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Summary 

Cucumber mosaic virus (CMV) causes significant losses in crop production. In this study, 

methods to enhance plant resistance to CMV infection and infestation by Myzus persicae, a 

vector that transmits CMV, were assessed.  There were two parts to the project. In the first, 

the feasibility of using exogenous salicylic acid (SA) application to induce resistance to CMV 

infection in pepper (Capsicum annuum) plants were investigated. In the second, I investigated 

the basis of the heightened resistance to Myzus persicae infestation observed in Arabidopsis 

thaliana plants carrying mutant alleles for Argonaute (AGO) 1 to determine if it was due to 

accumulation of a cyanogenic compound, 4-hydroxyindole carbonyl nitrile (4-OH-ICN). 

Exogenous application of 1 mM SA to pepper plants prior to CMV inoculation induced 

resistance to CMV, which was exhibited as a delay in the onset of symptoms. The level of 

CMV disease incidence among the treated pepper plants was also lower than the control-

treated CMV-inoculated plants by 22 days post inoculation. Thus, exogenous SA treatment 

may have potential to protect pepper plants. Mutations in the 4-OH-ICN biosynthetic genes 

cyp82C2 or fox1 did not diminish the resistance to aphids observed in Arabidopsis ago1.25 

mutant plants. Aphid growth rates and fecundity on ago1/cyp82C2 or fox1/ago1 mutant 

plants did not significantly differ from aphid performance on wild-type plants. This indicates 

that deregulation of 4-OH-ICN biosynthesis does not contribute to aphid resistance in ago1 

mutant Arabidopsis plants. Progeny of crosses involving ago1.25 mutant plants with mutant 

plants compromised in biosynthesis of SA (salicylic acid induction deficient 2, also called 

isochorismate synthase 1: ics1) were generated. Mutation in ICS1 affected the ago1.25 

phenotype so that plants were less deformed and stunted and were less resistant to aphid 

infestation than ago1.25 plants. However, not all the ago1/ics1 progeny had milder 

phenotypes. The ago1.25/ics1 progeny that retained their ago1-like phenotypes also retained 

their heightened resistance to aphid infestation. However, the milder ago1-like phenotypes of 

the ago1.25/ics1 progeny cannot be explained by their ago1 and ics1 mutations. Results 

obtained with ago1.46/nahG cross indicated that SA accumulation is required for the ago1 

developmental phenotype in Arabidopsis. Furthermore, a cross between ago1.25 mutant plant 

and a transgenic plant expressing the 2b RNA silencing suppressor protein of CMV were also 

generated. This cross resulted in plants which were severely deformed and with an even 

greater resistance to aphid infestation than their 2b transgenic or ago1.25 mutant parents. 

Many of the 2b/ago1 cross were sterile but a few of the cross formed siliques containing 

either few or no seeds at all. 
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Chapter 1 

General Introduction 

__________________________________________________________________________________ 

 

1.1 Overview 

Approximately 47% of all emerging plant diseases are caused by viruses (Anderson et al., 

2004). The rate at which viruses can mutate into new strains and their ability to manipulate 

both plant hosts and vectors make viruses a potent threat to crop production (Varma and 

Malathi, 2003; Mauck et al., 2010; Howard and Fletcher, 2012; Ingwell et al., 2012). For 

example, in Capsicum annuum (pepper) production, disease caused by Cucumber mosaic 

virus (CMV), one of the most destructive of all plant viruses, can result in up to 80% loss of 

marketable fruit yield (Avilla et al., 1997; Scholthof et al., 2011). In some cases, the disease 

is perpetuated through subsequent generations of pepper plants through seed-borne 

transmission of the virus (Ali and Kobayashi, 2010).  

Many plant viruses are vectored by insects. Therefore, most of the control measures against 

virus epidemics focus on controlling insect vector populations. The use of predatory insects, 

reflective mulches, natural and synthetic pesticides, semiochemicals and engineered genetic 

resistance have all been employed in controlling insect vector population sizes with varying 

degrees of success (Taylor, 1955; Regnault-Roger et al., 1997; Groen et al., 2017). For 

instance, aphids which vector half of all insect-transmitted viruses, including CMV, have 

effectively been controlled through the use of synthetic pesticides such as Carbofuran, 

Acephate, Pirimicarb, Oxydemeton-methyl and Parathion in the field. However, in many 

cases effective control of the aphid vectors by pesticides do not result in reduced virus 

disease incidence since CMV can be acquired and transmitted within seconds before the 

effect of the insecticide is manifested (Adams et al., 1976; Avilla et al., 1997; Ng and Perry, 

2004). 

Aside from the ineffectiveness of synthetic pesticides against transmission of viruses such as 

CMV, the insect vectors may also develop resistance to the pesticides. Excessive use of 

synthetic pesticides is also associated with mammalian toxicity and environmental pollution. 

Therefore, the use of pesticides is not ideal in controlling virus epidemics (Regnault-Roger et 

al., 1997; Perring et al., 1999). 



2 
 

Another method that has received significant attention in mitigating disease incidence is the 

use of biological or non-biological agents to induce systemic resistance in plants prior to 

infection (Palukaitis et al., 2017). Induction of systemic acquired resistance (SAR) by 

salicylic acid (SA) or its synthetic analogues has been studied intensively (Gaffney et al., 

1993; Oosterdorp et al., 2001).  

The SA analogue S-methylbenzo-[1,2,3]-thiadiazole-7-carbothiate (BTH) which is also 

commercially available as BION, ACTIGARD or BOOST is a synthetic activator of SAR and 

has been used to induce resistance against various pathogens including Cucumber chlorotic 

yellow virus in melon, Tobacco mosaic virus (TMV) in tobacco and CMV in tomato 

(Friedrich et al., 1993; Oostendorp et al., 2001; Palukaitis et al., 2017). In this study the 

feasibility of inducing systemic acquired resistance in pepper plants through exogenous SA 

application as a prophylactic measure against CMV incidence was assessed. This was to 

contribute to a collaborative research between our lab and researchers at the South Korean 

Rural Development Authority on the role of SA in mitigating CMV disease incidence in 

pepper plants.  I was also interested in how vectoring by aphids could be inhibited therefore I 

investigated the phenomenon that makes ago1 mutant plants more resistant to aphid 

infestation (Westwood et al., 2013). SA and the cyanogenic metabolite 4-hydroxyindole-

carbonyl nitrile (4-OH-ICN) were hypothesized to contribute to the heightened resistance to 

aphids in ago1 mutant plants. 

 

1.2 The Genus Capsicum  

There are 39 species in the genus Capsicum. Nearly all these species are diploid with a basic 

chromosome number of 12. Capsicum species are mostly self-compatible and are largely 

facultative inbreeders. Only 11 Capsicum species  are considered true peppers/chillies, 

namely; Capsicum annuum, Capsicum frutescens, Capsicum chinense, Capsicum baccatum, 

Capsicum cardenasii, Capsicum praetermissum, Capsicum chacoense, Capsicum 

galapagoense, Capsicum eximium, Capsicum tovarii and Capsicum pubescens (Pickersgill, 

1991; Pickersgill, 1997; Wang and Bosland, 2006; Qin et al., 2014). All Capsicum species, 

with the exception of Capsicum anomalum, originated in the New World and are currently 

cultivated throughout the tropics and subtropics and in intensive agricultural systems within 

temperate regions (Smith, 1951; Pickersgill, 1991).  
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Due to much similarities among specific individual species within the Capsicum genus, 

Capsicum species are further grouped into three distinct complexes based on morphological 

characteristics, chromosome banding and hybridization studies, namely; the Capsicum 

annuum species complex, the Capsicum baccatum species complex and the Capsicum 

pubescens species complex. Each of these species complexes contain species with varying 

degrees of cross compatibility (Ince et al., 2010; Ortiz et al., 2010). The five domesticated 

Capsicum species; Capsicum annuum, Capsicum frutescens, Capsicum baccatum, Capsicum 

pubescens and Capsicum chinense are distributed among these three Capsicum species 

complexes. The Capsicum annuum species complex alone (Capsicum annuum, Capsicum 

frutescens, Capsicum chinense and Capsicum galapagoense) contains three (Capsicum 

annuum, Capsicum frutescens and Capsicum chinense) of the five domesticated Capsicum 

species. Capsicum annuum is the most widely cultivated and economically important species 

among all the domesticated species of Capsicum peppers (Pickersgill, 1991; Pickersgill 

1997). 

 

1.2.1 Capsicum annuum 

Domestication of Capsicum annuum occurred in the Highlands of Mexico. However, the 

species still contains wild accessions.   Cultivated varieties of Capsicum annuum are mostly 

classified as Capsicum annuum var. annuum to distinguish them from their wild relatives.  

Capsicum annuum plants are early to late maturing, 1.0 to 2.5-foot-tall herbaceous plants 

with either glabrous or pubescent leaves. There are both pungent and non-pungent varieties of 

Capsicum annuum. The majority of Mexican peppers, the pungent peppers of Asia and Africa 

and all the non-pungent pepper varieties cultivated in the temperate regions are Capsicum 

annuum species (Smith, 1951; Pickersgill, 1991; Pickersgill, 1997; Wang and Bosland 2006). 

Most of the varieties within the Capsicum annuum species have clear or dingy white corollas 

with largely, solitary pedicels. Fruit size, shape and colour differ widely among the various 

cultivated varieties of Capsicum annuum. The different Capsicum annuum fruit colours are as 

a result of gene mutations in the carotenoid biosynthesis pathway. Red fruited Capsicum 

annuum peppers accumulate capsanthin and capsorubin pigments in their fruits upon 

maturity. Biosynthesis of both capsanthin and capsorubin are catalysed by the Capsanthin 

Capsorubin Synthase gene. Colour in yellow-fruited Capsicum annuum cultivars is controlled 

by the Y gene which is recessive to the Capsanthin Capsorubin Synthase gene. Upon fruit 

maturity, chlorophyll pigments break down. However, in the Chlorophyll retainer (cl) pepper 
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mutant, the lack of chlorophyll breakdown upon fruit maturity coupled with the accumulation 

of carotenoids make the fruits of cl mutant pepper brown upon fruit maturity (Smith, 1951; 

Paran and Van Der Knaap 2007). The pepper cultivar used in this study is the heirloom, non-

pungent Capsicum annuum cultivar California Wonder (Figure 1.1), which in 2002 was 

reported to exist only in name due to the large genetic variability that were found among 

California Wonder plants sampled from different sources. However, this genetic variability 

was more intense among California Wonder seed sources of different origins (Votava and 

Bosland 2002). 

 

  

Figure 1.1: California Wonder pepper seedlings (left) and fruits (right). 

 

1.2.2 Viral Diseases and Capsicum Pepper Production 

Breeding crops with improved agricultural value and the move toward genetic uniformity in 

cultivated crops are usually associated with compromised natural disease resistance which 

predisposes crops to increased pathogen invasion (Terry and Joyce 2004; Gurr and Rushton 

2005).  Capsicum peppers are susceptible to over 35 plant viruses, and over half of these 

viruses are transmitted by aphids (Green and Kim 1991). CMV is one of the most destructive 

causes of disease of pepper worldwide. CMV-infected plants are severely stunted with 

distorted leaves that show mosaic and chlorotic symptoms (Figure 1.2) (Ali and Kobayashi, 

2010; Murphy et al., 2016). CMV-infected plants produce small and wrinkled fruits with little 

or no market value (Agrios et al., 1985). 

© Bentleyseeds.com 
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Figure 1.2: Fny-CMV infected California Wonder Capsicum annuum plant (left) in 

comparison to a healthy pepper plant (right). 

 

1.3 Cucumber mosaic virus  

CMV is the type species in the Cucumovirus genus within the Bromoviridae family of 

viruses. More than 1,200 species of plants are susceptible to CMV infection (Ali and 

Kobayashi 2010; Smith et al., 2000). The various strains of CMV are grouped into two major 

subgroups, I and II based on sequence similarities and serological properties. Subgroup I 

strains are further categorized into IA and IB strains. Both the IA strains to which the Fast 

New York (Fny) strain of CMV belongs, and the II strains of CMV are distributed worldwide 

whilst the IB strains are largely found in Asia (Nouri et al., 2014). Aphids are the primary 

vectors of CMV transmission. CMV is thought to manipulate its aphid vector to enhance the 

acquisition and transmission of the virus (Ali and Kobayashi, 2010; Mauck et al., 2010; 

Ziebell et al., 2011; Westwood et al., 2013; Groen et al., 2016). 

The CMV genome is composed of three positive sense RNA molecules (Figure 1.3).  Each is 

encapsidated separately in icosahedral particles each with a diameter of about 29 nm (Peden 

and Symons, 1973). RNA1 encodes the 1a protein that has helicase and methyltransferase 

domains. RNA2 encodes the viral RNA-dependent RNA polymerase subunit of the viral 

replicase, the 2a protein. However, RNA2 also contains the open reading frame for the 

antiviral silencing suppressor protein, 2b, which is not translated from RNA2 but rather from 

subgenomic RNA4A. Proteins encoded directly from both RNA1 and RNA2 are involved in 

virus replication (Peden and Symons, 1973; Rizzo and Palukaitis, 1988; Rizzo and Palukaitis, 

1990; Shi et al., 2002; Jacquemond, 2012). RNA3 also contains the open reading frames for 
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both the capsid protein and the movement protein. The capsid protein is translated from the 

subgenomic RNA4 (Figure 1.3). (Peden and Symons, 1973; Suzuki et al., 1991).   

Some strains of CMV are also associated with RNA molecules called satellite RNAs which 

rely on CMV for replication, encapsidation and transmission. For instance, the beet isolate of 

CMV supports the satellites xjs2 and xj2 (Shang et al., 2009). Since xjs2 and xj2 satellites 

parasitize CMV, their presence is associated with reduced CMV accumulation and CMV-

induced symptoms in Nicotiana glutinosa (Shang et al., 2009).  

 

Figure 1.3: CMV Genome showing open reading frames for; the 1a protein with a methyl-

transferase domain and a helicase motif; the 2a protein which functions as a viral RNA-

dependent RNA polymerase; the movement protein (MP); the coat protein (CP) which is 

essential for genome encapsidation and aids insect transmission of virions; and the 2b, a 

multi-functional protein that functions as a symptom determinant and also involved in 

suppression of host induced RNA silencing (Jacquemond, 2012). 

 

1.4 Plant-Pathogen Interactions 

 

1.4.1 Movement of CMV in Host Plants 

Plant viruses can only replicate within a living host cell (Maule and Wang 1996). To sustain 

infection, a virus must be able to replicate and move out of the initially infected cell into 

neighbouring cells. Movement of viruses between cells is a highly regulated process that 

occurs through the symplastic connections (plasmodesmata) joining neighbouring cells 

(Maule and Wang 1996). Both the capsid protein and the movement protein are required for 

cell-to-cell movement of CMV but are not necessary for replication (Canto et al., 1997; Li et 

al., 2001). CMV is inoculated into epidermal cells by probing aphids. Once in the epidermal 

cell layer, the viral proteins are expressed by the host translational machinery. 
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The movement protein is known for its targeting of the plasmodesmal pores of the host 

including the specialized branched plasmodesmata that link the companion cells to the sieve 

elements. The movement protein also has the capacity to alter the gating properties of the 

plasmodesmata to permit transportation of molecules whose size exceeds the size exclusion 

limit of the plasmodesmata across cells (Blackman et al., 1998). After the expression of the 

viral proteins and subsequent virus replication, the viral genomic RNAs bind to the 

movement protein, and possibly the subunits of the viral capsid to form a ribonucleoprotein 

complex ready for transportation across cells through the plasmodesmata. First, the virus 

moves radially along the epidermal layer and then into the mesophyll layer to gain access to 

the host’s vascular system (Blackman et al., 1998; Kang et al., 2010) . Once the virus enters 

the mesophyll cell layer, access to the vascular parenchyma and companion cells are gained 

through the bundle sheath cells. The virus then enters the sieve element through the 

specialized plasmodesmata connecting the companion cells to the sieve elements (Figure 

1.4). Further virus accumulation and virion assembly is believed to occur within the sieve 

element. Virions are mostly found within membrane-like structures on the parietal layer of 

the sieve element (Blackman et al., 1998; Li et al., 2001). 
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Figure 1.4: CMV movement into the vascular tissues. (1) CMV virion arrival in the 

companion cell, (2) disassembly of the CMV virion into proteins and nucleic acids (3) 

formation of the plasmodesmata-mobile ribonucleoprotein complex (4) movement of the 

ribonucleoprotein complex across the plasmodesmata (5) re-assembly of CMV 

ribonucleoprotein complex into virions in the sieve element (6) systemic movement of CMV 

virions along with photoassimilates (Blackman et al., 1998).  
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1.4.2 Plant Perception and Response to Pathogen Invasion 

In comparison to the vast number of pathogens that could potentially infect plants, disease is 

the exception. Natural selection pressure imposed by pathogens on plants has resulted in the 

evolution of complex pathogen recognition and host defence mechanisms in plants 

(Staskawicz et al., 1995; Rausher, 2001). Every single plant cell possesses the capability to 

defend itself upon pathogen attack and transduce signals that prime neighbouring cells 

against the invading pathogen. Depending on the signal perceived from the invading 

pathogen, the host plant can activate and fine-tune the most appropriate defence response 

necessary to inhibit or compromise the fitness of the invading pathogen (Feys and Parker, 

2000; McDowell and Woffenden, 2003). These defence mechanisms may be pre-existing or 

may be induced upon perception of the invading pathogen. For a successful infection to occur 

the pathogen must avoid or suppress the elaborate host defence mechanisms presented by the 

host plant (Staskawicz et al., 1995; Gurr and Rushton, 2005).  

Plants possess broad perceptual mechanisms incorporating both pathogen specific resistance 

gene products and non-pathogen specific perceptual mechanisms that work through receptors 

capable of recognizing pathogen associated molecular patterns (Gurr and Rushton, 2005).  

Many of the proteins translated from resistance (R) gene mRNAs possess protein-protein 

interaction or recognition domains such as leucine-rich repeat domains or leucine zipper 

domains, in addition to signalling domains such as kinase domains, nucleotide-binding sites 

and toll/interleukin receptor-like domains. Hence, R proteins do not only detect pathogens but 

also have signalling roles that culminate in the activation of defence-related genes 

(Staskawicz et al., 1995; Feys and Parker, 2000). 

R proteins constantly monitor cellular structures for pathogen invasion. The precision with 

which a host’s R protein detects pathogen invasion determines the host’s degree of resistance 

to that pathogen. In few instances, the R protein may directly detect the corresponding 

avirulence gene product of the invading pathogen. However, in many instances the R protein 

may indirectly detect pathogen invasion through detection of pathogen-modified host 

proteins. Plants possessing race-specific resistance to a pathogen may contain only one or few 

major R genes. Race-specific R proteins are more precise in detecting the specified pathogen, 

although race-specific R protein-mediated resistance are usually not durable and may be non-

functional if there is a mutation in the pathogen’s avirulence gene product. Plants possessing 

race non-specific forms of R protein-mediated resistance to pathogens usually possess a 

cluster of R genes which collectively contribute to the observed resistance. Because of the 
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presence of many major R genes contributing to the resistance, race non-specific resistance 

are more durable and are not easily loss if there is a mutation in the avirulence gene product 

of the pathogen (McDowell and Woffenden, 2003; Gurr and Rushton, 2005). 

R-protein mediated recognition of a pathogen through either a direct detection of an 

avirulence gene product or pathogen-modified host proteins activates a torrent of host 

defence responses that may either slow down or prevent successful establishment of the 

pathogen in the host plant. The precision of R proteins in detecting pathogen invasion and the 

tight association of R protein-mediated pathogen detection to host defence signalling 

response represent a counter-evolution of plants against pathogen attack (Staskawicz et al., 

1995; Rausher, 2001). Aside R gene-mediated pathogen detection, plants are also capable of 

detecting pathogen associated molecular patterns. For instance, the Leucine-rich repeat 

(LRR) receptor-like protein kinase, Flagellin sensing 2 (FLS2), is capable of recognizing the 

conserved 22 amino acid sequences in the flagellin of a bacteria and signal for the activation 

of the appropriate defence responses (Gurr and Rushton, 2005).  

 

1.4.3 Host Signalling Upon Pathogen Perception 

Successful recognition of a pathogen by the host plant leads to immediate responses at the 

site of infection such as a burst in reactive oxygen species (ROS), accumulation of nitrogen 

oxides, reinforcement of cell walls and the accumulation of plant hormones including 

salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) coupled with accumulation of 

pathogenesis-related (PR) proteins and phytoalexins (Staskawicz et al., 1995; Gurr and 

Rushton, 2005).  

Collectively, plants synthesize more than 100,000 secondary metabolites, largely from the 

phenylpropanoid, isopropanoid, alkaloid or polyketide pathways. Many of these secondary 

metabolites play important roles in host defence responses. In most cases, all plant species 

within a taxon incorporate similar secondary metabolites in their host defence responses. For 

instance, plants in the Leguminosae and Solanaceae families largely utilize isoflavonoids and 

sesquiterpenes in their host defence responses, respectively. Many of these induced or 

constitutively expressed secondary metabolites possess antimicrobial properties. Therefore, 

the capability of a pathogen to infect plants synthesizing these metabolites depends on their 

counter-ability to encode enzymes that detoxify these host secondary metabolites. For 

instance, the tomato leaf spot fungus Septoria lycopersici encodes the saponin degrading 
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enzyme tomatinase that enables the fungus to infect tomato plants irrespective of the host’s 

accumulation of saponin upon infection. Avenacin is an oat saponin which is constitutively 

expressed and stored in epidermal cells. It has an antimicrobial property to the oat fungus 

Gaeumannomyces graminis. Gaeumannomyces graminis that loses its ability to express the 

avenacin degrading enzyme avenacinase also loses its pathogenicity on oats (Dixon 2001; 

Gurr and Rushton 2005). 

 

1.4.4 PAMP-Triggered Immunity 

Plants perceive the presence of microbes including potential pathogens using plasma 

membrane-localized receptor-like kinases (RLK) termed pattern recognition receptors (PRRs) 

(Figure 1.5). Most PRRs contain LRR ecto-domains that are capable of recognizing and 

binding to conserved sequences characteristic of both pathogenic and non-pathogenic 

microbes. These conserved microbial components detectable by PRRs are called pathogen 

associated molecular patterns (PAMPs) or alternatively microbe associated molecular 

patterns since not all microbes are pathogens.  A PAMP mostly constitutes an integral 

component of the pathogen and therefore are not easily discarded by the pathogen.  For 

instance, components of bacterial flagellin and fungal and oomycete cell walls are recognized 

by plants as PAMPs. The Arabidopsis thaliana (hereafter referred to as Arabidopsis) FLS2 

RLK has the capacity to detect a sequence of conserved 22 amino acids in the N-terminus of 

bacterial flagellin (flg22) as a PAMP. Although, PAMPs are mostly described for non-viral 

pathogens, viral components such as capsid proteins could also be recognized by plants as 

PAMPs (Figure 1.5). There are over 56 Arabidopsis genes that encode plasma-membrane 

localized RLKs capable of intercepting PAMPs from diverse sources (Trujillo and Shirasu, 

2010; Tsuda and Katagiri, 2010). The strategic localization of RLKs across the plasma 

membrane ensures that that they offer an early protection against pathogen invasion. By 

interacting with other associated host factors, PRR recognition of PAMPs triggers a cascade 

of downstream signalling events that culminates in a form of basal defence called PAMP-

triggered immunity. For example, through interacting with the host RLK protein BRI1-

ASSOCATED RECEPTOR-LIKE KINASE 1 (BAK1), the recognition of the flg22 PAMP 

by FLS2 initiates a series of protein kinases activation, accumulation of signalling molecules 

and transcriptional reprogramming. One of the protein kinases that are activated downstream 

of PAMP recognition is the mitogen activated protein kinase (MAPK) MPK6. Within 

minutes of PAMP recognition, MPK6 is activated to phosphorylate the ET biosynthetic 
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enzyme 1-amino cyclopropane-1-carboxylic acid synthase 6 (ACS6) resulting in ET 

biosynthesis and ET-mediated defence signalling (Jones and Dangl, 2006; Tsuda and 

Katagiri, 2010). PAMP recognition also triggers SA biosynthesis. Accumulation of SA 

enhances the recruitment of a phosphorylated form of the host protein called Non-Expressor 

of PR-1 (NPR1) into a CUL3-based ligase for ubiquitinylation and proteolysis. The presence 

of the ankyrin repeat domain of the NPR1 enables it to involve in protein-protein interactions 

such as interacting with the TGA2 transcription factor. TGA transcription factors act as 

activators of JA-mediated defence responses and repressors of PR genes expressions. Hence, 

the physical interactions of an ubiquitinylated NPR1 with the PR genes repressor, TGA2, 

result in the proteolysis of both the NPR1 and TGA2 promoting the expression of PR and 

other defence related genes (Trujillo and Shirasu, 2010). Over 1,000 Arabidopsis genes are 

significantly upregulated within 30 minutes of PAMP recognition. Among these upregulated 

genes are PR genes. Many of the PR proteins encoded by PR genes have antimicrobial 

properties. For instance, PR-2 possesses a glucanase activity, PR-3, PR-4 and PR-7 act as 

chitinases. PR-10 possesses a ribonuclease activity and could potentially play an antiviral role 

in basal immune response but this has not been investigated. Specific sets of PR gene 

expressions are only induced by SA. PR-1, PR-2, PR-5 and PR-10 are SA dependent whilst 

PR-3, PR-4 and PR-13 are JA dependent. Due to the broad spectrum of pathogenic and non-

pathogenic PAMPs detectable by the PRRs and the cost associated with defence signalling 

and defence responses, PTI are usually of a slow start. However, PTI could be boosted with 

continuous and sustained perception of PAMPs (Jones and Dangl, 2006; Sels et al., 2008; 

Katagiri and Tsuda, 2010). 
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Figure 1.5: Comparison of immune responses to viral and non-viral pathogens. Virus 

components such as capsid proteins could potentially be perceived as a PAMP by the host 

plant to trigger PTI (Mandadi and Scholthof, 2013). 
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1.4.5 Strategies Adopted by Pathogens to Overcome PTI 

To overcome PTI signalling and PTI-mediated host defence responses, adapted pathogens 

employ the use of pathogen-encoded molecules called effectors (van’t Slot and Knogge, 

2002). There are diversities of pathogen effectors utilizing varying mechanisms to counteract 

host basal defence responses. The capsid proteins of both Potato virus X (PVX) and Turnip 

crinkle virus (TCV) and the p50 helicase domain of the 126/183 kDa protein of (TMV) are 

some of the well-known viral components that also function as effectors. Some effectors act 

as biological mimics of signalling molecules such as SA to counteract a host’s JA-mediated 

defence response against the pathogen. For instance, the toxin coronatine produced by some 

pathogenic bacteria can bind to the CULLIN RING LIGASE (CRL) subunit COI1 to activate 

the degradation of JAZ transcriptional repressors, as a result, activating JA-mediated defence 

responses to counteract the SA-mediated signalling and defence responses required to trigger 

stomatal closure.  Other effectors also work by inhibiting MAPK cascades downstream of 

PAMP recognition. For instance, the C-terminus domain of the bacterial effector AvrPtoB 

acts as an active ubiquitin ligase that targets kinases involved in PRR and FLS2 mediated 

signalling and ubiquitinylate them for proteolysis, thereby enhancing host susceptibility 

through the impairment of PTI signalling components downstream of PAMP recognition 

(Martin et al., 2003; Jones and Dangl, 2006; Trujilo and Shirasu, 2010).   

  

1.4.6 Host R Proteins 

There are more than five major classes of R-proteins in the plant kingdom. Class 1 category 

of R proteins contains a serine/threonine kinase (STK) domains with a myristylation motif at 

their N-terminal. Class 2-R proteins contain LRR and nucleotide binding (NB) domains with 

a putative leucine zipper (LZ) or coiled coil (CC) domain at their N-terminal. Class 3-R 

proteins also contain LRR-NB domains but with a toll interleukin-like receptor (TIR) domain 

at their N-terminal. Class 1, 2 and 3 categories of R-proteins do not possess any extracellular 

or transmembrane domains. There are over 150 genes in the Arabidopsis genome that encode 

proteins with NB-LRR domains. The LRR domains are located at the carboxyl terminal of 

the NB-LRR R-proteins with the NB domain in the middle of the R-protein (Martin et al., 

2003; Spoel and Dong, 2012). The variable N-terminal domains could either be a CC, TIR, 

putative BED zinc finger domain or a Solanaceae domain. The N-terminal domains are 

known to be involved in indirect pathogen detection whilst the LRR domains engage in a 

direct pathogen recognition. Both class 4 and class 5 categories of R-proteins possess 
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extracellular LRR domains. There are other groups of R-proteins which are not categorized 

under these classes such as the RTM1 and RTM2 proteins that confer passive resistance to 

Tobacco etch virus (TEV) in Arabidopsis (Martin et al., 2003; Caplan et al., 2008). The 

RCY1 R-protein against CMV-Y together with the Rx1 and Hypersensitive response to TCV 

(HRT) R-proteins against PVX and TCV are class 2 R-proteins with CC, NB and LRR 

domains. The N protein, which confers resistance against TMV, is a class 3 R-protein with 

TIR, NB and LRR domains (Takashashi et al., 2012; Mandadi and Scholthof, 2013; Nicaise, 

2014). The intramolecular interactions among the domains of the R-proteins and their 

interactions with other associated proteins are crucial for their role in mediating defence 

response against pathogens. R-proteins have surveillance roles and largely monitor host 

cellular proteins for effector perturbations (Spoel and Dong, 2012; Mandadi and Scholthof, 

2013). 

 

1.4.7 Activation of Host R-Proteins 

Recognition of pathogen effectors by R-proteins are mostly done in concert with a group of 

host proteins termed as R-protein co-factors.  For instance, the Rx R-protein requires 

interaction with the R-cofactor ranGTPase-ACTIVATING PROTEIN 2 (ranGAP2). The CC 

domain of Rx1 forms a heterodimer with ranGAP2 which in turn is believed to interact 

directly with the capsid of PVX resulting in the activation of the Rx protein. ranGAP2 is also 

believed to induce the dislocation of the Rx protein from the nucleus into the cytosol where it 

is activated (Nicaise, 2014). The N R-protein also requires interaction with the R-cofactor N-

INTERACTING PROTEIN 1 (NRIP1), a chloroplast-localized sulfurtransferase (Figure 1.6). 

The p50 helicase of TMV recruits NRIP1 from the chloroplast into the cytosol. The 

dislocation of the NRIP1 protein into the cytosol and its interaction with the TMV p50 

helicase act as a pre-recognition protein complex that interacts with the TIR domain of the N 

R-protein resulting in its activation. The N R-protein only physically interacts with NRIP1 in 

the presence of p50. NRIP1 may be targeted by TMV helicase due to its potential role in host 

defence responses. For instance, the expression of AtSEN1, the Arabidopsis homolog of the 

Nicotiana benthamiana NRIP1 is SA regulated. AtSEN1 is also involved in basal defence 

responses (Caplan et al., 2008; Nicaise, 2014). 

To limit the occurrence of autoimmunity and unrequired immune responses, the activation 

and accumulation of R-proteins are kept under strict control through interactions with other 
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host proteins including the eukaryotic chaperone complex comprising of the Heat Shock 

Protein 90 (HSP90), the Required for MLA 12 Resistance 1 (RAR1) and Suppressor of the 

G2 Allele of SKP1 (SGT1) proteins. In the absence of effectors, the HSP90/RAR1/SGT1 

chaperone complex folds the R-proteins into an inactive but an effector-recognition 

competent conformation. In this conformation, the LRR domain blocks the exchanges of 

nucleotides at the NB site domain through intramolecular interactions among the NB, N-

terminal domain and the LRR domain. In certain cases, accumulations of R proteins are 

known to follow a dynamic pattern synchronous with the lifecycle of its cognate pathogen. 

For instance, the RPP4 R-gene which confers resistance to the Arabidopsis downy mildew 

pathogen Hyaloperonospora. arabidopsidis is under the control of the circadian gene 

circadian clock associated 1 (CCA1). Peak accumulation of RPP4 occurs at dawn which also 

coincides with the sporulation of H. arabidopsidis.  The recognition of effector molecules 

either through a direct interaction between the effector and the R-protein or through an 

interaction of the R-protein with an effector-modified host protein results in the release of the 

NB site causing an activation of the R-protein. After the activation of the R-protein the 

HSP90/RAR1/SGT1 complex again facilitates the necessary changes in the conformation of 

the R-protein required for the induction of downstream signalling events (Spoel and Dong, 

2012; Jones and Dangl 2006). 
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Figure 1.6: The tobacco N R-protein requires interaction with the R-cofactor, N Receptor-

Interacting Protein 1 (NRIP1) to mediate resistance to TMV. NRIP1 interacts with N only in 

the presence of the TMV helicase p50 (B). However, interaction with other host proteins or a 

functional NRIP1 may be required for the activation of the N R-protein (C) (Caplan et al., 

2008). 
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1.4.8 Activated R-Protein mediated Signalling and Effector-Triggered Immunity   

Typically, activated R-proteins with CC or TIR domains require interactions with Non-

Specific Disease Resistance 1 (NDR1) or Enhanced Disease Susceptibility 1 (EDS1) proteins 

respectively, to mediate resistance against pathogens. Although, there are a few exceptions. 

The HRT R-protein possesses a CC domain at its N-terminus but requires interaction with 

EDS1 for the extreme resistance to TCV. Specific interactions between the viral effectors, the 

R-proteins, R-cofactors, the chaperone complex and NDR1 or EDS1, phytoalexin deficient 4 

(PAD4) and senescence associated gene 101 (SAG101) mediate distinct downstream changes 

that culminate in an effector triggered immunity through a MAPK signalling cascade. These 

R-protein-mediated downstream events include changes in SA, JA and ET accumulation 

levels, as well as accumulation of ROS such as hydrogen peroxide and superoxide radicals 

just as in PTI (Figure 1.7) (Mandadi and Scholthof, 2013; Nicaise, 2014). 
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Figure 1.7: Common signalling pathways are used by both PAMP-Triggered Immunity and 

Effector Triggered Immunity in diverse ways (Tsuda and Katagiri, 2010). 
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Although both PTI and ETI seem to employ the use of similar signalling networks, immune 

responses in ETI are more robust and prolonged than in PTI. For example, in both PTI and 

ETI there are accumulations of ROS following a PAMP or an effector recognition. However, 

in PTI, the ROS accumulation is solitary and transient compared to the biphasic ROS 

accumulation that occurs in ETI responses consisting of early transient ROS accumulation 

followed by a second more robust and sustained ROS burst (Tsuda and Katagiri, 2010).  

EDS1, which is crucial for the expression of hypersensitive response (HR)-associated cell 

death closely interacts with PAD4. PAD4 is essential for SA accumulation, expression of PR-

1 and biosynthesis of phytoalexins such as camalexin. Different host plants employ different 

mechanisms to bring about cell death. R-protein mediated cell death is in part mediated by 

metacaspases which are analogous to the animal caspases that mediate apoptosis in animal 

cells. The Arabidopsis Metacaspase1 gene plays crucial role in R-gene mediated cell death.  

SA signalling is also thought to promote autophagy which results in cell death (Martin et al., 

2003; Spoel and Dong, 2012).   

However, cell death has been shown to be unnecessary for restricting CMV to infected cells. 

In the HR-cell death deficient dnd1 Arabidopsis mutant carrying the CMV-Y resistance gene 

RCY1, resistance to CMV-Y is kept intact despite the significantly compromised HR-cell 

death in dnd1 mutants. SA signalling and induction of PR genes expressions around the site 

of infection were also kept intact. There are other R-gene mediated resistance to viruses 

where cell death is not required for containing the virus. For instance, in both Rx and Rsv-1 

mediated resistance to PVX and Soybean mosaic virus, HR-cell death is not present. 

Although, the Rsv1-Soybean mosaic virus interaction has the potential of resulting in an HR 

cell death-like phenotype (Takahashi et al., 2012). Aside from HR-mediated cell death, the 

host ubiquitinylation system also plays a role in containing virus spread. For instance, the 

movement proteins of TMV and Turnip yellow mosaic virus are specifically heavily 

ubiquitinylated and targeted for proteolysis by the host ubiquitinylation system resulting in 

decrease virulence of the viruses due to restricted movement (Mandadi and Scholthof, 2013). 

 

1.5 CMV-Resistant Capsicum Accessions and Resistance Breeding 

There are many pepper accessions and cultivars that possess different forms of tolerance or 

resistance to either one or several strains of CMV. The majority of these CMV resistance or 

tolerance genes/loci were discovered in wild relatives of cultivated Capsicum annuum. In 
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most cases, resistance to CMV infection is conditioned by a number of partially dominant or 

recessive genes that contribute quantitatively to the resistance. For instance, the very strong 

CMV-HB isolate-resistance possessed by the pepper inbred line BJ07047 is conditioned by 

two major partially dominant genes and a number of additive genes which all contribute to 

the resistance in BJ07047 (Yao et al., 2013). In a few cases, pepper accessions were found to 

possess resistance to multiple strains of CMV, as is the case of the Capsicum frutescens 

breeding line BG2814-6 which has good resistance to CMV strains CMV-V26, CMV-V27, 

CMV-V28, CMV-Ny, CMV-Fny and CMV-Ca, although the resistance is incompletely 

penetrant (Grube et al., 2000). The commercial pepper cultivar Bukang possesses one of the 

rarest forms of CMV resistance found among CMV-resistant pepper cultivars and accessions. 

Resistance to CMV in Bukang is conditioned by a single dominant gene, Cmr1, which is 

located on chromosome 2 of the pepper genome. The Cmr1 protein inhibits the systemic 

movement of the CMV strains CMV-Fny and CMV-P0. However, the major source of CMV 

resistance genes in pepper breeding programmes is obtained from the small fruited pungent 

Capsicum annuum cultivar called Perennial. Other commonly used sources of CMV 

resistance genes are the Capsicum frutescens breeding lines BG2814-6 and LS1839-2-4 

(Kang et al., 2010; Kang et al., 2012). Besides the challenge of cross incompatibilities, 

inheritance of CMV resistance genes can be very complex and is sometimes associated with 

undesirable agronomic traits. For instance, CMV resistance in the pepper breeding line 

BC5FC is associated with reduced fruit size. CMV11.1, the most important quantitative trait 

locus conferring the CMV resistance phenotype in BC5FC is located in the same region of 

BC5FC genome as two quantitative trait loci, fw3.2 and fw4.1, that influence fruit size. The 

TMV-resistance locus, L, also occurs on the same linkage group as CMV11.1 on chromosome 

11. Hence, increased tolerance to CMV infection can result in increased susceptibility of 

pepper to TMV (Chaim et al., 2001). 

 

1.6 Salicylic Acid 

SA is a natural plant secondary metabolite common to plants including peppers and 

Arabidopsis. It plays crucial roles in a diversity of physiological and metabolic processes in 

plants. SA is known to regulate plant growth and development and also influences seed 

germination and fruit yield (Malamy and Klessing, 1992; Hayat et al., 2010). 
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Typically, basal endogenous SA levels range between 0.05 µg – 5.0 µg/g leaf fresh weight. 

However, in some species basal endogenous SA levels can be as high as 30 µg or 100 µg/g 

leaf fresh weight, as is the case for Oryza sativa (rice) and Dioon edule (chestnut dioon), 

respectively (Delaney, 2010). SA contributes to both local and systemic forms of plant 

defence responses (Feys and Parker 2000). It acts as a pathogen-induced signalling molecule 

that is crucial for the swift activation of an array of defence related genes. In many 

incompatible host-pathogen interactions, such as the interaction between TMV and TMV-

resistant (NN genotype) tobacco, endogenous SA levels increase by 20-fold upon perception 

of the virus (Malamy et al., 1990).  SA can contribute also to basal resistance. The ability of a 

particular poplar (Populus spp.) variety to resist infection by the pathogenic fungus 

Dothichiza populea correlates directly to the amount of SA that accumulates in the bark 

(Malamy and Klessing, 1992; Kunkel and Brooks, 2002; Hayat et al., 2010). Arabidopsis 

mutants that are defective in SA synthesis such as eds1, eds4, eds5, salicylic acid induction 

deficient-2 (sid2, also known as ics1), and pad4 or are constitutively expressing a bacterial 

gene encoding the SA degrading enzyme salicylate hydroxylase (nahG), which does not 

permit the mutant to accumulate SA in response to stress, are more susceptible to infection 

compared to wild-type (WT) plants (Kunkel and Brooks 2002). SA accumulation precedes 

the accumulation of PR proteins. The extent of PR-1 and PR-2 expression in both inoculated 

and non-inoculated leaves of resistant cultivars in response to infection directly correlates 

with increased endogenous SA levels (Chen et al., 1995). Whilst SA above certain 

concentrations is known to be directly toxic to pathogens such as Collectotrichum falcatum, 

Agrobacterium tumefasciens and Fusarium oxysporum, they are not known to be directly 

detrimental to plant virus. TMV virions pre-treated with SA before inoculation still retain 

their infectivity. The PR proteins induced by SA are also not known to directly affect virus 

infectivity (Malamy and Klessing, 1992; Chen et al., 1995; Durner et al., 1997).  

 

1.6.1 Biosynthesis of Salicylic Acid in Plants 

SA is synthesized from either the phenylpropanoid or the isochorismate pathways in plants 

(Figure 1.8). Radiolabelled 14C-phenylalanine, 14C-cinnamic acid and 14C-benzoic acid fed to 

tobacco plants were quickly synthesized into radiolabelled SA (Yalpani et al., 1993). In the 

phenylpropanoid pathway, the enzyme, phenylalanine ammonia lyase catalyses the 

conversion of phenylalanine into trans-cinnamic acid which is then converted into benzoic 

acid or ortho-coumaric acid. The conversion of benzoic acid into SA is catalysed by benzoic 
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acid-2-hydroxylase, an enzyme which is also induced by virus infection in plants (Yalpani et 

al., 1993; Hayat et al., 2010). The isochorismate pathway is proposed to be the primary SA 

biosynthetic pathway in Arabidopsis (Figure, 1.8). Isochorismate synthase 1 (ICS1) catalyses 

the conversion of chorismate into isochorismate in this biosynthetic pathway (Wildermuth et 

al., 2001). Mutants defective in the ICS1 gene, such as sid1 and sid2 only accumulate 5-10% 

of the SA that accumulates in WT plants after infection (Wildermuth, et al., 2001; Delaney, 

2010; Hayat et al. 2010).  

The bulk of the synthesized SA is conjugated into SA glucoside by the cytoplasm-localised 

SA glycosyltransferase, GTase which is activated by elevated levels of free SA in the 

cytoplasm (Chen et al., 1995). The SA glucoside is then stored in cell vacuoles. However, 

when plants are infiltrated with SA glucoside, they are first hydrolysed by the cell wall-

localized β-glucosidases into free SA. Once in the cytoplasm, part of these free SA is 

converted back into the inactive SA glucoside by GTase and stored in cell vacuoles. Tobacco 

suspension cell cultures which have been rid of their cell walls are capable of absorbing free 

SA but not SA-glucoside added to the cell suspension culture. The swift conversion of free 

SA into the inactive SA glucoside may serve as a regulatory mechanism to moderate the 

activation of SA-induced defence responses in plants (Chen et al., 1995; Delaney, 2010; 

Hayat et al., 2010). 
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Figure 1.8: Proposed biosynthetic pathways for salicylic acid in plants (Wildermuth et al., 

2001). 
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1.6.2 Exogenous Application of SA and the Induction of Systemic Acquired Resistance 

in Plants 

SAR is a type of induced resistance that offers protection against a broad spectrum of plant 

pathogens over an appreciable length of time (Durant and Dong, 2004; Carr et al., 2010). SA 

is required for the induction SAR. Mutant or transgenic plants that are defective in SA 

synthesis, accumulation or perception are not capable of expressing SAR ( Durner et al., 

1997; Carr et al., 2010).  However, not all pathosystems are responsive to SA induced SAR. 

For instance, the tobacco-Potato virus Y pathosystem is not affected by SA application 

(Malamy and Klessing, 1992; Hammerschmidt, 1999; Murphy et al., 1999). Exogenous 

application of SA or any of its biologically active synthetic functional analogues such as 2,6-

dichloroisonicotinic acid (INA) or (BTH) can induce the expression of PR proteins and SAR 

in a number of plants including tobacco, cucumber and Arabidopsis, irrespective of the 

presence of a pathogen specific resistance gene in the host plant. For instance, treatment of 

both susceptible and resistant tobacco plants with high non-phytotoxic concentrations of SA 

induces the same set of nine genes that are induced in the incompatible interactions between 

TMV-resistant NN genotype tobacco and TMV (Malamy and Klessing, 1992; Durner et al., 

1997; Delaney, 2010).  

 

1.6.3 Effects of SA on Virus Infection Cycle 

In many instances, SA accumulation during virus infection enhances virus disease resistance 

(Malamy et al., 1990; Chivasa 1997; Mayers et al., 2005; Falcioni et al., 2014). For example, 

infection of the TMV-resistant tobacco plant by TMV results in a 20-fold increase in SA 

accumulation and a parallel elevated PR expression. However, in a susceptible cultivar of 

tobacco, TMV infection increases SA accumulation by only 5-fold (Malamy et al., 1990). 

Also, SA over-accumulating mutant plants, such as the Arabidopsis mutant constitutive 

expression of PR genes 5 (cpr5), are more resistant to virus infection compared to WT plants 

(Love et al., 2007). However, there are instances where SA accumulation is not accompanied 

by virus resistance (Whitham et al., 2003; Huang et al., 2005; Love et al., 2005). SA may 

promote resistance to virus infection through restricting virus accumulation or cell-to-cell 

movement in the inoculated leaf, delay systemic movement (Sections 1.6.3.1 and 1.6.3.2 ) or 

contribute to post-transcriptional gene silencing (PTGS) of viral transcripts through its effects 

on RNA-dependent RNA polymerase 1 (RDR1) (Section 1.6.3.3)  (Xie et al., 2001; Murphy 

and Carr, 2002; Baebler et al., 2014; Lee et al., 2016). 
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1.6.3.1   SA Restricts the cell-to-cell Movement and Accumulation of Viruses in the 

Inoculated leaf 

SA treatment induces cell-specific restriction on virus movement and accumulation (Murphy 

and Carr, 2002; Baebler et al., 2014).  In tobacco, application of exogenous SA strongly 

inhibits both the movement of TMV out of the epidermal cell layer and its accumulation in 

the mesophyll palisade cells for at least 6 days after virus inoculation (Murphy and Carr, 

2002). In potato, the Ny-1 R gene mediates an HR against PVY infection culminating in the 

restriction of the virus to the inoculated cells. NahG-Ny-1 transgenic potato plants infected 

with PVY however develop systemic disease symptoms due to the unrestricted movement of 

the virus (Baebler et al., 2014).  SA treatment also reduces the accumulation of CMV and 

PVX in the inoculated leaves of squash and tobacco plants respectively (Mayers et al., 2005; 

Naylor, et al., 1998). 

 

1.6.3.2 SA Restricts the Systemic Movement of Viruses 

Another mechanism through which SA induces resistance to virus infection is the inhibition 

of the systemic movement of the virus. In both tobacco and Arabidopsis, SA treatment 

induces resistance to the systemic movement of CMV resulting in a delay in the onset of 

systemic symptoms (Mayers et al., 2005). SA also contributes to resistance to PVX infection 

in tomato plants. SA treatment of tomato plants prior to virus inoculation leads to a delay in 

the detection of the virus in systemic leaves (Falcioni et al., 2014). Transgenic expression of 

nahG in the less PVY susceptible potato cultivar desiree results in enhanced PVY 

accumulation in systemic leaves and severe disease symptoms. However, pre-treatment of 

nahG-desiree potato plants with 1 mM INA prior to PVY inoculation significantly reduces 

systemic virus accumulation and symptom development (Baebler et al., 2011). 

 

1.6.3.3 SA contributes to PTGS-Mediated Virus Resistance 

SA treatment upregulates RDR1 gene expression and activity. RDR1 is a component of the 

PTGS pathway required for the amplification of silencing (Xie et al., 2001). The important 

role of RDR in antiviral silencing is ubiquitous.  In tobacco, silencing RDR1 increases 

susceptibility to TMV infection and facilitates the systemic spread of PVX in the host (Xie et 

al., 2001). In Arabidopsis, rdr1 knock-out mutant plants accumulate high levels of 

Tobraviruses and Tobamoviruses in both inoculated and systemic leaves in comparison to 
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WT plants (Yu et al., 2003). Laboratory accessions of Nicotiana benthamiana are natural 

rdr1 mutants. TMV infection of Nicotiana benthamiana results in plant death. However, a 

prior SA treatment before TMV inoculation delays the onset of necrosis in N. benthamiana, 

although the infection ultimately leads to the death of the plant. SA treatment of transgenic N. 

benthamiana expressing RDR1 from Medicago truncatula prior to TMV inoculations results 

in recovery of disease symptoms (Lee et al., 2016). 

 

1.7   4-Hydroxyindole-3-Carbonyl Nitrile, A Novel Cyanogenic Metabolite in 

Arabidopsis  

4-OH-ICN was the first cyanogenic metabolite to be found in the Brassica family and the 

only cyanogenic metabolite in the entire plant kingdom that possesses the highly reactive α-

ketonitrile moiety which readily undergoes nucleophilic abstraction in aqueous alkaline 

solution to release the toxic cyanide ions (Rajniak et al., 2015).  

 

1.7.1 Biosynthesis of 4-OH-ICN in Arabidopsis 

Production of cyanogenic metabolites occurs in more than 2,600 plant species. Synthesis of 

cyanogenic glucosides is from an amino acid-derived acetaldoxime (Ganjewala et al., 2010). 

Despite the abundance of cyanogenic metabolites in the plant kingdom, prior to the discovery 

of 4-OH-ICN, all the >50 known cyanogenic glucosides were synthesized from acetaldoxime 

intermediates derived from valine, isoleucine, leucine, phenylalanine, tyrosine or 

cyclopentenyl-glycine. 4-OH-ICN is the only cyanogenic metabolite which is synthesized 

from a tryptophan-derived acetaldoxime intermediate and also the only cyanogenic 

metabolite not known to be conjugated to a sugar moiety. There are four enzymes in the 4-

OH-ICN pathway, which catalyse the conversion of indole-3-acetaldoxime (IAOx) into 4-

OH-ICN and one of its hydroxylated breakdown derivatives (Figure 1.9). These are; the 

cytochrome P450 CYP71A12, the flavin-dependent oxidoreductase, FOX1, the cytochrome 

P450 CYP82C2 and the γ-glutamyl peptidase, GGP1 (Figure 1.9) (Ganjewala et al., 2010; 

Møller, 2010; Rajniak et al., 2015). 
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Figure 1.9: The biosynthetic pathway of 4-OH-ICN in Arabidopsis with emphasis on FOX1 

and CYP82C2 (based on Rajniak et al., 2015). 
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1.7.1.1 Enzymes Involved in the Biosynthesis of 4-OH-ICN 

 

1.7.1.1.1 CYP71A12 

The cytochrome P450 enzyme CYP71A12 functions in both the camalexin and 4-OH-ICN 

biosynthetic pathways. It diverts IAOx into either indole-3-acetonitrile or indol-3-

cyanohydrin in the camalexin, or 4-OH-ICN metabolic pathways, respectively. CYP71A12 is 

highly co-expressed with FOX1, an enzyme downstream of CYP71A12 in the 4-OH-ICN 

metabolic pathway. Arabidopsis plants with a mutated CYP71A12 gene are susceptible to 

Pseudomonas syringae infection and are impaired in root exudation of camalexin (Rajniak et 

al., 2015; Moldrup et al., 2013). CYP71A12 is upregulated by more than 35-fold in the vte2 

Arabidopsis mutant which constitutively express camalexin. In the absence of any biotic or 

abiotic stressors, vte2 mutants accumulate a 100-fold more camalexin than WT plants (Sattler 

et al., 2006). 

 

1.7.1.1.2 FOX1 

The FOX1 gene encodes a flavin-dependent oxidoreductase that contributes to the conversion 

of indole-3-cyanohydrin into indole-3-carbonyl nitrile (ICN). The FOX1 gene is highly co-

expressed with the CYP71A12 gene in Arabidopsis. Compared to fox1 mutant plants, WT 

Arabidopsis plants accumulate 3-5-fold more ICN. In the Arabidopsis mutant, vte2, FOX1 

expression is upregulated by 44-fold change even in the absence of elicitors (Rajniak et al., 

2015; Sattler et al., 2006). Hydrogen peroxide accumulation also increases the expression of 

the FOX1 gene by approximately 26-fold. On the other hand, arsenic toxicity is known to 

repress the expression of FOX1 by 1.5-fold (Abercrombie et al., 2008; Inzé et al., 2012). 

 

1.7.1.1.3 CYP82C2 

Orthologous copies of Arabidopsis CYP82C2 gene are also found in the genome of Glycine 

max (soybean) and Populus trichocarpa (black cottonwood).  In the 4-OH-ICN biosynthetic 

pathway in Arabidopsis, CYP82C2 functions as an indolic hydroxylase that catalyses the 

hydroxylation of ICN at the number 4 carbon position to form the 4-OH-ICN (Kruse et al., 

2008; Rajniak et al., 2015). Prior to the discovery of 4-OH-ICN, the endogenous substrate of 

CYP82C2 in Arabidopsis was not known. However, it was known that CYP82C2 was 

capable of hydrolysing an exogenously supplied furanocoumarin, 8-methoxypsoralen (8-
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MOP) into 5-hydroxy-8-methoxypsoralen (5-OH-8-MOP) which was then glycosylated into 

5-O-β-D-glucopyranosyl-8-MOP. Furanocoumarins are phytoalexins employed largely by 

plants in the Apiaceae and Rutaceae families as defence metabolites against fungal, bacterial 

and insect attack. Furanocoumarins are not known to occur naturally in Arabidopsis (Kruse et 

al., 2008). CYP82C2 is induced by pathogens. cy82C2 mutant plants are more susceptible to 

Pseudomonas syringae and Botrytis cinerea infection and also exhibit increased symptoms to 

the avirulent strains of the necrotrophic fungal pathogen Alternaria brassicicola. Mutant 

cyp82C2 plants exhibit decreased induction of JA-responsive genes coupled with a reduced 

accumulation of JA-inducible indole glucosinolates. However, the accumulation levels of 

indole acetic acid and camalexin are not altered in cyp82C2 mutant plants (Liu et al., 2010; 

Rajniak et al., 2015). 

 

 1.7.1.1.4   GGP1 

The GGP1 gene encodes a γ-glutamyl peptidase that functions downstream of 4-OH-ICN 

biosynthesis, converting 4-OH-ICN into one of the hydroxylated breakdown products.  GGP1 

also functions in the metabolic pathways of both camalexin and glucosinolates. In the 

camalexin and benzylglucosinolate metabolic pathways, a tripeptide glutathione (GSH) 

conjugated to indol-3-acetonitrile (IAN) acts as the GGP1 substrate. The IAN is conjugated 

to the tripeptide glutathione, γ-Glu-Cys-Gly, through a γ glutamyl peptide bond. Therefore, 

the role of GGP1 in the metabolic pathways of camelexin and benzyl glucosinolates is the 

hydrolysis of the γ-glutamyl peptide bond in the GSH-IAN conjugate (Geu-Flores et al., 

2009; Lemarié et al., 2015; Rajniak et al., 2015). However, in the camalexin pathway, aside 

GGP1, the γ-glutamyl peptide bond could also be cleaved by other peptidases including, 

putatively, phytochelatin synthase 1 (PCS1) and the apoplastic localised γ-glutamyl 

transpeptidases 1 and 2 (GGT1 and GGT2) (Moldrup et al., 2013). 

 

1.8 AGO Proteins 

Argonaute (AGO) proteins belong to the P-element Induced Wimpy Testis (PIWI) 

superfamily of proteins. The “founding member” of the AGO protein family is the 

Arabidopsis AGO 1 which was discovered in 1998 based on the characteristic phenotype of 

the Arabidopsis ago1 mutant plant which has deformed and narrow rosette leaves that were 

said to resemble the tentacles of the Argonauta argo octopus (Bohmert et al., 1998; Swarts et 
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al., 2014). AGO proteins are common to all six kingdoms of life with the exception of very 

few species that completely lack any AGO proteins.  In the cell, AGO proteins are found in 

both the cytoplasm and in the nucleus. In the cytoplasm, AGO proteins localize to the 

cytoplasmic processing bodies and stress granules. In mammalian germ cells AGO proteins 

have also been found in specialized cytoplasmic structures called chromatoid bodies. In the 

nucleus AGO proteins localize to the Cajal, bodies which are associated with the nucleolus 

and are sites for ribonucleoprotein assembly (Detzer et al., 2011; Swarts et al., 2014).   

 

1.8.1 Molecular Structure of AGO Proteins 

The first crystal structures of AGO proteins to be solved were of bacterial and archaeal 

origins such as the AGO protein of the rod-shaped bacterium Aquifex aeolicus which is only 

700 amino acid long.  Aquifex aeolicus AGO folds into an elliptical-like molecule measuring 

approximately 55 x 70 x 90 Å (Figure 1.10A). Structures of larger eukaryotic AGO proteins 

including the human AGO-2 protein (Figure 1.10B) and Nicotiana attenuata AGO proteins 

(Figure 1.10C) were deciphered later. Despite the considerable differences between 

prokaryotic AGOs and their eukaryotic counterparts, they all share remarkable similarities in 

terms of function and structure. The ability of AGO proteins to control protein synthesis, 

affect mRNA stability and contribute to production of secondary small RNAs is attributed to 

their structural domains and architectural conformation (Parker and Barford, 2006; Rashid et 

al., 2007; Swarts et al., 2014). 
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A. Bacterial AGO  Protein                        B.   Human AGO Protein 

  

                                                C. Plant AGO Protein 

Figure 1.10; Crystal structures of AGO proteins from A) Aquifex aeolicus refined at 3.2 Å 

resolution; B; human AGO-2 protein bound to miR-20a guide strand; C) Nicotiana attenuata 

AGO-1a. All three structures are very similar despite belonging to AGO proteins found in 

different kingdoms (Rashid et al., 2007; Singh et al., 2015; Elkayam et al., 2012). 
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Eukaryotic AGO proteins possess the four core domains; namely the PIWI domain, the Piwi, 

Ago and Zwille (PAZ) domain, the MID domain and the N-terminal domain along with 

interdomain and intradomain linkers. The domains of eukaryotic AGO protein fold into a bi-

lobal structure with the N-terminal, PAZ and the interdomain linker-1 constituting one lobe 

whilst the PIWI together with the MID serve as the second lobe forming a crescent-shaped 

base. Both lobes are held together by interdomain linker-2. The positioning of the lobes is 

such that a positively charged groove is created in between the lobes. In the majority of cases 

prokaryotic AGO proteins lack a complete catalytic motif within their PIWI domain. 

Approximately, only 40% of prokaryotic AGO proteins possess a PAZ domain (Song et al., 

2004; Swarts et al., 2014).  

 

1.8.2 The Formation of RNA Induced Silencing Complex 

The spatial orientations of the domains of AGO proteins result in the formation of a 

positively charged groove that is ideal for interactions with the negatively charged phosphate 

backbone and 2’-OH moieties of small RNAs (Song et al., 2004).  

Small RNA duplexes such as short interfering (si)-RNA duplexes are recognized and bound 

to the PAZ domain based on their 3’ dinucleotide overhangs. One strand of the loaded small 

RNA duplex is retained as the guide strand whilst the complementary strand is disposed as a 

passenger strand. The resulting AGO-small RNA effector complex is referred to as RNA 

induced silencing complex (RISC). The relative thermodynamic stabilities of the small RNA 

strands influence the selection of the guide strand and the passenger strand. In Drosophila, 

the double stranded RNA binding domain protein R2D2 forms a heterodimer with dicer and 

binds the end of the more stable strand of the siRNA duplex ensuring the strand with the less 

stable 5’ thermodynamics is retained in AGO protein as the guide strand. Human TRBP and 

PACT proteins are analogous to Drosophila R2D2 and may also aid in selection of guide and 

passenger strands.  The catalytic motif of the PIWI domain may cleave the passenger strand 

to facilitate its disposal ensuring only a single stranded guide remain loaded into the AGO 

protein (Song et al., 2004; Lasse and Meister, 2007). 

The incorporation of the 5’ phosphorylated end of the guide strand into the MID binding 

pocket strongly bends the guide strand and exclude the base of the first nucleotide from the 5’ 

end from participating in base-pairing with the target strand. Bases 2 to 6 of the guide strand 

from the 5’ end which is also termed as the seed sequence is the primary sequence 
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responsible for interaction of the guide strand with the target messenger RNA (mRNA) 

(Figure 1.11). The seed sequence assumes an A-like helical formation with its bases pointing 

outwardly and accessible for base-pairing with the target sequence. The target strand enters 

the binding groove with its 5’ end toward the PAZ domain with the N-terminal domain 

serving as a grip to position the target strand (Song et al., 2004; Hutvagner and Simard, 2008; 

Swarts et al., 2014).  
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Figure 1.11:  Crystal structure of a programmed Pyrococcus furiosus AGO protein binding its 

mRNA target (shown in turquoise). The catalytic motif DDH required for mRNA cleavage is 

shown in red (highlighted by the blue rectangular inset) (Hutvagner and Simard, 2008).  

 

 

Interactions of the AGO protein with the small RNAs largely involve the sugar-phosphate 

backbone of the small RNAs which ensures the availability of the bases of the guide strand 

for base-pairing with the target sequence. In Thermus thermophilus AGO, two arginine 
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residues lock the 10th and 11th bases of the guide strand from the 5’ end into an orthogonal 

formation slightly disrupting the preformed helical formation of the seed sequence. The seed 

sequence of the guide strand and the complementary sequences on the target strand then 

engage in a Watson-Crick base-pairing in the region of the seed sequence with the N-terminal 

possibly blocking nucleation beyond the seed region of the guide strand (Ender and Meister 

2010; Swarts et al., 2014). 

Both the 5’ and 3’ ends of the guide strands still remain anchored in the MID and PAZ 

domains during nucleation. However, for extensive nucleation between the target and the 

guide strands, the 3’ end of the guide strand in certain cases are known to be released from 

the 3’ binding pocket of the PAZ domain which may be essential to overcome torsional 

constraints associated with the extensive base-pairing. The release of the 3’ end of the guide 

strand from the PAZ domain during nucleation may expose the 3’ end of the guide strand to 

3’ end modifying exonucleases, possibly explaining why guide strands that form extensive 

base-paring with their target sequence are 2’-O-methylated.   Once the seed sequence and the 

target sequence are hybridized, the duplex slides down toward the 3’ end of the guide strand 

in order to position the nucleotide 10 and 11 from the 5’ end of the guide in the proximity to 

the catalytic motif (Figure 1.11). Complementarity between the seed sequence and the target 

sequence is critical for AGO slicing. If there are significant mismatches within the hybrid 

duplex AGO action may rather result in translation inhibition instead of cleaving.  In cleaving 

competent AGOs, a glutamic acid residue called the glutamate finger is inserted into the 

cleaving pocket of the PIWI domain completing the catalytic tetrad (Parker and Barford, 

2006; Song and Tor, 2006; Ender and Meister 2010).  

Slicing of the target RNA is facilitated by the presence of two metal cations within the 

vicinity of the catalytic motif of the PIWI domain. One cation binds to the scissile phosphate 

of the target RNA and the carboxylate side chain aspartate residue whilst the other cation 

contributes to the stabilization of the transition states and the reaction products. The catalytic 

tetrad cleaves the phosphodiester bond of the target RNA at the site opposite nucleotide 10 

and 11 of the guide strand resulting in a cleaved RNA product with a 3’-OH and 5’-phosphate 

group (Parker and Barford, 2006; Ender and Meister 2010).  

However, not all AGO proteins are cleaving competent possibly due to their lack of the 

catalytic tetrad or other factors that may be essential to attain cleaving competency. These 

cleaving incompetent AGO proteins exert their function through inhibition of translation of 
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the target mRNAs. Although lack of polyA tail in a target mRNA may not completely 

preclude the transcript from AGO-mediated inhibition of translation however, a functional 7-

methylguanine (m7G) cap is essential for targeting mRNAs for translational inhibition. The 

interactions of the m7G cap of the target mRNA with the m7G binding pocket of the MID 

domain may result in the unavailability of the m7G cap to eukaryotic initiation of translation 

factor 4 (eIF4E) resulting in repression of translation. It is also postulated that AGO proteins 

may prevent the circularization of targeted mRNAs which is essential for initiation of 

translation hence repressing the translation of targeted mRNAs (Song et al., 2004; Parker and 

Barford, 2006; Hock and Meister, 2008; Ender and Meister 2010). 

 

1.8.3 Role of AGO Proteins in Plant Growth and Development 

AGO proteins in association with siRNAs, miRNAs and tasiRNAs and also Dicer-like 

enzymes that produce these small RNAs play central role in modulating the processes that 

directly affect plant growth and development (Vaucheret et al., 2008). This is evident in the 

pleiotropic developmental deformities seen in plants with mutations in one or more of their 

AGO genes. For instance, an Arabidopsis plant with a mutated AGO1 gene is associated with 

unexpanded and pointed cotyledons and also possesses distinctively narrow dark green and 

thick rosette leaves that do not show any clear distinction between the leaf petiole and the leaf 

blade (Figure 1.12) (Bohmert et al., 1988; Allen et al., 2005). 
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      Arabidopsis ago1.25 mutant plant                   Arabidopsis WT plant 

Figure 1.12; Phenotype of an Arabidopsis ago1.25 mutant plant in comparison with a WT 

Col-0 Arabidopsis plant (Scale bars = 1cm). 

 

The regulatory role of AGO proteins is evident in almost every stage of plant growth and 

development. Subsequent to fertilization, miRNA-guided AGO proteins are required for the 

transition from maternally expressed messages into zygotic expression programme where 

genetic information from both parental sources contribute to the unique identity and 

differentiation patterning of the newly formed zygote (Nodine and Bartel, 2010). During the 

early stages of embryogenesis AGO proteins guided by miRNA repress the expression of 

differentiation promoting transcription factors to maintain the potential of the pre-globular 

cells to generate varied cell types during the globular stage of embryogenesis. For instance, 

many of the transcription factors that are precociously expressed in dicer-like1 (dcl1) -5/+ are 

targets of either mir156, mir159, mir166, mir319 or mir824. mir156-guided AGO-1 and 

mir165/6 guided AGO-1 are required to repress the differentiation and seed maturation 

promoting Squamosa promoter binding protein-like (SPL) transcription factors and Class III 

Homeodomain Leucine Zipper (HD ZIP III) transcription factors Phavoluta (PHV) and 

Phabulosa (PHB), respectively during early embryogenesis. The juvenile phase of 

Arabidopsis development is characterised by high accumulation of mir156. Accumulation of 

mir156 is associated with the principal characteristic of a juvenile plant such as round rosette 

leaves, lack of trichomes on the abaxial domains of leaves and limited leaf serration. 
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Overexpressing mir156 prolongs the juvenile phase of Arabidopsis development (Nodine and 

Bartel, 2010; Yu et al., 2015a).  

Transitioning from the juvenile phase to vegetative adult phase of development is in part 

controlled by AGO 7-generated trans-acting siRNA 3 (TAS3) tasiRNAs. Downregulation of 

auxin response factor 3 (ARF3) transcripts by AGO-7 generated tasiRNAs prevents 

precocious transitioning from the juvenile phase to vegetative adult phase. Arabidopsis plants 

with mutation in their AGO-7 gene transition to adult phase earlier than WT plants. For 

instance, abaxial trichomes, an adult phenotype, appear about 2 leaf position ahead of the 

appearance of abaxial trichomes on WT plants. Also, elongation of rosette leaves, another 

phenotype of adult plants, occur earlier in ago7 mutant plants than in WT plants (Fahlgren et 

al., 2006). 

Formation of flowers with functional male and female structures is a mark of the reproductive 

phase of angiosperm development and is crucial for the perpetual existence of angiosperms. 

miRNA-guided AGOs are essential for the reproductive success of a plant (Jung et al., 2014). 

During flower formation mir172 accumulates to high levels in stamen primordia compared to 

its low level of accumulation in petal primordia. Altering this varied localized accumulation 

of mir172 in the stamen and petal primordia results in the partial conversion of stamen to 

petals (Figure 1.13A).  During the reproductive phase, mir172-guided AGO proteins target 

Apetala (AP) and Apetala-like (AP-like) proteins either through mRNA slicing or through 

inhibition of translation. Repressing AP and AP-like proteins which act as repressors of 

flowering at the vegetative phase of development creates a conducive environment to 

promote flowering. Transgenic expression of recombinant AP2 that cannot be regulated by 

mir172 results in the formation of petaloid stamen and in severe cases complete conversion of 

stamen to petals (Figure 1.13 B and C). Therefore, the high accumulation of mir172 in the 

stamen primordia during floral development is essential to promote stamen cell fate through 

the localized downregulation of the petal cell fate promoting AP2 protein. As expected, 

overexpression of mir172 results in precocious flowering (Chen 2004; Wollmann et al., 2010; 

Yu et al., 2015a). 
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Figure 1.13: Arabidopsis flowers from A) pAP3:MIM172 transgenic plant showing stamen 

that is partially converted into petals; B) pAP3:amiR-AP2 transgenic plant with petaloid 

stamen; C) pAP3:rAP2 transgenic plant showing proliferation of petals (Wollmann et al., 

2010). 

 

Decline in mir156 accumulation during the reproductive phase also promote flowering. Since 

certain class of mir-156 regulated SPLs such as SPL3 are able to directly bind and activate 

flowering promoting genes such as AP1, low accumulation of mir156 during the reproductive 

phase is translated into high accumulation of flowering promoting SPLs. Constitutive 

expression of SPL3 results in early flowering (Cardon et al., 1997; Wang et al., 2009). 

AGO-9 is also required for specifying cell fate during megagametogenesis in the ovule. In a 

WT plant, about 94.2% of the ovules contain a single megaspore mother cell in the pre-

meiotic ovule however, in ago9 mutant plants several abnormally enlarged cells differentiate 

in the pre-meiotic ovule. However, only one of these abnormally enlarged differentiated cells 

undergoes meiosis and gametogenesis. AGO-9 is therefore crucial for restricting cell 

differentiation to a single sub-epidermal cell in the pre-meiotic ovule (Olmed-Monfil et al., 

2015). 

Another important role played by AGO proteins during the reproductive phase of Arabidopsis 

growth is the contribution to the production of volatile organic compounds. Terpene Synthase 

21 (TPS21) is an SPL9 regulated gene that encodes the enzyme sesquiterpene synthase 

required for the biosynthesis of (E)-β-caryophyllene sesquiterpene during flowering. Since 

SPL9 is downregulated by mir156, downregulation of mir156 during flowering phase ensure 
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the accumulation of SPL9 which in turn promotes the synthesis of sesquiterpenes during 

flowering (Yu et al., 2015b). 

 

1.8.4 Interaction of CMV 2b Protein with RISC 

The 2b protein encoded by CMV recognizes and interacts with AGO proteins (Gonzalez et 

al., 2010).  The 33 amino acid residue C-terminal to the double stranded RNA binding 

domain of the 2b protein is thought to be critical for its interaction with AGO proteins 

(Gonzalez et al., 2010; Duan et al., 2012). AGO-2b interactions could result in inhibition of 

the catalytic activity of the PIWI domain preventing silencing of viral transcripts. The 2b 

protein can also sequester virus derived siRNAs to avert their incorporation into the RISC 

complex (Figure 1.14) (Gonzalez et al., 2010; Duan et al., 2012; Gonzalez et al., 2012).  

 

 

 

Figure 1.14: The Fny-CMV 2b protein (grey) in a complex with two siRNA strands (blue). 

The red coloured subunits of the 2b proteins are believed to be the units of the 2b protein that 

directly interacts with the AGO proteins (Salanki et al., 2018). 
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Mutation in the 2b protein therefore can significantly alter its interaction with AGO proteins 

or small RNAs (Gonzalez et al., 2010; Hamera et al., 2012). For example, a truncated CMV 

Fny-2b protein containing only the N-terminal 50 amino acids only partially inhibits the 

catalytic activity of AGO1 protein (Zhang et al., 2006). Also, a spontaneous single amino 

acid substitution in the 2b protein of the mild cross protection CM95 mutant strain of CMV 

results in the severe CM95R CMV mutant strain. The severity of CM95R infection is as a 

result of the ability of its 2b protein to stably bind siRNAs compared to the 2b protein of the 

mild CM95 strain that weakly bind siRNAs (Goto et al., 2007). 

 

1.9 Aphids 

The Aphididae family consists of over 4,300 species with specialized mouthparts that enable 

direct feeding from the phloem of host plants. Aphids can reproduce both sexually and 

asexually depending on the day length, temperature, population size and available nutrition. 

The ability of aphids to produce prolific wingless clones that can reach maturity within 5 

days and establish a colony without mating and winged clones that can disperse to start a 

colony in different location enable aphids to accumulate to very high densities over a large 

area within a short period of time (Powell et al., 2006; Goggin, 2007).  

Extraction of phloem resources by aphids can impact plant growth and development resulting 

in wilting, reduced stem elongation, gall formation or reduced crop yield (Larson and 

Whitham, 1991; Girousse et al., 2005). However, the most significant role of aphids as 

agricultural pests is their ability to transmit pathogenic plant viruses. Aphids are efficient 

vectors of important plant viruses. More than 200 species of aphids can vector over 100 plant 

viruses to over 30 plant families including plant families with economically important 

agricultural crops. Prominent among these aphid vectors of plant viruses is Myzus persicae 

(van Emden et al., 1969; Goggin 2007).  

 

1.9.1 Myzus persicae 

The Myzus persicae species complex consists of biotypes, races and strains adapted to 

various geographical and climatic conditions (van Emden, 1969). Myzus nicotianae and 

Myzus antirrhinii which were previously classified as independent species are currently 

grouped under the Myzus persicae complex. Mitochondrial cytochrome oxidase II and 

Elongation Factor-1α gene sequences from Myzus nicotianae are identical to those of Myzus 



43 
 

persicae and are both distinct from other Myzus species such as Myzus hemerocallis and 

Myzus varians (Clements et al., 2000; Radcliffe and Ragsdale, 2002). At optimum 

temperatures of between 20 - 27.5 ºC, a Myzus persicae aphid can produce up to an average 

of 85.33 nymphs in its lifetime (Auclair, 1963). In warmer climates Myzus persicae aphids 

reproduce largely through parthenogenesis. However, in temperate regions, the decrease in 

day length that occurs during late summer and autumn induces the production of male and 

female sexual morphs that mate and produce overwintering eggs (Blackman, 1974). 

 

1.9.2 Host Selection by Aphids 

Aphids employ a combination of sensory cues to locate and infest host plants. Generally, 

aphids tend to land on both host and non-host plants at the same frequency. Accumulation of 

aphids on host plants rather than on non-host plants is therefore as a result of the differential 

rate of dispersal after initial contact with a plant. After a contact with a plant is initiated, an 

aphid assesses the topology of the leaf, presence of trichome exudates and cuticular waxes 

and subsequently begin to sample the epidermal/mesophyll content of the host by short 

probes with its piercing and sucking mouthpart. Once probing is initiated, the secondary 

metabolite profile and the nutritional quality of the host determines aphid arrestment or 

departure (Figure 1.15) (Powell et al., 2006). 

Myzus persicae prefer settling on young leaves despite the high accumulation of aphid 

deterring secondary metabolites in these leaves. The preference of Myzus persicae for young 

brassica leaves may be due to the high amino acid and sugar content obtained from the 

phloem of young brassica leaves.  Phloem sap from young cabbage leaves is rich in arginine, 

serine, asparagine and glutamine in comparison to older leaves. Hence Myzus sp. perform 

better on young cabbage leaves irrespective of the high glucosinolate content. Therefore, in 

terms of host selection, the nutritional quality of the host may take precedence over the host 

defence responses against the aphid (Zust and Agrawal, 2016; Cao et al., 2018). 

 

 

 

 



44 
 

 

 

 

 

 

 

Figure 1.15: A diagram of an aphid feeding from the sieve element of a plant. The quality of 

the phloem sap and the extent of exposure to the host defence metabolites may influence 

aphid arrestment or deterrence (Diagram from Nalam et al., 2019). 
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1.9.2.1 Role of Visual Cues in Host Selection by Aphids 

The ability to distinguish between a nutritious host from an inferior host prior to physical 

contact is essential for the survival of insect herbivores (Mattson, 1980; Stutz et al., 2017).     

Many aphid species including Macrosiphoniella artemisiae (Artemisia aphid) and 

Rhopalosiphum padi (bird cherry-oat aphid) rely profoundly on visual cues in locating their 

host (Gish and Inbar, 2006; Schroder et al., 2014). For instance, in the dark only 17% of all 

Macrosiphoniella artemisiae aphids that dropped from their Artemisia arborescens host were 

able to relocate their host compared to a 92% return rate when the experiment was performed 

under sunlight (Gish and Inbar, 2006). 

The age of a plant, its chlorophyll content, nutritional value or physical attributes of the 

foliage influence how a plant reflects light and its preference as a host by insect herbivores 

(Prokopy and Owens, 1983). For instance, plants with very bright autumn colours tend to be 

an honest visual cue for plants with both abundant free amino acid content in their sap and an 

increased defence signalling (Hamilton and Brown, 2001; Holopainen and Peltonen, 2002). 

In line with this, trees with very bright autumn colours are usually heavily infested in the 

autumn by migratory specialist aphids seeking quality host plants as a source of food and 

oviposition site (Holopainen and Peltonen, 2002). Also, the migration of bird cherry-oat 

aphids to their Prunus padus (bird cherry) winter host coincides with the period when the sap 

of the host is high in free amino acid content. During late spring and summer when the free 

amino acid content drops, bird cherry-oat aphids return to their Hordeum vulgare (barley) 

summer hosts (Sandstrom, 2000). Aphids may therefore have evolved to use the bright 

autumn colours of trees as a visual cue for hosts with high nitrogen sap content (Holopainen 

and Peltonen, 2002). 

In many instances, infection of a plant by a virus results in drastic changes that affect plant-

vector interactions (Carr et al., 2018). For example, leaf yellowing, which also occurs in 

senescent autumn foliage is a common symptom associated with many virus diseases (Farkas 

and Solymosy, 1965; Zaitlin and Hull, 1987). Yellow is preferentially selected by many aphid 

species (Fereres et al., 1999; Hodge and Powell, 2008; Schroder et al., 2014). For instance, 

pea aphids preferentially settle on the chlorotic leaf tissues from Pea enation mosaic virus 

(PEMV) infected, Bean yellow mosaic virus (BYMV) infected or Broad bean mottle virus 

(BBMV) infected plants in comparison to healthy plant tissues largely due to their attraction 

to the yellow coloration of the virus infected tissues and not based on the ability of the insect 

to act as a vector for the virus (Hodge and Powell, 2008). In tobacco, infection by the aphid 
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vectored viruses PVY or CMV affects how light is transmitted from these virus-infected 

tobacco plants. PVY or CMV infection significantly reduces the extent of polarization of 

light reflected from the abaxial side of the virus infected leaves. Interestingly, non-insect 

vectored viruses (TMV and Pepino mosaic virus) are not able to cause this effect (Maxwell et 

al., 2016).  

 

1.9.3 Host Manipulation by Aphids to Enhance Nutrition 

Aphids can actively manipulate their host to enhance the quality and the nutritional content of 

the phloem sap. Galling aphids such as Pemphigus betae create de novo physiological sinks 

in the form of galls to import host resources for their use. Aphid experiments involving the 

use of carbon-14 indicate that a basal Pemphigus betae gall can import as much as 26% of its 

carbon-14 from neighbouring leaves. As a result, Pemphigus betae found in basal galls have 

higher fecundity rate (Larson and Whitham, 1991). 

Other evidence for the active manipulation of host plants by aphids to enhance their nutrition 

is the high amino acid and sugar content of previously Myzus persicae infested Chinese 

cabbage leaves. Myzus persicae feeding on previously infested Chinese cabbage leaves gain 

33% more weight and a 110% increase in colony size (Cao et al., 2016). 

 

1.9.4 Aphids as Vectors of Plant Viruses 

Insect species within the Homoptera family can vector a total of over 380 plant viruses. 

Prominent among these vectors are aphids. Over 200 species of aphids can acquire and 

transmit various plant viruses (Nault, 1997; Goggin, 2007). 

Based on the mode of acquisition and transmission by insect vectors, plant viruses are 

categorized as non-persistently transmitted, semi-persistently transmitted, persistently 

transmitted-circulative, or persistently transmitted-propagative viruses (Figure 1.16) (Nault, 

1997).  

Non-persistently transmitted viruses are acquired through brief intercellular perforations of 

the epidermal/mesophyll layer of an infected plant. These brief probes usually last no longer 

than 10 seconds. Two hypotheses are proposed to explain the acquisition of non-persistently 

transmitted virus. These are the stylet-borne/stylet contamination hypothesis and the 

ingestion-egestion hypothesis (Pirone and Harris, 1977). 
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Figure 1.16: Non-persistent (a) and semipersistent (b) transmission of plant viruses by 

hemipteran vectors. CMV acquisition by aphids does not require virus encoded helper 

components (From Ng and Falk, 2006). 
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The primary determinant for the transmission of CMV by Myzus persicae is the viral coat 

protein (Perry et al., 1998). Specific mutations in the CMV coat protein significantly reduce 

its transmissibility by Myzus persicae. For instance, a single amino acid substitution in the 

coat protein of Fny-CMV can significantly reduce transmission efficiency by Myzus persicae. 

Substituting the coat protein of the non-transmissible mutant M-CMV with the coat protein of 

aphid-transmissible Tomato aspermy virus (TAV) restored transmission by Myzus persicae 

(Chen and Francki, 1990). 

Volatile organic compounds and other secondary metabolites produced by plants play crucial 

role in either attracting or repelling insect herbivores (de Vos and Jander, 2010; Groen et al., 

2016). Plant viruses are thought to exploit the plant-vector interactions to facilitate their 

transmission. An important example is the manipulation of the squash (Cucurbita pepo) 

plant- aphid interactions by CMV. CMV infection alters the blend of volatiles emitted and the 

accumulation of distasteful secondary metabolites in plant tissues. The volatiles enhance 

attraction of Myzus persicae and Aphis gossypii to the infected plants. However, these aphids 

are repelled after brief sampling of the mesophyll cell content of the infected plant due to its 

poor quality as food or increased accumulation of defence metabolites (Mauck et al., 2010). 

 

1.10 Role of AGO and small RNAs in Insect Resistance in Plant 

Insect infestations result in the upregulation of miRNA-encoding genes in plants (Xia et al., 

2015). miRNA-guided AGO complexes are required for tuning various aspect of plant 

defence against insect herbivory such as regulation of R genes, plant hormones and secondary 

metabolites (Robert-Seilaniantz et al., 2011; Xia et al., 2015). Hence, mutant plants impaired 

in miRNA processing or RNA silencing such as Arabidopsis dicer-like 1 (dcl1) and ago1 

mutant plants display altered resistance to aphid infestations (Kettles et al., 2013; Westwood 

et al., 2013).   

 

1.10.1 AGO-Mediated Regulation of R genes against Insect Herbivory  

Expression of host defence-related genes such as R genes are tightly regulated so as to limit 

the chances of autoimmunity or channelling of resources into host defence responses in the 

absence of a tangible threat (Li et al., 2012; Tang et al., 2012). AGO-mediated RNA silencing 

is one of the mechanisms by which plants prevent the constitutive or precocious expression of 

R genes (Li et al., 2012). Generally, a specific set of miRNAs is enough to regulate an entire 
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class of related R genes. For instance, in Medicago truncatula, over 60% of all the NB-LRR 

encoding genes are targeted by a set of miRNA-guided RISC which further generates 

secondary siRNA that are capable of amplifying the silencing (Zhai et al., 2011). Similarly, 

miR482 in Lycopersicum esculentum and miR1885 in the Brassicas also target NB-LRR-

encoding genes for silencing (He et al., 2008; Shivaprasad et al., 2012). 

In Cucumis melo (muskmelon) the Virus aphid transmission (Vat) R gene confers resistance 

against Acyrthosiphon pisum (pea aphid) colonization and virus transmission (Villada et al., 

2009). During the incompatible pea aphid-Vat muskmelon interactions over 70 miRNAs are 

upregulated. Six of these upregulated miRNAs are believed to be essential for the Vat-

mediated defence against pea aphids by virtue of their potential role in suppressing auxin 

signalling (Sattar et al., 2016). 

 

1.10.2 AGO-Mediated Regulation of Plant Hormones and Secondary Metabolites 

against Insect Herbivory 

Impaired miRNA processing in Arabidopsis dcl1 mutant plants results in the upregulation of 

camalexin and JA. Consequently, Myzus persicae perform poorly on Arabidopsis dcl1 mutant 

plants (Kettles et al., 2013). Similarly, perturbations in auxin signalling also alter plant-insect 

interactions (Erb et al., 2012). miRNA 393 targets Transport Inhibitor Response/Auxin 

Signalling F-Box Protein (TIR/AFB) auxin response receptors for degradation, in the process 

acting as a negative regulator of auxin signalling (Robert-Seilaniantz et al 2011; Windels et 

al., 2014). In miR393 over-expressing Arabidopsis plants, the reduced auxin accumulation is 

associated with the increased accumulation of indole glucosinolates, potent antixenotic 

metabolites involved in insect resistance in plants (Robert-Seilaniantz et al., 2011).  

 

1.10.3 RNA interference-based Insect Vector Population Management 

The protein-based insect pest control strategy that protects plants against insect attack 

through the transgenic expression of insecticidal protein from Bacillus thuringiensis in crops 

is not very effective against controlling hemipteran herbivores such as aphids (Kola et al., 

2015). RNA-based insect control methods that introduce either siRNA or dsRNA into insect 

cells to induce silencing of vital insect genes could rather prove more hopeful against the 

management of hemipteran herbivores (Zhang et al., 2013; Kola et al., 2015). The sequence-

specificity of this method and the ability of insects exposed to an RNAi trigger to pass the 
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RNAi signal to subsequent insect generations coupled with the environmentally friendly 

nature of the procedure make RNAi-based insect control method a viable alternative to 

explore (Coleman et al., 2015; Kola et al., 2015;). 

A number of vital genes involved in various physiological processes in insects have all been 

used as the basis for designing RNAi triggers with varied outcomes including mortality, 

reduced fecundity, inability to feed or enhanced susceptibility of the targeted insects to 

pesticides (Price and Gatehouse, 2008; Yang et al., 2011; Yu et al., 2013; Coleman et al., 

2015). Micro-injection of pea aphids with siApCOO2 resulted in a 100 % silencing of the 

insect’s COO2 mRNA transcripts and subsequent mortality 8 days earlier than aphids that 

received mock injection (Mutti et al., 2006) Up to 60% of Myzus persicae COO2 transcripts 

were also silenced after the aphids fed from dsMpCOO2-expressing transgenic plants. 

Subsequently, the reproduction rate of the RNAi-expressing aphids dropped by more than 

half (Mutti et al., 2006; Price and Gatehouse, 2008; Coleman et al., 2015). Similarly, the 

reproduction rate of Myzus persicae exposed to dsMpRack1 transgenic plants were also 

reduced by 40% (Coleman et al., 2015). Other genes that have been targeted to effectively 

control Myzus persicae infestations are MpPInto1, MpPInto2, Macrophage migration 

inhibiting factor 1 (MMIF-1) and hunchback (Price and Gatehouse, 2008; Pitino et al., 2011; 

Coleman et al., 2015). 

 

1.11 Aims and Objectives 

Plant viruses cause some of the most destructive and difficult to control diseases in crop 

production. The goal of this project was to explore ways to mitigate incidence of virus 

diseases and its associated economic cost in crop husbandry. Specifically, the basis of the 

heightened resistance to the CMV vector Myzus persicae in Arabidopsis ago1.25 mutant 

plant (Westwood et al., 2013) and the feasibility of exogenous application of SA in inducing 

resistance to CMV disease in pepper plants were investigated.  

Myzus persicae perform poorly on ago1.25 mutant plants in terms of growth and 

reproduction rate. In addition, aphid infestation of an ago1.25 mutant plant causes severe 

stunting and in certain cases premature hyper-senescence of older ago1.25 mutant plant 

leaves. Previous experiments in our lab show that the heightened defence to aphid infestation 

in ago1.25 mutant plants is not due to feeding deterrence since aphid tend to spend more time 

actively feeding on an ago1.25 mutant plant in comparison to a WT plant (Westwood et al., 
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2013). It is plausible that aphids feeding on ago1.25 mutant plants are exposed to a 

combination of aphid growth-impairing AGO1-regulated metabolites resulting in the poor 

performance of aphids on this hypomorphic mutant plant. Therefore, part of the aim of my 

research was to identify the nature of the AGO1-regulated metabolite(s) responsible for the 

heightened defence to Myzus persicae in Arabidopsis ago1.25 mutant plant. The other part of 

my research was to find the most effective mode of SA application and the optimum SA 

concentration required to induce resistance to CMV disease in sweet pepper plants. 

 

Hypotheses 

I examined two hypotheses in this thesis. First, I examined if exogenous application of SA 

could protect pepper against CMV. Subsequently, I explored the hypothesis that 4-OH-ICN 

and/or SA play roles in the increased resistance of Arabidopsis ago1 mutant plants to aphids. 

To test these hypotheses, the experiments were designed to answer the following questions; 

 

• Part 1: Does 4-OH-ICN biosynthetic genes (FOX1, CYP82C2) play a role in the 

heightened aphid defence observed in ago1.25 mutant plants? 

•  Part 2: Does the SA biosynthetic gene, Isochorismate synthase 1 (ICS1) play a role in 

the heightened aphid defence observed in ago1.25 mutant plants? 

• Part 3: Does the expression of the Fny-CMV 2b protein in ago1.25 background affect 

the heightened aphid defence observed in ago1.25 mutant plants?  

• Part 4: Does exogeneous application of SA induce resistance to CMV disease in 

pepper plants? 
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Chapter 2  

General Materials and Methods  

_____________________________________________ 
 

2.1 Reagents and Sterilization of Equipment 

 

2.1.1 Chemical and Molecular Biology Reagents 

The reagents used in this study were largely obtained from Sigma-Aldrich (Gillingham, 

Dorset, UK), Fisher Scientific (Loughborough, Leicestershire, UK) and Melford 

Biolaboratories Limited (Chelsworth, Ipswich, UK). In instances where reagents were 

obtained from other sources, the manufacturers of these reagents were indicated in the text.  

2.1.2 Sterilization of Solutions and Equipment 

Growth media, thermostable solutions, pipette tips, re-usable plastic pestles and microfuge 

tubes were sterilized by autoclaving for 15 minutes at 121 ºC. Ceramic mortars and pestles 

were washed with 1% (v/v) sodium hypochlorite, rinsed, dried and baked for 2 hours at 180 

ºC.  Plastic tubes, syringes and other single use plastics were supplied in sterile state by the 

manufacturers. 

 

2.2 Plant Materials 

2.2.1 Sources of Arabidopsis Seeds 

All mutant lines were in the background of Arabidopsis thaliana (L.) Heynh. ecotype 

Columbia-0 (generally referred to as Arabidopsis in this thesis). Mutant isochorismate 

synthase 1 (ics1) seeds, WT Arabidopsis seeds and Fny-CMV 2b (line 3.13F) transgenic 

seeds were all readily available from colleagues and from the laboratory seed stock. Mutant 

seeds, their origins and appropriate references are listed in Table 2.1. Mutants affecting 

biosynthesis of 4-OH-ICN were resistant to the herbicide 4-Amino-N-(2-

pyrimidinyl)benzenesulfonamide sodium salt (sulfadiazine sodium salt). Since the obtained 

T3 seeds were collected from segregating T2 plants, the seeds were screened to identify 

homozygous mutant plants. Seeds of the RNA silencing AGO-1 mutant ago1.46 were also 

obtained from the Nottingham Arabidopsis Stock Centre (NASC). The single nucleotide 
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polymorphism (SNP) ago1.46 mutant plant was generated by the University of Pennsylvania 

using the mutagen ethyl methanesulfonate (Alonso et al., 2003; Smith et al., 2009). 

2.2.2 Source of Sweet Pepper, Chinese cabbage and Nicotiana benthamiana Seeds 

Seeds for California Wonder cultivar of Capsicum annuum L. (sometimes referred to in this 

thesis as pepper or California Wonder) and Brassica rapa L. subsp. pekinensis (Chinese 

cabbage) were obtained from King’s Seeds Ltd, Colchester, UK. The pepper is recognized by 

the Committee for Capsicum Gene Nomenclature as a WT cultivar for the Capsicum annuum 

species (Daskalov and Poulos, 1994). It produces large non-pungent fruits with thick flesh. It 

is often used in pepper research as a standard cultivar. However, recent studies identified 

significant genetic variabilities among various accessions of California Wonder pepper plants 

(Votava and Bosland, 2002). California Wonder pepper was selected for this study due to its 

importance as a vital crop and its susceptibility to CMV infection (Montasser, 1998). N. 

benthamiana seeds were obtained from the lab stock. 
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Table 2.1: Sources of WT and mutant seeds used in this study 

Name Gene 

Mutated 

Type of 

Mutation 

Activity NASC 

ID/Parental 

Line 

Reference 

cyp71A12 CYP71A12 T-DNA 

insertion 

Converts IAOx 

to indole-3 -

cyanohydrin 

GK-127H03 Rajniak et 

al., 2015 

fox1 FOX1 T-DNA 

insertion 

Converts indol-

3-cyanohydrin 

to ICN 

GK-813E08 Rajniak et 

al., 2015 

cyp82C2 CYP82C2 T-DNA 

insertion 

Converts ICN 

to 4-OH-ICN 

GK-261D12 Rajniak et 

al., 2015 

ggp1 GGP1 T-DNA 

insertion 

Converts 4-

OH-ICN to a 4-

OH-ICN 

Derivative 

GK-960B11 Rajniak et 

al. 2015.  

ago1.25 AGO1 SNP 

(Missense) 

Involved in 

gene silencing 

Lab stock Morel et 

al., 2002 

ago1.46 AGO1 SNP 

(Missense) 

Involved in 

gene silencing 

 N67862 

 

Smith et 

al., 2009  

ics1(sid2.1) ICS1 SNP 

(Nonsense) 

Involved in 

salicylic acid 

biosynthesis 

Lab stock Wildermuth 

et al., 2001 

cyp82C3 CYP82C3 T-DNA 

insertion 

Cytochrome 

P450 

N570325 Alonso et 

al., 2003 

2b (3.13F) Fny-CMV 

2b ORF + 3’ 

NTR 

Transgenic 

mutant 

Suppressor of 

Silencing 

Lab stock Lewsey et 

al., 2007 

Col-0 WT WT 

Arabidopsis 

WT WT Lab stock  

California 

Wonder 

WT Pepper 

plant 

WT WT Kings 

Seeds, 

Colchester, 
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UK 

Nicotiana 

benthamiana 

WT 

Nicotiana 

benthamiana 

WT WT Lab stock  

SNP = Single nucleotide polymorphism; T-DNA = Transfer DNA; ORF = Open reading 

frame; NTR = Non-translated region. 

 

 

2.3 Seed Sterilization and Growth Conditions 

 

2.3.1 Sterilization of Arabidopsis and Pepper Seeds 

Arabidopsis seeds were first soaked in 1 ml 70% (v/v) ethanol for 2 minutes and then surface 

sterilized with disinfectant consisting of 5% sodium hypochlorite and 0.5% (w/v) SDS for 10 

minutes and later rinsed at least three times with autoclaved deionized distilled water.  

Pepper seeds were soaked in 1% (v/v) sodium hypochlorite solution for 10 minutes with 

intermittent agitations. Afterwards, the seeds were then rinsed with tap water for at least three 

times and dried on tissue paper. The surface-sterilized pepper seeds were then plated in tissue 

culture plates lined with wetted filter paper. Seeds were kept in an incubator set at 25 ºC until 

full emergence of radicle. 

2.3.2 Plating and Germination of Arabidopsis Seeds 

Surface-sterilized Arabidopsis seeds were plated on 1% (w/v) Murashige and Skoog (MS) 

agar (comprising of MS medium salt with a pre-added micro and macro elements, sucrose 

and phytoagar). Both MS salt and Phytoagar were obtained from Duchefa Ltd, Haarlem, The 

Netherlands. Plated seeds were stratified at 4 ºC for a minimum of two days and then moved 

to a long day (16 hours light, 8 hours darkness) growth incubator (Conviron, Winnipeg, 

Manitoba, Canada) with a temperature of range of 20-21 ºC. The plates were kept in the 

incubator for a period of 18-19 days until they were taken out and transplanted.  

Arabidopsis seeds that were used in generating experimental plants were sown directly onto 

saucers containing F2 Levington compost, (Fisons Plc., Ipswich, UK) sprayed with tap water 

and sealed tight with Saran wrap to maintain high humidity. The seeds were then cold 
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stratified for a minimum of 2 days at 4 ºC and then moved to short day growth room (8 hours 

light, 16 hours darkness) for approximately 2 weeks before being pricked out. 

 

2.3.3 Transplanting of Arabidopsis and Pepper Seedlings 

Arabidopsis seedlings were pricked-out into plastic growth trays (Desch Plantpak, Mundon, 

Essex, UK) containing F2 Levington Compost. The compost was mixed with 0.002% (w/v) 

Intercept systemic insecticide (active ingredient; imidacloprid: Scotts, Bramford, Ipswich, 

UK) and sand to control insect pests and improve soil aeration, respectively.  Plants that were 

taken off the automated watering system were manually watered. All the main experimental 

plants were grown under short day conditions with 8 hours of light and 16 hours of darkness. 

Pre-germinated pepper seeds were pricked out into trays containing M3 Levington compost 

mixed with sand and Intercept insecticide. The transplanted pepper plants were placed on the 

automated watering system until the day of SA application where they were taken out of the 

automated watering system and watered manually. All pepper plants were grown under long 

day conditions with 16 hours of light and 8 hours of darkness.  

The relative humidity, temperature and light flux in the growth rooms were 60%, 22 ºC and 

200 µmol. 

 

2.4 Generation of Double Mutant Plants 

 

2.4.1 Crossing Arabidopsis Plants 

Seeds of the individual genotypes needed for the crosses were sown and maintained under 

long day conditions as previously described. At the inflorescence stage, each of the 

participating parental genotypes were either assigned as a male parent which was to provide 

pollen for the cross or as a female parent which was to provide an unfertilized ovum for the 

cross. In cases where reciprocal crosses were required the male parents were later used as 

female parents whilst the female parents were used as male parents.  For the female parents, a 

healthy-looking inflorescence was selected. With the aid of tweezers all the fully opened 

flowers were nipped off leaving only the unopened but mature-looking floral buds to be used 

for the cross. Each bud was carefully opened by removing all the sepals and petals to expose 

the stamen and the pistil. Afterwards, all the stamens were removed with the aid of a tweezer 
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leaving only the pistil in place. For a male parent, fully opened mature flowers were selected 

as sources of pollen for the cross. Flowers from the male parent were nipped-off by the 

peduncle with the aid of tweezers and dusted onto the stigma of the freshly emasculated 

female flower for transfer of pollen from the male parent onto the stigma of the female 

parent. Crosses were then labelled indicating the male parent and the female parent and then 

returned to the growth room. Within approximately 3 days from crossing, crosses that 

resulted in successful fertilisation still maintain a green style showing signs of elongation 

whilst styles from unsuccessful crosses become necrotic and wither off.  After approximately 

3 weeks from crossing, the F1 siliques will be fully elongated, mature and drying up. Prior to 

the onset of natural dehiscence, the F1 siliques are harvested into microfuge tubes and 

labelled. 

 

Table 2.2: List of crosses and double mutant plants generated for this study 

Cross Phenotype 

ago1.25 x cyp82C2 ago1.25 mutant plant defective in 4-OH-

ICN biosynthesis 

fox1 ago1.25 ago1.25 mutant plant defective in 4-OH-

ICN biosynthesis  

ago1.25 x ics1 ago1.25 mutant plant defective in SA 

biosynthesis 

ago1.46 x nahG ago1.46 mutant plant defective in SA 

accumulation 

2b x ago1.25 Transgenic expression of Fny-CMV 2b 

gene in ago1.25 background 
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2.4.2 Maintaining F1 Progeny from Crosses   

The F1 seeds are collected from their siliques, surface-sterilized, plated on MS agar, cold 

stratified for approximately 3 days and maintained under long day conditions for 2 weeks 

prior to picking out into F2 Levington compost for growth under long day conditions. Except 

crosses involving transgenes, all F1 plants resemble a WT plant irrespective of their parental 

phenotypes due to their heterozygosity. Leaf and/or floral tissues are then collected from the 

bolting/mature F1 plants for gDNA extraction to confirm their heterozygosity using the 

appropriate primers listed in Appendix I. The F1 plants are then grown until silique 

maturation. The plants are then taken off the watering system at this stage to facilitate the 

silique drying process. After thorough drying, the F2 seeds are harvested from each F1 plant 

and labelled appropriately. 

 

2.4.3 Identifying Double Mutants Among Segregating F2 Populations 

In cases where one of the parental mutant plant has an antibiotic selection marker such as in 

the case of the 4-OH-ICN biosynthetic mutant plants which were resistant to the herbicide 

sulfadiazine (sul), the segregating F2 seeds were plated on sulfadiazine sodium salt - 

containing MS agar, cold stratified for approximately 3 days and maintained in a long day 

room for 2 weeks prior to pricking out. At this stage, the segregants without the antibiotic 

resistance either begin to show signs of chlorosis or are necrotic making it easier to narrow 

down on the double mutants. In crosses involving both ago1 mutant and any of the 4-OH-

ICN biosynthetic mutant plants, since mutation in any of the 4-OH-ICN genes does not affect 

the parental phenotype of ago1 in the F2 double mutant, all the F2 progeny that have the 

ago1.25 phenotype and are able to survive the sul-MS agar medium are pricked out into 

compost and grown under long day conditions. At the rosette stage, gDNA are collected for 

genotyping to identify the 4-OH-ICN biosynthetic/ago1 double mutants from the 4-OH-ICN 

biosynthetic heterozygote/ago1 mutants which have the same phenotype as the double 

mutants and are also able to survive the sul-MS agar medium. In crosses where none of the 

parental mutants has an antibiotic resistance marker such as in the case of crosses involving 

the two single nucleotide polymorphism mutants ics1 and ago1.25, identification of the F2 

double mutant is solely through sanger sequencing and Allele-Specific PCRs.  Identified F2 

double mutants are then grown till bolting and allowed to self-fertilize. Mature F3 seeds are 

then harvested and used for generating experimental plants. 
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2.5 Salicylic Acid Treatment  

 

2.5.1 Preparation of Salicylic Acid Solutions 

SA solutions were prepared from pure grade SA (molecular mass of 138.12 g/ml) with a 99% 

purity (Lancaster Synthesis, Eastgate, England). Stock solutions of between 0.5 mM and 1.0 

mM concentrations were first made and later diluted to the required concentrations using tap 

water without any additional ethanol. In the majority of the experiments, SA was applied as 

foliar sprays and/or watered to plants at the cotyledonous to first true leaf stage. Other modes 

of SA application included imbibition of pepper seeds in SA solutions and submersion of 

whole pepper seedlings into SA solutions for a specified duration.  

All pepper plants that received SA treatments through foliar sprays or through both foliar 

sprays and watering were inoculated a day after the last SA treatment regime. Thus, the 

plants were treated with SA for three consecutive days and on the fourth day, they were 

inoculated with CMV. These inoculated plants were largely at their first true leaf stage. 

Pepper plants that were treated with SA through drenching were pricked-out into trays and 

watered regularly with tap water until emergence of their first true leaf after which they were 

inoculated.  SA imbibed seeds were pre-germinated in plates lined with filter paper moistened 

with SA solution. The pre-germinated seeds were then pricked-out into trays and watered 

with tap water until full development of cotyledonous leaves before inoculation. 

 

2.6 Preparation of CMV inoculum 

The Fny-CMV strain was used for all virus inoculations in this research. CMV inocula were 

generated from infectious cDNA clones.  

 

2.6.1 Preparation of Luria Broth (LB) Media 

Liquid LB medium was prepared by dissolving 25 g of Miller’s LB broth base (Invitrogen, 

UK) per litre of distilled water. Solid LB media contained 0.75% (w/v) phytoagar. Both 

liquid and solid LB media were autoclaved prior to using. A 120 µl volume of 50 mg/ml 

stock kanamycin was added to 60 ml of a melted LB solid medium. An aliquot of 20 ml each 

of the medium was transferred into three separate agar plates and allowed to solidify.  
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2.6.2 Preparation of Agro-inoculation Suspension 

LB plates were streaked with Agrobacterium tumefasciens strain GV3101 carrying infectious 

clone for a specific CMV RNA (CMV RNA1, CMV RNA 2 or CMV RNA3). The bacteria 

were incubated at 28 ºC for two days to isolate colonies. A 9 ml aliquot of liquid LB medium 

was mixed with 100 µg/ml kanamycin and 3 ml each was then dispensed into three 50ml 

conical tubes. Each tube was inoculated with a single colony of the Agrobacterium 

tumefasciens carrying a specific CMV RNA. Liquid cultures were incubated overnight at 30 

ºC on a G24 Environmental mechanical shaker (New Brunswick Scientific, Edison, USA) set 

at 250 rpm.  Dilutions of 1:10 of the overnight cultures were made to measure optical density 

at 600nm (OD600). Appropriate volumes of each bacteria culture were then added to liquid 

LB medium containing kanamycin and incubated overnight at 30 ºC with shaking at 250 rpm. 

The optical densities of RNA1, RNA2 and RNA3 cultures were 1.83, 2.13 and 2.73 

respectively. A volume of 3.28 ml RNA1 culture, 2.82 RNA2 culture and 2.20ml RNA3 

culture were then pipetted into microfuge tubes and centrifuged at 12,000 g. The supernatants 

from all three cultures were discarded and the remaining bacteria pellets were pooled together 

in a 50 ml infiltration buffer made from 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) 

pH 5.5 and 10ml MgCl2.  

2.6.3 Agro-inoculation of Nicotiana benthamiana Seedlings 

Small nicks were made on the epidermal layer of the abaxial surface of N. benthamiana 

leaves. The A. tumefasciens suspension was, using a needleless syringe pressed against the 

nicks on the leaves, injected into the intracellular spaces, with the thumb providing counter-

pressure from the adaxial surface of the leaves (Schob et al., 1997). Agro-inoculated plants 

were then placed in a growth room to allow CMV infection to develop. Systemic CMV 

symptoms were visible 10-days post inoculation. CMV infection was confirmed 14-days post 

infiltration using a lateral flow serological test (Agristrip kit, Bioreba AG, Switzerland). 

 

2.6.4 Purification of CMV Virions  

Whole leaves and upper portions of CMV-infected N. benthamiana plants were blended with 

1.5 ml thioglycolic acid and 300 ml ice-cold buffer A (0.5 M sodium citrate, 5 mM disodium 

EDTA) and 300 ml of chloroform. The mixture was then centrifuged at 10,000 rpm for 15 

minutes at 4 ºC in an Avanti J-25 centrifuge (Beckman Coulter, Fullerton, CA, USA) fitted 

with JA-20 fixed angle rotor. The aqueous phase was collected by filtering through a layer of 
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chilled pre-wetted muslin cloth. The collected filtrate was added with 2.7g of PEG and 

centrifuged at 10,000 rpm (Beckman JA-20 rotor) for 10 minutes at 4 ºC. The supernatant 

was discarded and the pellets were re-suspended in buffer A at 4 ºC. The suspension was then 

centrifuged at 4 ºC for 10 minutes at 6,000 rpm (JA-20 rotor). The supernatant was collected 

and ultracentrifuged at 40,000 rpm for 1 hour 15 minutes at 4 ºC in a Beckman Ti70 rotor. 

The pellets were then re-suspended in 5 ml buffer B (5 mM sodium tetraborate pH 9.0, 0.5 

mM disodium EDTA, 2% (v/v) Triton-X 100) at 4 ºC on a mechanical shaker at high speed 

settings. The re-suspended solution of virions was then centrifuged at 6,000 rpm (JA-20 

rotor) for 10 minutes at 4 ºC in a JA 20 rotor. The supernatant was collected and ultra-

centrifuged at 40,000 rpm (Beckman Ti70 rotor) for 1 hr 15 mins at 4 ºC over a 5 ml cushion 

of buffer C (5 mM sodium tetraborate pH 9.0, 0.5 mM disodium EDTA) containing 10% 

(w/v) sucrose. The supernatant was discarded and the pellets re-suspended overnight at 4 ºC 

in buffer C containing 0.02% (w/v) sodium azide as a preservative. The concentration of the 

purified virions in mg/ml was then calculated by measuring the absorption at 260 nm and 

dividing the absorbance by the 1 mg/ml extinction coefficient (Lot and Kaper, 1976; 

Roossinck and White, 1998). 

 

2.7 Extraction of Total RNA from CMV-infected N. benthamiana leaves for Mechanical 

Inoculations 

A stock of N. benthamiana seedlings were mechanically inoculated with sap prepared from 

CMV-infected N. benthamiana plants. The sap inoculum was made by pulverizing 

systemically infected N. benthamiana plants in a mortar with a pestle and diluting to the 

required consistency with distilled water. Prior to the CMV inoculation, the N. benthamiana 

seedlings to be inoculated were first dusted with silicon carbide powder (Carborundum) 320 

grit (Alfa Aesar, Lancashire, UK) after which the freshly prepared sap inoculum was rubbed 

onto the Carborundum-dusted leaves. Excess sap and Carborundum on the inoculated leaves 

were washed off using water dispensed from a spray bottle. The inoculated plants were then 

covered with lids and returned to the growth room. Two to three weeks after inoculation 

systemically infected leaves were collected and stored at -80 ºC until total RNA extraction. 

Extraction of total RNA for mechanical inoculations followed similar protocol as described in 

section 2.9.1 but without DNAse treatment of the extracted total RNA. 

 



62 
 

2.8 Mechanical Inoculation of Plants with CMV Virions or RNA 

In all the pepper experiments, the inoculated organs were the cotyledons. Purified virions of 

CMV were diluted to the desired inoculum concentration with sterile water.  Both cotyledons 

of each pepper plant to be inoculated were dusted with Carborundum. With the aid of an 

inoculum-dipped Q-tip, several strokes were made across the adaxial surface of the 

cotyledons with a gentle counter pressure supplied by the index finger from the abaxial 

surface. After the inoculations, excess Carborundum was washed off with water and the 

plants were covered with transparent lids to enhance survival of the inoculated leaves. 

Inoculated plants were then returned to the growth room for periodic monitoring of symptom 

development.  

Arabidopsis plants were inoculated 2-weeks post pricking-out with total RNA extracted from 

Fny-CMV infected N. benthamiana. Arabidopsis plants to be inoculated were first dusted 

with Carborundum as previously described. A total of approximately 5 µl of the 500 ng/µl 

RNA inoculum was then pipetted onto the Arabidopsis leaves and with the aid of the index 

finger, the inoculum was rubbed onto the leaf. Excess Carborundum was washed off with 

water. The inoculated plants were covered with lids and returned to the growth room. 

 

2.9 General Nucleic Acid Manipulation 

 

2.9.1 Extraction of Total RNA  

Leaf tissues were pulverized in liquid nitrogen into a fine powder in pre-chilled mortars. 

Approximately 2 ml of TRIzol-like extraction buffer (38% v/v Tris-buffered phenol, 0.8M 

guanidine thiocyanate, 0.4M ammonium thiocyanate, 0.1M sodium acetate, pH 5.0, 5% (v/v) 

glycerol) was added to the ground sample, mixed thoroughly and then transferred into 1.5 ml 

microfuge tubes. The samples were spun at 13,200 rpm in a Z 400 K centrifuge (Hermle 

Labortechnique GmbH, Germany) for 10 minutes at a temperature of 4 ºC. A 1 ml volume of 

the supernatant was transferred into fresh 1.5 ml microfuge tubes with 200 µl chloroform-

isoamyl (24:1). The samples were then vortexed for approximately 5 seconds and placed on 

ice for a minimum of 10 minutes after which they were spun at 13,200 rpm (Z 400 K 

centrifuge) for 15 minutes. The upper aqueous phase was transferred into fresh tubes and 

added with equal volume of isopropanol. After approximately 10 seconds of vortexing, the 

samples were kept at -20 ºC for at least 1 hour to allow the precipitation of nucleic acid.  The 
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suspensions were centrifuged at 13,200 rpm (Z 400 K centrifuge) for 10 minutes to collect 

the nucleic acid pellets. The pellets were washed with 1 ml 70% (v/v) ethanol by vortexing 

and centrifugation at 13,000 rpm (Z 400 K centrifuge) for 5 minutes.  The pellets were re-

suspended in 750 µl sterile water and mixed with an equal volume of 4M LiCl and incubated 

at -20 ºC overnight. They were then centrifuged at 13,200 rpm (Z 400 K centrifuge) for 15 

minutes and the resulting pellets were re-suspended in 400 µl sterile water. Each of the re-

suspended pellets were mixed with 200 µl buffer phenol solution (pH 4.8) and 200 µl 

chloroform:isoamyl alcohol (24:1) and vortexed for approximately 15 seconds before being 

centrifuged at 13,200 rpm (Z 400 K centrifuge) for 10 minutes. Approximately, 360 µl 

volume of the supernatant of each sample was transferred into a clean 1.5 ml microfuge tube 

and mixed with 720 µl ethanol and 36 µl 3M sodium acetate (pH 5.3) and kept at -20 ºC for 

at least 1 hour for RNA precipitation.  The samples were then centrifuged at 13,200 rpm (Z 

400 K centrifuge) for 15 minutes to collect the RNA pellets. The RNA pellets were washed 

with 1 ml 70% ethanol and allowed to dry in a laminar flow hood. The RNA pellets were re-

suspended in 45 µl sterile water. 

 

2.9.2 DNAse Treatment of Plant Total RNA 

DNAse treatment was carried out using the TURBO DNA-free Kit (AMBION, Austin, TX, 

USA). The 45 µl re-suspended total RNA was mixed with 5 µl 10x TURBO DNA-free buffer 

and 1 µl TURBO DNAse to remove any remnant genomic DNA fragments in the extracted 

total RNA. The DNAse reaction was performed at 37 ºC for 30 minutes. In order to stop the 

activity of the DNAse, 5 µl TURBO DNAse inactivation reagent was added to the mixture 

and briefly vortexed.  The mixture was allowed to stand for 5 minutes at room temperature 

and afterward centrifuged at 13,000 rpm (Heraeus Biofuge pico centrifuge) for approximately 

2 minutes. A 45 µl volume of the supernatant of each sample was then transferred into a fresh 

1.5 ml microfuge tube. Samples of 1 µl each from the total RNA preparations were analysed 

spectrophotometrically at 260 nm using a Nanodrop 1000 (Thermo Fisher Scientific, Walton, 

MA, USA) against diethylpyrocarbonate (DEPC)-treated water. 

 

2.9.3 Complementary DNA synthesis  

Approximately 500 ng of DNAse-treated total RNA was mixed with 0.5 µl random sequence 

oligonucleotide primers (Thermo Fisher Scientific, Walton, MA, USA) and diluted with 
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sterile water to a volume of 5 µl in a 1.5 ml microfuge tube and incubated at 70 ºC for 5 

minutes and placed on ice for at least 10 minutes. The 5 µl mixture was mixed with 4 µl 

GoScript 5x reaction buffer, 3 µl MgCl2 and 1 µl full complement (deoxyribonucleotide 

triphosphate) dNTP mix, 1 µl RNAse-out enzyme and 1 µl GoScript reverse transcriptase 

(Promega, Southampton, UK). The mixture was made up to a volume of 20 µl with sterile 

water. The reverse transcription reaction was carried out in a thermocycler (Applied 

Biosystems SimpliAmp Thermal Cycler) for a single cycle of 5 minutes at 25 ºC; 60 minutes 

at 42 ºC and 15 minutes at 70 ºC. 

 

2.9.4 Non-quantitative Polymerase Chain Reactions 

PCR routinely consisted of 1 µl cDNA template, 5 µl Biomix Red buffer (Bioline), 0.2 µl 

each of the appropriate primers.  The reaction mixture was made up to 10 µl with sterile 

water. PCR was performed in a thermocycler (Applied Biosystems SimpliAmp Thermal 

Cycler). Each of the 30-40 cycles was as follows: denaturing of cDNA, 45 seconds at 94 ºC; 

primer annealing, 45 seconds at 55 ºC; primer extension, 30 seconds at 72 ºC.  There was an 

initial 3 minutes denaturing step at 94 ºC prior to the cycles and a final 72 ºC step for 1 

minute after the completion of all the required cycles.  

  

2.9.5 Quantitative PCRs 

Each cDNA was diluted 10-fold with sterile distilled water. Each 15 µl qRT-PCR reaction 

consisted of 7.5 µl SensiMix SYBR reaction buffer (Bioline), 2 µl template cDNA, 4.9 µl 

deionized water and 0.3 µl each of both forward and reverse primers. The reactions were 

assembled in a 96 well PCR plate (Bio-Rad, Hemel Hempstead, Herts, UK). The plates were 

sealed with sealing film (Bio-Rad) and pulse-centrifuged at low speed to collect reactions in 

the bottom of each well. Reactions were run in duplicates on a Bio-Rad C1000 thermal cycler 

connected to a CFX96 Real-Time PCR Detection System and a PC running CFX manager 

software (Bio-Rad). Initial denaturation was conducted at 95 ºC for 2 minutes followed by 44 

cycles of 20 seconds at 95 ºC, 30 seconds at 57 ºC and 20 seconds at 72 ºC. Fluorescence was 

recorded at the end of each cycle. 

The raw data in a .csv file format was exported from CFX manager to LinRegPCR software 

where the baselines, threshold cycle numbers and amplicon amplification efficiency were 

computed. Mean fold change expression was calculated by the 2-ΔΔCT method (Livak and 
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Schmittgen, 2001; Ramakers et al., 2003; Yuan et al., 2008). Pepper actin (LOC107840006) 

and Arabidopsis glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used as 

reference genes in their respective experiments. Both reference genes are thought to be stably 

expressed under most standard experimental conditions (Kozera and Rapacz, 2013). 

 

2.9.6 Agarose Gel Electrophoresis and Gel Photography 

Depending on the experiment, an aliquot of 4 – 8 µl of each PCR reaction was run on a 1.0% 

(w/v) agarose gel prepared with 1x TAE buffer [0.04 M Tris, 0.001 M EDTA, 0.1142 (v/v) 

glacial acetic acid)]. The gel was mixed with 1 µl/ml ethidium bromide, allowed to solidify 

and later submerged in TAE buffer in an MHU-1010 gel rig (Flowgen) and electrophoresed 

at 60V to 120V using Power Pac 3000 (Bio-Rad). Adjacent lanes were loaded with 

appropriate size DNA markers from Bioline.  The ethidium bromide labelled bands were 

visualized with a UV transilluminator and the images were captured with a thermal printer. 

 

2.9.7 Extraction of Amplified DNA Fragments from Agarose Gels 

Extraction of DNA fragments from agarose gel was performed using the QIAquick Gel 

Extraction Kit (Qiagen, Crawley, West Sussex, UK). With the aid of a UV transilluminator, 

the fragment of amplified DNA to be purified was excised from the TAE agarose gel using a 

scalpel blade and placed into a microfuge tube. Each gel was added with 3 parts buffer QC in 

relation to the weight of the excised gel in the microfuge. The excised gel was incubated at 50 

ºC in a water bath until dissolved. The weight of the gel in isopropanol was added to the 

dissolved gel, vortexed thoroughly and pipetted into a spin column already inserted into a 

collection tube. The column was centrifuged for 1 minute at 13,000 rpm (Heraeus Biofuge 

pico centrifuge) and the collected flow-through was discarded. The column was inserted back 

into the collection tube and 500 µl of buffer QG was added onto the membrane of the 

column. The column was centrifuged at 13,000 rpm for 1 minute to discard the flow-through. 

Approximately 750 µl volume of buffer PE was pipetted onto the column and allowed to 

stand for approximately 2 - 5 minutes after which the column was centrifuged at 13,000 rpm 

for a minute to wash the membrane-bound DNA in the column. The flow-through was 

discarded and the column was spun again to remove any residual wash buffer from the 

column. The column was then removed from the collection tube and transferred into a clean 

1.5 ml microfuge tube. Approximately, 50 µl buffer EB (10mM Tris.Cl, pH 8.5) was added 
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onto the membrane in the column and allowed to stand at room temperature for 

approximately 2-4 minutes. Afterwards, the column as centrifuged at 13,000 rpm (Heraeus 

Biofuge pico centrifuge) for 1 minute to elute the purified DNA into the microfuge tube. 

  

2.9.8 Purification of PCR Products 

Purification of PCR product was carried out using Monarch PCR and DNA Cleanup Kit 

(New England Biolabs, UK). A 5 µl PCR reaction to be cleaned up was pipetted into a clean 

1.5 ml microfuge tube and diluted with 3 parts TE buffer. The 20 µl diluted PCR reaction was 

then mixed with 40 µl DNA binding buffer and flipped gently. The sample was then loaded 

onto the matrix of a clean column inserted into a collection tube and centrifuged at 13,000 

rpm for 1 minute. After the centrifugation, the column was removed and the flow-through 

was discarded. The column was re-inserted into the collection tube and a 200 µl of DNA 

wash buffer was added onto the matrix of the column. The column was centrifuged again at 

13,000 rpm (Heraeus Biofuge pico centrifuge) for 1 minute and the flow-through was 

discarded. The DNA washing up step was repeated twice before the column was removed 

and inserted into a clean 1.5 ml microfuge tube. Approximately 6 - 8 µl of the DNA elution 

buffer was carefully pipetted onto the matrix of the column and allowed to stand at room 

temperature for a minimum of 1 minute. Afterwards, the column was centrifuged at 13,000 

rpm (Heraeus Biofuge pico centrifuge) at for 1 minute to collect the purified DNA products. 

The concentration of the purified DNA was checked with the aid of a Nanodrop 

spectrophotometer as previously described. 

   

2.9.9 DNA Sequencing 

Purified amplified DNA at a concentration of 1 ng/µl per 100 bp were sent to Source 

BioScience UK Ltd (Cambridge, UK) together with aliquot of the appropriate primers listed 

in Appendix I at a concentration of 3.2 pmol/µl for automated Sanger sequencing (Smith et 

al., 1986). The returned sequencing data were checked using the Basic Local Alignment 

Search Tool (BLAST) to confirm that the amplified DNA fragment was the gene of interest 

(Altschul et al., 1990). 
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2.10 Allele-Specific PCR Primer Design 

Allele-specific PCR primers which limit the amplification of one SNP DNA fragment over 

the alternative allele were designed using the WebSNAPER Allele-Specific PCR Primer 

design software tool (https://pga.mgh.harvard.edu/cgi-bin/snap3/websnaper3.cgi). After 

entering the DNA sequences of both the WT DNA fragment and the SNP mutant DNA 

fragment to be amplified, the software designs the primers by introducing artificial nucleotide 

mismatches in the 3’ region of the primer based on the specific nucleotide differences 

between the SNP and the WT DNA sequences such that only one allele anneals perfectly to 

the 3’-5’ primer thereby ensuring its efficient amplification over the alternative allele which 

only anneals partially to the 3’-5’ primer (Drenkard et al., 2000).  After 30 PCR cycles, both 

ago1.25 and ics1 SNP mutant plants can be distinguished from a WT plant based on the 

intensities of their band on a TAE agarose gel. 

 

2.11 Aphid Experiments 

 

2.11.1 Myzus persicae Stock 

Virus-free clones of Myzus persicae were maintained on Chinese cabbage plants which were 

individually contained in microperforated plastic bags (Associated Packaging Ltd, Tonbridge, 

Kent, UK) and maintained inside a bench top fabric insect cage (Insect Cage Net, 

Carmarthen, Dyfed, UK) at the plant growth facility near the Cambridge University Garden, 

under long day conditions. After approximately every 2-4 weeks aphids are transferred onto 

fresh Chinese cabbage plants.  

 

2.11.2 Aphid Mean Relative Growth Rate Assay  

A cohort of wingless adult aphids were transferred onto healthy Chinese cabbage plants a day 

prior to the aphid mean relative growth experiment to produce 1-day old nymphs on the day 

of the experiment. A single 1-day old nymph was weighed on a microbalance (Mettler 

Toledo MX5, Columbus, OH, USA) and placed on the Arabidopsis rosette which was then 

contained in a microperforated bag. Aphid infested plants were kept in a rectangular insect 

cage (Insect Cage Net, Carmarthen, Dyfed, UK) at 21 ºC under long day conditions with a 

16-hour photoperiod. At 6 days post-infestation, aphids were removed from the rosette and 

https://pga.mgh.harvard.edu/cgi-bin/snap3/websnaper3.cgi
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weighed again to record the weight gained by the aphid. The relative growth rate of each 

aphid is then calculated using the following equation; 

 

MRGR =  logeW final-logeW initial 

                             Time (t) 

Where t= time in days between the initial and the final aphid measurements of the aphid fresh 

weight (W) (Leather and Dixon, 1984).  

 

2.11.3 Aphid Colony Size Assay 

After taking the 6th day aphid weight readings the aphids were placed back on their 

respective plants and allowed to remain for an additional 6 days to reproduce. At the end of 

the 12th day, the nymphs produced by each founding aphid were counted.  

 

2.11.4 Aphid-induced loss of Plant Biomass Assay 

One day old aphid nymphs were obtained as previously described and transferred onto fresh 

Chinese cabbage stock plant for 6 days. On the 6th day, a group of four 6-day old aphids were 

transferred from the Chinese cabbage plant onto each Arabidopsis rosette. The Arabidopsis 

plants were contained in a micro-perforated bag and kept under long day conditions for a 

period of 12 days for the aphids to produce colony. Un-infested plants were also included for 

each treatment where the plants undergo the same procedures but without aphid infestation. 

On the 12th day, the aphids were brushed off the Arabidopsis plants and the above-ground 

tissues of each plant was collected, put in a paper bag, labelled and then placed in an oven set 

at 55 ºC for a minimum of 4 days to dry. The dry weights of each of the un-infested and aphid 

infested plants were then recorded in grams using an A and D balance (A and D Instruments 

Limited, Abingdon, UK). The means of each treatment were then calculated for comparison 

and also for calculation of per cent loss in biomass due to aphid infestation. Per cent losses in 

plant biomass as a result of the aphid infestation were calculated as follows: 

 

 



69 
 

 

 

Loss of biomass (%) =    Average weight of un-infested plants – Average weight of infested plants      x 100 

                                                                           Average weight of un-infested plants 

 

 

2.12 Statistical Analysis 

All statistical analyses were performed using R version 3.4.0 (The R Foundation for 

Statistical Computing, Vienna, Austria). Significant differences between treatment means 

were tested using one-way Analysis of Variance (ANOVA). Tukey HSD test was then 

performed on datasets whose F-ratio associated probability values (p-values) were lesser than 

0.05. Error bars on bar plots represent standard error of the treatment mean (SEM). Results 

from all the statistical tests and the R-codes used for the analysis are presented in appendices 

II-V. 
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Chapter 3 

4-OH-ICN does not play significant role in the heightened 

resistance to aphids observed in ago1.25 mutant plants 

________________________________________________________ 

 

Introduction 

3.1 Background to the study 

Previous experiments showed that Arabidopsis ago1.25 mutant responds to aphid infestation 

with heightened defence (Kettles et al., 2013; Westwood et al., 2013). Aphids reared on 

ago1.25 mutant plants show reduced growth rate and colony size. Moreover, transferring 

aphids that have once fed on ago1.25 mutant plants for a minimum of three days onto healthy 

WT plants does not ensue recovery of normal growth of the transferred aphids. It was 

therefore hypothesized that aphids on ago1.25 mutant plants may be exposed to toxic 

metabolite(s) that permanently harms the physiology of the aphids (Westwood et al., 2013). 

The focus of this research therefore was to test whether the newly discovered Arabidopsis 

cyanogenic metabolite 4-OH-ICN plays a role in the heightened defence to aphids on ago1.25 

hypomorphic mutant plants. 

 

Objective 

The objective of these experiments was to assess the potential role of 4-OH-ICN in the 

heightened defence to aphids in Arabidopsis ago1.25 mutant plants.  ago1/cyp82C2 and 

fox1/ago1 double mutant plants were generated to assess aphid performance (aphid growth 

rate and colony size) on these double mutants. 
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3.3 Materials and Methods  

 

3.3.1 Source of 4-OH-ICN Biosynthetic Gene Mutant Plants 

Seeds for all four 4-OH-ICN biosynthetic pathway mutant lines were obtained from the 

Nottingham Arabidopsis Stock Centre. Further details on the specific mutant plants can be 

found in Section 2.2.2. 

 

3.3.2 Designing of Primers for Genotyping 4-OH-ICN Biosynthetic Pathway Mutant 

Plants 

Primers were designed using the NCBI Primer Blast primer design tool 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/).  These primers amplified the plant’s 

DNA flanking the T-DNA insertion. Figure 3.1 shows the proximate locations of the T-DNA 

insertions in each of the four 4-OH-ICN biosynthetic genes.   

 

Figure 3.1: Proximate locations of T-DNA insertions in each of the four 4-OH-ICN 

biosynthetic genes 

 

At least two different sets of primers were designed for each mutant plant. Primers that were 

used for RT-PCRs (Figure 3.1, red arrows) were designed to amplify a smaller DNA 

fragment compared to the primers designed for the genomic DNA based PCRs (Figure 3.1 

black arrows). A T-DNA specific primer was also obtained to amplify the left border region 

of the T-DNA insertion. 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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The initial rounds of PCR for genotyping the plants generated from seeds obtained from the 

NASC were based on extracted genomic DNA from each of the sampled plants. A PCR for a 

selected plant included both the plant’s gene-specific forward and reverse primers and the T-

DNA-specific left border primer. In this way heterozygous mutant plants displayed two PCR 

product bands on an agarose gel; both the amplified WT gene fragment and the T-DNA 

fragment (Figure 3.2A). Homozygous mutant plants and recombinant WT plants showed a 

single band representing the amplified T-DNA fragment or the amplified WT gene fragment 

respectively. The absence of the WT gene in the homozygous mutant plants were again 

confirmed in a PCR that used only the WT gene primers (Figure 3.2B). 

 

 

 

 

 

 

 

 

 

Figure 3.2:  Expected bands for homozygous mutants, heterozygous mutants and WT 

transformants when (A) 3 primers or (B) 2 primers are used in a PCR reaction. 

 

3.3.3 Generation of ago1/cyp82C2 and fox1/ago1 Double Mutant Plants 

Detailed protocols for the ago1 x cyp82C2 cross and fox1 x ago1 cross are outlined in chapter 

2. The resulting F1 seeds were plated on MS agar without the addition of sulfadiazine. The 

seedlings were later pricked out into compost. At the onset of bolting each of the F1 plants 

were contained in an Aracon tube and allowed to flower, self-pollinate and form siliques in 

the Aracon tubes.  

Dried F2 seeds were later collected and plated on a MS agar with sulfadiazine (Figure 3.3). 

Mutations in the AGO1 gene and the specific 4-OH-ICN biosynthetic gene in the identified 
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double mutants were further confirmed by PCR and sequencing. Figure 3.4 gives a pictorial 

summary of how the double mutants were generated. 

 

 

 

 

 

Figure 3.3 F2 Seedling from ago1/cyp82C2 cross growing on an MS-agar containing 

sulfadiazine. The segregants without the T-DNA insertion bleached out and died (light blue 

arrows). The ago1/cyp82C2 double mutant plants were among the ago1-looking segregants 

that survived the sulfadiazine treatment (green arrows). 
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Figure: 3.4 Steps involved in the generation of the ago1/cyp82C2 and fox1/ago1 double 

mutant plants. 
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3.4 Results 

 

3.4.1 Identification of 4-OH-ICN Pathway Homozygous Mutants  

Segregating cyp82C2, fox1, ggp1 and cyp71A12 T-DNA insertional mutant seeds were 

germinated to generate plant tissues for genomic DNA extraction.  Two sets of PCRs were 

performed on the extracted genomic DNA from each plant. First a PCR that included a 

primer to amplify the T-DNA together with primers that amplified the specified plant gene 

were performed (Figure 3.5A). Later, an additional PCR was performed using only primers 

specific to the gene of interest (Figure 3.5B). After the sets of PCRs, the majority of the 

genotyped plants were homozygous for the T-DNA insertion (such as plants 2, 5, 6, 10 and 

11 in Figure 3.5). Table 3.1 lists the genotypes of the various mutants that were analysed. 

 

Figure 3.5: Amplified genomic DNA from segregating fox1 mutant plants when (A) a T-

DNA specific primer is used together with plants’ gene specific primers. (B) when only the 

plant’s gene specific primers are used in a reaction. (Product size for Fox1 = 1,509 bp). 
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Table 3.1: Number of homozygous mutant plants identified for each of the 4-OH-ICN 

pathway genes. 

Gene 

Mutated 

Homozygous 

Mutants 

Heterozygous 

Mutants 

WT 

Recombinant 

Total Number of 

Plants Tested 

CYP82C2 65 3 6 79 

FOX1 
15 7 11 34 

GGP1 
35 5 11 52 

CYP71A12 
52 2 7 63 

Gene-specific and T-DNA specific primers were designed for identifying the genotypes of 

the plants generated from the seeds obtained from NASC. 

To test the nature of the identified 4-OH-ICN homozygous mutant plants, RT-PCR were 

performed using cDNA synthesized from total RNA extracted from a sample of plants from 

each of the four mutant plants. There were no expression products for both fox1 and cyp82C2 

mutant plants, however, RT-PCR products were observed for cyp71A12 and ggp1 mutant 

plants (Figure3.6). The RT-PCR products from the ggp1 and the cyp71A12 mutant plants 

were purified and sequenced. The sequenced products of ggp1 and cyp71A12 which 

corresponded to the nucleotides flanking the T-DNA insertion in each of the two mutants 

were identical to their WT gene copies. 
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Figure 3.6: Constitutive expression of 4-OH-ICN biosynthetic genes in Arabidopsis. Both 

Fox1 and Cyp82C2 genes are not constitutively expressed. Cyp71A12 and GGP1 are 

constitutively expressed. Both of the identified cyp71A12 and ggp1 mutant plants with 

homozygous T-DNA insertions were not knock-out mutants (RT-PCR product sizes; GGP1 

194 bp; CYP71A12 186 bp).        

 

To verify whether the cyp82C2 and fox1 mutant plants were knock-out mutants or their 

expression is inducible, 21-day old mutant plants were infiltrated with 2.0 x 10^8 cfu/ml 

Pseudomonas syringae DC3000 avrB which is known to induce expression of both Fox1 and 

Cyp82C2 (Rajniak et al., 2015). Whilst there was no expression of cyp82C2 in the P. 

syringae infiltrated cyp82C2 mutant plants (Figure 3.7), Fox1 expression was observed in 

both the mock-inoculated (MgCl2-infiltrated) and P. syringae infiltrated fox1 mutant plants 

(Figure 3.7).   

 

 

 

 

 

 

Figure 3.7: P. syringae induced expression of 4-OH-ICN biosynthetic genes. There is no 

expression of Cyp82C2 in the cyp82C2 mutant. Mock-inoculated plants were infiltrated with 

10 mM MgCl2 (infiltration buffer). Samples from plants infiltrated with P. syringae are 

labelled as Pst. The WT controls show amplified CYP82C2 product. A reconstituted WT 

GAPDH 

Gene Product  

4-OH-ICN 

Biosynthetic Gene 
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GABI Kat plant (Trans WT) was included in the experiments. RT-PCR Product sizes: Fox1 

346 bp; GGP1 194bp; CYP71A12 186 bp; CYP82C2 393bp.  

 

The cyp82C2 knockout mutant (Figure 3.8A) was the primary 4-OH-ICN biosynthetic 

pathway mutant used for the aphid experiments and also for the generation of the 

ago1/cyp82C2 double mutant.  The Cyp82C2 enzyme is the most important of all the 

enzymes that catalyze the biosynthesis of 4-OH-ICN in Arabidopsis. In the cyp82C2 mutant 

plant there is no production of 4-0H-ICN.  Interestingly, in the cyp82C2 mutant, cyp82C3, a 

non-constitutively expressed cytochrome P450 encoding gene which is located next to 

Cyp82C2 on Arabidopsis chromosome four becomes constitutive.  The fox1 mutant (Figure 

3.8B) was also included in the generation of fox1/ago1 double mutants and the aphid 

experiments as an additional mutant. The cyp82C2 mutant plants and fox1 mutant plants are 

not phenotypically distinct from a WT plant (Figure 3.8C). 

 

    

cyp82C2 mutant                                       fox1 mutant                                 Col-0 WT 

 

Figure 3.8: cyp82C2 and fox1 mutant plants appear identical in developmental phenotype to a 

WT plant (Scale bar = 1cm). 

 

 

 

A B C 
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3.4.2 Cyp82C2 is induced by aphid infestation. 

The first step in assessing whether 4-0H-ICN played a role in aphid defence was to check if 

aphid infestation induces Cyp82C2 expression. Aphids were placed on plants with WT 

Cyp82C2 gene to monitor the expression of Cyp82C2. Aphid infestation induced Cyp82C2 

expression (Figure 3.9). There was no Cyp82C2 expression in non-infested plants nor aphid 

infested cyp82C2 mutant plants. 

 

 

Figure 3.9: Induction of CYP82C2 expression by aphids. In both non-infested plants and 

aphid infested cyp82C2 mutant plants there is no expression of CYP82C2 gene. (Cyp82C2 

product size: 393bp).  

 

3.4.3 Mutation in Cyp82C2 or Fox1 does not affect aphid growth rate in Arabidopsis 

Aphid growth rate experiments were performed on both cyp82C2 mutant and fox1 mutant 

plants. However, there was no significant differences in the growth rates of aphids placed on 

cyp82C2 or fox1 mutant plants in comparison to a WT plant (Figure 3.10). It was not clear 

whether the constitutive expression of Cyp82C3 in cyp82C2 mutant plants which is also 

aphid inducible was compensating for the loss of the Cyp82C2 gene.   

GAPDH 

CYP82C2 
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Figure 3.10: Mean relative growth rates (MRGR) of aphids on 4-0H-ICN biosynthetic 

pathway mutant plants. Mutation in either Fox1 or Cyp82C2 has no significant effect on 

aphid MRGR at p < 0.05 level. (ANOVA p-value = 0.112) Sample size (n): WT (11); 

cyp82C2 mutant (12); fox1 mutant (14).  Error bars represent standard error of the mean. 

Treatment means (bar plots) denoted by the same letter are not significantly different from 

each other at p < 0.05. 

 

3.4.4 Mutation in Cyp82C2 or Fox1 genes in the ago1.25 mutant background does not 

restore aphid susceptibility to WT levels 

Aphid growth rates and colony sizes were assessed on ago1/cyp82C2 and fox1/ago1 double 

mutant plants. However, aphid performance on the ago1/cyp82C2 (Figure 3.11A) and the 

fox1/ ago1 (Figure 3.11B) double mutant plants did not differ significantly from aphid 

performance on the ago1.25 mutant plants. Therefore, 4-OH-ICN does not play a significant 

role in aphid defence in Arabidopsis since mutation in either Cyp82C2 or Fox1 does not 

restore susceptibility to aphid infestation in the ago1.25 mutant plants. On the contrary, aphid 

colony sizes tend to be slightly enhanced in ago1/cyp82C2 and fox1/ago1 double mutant 

plants although the differences were not statistically significant at p < 0.05 level (Figure 

3.12).  
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Figure 3.11: Mean relative growth rate (MRGR) of aphids on; A) ago1/cyp82C2 double 

mutant plants. Sample sizes (n): WT (14); cyp82C2 (14); ago1.25 (12); ago1/cyp82C2 (13) 

(ANOVA: 4.53 x 10 ^-12) and B) MRGR of aphids on fox1/ago1 double mutant plants. 

Sample size (n): WT (12); fox1 (13); ago1.25 (14); fox1/ago1 (7) (ANOVA: = 1.95 x 10^-

14). Mutations in 4-OH-ICN biosynthetic genes Cyp82C2 or Fox1 in ago1.25 mutant plants 

do not affect aphid growth rates. Error bars represent standard error of the mean. Treatment 

means (bar plots) denoted by the same letter are not significantly different from each other at 

p < 0.05. 

 

 

 

 

 

A B 
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Figure 3.12: Aphid colony size on; A) ago1/cyp82C2 and B) fox1/ago1 double mutant plants. 

Aphids on ago1/cyp82C2 or fox1/ago1 double mutant plants do not have significantly 

different colony sizes from aphids on ago1.25 mutant plants at p < 0.05 level. Error bars 

represent standard error of the mean. Treatment means (bar plots) denoted by the same letter 

are not significantly different from each other at p < 0.05. 
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3.4.5 Mutation in Cyp82C3 does not affect aphid performance  

Due to the constitutive expression of cyp82C3 in cyp82C2 mutant plants (Figure 3.13), the 

induction of Cyp82C3 expression by aphid infestation and the realization that mutation in the 

Cyp82C2 gene does not significantly affect aphid growth, cyp82C3 mutant was obtained for 

aphid experiments to verify if Cyp82C3 contributed to aphid defence in Arabidopsis. 

However, mutation in the Cyp82C3 gene did not affect aphid growth rate. Growth rate of 

aphids on the cyp82C3 mutant plants were similar to aphid growth rates on cyp82C2 mutant 

plants and WT plants (Figure 3.14). 

 

 

Figure 3.13. Constitutive expression of Cyp82C3 in cyp82C2 mutant plants. Infestation by 

aphids induces additional Cyp82C3 expression in the cyp82C2 mutant plants. (Cyp82C3 

product size: 305 bp). 
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Figure 3.14: Mean relative growth rate (MRGR) of Aphids on cyp82C3 mutant plants. 

MRGR of aphids on cyp82C3 mutant plants is comparable to MRGR of aphids on a WT plant 

or a cyp82C2 mutant plant.  (ANOVA p value = 0.268. Sample size (n); WT (13); cyp82C2 

(10); cyp82C3 (14)). Error bars represent standard error of the mean. Treatment means (bar 

plots) denoted by the same letter are not significantly different from each other at p < 0.05. 
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3.5 Discussion 

The ability to produce cyanogenic secondary metabolites is ancient and widespread among 

plant species (Chapter 1, subsection 1.7.1). Many species of plants including ferns produce 

and store cyanogenic glucosides in their vacuoles separate from the glucosidases and nitrile 

lyases required for their activation (Zagrobelny et al., 2004). The release of cyanide only 

occurs after significant tissue disruption that brings the two separated components together. 

Thus, cyanogenic glucosides may not be particularly effective against insect pests such as 

aphids which cause minimal tissue damage upon feeding and also feed almost exclusively 

from the phloem tissues (Zagrobelny et al., 2004; Pentzold et al., 2014). 

Prior to 2015, Arabidopsis was not known to be cyanogenic therefore the biosynthetic 

pathway of the cyanogenic glucoside dhurrin from Sorghum bicolor was transgenically 

transferred from sorghum into Arabidopsis and was found to be particularly effective against 

the crucifer-specialist flea beetle Phyllotreta nemorum (Tatersall et al., 2001). When 

Arabidopsis was later found to be naturally cyanogenic and it was realised that 4-OH-ICN 

produced by Arabidopsis does not require activation by glucosidases I sought to investigate 

its effectiveness against the generalist Myzus persicae aphids particularly in ago1.25 

background. 

However, knockout of genes required for 4-OH-ICN biosynthesis did not significantly affect 

aphid performance in the 4-OH-ICN biosynthetic mutant itself or in the ago1.25 mutant plant 

background. Aphid growth rate and reproduction on the 4-OH-ICN biosynthetic pathway 

mutants were comparable to that of WT plants. On the contrary, aphids tended to reproduce 

less (although not to a statistically significant extent) on the ago1/cyp82C2 and the fox1/ago1 

double mutant plants. Since aphids tend to feed much longer on ago1.25 mutant plants but 

are not able to gain weight or reproduce as much as aphids on WT plants, it is possible that 4-

OH-ICN is potentially serving as a phagostimulant to encourage feeding by aphids. In this 

case the absence of the 4-OH-ICN metabolite will limit phloem ingestion resulting in an even 

less growth rate and colony size on the ago1/cyp82C2 and fox1/ago1 double mutant plants. 

The role of cyanogenic metabolites serving as feeding stimulants especially among specialist 

insect herbivores is common. For instance, the larva of the southern armyworm Spoloptera 

eridania feed and grow better if there is cyanogenic compound in its diet (Benett and 

Wallsgrove, 1994). Other insect herbivores are also able to metabolise cyanogenic 

compounds into useful nutrients for their growth and development (Pentzold et al., 2014). 
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Also, the constitutive expression of Cyp82C3 in the absence of the 4-OH-ICN biosynthetic 

gene Cyp82C2 may potentially compensate for the loss of ability of the cyp82C2 mutant plant 

to synthesize 4-OH-ICN. Cyp82C3 which is physically located next to Cyp82C2 on 

Arabidopsis chromosome four is co-expressed with the R-gene Resistance methylated gene 1 

(RMG1). RMG1 encodes a nucleotide-binding leucine rich repeat (NB-LRR) protein with a 

Toll/interleukin-1 receptor domain involved in antibacterial defence in Arabidopsis (Yu et al., 

2013). Although the level of RMG1 expression increases after aphid infestation it is not 

known if it plays a possible role in aphid defence in the cyp82C2 mutant plant. 

 

3.6 Conclusions 

The Arabidopsis cyanogenic metabolite 4-OH-ICN does not play a significant role in the 

heightened defence against aphids previously observed in Arabidopsis ago1.25 mutant plants 

(Kettles et al., 2013; Westwood et al., 2013) and confirmed here. The constitutive expression 

of cyp82C3 and also the increased expression of the Cyp82C3 co-expressed RMG1 transcripts 

upon aphid infestation may possibly compensate for the absence of the 4-OH-ICN in the 

cyp82C2 mutant plant and the ago1/cyp82C2 double mutant plants. 
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Chapter 4 
 

Mutation of the ICS1 gene in ago1.25 mutant plants restores 

aphid susceptibility and decreases the extent of stunting in 

response to aphid infestation. 
________________________________________________________________ 

 

4.1 Introduction 

SA accumulation and signalling are required for both the establishment of SAR and 

maintenance of basal resistance (Carr et al., 2010). As a result, plant lines defective in SA 

biosynthesis or signalling such as eds1, eds5, ics1 or phytoalexin deficient-4 (pad4) mutants 

are more susceptible to pathogen infection (Kunkel and Brooks, 2002).  On the contrary, 

accumulation of SA upon insect infestation is mostly associated with enhanced susceptibility 

of the host to the infestation. Jasmonic acid and ethylene contribute more to defence against 

insect herbivory than SA (McConn et al., 1997; Onkokesung et al., 2010; Erb et al., 2012). 

However, there are instances where accumulation of SA is required for defence response 

against insect herbivory. For instance, the tomato Mi-1 R gene that confers resistance to root 

knot nematodes and potato aphids requires the accumulation of SA to function. Survival rate 

of aphids on tomato plants transgenically expressing the nahG SA degrading bacterial gene is 

10 % higher than aphids on WT tomato plants (Li et al., 2006). The increase in the survival of 

potato aphids on tomato plants that do not accumulate SA indicates that SA accumulation is 

required for potato aphid defence in tomato plants (Li et al., 2006). Similarly, SA is also 

required for resistance against Bermisia tabaci (whitefly) oviposition in tomato plants (Ueda 

et al., 2019). Whiteflies prefer laying eggs on healthy tomato plants in comparison to Tomato 

mosaic virus-infected tomato plants. However, whiteflies do not make distinction between a 

healthy tomato plant and a ToMV-infected tomato plant expressing nahG. In addition, 

whiteflies prefer to lay eggs on a healthy nahG tomato plant in comparison to a healthy WT 

tomato plant. These observations indicate that in tomato, resistance against whiteflies is also 

dependent on SA (Ueda et al., 2019). 

The SA biosynthetic gene ICS1 is upregulated upon aphid infestation (Morkunas et al., 2011). 

Therefore, it was worthy to investigate whether SA accumulation played a role in the 

heightened defence observed in ago1.25 mutant plants. 



88 
 

4.2 Materials and Methods 

 

Genotyping the ics1, ago1.25 and ago1.46 Single Nucleotide polymorphisms 

Single nucleotide polymorphisms (SNP) constitute the largest set of naturally occurring gene 

mutations in the Arabidopsis genome. Since alleles of these mutations only differ in a single 

nucleotide from each other and do not have antibiotic selection markers, distinguishing 

between the alleles of an SNP can be challenging. However, there are a couple of simple but 

effective techniques that can accurately differentiate between the alleles of an SNP within a 

population. Among these are cleaved amplified polymorphism (CAPs), derived CAPs 

(dCAPs) and allele-specific (AS) PCR (Kwok, 2001). The first two methods rely on the 

presence of different restriction site(s) at the region of the SNP. After the amplification of the 

SNP alleles, the PCR products are digested with a restriction enzyme that is capable of 

cleaving one allele but not the other (Figure 4.1). The identities of the alleles are then 

determined through gel electrophoresis (Drenkard et al., 2000; Smith et al., 2009). The 

ago1.46 mutant was identified using CAPs primers and digestion of NheI enzyme restriction 

site present in the mutant DNA sequence.   

 

 

Figure 4.1: Principle of CAPs-based SNP genotyping. Differences in restriction sites at the 

region of the SNP help distinguish between the different alleles. 

 

For SNP alleles with no or similar restriction sites at their region of the SNP, CAPs-based 

genotyping is not ideal. AS PCR, however, can effectively distinguish between alleles of an 

SNP irrespective of the presence of restriction sites using basic PCR procedures. This method 

is based on the principle that primer-template duplexes with a 3’ terminal mismatch amplifies 

slowly compared with the amplification of a perfectly matched primer-template duplex.  
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Introduction of a 3’ terminal mismatch in the forward primer expressively destabilizes the 

primer-template complex and significantly affect PCR amplification efficiency (Ugonzzoli 

and Wallace, 1991; Gaudet et al., 2009). Figure 4.2 shows the principle behind AS-PCR. 

 

  

 

Figure 4.2: Principle of allele-specific PCR. The introduction of mismatches in the forward 

primer ensures that the primer is allele-specific and therefore the preferential amplification of 

the primer-specific allele. 

 

The WebSnaper AS PCR primer design tool developed by researchers at Harvard University 

(https://pga.mgh.harvard.edu/cgi-bin/snap3/websnaper3.cgi) was used in generating allele-

specific primers for the ics1 and the ago1.25 mutations. Aside from the 3’ terminal nucleotide 

mismatches, the software introduces an additional mismatch within the four nucleotides 

closest to the 3’ termini. The position of the additional nucleotide mismatch is determined 

based on incorporated empirical data in the WebSnapper software that assesses the effect of a 

second nucleotide mismatch on the amplification of the alleles and their PCR efficiency. The 

programme then generates a set of 32 possible allele specific primers together with a common 

reverse primer that is specific to both alleles of the SNP. The additional nucleotide mismatch 

in the 3’ region of the primer significantly decreases the amplification of the primer non-

specific allele with little effect on the amplification efficiency of the primer specific allele. 

Taq Polymerase 

https://pga.mgh.harvard.edu/cgi-bin/snap3/websnaper3.cgi
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Therefore, with the appropriate PCR cycles both alleles can be distinguished on an agarose 

gel based on the intensities of the bands (Figure 4.3) (Drenkard et al., 2000).   

 

 

Figure 4.3: Diagrammatic presentation of results from Allele-Specific PCR Analysis. The 

alleles of an SNP can be distinguished on an ethidium bromide stained agarose gel based on 

the intensity of the bands due to differences in amplification efficiencies of the SNP alleles.  

 

Primers designed using the WebSnaper programme were used in genotyping ics1 and 

ago1.25 mutations from the WT sequences. These primers which are listed in the Appendix I 

were also used in genotyping the F2 population of ago1/ics1 double mutant plants in addition 

to sequencing of products amplified by different set of normal primers. 
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4.3 Results 

 

4.3.1 Decrease in biomass due to aphid infestation is more severe in ago1.25 mutant 

plants than in ics1 mutant plants 

Despite the poor performance of aphids on ago1.25 mutant plants (Kettles et al., 2013; 

Westwood et al., 2013), aphid infestation of the ago1.25 mutant still results in severe stunting 

of the plants (Figure 4.4). A number of the ago1.25 mutant plants also develop accelerated 

senescence of their older leaves. This aphid-induced loss of biomass in ago1.25 mutant plants 

is more severe than those seen in ics1 mutant plants, which have a mutation in the salicylic 

acid biosynthetic gene ICS1 (Chapter 1, subsection 1.6.1). However, aphid growth rates and 

colony sizes on ics1 mutant plants are comparable to that of a WT plant (Figure 4.16). 

Therefore, the emphasis of these experiments focused on aphid-induced stunting.  

Interestingly, the large colony size of aphids on the ics1 mutant plant does not result in the 

extent of stunting observed in aphid infested ago1.25 mutant plants which rather has smaller 

aphid colony sizes (Figure 4.5, Figure 4.16 and Figure 4.17). This observation prompted the 

idea that accumulation of SA upon aphid infestation could play a role in the greater decrease 

in growth in the ago1.25 mutant plants. 

 

4.3.2.1 Identification of the ago1/ics1 double mutant plant 

Since both parents used in the generation of the ago1/ics1 double mutant plants were SNP 

mutants without any antibiotic resistance markers, identification of the double mutant was 

based on phenotypic appearances, allele-specific PCRs and sequencing of PCR products from 

the progeny to confirm the mutation in the ICS1 and Ago1 genes. After the germination of the 

F2 seeds from the ago1.25 x ics1 cross, it was realized that at least 6 of the segregants had 

novel phenotypes different from the phenotypes of their parents or a WT plant. They were 

larger in size and were more vigorous in growth (Figure 4.6). These F2 segregants with novel 

phenotypes were pricked out and grown under long day conditions.  
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Figure 4.4: Aphid infestation of ago1.25 mutant plant results in severe stunting in comparison 

to an aphid-infested ics1 mutant plant or WT plant. Photos of the aphid non-infested ago1.25 

mutant plant, ics1 mutant plant and WT plant are intended for comparison with their aphid-

infested counterparts (Scale bar = 1cm). 

Aphid-infested ago1.25 mutant plant Mock ago1.25 mutant plant 

Aphid-infested ics1 mutant plant Mock ics1 mutant plant 

Aphid-infested WT plant Mock WT plant 
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Figure 4.5: Aphid infestation-induced stunting is less severe in ics1 mutant plants than in WT 

or ago1.25 mutant plants. Mock plants were contained in transparent perforated plastic bags 

similar to the aphid infested plants except the addition of aphids. Error bars represent 

standard error of the mean. 
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Figure 4.6: A selection of the ago1 x ics1 F2 progeny with novel phenotypes (A, B and C) 

including one ago1-like progeny (D) which was later confirmed to be an ago1 segregant. 

 

 

 

 

  

A B 

C D 
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Samples taken from four of these segregants for PCR and sequencing showed that they had a 

mutation in their Ago1 and ICS1 genes. However, a closer look at the sequencing 

chromatograms showed minor background peaks representing the WT base (G instead of A 

in terms of the ago1 mutation or C instead of T in terms of the ics1 mutation) in each of the 

three mutants (Figure 4.7). Seeds from one of the F2 ago1/ics1 plants were sown to generate 

an F3 population. The majority of the F3 population had similar phenotype as their F2 parent 

however there were few of the F3 plants that had varying degrees of ago1-like phenotypes.  

Samples from the F3 population were analysed for mutation in their Ago1 and ICS1 genes. 

Three of the sampled F3 ago1/ics1 mutant plants were identified as pure ago1 mutants 

without any traces of the WT base on their chromatograms (Figure 4.8). However, all these 3 

pure ago1 mutants had varying levels of the WT ICS1 base appearing beneath the 

chromatograms of the point mutation (Figure 4.9). Progeny from ago1/ics1 plants AS17 and 

AS20 (Figure 4.10) were primarily used for the aphid experiments (Section 4.3.4). 

 

4.3.2.2 The presence of varying amounts of the WT bases in the ago1/ics1 double mutant 

plants are unique to the ago1 and ics1 double mutation. 

An interesting phenomenon observed among the ago1/ics1 double mutant plants were the 

consistent presence of varying traces of the WT nucleotides in the double mutant plants 

(Figure 4.11 A). These observations were not seen among the fox1/ago1(Figure 4.11B) and 

ago1/cyp82C2 double mutant plants which had similar phenotypes as their ago1.25 parents. 

A cross involving an Fny-CMV 2b transgenic plant and an ago1 mutant plant also did not 

result in the reappearance of the WT AGO1 base in the 2b/ago1 cross (Figure 4.11C). 

Progeny of the ago1/ics1 double mutant plants showing trace amount of the WT bases also 

exhibited similar phenomenon (Figure 4.12). The presence of the WT base in the ago1/ics1 

double mutant plants also occurs in relation to the ics1 mutation. Figure 4.12 shows the 

aligned ICS1 DNA sequences of individual F4 plants generated from selfing an F3 AS17 

ago1/ics1 double mutant plant. The F4 plants 8, 9 and 10 had WT-like phenotypes like their 

AS17 parent whilst plants 3 and 6 had ago1-like phenotypes despite all five plants having 

similar DNA sequences around the region of the ics1 mutation. All five plants were ics1 

mutants (TAA) with traces of the WT ICS1 base in their genome similar to the ics1 mutation 

of their F3 AS17 ago1/ics1 parent (Figure 4.9).  
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Figure 4.7: Aligned chromatogram data and chromatograms from sequenced AGO1 genes 

from a selection of the ago1 x ics1 F2 progeny with novel phenotypes. One F2 segregant with 

an ago1-like phenotype was also included in the experiment (G substituted to A in ago1 

mutant). 

 

GGT = Glycine/ Ago1 WT codon 

AGT = Serine/ago1 mutant codon 
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Figure 4.8: Aligned chromatograms from sequenced AGO1 gene from a selection of the ago1 

x ics1 F3 progeny. Plants AS20, AS17 and AS14 were purely ago1 mutant plants. Plants 

AS16, AS19 and AS15 are heterozygous for the Ago1 mutation (G substituted to A in ago1 

mutant). 

 

 

 

 

 

 

 

 

 

 



98 
 

 

 

 

 

 

 

Figure 4.9: Aligned chromatogram data and chromatograms from sequenced ICS1 gene from 

a selection of the ago1 x ics1 F3 progeny. Although the sequencing base-caller assign AS17 

ICS1 sequence as a mutant but on the chromatograms, there was the re-emergence of the WT 

base beneath the mutation chromatogram peak (C substituted to T in the ics1 mutant). 

 

 

 

 

 

 

 

 

 

CAA = Glutamine/ WT ICS1 codon 

TAA =   Stop codon/ ics1 mutant codon 
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Figure 4.10: Phenotypes of ago1/ics1 F3 plants in comparison with a WT and an ago1.25 

mutant plant. A) AS14, B) AS20 and C) AS17, D) Col-0 WT, E) ics1 mutant, F) ago1.25 

mutant. In certain cases, the extent of mutation in the ICS1 gene have noticeable effect on the 

phenotype of the plants (Scale bar = 1cm). 

A 

C D 

E F 

B 
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Figure 4.11: Aligned chromatograms from crosses involving an ago1 mutation. The 

appearance of the WT AGO1 base in the genome of the double mutant plants is specific to the 

ago1/ics1 double mutation. 

A. Sequenced AGO1 gene from an ago1/ics1 

double mutant plant. 

 

The tiny blue (nucleotide C) peak underneath the 

red peak of the mutant base (T) (as shown by the 

black arrow) indicates the presence of a low amount 

of the WT base (nucleotide C) in the ago1/ics1 

double mutant plant. 

TCA/AGT = Serine (ago1 mutant). 

 

 

 

B. Sequenced AGO1 gene from a fox1/ago1 

double mutant plant. 

There are no traces of the WT base in the 

fox1/ago1 double mutant plant. 

TCA/AGT = Serine (ago1 mutant). 

 

C. Sequenced AGO1 gene from a 2ba/ago1 

cross. 

There are no traces of the WT base in the 

2b/ago1 cross. 

TCA/AGT = Serine (ago1 mutant). 

 

D. Sequenced AGO1 gene from a 2b 

transgenic Arabidopsis plant. 

A 2b transgenic Arabidopsis plant has a WT 

AGO1 gene. 

CCA/GGT = Glycine (AGO1 WT). 
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Figure 4.12: Aligned chromatograms from individual F4 plants showing the region of DNA 

around the ics1 mutation. All five plants show traces of the WT base in their genome 

irrespective of their phenotypes. 

 

 

 

  

ago1/ics1 

F4 plant 8 

ago1/ics1 

F4 plant 9 

ago1/ics1 

F4 plant 10 

ago1/ics1 

F4 plant 6 

ago1/ics1 

F4 plant 3 
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4.3.3 Mutation of ICS1 gene in ago1.25 mutant plant results in novel phenotypes. 

The ago1/ics1 seedlings are easily distinguishable from their ics1 and ago1.25 mutant parents 

and from a WT plant due to their relatively large cotyledons and longer hypocotyl. After 

pricking out into compost the ago1/ics1 double mutant plants continue to outpace their 

parents in terms of growth and size (Figure 4.13A). Despite the WT looking phenotypes of 

ago1/ics1 mutant seedlings, the ago1/ics1 double mutant plants develops broader and narrow 

rosette leaves than WT plants (Figure 4.13 A and B) even at the juvenile stage of 

development. Juvenile rosette leaves of a WT plant are round in appearance (Figure 4.13B). 

The deeply serrated and broader leaves of the ago1/ics1 mutant plants begin to curl up 

intensely particularly along the leaf margins as the plant advances into the adult vegetative 

stage. 
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Figure 4.13: Comparison of 5 weeks old ago1/ics1 double mutant plant (A) and WT plant 

(B). ago1/ics1 mutant plants show precocious development in terms of leaf morphology. (C) 

5 weeks old ics1 mutant and (D) 6 weeks old ago1 mutant plants are for comparison (Scale 

bar = 1cm). 

 

 

 

 

A B 

C D 
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However, the vigorous growth of the ago1/ics1 double mutant plants is terminal. By the 8 

weeks post planting the pace of ago1/ics1 growth is slowed due to the spontaneous onset of 

pinpoint-like necrotic spots among the ago1/ics1 progeny (Figure 4.14). The development of 

these necrotic spots largely starts from the leaf tip area and progresses toward the leaf petiole 

area as they widen over time. The necrotic lesions are mostly surrounded by chlorotic lesions 

especially among AS20 progeny where this phenomenon occurs early and is more severe. 

Subsequently, after 8 weeks post planting, the ics1 mutant parent and the WT plants overtake 

the ago1/ics1 progeny in growth and become larger than the ago1/ics1 double mutants since 

they do not develop any spontaneous chlorotic lesions.  

There was also the re-emergence of plants with ago1-like phenotypes among the progeny of 

the AS14, AS17 and AS20 mutant plants. For every 15 AS20 progeny one plant had an ago1-

like phenotype. In terms of the AS17 progeny, one out of every 11 AS17 progeny had an 

ago1-like phenotype. These segregation ratios do not conform to classical Mendelian 

segregation ratios nor the segregation ratios of linked genes since both Ago1 and ICS1 are on 

the same arm of Arabidopsis chromosome 1. Interestingly, the few ago1-like phenotypes that 

appear among the progeny of the ago1/ics1 progeny do not behave as ago1.25 mutant plants 

but rather as their AS17-like and AS20-like counterparts. For instance, the ago1/ics1 progeny 

with the ago1-like phenotypes also develop the necrotic lesions just as their AS17-like and 

AS20-like counterparts (Figure 4.15). Spontaneous necrotic spots were not developed by the 

WT plants or the ics1 mutant but very old ago1.25 mutant plants also begin to develop milder 

version of these spontaneous necrotic spots.  
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Figure 4.14: Ten weeks old ago1/ics1 double mutant plants showing chlorotic/necrosis 

lesions on leaves. There was no necrosis on the leaves of the ago1.25 and the ics1 mutant 

parents nor the WT plant at ten weeks post planting (Scale bar = 1cm). 

AS 17 AS 17 
AS 20 

AS 20 

ics1 
Col-0 WT 

ago1.25 

ago1.25 
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Figure 4.15: Ten weeks old AS17 and AS20 plants with ago1-like phenotypes showing 

necrosis similar to their AS17-like and AS20-like counterparts. There was no necrosis on the 

leaves of the ago1.25 mutant parent at this stage (Scale bar = 1cm). 

 

 

 

 

ago1.25 AS17 

AS17 AS20 
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4.3.4 Mutation of the ICS1 gene in the ago1.25 mutant plant background restores 

susceptibility to aphid infestation  

Aphid performance assays were primarily based on AS17 progeny with recovery-like 

phenotypes. The AS20 progeny with recovery-like phenotypes were also used in certain 

instances for the aphid performance assay.  Mutation of the ICS1 gene annuls the heightened 

resistance to aphid infestation observed in ago1.25 mutant plants. Aphid growth rates on the 

ago1/ics1 double mutants were significantly increased compared to the growth rates of aphids 

on an ago1.25 mutant plant. Aphids growing on ago1/ics1 mutant plants attained similar 

growth rates as aphids that grew on WT plants (Figure 4.16A).  

Similarly, aphids reproduced significantly larger colony sizes on the ago1/ics1 double mutant 

plants in comparison to the colony sizes of aphids on the ago1.25 mutant plants (Figure 

4.16B).  

4.3.5 Mutation of the ICS1 gene in the ago1.25 mutant plant background reduces the 

extent of aphid-induced stunting observed in ago1.25 mutant plants 

 

Six-day-old aphids were placed on ago1/ics1 double mutant plants for a 12-day duration to 

assess whether the aphid infestation will result in severe stunting of the ago1/ics1 double 

mutant plants as observed in aphid-infested ago1.25 mutant plants (Figure 4.17). Although 

aphid infestation results in greater loss of biomass in the ago1/ics1 double mutant plant in 

comparison to a WT plant or its ics1 parent, the loss in biomass was not as severe as observed 

in aphid-infested ago1.25 mutant plants (Figure 4.17). There was approximately 19.69% 

decrease in loss of biomass when there was a mutation in the ics1 gene in ago1.25 mutant 

plants. 
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Figure 4.16:  A) Mean relative growth rates (MRGR) of aphids at 6 days post infestation and 

B) colony size of aphids at 12 days post infestation on ago1/ics1 double mutant plants. 

Mutation in ICS1 significantly increases the growth rate and colony size of aphids on ago1.25 

mutant plants to levels comparable to a WT plant at p < 0.05 level. Error bars represent 

standard error of the mean. Treatment means (bar plots) denoted by the same letter are not 

significantly different from each other at p < 0.05. 
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Figure 4.17: Loss of biomass as a result of 12-day aphid infestation. Mutation in ICS1 gene in 

ago1.25 mutant plants results in less severe loss in biomass in comparison to the ago1.25 

mutant parent when both plants are infested with aphids. Percent values represent decrease in 

biomass after 12 days of aphid infestation. Error bars represent standard error of the mean. 
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4.3.6 Expression of nahG in the ago1.46 mutant background in certain instances 

alleviates the ago1.46 developmental deformities. 

 

To test if SA accumulation was responsible for the stunting and deformed phenotype of 

ago1.25 mutant plants, a cross between ago1.46, another ago1 allele with a comparable 

phenotype as ago1.25 and a nahG transgenic plant was made. Interestingly, the 

ago1.46/nahG cross has a more WT-like phenotype than even the ago1/ics1 double mutant 

plants (Figure 4.18).  This indicates that SA plays an essential role in the developmental 

phenotype of ago1 mutant plants. 

Figure 4.18:   Recovery-like phenotype of an ago1.46/nahG cross (left) in comparison to 

ago1.46 segregant (centre) and WT (right) phenotypes. (Scale bars = 1cm). 

 

4.3.7 Upregulation of SPLs may explain the precocious development of the ago1/ics1 

progeny with recovery-like phenotypes  

 

In a quest to explain the precocious development of the ago1/ics1 mutant plants with 

recovery-like phenotypes such as the early narrowing and enlargement of ago1/ics1 double 

mutant leaves (Figure 4.13), the expression of Squamosa promoter-binding-like-10 (SPL10) 

whose upregulation is associated with precocious development were tested (Yu et al., 2015a). 

SPL10 levels were upregulated in the ago1/ics1 double mutant plants in comparison to levels 

in WT plants. However, SPL10 levels seemed higher in ago1.25 mutant plants than the 

ago1/ics1 double mutant plants (Figure 4.19). SPLs are regulated by miR159 guided AGO 

therefore it is expected that mutation in AGO1 will result in their upregulation. However, 
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effects of SPL10 upregulation seem more evident in the ago1/ics1 than in the ago1.25 mutant 

plants.    

 

 

 

 

 

 

 

 

Figure 4.19:  AGO-regulated SPL10 is upregulated in ago1.25 mutant and ago1/ics1 double 

mutant plants. (SPL10 product size: 183 bp). 
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4.4 Discussion 

 

4.4.1 The enhanced susceptibility to aphids and increased growth rate of the ago1/ics1 

double mutant plants could be as a result of increased auxin signalling. 

 

Auxins are central to regulation of plant growth and development. Accumulation of auxins is 

known to suppress SA defences. Hence in many cases plants with enhanced auxin signalling 

and increased accumulation of auxins are larger in size but more susceptible to infections due 

to prioritization of growth and development over host defence responses (Mutka et al., 2013). 

Similarly, plants actively accumulating SA with heightened SA signalling and responses are 

generally stunted in stature and more resistant to infections (Bowling et al., 1997; Wang et 

al., 2007). The stunted phenotype of most SA accumulating mutants may partly be due to 

repression of auxin signalling and responses. SA accumulation stabilizes the auxin response 

repressor AUX/IAA to repress auxin signalling and responses and also induces the expression 

of GH3 enzymes to inactivate free auxins (Zhang et al., 2007). Auxin response receptor genes 

TIR and AFB1 that are required to degrade AUX/IAA repressors to activate auxin signalling 

and responses are also downregulated in SA over-accumulating mutant plants (Wang et al., 

2007). Therefore, in the absence of SA accumulation, auxin signalling and responses are de-

repressed. The longer hypocotyl, enhanced growth and the narrow cotyledons of ago1/ics1 

double mutant seedlings are reminiscent of an auxin over-accumulating mutant plant. Since 

auxins largely exert their role in regulating growth and development through DNA binding 

auxin response factors of which some are directly regulated by small RNA guided AGO 

proteins (Li et al., 2016), it is plausible that mutation in both AGO1 and the SA biosynthetic 

gene ICS1 may significantly disrupt the crosstalk between the growth-promoting auxin and 

the defence-promoting SA favouring growth and accumulation of auxins in the ago1/ics1 

double mutant plants. Furthermore, accumulation of auxins in the ago1/ics1 double mutant 

plants may negatively affect the accumulation of the aphid-deterring glucosinolates and 

camalexin since these metabolites rely on tryptophan for their biosynthesis.  

Interestingly, although auxin responsive genes were upregulated in the ago1/ics1 double 

mutant plants, they were also upregulated in the stunted ago1.25 mutant plants and in certain 

cases the levels of these auxin responsive genes were even higher in the ago1.25 mutant than 

the double mutant plants. Expression of PR-1 was tested in ago1.25 mutant to verify if the 

stunting and enhanced defence to aphid infestation in ago1.25 mutant was as a result of SA 
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accumulation and repressed auxin signalling. However, PR-1 expression is more 

downregulated in ago1.25 mutant plants compared to levels in WT plants and ago1/ics1 

double mutant plants. However, the possibility of accumulation of SA resulting in the 

stunting and enhanced defence to aphids in the ago1.25 mutant plants could not be ruled out 

since there are instances where SA accumulation does not lead to increased expression of PR-

1 (Delaney et al., 1995). A cross between ago1.46 mutant plant and nahG transgenic plant 

confirms that accumulation of SA is adequate to cause the ago1 phenotypes, hence it may 

also be responsible for the heightened defence to aphids in ago1 mutants. In the absence of 

SA accumulation, auxin signalling and responses are de-repressed resulting in enhanced 

growth and susceptibility of the ago1/ics1 double mutant to aphid infestation. 

 

 

4.4.2 Possible explanations for the consistent occurrence of the wild type sequences in 

the genetic pool of the ago1/ics1 double mutant plants. 

 

A. Sample Contamination 

Contamination of ago1/ics1 samples by extraneous nucleic acids with a WT AGO1 or ICS1 

genotype during the nucleic acid extraction and purification process, or at the time of 

sequencing, could result in the observed phenomenon.  However, the presence of the WT 

bases is restricted to ago1/ics1 mutant plants and never observed among the other double 

mutant plants, which are also in the ago1 background such as fox1/ago1, ago1/cyp82C2 and 

2b/ago1 (Figure 4.11). The chances that only the ago1/ics1 double mutant plant samples will 

be contaminated whilst none of the samples from either fox1/ago1, ago1/cyp82C2 or 2b/ago1 

also become contaminated less likely although it remains a possibility. 

 

B. Inability to identify a pure ago1/ics1 double mutant plant 

The initial F2 ago1/ics1 double mutant plants were sampled for further analysis based on their 

novel phenotypes among the segregating F2 ago1 x ics1 population. Sequencing data for each 

of the selected F2 plants with novel phenotypes indicated that they all had mutations in both 

their ago1 and ics1 genes. However, they also had varying levels of the WT bases in their 

genome. In the quest to investigate if a purely ago1/ics1 double mutant plant will be 

identified, I allowed selfing of the F2 plants to obtain an F3 population. At one instance, 
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screening of the F3 ago1/ics1 progeny resulted in the identification of 3 plants that were 

purely ago1 mutants (plants AS14, AS17 and AS20). However, in terms of their ICS1 

mutation, AS14 was purely ICS1 WT, AS20 was ICS1 heterozygous whilst AS17 was ics1 

mutant but with traces of the WT ICS1 base in its genome. It is possible if I had screened a 

larger population of the F3 progeny I may have identified a pure ago1/ics1 double mutant 

plant without traces of the WT bases in its genome. 

 

 

4.5 Conclusions 

The loss of ability to accumulate SA is adequate to restore the ago1 phenotype back into a 

WT-like phenotype. Accumulation of SA may also be responsible for the heightened defence 

to aphids observed in ago1.25 mutant plants. SA accumulation and enhanced SA signalling in 

the ago1.25 mutant plant may repress the accumulation and signalling of the susceptibility-

enhancing auxin making the ago1.25 mutant plants more resistant to aphid infestation. 
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Chapter 5 

 

The Expression of Fny-CMV 2b protein further enhances the 

heightened resistance to aphids in ago1.25 mutant plants 

____________________________________________ 

 

5.1 Introduction 

PTGS is a mechanism through which a small RNA guided AGO protein as part of an effector 

complex referred to as RNA induced silencing complex (RISC) targets and degrades foreign 

or host nucleic acids of which they share complementarity (Vaucheret et al., 2001) Details on 

the mechanisms of PTGS can be found in Sections 1.8.1 and 1.8.2.  PTGS therefore functions 

as an effective defence mechanism against plant virus infections. To promote infection, 

Cucumoviruses including CMV encode the 2b protein to suppress host PTGS (Chapter 1 

subsection 1.8.4) (Goto et al., 2007; Jacquemond, 2012). 

Transgenic expression of Fny-CMV 2b protein in Arabidopsis results in mild to severe 

developmental anomalies. In very severe cases the rosette leaves of 2b transgenic plants 

become narrow, deeply serrated and curled upwards. These severe 2b transgenic Arabidopsis 

plant lines produce sterile flowers many of which remain unopened or produce anthers 

without pollen. However, mild or moderately severe 2b transgenic lines are fertile despite the 

stunting, twisted petioles, intense serration and narrowing of the perianth (Figure 5.1) (Zhang 

et al., 2006; Lewsey et al., 2007). 
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Figure 5.1: Fny-CMV 2b-transgenic Arabidopsis plant (line 3.13F: Lewsey et al., 2007) in 

comparison to a WT Col-0 plant (Scale bars = 1cm). 

 

Expression of viral proteins in host plants can alter the extent of callose deposition, the 

nutritional composition and also the volatile organic compound blends emitted by these 

transgenic plants which in turn affects the interaction of the host plants with insect vectors 

(Westwood et al., 2013; Casteel et al., 2014). The magnitude and direction of the host plant 

manipulation by viral proteins and the resulting effect on vector preference depend on the 

specific host involved in the interactions. For instance, in the tobacco-Myzus persicae-CMV 

2b interactions, the 2b protein reduces the host defence responses against the aphid thereby 

encouraging the survival of the vector on infected tobacco plants. As a result, Myzus persicae 

prefer settling on CMV infected tobacco plants than on healthy tobacco plants. In line with 

the role of the 2b protein in the tobacco-Myzus persicae-CMV 2b pathosystem, tobacco 

plants infected with the CMVΔ2b virus are more resistant to aphid infestation than a healthy 

tobacco plant (Ziebell, et al., 2011). 

On the contrary, in the Arabidopsis-Myzus persicae-CMV 2b pathosytem, the expression of 

the 2b protein rather enhances the resistance of the host to aphid infestation. Aphids therefore 

prefer settling on healthy Arabidopsis plants to settling on 2b transgenic Arabidopsis plants 

(Westwood et al., 2013). Since the 2b protein directly interacts with AGO1 protein and that a 

mutation in the 2b protein affects 2b-mediated suppression of RNA silencing, I decided to 

examine whether or not expressing the 2b in ago1.25 background affected aphid resistance. 
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5.2 Results 

 

5.2.1 2b/ago1 crosses plants have novel phenotypes and are largely sterile. 

The 2b/ago1 crosses are severely deformed compared to either of their ago1.25 mutant or 2b-

transgenic parental plants. They display developmental deformities ranging from moderately 

severe to very severe phenotypes (Figure 5.2). The moderately severe 2b/ago1 double mutant 

plants are slightly ago1-like in appearance but with much narrower and smaller rosette leaves. 

The phenotypes of the very severe 2b/ago1 progeny include plants with needle-like and 

slightly twisted rosette leaves to plants with significantly longer internodes and stems even at 

the vegetative stage with rosette-like leaves instead of cauline leaves emerging on their 

extended stems. These 2b/ago1 progeny produce inflorescence with open calices that are not 

capable of producing seeds. It is not certain whether these 2b/ago1 crosses plants are merely 

self-incompatible or they produce dysfunctional reproductive organs. 

 

5.2.2 The 2b protein enhances the heightened resistance to aphids observed in ago1.25 

mutant plants 

F2 seeds from the heterozygous 2b/ago1 +/- F1 plants were sown and the 2b/ago1 double 

mutant plants were selected based on developmental phenotype for aphid performance 

assays. Aphids performed very poorly on the 2b/ago1 crosses in comparison to its parents 

which in themselves have enhanced aphid resistance than a WT plant. The growth rate of 

aphids on the 2b/ago1 crosses were significantly lower than the growth rates of aphids on the 

2b transgenic, ago1.25 mutant or the WT plants (Figure 5.3). Aphids also reproduce less on 

the 2b/ago1 crosses. 
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Figure 5.2: A selection of 2b x ago1 progeny in comparison to WT and mutant parental plants 

(Scale bar = 1cm).  
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Figure 5.3: Mean relative growth rate (MRGR) of aphids on 2b/ago1 plants. Aphids 

significantly gain less weight on the 2b/ago1 cross in comparison with either the WT or the 

mutant parents (ANOVA p value = 0.000514). Sample size (n): WT (8), 2b (5), ago1.25 (8), 

2b/ago1 (13). Error bars represent standard error of the mean. Treatment means (bar plots) 

denoted by the same letter are not significantly different from each other at p < 0.05. 
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5.3 Discussion 

 

5.3.1 There is a deleterious synergistic interaction between the 2b protein and the AGO1 

protein in relation to aphid resistance in Arabidopsis. 

Mutation in AGO1 alone or transgenic expression of the CMV 2b protein in Arabidopsis 

alone is adequate to increase the resistance to aphids in Arabidopsis plants. However, the 

combined mutations further enhance the extent of resistance against aphids in Arabidopsis 

beyond what would be expected if both mutations had independent effect on aphid resistance 

such that their combined deleterious interactions were additive. Mutation in the AGO1 gene 

resulted in a 4.8% drop in aphid growth rate whilst the transgenic expression of the 2b protein 

resulted in a 4.2% drop in the rate of aphid growth. If the ago1-mediated resistance to aphids 

was independent of the 2b-mediated resistance to aphids in Arabidopsis plants then the 

combined mutations would have resulted in an approximately 9.03% drop in aphid growth 

rate in the 2b/ago1 plants. However, there was a 11.92% drop in aphid growth rate of the 

2b/ago1 plants, which is a 2.89% more drop in aphid growth rate than expected if both the 

ago1 and the 2b proteins contributed independently to aphid resistance in Arabidopsis plants. 

This therefore suggests a negative deleterious epistatic interaction between the ago1 and the 

2b protein in relation to aphid performance.  

 

The epistatic interaction between the two proteins was expected as the 2b protein directly 

interacts with the AGO1 protein. However, this synergistic deleterious interaction between 

the 2b protein and the ago1 protein that resulted in more than expected drop in aphid growth 

rates may be due to an enhanced accumulation of an anti-aphid toxic metabolite in the 

2b/ago1 plants. Previous experiments in our lab have shown that the transgenic expression of 

the 2b protein alone in Arabidopsis is able to induce an aphid resistance response which is not 

based on feeding deterrence but likely to be antibiosis in nature. The 2b-mediated antibiosis-

type resistance to aphids was then proposed to be as a result of the inhibitory activity of the 

2b protein on the regulatory role of the AGO1 protein. It was reasoned that AGO1 

downregulated this proposed anti-aphid toxic metabolite upon aphid infestation. However, 

the interaction of the 2b protein with the AGO1 protein hindered the effective 

downregulation of this toxic metabolite in the 2b-transgenic Arabidopsis plants (Westwood et 

al., 2013). In line with this theory, a mutation in the AGO1 protein will further hinder the 

effective downregulation of the anti-aphid toxic metabolite in the 2b/ago1 plants resulting in 
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an even enhanced resistance to aphid performance on the 2b/ago1 crosses in comparison to 

the resistance to aphids observed in 2b transgenic plants alone. This will therefore explain the 

negative deleterious synergistic interactions between the 2b protein and the ago1 protein in 

terms of aphid resistance in Arabidopsis.  

 

5.3.2 The 2b/ago1 plants have more severe developmental deformities.  

Both the 2b transgenic Arabidopsis line and the ago1 mutant line used in generating the 

2b/ago1 plants are fertile, however, when the two mutations occur in the same genome, most 

of the resulting double mutant plants become sterile with flowers that are open even at the 

floral bud stage. Some of the 2b/ago1 plants also gain longer internodes and stems contrary to 

a WT CMV infected plant which usually have shortened internodes and may have flowers 

that remain unopened (Zhang et al., 2006). The severity of the 2b/ago1 developmental 

deformities may partly be due to the deleterious synergistic interactions between the 2b 

protein and the AGO1 protein. However, the absence of the CMV 1a protein could also 

contribute to the severity of the 2b/ago1 plants in comparison to a CMV infected plant. The 

1a protein is thought to moderate the level of the 2b protein accumulation such that a 1a/2b 

transgenic Arabidopsis plants recover from its characteristic 2b phenotype (Westwood et al., 

2013).  

 

5.4 Conclusions 

Transgenic expression of the CMV 2b protein in Arabidopsis ago1.25 mutant plants results in 

a negative deleterious synergistic interaction between the two proteins such that the 2b/ago1 

plants have more deformed phenotypes and increased resistance to aphid infestation than 

would have been expected if the two proteins acted independently in terms of Arabidopsis 

development and its defence response to aphid infestation. 
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Chapter 6 

 

Exogenous application of salicylic acid induces resistance to 

Cucumber mosaic virus disease in sweet pepper plants (Capsicum 

annuum var. California Wonder)  
___________________________________________________________________________ 

 

Introduction 

 

6.1 Background to the Study 

Capsicum peppers are among the most important crops cultivated around the world. They 

have served as food and medicine for over 50 centuries. A 100 g of pepper fruit contains as 

high as 180 mg of Vitamin C and 12 mg calcium  (Smith, 1951; Pickersgill, 1991; Hanif et 

al., 2006; Ortiz et al., 2010). In 2012, an estimated area of 539,688 hectares was planted with 

pepper (FAOStat, 2015). Despite the usefulness and the vast area of fields dedicated to 

pepper production worldwide, the pepper plant is susceptible to over 35 plant viruses, 

including CMV. CMV is considered the most destructive of all the viruses that infect pepper 

plants. It causes significant yield losses in pepper production, resulting in less profits for 

farmers (Green and Kim 1991). In the quest to mitigate the devastating effects of CMV 

disease in pepper production, a collaboration with the Rural Development Administration of 

the Republic of South Korea was established to investigate the feasibility of inducing 

resistance to CMV infection in pepper through the application of exogenous SA. The 

objective of these experiments was to assess whether the exogenous application of salicylic 

acid can induce resistance to Cucumber mosaic virus infection in pepper. 
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Results 

 

6.2.1 Mode of SA Application and CMV Inoculations 

In the majority of the experiments, SA was applied as foliar sprays and/or watered to plants at 

the cotyledonous to first true leaf stage. Other modes of SA application included imbibition 

of pepper seeds in SA solutions and submersion of whole pepper seedlings into SA solutions 

for a specified duration (Figure 6.1).  

All pepper plants that received SA treatments through foliar sprays or through both foliar 

sprays and watering were inoculated a day after the last SA treatment. Thus, the plants were 

treated with SA for three consecutive days and on the fourth day, they were inoculated with 

CMV. These inoculated plants were largely at their first true leaf stage. Pepper plants that 

were treated with SA through drenching were pricked-out into trays and watered regularly 

with tap water until emergence of their first true leaf after which they were inoculated.  SA 

imbibed seeds were pre-germinated in plates lined with filter paper moistened with SA 

solution. The pre-germinated seeds were then pricked-out into trays and watered with tap 

water until full development of cotyledonous leaves before inoculation. 

6.2.2 Determination of SA Concentrations Adequate for the Induction of PR-1 

Expression in Sweet Pepper 

SA concentrations ranging from 0.1 mM to 10 mM SA were tested on California Wonder 

sweet pepper plants to identify the optimum non-phytotoxic concentrations of SA required to 

induce the expression of PR-1, a marker for SA-induced resistance. The expression of PR-1 

was primarily used to verify if the SA were being absorbed by the treated pepper plants. It 

was observed that pepper seeds imbibed with as low as 0.1 mM SA solution for a three-day 

period and subsequent pre-germination on an SA-moistened filter paper was adequate for the 

induction of PR-1 in the germinated seeds (Figure 6.2; plant 1).  

Pepper plants sprayed or watered with as low as 0.3 mM SA solution for three consecutive 

days were also found to express the PR-1 gene. Few of the pepper plants that were not treated 

with SA were also shown to have been expressing PR-1, particularly more evident with 

increasing PCR cycles. For instance, plants 2 and 7 in Figure 6.2 which were not treated with 

SA showed faint bands with a 30 cycle PCR but when the PCR cycles were increased to 40, 

these plants that were not treated with SA clearly showed distinct PR-1 band. The absence of 

a PR-1 band in the 30 cycle PCR for plant 8 whose seeds were imbibed in 0.1 mM SA for a 
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24-hour period could partly be due a low cDNA template since the corresponding CaActin 

band is also very faint. When the PCR cycles were increased to 40, plant 8 showed a distinct 

PR-1 band. Plant 4 which was sprayed with 10 mM SA, the highest SA concentration used in 

this experiment, showed the boldest band in both cycles.  

 

 

 

  

 

Figure 6.1: Mode of SA Application:  Pepper plants were treated with SA through; A) foliar 

application (plants were sprayed with SA solution for 3 consecutive days); B) seed imbibition 

method (pepper seeds were imbibed with SA solution for either 1 day, 3 days or 4 days); and 

C) seedling drenching (whole pepper seedlings were drenched in SA solution for 1 hour, 30 

minutes). 

 

 

 

A B 

C 
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Figure 6.2: PR-1 transcript accumulation in pepper after varying SA treatments (1) 0.1 mM 

SA, 17 days post 3-day seed imbibition in SA solution (2) no SA, 17 days post 3-day seed 

imbibition in tap water (3): 0.5 mM SA, 17 days post 3-day seed imbibition in SA solution. 

(4): 10 mM SA sprayed pepper plant (5) no SA treatment. (6): 0.3 mM SA spraying, 5µg/ml 

CMV inoculation, confirmed CMV infection. (7): no SA, 24-hour tap water imbibition. (8): 

0.1 mM SA, 24-hour imbibition (9): no SA, no mock-inoculation (untouched plant). (10): 0.3 

mM SA spraying, no CMV inoculation. (11): 0.5 mM SA, 24-hour seed imbibition. An RT-

PCR with CaPR1 primers The Ca.Actin gene was used as a control. 
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6.2.3 Phytoxic and Non-Phytotoxic Concentrations of SA in Sweet Pepper 

The phytotoxicity of exogenously applied SA solution in sweet pepper increases significantly 

beyond 5 mM SA (Figure 6.3, Figure 6.5). Exogenously applied 10 mM SA solution is toxic 

to pepper plants, irrespective of the mode of application, whether by foliar sprays or seedling 

drenching. All 10 mM SA drenched seedlings withered-off a few days after drenching 

(Figure 6.6B). However, few 10 mM SA watered pepper plants survived and were expressing 

PR-1 (Figure 6.6A and 6.2; plant 4) but they were severely stunted. The phytotoxicity of 

exogenously applied SA is more severe when applied as a seedling drench. Compared to the 

87% survival rate of the 5 mM SA sprayed pepper plants 7 days post SA application, only 

70% (69.96%) of the 5 mM SA drenched seedlings survived 9 days post drenching (Figure 

6.6). However, the surviving 5 mM SA drenched seedlings were severely stunted in growth 

and showed strong purple coloration of leaves, possibly, a stress response manifested by 

accumulation of anthocyanins (Figure 6.3).  Many of these surviving pepper plants withered-

off afterwards.  

Exogenously applied 1 mM SA is not phytotoxic to pepper plants no matter the method of 

application (Figure 6.4). Spraying or watering of pepper plants with 1 mM SA for 3 days 

before virus inoculation and even with an additional 3-day SA treatment after virus 

inoculations seem not to affect the growth of pepper plants. Drenching pepper seedlings in 1 

mM SA also does not significantly affect growth, with the exception of slight crinkling of 

leaves and purple coloration on cotyledons. Few of the plants that were not treated with SA 

also had this purple coloration on their cotyledons as well. Exogenously applied 2 mM SA in 

the form of foliar sprays or through watering was also found not to be phytotoxic to pepper 

plants (Figure 6.4). 
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Figure 6.3: Pepper seedling showing stress symptoms 5 days after being drenched in 5 mM 

SA solution (A) in comparison to pepper seedlings drenched in tap water (B). 

A 

B 
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Figure 6.4: Pepper plants treated with (A) No SA, (B) 1 mM SA and (C) 2 mM SA. 

Exogenously applied 1 mM or 2 mM SA concentrations are not toxic to pepper plants. 

 

 

       

Figure 6.5: Effects of salicylic acid on the morphology of pepper leaves 9 days post 

treatment. ((A) No SA, (B) 1 mM SA and (C) 5 mM SA). The phytotoxicity of exogenously 

applied SA increases significantly beyond the 5 mM concentration. 
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Figure 6.6: Per cent survival of pepper seedlings sprayed (A) or drenched (B) in different 

concentrations of SA solutions. All pepper plants that received 1 mM SA survived, 

irrespective of the method of application. 
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6.2.4 Optimization of CMV inoculum concentration 

Different concentrations of purified CMV virions were inoculated on pepper seedlings to find 

out the minimum virus concentration needed to cause 100 % infection among pepper plants 

that were not treated with SA so as to attribute any differences in the level of CMV disease 

incidence in SA treated plants to the effect of SA. Initially, virus concentrations ranging from 

0.25 µg/ml, 0.5 µg/ml, 1 µg/ml, 2 µg/ml, 5 µg/ml were tested. 

However, there was never a 100 % CMV disease incidence in any of these virus 

concentrations tested. Therefore, the virus concentrations were increased to a range of 5 

µg/ml, 25 µg/ml, 50 µg/ml, 100 µg/ml and 200 µg/ml.  All the pepper plants that were 

inoculated with 25 µg/ml CMV but had not previously been treated with SA showed 

symptoms of CMV infection 5 days post inoculation (Table 6.1).  The CMV incidence among 

the 1 mM SA and 2 mM SA treated plants inoculated with 25 µg/ml CMV were 57.14% and 

50%, respectively at 5 days post-inoculation. 

Therefore, 25 µg/ml CMV was enough to cause 100% CMV incidence among mock-

inoculated plants in just 5 days post inoculations. To find out whether virus concentrations 

lower than 25 µg/ml CMV could also cause a 100% CMV disease incidence, virus 

concentrations of 10 µg/ml CMV and 15 µg/ml CMV were tested but none caused a 100 % 

CMV disease incidence among pepper plants that were not treated with SA. Out of the 12 

plants inoculated with 15 µg/ml CMV, 8 showed CMV symptoms by 22 days post 

inoculation.  

 

6.2.5 SA Induced Resistance to CMV Infection in Pepper 

 

6.2.5.1 Comparison of CMV Disease Incidence among SA-Treated and SA-Non-Treated 

Plants 

Spraying or watering pepper seedlings at the cotyledonous to first true leaf stage for 3 

consecutive days with either 1 mM SA or 2 mM SA prior to challenge with CMV 

inoculations induce resistance to CMV infections even with a very high inoculum load of 100 

µg/ml CMV. 

Among the 15 µg/ml CMV inoculations, plants that were not pre-treated with SA before 

being inoculated started showing symptoms 5 days post inoculation (dpi), whilst the 1 mM 
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SA pre-treated plants only started showing symptoms 2 days later, thus, 7dpi when one plant 

became symptomatic. The number of symptomatic plants increased steadily among the plants 

that were not treated with SA, and by the 22 dpi, 8 out of these 12 plants inoculated with 15 

µg/ml CMV were showing symptoms. Only 2 out of the 12 1 mM SA-treated plants that were 

inoculated with 15 µg/ml CMV showed symptoms by the 22 dpi (Figure 6.8).  

In the 5 µg/ml - 200 µg/ml batch of the experiments, the level of CMV incidence recorded 

among the 2 mM SA:50 µg/ml CMV, 2 mM SA:25 µg/ml, 1 mM SA:25 µg/ml CMV 

inoculated plants were comparable to the level of incidence recorded among the plants that 

were not treated with SA but were inoculated with a lower CMV concentration of 5 µg/ml 

CMV. Apart from the 200 µg/ml inoculations where the level of CMV incidence in both the 

plants that were not SA-treated and the 2 mM SA pre-treated plants were similar, in all the 

other experiments, the plants that were not SA-treated recorded higher levels of CMV 

incidence than the SA treated plants by the last day (15 dpi) of CMV incidence assessment. 

Also, among the 5 µg/ml CMV – 200 µg/ml CMV inoculations, with the exception of the 1 

mM SA: 50 µg/ml CMV inoculated plants that had a slight progression of CMV incidence 

throughout the course of the experiments, almost all the plants in this batch of the 

experiments were symptomatic between the 5 dpi to 7 dpi (Table 6.1). From the 8 dpi, an SA 

treated plant that had not developed symptoms were more likely not to develop symptoms by 

the 15 dpi, the last day of CMV incidence assessment.  

6.2.5.2 Comparison of Symptom Expression Among SA-Treated and SA Non-Treated 

Plants 

There were no major significant differences among symptomatic plants that were not SA-

treated and their SA-treated counterparts. Both groups of symptomatic plants were stunted 

compared to their respective non-inoculated mocks (Figure 6.9.I). Both SA-treated plants and 

plants that were not treated with SA showed clear CMV symptoms. However, the severity of 

symptom expression seems to be quite moderate in some cases among SA-treated plants 

(Figure 6.9.II).  
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Figure 6.7: A) CMV infected 2 mM SA pre-treated plant showing slight recovery of 

symptoms 23 days post inoculation. B) Some of the CMV inoculated 2 mM SA pre-treated 

plants did not become infected or show symptoms 23 days post inoculation. C) Healthy 

plants with different SA-treatment regimes. 
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Figure 6.8: CMV-induced disease symptom incidence among (A) untreated pepper plants and 

(B) 1 mM SA treated pepper plants. Plants were scored as symptomatic when they displayed 

mosaic symptoms. 
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Table 6.1: CMV disease incidence among pepper plants inoculated with 5 µg/ml CMV- 

50 µg/ml CMV. Prior to inoculations, plants were treated with either no SA, 1mM SA or 

2 mM SA 

 

 

 

 

 

SA Concentration 

(mM) 

Plant 

Total 

Number of Symptomatic Plants (Days Post Inoculations) 

  5 6 7 8 9 10 11 12 13 14 15 

  

5µg/ml CMV 

 

0 13 7 7 7 7 7 7 7 7 7 7 7 

1 14 3 4 4 4 4 4 4 4 4 4 4 

2 15 1 1 1 1 1 1 1 1 1 1 1 

             

  

25 µg/ml CMV 

 

0 13 13 13 13 13 13 13 13 13 13 13 13 

1 14 8 8 8 8 8 9 9 9 9 9 9 

2 14 7 7 7 7 7 7 7 7 8 8 8 

  

50 µg/ml CMV 

 

             

0 10 10 10 10 10 10 10 10 10 10 10 10 

1 14 7 7 8 9 10 11 11 11 11 11 11 

2 13 8 8 8 8 8 8 8 8 8 8 8 
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Figure 6.9: Comparison of CMV symptoms among SA-treated and SA-non-treated plants 27 

dpi. I. (A) no SA, 10 µg/ml CMV inoculated plant in comparison to mock-inoculated, (B) 1 

mM SA treated, 10 µg/ml CMV inoculated plant in comparison to mock-inoculated, (C) 2 

mM SA treated, 10 µg/ml CMV inoculated plant in comparison to mock-inoculated. II. (A) 

up-close display of symptoms observed on no SA, 10 µg/ml CMV inoculated plant, (B) up-

close display of symptoms observed on 1 mM SA, 10 µg/ml CMV inoculated plant, (C) up-

close display of symptoms observed on 2 mM SA, 10 µg/ml CMV inoculated plant. 
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6.3 Discussion 

Exogenously applied SA induces PR-1 expression and resistance to CMV infection in pepper 

plants. The mere induction of PR-1 proteins does not necessarily correlates to resistance to 

CMV disease in pepper as some of the CMV infected plants (Figure 6.2; plant 6) were also 

shown to have an induced PR-1 gene expression despite being infected. Although, plant 6, in 

particular, was watered and sprayed with 0.3 mM SA prior to being inoculated which may be 

responsible for the PR-1 expression, virus infections in themselves are known to elicit the 

induction of a key enzyme in the phenylpropanoid biosynthetic pathway of SA, benzoic acid 

2-hydroxylase (Delaney, 2010). Therefore, it is possible for CMV infected plants to express 

PR-1 even without prior SA treatment due to the ability of the virus to induce SA 

biosynthesis. However, exogenous application of SA which occurs prior to infection can 

enhance resistance to subsequent virus infection. CMV-elicited SA accumulation lags behind 

the systemic spread of the virus and hence may not be effective in inducing resistance to the 

virus infection (Carr et al., 2010). The timing and quantity of PR-1 expression may be more 

critical to the level of SAR induced after exogenous SA application. Plants expressing SAR 

are known to respond swiftly to microbial or abiotic stressors compared to non-induced 

plants. For instance, cucumber plants expressing SAR lignifies more rapidly in response to 

wounding than non-SAR expressing plants (Kessmann et al., 1994; Hammerschmidt, 1999). 

The induction of PR-1 in plants that were not treated with SA may also be as a result of the 

close proximity among the experimental plants. Pathogen infected plants or plants expressing 

SAR are known to release the volatile organic compound methyl-SA. This airborne volatile 

organic compounds could be perceived by neighbouring plants, where the endogenous 

methyl-SA transferase in the receiving plants catalyses the conversion of the methyl-SA back 

to free SA (Durner et al., 1997; Hayat et al., 2010). Hence, potential methyl-SA emitted by 

the SA-treated or CMV-infected plants may be responsible for the induction of PR-1 in the 

neighbouring SA-non-treated plants. The faint PR-1 bands in the non-SA treated plants 

(plants 2 and 7) compared to the very bright and bold PR-1 band of the 10 mM SA treated 

plant (plant 4) especially with the 30 cycle PCR may suggest that PR-1 induction in pepper is 

SA concentration dependent. The higher the concentration of SA applied to a pepper plant, 

the more PR-1 the plant expresses. 

Based on the various SA/CMV treatment combinations, it could be stated that SA-induced 

resistance to CMV infection in pepper possibly occurs in two possible ways. Firstly, by 
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causing a delay in the appearance of symptoms in the induced plants. In the 15 µg/ml CMV:1 

mM SA experiment, SA treatment clearly delayed the appearance of first symptoms by 2 

days. Also, among the 50 µg/ml inoculated plants, whilst all 10 SA-non-treated plants were 

showing symptoms by 5 dpi, only 7 out of the 14 plants that were treated with 1 mM SA were 

showing symptoms by the 5 dpi. The number of symptomatic plants among the 1 mM SA 

treated plants that were inoculated with 50 µg/ml CMV gradually increased from 7 plants by 

5 dpi to 11 plants by the 10 dpi, showing a clear delay in symptom appearance in comparison 

with the plants that were not treated with SA.  

A similar delay in the development of symptoms among SA-treated plants has also been 

observed in a compatible CMV-Nicotiana tabacum (tobacco) pathosystem (Naylor et al., 

1998). In the CMV-tobacco pathosystem, the delay in the appearance of symptoms among 

the SA-treated plants was found to be as a result of a delay in the movement of the virus out 

of the inoculated leaf. Whilst the CP of CMV was detectable in all tissues of tobacco plants 

that were not treated with SA by the 8 dpi, the CMV CP only became detectable systemically 

in SA-treated plants 2 days later (Naylor et al., 1998).   

 

A second possible way SA treatment may have caused resistance to CMV infection is by 

enhancing the ability of the induced plants to totally avoid infection (immunity) or symptom 

development.  With the exception of the 200 µg/ml inoculations where the extremely high 

viral load might have overwhelmed the SA-induced resistance, in all other inoculations, the 

SA-treated plants recorded lower CMV incidence compared to the plants that were not 

treated with SA. This shows that the treatment of pepper plants with SA in some cases 

induces resistance strong enough to resist or tolerate CMV infection. Compared to an 

approximately 54% CMV incidence among plants inoculated with 5 µg/ml CMV without 

prior SA treatment, only 29% and 7% of the plants that were treated with 1 mM SA and 2 

mM SA, respectively, were symptomatic 15 dpi. There were also similar observations among 

the 25 µg/ml CMV, 50 µg/ml CMV and 100 µg/ml CMV inoculated plants as well. During 

the previous study in my research group on the feasibility of exogenously applied SA in 

CMV pathosystem in pepper production, it was observed that floating California Wonder 

pepper leaf discs in 1 mM SA solutions for 3 consecutive days prior to CMV inoculations 

reduces the accumulation of CMV RNA in the SA-treated leaf discs during subsequent 
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inoculations with CMV, suggesting an effect on replication or cell-to-cell spread (Mayers, 

1999).  

 

6.4 Conclusions 

SA treatment of pepper plants induces PR-1 expression and also enhances the ability of 

pepper plants to resist CMV infection. However, SA treatment or the expression of PR-1 in 

SA-treated plants does not always correlate with resistance to CMV infection, which is 

perhaps not surprising since PR-1 is not an antiviral factor (Carr et al., 2010). SA 

concentrations beyond the 5 mM threshold are phytotoxic to pepper plants. Expression of 

SAR in pepper is still slightly noticeable among 1 mM SA and 2 mM SA treated plants 

inoculated with 100 µg/ml but not with 200 µg/ml CMV inoculations. The absence of 

significant SAR manifestation among 200 µg/ml CMV inoculations could be due to a 

possible breakdown of the resistance due to the enormous viral load. Optimum resistance 

induction to CMV infection in pepper is only achieved after attaining the right SA 

concentration-CMV inoculum load treatment combinations.  
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Chapter 7 

 

Final Discussion 
___________________________________________________________________________ 

 

7.1 Overall Conclusion 

Plant virus diseases are a major threat to global food security. Two of the most efficient ways 

to mitigate crop losses caused by virus diseases are through enhancement of the plant’s 

ability to resist the virus infection and secondly controlling the vectors that transmit these 

viruses to crop plants. The role of SA application in inducing resistance to CMV infection in 

pepper plants and the basis of the heightened resistance to aphid infestations in Arabidopsis 

ago1.25 mutant plants were examined in this study.  Exogenous application of 1 mM SA on 

pepper plants prior to CMV inoculation was found to delay the onset of CMV symptoms and 

in general the level of CMV disease incidence in pepper plants. SA but not 4-OH-ICN 

contributed to the heightened resistance to Myzus persicae in Arabidopsis ago1.25 mutant 

plants. 

 

7.2 Mutation in 4-OH-ICN biosynthetic genes Cyp82C2 or Fox1 does not affect the 

heightened resistance to aphids observed in Arabidopsis ago1.25 mutant plants 

The use of cyanogenic metabolites among plants to deter insect herbivory is widespread. 

More than 2,600 species of plants can synthesize various forms of cyanogenic glucosides  

that require activation by specific glucosidases to be potent against insect herbivory 

(Ganjewala et al., 2010). Since the feeding behaviour of aphids does not cause significant 

tissue disruption needed to efficiently activate many cyanogenic glycosides, these metabolites 

are not particularly effective against aphid infestation (Gleadow and Woodrow, 2002). In 

2015 when the first cyanogenic metabolite in the Brassicaceae family was discovered in 

Arabidopsis and was found to spontaneously release HCN without the need for its activation 

by glycosidases, its role in the heightened resistance to aphids in Arabidopsis ago1.25 mutant 

plants was investigated. 

Mutation in the cytochrome P450 gene Cyp82C2, which encodes an indolic hydroxylase that 

catalyses the hydroxylation of ICN into 4-OH-ICN, did not result in significant changes in 
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either aphid growth rates or colony sizes. A similar observation was also observed with fox1 

mutant plants, an additional 4-OH-ICN biosynthetic pathway mutant plant. Details of these 

observations can be found in Chapter three. Three possible reasons may explain why 

mutation in the 4-OH-ICN biosynthetic genes cyp82C2 or fox1 did not significantly affect 

aphid performance.  

Firstly, mutation in Cyp82C2 may be compensated by other isoforms of the Cyp82C 

subfamily of cytochrome P450s present in the Arabidopsis genome. The cyp82C2 mutant line 

used in this study is devoid of any 4-OH-ICN biosynthesis after P. syringae infection 

(Rajniak et al., 2015). However, this experiment was based on aphid infestation of 

Arabidopsis plants and not P. syringae infection. Myzus persicae infestation-induced 

transcriptome in cyp82C2 mutant plants may differ from P. syringae infection-induced 

transcriptome in cyp82C2 mutant plants. In all, there are over 245 genes for cytochrome P450 

enzymes in the Arabidopsis genome. They catalyse a diverse range of biochemical processes 

ranging from the synthesis of signalling molecules such as JA, gibberellic acid (GA), abscisic 

acid (ABA) to the production of defence metabolites such as terpenes, glucosinolates and 

cyanogenic glucosides. Among the defence roles played by cytochrome P450s is their 

involvement in the biosynthesis of metabolites directed against insect herbivory. For instance, 

the conversion of S-dihydrocamalexic acid into camalexin relies on the cytochrome P450 

Cyp71b15 (Schuler et al., 2006). The emission of the aphid repellent and parasitic mite 

attractant (E)- 4, 8- dimethyl- 1, 3, 7, -nonatriene volatile organic compound upon tissue 

damage requires the cytochrome P450 Cyp82G1 (Lee et al., 2010). The biosynthesis of many 

aliphatic and indolic glucosinolates also rely on specific subfamilies of cytochrome P450s of 

which usually one isoform of the enzyme may be substituted by another in the biosynthesis of 

the metabolite (Schuler et al., 2006; Rajniak et al., 2015). 

Both Cyp82C2 and Cyp82C3 are isoforms of cytochrome P450 Cyp82C subfamily which are 

members of the dicots only cyp82 family of cytochrome P450s (Werck-Reichhart et al., 

2002; Lee et al., 2010). Cyp82C2 and Cyp82C3 share 86% identity in their amino acid 

sequences and therefore it is plausible, in the absence of Cyp82C2, Cyp82C3 could catalyse 

the conversion of ICN into 4-OH-ICN.  

In this study it was observed that mutation in Cyp82C2 results in the constitutive expression 

of the normally inducible Cyp82C3 gene. Both Cyp82C2 and Cyp82C3 are inducible by 

aphids. Since Cyp82C3 is already constitutive in a non-infested cyp82C2 mutant plant, aphid 
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infestation of cyp82C2 mutant plants results in even higher expression of Cyp82C3 in the 

cyp82C2 mutant plants (Chapter 3 subsection 3.4.5). Therefore, the enhanced expression of 

Cyp82C3 in the absence of Cyp82C2 could compensate for the loss of CYP82C2 if both 

isoforms of CYP82C can equally hydroxylate ICN at the fourth carbon atom to produce 4-

OH-ICN. Alternatively, Cyp82C4 which also share 88% identity to Cyp82C2 in terms of 

amino acid sequences could also compensate for the mutation in Cyp82C2. In these 

scenarios, mutation in Cyp82C2 will not abolish aphid induced biosynthesis of 4-OH-ICN 

and therefore aphid resistance in the cyp82C2 mutant plants will not differ from resistance to 

aphids in WT plants. A quantitative measurement of 4-OH-ICN metabolite by high 

performance liquid chromatography in an aphid infested cyp82C2 mutant plants will be 

conclusive in deciphering whether other Cyp82C isoforms compensate for the mutation in 

Cyp82C2 in the aphid-4-OH-ICN system or 4-OH-ICN as a metabolite does not play a 

significant role in aphid resistance. 

Secondly, since Arabidopsis is a natural host of Myzus persicae it is possible that years of 

infestations and co-evolution of the host with the insect vector may have resulted in the 

tolerance of the aphid to the 4-OH-ICN metabolite. The aphid could potentially eliminate any 

ingested 4-OH-ICN metabolite through its honeydew without metabolising it probably due to 

unfavourable midgut pH required for the release of the HCN or the absence of appropriate 

enzymes needed for the recognition of the 4-OH-ICN catabolic products. The ability to 

selectively eliminate specific compounds from their diet is known among various aphid 

species. For instance, Myzus persicae can excrete ingested polar cardenolides from their body 

through their honeydew (Zust and Agrawal, 2016). 

Finally, the amount of 4-OH-ICN produced by Arabidopsis upon aphid infestation may not 

be high enough to cause any significant changes in the performance of the aphid. Therefore, 

its absence may also cause subtle or no change in the growth or reproduction of the aphid. 

Assessing the performance of aphids on Cyp82C2 over-expressing lines may help decipher 

whether changes in the level of 4-OH-ICN biosynthesis may affect aphid performance in 

Arabidopsis. 
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7.3.1 Mutation of the ICS1 gene in ago1.25 mutant plants restores aphid susceptibility 

and lessens the extent of aphid infestation-induced stunting in the ago1/ics1 double 

mutant plants. 

Infestation of ago1.25 mutant plants results in severe stunting, accelerated senescence of the 

aphid infested older leaves and poor aphid performance in comparison to a WT plant or an 

ics1 mutant plant. Despite the large aphid colony development on WT plants or ics1 mutant 

plants, aphid infestation-induced loss of biomass in these plants is moderate. The role of the 

SA biosynthetic gene ICS1 in aphid-induced loss of biomass was then investigated. Aphid 

performance assays and the assessment of aphid induced loss of biomass in the ago1/ics1 

indicated that ICS1 is required for both the stunting and the heightened resistance to aphids in 

ago1.25 mutant plants (Chapter 4; subsections 4.3.4, 4.3.5). Interestingly, the ICS1 gene was 

also required for the characteristic phenotype of ago1 mutant plants (Chapter 4 subsections 

4.3.3). Some of the ago1/ics1 plants were vigorous in growth and were larger in size. 

However, not all the progeny of ago1/ics1 plants had a recovery-like or a complete recovery 

of their ago1 phenotypes. The ago1/ics1 progeny that retained their ago1-like phenotypes 

also retained their heightened resistance to aphid infestation. Sequencing of a selection of the 

ago1/ics1 progeny indicated that the phenotype of an ago1/ics1 plant could not always be 

explained by their ago1 and ics1 genotypes. A cross between nahG transgenic plant and 

ago1.46 mutant plant confirmed that SA accumulation may be important in the ago1 

phenotype. However, expression levels of the SA accumulation marker PR-1 in ago1.25 

mutant plants were lesser than the expression levels of PR-1 in a WT plant. On the contrary, 

genes involved in auxin response and signalling were rather upregulated in the ago1 mutant 

plants and ago1/ics1 progeny (Chapter 4 subsection 4.4.1).   

 

 7.3.2 The ago1/ics1 mutant plants phenocopy jaw 1 D mutant plants and may have 

similar genetics   

Striking similarities were found between the ago1/ics1 progeny with enhanced growth and 

larger plant size (recovery-like phenotypes) and the phenotype of the jagged and wavy 

dominant (jaw 1D) mutant plants. The heavy serration, wavy margins and the rolling of the 

leaves of adult ago1/ics1 double mutant plants phenocopy the jaw 1D mutant plant (Chapter 

4; subsection 4.3.3). The mutant jaw 1D is a dominant T-DNA insertion mutant that 

accumulates over 90-fold more mir319 in comparison to a WT plant (Liu et al., 2010). 

mir319 regulates auxin response factors such as ARF16 and a group of five Cincinnata-like 
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Teosinte Brandeal/Cicadoidea/Proliferating cell factors (TCPs) that repress the cell 

proliferation activities of Knotted-like homeobox-1 (Knox1) genes particularly at the marginal 

regions of the leaf (Shani et al., 2009).  

 

Figure 7.1: The miR319 overexpressing mutant jaw 1D has similar phenotype as the majority 

of the ago1/ics1 double mutant plants (jaw-1D photo from Palatnik et al., 2003) (Scale bar = 

1cm). 

 

There are four Cin-like TCPs in Arabidopsis namely; Brevipedicellus (BP), Knotted-like from 

Arabidopsis thaliana 2 (KNAT2), KNAT6 and Shoot meristemless (STM). The role of these 

Cin-like TCPs is to precondition cells particularly at the marginal regions of the leaf to be 

more sensitive to the cell arrest front in the developing leaf. In the jaw 1D, the enhanced 

upregulation of mir319 results in the depletion of Cin-like TCPs therefore cells particularly at 

the marginal regions where intense activity of TCPs occurs proliferate to levels that cannot be 

accommodated by the basic structure of the leaf resulting in larger leaf with buckled and 

wavy leaf margins as a mechanism to contain the extra mediolateral cell proliferations 

(Figure 7.1) (Nath et al., 2003; Shani et al., 2009; Jiang et al., 2018). The ago1/ics1 progeny 

with jaw 1D-like phenotype are initially very vigorous in growth and larger in size than WT 

plants. This vigorous growth could possibly result in excessive proliferation of cells in both 

the mediolateral and proximal-distal axes of the ago1/ics1 progeny leaf laminar beyond the 

limit that could be accommodated by the basic structure of the leaf leading to the formation 

of larger and wavy leaves (Chapter 4; subsection 4.3.3). 

ago1/ics1 
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Another parallel between the jaw 1D mutant and the ago1/ics1 progeny is their non-

Mendelian inheritance patterns and the discrepancies between their genotypes and expressed 

phenotypes. A cross between jaw 1D and a mutant of the polycomb group protein Curly leaf 

(CLF) encoding gene, which also represses Knox1 genes results in F1 progeny that are all 

WT-looking. Selfing the heterozygous jaw ID +/- clf-29 +/- F1 plants results in a segregating 

F2 population of plants that are also all WT-looking irrespective of their genotypes. Selfing 

the WT-like F2 jaw 1D mutants (denoted as jaw 1D*) for four consecutive generations still 

results in progeny that are all WT looking despite the intact jaw 1D mutation (Figure 7.2.). 

The WT-like phenotype of the jaw 1D* progeny is as a result of clf-29 induced epigenetic 

silencing of the jaw 1D mutation such that mir319 levels in the jaw 1D* plants are 

comparable to that of a WT plant hence the WT-like phenotype of jaw 1D* plants despite 

their jaw 1D genotype. The clf-29 induced silencing of the jaw 1D mutation is stable enough 

to be inherited in subsequent generations even in the absence of the clf-29 mutation (Jiang et 

al., 2018). 
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Figure 7.2: Mutation in the CLF gene silences the jaw-1D mutation. The silenced jaw-1D 

mutation (jaw 1D*) is heritable irrespective of the presence of the clf mutation (From Jiang et 

al., 2018). 
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In the ago1 x ics1 cross there were progeny whose phenotypes could not be explained by 

their genotypes. For instance, the F3 AS14 ago1/ics1 plant had a WT-like phenotype (Figure 

7.3) despite having the exact genetic identity as ago1.25 mutant plant in terms of the AGO 1 

and ICS1 gene (Figure 7.3). Since the AS14 plant has a mutated AGO1 gene and a WT ICS1 

gene, it was expected to resemble ago1.25 mutant in phenotype but rather it was more WT-

like than ago1-like in appearance. Selfing the AS14 plants resulted in progeny the majority of 

which were WT-like and few of the progeny having ago1-like phenotypes (Figure 7.4). The 

progeny of AS14 plants were not used in the aphid experiments.  
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                      AS 14                                 ago1.25                           Col-0 WT           

Figure 7.3: Both ago1/ics1 progeny AS14 and ago1.25 mutant plant have the same mutation 

in their Ago1 gene and a WT ICS1 gene but they differ in their phenotypes.  (Scale bar = 

1cm). 

 

Figure 7.4: Progeny of ago1/ics1 plant AS14. The majority of AS14 progeny have WT-like 

phenotypes with few ago1-like individuals among the progeny (Scale bar = 1cm). 
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However, among the AS17 and AS20 progeny that were used in the aphid performance assay 

there were also plants whose phenotypes could not be explained by their genotypes.  It is 

possible the ics1 allele is paramutagenic to the ago1 allele such that when the two mutations 

occurred together in the F1 ago1/ics1 +/- the ics1 mutation induced epigenetic modifications 

of the ago1 allele which boosted the residual activity of expressed ago1 epiallele in the 

ago1/ics1 background. However, the newly generated ago1 epiallele was stable enough to be 

inherited in subsequent generations irrespective of the mutation status of the paramutagenic 

ics1 allele. The reappearance of ago1/ics1 progeny with ago1-like phenotypes indicate that in 

certain instances the ago1 epiallele loses it epigenetic modification and revert to its 

unmodified mutated state. Variations in epigenetic modifications are known to contribute to a 

diversity of phenotypes and nutritional qualities of plants with the same genotypes (Pignatta 

et al., 2014; Quadrana et al., 2014).  Also, the presence of both ago1 and ics1 on the same 

arm of Arabidopsis chromosome 1 may contribute to the complexities of their genetics and 

the disparities in their phenotypes since all the F2 ago1/ics1 plants were products of two 

independent recombination events. 

 

7.4 Exogenous application of salicylic acid induces resistance to Cucumber mosaic virus 

disease in pepper plants (Capsicum annuum var. California Wonder) 

SA is an important secondary metabolite essential for plant growth and defence against pests 

and pathogens (Malamy and Klessig, 1992; Hayat et al., 2010) In many incompatible host-

pathogen interactions, such as in TMV resistant-tobacco and TMV pathosystem, endogenous 

SA levels increase by 20-fold upon perception of the virus (Malamy et al., 1990). Increased 

resistance to pathogens is mostly associate with enhanced accumulation of SA (Malamy and 

Klessig 1992). Therefore, the effect of exogenously applied SA on the ability of pepper plants 

to resist CMV infection was investigated. Exogenous application of SA on pepper plants 

prior to CMV infection induced the expression of PR-1 and enhanced the resistance of the 

pepper plants to the CMV infection (Chapter 6; subsection 6.2.5). However, SA treatment or 

the expression of PR-1 in SA-treated plants does not always correlates with resistance to 

CMV infection. Exogenously applied 1 mM - 2 mM SA is adequate to induce resistance to 

CMV infection in pepper. However, 2 mM SA tend to be associated with slight crinkling of 

the pepper leaves. SA concentrations beyond the 5 mM concentration threshold is phytotoxic 

to pepper plants (Chapter 6: Section 6.2.3). The resistance to CMV infection observed among 
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the SA treated plants occurred through delay of symptom induction and in few cases 

avoidance of symptoms or infection by the induced pepper plants. 

 

7.5 Mutation in AGO1 gene enhances the resistance to aphid infestations observed in 

Arabidopsis 2b transgenic plants  

The CMV 2b protein directly interacts with and inhibits AGO1-mediated RNA cleavage in 

Arabidopsis (Gonzalez et al., 2010; Duan et al., 2012; Gonzalez et al., 2012). Mutation in the 

2b protein affects its efficiency to suppress RNA silencing (Goto et al., 2007). Therefore, I 

sought to investigate whether mutant AGO1 protein will also affect the resistance to aphids 

observed in 2b transgenic Arabidopsis plants. Resistance to aphids in the 2b/ago1 cross was 

higher than would have been expected if both mutations acted in independent pathways of 

aphid resistance. There was a deleterious synergistic interaction between the AGO1 and 2b 

proteins in relations to aphid resistance indicating that both proteins play a role in a common 

pathway of induced resistance to aphid infestations. Previous experiments in our lab indicated 

that AGO1 may potentially downregulate a 2b induced toxic metabolite against aphid 

infestation (Westwood et al., 2013). In line with this, a hypomorphic AGO1 will even be less 

effective in downregulating the 2b induced toxic metabolite against aphid infestation hence 

resulting in the observed heightened resistance to aphids in the progeny of the 2b/ago1 cross.  

The 2b/ago1 crosses were also severely deformed in comparison to either of their ago1.25 

mutant or 2b-transgenic parental plants. The deleterious epistatic interactions between the 2b 

protein and the ago1 protein may have contributed to the severity of the 2b/ago1 

developmental deformities.  

 

7.6 Future work 

 

7.6.1 Measuring 4-OH-ICN levels in cyp82C2 mutant plants 

Measuring levels of 4-OH-ICN in the cyp82C2 mutant plants and also in WT plants will 

indicate whether the cyp82C2 mutant plant is completely devoid of all 4-OH-ICN metabolite 

after aphid infestation. Quantitative levels of 4-OH-ICN in the cyp82C2 mutant plants will 

then clarify whether the observed performance of aphids on the cyp82C2, fox1, 

ago1/cyp82C2 and fox1/ago1 were due to non-involvement of 4-OH-ICN metabolite in aphid 

resistance or rather the biosynthesis of 4-OH-ICN was compensated by enzymes similar to 
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the mutated or knock-out 4-OH-ICN biosynthetic enzymes. Aphids could then be fed on 

synthesized 4-OH-ICN to assess the effect the artificial diet will have on the performance of 

the aphids. 

 

7.6.2 Does Cyp82C3 compensate for the loss of Cy82C2? 

Mutation in Cyp82C3 alone does not affect aphid growth or reproduction possibly due to 

compensation of the absence of Cyp82C3 by Cyp82C2. The cytochrome P450 encoded by 

both genes share 86% identity in their amino acid sequences and may potentially act as 

substitute enzymes in the absence of the other. Generating a cyp82C2/cyp82C3 double 

mutant plant to assess the performance of aphids on this double mutant plant and possibly 

introducing the mutations into ago1 background will aid in deciphering whether both 

enzymes can compensate for the absence of the other. 

 

7.6.3 Is accumulation of SA directly responsible for the ago1 phenotype? 

Accumulation of SA in most cases results in enhanced expression of PR-1 transcripts. The 

ago1/nahG cross indicates that SA accumulation plays a role in the phenotype of ago1 

mutant plants. However, PR-1 expression is lower in ago1 mutant plants than a WT plant. 

Therefore, it will be prudent to quantitatively measure the levels of SA accumulation in 

ago1.25 mutant plants to indicate the extent of its SA accumulation and whether 

accumulation of SA in the ago1 mutant plant does not result in the expression of PR-1. 

 

7.6.4 Does exogeneous SA application reverts ago1/ics1 progeny with recovery-like 

phenotypes into ago1-like phenotypes? 

Another method of assessing if accumulation of SA is responsible for the ago1 phenotype is 

to spray and/or water ago1/ics1 seedlings that have recovery-like phenotypes with SA and 

observe if there will be any significant changes in the phenotypes of the ago1/ics1 plants. A 

reversion of phenotype will be a good indication that SA accumulation is important to the 

Arabidopsis ago1 phenotype. 
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7.6.5 Basis of the spontaneous necrotic lesion formation in ago1/ics1 plants 

The vigorous growth of ago1/ics1 plants is halted by the 8 weeks post planting due to the 

spontaneous onset of necrotic lesions on the leaves of the ago1/ics1 plants. All progeny of 

ago1/ics1 plants including plants with recovery-like phenotypes and those with ago1-like 

phenotypes undergo varying degrees of this spontaneous necrotic lesion formation. It will be 

interesting to investigate the mechanism behind the sudden onset of necrotic lesions on the 

ago1/ics1 progeny and how they reduce plant growth vigour.  

 

7.6.6 Basis for the disparities in the phenotypes of ago1/ics1 plants 

Epigenetic modifications and DNA damage repair mechanisms have been proposed to partly 

account for the observed disparities between the phenotypes and genotypes of ago1/ics1 

progeny.  Examining the expression levels of DNA damage repair markers such as At.MSH2 

and At.ATM and the use of appropriate DNA methylation assays to assess the methylated 

statuses of the  ago1 and ics1 alleles will be beneficial in deciphering whether epigenetics or 

DNA damage repair contribute to the genetics of the ago1/ics1 progeny.  

 

7.6.7 Is the accumulation of auxins responsible for ago1/ics1 phenotypes? 

The enhanced expression of auxin response genes involved in auxin signalling indicates that 

de-repressed auxin signalling and auxin accumulation in the ago1/ics1 progeny could directly 

be responsible for the vigorous growth observed in ago1/ics1 seedlings and juvenile 

vegetative stage plants. Although auxin response factors and genes involved in auxin 

signalling are also upregulated in the ago1.25 mutant plants they do not result in enhanced 

growth of the mutant.  A preliminary quantitative measure of free indole acetic acid in both 

the ago1/ics1 and ago1 mutant plants will indicate if auxin levels in these mutants are higher 

than levels of auxin in WT or ics1 mutant plants. 
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Appendix I: List of Primers Used in this Study 
 

At. = Arabidopsis thaliana 

Ca. = Capsicum annuum 

 

Primer ID Target Gene Sequence Reference 

nahG nahG  CACCGGGCGGATTTCAT Gallego-

Giraldo et al., 

2011 
  CCCGAATTGGGCGATACC 

    

ago1.46 At.AGO1 TGCAAGATGCACACGCTCAGTTTC Earley et al., 

2010   TGATGTCTCTGGCTCCATGTAGAAGCTAG 

    

SPL10 At.SPL10 TGTGGAATGGGTTGTCCCTTA  

  CCACCAGATGTTTGAAACGCA  

    

ARF8 At.ARF8 TAGAACCCGGAAATCCGCAG  

  GCCTAGAACAAACCAGCACC  

    

AUX1 At.AUX1 GCACTTCTCGACCACTCCAA  

  AGATGTTATACCTGACGAGCG  

    

GH3.5 At.GH3.5 TGGATGTGATTGTGACCGGG    

  AGTTTTGTTTTCTTACCGGCGT  

    

ARF2 At.ARF2 TGTTAATGACAGCAGGATGGG  

  CCGATACCAGCCTCCGACTA    

    

SID SNP C At.ICS1 CCTTCGTAAGTCTCCCTGCCAATCG   

  TGCAGCTTCAATGCTTCATTTCTTGGATA  

    

AGO SNP 

C 

At.AGO1 GGTGAGGGTGGGTAACATCAGCAGC  

  GGTGATTTGAAACGCATATGTGAGACTGAAC  

    

SLK 

CYP82C3N 

At.CYP82C3 TGGGAGCAGTTTTGAGGTGG  

  TGTGTAGATAAAGTGTACCAGGCA  

    

SLK FOX1 At.FOX1 TGAGTGCTGAAGGTTACTCCG   

  ATAAAACCATGCAGGGCCGA  

    

AGO1.25N At.AGO1 TCAGGCCAATCCTGAGATGC  

  TGCTTAGGAACACACTCTCAACT  

    

SID2N At.ICS1 ACGACCTCGAGTTCTCTATCGT  
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  TCGAAGAAATGAAGAGCTTGGAAA  

    

LBb 1.3 T-DNA 

(Salk line) 

ATTTTGCCGATTTCGGAAC Salk iSect 

Primers 

    

RGM1 At.RGM1 AAGCTAGGTCAGAGAGCCCA  

  AAGCTCCCATTCCGTTGGAG  

    

CYP71A12 

cDNA 

At.CYP71A12 AAGTCCTCTTTATGATTACCTGCC  

  GCTCAAGAGGTATTGAAAACACAC  

    

FOX1 

cDNA 

At.FOX1 CAACATTGTCTTCCAAATCTTCTC  

  GTAGGAGCTGGAGGACACATAAG  

    

CYP82C2 

cDNA 

At.CYP82C2 AACAGCTTCTTTACCGAACCTTAG  

  AACCAGCTCTTTAGATCAACCATT  

    

GGP1 

cDNA 

At.GGP1 ATGATGATTGGATCCTTAAGCTCT  

  TCTTGGAATACGCAAGCACTTTAG  

    

Ca.Actin Ca.Actin CACTGAAGCACCCTTGAACCC  

  GAGACAACACCGCCTGAATAGC  

    

CMV CP CMV CP CGTTGCCGCTATCTCTGCTAT  

  GGATGCTGCATACTGACAAACC  

    

At.82C2 

gDNA 

At.CYP82C2 CCAAACACACATCTCTTTTGCAC   

  GCATCTTCAGGGGATAACGAG   

    

At.Fox1 

gDNA 

At.FOX1 CCTCACCCTTGATAAAAG   

  TTTATTGAATGCCTTCGG   

    

At.GGP1 

gDNA 

At.GGP1 AGATCTGGAGAAATACGATGGCT   

  ATAAAACCAACCTTGACGTAGCC   

    

CYP71A12 

gDNA 

At.CYP71A12 CCATGGAGGCTTCCGTTGAT  

  TGTCTATCCATGCCAAAGCC   

    

LB_o8474 T-DNA 

(GABI Kat) 

ATAATAACGCTGCGGACATCTACATTTT Kleinboelting 

et al., 2012 
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Appendix II: Statistical Tests for Data Presented in Chapter 3 
 

Figure Test F Ratio 
Degree of 

freedom 
p-value Interpretation 

Figure 3.10 ANOVA 2.337 2 0.112 Not Significant 

Figure 3.11A ANOVA 34.2 3 4.53 x 10^-12 Significant 

 Tukey   

ago1/cyp82C2 vs. ago1.25      

 

0.0677574 Not Significant 

WT vs. ago1.25       

 

0.0000000 Significant 

cyp82C2 vs. ago1.25     

 

0.0000001 Significant 

WT vs. ago1/cyp82C2    

 

0.0000001 Significant 

cyp82C2 vs. ago1/cyp82C2   

 

0.0003413 Significant 

cyp82C2 vs. WT 

 

0.1017521 Not Significant 

Figure 3.11B ANOVA 53.77 3 1.95 x 10^-14 Significant 

 Tukey   

WT vs. ago1.25        

 

0.0000000 Significant 

fox1 vs. ago1.25     

 

0.0000000 Significant 

fox1/ago1 vs. ago1.25     

 

0.5963932 Not Significant 

fox1 vs. WT 

 

0.9998589 Not Significant 

fox1/ago1 vs. WT  

 

0.0000000 Significant 

fox1/ago1 vs. fox1  

 

0.0000000 Significant 

Figure 3.12A ANOVA 16.62 2 6.73 x 10^-5 Significant 

 Tukey   

ago1/cyp82C2 vs. ago1.25        

 

0.0934412 Not Significant 

WT vs. ago1.25       

 

0.0149896 Significant 

WT vs. ago1/cyp82C2   

 

0.0000428 Significant 

Figure 3.12B ANOVA 19.95 3 1.78 x 10^-7 Significant 

 Tukey   

WT vs. ago1.25   

 

0.0000069 Significant 

fox1 vs. ago1.25    

 

0.0002079 Significant 

fox1/ago1 vs. ago1.25 0.8727300 Not Significant 
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fox1 vs. WT  

 

0.6413878 Not Significant 

fox1/ago1.25 vs. WT 

 

0.0000077 Significant 

fox1/ago1.25 vrs-fox1  

 

0.0001489 Significant 

Figure 3.14 ANOVA 1.368 2 0.268 Not Significant 
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Appendix III: Statistical Tests for Data Presented in Chapter 4 
 

Figure 
Statistical 

Test 
F Ratio 

Degree of 

Freedom 
p-value Interpretation 

Figure 4.5 ANOVA 40.74 5 5.85 x 10^-3 Significant 

Figure 4.16A ANOVA 7.853 3 0.00041 Significant 

 Tukey 

ago1/ics1 vs. ago1.25 0.0292524 

 

Significant 

WT vs. ago1.25 0.0384863 

 

Significant 

ics1 vs. ago1.25 0.0003435 

 

Significant 

WT vs. ago1/ics1 0.9956114 

 

Not Significant 

ics1 vs. ago1/ics1   0.4559289 

 

Not Significant 

ics1 vs. WT 0.6918716 

 

 

Not Significant 

Figure 4.16B ANOVA 6.772 4 0.000456 Significant 

 Tukey 

ago1/ics1 (AS17 1.1) vs. ago1.25       

 

0.0315292 Significant 

ago1/ics1(AS20) ago1like vs. ago1.25    

 

0.9999975 Not Significant 

WT vs. ago1.25           

 

0.0282195 Significant 

ics1 vs. ago1.25            

 

0.0070406 Significant 

ago1/ics1 (AS20 ago1-like) vs. ago1/ics1 (AS17 1.1)  

 

0.0279951 Significant 

WT vs. ago1/ics1 (AS17 1.1)         

 

0.9998826 Not Significant 

ics1 vs. ago1/ics1 (AS17 1.1)           

 

0.9511048 Not Significant 

WT vs. ago1/ics1 (AS20 ago1-like)      

 

0.0252484 Significant 

ics1 vs. ago1/ics1 (AS20 ago1-like)      

 

0.0059467 Significant 

ics1 vs. WT           

 

0.9811939 Not Significant 

Figure 4.17 ANOVA 66.87 7 2.0 x 10^-16 Significant 
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Appendix IV: Statistical Tests for Data Presented in Chapter 5 
 

Figure 
Statistical 

Test 
F Ratio 

Degree of 

freedom 
p-value Interpretation 

Figure 5.3 ANOVA 7.86 3 0.000514 Significant 

 

Figure 5.3 

Tukey   

2bago vs. 2b       

 

0.0702717 Not Significant 

ago1.25 vs. 2b     

 

0.9979490 Not Significant 

WT vs. 2b          

 

0.5708688 Not Significant 

ago1.25 vs. 2bago  

 

0.0440319 Significant 

WT vs. 2bago       

 

0.0003482 Significant 

WT vs. ago1.25     

 

0.3496302 Not Significant 
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Appendix V: R-Codes Used for Data Analyses 
 

I. R-code for Analysing Aphid Mean Relative Growth Rate Data 

mrgr<-read.csv(file.choose(),header = T) 

aggregate(aphid~plant,data = mrgr,summary) 

boxplot(aphid~plant,data = mrgr) 

ANOVA.mrgr<-aov(aphid~plant,data = mrgr) 

summary(ANOVA.mrgr) 

TukeyHSD(ANOVA.mrgr) 

gpmean<-aggregate(aphid~plant,data = mrgr,mean) 

newdf<-as.data.frame(gpmean) 

newdf[1,]<-gpmean[4,] 

newdf[2,]<-gpmean[1,] 

newdf[3,]<-gpmean[3,] 

newdf[4,]<-gpmean[2,] 

semean<-aggregate(aphid~plant,data = mrgr,FUN = function(x) sd(x)/sqrt(length(x))) 

newdfse<-as.data.frame(semean) 

newdfse[1,]<-semean[4,] 

newdfse[2,]<-semean[1,] 

newdfse[3,]<-semean[3,] 

newdfse[4,]<-semean[2,] 

barplot(newdf$aphid,names.arg = c("Col", "2b", "ago1", "2bago"),ylim = c(0,0.50), ylab 

="MRGR") 

segments(0.7,newdf[1,2]+newdfse[1,2],0.7,newdf[1,2]-newdfse[1,2]) 

segments(1.9,newdf[2,2]+newdfse[2,2],1.9,newdf[2,2]-newdfse[2,2]) 

segments(3.1,newdf[3,2]+newdfse[3,2],3.1,newdf[3,2]-newdfse[3,2]) 

segments(4.3,newdf[4,2]+newdfse[4,2],4.3,newdf[4,2]-newdfse[4,2]) 
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II. R-code for Analysing Aphid Colony Size Data 

 

col<-read.csv(file.choose(),header = T) 

aggregate(colony~plant,data = col,summary) 

boxplot(colony~plant,data = col) 

ANOVA.col<-aov(colony~plant,data = col) 

summary(ANOVA.col) 

TukeyHSD(ANOVA.col) 

gpmean<-aggregate(colony~plant,data = col,mean) 

newdf<-as.data.frame(gpmean) 

newdf[1,]<-gpmean[4,] 

newdf[2,]<-gpmean[1,] 

newdf[3,]<-gpmean[3,] 

newdf[4,]<-gpmean[2,] 

semean<-aggregate(colony~plant,data = col,FUN = function(x) sd(x)/sqrt(length(x))) 

newdfse<-as.data.frame(semean) 

newdfse[1,]<-semean[4,] 

newdfse[2,]<-semean[1,] 

newdfse[3,]<-semean[3,] 

newdfse[4,]<-semean[2,] 

barplot(newdf$colony,names.arg = c("Col", "2b", "ago1", "2bago"),ylim = c(0,25), ylab 

="Colony Size") 

segments(0.7,newdf[1,2]+newdfse[1,2],0.7,newdf[1,2]-newdfse[1,2]) 

segments(1.9,newdf[2,2]+newdfse[2,2],1.9,newdf[2,2]-newdfse[2,2]) 

segments(3.1,newdf[3,2]+newdfse[3,2],3.1,newdf[3,2]-newdfse[3,2]) 

segments(4.3,newdf[4,2]+newdfse[4,2],4.3,newdf[4,2]-newdfse[4,2]) 
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III. R-code for Analysing Aphid-Induced Loss of Plant Biomass Data 

 

Arabwt<-read.csv(file.choose(),header = T) 

aggregate(weight~plant,data = Arabwt,summary) 

boxplot(weight~plant,data = Arabwt) 

ANOVA.weight<-aov(weight~plant,data = Arabwt) 

summary(ANOVA.weight) 

TukeyHSD(ANOVA.weight) 

gpmean<-aggregate(weight~plant,data = Arabwt,mean) 

newdf<-as.data.frame(gpmean) 

newdf[1,]<-gpmean[6,] 

newdf[2,]<-gpmean[5,] 

newdf[3,]<-gpmean[8,] 

newdf[4,]<-gpmean[7,] 

newdf[5,]<-gpmean[4,] 

newdf[6,]<-gpmean[3,] 

newdf[7,]<-gpmean[2,] 

newdf[8,]<-gpmean[1,] 

semean<-aggregate(aphid~plant,data = mrgr,FUN = function(x) sd(x)/sqrt(length(x))) 

newdfse<-as.data.frame(semean) 

newdfse[1,]<-semean[6,] 

newdfse[2,]<-semean[5,] 

newdfse[3,]<-semean[8,] 

newdfse[4,]<-semean[7,] 

newdfse[5,]<-semean[4,] 

newdfse[6,]<-semean[3,] 

newdfse[7,]<-semean[2,] 

newdfse[8,]<-semean[1,] 

barplot(newdf$weight,names.arg = c("Col.M","Col.A", "ICS1.M", "ICS1.A", "AS17.1.4M", 

"AS17.1.4A", "Ago.M", "Ago.A"),ylim = c(0,0.16), ylab ="Dry Weight") 
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segments(0.7,newdf[1,2]+newdfse[1,2],0.7,newdf[1,2]-newdfse[1,2]) 

segments(1.9,newdf[2,2]+newdfse[2,2],1.9,newdf[2,2]-newdfse[2,2]) 

segments(3.1,newdf[3,2]+newdfse[3,2],3.1,newdf[3,2]-newdfse[3,2]) 

segments(4.3,newdf[4,2]+newdfse[4,2],4.3,newdf[4,2]-newdfse[4,2]) 

segments(5.5,newdf[5,2]+newdfse[5,2],5.5,newdf[5,2]-newdfse[5,2]) 

segments(6.7,newdf[6,2]+newdfse[6,2],6.7,newdf[6,2]-newdfse[6,2]) 

segments(7.9,newdf[7,2]+newdfse[7,2],7.9,newdf[7,2]-newdfse[7,2]) 

segments(9.1,newdf[8,2]+newdfse[8,2],9.1,newdf[8,2]-newdfse[8,2]) 


