable ecosystem. However, (quasi-stable) three-
species coexistence is observed when direct interaction between the two predator species
is implemented.

Keywords: evolutionary dynamics, interspecific competition, Lotka–Volterra model,
multi-species coexistence, character displacement

1. Introduction

Ever since Darwin first introduced his theory that interspecific competition positively
contributes to ecological character displacement and adaptive divergence (Darwin, 1889),
debates have abounded about its importance in biodiversity. Character displacement is
considered to occur when a phenotypical feature of an organism, which could be mor-
phological, ecological, behavioral, or physiological (for example, beak size) (Brown and
Wilson, 1956), is shifted in a statistically significant manner due to the introduction
of a competitor (Schluter and McPhail, 1992; Taper and Case, 1992). One example of
ecological character displacement is that the body size of an island lizard species be-
comes reduced on average upon the arrival of a second, competing lizard kind (Melville,
2002). Early observational and experimental studies of wild animals provided support
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for Darwinian evolutionary theory (Lack, 1947; Brown and Wilson, 1956). One famous
observation related to finches, whose beak size would change in generations because of
competition (Lack, 1947). However, recent studies using modern genetic analysis tech-
niques do not find genome modifications to the same extent as phenotypic beak changes,
thereby casting doubt on Darwin’s observational studies (Grant, 1975; Arthur, 1982).
Another concern with experiments on birds or other animal species is that they may
live for decades, rendering this sort of study too time-consuming. Evolutionary theory
is based on the assumption that interspecific competition occurs mostly between closely
related species because they share similar food resources, thus characters exploiting new
resources are preferred. Ecologists perform experiments with wild animals by introduc-
ing a second competing species and recording their observable characters such as, e.g.,
body size, beak length, and others (Arthur, 1982; Melville, 2002). Unfortunately, direct
control over natural ecosystems is usually quite limited; for example, ecological char-
acter displacement with wild animals cannot be shut down at will in natural habitats.
However, this is easily doable in carefully designed computer simulations.

Game theory has a long history in the study of biological problems (Maynard Smith,
1982). Among all the mathematical models of studying biodiversity in ecology, the Lotka–
Volterra (LV) (Lotka, 1920; Volterra, 1926) predator-prey model may rank as possibly
the simplest one. Only one predator and one prey species are assumed to exist in the
system. Individuals from each species are regarded as simple particles with their reaction
rates set uniformly and spatially homogeneous. They display three kinds of behaviors
which are influenced by pre-determined reaction rates: prey particles may reproduce,
predator particles can spontaneously die, and predators may remove a prey particle and
simultaneously reproduce. This simple LV model kinetics may straightforwardly be im-
plemented on a regular lattice (usually square in two or cubic in three dimensions) to
simulate situations in nature, where stochasticity as well as spatio-temporal correlations
play an important role (Matsuda et al., 1992; Satulovsky and Tomé, 1994; Boccara et al.,
1994; Durrett, 1999; Provata et al., 1999; Rozenfeld and Albano, 1999; Lipowski, 1999;
Lipowski and Lipowska, 2000; Monetti and Rozenfeld, 2000; Droz and Pȩkalski, 2001;
Antal and Droz, 2001; Kowalik et al., 2002; Mobilia et al., 2006a,b; Washenberger et al.,
2007; Chen and Täuber, 2016). It is observed in such spatial stochastic LV model sys-
tems that predator and prey species may coexist in a quasi-stable steady state where both
populations reach non-zero densities that remain constant in time; here, the population
density is defined as the particle number of one species divided by the total number of
lattice sites. Mapping the fundamental master equation for the stochastic LV model to
a continuum field theory action allows a systematic perturbation expansion analysis for
the fluctuation- and correlation-induced renormalizations of system parameters (Täuber,
2012). We also note that a recent study applies spatial moment equations to predator-
prey dynamics to go beyond simple mass-action dynamics (Barraquand and Murrell,
2013). Considering that the original LV model contains only two species, we here aim
to modify it to study a multi-species system. We remark that there are other, distinct
well-studied three-species models, including the rock-paper-scissors model (Frachebourg
et al., 1996; Dobramysl et al., 2017), which is designed to study cyclic competitions, a
food-chain-like three-species model (Shih and Goldenfeld, 2014), as well as more general
networks of competing species (Dobramysl et al., 2017) and food webs (Drossel et al.,
2001; Rossberg et al., 2008; Allhoff et al., 2015), all of which contain species that op-
erate both as a predator and a prey. In this paper we mainly focus on predator-prey
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competitions, where any given species plays only one of those ecological roles.
The outcome of games involving two or more predator species competing for the

same resource or prey has been discussed in the seminal work by Gause and developed
into his competitive exclusion principle (Gause, 1934), which was later framed in the
context of ecological niches (Slobodkin, 1961). Levin extended these results, finding that
N distinct species cannot coexist stably as long as there are less than N limiting factors
(Levin, 1970). This principle has undergone some qualification over time: It has been
shown that spatially heterogeneous habitat structure (Hanski, 1981) may lead to stable
coexistence or that stable coexistence of two parasites of the same host is possible, albeit
only when direct parasite competition is included and if the hosts are allowed to recover
from infection (Hochberg and Hold, 1990).

Compared with the original LV model, we introduce one more predator into the sys-
tem so that there are two predator species competing for the same prey. We find that
even in a spatially extended and stochastic setting, the ‘weaker’ of the two predator
species will die out fast if all reaction rates are fixed. Afterwards the remaining two
species form a standard LV system and approach stable steady-state densities. Next
we further modify the model by introducing evolutionary adaptation (Dobramysl and
Täuber, 2013a). We also add a positive lower bound to the predator death rates in
order to avoid ‘immortal’ individuals. Finally, we incorporate additional direct compe-
tition between predator particles. (Quasi-)stable multiple-species coexistence states are
then observed in certain parameter regions, demonstrating that adaptive evolution in
combination with direct competition between the predator species facilitates ecosystem
stability. Our work thus yields insight into the interplay between evolutionary processes
and inter-species competition and their respective roles to establish and maintain biodi-
versity.

2. Stochastic lattice Lotka–Volterra model with fixed reaction rates

2.1. Model description

We spatially extend the LV model by implementing it on a two-dimensional square
lattice with an edge length of L = 512 lattice sites. It is assumed that there are three
species in the system: two predator species A, B, and a single prey species C. Our model
ignores the detailed features and characters of real organisms, and instead uses simple
‘particles’ to represent the individuals of each species. These particles are all located
on lattice sites in a two-dimensional space with periodic boundary conditions (i.e., on a
torus) to minimize boundary effects. Site exclusion is imposed to simulate the natural
situation that the local population carrying capacity is finite: Each lattice site can hold at
most one particle, i.e., is either occupied by one ‘predator’ A or B, occupied by one ‘prey’
C, or remains empty. This simple model partly captures the population dynamics of a
real ecological system because the particles can predate, reproduce, and spontaneously
die out; these processes represent the three main reactions directly affecting population
number changes. There is no specific hopping process during the simulation so that a
particle will never spontaneously migrate to other sites. However, effective diffusion is
brought in by locating the offspring particles on neighboring sites of the parent particles
in the reproduction process (Mobilia et al., 2006b; Chen and Täuber, 2016). Adding
nearest-neighbor migration would thus not markedly change the simulation outcome
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provided this additional hopping rate is not drastically higher than all the other reaction
rates. For high diffusivities, spatial fluctuations become suppressed, and the system is
essentially described by the mean-field reaction-diffusion equations for local population
densities (Täuber, 2012).

The stochastic reactions between neighboring particles are described as follows:

A
µA−−→ ∅ , B

µB−−→ ∅ ,
A+ C

λA−−→ A+A , B + C
λB−−→ B +B ,

C
σ−→ C + C .

(1)

A ‘predator’A (orB) may spontaneously die with decay rate µA (µB) > 0. Predators may
consume a neighboring prey particle C, and simultaneously reproduce with ‘predation’
rate λA (λB), which is to replace C with a new predator particle in the simulation. In
nature, predation and predator offspring production are separate processes. But such an
explicit separation would not introduce qualitative differences in a stochastic spatially
extended system in dimensions d < 4 (Mobilia et al., 2006a). When a prey particle
has an empty neighboring site, it can generate a new offspring prey individual there
with birth rate σ > 0. Note that a separate prey death process C → 0 can be trivially
described by lowering the prey reproduction rate and is therefore not included. We
assume asexual reproduction for all three species, i.e., only one parent particle is involved
in the reproduction process. Each species consists of homogeneous particles with identical
reaction rates. Predator species A and B may be considered as close relatives since they
display similar behavior (decay, predation and reproduction, effective diffusion) and most
importantly share the same mobile food source C. For now, we do not include evolution
in the reproduction processes, therefore all offspring particles are exact clones of their
parents. We are now going to show that these two related predator species can never
coexist.

2.2. Mean-field rate equations

The mean-field approximation ignores spatial and temporal correlations and fluctu-
ations, and instead assumes the system to be spatially well-mixed. We define a(t) and
b(t) as the predators’ population densities and c(t) as the prey density. Each predator
population decreases with death rate µ̂ (exponential population decay), but increases

with the predation rate λ̂ and prey density c(t) (LV predation). The prey population
c(t) increases exponentially with its reproduction rate σ̂ which is checked by a finite
carrying capacity (logistic growth law), and decreases with growing predator population
densities. The mean-field rate equations consequently read

da(t)

dt
= −µ̂A a(t) + ελ̂A a(t)c(t) ,

db(t)

dt
= −µ̂B b(t) + ελ̂B b(t)c(t) ,

dc(t)

dt
= σ̂ c(t)

[
1− a(t) + b(t) + c(t)

K

]
− λ̂A a(t)c(t)− λ̂B b(t)c(t) .

(2)

K > 0 represents a finite carrying capacity for the total population. It may be interpreted
to represent two distinct physical effects: First, there exists a limited food resource for the
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prey; and second, the prey cannot generate offspring on any of the predators’ territory. In
a lattice model, K also reflects limited site occupation, e.g., with at most one individual
of either species allowed to occupy any site.

The ecological efficiency ε, represents the efficiency of energy transfer during prey
consumption and predator reproduction. We ran tentative numerical tests solving eqns. 2
with ε < 1 and found our results to be qualitatively similar to the case of no energy loss.
Hence, from this point on we set ε = 1.

In order to obtain stationary densities, the left-side derivative terms are set to zero.
The ensuing species extinction fixed points are: (1) a = b = c = 0; (2) a = b = 0,

c = K; (3) for µ̂A < λ̂AK: a = σ̂(λ̂AK−µ̂A)

λ̂A(λ̂AK+σ̂)
, b = 0, c = µ̂A/λ̂A; (4) for µ̂B < λ̂BK:

a = 0, b = σ̂(λ̂BK−µ̂B)

λ̂B(λ̂BK+σ̂)
, c = µ̂B/λ̂B . When µ̂A/λ̂A 6= µ̂B/λ̂B , there exists no three-

species coexistence state. Yet in the special situation µ̂A/λ̂A = µ̂B/λ̂B , another set

of fixed points emerges: ( σ̂K + λ̂A)a + ( σ̂K + λ̂B)b + σ̂
K c = σ̂, c = µ̂A/λ̂A = µ̂B/λ̂B .

These describe a line of stable coexistence points in the space spanned by the predator
population densities a and b.

2.3. Lattice Monte Carlo simulation results

In the stochastic lattice simulations, population densities are defined as the particle
numbers for each species divided by the total number of lattice sites (512 × 512). We
prepare the system so that the starting population densities of all three species are the
same, here set to 0.3 (particles per lattice site), and the particles are initially randomly
distributed on the lattice. The system begins to leave this initial state as soon as the
reactions start and the ultimate stationary state is only determined by the reaction
rates, independent of the system’s initialization. We may test the simulation program
by setting the parameters as λA = λB = 0.5 and µA = µB = 0.125. Since species
A and B are now exactly the same, they coexist with an equal population density in
the final quasi-stable state, as indeed observed in the simulations. We remark that in
any finite stochastic system with an absorbing state, such as species extinction here,
this absorbing configuration represents the unique ultimate stationary state. However,
extinction times typically grow exponentially with system size; hence in sufficiently large
systems, one can meaningfully discuss phase transitions between active and absorbing
configurations. Correspondingly, in our stochastic simulations, there is always a very
small but certainly non-zero probability for predator or prey species extinction even in a
‘coexistence’ state (Washenberger et al., 2007); therefore we refer to these situations as
long-term ‘quasi-stability’.

We next increase the value of µA by 0.001 so that predator species A is more likely
to die than B. Fig. 1 shows the spatial distribution of the particles at t = 0, 10 000,
and 50 000 Monte Carlo Steps (MCS, from left to right), indicating sites occupied by A
particles in blue, B in red, C in green, and empty sites in white. As a consequence of
the reaction scheme (1), specifically the clonal offspring production, surviving particles
in effect remain close to other individuals of the same species and thus form clusters.
After initiating the simulation runs, one typically observes these clusters to emerge quite
quickly; as shown in Fig. 1, due to the tiny difference between the death rates µA−µB > 0,
the ‘weaker’ predator species A gradually decreases its population number and ultimately
goes extinct. Similar behavior is commonly observed also with other sets of parameters:
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Figure 1: Snapshots of the spatial particle distribution for a single Monte Carlo simulation run of a
stochastic predator-predator-prey Lotka–Volterra model on a 512 × 512 square lattice with periodic
boundary conditions at (from left to right) t = 0 Monte Carlo Steps (MCS), t = 10 000 MCS, and
t = 50 000 MCS, with predation rates λA = 0.5, λB = 0.5, predator death rates µA = 0.126, µB = 0.125,
and prey reproduction rate σ = 1.0. Only at most one particle per lattice site is allowed. Predator
particles A are indicated in blue, predators B in red, and prey C in dark green, while empty sites are
shown in white.

For populations with equal predation rates, only the predator species endowed with a
lower spontaneous death rate will survive.

Fig. 2(a) records the temporal evolution of the three species’ population densities.
After about 60 000 MCS, predator species A has reached extinction, while the other two
populations eventually approach non-zero constant densities. With larger values of µA
such as 0.127 or 0.13, species A dies out within a shorter time interval; the extinction time
increases with diminishing death rate difference |µA − µB |. Fig. 2 shows different values
for the asymptotic population densities as compared with the mean-field solutions as a
result of spatio-temporal correlations which are only present in lattice models. We note
that the ‘reaction rates’ in Monte Carlo simulations are actually probabilities for reactions
to occur per unit simulation time step; these differ from the continuum mean-field rates
for at least two reasons: The ‘microscopic’ simulation rates depend on the detailed
algorithm implemented in the code; and the coarse-grained effective ‘macroscopic’ rates
become renormalized by temporal fluctuations and spatial correlations (Täuber, 2012).
The explicit steps of the Monte Carlo simulation algorithm utilized here are described in
detail in the appendix.

In Figs. 2(b) and (c), we set λA = 0.55, λB = 0.5, µB = 0.125, and various values
of µA > 0.13. The larger rate λA gives species A an advantage over B in the predation
process, while the bigger rate µA enhances the likelihood of death for A as compared to
B. Upon increasing µA from 0.135 to 0.137, we observe a phase transition from species
B dying out to A going extinct in this situation with competing predation and survival
advantages. When µA thus exceeds a certain critical value (for this parameter set near
0.136), the disadvantages of high death rates cannot balance the gains due to a more
favorable predation efficiency; hence predator species A goes extinct. As µA deviates from
the critical point, we observe a transition of the decay of the weak species from algebraic
or power law to an exponential. We note that for the single simulation run shown in
the figure, however, we obtain a critical decay exponent of the predator density ρA(t), of
≈ 0.16, which is not close to the expected directed percolation university class value (see
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Figure 2: The two predator species cannot coexist in Monte Carlo simulations of the two-predator-one-
prey model with fixed reaction rates. (a) Time evolution of the population densities with fixed reaction
rates: predation rates λA = 0.5, λB = 0.5, predator death rates µA = 0.126, µB = 0.125, and prey
reproduction rate σ = 1.0; (b,c) temporal evolution of the population densities ρA(t) and ρB(t) with
fixed λA = 0.55, λB = 0.5, µB = 0.125, and µA varying from 0.135, 0.136, to 0.137. The curves in (b)
and (c) sharing the same markers are from the same (single) simulation runs. When µA = 0.136, ρA(t)
asymptotically follows a power-law decay as demonstrated by the top inset in (b), and the blue straight
line (obtained from a simple linear regression) gives its exponent to be 0.16. The bottom subplot in
(b) indicates that ρA(t) decays exponentially with a rate of 3.9 · 10−5 MCS−1, when µA is increased to
0.137. The inset in (c) shows that ρB(t) decreases exponentially with a rate of 1.8 · 10−5 MCS−1.
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below); precise and reliable measurements of critical exponents require large statistical
samples, and careful analysis of the asymptotic critical regime (Chen and Täuber, 2016),
which is however not the objective of this present study. In general, whenever the reaction
rates for predator species A and B are not exactly the same, either A or B will ultimately
die out, while the other species remains in the system, coexisting with the prey C. This
corresponds to actual biological systems where two kinds of animals share terrain and
compete for the same food. Since there is no character displacement occurring between
generations, the weaker species’ population will gradually decrease. This trend cannot
be turned around unless the organisms improve their capabilities or acquire new skills to
gain access to other food sources; either change tends to be accompanied by character
displacements (Grant and Grand, 2006; Rice et al., 2009; Stuart et al., 2014; Tan et al.,
2016).

In order to quantitatively investigate the characteristic time for the weaker predator
species to vanish, we now analyze the relation between the relaxation time tc of the
weaker predator species (A here) and the difference of death rates |µA − µB | under the
condition that λA = λB . Fig. 2(a) indicates that prey density (green triangles) reaches its
stationary value much faster than the predator populations. When |µA − µB | becomes
close to zero, the system returns to a two-species model, wherein the relaxation time
of the prey species C is finite. However, the relaxation time of either predator species
would diverge because it takes longer for the stronger species to remove the weaker one
when they become very similar in their death probabilities. Upon rewriting eqs. (2) for
λA = λB by replacing the prey density c(t) with its stationary value µB/λB , we obtain a
linearized equation for the weaker predator density p = a or b: dp(t)/dt = −|µA−µB | p(t),
describing exponential relaxation with characteristic decay time tc = 1/|µA − µB |.

We further explore the relation between the decay rate of the weak species population
density and the reaction rates through Monte Carlo simulations. Fig. 3(a) shows an
example of the weaker predator A population density ρA(t) decay for fixed reaction
rates λA = 0.5, λB = 0.5, µA = 0.126, µB = 0.125, and σ = 1.0, and in the inset
also the corresponding Fourier amplitude f(ω) = |

∫
e−iωt ρA(t) dt| that is calculated

by means of the fast Fourier transform algorithm (here, the Monte Carlo simulation
data were averaged over 100 independent runs). Assuming an exponential decay of the
population density according to ρA(t) ∼ e−t/tc , we identify the inverse relaxation time
1/tc with the half-width of the Fourier peak at half its maximum value. For other
values of µA > 0.125, the measured relaxation times tc for the predator species A are
plotted in Fig. 3(b). We also ran simulations for various parameter values µA < 0.125,
for which the predator population B would decrease toward extinction instead of A,
and measured the corresponding relaxation time for ρB(t), plotted in Fig. 3(b) as well.
The two curves overlap in the main panel of Fig. 3(b), confirming that tc is indeed a
function of |µA−µB | only. The inset of Fig. 3(b) demonstrates a power law relationship
tc ∼ |µA − µB |−νt between the relaxation time and the reaction rate difference, with
exponent νt = zν ≈ 1.23 ± 0.01 (using the standard exponent terminology for critical
dynamics, and estimating only the statistical error in the data) as inferred from the slope
in the double-logarithmic graph via simple linear regression. This value is to be compared
with the corresponding exponent zν ≈ 1.295 ± 0.006 for the directed percolation (DP)
universality class (Grassberger and Zhang, 1996). Directed percolation (Broadbent and
Hammersley, 1957) represents a class of models that share identical values of their critical
exponents at their phase transition points, and is expected to generically govern the
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Figure 3: Characteristic decay time of the weaker predator species measured in Monte Carlo simulations
of the two-predator-one-prey model with fixed reaction rates. (a) Main panel: temporal evolution of
the predator population density ρA(t) with predation rates λA = 0.5, λB = 0.5, predator death rates
µA = 0.126, µB = 0.125, and prey reproduction rate σ = 1.0. Inset: Fourier transform amplitude f(ω)
of the predator density time series ρA(t). (b) Main panel: characteristic decay time tc as obtained from
the peak width of f(ω), versus the death rate difference |µA − µB |, with all other reaction rates fixed
as in (a). Inset: the black dots show the data points log10 tc versus log10(|µA − µB |), while the blue
straight line with slope −1.23± 0.01 is inferred from linear regression. The data were averaged over 100
independent simulation runs.

critical properties at non-equilibrium phase transitions that separate active from inactive,
absorbing states (Henkel et al., 2008; Täuber, 2014). Our result indicates that the critical
properties of the two-predator-one-prey model with fixed reaction rates at the extinction
threshold of one predator species appear to also be described by the DP universality class
(if we allow for additional systematic errors in our exponent determination in the range
of ± 0.05).

As already shown in Fig. 1, individuals from each species form clusters in the process
of the stochastically occurring reactions (2). The correlation lengths ξ, obtained from
equal-time correlation functions C(x), characterize the average sizes of these clusters.
The definition of the correlation functions between the different species α, β ∈ {A,B,C}
is Cαβ(x) = 〈nα(x)nβ(0)〉 − 〈nα(x)〉〈nβ(0)〉, where nα(x) ∈ {0, 1} denotes the local
occupation number of species α at site x. First choosing a lattice site, and then a second
site at distance x away, we note that the product nα(x)nβ(0) = 1 only if a particle
of species β is located on the first site, and a particle of species α on the second site;
otherwise the product equals 0. We then average over all sites to obtain 〈nα(x)nβ(0)〉.
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Figure 4: Time evolution for correlation lengths during Monte Carlo simulations of the two-predator-
one-prey model with fixed reaction rates. (a) Main panel: correlation functions C(x) after the system has
evolved for one half of the relaxation time 0.5tc ≈ 2386 MCS, with reaction rates λA = 0.5, λB = 0.5,
µA = 0.128, µB = 0.125, and σ = 1.0. Inset: ln(CAA) with a simple linear regression of the data points
with x ∈ [4, 14] (red straight line) that yields the characteristic correlation decay length ξAA ≈ 5.8.
(b,c,d) Measured correlation lengths ξAA, ξAB , and ξBB as function of the system evolution time t
relative to tc, with reaction rates as in (a) except (top to bottom) µA = 0.128 (blue left triangles), 0.132
(green right triangles), 0.136 (red crosses), and 0.140 (cyan diamonds).

〈nα(x)〉 represents the average population density of species α.
In our Monte Carlo simulations we find that although the system has not yet reached

stationarity at 0.5 tc, its correlation functions do not vary appreciably during the subse-
quent time evolution. This is demonstrated in Figs. 4(b-d) which show the measured cor-
relation lengths from 0.5 tc to 3.75 tc, during which time interval the system approaches
its quasi-stationary state. The main panel in Fig. 4(a) depicts the measured correla-
tion functions after the system has evolved for 0.5 tc ≈ 2386 MCS, with predator A
death rate µA = 0.128. Individuals from the same species are evidently spatially cor-
related, as indicated by the positive values of Cαα. Particles from different species, on
the other hand, display anti-correlations. The inset demonstrates exponential decay:
CAA(x) ∼ e−|x|/ξAA , where ξAA is obtained from linear regression of ln(CAA(x)). In the
same manner, we calculate the correlation length ξAA, ξBB , and ξAB for every 0.5 tc the
system evolves, for different species A death rates µA = 0.128, 0.132, 0.136, and 0.140,
respectively. Fig. 4(b) shows that predator A clusters increase in size by about two lattice
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constants within 1.5 tc after the reactions begin, and then stay almost constant. In the
meantime, the total population number of species A decreases exponentially as displayed
in Fig. 3, which indicates that the number of predator A clusters decreases quite fast.
Fig. 4(c) does not show prominent changes for the values of ξAB(t) as the reaction time
t increases, demonstrating that species A and B maintain a roughly constant distance
throughout the simulation. In contrast, Fig. 4(d) depicts a significant temporal evolution
of ξBB(t): The values of ξBB are initially close to those of ξAA, because of the coevolution
of both predator species A and B; after several decay times tc, however, there are few
predator A particles left in the system. The four curves for ξBB would asymptotically
converge after species A has gone fully extinct.

To summarize this section, the two indirectly competing predator species cannot
coexist in the lattice three-species model with fixed reaction rates, except in the trivial
case where both species share the same set of identical parameters. The mean-field model
does admit a line of coexistence solutions for a specific ratio of rate parameters, however
these are not robust against perturbations precisely because of the necessary fine-tuning;
we could hence not observe them in our Monte Carlo simulations. The characteristic time
for the weaker predator species to go extinct diverges as its reaction rates approach those
of the stronger species. We do not observe large fluctuations of the correlation lengths
during the system’s time evolution, indicating that spatial structures remain quite stable
throughout the Monte Carlo simulations.

3. Introducing character displacement

3.1. Model description

The Lotka–Volterra model simply treats the individuals in each population as particles
endowed with uniform birth, death, and predation rates. This does not reflect a natural
environment where organisms from the same species may still vary in predation efficiency
and death or reproduction rates because of their size, strength, age, affliction with disease,
etc. In order to describe individually varying efficacies, we introduce a new character
η ∈ [0, 1], which plays the role of an effective trait that encapsulates the effects of
phenotypic changes and behavior on the predation / evasion capabilities, assigned to
each individual particle (Dobramysl and Täuber, 2013a). When a predator Ai (or Bj)
and a prey Ck occupy neighboring lattice sites, we set the probability (ηAi + ηCk)/2 [or
(ηBj + ηCk)/2] for Ck to be replaced by an offspring predator Az (or Bz). The indices
i, j, k, and z here indicate specific particles from the predator populations A or B,
the prey population C, and the newly created predator offspring in either the A or B
population, respectively. In order to confine all reaction probabilities in the range [0, 1],
the efficiency ηAz (or ηBz) of this new particle is generated from a truncated Gaussian
distribution that is centered at its parent particle efficiency ηAi (or ηBj) and restricted to
the interval [0, 1], with a certain prescribed distribution width (standard deviation) ωηA
(or ωηB). When a parent prey individual Ci gives birth to a new offspring particle Cz,
the efficiency ηCz is generated through a similar scheme with a given width ωηC . Thus
any offspring’s efficiency entails inheriting its parent’s efficacy but with some random
mutational adaptation or differentiation. The distribution widths ω model the potential
range of the evolutionary trait change: for larger ω, an offspring’s efficiency is more likely
to differ from its parent particle. Note that the width parameters ω here are unique for
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individuals from the same species, but may certainly vary between different species. In
previous work, we studied a two-species system (one predator and one prey) with such
demographic variability (Dobramysl and Täuber, 2013a,b). In that case, the system
arrived at a final steady state with stable stationary positive species abundances. On a
much faster time scale than the species density relaxation, their respective efficiency η
distributions optimized in this evolutionary dynamics, namely: The predators’ efficacies
rather quickly settled at a distribution centered at values near 1, while the prey efficiencies
tended to small values close to 0. This represents a coevolution process wherein the
predator population on average gains skill in predation, while simultaneously the prey
become more efficient in evasion so as to avoid being killed.

3.2. Quasi-species mean-field equations and numerical solution

We aim to construct a mean-field description in terms of quasi-subspecies that are
characterized by their predation efficacies η̂. As before, these equations will include
exponential predator decay terms (rate µ̂), predation terms (rates λ̂kj) and logistic growth
with a finite carrying capacity K. Yet here we aim to describe the time evolution of
the subspecies ai, bi, and ci, which are characterized by their respective predation or
evasion efficiencies ηi. To this end, we discretize the continuous interval of possible
efficiencies 0 ≤ η ≤ 1 into N bins, with the bin midpoint values η̂i = (i + 1/2)/N ,
i = 0, . . . , N −1. We then consider a predator (or prey) particle with an efficacy value in
the range η̂i − 1/2 ≤ η̂ ≤ η̂i + 1/2 to belong to the predator (or prey) subspecies i. The
probability that an individual of species A with predation efficiency η̂1 produces offspring
with efficiency η̂2 is assigned by means of a reproduction probability function f(η̂1, η̂2).
In the binned version, we may use the discretized form fij = f(η̂i, η̂j). Similarly, we have
a reproduction probability function gij for predator species B and hij for the prey C.

Finally, we assign the arithmetic mean λ̂ik = (η̂i + η̂k)/2 to set the effective predation
interaction rate of predator i with prey k (Dobramysl and Täuber, 2013a,b).

These prescriptions allow us to construct the following coupled mean-field rate equa-
tions for the temporal evolution of the subspecies populations:

dai(t)

dt
= −µ̂ ai(t) +

∑
jk

λ̂kjfki ak(t)cj(t) ,

dbi(t)

dt
= −µ̂ bi(t) +

∑
jk

λ̂kjgki bk(t)cj(t) ,

dci(t)

dt
= σ̂

∑
k

hki ck(t)

(
1−

∑
z[az(t) + bz(t) + cz(t)]

K

)
−
∑
j

λ̂ji aj(t)ci(t)−
∑
j

λ̂ji bj(t)ci(t) .

(3)

Steady-state solutions are determined by setting the time derivatives to zero, dai(t)/dt =
dbi(t)/dt = dci(t)/dt = 0. Therefore, the steady-state particle counts can always be found
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by numerically solving the coupled implicit equations

µ̂ ai =
∑
jk

λ̂kjfki akcj ,

µ̂ bi =
∑
jk

λ̂kjgki bkcj ,

σ̂
∑
k

hki ck

(
1−

∑
z[az + bz + cz]

K

)
=
∑
j

λ̂ji ajci +
∑
j

λ̂ji bjci .

(4)

In appendix 6.2, we list the solutions of the special case ωηA → ∞, ωηB → ∞, and
ωηC → ∞, which yields uniform inheritance distributions for all three species. These
solutions were obtained by using the method detailed in our previous work (Dobramysl
and Täuber, 2013b). We could not obtain the full time-dependent solutions to the mean-
field equations in closed form. We therefore employed a fifth-order Runge–Kutta scheme
with adaptive time stepping (Hairer et al., 1993) to numerically solve eqs. (3), with
initial conditions ai(t = 0) = bi(t = 0) = ci(t = 0) = 1/(3N) for i = 1, ..., N , a number
of subspecies N = 100, and the carrying capacity K = 1. An example for the resulting
time evolution of the predator B density is shown in Fig. 5(b); its caption provides the
remaining parameter values.

3.3. Lattice simulation

We now proceed to Monte Carlo simulations for this system on a two-dimensional
square lattice, and first study the case where trait evolution is solely introduced to the
predation efficiencies η. In these simulations, the values of µ and σ are held fixed, as is
the nonzero distribution width ω, so that an offspring’s efficiency usually differs from its
parent particle. In accord with the numerical solutions for the mean-field equations (3),
we find that the three-species system (predators A and B, prey C) is generically unstable
and will evolve into a final two-species steady state, where one of the predator species
goes extinct, depending only on the value of ω (given that µ and σ are fixed).

At the beginning of the simulation runs, the initial population densities, which are
the particle numbers of each species divided by the lattice site number, are assigned the
same value 0.3 for all the three species. The particles are randomly distributed on the
lattice sites. We have checked that the initial conditions do not influence the final state
by varying the initial population densities and efficiencies. We fix the predator death rate
to µ = 0.125 for both species A and B, and set the prey reproduction rate as σ = 1.0.
The predation efficacies for all particles are initialized at η = 0.5. We have varied the
values of the distribution width ω and observed the final quasi-steady states. For the
purpose of simplification, we fix ωηA = ωσC = 0.1, and compare the final states when
various values of ωηB are assigned.

Fig. 5(a) shows the population density ρB(t) of predator species B with the listed
values for ωηB ; each curve depicts a single simulation run. When ωηB > 0.1, ρB(t) quickly
tends to zero; following the extinction of the B species, the system reduces to a quasi-
stable A-C two-species predator-prey ecology. When ωηB = 0.1, there is no difference
between species A and B, so both populations survive with identical final population
density; for ωηB = 0.01, 0.05, predator species A finally dies out and the system is
reduced to a B-C two-species system. We remark that the curve for ωηB = 0.01 (green
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Figure 5: (a) Stochastic lattice simulation of the two-predator-one-prey model with evolution introduced
only for the predation efficiency η: Predator population density ρB(t) for various values of the predation
efficiency distribution width ωηB = 0.001 (red dots), 0.01 (green triangles up), 0.05 (blue squares), 0.1
(pink crosses), and 0.15 (orange triangles down), with all other reaction rates held fixed at µ = 0.125,
σ = 1.0, and ωηA = ωηC = 0.1; Monte Carlo time t rescaled with the relaxation time t0s = 1900
MCS of the curve for ωηB = 0.05. The corresponding temporal evolution of the predator A population
densities are displayed in the inset; all results shown here were obtained from single simulation runs.
(b) Numerical solution of the mean-field eqs. (3) with b(t) = 1

N

∑
i bi(t) denoting the average subspecies

density. The parameters are set at the same values as for the lattice simulations; time t is again
normalized with the relaxation time t0 = 204.32 of the curve for ωηB = 0.05 to allow direct comparison

with the simulation data. The inset again displays the time evolution of a(t) = 1
N

∑
i ai(t). Note that

the limited carrying capacity in both lattice simulations and the mean-field model introduces strong
damping which suppresses the characteristic LV oscillations.

triangles up) decreases first and then increases again at very late time points which
is only partially shown in the graph. For ωηB = 0.001 and even smaller, ρB(t) tends
to zero quickly, ultimately leaving an A-C two-species system. We tried another 100
independent runs and obtained the same results: For ωηB 6= ωηA, one of the predator
species will vanish and the remaining one coexists with the prey C. When ωηB is smaller
than ωηA but not too close to zero, predator species B prevails, while A goes extinct.
For ωηB = 0, there is of course no evolution for these predators at all, thus species A will
eventually outlast B. Hence there exists a critical value ωBc for the predation efficacy
distribution width ωηB , at which the probability of either predator species A or B to
win the ‘survival game’ is 50%. When ωBc < ωηB < ωηA, B has an advantage over A,
i.e., the survival probability of B is larger than 50%; conversely, for ωBc > ωηB , species
A outcompetes B.

This means that the evolutionary ‘speed’ is important in a finite system, and is deter-
mined by the species plasticity ω. The existence of ωBc can be understood as the trade-off
between the initial evolution ability and the optimum of the final stationary state. A
small value of ω indicates its corresponding species slow down in their evolution; e.g.,
no evolution at all occurs when ω = 0. However, it is also demonstrated that efficiencies
are on average larger when the system reaches its final, more optimized stationary state,
with a smaller width ω (Dobramysl and Täuber, 2013a,b). When ωηB < ωηA, species B
is slower than A in its evolution, thus its efficiencies are on average smaller and its popu-
lation density is lower at the initial state. After this initial stage and when both species’
efficiency distributions are stationary, species B would be more efficient in general and
gradually take over the whole system. The success of species B in going through the

14



initial phase given that ωηB < ωηA is related to the rate of generation of offspring with
high predation efficiencies. For low values ωηB , the probability for a particle to produce
an offspring with considerably higher efficiency is low. As a result, the highly efficient
particles are sparsely distributed in the initial evolution stage; moreover, the lower the
distribution width ωηB is, the larger is the associated cluster size as measured by the
correlation length.

Fig. 5(b) shows the numerical solution of the associated mean-field model defined
by eqs. (3). In contrast to the lattice simulations, small width values ωηB do not yield
extinction of species B; this supports the notion that the reentrant phase transition from
B to A survival at very small values of ωηB is probably a finite-size effect, as discussed
below. Because of the non-zero carrying capacity, oscillations of population densities are
largely suppressed in both Monte Carlo simulations and the mean-field model. Spatio-
temporal correlations in the stochastic lattice system rescale the reaction rates, and
induce a slight difference between the steady-state population densities in Figs. 5(a) and
(b) even though the microscopic rate parameters are set to identical values. For example,
for ωηB = 0.1, the quasi-stationary population density of predator species B is ≈ 0.19
(pink plus symbols) in the lattice model, but reaches 0.25 in the numerical solution of
the mean-field rate equations. Time t is measured in units of Monte Carlo Steps (MCS)
in the simulation; there is no method to directly convert this (discrete) Monte Carlo
time to the continuous time in the mean-field model. For the purpose of comparing the
decay of population densities, we therefore normalize time t by the associated relaxation
times t0s = 1900 MCS in the simulations and t0 = 204.32 in the numerical mean-field
solution; both are calculated by performing a Fourier transform of the time-dependent
prey densities ρB(t) and b(t) for ωηB = 0.05 (blue squares).

Our method to estimate ωBc was to scan the value space of ωηB ∈ [0, 1], and perform
1000 independent simulation runs for each value until we found the location in this
interval where the survival probability for either A or B predator species was 50%.
With the simulations on a 512 × 512 system and all the parameters set as mentioned
above, ωBc was measured to be close to 0.008. We repeated these measurements for
various linear system sizes L in the range [128, 2048]. Fig. 6(a) shows ωBc as a function
of 1/L, indicating that ωBc decreases with a divergent rate as the system is enlarged.
Because of limited computational resources, we were unable to extend these results to
even larger systems. According to the double-logarithmic analysis shown in Fig. 6(b),
we presume that ωBc would fit a power law ωBc ∼ L−θ with exponent θ ≈ 0.2. This
analysis suggests that ωBc = 0 in an infinitely large system, and that the reentrant
transition from B survival to A survival in the range ωηB ∈ [0, ωηA] is likely a finite-size
effect. We furthermore conclude that in the three-species system (two predators and a
single prey) the predator species with a smaller value of the efficiency distribution width
ω always outlives the other one. A smaller ω means that the offspring’s efficiency is
more centralized at its parent’s efficacy; mutations and adaptations have smaller effects.
Evolution may thus optimize the overall population efficiency to higher values and render
this predator species stronger than the other one with larger ω, which is subject to more,
probably deleterious, mutations. These results were all obtained from the measurements
with ωηA = 0.1. However, other values of ωηA including 0.2, 0.3, and 0.4 were tested as
well, and similar results observed.

Our numerical observation that two predator species cannot coexist contradicts ob-
servations in real ecological systems. This raises the challenge to explain multi-predator-
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Figure 6: (a) Stochastic lattice simulation of the two-predator-one-prey model with evolution only
introduced to the predation efficiencies η: Critical distribution width ωBc as a function of the inverse
linear system size 1/L, with predator death rate µ = 0.125, prey reproduction rate σ = 1.0, and
ωηA = 0.1. The data are obtained for linear system sizes L ∈ [128, 256, 512, 1024, 2048]. (b) Double-
logarithmic plot of the critical width ωBc as a function of system size L; the red straight line represents
a simple linear regression of the four points with L ∈ [256, 512, 1024, 2048], with slope −0.2. The point
with L = 128 presumably deviates from this straight line due to additional strong finite-size effects.

species coexistence. Notice that evolution was only applied to the predation efficiency in
our model. However, natural selection could also cause lower predator death rates and
increased prey reproduction rates so that their survival chances would be enhanced in
the natural selection competition. One ecological example are island lizards that benefit
from decreased body size because large individuals will attract attacks from their com-
petitors (Melville, 2002). In the following, we adjust our model so that the two mortality
rates µA and µB do not stay fixed anymore, but instead evolve by following the same
mechanism as previously implemented for the predation efficacies η. The death rate of
an offspring predator particle is hence generated from a truncated Gaussian distribution
centered at its parent’s value, with positive standard deviations ωµA and ωµB for species
A and B, respectively.

In the simulations, the initial population densities for all three species are set at 0.3
with the particles randomly distributed on the lattice. The reaction rates and efficiencies
for these first-generation individuals were chosen as ηA0 = ηB0 = ηC0 = 0.5, µA0 =
µB0 = 0.125, and σ0 = 1.0. With this same initial set, we ran simulations with different
values of the Gaussian distribution widths ω. Figure 7 displays the temporal evolution
of the three species’ population densities with four sets of given widths ω: In Fig. 7(a),
ωηA = 0.11, ωηB = 0.1, ωηC = 0.1, ωµA = 0.3, and ωµB = 0.125. We are primarily
interested in the interaction between the two predator species and the evolution of their
efficiencies, thus we switch off the evolution of σ to simplify the model. Since a smaller
width ω gives advantages to the corresponding species, ωηB < ωηA and ωµB < ωµA
render predators B stronger than A in general. As the graph shows, species A dies out
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Figure 7: Population densities ρ(t) from Monte Carlo simulations with evolution introduced to both
the predation efficiencies η and predator death rates µ, while the prey reproduction rate stays fixed
at σ = 1.0. The species are indicated as blue dots for A, red squares for B, and green triangles for
C. The final states are in (a) A extinction; (b) and (c) transient three-species coexistence; and (d) B
extinction, with ωηA = 0.11, ωµA = 0.3, ωµB = 0.125 in (a), ωηA = 0.08, ωµA = 0.1, ωµB = 0.09 in
(b), ωηA = 0.08, ωµA = 0.4, ωµB = 0.39 in (c), and ωηA = 0.08, ωµA = 0.4, ωµB = 0.09 in (d), while
ωηB = 0.1, ωηC = 0.1 for all four plots.

quickly and finally only B and C remain in the system. In all four cases, the prey C stay
active and do not become extinct.

However, it is not common that a species is stronger than others in every aspect,
so we next set ω so that A has advantages over B in predation, i.e., ωηA < ωηB , but
is disadvantaged through broader-distributed death rates ωµA > ωµB . In Fig. 7(b),
ωηA = 0.08, ωηB = 0.1, ωηC = 0.1, ωµA = 0.1, ωµB = 0.09, and ωσC = 0; in Fig. 7(c),
ωηA = 0.08, ωηB = 0.1, ωηC = 0.1, ωµA = 0.4, ωµB = 0.39, and ωσC = 0. In either
case, none of the three species becomes extinct after 10 000 MCS, and three-species
coexistence will persist at least for much longer time. Monitoring the system’s activity,
we see that the system remains in a dynamic state with a large amount of reactions
happening. When we repeat the measurements with other independent runs, similar
results are observed, and we find the slow decay of the population densities to be rather
insensitive to the specific values of the widths ω. As long as we implement a smaller width
ω for the A predation efficiency than for the B species, but a larger one for its death
rates, or vice versa, three-species coexistence emerges. Of course, when the values of
the standard deviations ω differ too much between the two predator species, one of them
may still approach extinction fast. One example is shown in Fig. 7(d), where ωηA = 0.08,
ωηB = 0.1, ωηC = 0.1, ωµA = 0.4, ωµB = 0.09, and ωσC = 0; since ωµA is about five
times larger than ωµB here, the predation advantage of species A cannot balance its death
rate disadvantage, and consequently species A is driven to extinction quickly. Yet the
coexistence of all three competing species in Figs. 7(b) and (c) does not persist forever,
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and at least one species will die out eventually, after an extremely long time. Within an
intermediate time period, which still amounts to thousands of generations, they can be
regarded as quasi-stable because the decay is very slow. This may support the idea that
in real ecosystems perhaps no truly stable multiple-species coexistence exists, and instead
the competing species are in fact under slow decay which is not noticeable within much
shorter time intervals. In Figs. 7(a) and (d), the predator A population densities decay
exponentially with relaxation times of order 100 MCS, while the corresponding curves
in (b) and (c) approximately follow algebraic functions (power law decay). Since species
A and B are initially endowed with very close efficiencies, and there is only evolution
introduced to the system, the final state is entirely determined by the distribution widths
ω; the resulting exponential decay rate of the weaker predator species is hence related to
the difference of these widths. In fact, the three-species coexistence states in Fig. 7(b)
and (d) are solely caused by low death rates, as discussed below. In general, mutation
would drive the system unstable irrespective of the initial conditions.

We note that in the above model implementation the range of predator death rates
µ was the entire interval [0, 1], which gives some individuals a very low chance to decay.
Hence these particles will stay in the system for a long time, which accounts for the
long-lived transient two-predator coexistence regime. To verify this assumption, we set
a positive lower bound on the predators’ death rates, preventing the presence of near-
immortal individuals. We chose the value of the lower bound to be 0.001, with the
death rates µ for either predator species generated in the predation and reproduction
processes having to exceed this value. Indeed, we observed no quasi-stable three-species
coexistence state, i.e., one of the predator species was invariably driven to extinction,
independent of the values of the widths ω, provided they were not exactly the same for
the two predator species. Furthermore, long-lived transient states were also avoided by
this change. To conclude, upon introducing a lower bound for their death rates, the two
predator species cannot coexist despite their dynamical evolutionary optimization.

4. Effects of direct competition between both predator species

4.1. Inclusion of direct predator competition and mean-field analysis

We proceed to include explicit direct competition between both predator species in our
model. The efficiencies of predator particles are most likely to be different since they are
randomly generated from truncated Gaussian distributions. When a strong A individual
(i.e., with a large predation efficacy η) meets a weaker B particle on an adjacent lattice
site, or vice versa, we now allow predation between both predators to occur. Direct
competition is common within predator species in nature. For example, a strong lizard
may attack and even kill a small lizard to occupy its habitat. A lion may kill a wolf,
but an adult wolf might kill an infant lion. Even though cannibalism occurs in nature as
well, we here only consider direct competition and predation between different predator
species. In our model, direct competition between the predator species is implemented
as follows: For a pair of predators Ai and Bj located on neighboring lattice sites and
endowed with respective predation efficiencies ηAi and ηBj < ηAi, particle Bj is replaced
by a new A particle Az with probability ηAi − ηBj ; conversely, if ηAi < ηBj , there is a
probability ηBj − ηAi that Ai is replaced by a new particle Bz.

We first write down and analyze the mean-field rate equations for the simpler case
when the predator species compete directly without evolution, i.e., all reaction rates are
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uniform and constant. We assume that A is the stronger predator with λ̂A > λ̂B , hence
only the reaction A + B → A + A is allowed to take place with rate λ̂A − λ̂B , but not
its complement, supplementing the original reaction scheme listed in (1). The associated
mean-field rate equations read

da(t)

dt
= −µ̂A a(t) + λ̂A a(t)c(t) + (λ̂A − λ̂B) a(t)b(t) ,

db(t)

dt
= −µ̂B b(t) + λ̂B b(t)c(t)− (λ̂A − λ̂B) a(t)b(t) ,

dc(t)

dt
= σ̂c(t)

[
1− a(t) + b(t) + c(t)

K

]
− λ̂A a(t)c(t)− λ̂B b(t)c(t) ,

(5)

with the non-zero stationary solutions

(i) a = 0 , b =
σ̂ (Kλ̂B − µ̂B)

λ̂B (σ̂ +Kλ̂B)
, c =

µ̂B

λ̂B
if K > µ̂B/λ̂B ,

(ii) a =
σ̂ (Kλ̂A − µ̂A)

λ̂A (σ̂ +Kλ̂A)
, b = 0 , c =

µ̂A

λ̂A
if K > µ̂A/λ̂A .

(6)

Within this mean-field theory, three-species coexistence states do not exist. In our lattice
simulations, we could not observe any three-species coexistence state either, even when
we carefully tuned one reaction rate with all others held fixed.

Next we reinstate evolution for this extended model with direct competition between
the predator species. We utilize the function λ̃ij = |η̂i − η̂j | to define the reaction rate
between predators A and B. For the case that the predator death rate µ̂ is fixed for both
species A and B, the ensuing quasi-subspecies mean-field equations are

dai(t)

dt
= −µ̂ ai(t) +

∑
jk

λ̂kjfki ak(t)cj(t) +
∑
j<k

λ̃kjfki ak(t)bj(t)

−
∑
j>i

λ̃ij ai(t)bj(t) ,

dbi(t)

dt
= −µ̂ bi(t) +

∑
jk

λ̂kjgki bk(t)cj(t) +
∑
j<k

λ̃kjgki bk(t)aj(t)

−
∑
j>i

λ̃ji bi(t)aj(t) ,

dci(t)

dt
= σ̂

∑
j

hji cj(t)

(
1−

∑
z[az(t) + bz(t) + cz(t)]

K

)
−
∑
j

λ̂ji [aj(t) + bj(t)] ci(t) .

(7)

Since a closed set of solutions for eqs. (7) is very difficult to obtain, we resort to numerical
integration. As before, we rely on a fifth-order Runge–Kutta scheme with adaptive time
stepping (Hairer et al., 1993), set the initial conditions to ai(t = 0) = bi(t = 0) = ci(t =
0) = 1/N , number of subspecies N = 100, and choose the carrying capacity K = 3. Four
examples for such numerical solutions of the quasi-subspecies mean-field equations are
shown in Fig. 8, and will be discussed in the following subsection.
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Figure 8: Numerical solutions of the mean-field equations (7) for the two-predator subspecies densities
a(t) = 1

N

∑
i ai(t) (dashed) and b(t) = 1

N

∑
i bi(t) (solid) for different distribution widths ωη̂,B and the

parameters ω̂η̂,A = 0.14, ωη̂,C = ∞, σ̂ = 1, and µ̂ = 0.5. (a) Population densities in the presence of
direct predator-predator competition; and (b) in the absence of this competition. Note that three-species
coexistence is only possible when direct predator-predator competition is explicitly implemented.

4.2. The quasi-stable three-species coexistence region

For the three-species system with two predators A, B, and prey C, we now introduce
evolution to both the predator death rates µ and the predation efficiencies η in our Monte
Carlo simulations. In addition, we implement direct competition between the predators
A and B. We set the lower bound of the death rates µ to 0.001 for both predator species.
The simulations are performed on a 512 × 512 square lattice with periodic boundary
conditions. Initially, individuals from all three species are randomly distributed in the
system with equal densities 0.3. Their initial efficiencies are chosen as ηA = 0.5 = ηB and
ηC = 0. Since there is no evolution of the prey efficiency, ηC will stay zero throughout the
simulation. The distribution widths for the predation efficiencies are fixed to ωηA = 0.1
and ωηB = 0.15, giving species A an advantage over B in the non-linear predation
process. We select the width of the death rate distribution of species B as ωµB = 0.1.
If ωµA is also chosen to be 0.1, the B population density would decay exponentially.
ωµA > ωµB = 0.1 is required to balance species A’s predation adaptation advantage
so that long-term quasi-stable coexistence is possible. Figure 9 shows the population
densities resulting from our individual-based Monte Carlo simulations as a function of
time, for different values ωµA = 0.132, 0.140, and 0.160. These graphs indicate the
existence of phase transitions from species B extinction in Fig. 9(a) to predator A-B
coexistence in Fig. 9(b), and finally to A extinction in Fig. 9(c). In Fig. 9(a), species A
is on average more efficient than B in predation, but has higher death rates. Predator
species B is in general the weaker one, and hence goes extinct after about 100 000 MCS.
Figure 9(b) shows a (quasi-)stable coexistence state with neither predator species dying
out within our simulation time. In Fig. 9(c), ωµA is set so high that A particles die much
faster than B individuals, so that finally species A would vanish entirely.

Figure 8(a) displays the time evolution for the solutions of the corresponding quasi-
subspecies mean-field model (7) for four different values of the species B efficiency width
ωη̂,B . In particular, it shows that there is a region of coexistence in which both preda-
tor species reach a finite steady-state density, supporting the Monte Carlo results from
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Figure 9: Data obtained from Monte Carlo simulations where both direct competition between both
predator species as well as evolutionary dynamics are introduced: Temporal population density record
with ωηA = 0.1, ωηB = 0.15, ωµB = 0.1, and ωµA = 0.132, 0.140, 0.160 (from left to right) with species
A indicated with blue dots, B with red squares, and C with green triangles.

the stochastic lattice model. In contrast, numerical solutions of eqs. (7) with
ˆ̂
λij = 0,

equivalent to eqs. (3), exhibit no three-species coexistence region; see Fig. 8(b).
At an active-to-absorbing phase transition threshold, one should anticipate the stan-

dard critical dynamics phenomenology for a continuous phase transition: Exponential
relaxation with time becomes replaced by much slower algebraic decay of the population
density (Henkel et al., 2008; Täuber, 2014). We determine the three-species coexistence
range for our otherwise fixed parameter set to be in the range ωµA ∈ [0.136, 0.159].
Figure 10(a) shows an exponential decay of the predator population A density with
ωµA = 0.2, deep in the absorbing extinction phase. The system would attain B-C two-
species coexistence within of the order 104 MCS. We also ran the Monte Carlo simulation
with ωµA = 0.1, i.e., as well inside an absorbing region, but now with species B going
extinct, and observed exponential decay of ρB(t). By changing the value of ωµA to 0.136
as plotted in Fig. 10(b), ρB(t) ∼ t−αB fits a power law decay with critical exponent
αB = 1.22. Since it would take infinite time for ρB to reach zero while species A and C
densities remain finite during the entire simulation time, the system at this point already
resides at the threshold of three-species coexistence. Upon increasing ωµA further, all
three species densities would reach their asymptotic constant steady-state values within
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Figure 10: Monte Carlo simulations with direct predator competition: (a) Exponential decay of the
predator population density ρA(t) with ωµA = 0.2, ωηA = 0.1, ωηB = 0.15, and ωµB = 0.1; the
blue straight line is obtained from a linear regression of the data points for t ≥ 2000 MCS, with slope
−0.00044. (b) Algebraic power-law decay of the predator B species density with ωµA = 0.136 and the
other parameters set as in (a). (c) Power-law decay of ρA(t) for ωµA = 0.159. The black dots are
measured population densities from the simulations, while the blue straight lines indicate simple linear
regressions of the simulation data.

a finite time and then remain essentially constant (with small statistical fluctuations).
At the other boundary of this three-species coexistence region, ωµA = 0.159, the decay of
ρA(t) also fits a power law as depicted in Fig. 10(c), and ρB(t) would asymptotically reach
a positive value. However, the critical power law exponent is in this case estimated to be
αA = 0.76. We do not currently have an explanation for the distinct values observed for
the decay exponents αA and αB , neither of which are in fact close to the corresponding
directed-percolation exponent α = 0.45 (Voigt and Ziff, 1997). If we increase ωµA even
more, species A would die out quickly and the system subsequently reduce to a B-C
two-species predator-prey coexistence state. We remark that the critical slowing-down
of the population density at either of the two thresholds as well as the associated critical
aging scaling may serve as a warning signal of species extinction (Dai et al., 2012; Chen
and Täuber, 2016).

It is of interest to study the spatial properties of the particle distribution. We choose
ωµA = 0.147 so that the system resides deep in the three-species coexistence region
according to Fig. 10. The correlation functions are measured after the system has evolved
for 10 000 MCS as shown in the main plot of Fig. 11. The results are similar to those in
the previous sections in the sense that particles are positively correlated with the ones
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Figure 11: Monte Carlo simulations with direct predator competition. Main panel: Quasi-stationary
correlation functions C(x) after the system has evolved for 10 000 MCS with ωµA = 0.147, ωηA = 0.1,
ωηB = 0.15, and ωµB = 0.1, when the system resides in the coexistence state. Inset: temporal evolution
of the correlation length ξ(t); all lengths are measured in units of the square lattice spacing.

from the same species, but negatively correlated to individuals from other species. The
correlation functions for both predator species are very similar: CAA(x) and CBB(x)
overlap each other for x ≥ 5, and CAC and CBC coincide for x ≥ 2 lattice sites. The
inset displays the measured characteristic correlation length as functions of simulation
time, each of which varies on the scale of ∼ 0.1 during 70 000 MCS, indicating that
the species clusters maintain nearly constant sizes and keep their respective distances
almost unchanged throughout the simulations. The correlation lengths ξAA and ξBB
are very close and differ only by less than 0.2 lattice sites. These data help to us to
visualize the spatial distribution of the predators: The individuals of both A and B
species arrange themselves in clusters with very similar sizes throughout the simulation,
and their distances to prey clusters are almost the same as well. Hence predator species
A and B are almost indistinguishable in their spatial distribution.

4.3. Monte Carlo simulation results in a zero-dimensional system

The above simulations were performed on a two-dimensional system by locating the
particles on the sites of a square lattice. Randomly picked particles are allowed to react
(predation, reproduction) with their nearest neighbors. Spatial as well as temporal cor-
relations are thus incorporated in the reaction processes. In this subsection, we wish to
compare our results with a system for which spatial correlations are absent, yet which
still displays manifest temporal correlations. To simulate this situation, we remove the
nearest-neighbor restriction and instead posit all particles in a ‘zero-dimensional’ space.
In the resulting ‘urn’ model, the simulation algorithm entails to randomly pick two par-
ticles and let them react with a probability determined by their individual character
values. We find that if all the particles from a single species are endowed with ho-
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Figure 12: Data obtained from single Monte Carlo simulation runs in a zero-dimensional system with
direct competition and evolutionary dynamics, hence only temporal but no spatial correlations: Time
record of the population densities for all three species with ωηA = 0.1, ωηB = 0.15, ωµB = 0.1, and
ωµA = 0.132, 0.140, 0.160 (from left to right), with species A indicated with blue dots, B with red
squares, and C with green triangles.

mogeneous properties, i.e., the reaction rates are fixed and uniform as in section 2, no
three-species coexistence state is ever observed. If evolution is added without direct
competition between predator species as in section 3, the coexistence state does not
exist neither. Our observation is again that coexistence occurs only when both evolu-
tion and direct competition are introduced. Qualitatively, therefore, we obtain the same
scenarios as in the two-dimensional spatially extended system. The zero-dimensional
system however turns out even more robust than the one on a two-dimensional lattice,
in the sense that its three-species coexistence region is considerably more extended in
parameter space. Figure 12 displays a series of population density time evolutions from
single zero-dimensional simulation runs with identical parameters as in Fig. 9. All graphs
in Fig. 12 reside deeply in the three-species coexistence region, while Fig. 9(a) and (c)
showed approaches to absorbing states with one of the predator species becoming extinct.
With ωηA = 0.1, ωηB = 0.15, and ωµB = 0.1 fixed, three-species coexistence states in the
zero-dimensional system are found in the region ωµA ∈ (0, 1), which is to be compared
with the much narrower interval (0.136, 0.159) in the two-dimensional system, indicating
that spatial extent tends to destabilize these systems.
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This finding is in remarkable contrast to some already well-studied systems such as the
three-species cyclic competition model, wherein spatial extension and disorder crucially
help to stabilize the system (Dobramysl and Täuber, 2008; He et al., 2011). Even though
we do not allow explicit nearest-neighbor ‘hopping’ of particles in the lattice simulation
algorithm, there still emerges effective diffusion of prey particles followed by predators.
Since predator individuals only have access to adjacent prey in the lattice model, the
presence of one predator species would block their neighboring predators from their
prey. Imagining a cluster of predator particles surrounded by the other predator species,
they will be prevented from reaching their ‘food’ and consequently gradually die out.
However, this phenomenon cannot occur in the zero-dimensional system where no spatial
structure exists at all, and hence blockage is absent. In the previous section we already
observed that the cluster size of predator species remains almost unchanged throughout
the simulation process when the total population size of the weaker predator species
gradually decreases to zero, indicating that clusters vanish in a sequential way. We also
noticed that population densities reach their quasi-stationary values much faster in the
non-spatial model, see Fig. 12, than on the two-dimensional lattice, Fig. 9. In the spatially
extended system, particles form intra-species clusters, and reactions mainly occur at the
boundaries between neighboring such clusters of distinct species, thus effectively reducing
the total reaction speed. This limiting effect is absent in the zero-dimension model where
all particles have equal chances to meet each other.

4.4. Character displacements

Biologists rely on direct observation of animals’ characters such as beak size when
studying trait displacement or evolution (Lack, 1947; Brown and Wilson, 1956; Grant,
1975; Arthur, 1982; Grant and Grand, 2006; Rice et al., 2009; Stuart et al., 2014; Tan et
al., 2016). Interspecific competition and natural selection induces noticeable character
changes within tens of generations so that the animals may alter their phenotype, and
thus look different to their ancestors. On secluded islands, native lizards change the
habitat use and move to elevated perches following invasion by a second lizard kind with
larger body size. In response, the native subspecies may evolve bigger toepads (Strauss
et al., 2008). When small lizards cannot compete against the larger ones, character
displacement aids them to exploit new living habitats by means of developing larger
toepads in this case, as a result of natural selection.

Interestingly, we arrive at similar observations in our model, where predation effi-
ciencies η and death rates µ are allowed to be evolving features of the individuals. In
Fig. 13, the predation efficiency η is initially uniformly set to 0.5 for all particles, and
the death rate µ = 0.5 for all predators (of either species). Subsequently, in the course
of the simulations the values of any offspring’s η and µ are selected from a truncated
Gaussian distribution centered at their parents’ characters with distribution width ωη
and ωµ. When the system arrives at a final steady state, the values of η and µ too
reach stationary distributions that are independent of the initial conditions. We already
demonstrated above that smaller widths ω afford the corresponding predator species ad-
vantages over the other, as revealed by a larger and stable population density. In Fig. 13,
we fix ωηA = 0.15, ωηB = 0.1, ωµB = 0.1, and choose values for ωµA ∈ [0.144, 0.15, 0.156]
(represented respectively by red squares, blue triangles up, and green triangles down),
and measure the final distribution of η and µ when the system reaches stationarity after
50 000 MCS. Figures 13(a) and (c) show the resulting distributions for predator species
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Figure 13: Monte Carlo simulations with direct predator competition: The final distribution of predation
efficiencies η and predator death rates µ after the system has stabilized after 50 000 MCS with initial
distribution widths ωηA = 0.15, ωηB = 0.1, ωµB = 0.1, and ωµA ∈ [0.144, 0.15, 0.156]; data indicated
respectively with red squares, blue triangles up, and green triangles down. (a) and (c) depict the
distribution of characters of predator species A, while (b) and (d) that of B. The interval [0, 1] is
divided evenly into 1 000 histogram bins; the quantity P represents the proportion of individuals with
rates in the corresponding bins.

A, while (b) and (d) those for B. Since both µ and η are in the range [0, 1], we divide
this interval evenly into 1 000 bins, each of length 0.001. The distribution frequency P
is defined as the number of individuals whose character values fall in each of these bins,
divided by the total particle number of that species. In Fig. 13(a), the eventual distri-
bution of µA is seen to become slightly less optimized as ωµA is increased from 0.144 to
0.156, since there is a lower fraction of low µA values in the green curve as compared
with the red one. Since species A has a larger death rate, its final stable population
density decreases as µA increases. In parallel, the distribution of ηA becomes optimized
as shown in Fig. 13(c), as a result of natural selection: Species A has to become more
efficient in predation to make up for its disadvantages associated with its higher death
rates. Predator species B is also influenced by the changes in species A. Since there is
reduced competition from A in the sense that its population number decreases, the B
predators gain access to more resources, thus lending its individuals with low predation
efficiencies better chances to reproduce, and consequently rendering the distribution of
ηB less optimized, see Fig. 13(d). This observation can be understood as predator species
B needs no longer become as efficient in predation because they enjoy more abundant
food supply. In that situation, since species B does not perform as well as before in
predation, their death rate µB distribution in turn tends to become better optimized
towards smaller values, as is evident in Fig. 13(b).
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5. Summary

In this paper, we have used detailed Monte Carlo simulations to study an ecological
system with two predator and one prey species on a two-dimensional square lattice. The
two predator species may be viewed as related families, in that they pursue the same prey
and are subject to similar reactions, which comprise predation, spontaneous death, and
(asexual) reproduction. The most important feature in this model is that there exists
only one mobile and reproducing food resource for all predators to compete for. We have
designed different model variants with the goal of finding the key properties that could
stabilize a three-species coexistence state, and thus facilitate biodiversity in this simple
idealized system. We find no means to obtain such coexistence when all reaction rates
are fixed (except in the trivial case where both predator species share the same set of
identical parameters) or individuals from the same species are all homogeneous, which
clearly indicates the importance of demographic variability and evolutionary population
adaptation. When dynamical optimization of the individuals in the reproduction pro-
cess is introduced, they may develop various characters related to their predation and
reproduction efficiencies. However, this evolutionary dynamics itself cannot stabilize co-
existence for all three species, owing to the fixed constraint that both predator kinds
compete for the same food resource. In our model, direct competition between predator
species is required to render a three-species coexistence state accessible, demonstrat-
ing the crucial importance of combined mutation, competition, and natural selection in
stabilizing biodiversity.

We observe critical slowing-down of the population density decay near the predator
extinction thresholds, which also serves as an indicator to locate the coexistence region in
parameter space. When the system attains its quasi-steady coexistence state, the spatial
properties of the particle distribution remain stable even as the system evolves further.
Character displacements hence occur as a result of inter-species competition and natural
selection in accord with biological observations and experiments. Through comparison of
the coexistence regions of the full lattice model and its zero-dimensional representation,
we find that spatial extent may in fact reduce the ecosystem’s stability, because the two
predator species can effectively block each other from reaching their prey. We also study
the influence of environmental changes by periodically switching the rate parameters of
the two competing predator species (see section 6.3). The system may then maintain
three-species coexistence if the period of the environmental changes is smaller than the
relaxation time of the population density decay. Matching the switching period to the
characteristic decay time can induce resonantly amplified population oscillations.

Quasi-stable coexistence states with all three species surviving with corresponding
constant densities are thus only achieved through introducing both direct predator com-
petition as well as evolutionary adaptation in our system. In sections 3 and 4, we have
explored character displacement without direct competition as well as competition with-
out character displacement, yet a quasi-stable three-species coexistence state could not be
observed in either case. Therefore it is necessary to include both direct competition and
character displacement to render quasi-stable coexistence states possible in our model.
However, both predator species A and B can only coexist in a small parameter interval
for their predation efficiency distribution widths ω, because they represent quite similar
species that compete for the same resources. In natural ecosystems, of course other fac-
tors such as distinct food resources might also help to achieve quasi-stable multi-species
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coexistence.
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6. Appendix

6.1. Monte Carlo algorithm: two-predator-one-prey model with mutation

We first remark that the coarse-grained continuum reaction rates in the mean-field
models are in general different from the reaction probabilities (per unit time step) in
Monte Carlo simulations, which also depend on the details of the algorithmic implemen-
tation. Given two predator species A, B, and a prey species C, we set their predation
efficiency distribution widths to ωηA, ωηB , ωηC , the predator species’ spontaneous death
probability distribution widths to ωµA and ωµB . The lower bound of the predators’
spontaneous death probabilities is fixed as µ0 ∈ (0, 1). Prey particles reproduce with
a constant probability σ. A single Monte Carlo simulation iteration incorporates the
following successive events:

1 randomly select a particle s, generate a random float number r ∈ (0, 1), and evenly
pick an integer i ∈ {1, 2, 3};

2 if i = 1 and s is a predator, compare its death probability µs with r; if r < µs,
remove this particle from the system, i.e., change this lattice site to an empty state;

3 if i = 2 and s is a predator, randomly pick one of its four nearest-neighbor sites
n: if n is a prey and r < (ηs + ηn)/2, replace n with a new predator A particle
m; the efficiencies of m are generated from truncated Gaussian distributions: its
predation efficiency ηm is a random value generated from a distribution with width
ωηA centered at ηs and in the range (0, 1), and its death probability µm is from a
distribution with width ωµA centered at µs and in the range (µ0, 1); if n is from
a different predator species from s, for example, s from species A and n from
species B, compare ηs with ηn: if ηs > ηn and r < |ηs − ηn|, n is replaced by a
newly generated species A particle m with its efficiencies ηm and µm determined
from truncated Gaussian distributions as described above; similarly, if ηs < ηn and
r < |ηs − ηn|, s is replaced by a new particle of species B;

4 if i = 3 and s is a prey, randomly pick one of its four nearest-neighbor sites n: if
n is an empty site and r < σ, change the state of n to a new prey particle m; its
efficiency ηm is a randomly selected number from a truncated Gaussian distribution
with distribution width ωηC in the range (0, 1) and centered at ηs.

5 finally, if i = 1 or i = 2 and s is a prey, or if i = 3 and s is a predator, no reaction
occurs.
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6.2. Uniform inheritance distributions

In the special case of a uniform inheritance distribution for all three species, fij =
gij = hij = 1/N , eqs. (4) can be rewritten as

µ̂(ai + bi) =
1

N

∑
jk

λ̂kj(ak + bk)cj ,

1

N
σ̂
∑
k

ck

(
1−

∑
z(az + bz + cz)

K

)
=
∑
j

λ̂ji(aj + bj)ci ,

(8)

whose non-zero solutions in the large-N approximation are given by

(i) ai = 0 ,
bi∑
j bj

=
1

N
,

ci∑
j cj

=
2

N ln 3

1

1 + 2η̂i
;

(ii) bi = 0 ,
ai∑
j aj

=
1

N
,

ci∑
j cj

=
2

N ln 3

1

1 + 2η̂i
;

(iii)
ai + bi∑
j(aj + bj)

=
1

N
,

ci∑
j cj

=
2

N ln 3

1

1 + 2η̂i
.

(9)

These solutions can be found by observing that the right hand side of the first equation
in (8) is independent of the index i, therefore ai+bi = A. This constant is determined by
summing the inverse of both sides of the second equation over i and mapping the resulting
expression to a difference of digamma functions which simplifies to the above solutions in
the large-N limit (Dobramysl and Täuber, 2013b). The three-species coexistence solution
(iii), a line of fixed points in the space spanned by the stationary population densities
for each bin i, is likely unstable.

6.3. Periodic environmental changes

Environmental factors also play an important role in population abundance. There
already exist detailed computational studies of the influence of spatial variability on the
two-species lattice LV model (Dobramysl and Täuber, 2008, 2013a,b). However, rainfall,
temperature, and other weather conditions that change in time greatly determine the
amount of food supply. A specific environmental condition may favor one species but
not others. For example, individuals with larger body sizes may usually bear lower tem-
peratures than small-sized ones. Since animals have various characters favoring certain
natural conditions, one may expect environmental changes to be beneficial for advancing
biodiversity.

We here assume a two-predator system with species A stronger than B so that the
predator B population will gradually decrease as discussed in section 3. Yet if the en-
vironment changes and turns favorable to species B before it goes extinct, it may be
protected from extinction. According to thirty years of observation of two competing
finch species on an isolated island ecology (Grant and Grand, 2006), there were several
instances when environmental changes saved one or both of them when they faced acute
danger of extinction. We take ωηA and ωηB as the sole control parameters determining
the final states of the system, holding all other rates fixed in our model simulations. Even
though the environmental factors cannot be simulated directly here, we may effectively
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Figure 14: Monte Carlo simulations showing the temporal record of both predator population densities
when the distribution widths ωηA and ωηB periodically exchange their values between 0.2 and 0.3. The
other parameters are set to µA = µB = 0.125, σ = 1.0, and ωC = ωµA = ωµB = 0. The switch periods
are T = 10 MCS in (a) and T = 400 MCS in (b).

address environment-related population oscillations by changing the predation efficiency
distribution widths ω. We initially set ωηA = 0.2 and ωηB = 0.3, with the other pa-
rameters held constant at µA = µB = 0.125, σ = 1.0, and ωC = ωµA = ωµB = 0. In
real situations the environment may alternate stochastically; in our idealized scenario,
we just exchange the values of ωηA and ωηB periodically for the purpose of simplicity.
The population average of the spontaneous death rate is around 0.02, therefore its in-
verse ≈ 50 MCS yields a rough approximation for the individuals’ typical dwell time
on the lattice. When the time period T for the periodic switches is chosen as 10 MCS,
which is shorter than one generation’s life time, the population densities remain very
close to their identical mean values, with small oscillations; see Fig. 14(a). Naturally,
neither species faces the danger of extinction when the environmental change frequency
is high. In Fig. 14(b), we study the case of a long switching time T = 400 MCS, or about
eight generations. As one would expect, the B population abundance decreases quickly
within the first period. Before the B predators reach total extinction, the environment
changes to in turn rescue this species B. This example shows that when the environment
stays unaltered for a very long time, the weaker species that cannot effectively adapt to
this environment would eventually vanish while only the stronger species would survive
and strive. When the time period T close matches the characteristic decay time tc, see
Fig. 14(b), one observes a resonant amplification effect with large periodic population
oscillations enforced by the external driving.
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