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INSIGHTS INTO POLYMERISATION OF 

FTSZ AND OTHER CYTOMOTIVE 

FILAMENTS 

James Mark Wagstaff 

Abstract 

Protein filaments are used in different ways to organise other molecules in space and time 

within cells. Some proteins form filaments that couple hydrolysis of nucleotides to their 

polymerisation cycle in order to power the directed movement of other molecules, these 

filaments are termed cytomotive. Only members of the actin and tubulin superfamilies are 

known to form cytomotive filaments. The protein FtsZ, a homologue of eukaryotic tubulins, 

forms cytomotive filaments that are used in almost all bacteria and many archaea to 

organise cell division. 

Here I show using X-ray crystallography and electron cryomicroscopy (cryoEM) that FtsZ 

switches conformation when it polymerises into filaments. I then show using cryoEM that 

this conformational switch is likely needed for recognition of filaments by the widely 

conserved filament cross-linking protein ZapA. I also present the development of a high-

throughput assay for detection of better FtsZ inhibitors, which uses principles derived from 

the structural studies. Finally, I demonstrate that the conformational switch upon 

polymerisation seen in FtsZ is conserved within the tubulin superfamily, that actin 

superfamily members also exhibit a conserved conformational switch upon 

polymerisation, and that having such a switch explains the coupling of kinetic and 

structural polarities required for cytomotivity of the filaments formed by these protein 

families. 
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1 INTRODUCTION 

Much of this introduction derives from initial drafts of (Wagstaff and Löwe, 2018), and roughly 

follows its structure. Some sections are quoted verbatim. 

Cellular life is complex and to make it work a great number of systems are in place to 

enforce more or less strict choreography on the molecules within the cell. The role of 

“cytoskeletons” in organising the cytoplasm of eukaryotic cells has been recognised since 

the earliest visualisations of chromosome segregation; and was once considered a feature 

distinguishing eukaryotic cells from their anucleate prokaryotic cousins. We now know that 

most, if not all, prokaryotic cells also contain at least one protein filament system 

responsible for organising other molecules in space and time. While these filament systems 

in some cases form structures comparable to eukaryotic cytoskeletons, the term prokaryotic 

cytoskeletons is used to loosely and non-exhaustively refer to many different kinds of 

protein filaments. These systems are united by the functional properties which stem from 

polymerisation, and the resulting ability to access length scales bigger than the size of the 

monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of cell 

biology, and are most prevalent in processes of cell shape determination, cell division, and 

non-chromosomal DNA segregation. Some, but by no means all, of the filament-forming 

proteins fall into a small number of conserved groups, in particular the almost ubiquitous 

tubulin and actin families. Understanding what makes these molecular architectures 

special and, above all, useful in the cellular context demands the study of diverse examples 

of each, and 25 years of investigation have yielded structural and functional data on 

cytoskeletal molecules from many bacteria and archaea. This progress is summarised here. 

1.1 Cytoskeletons 

Eukaryotic cytoskeletons are canonically defined by their constitutive protein components: 

actin, tubulin and intermediate filaments (IFs). These three families of filament-forming 

proteins are involved in a diverse set of processes that require long-range organisation of 

subcellular components, across broad time and length scales. In particular, protein 

filaments are used in eukaryotes for control of cell and endomembrane morphology 

(dynamically and for long term maintenance of shape), as a scaffold for long-range 

organisation of cytoplasmic processes (including as a support matrix for cytoskeleton-

associated motor proteins, which apparently do not exist in prokaryotes), and for directly 
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pushing and pulling other molecules in the cytoplasm (especially for the segregation of 

DNA during division). 

The existence of prokaryotic cytoskeletons was first postulated more than 25 years ago in 

analogy to eukaryotic counterparts when a protein related to tubulin, FtsZ, was discovered 

in bacteria and archaea and found to have a role in cytokinesis (Bi and Lutkenhaus, 1991; de 

Boer et al., 1992; Löwe and Amos, 1998; Mukherjee et al., 1993; RayChaudhuri and Park, 1992; 

Wang and Lutkenhaus, 1996). Prokaryotic actin followed about 5 years later when MreB's 

role in cell shape maintenance was linked to its polymerisation (Bork et al., 1992; van den 

Ent et al., 2001; Jones et al., 2001). Many other discoveries have followed since then, 

including more relatives of eukaryotic cytoskeletal filaments (Ausmees et al., 2003; Derman 

et al., 2009; Duggin et al., 2015; Ettema et al., 2011; Obita et al., 2007; Szwedziak et al., 2012), 

but also entirely new classes of filaments  such as those formed by bactofilin, SepF, and 

DivIVA proteins (Bartlett et al., 2017; Kühn et al., 2010; Ramamurthi and Losick, 2008), 

leading to an expanded concept of what a cytoskeleton can be. We now know that, even at 

their comparatively small typical cell sizes, prokaryotes often require the function of 

protein filaments and their ability to act as large, and often dynamic, assemblies of 

monomers (cytoskeletons) in order to accomplish cellular processes on large length scales 

(reviewed (Amos and Löwe, 2017)). This is because prokaryotic cells are still extremely big 

when compared to individual proteins or even large protein complexes such as ribosomes. 

Protein filaments may have been an important innovation in the evolution of early cells. 

Figure 1-1 summarises the diversity of prokaryotic cytoskeletons reviewed here. Like 

eukaryotic cytoskeletons, prokaryotic cytoskeletons rely on interactions between filament 

forming proteins and a vast number of other proteins to modulate or provide function. 

These accessory factors are mostly not discussed here.  

Below, the rapidly advancing state of our knowledge regarding the molecular biology of 

known filament-forming proteins in prokaryotes is summarised, with the filaments placed 

where possible into evolutionarily or structurally related classes. This classification reveals 

that diverse biological functions are carried out by strikingly similar filaments, and the 

converse: that a given biological function is carried out in different organisms by unrelated 

filaments. Mechanistic understanding at a molecular level, incomplete in almost all cases, 

is the key to making sense of whether and how the diversity observed in filament systems 

relates to the awe inspiring diversity of natural history seen across the prokaryotic universe. 
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Figure 1-1 – Prokaryotic cytoskeletons discussed here 

Rows shaded blue refer to bacterial systems, those in red are archaeal.   

Protein  Cartoon Distribution  Function  

Tubulin superfamily  

FtsZ   Almost all bacteria.  Organisation of cell division processes.  

    Almost all Euryarchaeota. Some other archaea.  Organisation of cell division processes.  

FtsZm   Some magnetotactic bacteria.  Unclear role in magnetosome function.  

CetZ   Some Euryarchaeota.  Control of cell shape. 

TubZ   
Diverse bacterial plasmids, bacteriophage 
genomes, some chromosomal copies.  

Segregation of plasmids and phage DNA, 
others unknown.  

BtubAB   Prosthecobacter spp. (Verrucomicrobia). Unknown.  

Artubulin  ? Some Thaumar cheota.  Unknown.  

FtsZl ? Diverse bacteria. Unknown, possibly membrane remodelling.  

  ? Diverse Euryarchaeota , possibly Crenarchaea.  Unknown, possibly membrane remodelling.  

Actin superfamily  

MreB   Almost all non-coccoid bacteria.  Organisation  of cell wall synthesis.  

  ? 
Archaeal actins whose closest homologues are 
MreB remain unstudied.  

Unknown.  

FtsA   Many  bacteria. Not identified in archaea.  Cooperates with FtsZ during cell division.  

MamK   Magnetotactic bacteria. Alignment of ma gnetosomes . 

ParM-like   
Diverse bacterial plasmids, bacteriophage 
genomes, some chromosomal copies.  

Segregation of plasmids and phage DNA, 
others unknown.  

  ? 
A group of archaeal actins,  including Ta0583,  is 
related to bacterial ParMs.  

Unknown.  

Crenactin ? Some Crenarchaea.  Putative role in cell division.  

Coiled coil filaments  

Crescentin   Caulobacter spp. 
Required for cell curvature, modulates cell wall 
synthesis.  

Scy, FilP   Actinobacteria  Role in organisation of polar growth.  

CCRPs ? Diverse bacteria. Diverse cytoskeletal roles, mostly unknown.  

DivIVA   Most Gram positive bacteria  and some others. 
Varied roles in organisation of growth at poles 
and division.  

ESCRT   
Diverse archaea. Ubiqui tous in some classes of 
Crenarchaea. 

Division in some cases. Others unknown.  

CrvA   Vibrio spp. Promotes cell curvature. 

Other filament systems  

Bactofilins  ? Diverse bacteria. Control of cell shape. Mostly unknown.  

SepF   Most Gram positives, all Cyanobacteria.  Cooperates with FtsZ during cell division.  

 ? 
FtsZ containing archaea (Euryarchaeota and 
others). 

Putative FtsZ membrane anchor.  

PopZ 
 

Some Gram negatives.  Cell pole marker, signalling hub.  

SpoIVA  Sporulating Firmicutes.  Forms a protein coat around forespores.  

Periplasmic 
flagella   

Spirochetes.  
Forms helical cytoskeleton and produce 
motility.  

Fibril 
 

Spiroplasma spp.  Forms cytoskeletal ribbon.  

Rows shaded in blue are bacterial proteins, those in red are archaeal
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1.2 The tubulins 

Homologues of eukaryotic tubulin are widely distributed and are involved in many 

different cellular processes, in many different ways, often using the dynamic properties of 

tubulin filaments for “cytomotive” functions (Figure 1-1). The concept of cytomotivity is an 

important one, to which I will return many times. In short, cytomotive filaments are a subset 

of cytoskeletal ones which catalyse the hydrolysis of nucleotides in a way that is coupled to 

the (de)polymerisation cycle of the filament subunits, allowing the filament to directly push 

or pull other molecules around in the cytoplasm. I dicuss this concept in detail in the 

context of FtsZ in Section 2.1.8, and more broadly in Section 2.4. 

Tubulin superfamily members share a distinctive globular domain formed of two 

independently folded but closely associated subdomains, the N-terminal GTPase domain 

(Structural Classification of Proteins (SCOP) ID: 52490) and the C-terminal activation 

domain (SCOP: 55307) (Figure 1-2). The subdomains are separated by the ‘core helix’ (Helix 

7 in the consensus topology scheme (Nogales et al., 1998)). Polymerisation occurs via 

association of one monomer’s GTP-bound GTPase domain with another’s activation 

domain, altogether forming a catalytically active GTPase site around a GTP molecule at the 

centre of the intersubunit interface. The intrinsic nucleotide hydrolysis activity of the 

tubulin polymer, and the reduced stability of a GDP-containing intersubunit interface, 

make the protofilament dynamic. 

We have a good structural understanding of the conserved tubulin protofilament 

architecture (Figure 1-2A). This basic protofilament has been repurposed several times by 

cellular genomes and by mobile genetic elements including plasmids and viruses, often 

forming higher order filaments in these cases (Figure 1-2B). 
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Figure 1-2 – Tubulin superfamily filaments 

A Subunit structures and longitudinal contacts in tubulin superfamily protofilaments. Pairs of 

monomers are shown in cartoon representation, with nucleotides as magenta spheres. In each case 

the lower subunit is coloured blue to red, N terminus to C terminus, and the upper subunit is white. 

The lower monomer in each case was aligned to FtsZ’s lower monomer. The PDB ID of the model 

used to generate the interface (and the filament structure) is given below each dimer. CryoEM derived 

structures indicated with †, X-ray structures with ‡. 

B Diverse tubulin superfamily filament structures, shown as surface representations. An individual 

protofilament in each filament is highlighted in darker colour(s). A/a subunits of heterodimers are 

coloured blue, B/b are green. All protofilament interfaces are in roughly the same vertical orientation 

as those in A. The number of protofilaments (pf) forming each filament is given below. CetZ filament 

structure remains unknown. The microtubule is at a smaller scale. 

C Schematic inferred phylogeny of the tubulin superfamily, a conservative consensus based on two 

analyses (Duggin et al., 2015; Makarova and Koonin, 2010). The base of the tree is poorly resolved 

and not possible to root confidently. 

D Domain schematics for the representative family members presented here. The sequence region 

corresponding to the conserved globular domain is shown in blue, other regions are thought to be 

unstructured in all cases. The FtsZ interaction hub is highlighted – this is the short sequence which 

folds-upon-binding to FtsA, ZipA, MinC, and others. 
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1.2.1 FtsZ – the organiser of bacterial cell division 

FtsZ was the first component of a prokaryotic cytoskeleton to be suggested as such (Bi and 

Lutkenhaus, 1991; de Boer et al., 1992; Löwe and Amos, 1998; RayChaudhuri and Park, 1992). 

FtsZ is composed of the common bipartite globular tubulin domain at the N-terminus 

which is separated by a disordered linker of variable length from a short, conserved, C-

terminal region responsible for mediating most interactions with other proteins (reviewed 

(Erickson et al., 2010)). 

FtsZ is localised near but not bound to the membrane at future division sites in almost all 

bacteria and most archaeal phyla (Lindås and Bernander, 2013; Wang and Lutkenhaus, 1996) 

as a ring-like structure, the so-called Z-ring. During cytokinesis, the Z-ring contracts. In 

bacteria, FtsZ is amongst the first molecules to arrive during the assembly of a poorly 

characterised macromolecular complex known as the divisome, which incorporates many 

of the enzymatic activities and other functional modules needed to carry out cytokinesis 

and remodel the cell wall (reviewed (Haeusser and Margolin, 2016)). The central role of FtsZ 

in cell division of bacteria, although well established (Haeusser and Margolin, 2016), has 

recently been characterised using new light microscopy techniques that have changed 

perspectives somewhat (Bisson-Filho et al., 2017; Coltharp et al., 2016; Loose and Mitchison, 

2014; Strauss et al., 2012; Yang et al., 2017). Higher resolution imaging (in time and space) of 

the Z-ring, including in live bacteria, and improved pulsed labelling of newly synthesised 

peptidoglycan, suggest a model for FtsZ function whereby relatively short FtsZ filaments 

treadmill circumferentially around the division plane, and in doing so drive cell-wall 

remodelling divisomes around with them. Divisome procession would therefore result in 

the laying-down of peptidoglycan around the septum, ultimately leading to scission of 

daughter cells. Treadmilling is a theoretically well understood property of multi-stranded 

filaments but until recently it was not clear how a single-stranded filament like FtsZ could 

show this behaviour (Wagstaff et al., 2017). Recent electron cryotomography of whole cells 

from many species early in division (Yao et al., 2017) shows that division often initiates 

asymmetrically, at a single position on the division plane, and initial ingression of the cell 

wall is able to proceed with only short FtsZ filaments present at the point of ingression on 

the interior of the cell, presumably locally organising wall remodelling. 

This emerging picture conflicts with previous suggestions that overlapping FtsZ filaments, 

probably encircling the entire cell, directly drive division of, at least, the plasma membrane, 

by maximising overlap or via iterative bending (Erickson et al., 2010; Szwedziak et al., 2015). 
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Although many questions remain unanswered it now seems likely that FtsZ filaments in 

bacteria are probably required mostly for organising the machinery of division in space and 

time, rather than manipulating membranes directly - although the two are certainly not 

mutually exclusive (Bisson-Filho et al., 2017). An appealing hypothesis is that an ancient 

function of FtsZ to shape membranes has been complemented or largely replaced with its 

role in divisome orchestration in bacteria. The mechanism of FtsZ function in archaea 

remains almost totally unexplored, although many euryarchaeal genomes additionally 

encode a member of a divergent group of FtsZs, termed FtsZ2 (Vaughan et al., 2004) (Figure 

1-2C), which are also involved in division. Most plastids (Osteryoung and Pyke, 2014) and 

many mitochondria (Kiefel et al., 2004) also use FtsZs during division, these are 

unsurprisingly most closely related to bacterial FtsZs. 

Some magnetotactic bacteria contain an additional FtsZ-like protein, termed FtsZm which 

does not have the C-terminal extension required for interaction with many partners, 

including FtsA (Richter et al., 2007; Uebe and Schüler, 2016). The role of FtsZms is unclear, 

although they apparently copolymerise with standard FtsZ and are thus recruited to the Z-

ring, and they have been implicated in redox dependent regulation of magnetosome 

biogenesis (Müller et al., 2014). 

1.2.2 CetZ – a divergent tubulin used for cell shape determination in some 
archaea 

A distinct group of tubulin superfamily genes are found in some Euryarchaeal genomes 

coexisting with division-related FtsZ(s), often several examples are present per genome 

(archaeal tubulins reviewed (Aylett and Duggin, 2017)). Their sequences cluster away from 

both eukaryotic tubulins and bacterial and archaeal FtsZs, and share features with both. 

These proteins were recently investigated in the model Haloarchaeum Haloferax volcanii 

(Duggin et al., 2015), and the group are now named ‘CetZ’ after the prototypical member 

characterised in that work: ‘cell structure-related Euryarchaeota tubulin/FtsZ homologue 

1’. CetZ1 is required in H. volcanii for differentiation of the typically irregular plate-shaped 

cells into a rod-form required for efficient swimming motility. CetZ1 forms dynamic 

cytoplasmic filaments, including at the membrane, which are required for its function in 

cell shape control. The mechanism by which CetZ proteins modulate cell shape is 

unknown, although localisation of the protein was shown to be related to membrane 

curvature. 
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1.2.3 TubZ – tubulins used for segregation of non-chromosomal DNA in 
bacteria 

TubZs are a diverse but likely monophyletic group of tubulin superfamily members 

predominantly encoded on bacterial plasmids and in phage genomes (reviewed (Fink and 

Aylett, 2017)). They include the type III systems of plasmid segregation (Larsen et al., 2007; 

Tinsley and Khan, 2006), and the PhuZ subfamily of phage encoded proteins which act 

during viral assembly to position viral DNA and virions within the host cell before lysis 

(Chaikeeratisak et al., 2017; Kraemer et al., 2012). Both classes act as one dimensional 

molecular motors, although in opposite modes: plasmid encoded TubZs probably drag 

copies of their host plasmid to cell poles via depolymerisation (Fink and Löwe, 2015) while 

PhuZs push phage particles to the middle of the cell using the growth of dynamically 

unstable filaments (Erb et al., 2014). While we still do not know whether or how FtsZ and 

CetZ protofilaments might associate to form higher order structures in cells, in the case of 

TubZs, several parallel protofilaments associate to form the functional cytoplasmic 

filaments. TubZ from the Bacillus thuringiensis plasmid pBtoxis forms four-stranded helical 

filaments (Montabana and Agard, 2014), while PhuZ from Pseudomonas chlororaphis phage 

201ϕ2-1 forms three-stranded helical filaments (Zehr et al., 2014) with an inside-out topology 

as compared to both TubZ helices and microtubules (Figure 1-2). The additional filament 

stability conferred by lateral interactions between protofilaments may be necessary for 

these cytomotive functions where filament integrity across very large length scales (as 

compared to FtsZ) is required. Multi-protofilament helical architecture, in general, ensures 

equal rigidity in all directions and restricts polarity to the longitudinal direction, all 

properties ideally suited to filaments that reach through cytoplasmic space, such as 

eukaryotic F-actin and microtubules, but also TubZ and the prokaryotic actins ParM and 

MamK. TubZ proteins have a C-terminal extension which reaches along the protofilament 

to the next monomer, and in all examples studied has been critical for robust filament 

formation and for wild-type filament dynamics. 

1.2.4 Other prokaryotic tubulins 

Other members of the tubulin superfamily are found scattered across bacteria and archaea, 

identifiable by the highly conserved sequence motifs of the GTPase domain. 

So-called bacterial tubulin genes, BtubAB, more similar in sequence (Jenkins et al., 2002) 

and structure (Schlieper et al., 2005) to eukaryotic tubulins than to FtsZs, are found 
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coexisting with FtsZ in several Prothescobacter spp., members of the Verrucomicrobia 

phylum (Jenkins et al., 2002). BtubAB have been observed to form tubular structures in vivo 

but these are much smaller in cross section than microtubules (Pilhofer et al., 2011). Btubs 

are most likely the product of a horizontal gene transfer event from a eukaryote to a 

Prosthecobacter ancestor. Recent work characterising BtubAB filament structure and 

dynamic behaviour supported this hypothesis (Deng et al., 2017). In vitro, BtubAB forms 4-

stranded ‘mini microtubules’ (Figure 1-2) exhibiting both a seam and dynamic instability, 

two hallmarks of eukaryotic microtubules. The function of Btubs is unknown, but it 

presumably involves a third protein, BtubC, which was shown to bind the mini-

microtubules and reduce their dynamics. BtubC was necessary to find the register of the 

heterodimer repeat in the cryoEM structure – analogous to the use of kinesin in solving 

(early) microtubule structures by cryoEM. 

Some members of the Thaumarcheota (within the TACK superphylum) encode a 

eukaryotic tubulin-like protein denoted ‘artubulin’ (Yutin and Koonin, 2012). It is not clear 

whether artubulins are the product of a horizontal gene transfer event, or represent a 

vertically inherited orthologue of eukaryotic tubulin. More convincing putative ‘ancient 

tubulin’-like genes are found in recently published archaeal genomes assembled from 

metagenomic sequence data (Zaremba-Niedzwiedzka et al., 2017). 

Two groups of proteins with homology only to the GTPase domain of the tubulin 

superfamily have been identified in bacterial and archaeal genomes; both groups have been 

termed FtsZl (FtsZ-like) (Makarova and Koonin, 2010). Genome context suggests that these 

proteins may be involved in membrane remodelling (Makarova and Koonin, 2010), 

although they will be unable to form filaments in the same way as other tubulin superfamily 

members because of the missing or differing C-terminal domains. 

1.3 The actins 

Actins, like tubulins, are incredibly versatile cytoskeletal building blocks, able to form 

robust cellular scaffolds but also offering dynamic properties that can be harnessed for 

cytomotive functions. The actin ATP-binding fold (SCOP: 53067) is ancient, and widely 

distributed across the tree of life in proteins that both do and do not form filaments, for 

example in the non-polymerising proteins Hsp70/DnaK and hexokinase (Bork et al., 1992). 

The filament forming actins are probably monophyletic, i.e. polymerisation evolved only 

once (Figure 1-3C). Actin protofilaments share a fundamentally conserved, although 
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variable, mode of longitudinal interaction (Figure 1-3A) whilst the protofilament itself has 

been repurposed many times in evolutionary history, forming a fascinating variety of 

higher order filament architectures and performing many different cellular roles (Figure 

1-1,Figure 1-3B). The actin globular domain is typically composed of four subdomains 

(labelled either IA, IB, IIA, IIB or 1-4) which function as two pairs (I and II, or 1-2 and 3-4), 

the adenosine nucleotide is held in a binding pocket at the centre of the molecule. The two 

halves of the protein rotate relative to one another upon nucleotide hydrolysis and 

polymerisation, linking nucleotide state to polymerisation properties and lending the 

protofilament intrinsic dynamics (reviewed (Dominguez and Holmes, 2011)). 

 

 

 

 

Figure 1-3 – Actin superfamily filaments 

A Subunit structures and longitudinal contacts in actin superfamily protofilaments (strands). Pairs of 

monomers are shown in cartoon representation, with nucleotides as magenta spheres. In each case 

the lower subunit is coloured blue to red, N terminus to C terminus, and the upper subunit is grey. 

The lower monomer in each case was aligned to F-actin’s lower monomer. The PDB ID of the model 

used to generate the interface (and the filament structure) is given below each dimer. CryoEM derived 

structures indicated with †, X-ray structures with ‡. Subdomains are labelled for F-actin and FtsA. 

Overall, the protofilament contacts are clearly related, but they also show significant differences, 

especially in sub-domains IB. 

B Diverse actin superfamily filament structures, shown as surface representations. Individual 

protofilaments are shown in a single colour. Cartoons indicate protofilament polarity and subunit 

alignment (staggered or juxtaposed). 

C Distribution and inferred phylogeny of the actin superfamily. Schematic consensus phylogeny 

derived from three analyses (Derman et al., 2009; Ettema et al., 2011; Spang et al., 2015) 

D Domain schematics for the family representatives presented here. Sequence regions corresponding 

to the conserved globular domain are shaded in red, other regions (grey) are thought to be 

unstructured in all cases. Domain IC of FtsA, and that protein’s amphipathic membrane-interacting 

helix, are highlighted. 
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1.3.1 MreB – control of bacterial cell wall synthesis 

MreB is the prototypical bacterial actin (van den Ent et al., 2001; Jones et al., 2001), found in 

almost all walled bacteria with elongated shapes (reviewed (Errington, 2015)). MreB is 

essential for normal cell wall synthesis in these organisms, responsible for organising a 

multi-enzyme complex known as the elongasome (Szwedziak and Löwe, 2013). 

Controversial for a long time, a consensus is now forming about how MreB functions. MreB 

forms anti-parallel, in-register, double filaments close to the membrane, binding it directly 

(van den Ent et al., 2014; Salje et al., 2011). Their unusual architecture allows MreB filaments 

to bend in one particular direction, unlike helical F-actin. Although it was once thought that 

long MreB filaments organised cell wall synthesis globally by forming a cell-spanning 

helical structure, this view is now unpopular. Newer imaging techniques suggest that short 

MreB filaments move circumferentially in concert with the cell wall synthesis enzymes of 

the elongasome, organising synthesis locally (Billaudeau et al., 2017; Domínguez-Escobar et 

al., 2011; Garner et al., 2011; Teeffelen et al., 2011). Unlike the comparable motion of FtsZ in 

the division plane which is apparently driven by polymer dynamics (namely, treadmilling), 

MreB motion is driven by cell wall synthesis itself (Garner et al., 2011; Teeffelen et al., 2011). 

We have recently gained further insight into how MreB organises cell wall synthesis. 

Membrane bound MreB filaments have an intrinsic curvature tighter than the curvature of 

the wall and as a result become aligned perpendicular to the long axis, this alignment is 

then transmitted to cell wall synthesis enzymes and the glycan polymers they produce 

(Hussain et al., 2018). 

Some organisms have multiple copies of MreB, in some cases with distinct but overlapping 

roles (Fenton et al., 2010a; Kawai et al., 2009). In FtsZ- and, almost, wall-less Chlamydiales 

MreB and associated cell wall machinery have been co-opted for the synthesis of a vestigial 

septum which divides the cell (Jacquier et al., 2014; Ouellette et al., 2012). In other organisms, 

MreB filaments are used for functions independent of cell wall patterning, for instance as a 

cytoplasmic component of the gliding motility machinery of Myxococcus spp. (Em et al., 2010; 

Schumacher and Søgaard-Andersen, 2017) (and possibly also in more diverse members of 

the Alpha- and Delta-proteobacteria (Luciano et al., 2011)). More dramatically, MreB is 

associated with the cell-spanning cytoskeletal ‘ribbon’ of the wall-less Mollicute 

Spiroplasma spp. (Trachtenberg et al., 2008). MreB has been implicated in segregation of 

chromosomes in Caulobacter crescentus (Gitai et al., 2005) and other species, although it has 

been difficult to validate how direct this role may be, given the tight and complex 
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associations between nucleoid, cell wall, and the filament forming proteins that pattern cell 

wall deposition – an ongoing challenge for bacterial cell biology. Archaeal actins whose 

closest homologues are MreB have been identified but remain unstudied (Ettema et al., 

2011). 

1.3.2 FtsA – an unusual bacterial actin that cooperates with the tubulin FtsZ 

FtsA links FtsZ filaments to the membrane and also to other components of the divisome 

in many bacteria, although other FtsZ membrane anchors exist (reviewed (Haeusser and 

Margolin, 2016) and see SepF below). FtsA is itself able to form filaments, and 

polymerisation is required for wildtype function (Shiomi and Margolin, 2007; Szwedziak et 

al., 2012). Although FtsA was long ago identified as a putative member of the actin 

superfamily (Bork et al., 1992), it was not clear whether it would be able to polymerise as the 

amino acids corresponding to subdomain IB in actin/MreB are missing, and a large 

insertion is present within subdomain IA. Crystal structures and negative stain electron 

microscopy revealed that FtsA does have a recognisable, although unusual, actin fold which 

can polymerise to form actin-like protofilaments (Ent and Löwe, 2000; Fujita et al., 2014; 

Szwedziak et al., 2012). Domain IB is indeed missing and the insertion in IA forms an 

alternative subdomain ‘IC’, which contributes to polymerisation as if it were the IB from 

the adjacent monomer in a canonical protofilament (Figure 1-3). 

FtsA and FtsZ copolymerise in vitro to form a variety of dynamic structures (Loose and 

Mitchison, 2014), and inside liposomes they can cooperate to produce constrictions (Osawa 

and Erickson, 2013; Szwedziak et al., 2015). Similar structures can be seen in cryoelectron 

tomograms of cells overexpressing both proteins (Szwedziak et al., 2015), however it is still 

not known when and how copolymerisation is used to regulate the divisome. One proposal 

is that FtsA plays a role directly analogous to MreB in elongation (Szwedziak and Löwe, 

2013). Although we don’t know if a FtsA double filament would be curved like an MreB one, 

and thus be able to act as a rudder orienting division in the correct plane, the fact that SepF, 

an alternative Z-ring anchor, is highly curved is suggestive. A recent report showed that E. 

coli FtsA can form small rings in vitro (single-stranded, and on a flat surface), the significance 

of this is unclear (Krupka et al., 2017). 
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1.3.3 MamK – a protein scaffold for a bacterial compass needle 

MamK forms filaments used by magnetotactic bacteria in the alignment and segregation of 

magnetosomes (Komeili et al., 2006; Scheffel et al., 2006): inner membrane invaginations 

containing biomineralised iron compounds, which enable orientation of motility relative to 

the earth’s magnetic field (reviewed (Uebe and Schüler, 2016)). MamK is found in all 

magnetotactic bacteria studied but appears to have slightly different roles even in the two 

well studied and closely related model species Magnetospirillum gryphiswaldense MSR-1 

(MSR) and Magnetospirillum magneticum AMB-1 (AMB). In both species MamK forms 

cytoplasmic filaments that connect ordered chains of magnetosomes. Deletion of mamK in 

MSR results in a dramatic disorganisation of magnetosomes into short chains which do not 

segregate efficiently at division (Katzmann et al., 2011), whereas DmamK AMB 

magnetosomes are still found in long chains, although they are less organised and 

cytoplasmic filaments are no longer visible (Komeili et al., 2006). 

The structures of both filamentous and monomeric MamK from MSR were solved (Löwe et 

al., 2016), providing mechanistic insight into filament dynamics, thought to be important in 

function (Toro-Nahuelpan et al., 2016). The conformational changes through MamK’s 

polymerisation cycle are highly reminiscent of those seen for eukaryotic actin (Oda et al., 

2009), ParM (Gayathri et al., 2012) and to some extent MreB (van den Ent et al., 2014) (see 

Results section 2.4). MamK filaments are right-handed, parallel, and two-stranded, and 

unusually with juxtaposed subunits (Figure 1-3). 

Some magnetotactic bacteria, including AMB, additionally encode a MamK homologue, 

“MamK-like”, which assists in magnetosome alignment and also forms filaments, alone and 

with MamK (Abreu et al., 2014; Rioux et al., 2010). 

1.3.4 ParM and the Alps – actin-based spindles for efficient DNA segregation 
in bacteria 

As well as the three well-studied chromosomally-encoded bacterial actins described above, 

there exists a large number of extremely diverse plasmid- and phage-borne actins (Derman 

et al., 2009) (reviewed (Gayathri and Harne, 2017)). While the abundance and diversity of 

this group of bacterial ‘actin like proteins’, or Alps, was not recognised until more recently 

(Derman et al., 2009), the most prominent member of the group has been the subject of 

study for many years: the protein ParM, prototypically found on the Escherichia coli R1 

plasmid (Gerdes et al., 1985). The R1 Par locus is the founding member of the type II plasmid 
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segregation systems, which confer stability on their host plasmids by enforcing active 

segregation of plasmid copies into daughter cells. Type II segregation depends on actin-like 

ParM, a DNA binding protein ParR, and a ‘centromeric’ DNA region parC (Møller-Jensen 

et al., 2003). The molecular details of ParMRC plasmid segregation were resolved recently 

(Bharat et al., 2015), building on decades of genetic, biochemical, and structural data 

(reviewed (Salje et al., 2010)). Briefly: after plasmid replication, several copies of ParR 

assemble along two parC regions. Each ParRC complex recruits a left-handed, staggered, 

parallel, double-helical ParM filament, via the ‘barbed end’ (by analogy with eukaryotic F-

actin). Antiparallel ParRC-bound ParM filaments associate (forming a four protofilament 

bundle via the pointed ends) (Gayathri et al., 2012) to form a bipolar spindle which pushes 

ParRC complexes, and plasmids, apart via incorporation of ParM subunits at the ParRC-

bound barbed ends. There is some evidence that ParMs form a bona fide family, with 

conserved properties despite relatively low sequence similarities (Rivera et al., 2011); 

nevertheless some Alps with apparently divergent properties have also been labelled ParM 

(Popp et al., 2010). 

Aside from ParMs only one other plasmid-borne Alp has been extensively characterised: 

AlfA, found on Bacillus subtilis pBET31. Like ParM, AlfA functions as part of a type II 

segregation system (AlfB acts as DNA adaptor, the centromeric region is known as parN) 

although the mechanism of segregation appears to be somewhat different (Becker et al., 

2006; Polka et al., 2009, 2014; Tanaka, 2010). On the basis of sequence, AlfA seems to be 

missing actin subdomain IIB, which is part of the canonical longitudinal filament interface. 

Two recent high-resolution filament structures confirmed this observation and revealed 

how filament topology adjusts to accommodate the differences (Szewczak-Harris and Löwe, 

2018; Usluer et al., 2018). 

A few other Alps have been partially characterised. These include the phage-encoded AlpC 

(Donovan et al., 2015), two phage-encoded Alps from Bacillus pumilus (Yuan et al., 2015), 

Alp12A from a Clostridium tetani plasmid (Popp et al., 2012), Alp7A from a Bacillus subtilis 

plasmid (Derman et al., 2012), and the divergent ‘ParM’ from Staphylococcus multidrug 

resistance plasmid pSK41 (Popp et al., 2010; Schumacher et al., 2007). These investigations 

suggest that there may be a significant degree of diversity in the mechanisms of action, and 

possibly functions, to be found amongst the Alps. One archaeal actin, Ta0583 from 

Thermoplasma acidophilum, most closely related to the bacterial Alps, is probably the result 

of a horizontal gene transfer event (Ettema et al., 2011; Hara et al., 2007). 
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1.3.5 Crenactin – archaeal evidence that eukaryotic F-actin architecture is 
ancient 

Crenactins are archaeal actins found in members of the Thermoproteales class of the 

phylum Crenarchaea within the TACK superphylum (Ettema et al., 2011) (archaeal actins 

reviewed (Lindås et al., 2017)). The eukaryote lineage is rooted close to the TACK clade (Hug 

et al., 2016). Thermoproteales have no known filament or membrane remodelling system 

except for crenactin (Makarova et al., 2010), and immunofluorescence data suggest that the 

protein may play a cytoskeletal role, including in division (Ettema et al., 2011). Despite 

previous evidence to the contrary, it was recently shown that the structure of the crenactin 

filament is almost identical to that of eukaryotic F-actin (Izoré et al., 2016) – and forms right 

handed, staggered, parallel, double helical filaments with a ‘hydrophobic plug’ between the 

two strands, a hallmark of F-actin (Figure 1-3). 

Recent metagenomics studies have revealed the existence of archaea (the so-called Asgard 

superphylum) with actins likely to be even more similar to eukaryotic F-actin than 

crenactin, as well as apparent actin-related proteins (Arps) and gelsolin-like domain 

homologues (Spang et al., 2015; Zaremba-Niedzwiedzka et al., 2017). Future investigation of 

these molecules will be exciting in the context of understanding the evolution of actin 

dynamics at membranes required for phagocytosis/engulfment – an event in the evolution 

of the eukaryotic lineage which may have been required for a eukaryogenic endosymbiosis. 

1.4 Coiled coil filaments 

Aside from actins and tubulins, the most widely distributed cytoskeletal building block is 

the coiled coil, formed via parallel or antiparallel association of, often long, alpha helices 

that twist around each other. Although not ‘conserved’ as such, coiled coil cytoskeletal 

proteins appear to function using common principles derived from their shared structure 

(nucleotide independent prokaryotic cytoskeletons reviewed (Lin and Thanbichler, 2013)). 

Coiled coil cytoskeletons typically function as (minimally dynamic) scaffolds in the cell, 

performing structural roles or promoting specific subcellular localisations of other 

molecules, or both. 

Eukaryotic intermediate filaments (IF) are the prototypical example of a cytoskeletal 

component that assembles via coiled coil interactions. IF sequence architecture is well 

defined and partially understood structurally (Figure 1-4A) (reviews (Chernyatina et al., 

2015; Herrmann and Aebi, 2016)): a central all-helical ‘rod’ domain is capped by poorly 
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ordered ‘head’ and ‘tail’ domains. Rod domains (like all coiled coils) can be identified with 

reasonable confidence from sequence alone due to the strict heptad-based periodicity, 

which ensures compatible residues are bridging associated alpha helices (Crick, 1952). IF 

monomers dimerise in parallel to form a coiled coil and higher order interactions are then 

also at least partly mediated by the coiled regions, although assembly mechanisms differ 

between IFs. IFs are a well-defined class of coiled coil filaments – but importantly there are 

other ways of using coiled coils to build cytoskeletons (many are catalogued in (Walshaw et 

al., 2010)). 

While actins and tubulins form intrinsically dynamic, filaments, made dynamic through 

their in-built nucleotide hydrolase activity, IFs have no such activity and often use 

additional factors to facilitate remodelling of cytoskeletal structures via post-translational 

modification (Snider and Omary, 2014). Prokaryotic coiled coil filaments that exhibit 

dynamics presumably have analogous factors although in most cases these have not been 

identified. So far, observed coiled coil dynamics have not extended to a function that could 

be considered cytomotive at the molecular level. 

1.4.1 Crescentin – an IF-reminiscent determinant of cell shape 

Crescentin (CreS) is a filament-forming coiled coil protein found in abundance on the 

cytoplasmic face of the Caulobacter inner curve (Ausmees et al., 2003). The sequence and in 

vitro assembly characteristics of crescentin are highly reminiscent of eukaryotic IF proteins, 

with likely disordered head and tail regions, and a rod domain with analogous coil regions 

and even a distinctive break in periodicity known as the stutter (Ausmees et al., 2003; 

Cabeen et al., 2011) (Figure 1-4A). CreS is required for Caulobacter cell curvature, and is 

sufficient to generate curvature when ectopically expressed in Escherichia coli (Cabeen et al., 

2009). Control of curvature is probably via modulation of cell wall synthesis resulting from 

mechanical strain on the cell envelope applied by elastic CreS assemblies (Cabeen et al., 

2009) however the molecular details of this remain unclear. Importantly, overexpression of 

other polymeric membrane-binding proteins can also generate curved E. coli (Deng et al., 

2019). One confounding factor is that CreS induced curvature is also somehow dependent 

on the metabolic enzyme CTP synthase (CtpS), which is filament-forming in Caulobacter but 

also in almost all organisms studied including man (Ingerson-Mahar et al., 2010; Lynch et 

al., 2017) (CtpS polymerisation is probably primarily a way to regulate enzymatic activity). 
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1.4.2 Scy, FilP and others – is there a broader class of IF-like proteins? 

Scy and FilP (along with coiled coil DivIVA, see below, reviewed (Kelemen, 2017)) are 

required for normal development of hyphae in the filamentous bacteria Streptomyces spp., 

localising to and specifying the growing tip and future branching sites, although FilP is also 

found in rod-shaped Actinobacteria (Bagchi et al., 2008; Holmes et al., 2013), which also 

exhibit polar growth. Like CreS, their sequences and in vitro assembly properties bear basic 

similarities to those of IF proteins, although the arrangement of coiled coil regions and 

repeat architecture in the rod domain is quite different from both CreS and IFs (Figure 1-4A) 

(Walshaw et al., 2010). CreS, FilP and Scy are the best studied examples of a large group of 

bacterial proteins which could arguably be considered IF-like (Kelemen, 2017; Walshaw et 

al., 2010), although discriminating a cohesive and meaningful IF-like group from a broader 

coiled coil rich class (see below) is not straightforward and probably not feasible using 

sequence data alone.  

1.4.3 Bacterial Coiled Coil Rich Proteins (CCRPs) – a cytoskeletal motif, not a 
cytoskeletal family 

I adopt the imperfect umbrella term Bacterial Coiled Coil Rich Proteins (CCRP) to discuss 

any coiled coil rich protein for which a better classification is not available (after Refs 

(Kelemen, 2017) and (Waidner et al., 2009)), i.e. members do not belong in a widely 

distributed and functionally well understood family (e.g. DivIVA, below) nor do they 

exhibit unambiguous IF-like properties (as for those examples above). Very few of the 

CCRPs identifiable from sequence (Walshaw et al., 2010) have been studied in depth. 

Filament-forming CCRPs in Helicobacter spp. are important for maintaining the distinctive 

(and virulence associated) helical shape of these pathogens (Specht et al., 2011; Waidner et 

al., 2009). Leptospira spp. (spiral-shaped Spirochetes) contain DNA-binding CCRPs which 

may be involved in organisation of the nucleoid into a cell-spanning rod (Mazouni et al., 

2006; Raddi et al., 2012). In Myxococcus spp. normal gliding motility is dependent on 

filament-forming CCRPs AglZ (Yang et al., 2004) and FrzS (Ward et al., 2000) which are 

involved in, respectively, linking transmembrane gliding motility machines to cytosolic 

components with MreB, and regulating exopolysaccharide secretion at the cell pole 

(Berleman et al., 2011) (gliding motility reviewed (Schumacher and Søgaard-Andersen, 

2017)). A CCRP has been identified in the related bacterial predator Bdellovibrio bacteriovorus 

which appears to have a limited role in maintaining cell shape integrity (Fenton et al., 
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2010b). It remains to be seen if the diverse functions of CCRPs are united by common 

molecular mechanisms beyond polymerisation. Mechanistic studies of polymerising coiled 

coil proteins remain technically challenging due to the hard to control polymerisation 

process. 

1.4.4 DivIVA – a coiled coil determinant of cell polarity and division site 

DivIVA is distributed widely amongst Gram positive bacteria (not just those exhibiting 

polar growth), and localises variously to cell poles, hyphal branching sites and future 

division sites, playing somewhat diverse roles, including modulating activity of the Min 

system (Cha and Stewart, 1997; Marston et al., 1998) (reviews (Kaval and Halbedel, 2012; 

Kelemen, 2017; Lin and Thanbichler, 2013)). DivIVA binds the membrane directly and 

polymerises to form higher order structures with intrinsic curvature (Oliva et al., 2010; 

Stahlberg et al., 2004), probably thereby generating/sensing/localising to high membrane 

curvatures (Lenarcic et al., 2009; Ramamurthi and Losick, 2009). DivIVA activity, in 

Streptomyces spp. and Mycobacteria at least, is regulated by site-specific phosphorylation 

(Hempel et al., 2012; Kang et al., 2005; Saalbach et al., 2013). In the MreB-less rod-shaped 

actinobacterium Corynebacterium spp. DivIVA is not phosphorylated but functions 

synergistically with another coiled coil protein, RsmP, which is phosphorylated at specific 

sites (Fiuza et al., 2010). No direct effect of phosphorylation on polymerisation has yet been 

identified in either case, although modulation of phosphorylation in vivo has dramatic 

phenotypes in both cases. 

1.4.5 ESCRTIII relatives in archaea – membrane scission by a polymer of 
coiled coils 

Homologues of the eukaryotic endosomal sorting complexes required for transport 

(ESCRT) system have been identified in diverse archaea (Obita et al., 2007) (reviewed 

(Makarova et al., 2010; Samson et al., 2017)). ESCRT systems use multiple proteins to 

perform regulated scission of membranes, including during some archaeal cell divisions 

(Lindås et al., 2008), as visualised by electron cryotomography of the FtsZ-less 

Crenarchaeon Sulfolobus solfataricus (Figure 1-4B) (Dobro et al., 2013). In eukaryotes, coiled 

coil ESCRTIII proteins polymerise at membranes leading to membrane scission, however 

the molecular mechanism of this process remains incompletely understood (Schöneberg et 

al., 2017). Depolymerisation and recycling of ESCRTIII subunits is achieved by the action of 

a separate AAA+ hexameric ATPase, the prototypical example being Vps4 from 
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Saccharomyces cerevisiae. Archaeal homologues of ESCRTIII/Vps4 pairs have been 

identified in many genomes, the best-studied examples being CdvB (ESCRTIII) and CdvC 

(Vps4) in Sulfolobus spp. In eukaryotes, ESCRTIII recruitment is dependent on additional 

factors (ESCRT0, I and II), archaeal homologues of which have been identified only in 

genomes assembled from metagenomic sequences thought to represent lineages which are 

sister groups to the eukaryotic lineage (Spang et al., 2015; Zaremba-Niedzwiedzka et al., 

2017). In contrast, in Sulfolobus spp. an unrelated protein CdvA is required (Samson et al., 

2011). 

1.4.6 CrvA – a periplasmic cytoskeleton 

A periplasmic filament forming protein in Vibrio cholerae, CrvA, has recently been identified 

and characterised (Bartlett et al., 2017). CrvA localises to the inner face of cell curvature 

where it slows down peptidoglycan synthesis on that side so as to establish or reinforce 

pathogenicity-associated vibrioid cell morphology. CrvA filament formation is dependent 

on the presence of a predicted coiled coil domain, although the molecular mechanism by 

which CrvA modulates peptidoglycan patterning remains unclear, similar to CreS. 

Improved live cell peptidoglycan labelling and imaging methods, such as those developed 

during work on CrvA (Bartlett et al., 2017), should be helpful in many cases to help 

disentangle the many mechanisms by which bacterial cytoskeletons modulate cell wall 

patterning. 

1.5 Other prokaryotic cytoskeletons 

Many protein filaments with cytoskeletal functions are not actins, tubulins, or coiled coils. 

This reflects the relative ease of evolving filament formation (or the difficulty in avoiding it) 

(Barry and Gitai, 2011): the three groups above are the best studied examples, and are 

somewhat distinguished by their especially wide distributions and fundamental roles in cell 

biology, but not by polymerisation per se. 

Bactofilins are a poorly understood family of bacterial filament forming proteins, yet they 

are highly conserved, broadly distributed within bacteria, and abundant in cells (Kühn et 

al., 2010; Lin and Thanbichler, 2013). They have been found to play a cytoskeletal role in 

several organisms, often via modulation of cell wall properties (Hay et al., 1999; Kühn et al., 

2010; Mk et al., 2011; Sycuro et al., 2010). A BacA monomer from Caulobacter crescentus was 

resolved in the first ever ab initio solid-state NMR solution structure, and shown to form a 
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right-handed beta helix (Figure 1-4C) (Shi et al., 2015). Filaments and sheets are seen in vitro 

and in vivo, but how monomers come together to form these architectures remained unclear 

until very recently when cryoEM, X-ray crystallography, and sequence analysis were 

combined to show that the functional bactofilin unit is a single apolar protofilament, with 

the ability to bind membranes (Deng et al., 2019). 

SepF was originally identified as a component of the divisome in Bacillus subtilis (Hamoen 

et al., 2006). Subsequently SepF was shown to bind membranes, recruit FtsZ to the 

membrane, and itself form curved filaments (Duman et al., 2013). Structural analysis 

suggests that filaments are non-polar polymers of head-to-head SepF dimers. SepF is found 

in many Gram positive bacteria (and also Cyanobacteria), where it complements and in 

some cases replaces FtsA function as a FtsZ membrane anchor (Gola et al., 2015; Gupta et 

al., 2015; Hamoen et al., 2006; Ishikawa et al., 2006; Marbouty et al., 2009). SepF is also found 

in all FtsZ containing archaea, and as such seems a good candidate for an archaeal FtsZ 

anchor – indeed no other known bacterial Z-ring anchors have widespread archaeal 

homologues (Makarova et al., 2010). 

PopZ is a proline-rich protein which forms filaments that associate to form an irregular 

mesh at cell poles in Caulobacter and other Gram negative bacteria (Bowman et al., 2008; 

Ebersbach et al., 2008). The mesh appears to function as a molecular ‘hub’, with intrinsically 

disordered regions of PopZ responsible for recruiting at least 11 different proteins (Holmes 

et al., 2016). PopZ has inferred helical regions but these are not predicted to form coiled 

coils. 

SpoIVA is a Walker-A type ATPase which forms a filamentous coat around Bacillus subtilis 

forespores (Tocheva et al., 2011), and assembles into filaments in an ATP hydrolysis 

dependent manner in vitro (Ramamurthi and Losick, 2008). There is considerable 

uncertainty as to whether other Walker-A type ATPases (e.g. MinD, Soj/ParA, SopA, ParF 

– all have been previously denoted Walker A cytoskeletal ATPases (WACAs) (Michie and 

Löwe, 2006)) form functional filaments in vivo, and therefore whether they should also be 

considered cytoskeletal. Recently, a cryoEM structure of MinCD filaments from 

Pseudomonas aeruginosa was determined, several features of which appear to support the 

idea that these filaments are in fact functional (Szewczak-Harris et al., 2019). Though this is 

in the face of convincing genetic evidence suggesting otherwise (Park et al., 2015). Further 

work is certainly required in this somewhat controversial area. 
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Spirochetes (including the Lyme disease pathogen Borrelia burgdorferi) achieve an unusual 

mode of motility using periplasmic flagella (PF) anchored at either end of the inner 

membrane compartment, which produce backward-moving waves that propel the 

bacterium forwards (reviewed (Charon et al., 2012)). The flagella are in some cases 

responsible for generating the helical (or ‘flat wave’) cell morphology, as well as motility, 

and so have a cytoskeletal function. Some Spirochetes (Treponemes) have an additional, 

cytoplasmic, filament system which also appears to generate helical morphology (Izard et 

al., 2003; You et al., 1996). 

The cell-spanning cytoskeletal ribbons of Spiroplasma spp. (with which MreB associates, see 

above) are composed largely of ‘fibril’ proteins, with no known homologues, which are 

crucial for maintaining cell shape and in some cases needed for motility (reviewed 

(Trachtenberg et al., 2008)). 

Several unidentified cytoskeletal elements have been observed in vivo via electron 

microscopy methods (some examples are collected in (Dobro et al., 2017)). These might 

simply be unrecognised examples of proteins mentioned above, but they may also be as yet 

undiscovered filament forming proteins.  
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Figure 1-4 – Towards structural understanding of diverse prokaryotic cytoskeletal filaments 

A Some prokaryotic coiled coil proteins, which may be part of an intermediate filament-like family. 

Human vimentin is shown as an example of IF sequence properties and proposed IF architecture. The 

schematic vimentin tetramer model is derived from the atomic model in (Herrmann and Aebi, 2016), 

it illustrates how both dimerisation and higher order associations are mediated by the coiled coil rod 

region. Sequence schematics of vimentin, CreS, Scy and FilP, show verified (vimentin) or predicted 

(CreS (Ausmees et al., 2003), FilP and Scy (Walshaw et al., 2010)) coiled coil regions as boxes. 

B Apolar bactofilin filament structure PDB ID 6RIB, determined via cryoEM. 

C,D Archaeal ESCRT systems. (C) electron cryotomogram of a dividing Sulfulobus solfataricus cell, 

showing the cytokinetic protein belt thought to be composed of ESCRTIII homologues and associated 

proteins. Scale bar 200 nm. Reproduced from (Dobro et al., 2013). (D) eukaryotic ESCRTIII helical 

assembly (McCullough et al., 2015) illustrates coiled coil-like filament formation by this family of 

proteins (from PDB ID 3JC1). 
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1.6 Perspective on prokaryotic cytoskeletons 

The various prokaryotic filaments and their cellular functions are fascinating in their own 

right, but collectively they demonstrate how conserved proteins and their filaments have 

persisted during evolution for astonishingly long periods of time because of their usefulness 

in the many different processes that require long-range organisation. Crucially, for a given 

family, filament-forming properties are conserved, while specific functional contexts are 

typically not. However, diverse cells have similar needs for organisation at large length 

scales and the filament-based solutions to any given problem can be strikingly similar in 

overall mechanism, despite employing evolutionarily distant proteins. Prokaryotic 

cytoskeletons and the protein filaments that form them are variations on a theme: filaments 

give individual proteins access to larger length scales. 

To emphasise this point, the convergent use of diverse filaments in four fundamental 

cellular processes is briefly discussed below. 

1.6.1 Cell division 

Many cells divide (and therefore replicate) via constriction of the plasma membrane and 

other cell envelope components. Different filaments are used in different ways to achieve 

constriction. In many eukaryotic cells a contractile ring of actin coupled to myosin motors 

powers cytokinesis. In most bacteria, FtsZ filaments perpendicular to the long axis of the 

cell organise cell wall remodelling at division sites (Haeusser and Margolin, 2016). FtsZ rings 

around division sites have also been visualised in some (wall-less) Euryarchaeota (Wang 

and Lutkenhaus, 1996). In FtsZ-less and almost wall-less Chlamydiales MreB is required for 

division, organising synthesis of a vestigial septum (Jacquier et al., 2014; Ouellette et al., 

2012). In Thermoproteales (phylum Crenarchaea) division-plane rings of the archaeal actin 

crenactin have been seen, importantly no filament-associated molecular motors have been 

identified in these organisms (Ettema et al., 2011). In the Sulfolobales (also Crenarchaea) a 

division plane band of ESCRTIII homologue CdvB at the membrane appears to organise or 

power plasma membrane scission (Lindås et al., 2008). ESCRTIII based division is also 

commonplace in metazoa – ESCRTIII filaments deliver the final cut to the midbody 

(Carlton and Martin-Serrano, 2007). Division where the plasma membrane is not divided 

from the outside-in can also rely on filaments, for instance assembly of the cell plate in 

plants has a well understood dependence on microtubules (Rasmussen et al., 2013). 
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1.6.2 Cell shape determination 

For a single celled organism, cell shape is a critical determinant of interaction with the 

environment. In many cases, non-spherical cell shapes are dependent on protein filaments. 

For instance, the role of the actin cytoskeleton in determining the shape of many animal 

cells is well known. In walled bacteria, cell shape is typically maintained by the properties 

of the rigid cell wall – although these properties are often modulated indirectly by the 

action of cytoskeletons on the activity of cell wall synthesis and remodelling enzymes. 

Interaction between cytoskeleton and cell wall synthesis is not limited to prokaryotes 

either, as plant cell wall synthesis machinery is aligned by cortical microtubules 

(Bringmann et al., 2012). In many rod-shaped bacteria MreB filaments control the insertion 

of new cell wall to maintain shape. Dynamic MreB filaments lie at the membrane 

perpendicular to the long axis of the cell and are associated with key cell wall synthesis 

enzymes (Eun et al., 2015). Although poorly characterised, bactofilins in several organisms 

control cell morphology via modulation of cell wall properties (Lin and Thanbichler, 2013). 

The cytoplasmic coiled coil protein crescentin (CreS) in Caulobacter crescentus assembles on 

the inner face of the curved cell and retards cell wall synthesis relative to the outer face 

(Cabeen et al., 2009). A periplasmic polymer, CrvA, functions similarly in Vibrio spp. (Bartlett 

et al., 2017). In some Euryarchaeota the tubulin superfamily protein CetZ regulates a 

morphological switch between plate- and rod-shapes via unknown mechanisms (Duggin et 

al., 2015). In the wall-less Spiroplasma spp. a cytoskeletal ribbon composed largely of fibril 

protein is the determinant of the helical cell shape (Trachtenberg et al., 2008). Similarly, 

cell-spanning periplasmic flagella (PF) in the distantly related (and walled) Spirochaete 

bacteria enforce helical morphology as well as producing motility (Charon et al., 2012). 

Within archaea one analysis showed that the presence of actin family genes (crenactin or 

MreB orthologues) correlated perfectly with rod-shaped morphologies (Ettema et al., 2011) 

– although no specific mechanism for control of cell shape by these genes is known. 

1.6.3 DNA segregation 

Segregation of chromosomes by the tubulin-based mitotic spindle, ensuring stable 

inheritance, is a striking example of a cytomotive filament function in eukaryotes. 

Segregation of chromosomes by filaments has not been observed in prokaryotes. In 

contrast, spindle-based segregation of non-chromosomal DNA by filaments is a broadly 

distributed and well-studied phenomenon. Bacterial plasmids with both actin- (ParM and 

Alps) and tubulin-based (TubZ) spindles have been extensively characterised (reviewed 



INTRODUCTION 

 40 

(Fink and Aylett, 2017; Gayathri and Harne, 2017)). Some phage use tubulin filaments (PhuZ) 

to ensure correct positioning, and subsequent packaging, of virions and genomes (Erb et al., 

2014). 

1.6.4 Organisation of intracellular components 

The long-range organising potential of filaments is also realised in the general case of 

positioning other cytoplasmic molecules. Perhaps the most striking example of this is the 

MamK actin family filament which organises membrane-bound magnetosome organelles 

in magnetotactic bacteria into linear arrays apparently scaffolded by the helical filaments 

(Komeili et al., 2006). PopZ, which forms filaments in vitro, assembles into a branching 

filament network near cell poles in some Gram negative bacteria which recruits a specific 

set of polar determinants via unstructured regions (Holmes et al., 2016). DivIVA, a coiled 

coil protein, polymerises on the membrane at the poles of some Gram positive bacteria 

where it is involved in modulating Min system behaviour via recruitment (Bramkamp et al., 

2008; Patrick and Kearns, 2008), and apparently promoting membrane curvature 

(Ramamurthi and Losick, 2009). 

1.6.5 The cytomotive distinction 

As has been alluded to several times above there is a crucial distinction between those 

“cytomotive” protein filaments which are able to couple hydrolysis of nucleotides to their 

(de)polymerisation cycle in order to directly pushing or pulling other molecules around, 

and the protein filaments which act to impose order over long distances but do so without 

intrinsic dynamics. The term “cytomotive” was proposed by Löwe and Amos in 2009, but 

the ability of protein filaments to act as one-dimensional motors has been recognised for 

much longer (reviewed (Theriot, 2000)). The importance of this distinction, and a possible 

mechanistic explanation for it is discussed further in Section 2.4. 

1.7 Motivation and outline 

I began my PhD by working on trying to understand the polymerisation of cytomotive FtsZ 

filaments better. I then moved on to working on two FtsZ-polymerisation related projects: 

(1) looking at ZapA, a protein which interacts with FtsZ filaments, and (2) looking at how we 

might be able to develop better FtsZ inhibitors by exploiting our understanding of 

polymerisation. Finally, I circled back to trying to rationalise the basis of cytomotivity in 

other protein filaments.  
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2 RESULTS AND DISCUSSION 

2.1 Polymerisation-coupled conformational switching in FtsZ 

Much of the work constituting section 2.1 has been published as Wagstaff et al., 2017. Some sections 

are quoted verbatim. Where experiments were carried out by my collaborators this is indicated with 

a note in italics at the start of the subsection, like this one.  

Cell division in many bacteria relies on a constricting cytokinetic ring that is orchestrated 

by the tubulin-like protein FtsZ. FtsZ forms dynamic filaments close to the membrane at 

the site of division that have recently been shown to treadmill around the division ring, 

apparently guiding septal wall synthesis. 

Here, using X-ray crystallography of Staphylococcus aureus SaFtsZ I reveal how an FtsZ can 

adopt two functionally distinct structural conformations: open and closed. The open form 

is found in SaFtsZ filaments formed in crystals and also in soluble filaments of Escherichia 

coli FtsZ as deduced by cryoEM. The closed form is found within several crystal forms of 

two non-polymerising SaFtsZ mutants and corresponds to many previous FtsZ structures 

from other organisms.  

I argue that FtsZ's conformational switch is polymerisation-associated, driven by the 

formation of the longitudinal inter-subunit interfaces along the filament. I show that such 

a switch provides explanations for both how treadmilling may occur within a single-

stranded filament, and why filament assembly is cooperative. 

2.1.1 Background 

FtsZ is an ancient, filament forming, tubulin-like GTPase protein found in the vast majority 

of bacteria and archaea, where it acts as a central component of the cell division machinery 

(Bi and Lutkenhaus, 1991; Löwe and Amos, 1998; Mukherjee and Lutkenhaus, 1994). FtsZ is 

localised to the plasma membrane at future division sites resulting in the emergence of a 

ring structure around the centre of the cell, the Z-ring. FtsZ is anchored to the plasma 

membrane by other proteins, most often FtsA but also ZipA and/or SepF (Hale and de Boer, 

1997; Hamoen et al., 2006; Lutkenhaus, 2007). FtsA is a divergent actin homologue that 

forms copolymers with FtsZ and contains an amphipathic helix that facilitates membrane 

attachment (Szwedziak et al., 2012). 
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After the localisation of FtsZ, a large number of other proteins are recruited to the division 

site. These proteins carry out remodelling and synthesis of cell wall during the division 

process. Together these proteins have been termed the divisome, although it is currently 

not known whether there is a stable multi-subunit complex at the heart of the divisome. 

The precise molecular architecture of the Z-ring remains unclear, although it is probably 

composed of dynamic overlapping filaments along the circumference of the ring, at least 

during the later stages of the division process in rod-shaped model organisms such as 

Escherichia coli (Szwedziak et al., 2015). It was already clear from early fluorescence 

microscopy studies that during the cell division process the Z-ring contracts with the 

constricting septum (Sun and Margolin, 1998). In vitro reconstitution experiments of FtsZ 

and FtsA with membranes showed that these two components alone deform membranes 

(Osawa and Erickson, 2013; Szwedziak et al., 2015). Together with homology to force-

generating eukaryotic tubulins this prompted the suggestion that FtsZ has a role in 

generating forces required for constriction. In contrast, observations of constrictions and 

divisions of cells with helical Z-rings, incomplete Z-rings, and divisomes with modified FtsZ 

properties, support the opposing idea that FtsZ does not provide an indispensable driving 

force for constriction (Addinall and Lutkenhaus, 1996; Bendezú et al., 2009; Fu et al., 2010; 

Monahan et al., 2009). The alternative candidate for force generation is cell wall 

remodelling, such that the activated substrate turnover driven accumulation of cell wall 

material works to push the plasma membrane inwards. A third option is that cell wall 

remodelling and Z-ring dynamics are interlinked processes that work together from the 

inside and outside of the plasma membrane to generate the forces needed for division to 

occur robustly and efficiently under many circumstances. 

Treadmilling is a property of certain cytomotive filaments characterised by subunit 

addition at one filament end and subunit loss at the other, allowing the filament to move 

along a matrix, without any polymerised subunits themselves moving. Treadmilling 

requires a difference in the rate of net polymerisation and de-polymerisation at the so-

called plus and minus ends of the filaments (such that filaments have a kinetic polarity as 

well as a structural polarity). 

Recently, in vitro treadmilling of FtsZ filaments has been reported on supported bilayers 

with (Loose and Mitchison, 2014) and without FtsA (Ramirez et al., 2016), and also in vivo 

where FtsZ filaments were found to treadmill with components of the divisome around the 

division site (Bisson-Filho et al., 2017; Yang et al., 2017). These findings have resurrected an 
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old model of bacterial cell division: the template model, in which the closing septum 

constricts by new cell wall material being deposited in concentric rings on the inside of old 

material by moving synthesis machinery (altogtether, the “divisome”), which in turn is 

guided or organised into a ring by dynamic FtsZ filaments (Bramhill and Thompson, 1994). 

This idea fits into the third category of ideas listed above about the role of FtsZ: FtsZ 

dynamics and cell wall synthesis working together to facilitate constriction. 

FtsZ, until relatively recently, had not been considered a good candidate for treadmilling 

behaviour. This is largely because it is currently not known if any functionally relevant FtsZ 

structures are formed in cells beyond single-stranded protofilaments (Li et al., 2007; 

Szwedziak et al., 2015), and treadmilling has been proposed to be a property restricted to 

multistranded filaments only (Narita, 2011). However, given that treadmilling is seen in 

multiple organisms in vivo, and in vitro, in the latter case including observation of single 

protofilaments treadmilling (Loose and Mitchison, 2014), it seems very likely that 

treadmilling is an intrinsic property of FtsZ protofilaments, at least. 

Surprisingly, knowledge of FtsZ filament structure is limited. Only one FtsZ crystal form, 

from Staphylococcus aureus (SaFtsZ, PDB IDs 3VOA, 3VO8), has revealed a straight 

protofilament of FtsZ, as might be expected from electron micrographs of many different 

FtsZ filaments and by analogy to eukaryotic tubulins (Matsui et al., 2012). The conformation 

of SaFtsZ subunits in those straight filaments showed an unusually (as compared to FtsZ 

structures from other organisms) open conformation, with the N-terminal GTP binding 

domain (NTD) and C-terminal GTPase activation domain (CTD) being rotated and shifted 

apart (~27°, compared to e.g. Bacillus subtilis structure PDB ID 2VAM). Subsequent 

crystallisation efforts using SaFtsZ constructs with large changes to the critical T7 loop that 

normally contacts the GTP/GDP nucleotide bound to the next subunit were successful in 

generating crystals where SaFtsZ adopted a different ‘closed’ conformation, more similar 

to FtsZs from other species (PDB IDs 3WGK, 3WGL) (Matsui et al., 2014). These crystals also 

contained straight protofilaments. Currently, it remains unclear what causes the 

conformational switch seen in these T7 mutants. It is possible the switch was promoted by 

non-specific crystal contacts or by the alterations of the T7 loop. Also unknown is whether 

an unmodified SaFtsZ can adopt a closed conformation. 

SaFtsZ has also been crystallised in an open conformation in complex with the FtsZ 

functional inhibitor and filament stabiliser PC190273 (PDB IDs 3VOB, 4DXD), the drug is 

bound in the cleft between the N-and C-terminal domains, only possible in the open 
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conformation – suggesting that the mechanism of drug action is to lock the protein in this 

state (Elsen et al., 2012; Matsui et al., 2012; Tan et al., 2012). Isolated, open form SaFtsZ 

monomers relax into the closed conformation during molecular dynamics simulations 

(Ramírez-Aportela et al., 2014). Fluorescent analogues of PC190723 have recently been used 

to monitor apparent opening and closing of the inter-domain cleft in solution as a function 

of FtsZ polymerisation state (Artola et al., 2016). Together, these results hinted that the 

closed form of different FtsZs seen in many crystals is the predominant conformation of 

monomeric FtsZs and, vice versa, that filamentous FtsZ in solution is in the open 

conformation seen in SaFtsZ filament crystals. What was lacking was robust structural 

evidence that this is the case. 

FtsZ shares two properties with actin and tubulin that until now have been hard to explain. 

Firstly, FtsZ exhibits cooperative assembly, with a critical concentration and a lag phase for 

assembly. This is not possible for a single-stranded, isodesmic filament with rigid subunits, 

and an assembly switch has long been hypothesised as a way to explain this cooperativity 

(Huecas et al., 2008; Michie and Löwe, 2006; Miraldi et al., 2008). Secondly, filament 

treadmilling is presumed to require multi-strandedness (Narita, 2011), while FtsZ is 

apparently single-stranded. 

2.1.2 SaFtsZ-T66W and -F138A are polymerisation and GTPase 
compromised. 

The experiments referred to in 2.1.2 were carried out by María A. Oliva and Alba García-Sanchez, 

both at Centro de Investigaciones Biológicas, CSIC, Madrid, Spain. 

Previously, there was no pair of native-like structures showing an FtsZ molecule in the 

closed and open states, as discussed above. In this work we set out to generate an SaFtsZ 

structure with the molecule in the closed form, which we suspected to be found in 

monomeric FtsZs, by introducing single point mutations inhibiting polymerisation, in 

regions of the structure thought to be far away from regions involved in nucleotide binding 

or conformation switching. Specifically, two SaFtsZ mutations, F138A and T66W were 

designed to inhibit SaFtsZ filament formation, based on equivalent mutations inhibiting 

assembly of Methanocaldococcus jannaschii FtsZ (M164A (Martín-Galiano et al., 2010) and 

T92W (Dı ́az et al., 2001) respectively; polymerisation inhibition of T92W unpublished data). 

Both mutation sites are located on the ‘top’ surface of FtsZ, on the N-terminal, GTP-binding 

domain and are part of the longitudinal protofilament interface seen in crystals. 
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Full-length, untagged, SaFtsZ wildtype, F138A, and T66W proteins were purified and 

characterised biochemically (Figure 2-1). Filament formation in both SaFtsZ mutated 

proteins was compromised since no filament formation was detected by sedimentation 

(Figure 2-1A) or negative stain electron microscopy (Figure 2-1C) for either T66W or F138A 

in the presence of GTP or guanosine-5’-[(α,β)-methyleno]triphosphate (GMPCPP), a slowly-

hydrolysable analogue of GTP. FtsZ GTPase activity is largely dependent on 

polymerisation as one subunit provides catalytic residues to the active site of the next 

subunit through residues in loop T7. Both mutants have weak GTPase activity (Figure 2-1C), 

indicating that monomers may at least associate to form transient but functional active sites. 

In support of this, on addition of PC190723, the mutant proteins did form filaments 

detectable by sedimentation and electron microscopy in the presence of GTP and 

GMPCPP. We concluded that SaFtsZ T66W and F138A are polymerisation and GTPase 

compromised but retain some residual activities.  
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Figure 2-1 – SaFtsZ mutants T66W and F138A have compromised polymerisation and 

GTPase activities. 

A Polymerisation of FtsZ proteins at 10 μM was assayed by sedimentation in the presence of GTP 

and GMPCPP (CPP) with and without FtsZ functional inhibitor PC190723 (PC). Pelleted (P) and 

soluble (S) protein was run in the same lane of an SDS-PAGE gel with a delay. Percentage of pelleted 

protein was estimated from integration of band intensities. 

B GTPase activity of FtsZs at 10 and 20 μM in the presence of GTP/GMPCPP. 

C Polymerisation of FtsZ proteins in the presence of GTP and GMPCPP with and without FtsZ 

inhibitor PC190723 (PC) was assessed by negative stain electron microscopy. All images are at the 

same magnification (scale bar 200 nm).  
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2.1.3 SaFtsZ adopts either a closed or an open conformation in crystals 

Crystallography of SaFtsZ mutants was begun by Matthew Tsim and Danguole Kureisaite-

Ciziene. Diffraction data from two crystals was collected before I took over the project. I carried out 

all subsequent work including protein purification, further crystallisation trials, all subsequent data 

collection, and all refinement and model building. 

I solved five crystal structures of the globular domains of SaFtsZ T66W and F138A (Table 2, 

Figure 2-2) (See Appendix, Principles of X-ray Crystallography, p. 137). SaFtsZ constructs 

truncated to residues 12-316 were used to remove the N and C-terminal tails of FtsZ 

previously found to inhibit crystallisation. For easier reference, the five SaFtsZ structures 

are named herein in the form #XXx: number (1-5), mutation (F for F138A, T for T66W), 

monomer conformation (O for open, C for closed), and finally the arrangement of 

monomers within the crystal (m for monomeric, f for filamentous, single protofilament and 

s for split/domain swapped). 

One structure, 1FOf, was in the open form and essentially identical (crystallographically 

isomorphous) to previously published wildtype SaFtsZ open conformation structures (Cα 

RMSD versus PDB 3VOA: 0.33 Å) (Figure 2-2A, top). FtsZ molecules in 1FOf form 

completely straight single-stranded filaments (protofilaments) with a 44 Å repeat extending 

throughout the crystal. Four of the polymerisation compromised FtsZ point mutant 

structures (2TCm, 3FCm, 4FCs, 5FCm) were in closed conformations similar to that 

previously seen in SaFtsZ after extensive mutation of the T7 loop (e.g. Cα RMSD 2TCm vs 

PDB ID 3WGL: 1.50 Å). Indeed, the closed structures were successfully solved by molecular 

replacement with one of the previous T7 loop replacement mutant structures (PDB 3WGL) 

as the starting search model. Unlike the closed form T7 mutant SaFtsZ crystals, none of the 

closed crystal forms here contained straight filaments running through the crystals. 

When I analysed the conformations of all of the available nucleotide-bound SaFtsZ 

structures it became clear that they fall into two discrete groups (Figure 2-2B-D). I excluded 

SaFtsZ apo structures (e.g. PDB ID 3VO9), which are very different and are unlikely to be 

physiologically relevant given the high concentration of GTP/GDP in cells. The two 

conformations, open and closed, are distinguished by the change of the interdomain angle 

between the N- and C-terminal domains. If one considers the NTD to be fixed in space, the 

switch to the open conformation is best defined (as determined by the model-free algorithm 

implemented in the program DynDom (Hayward and Berendsen, 1998)) as a ~27° rotation 
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of the CTD versus the closed conformation, around an axis of rotation as indicated by the 

circled dot in Figure 2-2B, right. This rotation is accompanied by a downward shift of the 

central helix 7 (H7, yellow in Figure 2-2) by almost one helical turn (Figure 2-2B, left). 

It is important to note that, including previous work and my work described here, there are 

now available SaFtsZ structures with all permutations of open/closed conformations and 

bound GTP/GDP nucleotide – making it difficult to imagine that the open/closed 

conformational state and nucleotide state are linked (as has been proposed by some 

(Erickson et al., 2010)). Also, for the first time, with this work we have structures showing a 

single, essentially unmodified, FtsZ molecule in multiple conformations: SaFtsZ F138A 

crystallised in the open conformation in straight filaments as 1FOf, in the closed form as a 

monomer in two different space groups in 3FCm and 5FCm and as a split/domain-swapped 

closed form monomer in 4FCs. Domain swapping has been seen before for FtsZ (Oliva et 

al., 2004), and highlights the surprising independence of the N- and C-terminal domains 

that probably reflects a gene fusion in the evolutionary history of the protein. 
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Figure 2-2 – Nucleotide-bound SaFtsZ crystal structures group into two conformations: 

open and closed. 

A The five SaFtsZ (truncated to residues 12-316) structures determined here and PDB ID 3VOA are 

shown in cartoon representation, with nucleotides as sticks coloured by element. MPD molecule in 

1FOf is shown as green sticks. The structures are coloured according to conformation. Closed 

structures are shown in red, with the N-terminal GTP-binding domain in light red, and the C-terminal 

GTPase activation domain in dark red, central helix H7 is highlighted in yellow. Open structures are 

shown in blue, with the N-terminal domain in light, and the C-terminal domain in dark blue, central 

helix H7 is highlighted in orange. All structures shown in the same orientation, after alignment to the 

N-terminal domain of 3VOA (residues 13-165). 4FCs domain-swapped pseudomonomer is formed of 

two polypeptides. Note the different position of the C-terminal domain in the two sets of structures. 

The position of the PC190723 binding pocket is indicated on the 3VOA molecule. 

B Superposition of the six structures in (A) shown in Cα ribbon representation, after alignment as 

for (A), with the same colour scheme. Nucleotides are shown as sticks. Sidechains of residues F138 

and T66 of wildtype structure are shown as spheres, non-carbon atoms coloured by element. (left) 

the same view as in (A), (right) molecules rotated 90° as indicated. Axis of interdomain rotation is 

indicated by the circled dot and the curved arrows 

C, D Census of available nucleotide-bound SaFtsZ structures. C Bar chart indicating that DynDom, 

model-free assessment of dynamic protein domains, reveals two groups when comparing SaFtsZ 

structures to PDB ID 3VOA: no interdomain rotation, or a ~27° shift (around the axis in (B, right). 

D Table with information about nucleotide-bound SaFtsZ structures. Horizontal line separates 

structures determined here (above) from previously deposited structures in the PDB. (MPD: 2-

methyl-2,4-pentanediol, PC: PC190723, GSP: guanosine 5'-O-[gamma-thio]triphosphate).  
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Figure 2-3 – All FtsZ structures can be placed in one of two groups: open and closed. 

A All previous FtsZ structures were obtained from the PDB in October 2016 as listed in (B). Chain 

A from each downloaded structure, and the five structures determined here, was extracted and 

aligned to the N-terminal domain (residues 12 -176) of 3VOA using the PyMOL align command (which 

matches residues via sequence then minimises RMSD (root mean square distance) over matched 

residues, with 5 cycles of outlier rejection; except for PDB ID 1W5F and my structure 4FCs which 

are both domain-swapped, in these cases a pseudomonomer was generated for each, also S. aureus 

apo-structures (PDB IDs 3VO9, 3VPA), which have a very different conformation (Matsui et al., 2012), 

were excluded. N- and C- terminal extensions were removed, and the aligned structures are shown 

in ribbon representation from the same view as in Figure 2B. Closed structures are coloured red, 

except for closed S. aureus structures which are in white, open structures are coloured blue. The 

structural conservation of FtsZs is clear from the quality of alignment at the N-terminal domain (the 

outlier-excluded RMSDs, and the number of Cα used is given in the last two columns of (C)). The 

two groups of structures can be distinguished because of the relative motion of the C-terminal domain 

- the open blue structures are separated from the closed white and red ones. 

B The discrete distinction between the two groups is made clearer by zooming in on the C-terminal 

domain as indicated. 

C Cα RMSDs were calculated for all structures vs all structures, using the PyMOL align command 

with 0 cycles of outlier rejection (i.e. all residues matched via sequence are included in RMSD 

calculation). The RMSD for each pair of structures is indicated with a linear 3 colour gradient as 

indicated below the matrix. Within each species sets of highly similar structures are found (blue 

squares on the diagonal filling the black lines), with the exception of S. aureus where the two 

conformations, open and closed, align poorly. The S. aureus closed structures are more similar to 

FtsZs from other species than they are to open S. aureus structures, indicating that all existing non-

S. aureus FtsZ structures are in similar, closed, conformations. 

D Sequences of the FstZs for which crystal structures were compared were aligned using Clustal 

Omega and pairwise similarity scores are shown.  



RESULTS AND DISCUSSION 

 51 
  

110°

a

c

O
/C PDB 1F
SZ

1W
58

1W
59

1W
5A

1W
5B

1W
5E

2V
AP

2R
6R

2R
75

1W
5F

1O
FU

2V
AW

1R
LU

1R
Q

2
1R

Q
7

2Q
1X

2Q
1Y

4K
W

E
4E

6E
2V

AM
2R

H
H

2R
H

J
2R

H
L

2R
H

O
2V

XY
4U

39
3W

G
K

3W
G

L
2T

Cm
3F

Cm
4F

Cs
5F

Cm
1F

O
f

3W
G

J
3V

O
8

3V
O

A
3V

O
B

4D
XD

3W
G

M
3W

G
N

4M
8I

N
-t

er
m

 R
M

SD

At
om

s u
se

d

Methanocaldococcus jannaschii C 1FSZ 0.60 145
C 1W58 0.56 144
C 1W59 0.60 144
C 1W5A 0.50 141
C 1W5B 0.49 142
C 1W5E 0.56 143
C 2VAP 0.58 142

Aquifex aeolicus C 2R6R 0.59 138
C 2R75 0.57 137

Thermotoga maritima DS 1W5F 0.52 136
Pseudomonas aeruginosa C 1OFU 0.67 151

C 2VAW 0.72 153
Mycobacterium tuberculosis C 1RLU 0.51 142

C 1RQ2 0.64 148
C 1RQ7 0.57 142
C 2Q1X 0.66 146
C 2Q1Y 0.51 141
C 4KWE 0.58 143

Thermobifida fusca C 4E6E 0.45 117
Bacillus subtilis C 2VAM 0.50 154

C 2RHH 0.42 134
C 2RHJ 0.47 152
C 2RHL 0.54 149
C 2RHO 0.48 146
C 2VXY 0.51 150
C 4U39 0.65 151

Staphylococcus aureus C 3WGK 0.45 147
C 3WGL 0.42 145
C 2TCm 0.38 129

DS 3FCm 0.43 139
C 4FCs 0.46 150
C 5FCm 0.57 156
O 1FOf 0.15 133
O 3WGJ 0.25 148
O 3VO8 0.18 141
O 3VOA 0.00 ref
O 3VOB 0.19 155
O 4DXD 0.18 135
O 3WGM 0.26 138
O 3WGN 0.40 158

Staphylococcus epidermidis O 4M8I 0.16 135

CTD

NTDH7

O
/C

(Å
)

0 4 Cα RMSD Å

1W5F

b

Mj Aa Tm Pa Mt Tf Bs Sa Se Uniprot
Methanocaldococcus jannaschii 100 43 44 40 44 45 46 46 46 Q57816
Aquifex aeolicus 43 100 46 43 41 41 44 42 42 O66809
Thermotoga maritima 44 46 100 45 45 45 47 47 47 O0839 8
Pseudomonas aeruginosa 40 43 45 100 48 48 51 48 49 P47204
Mycobacterium tuberculosis 44 41 45 48 100 73 59 57 56 P9 WN9 5
Thermobifida fusca 45 41 45 48 73 100 59 55 55 Q47QW6
Bacillus subtilis 46 44 47 51 59 59 100 70 69 P17865
Staphylococcus aureus 46 42 47 48 57 55 70 100 9 3 P0A031
Staphylococcus epidermidis 46 42 47 49 56 55 69 9 3 100 Q5HQ06

d

40 100 %Seq. identity



RESULTS AND DISCUSSION 

 52 

2.1.4 Comparison of all deposited nucleotide-bound FtsZ structures 

Based on previous work that established that all FtsZ structures are broadly similar (Oliva 

et al., 2007) I decided to again compare all FtsZ structures to all others, including the ones 

presented here and those published since 2007. The striking similarity of all FtsZ structures, 

except SaFtsZ open forms, is illustrated in Figure 2-3. There are many interesting results in 

Figure 3C, but the most significant is the fact that SaFtsZ closed forms have a more similar 

conformation to other FtsZs, even evolutionarily distant archaeal ones, than to SaFtsZ open 

structures. The most obvious outlier to the overall trend is PDB ID 1W5F, the previously 

published structure of a domain-swapped FtsZ from the extremophile bacterium 

Thermotoga martima. In the structural alignment in Figure 2-3A and B the 1W5F structure 

can be easily identified as it falls approximately between the two clusters. Also, our domain-

swapped structure 4FCs aligns relatively poorly to the other closed structures, although is 

much more similar to closed structures than open ones. Both cases are perhaps 

unsurprising, as domain swapping will clearly impose additional constraints on the 

conformational freedom of the protein. In the case of 1W5F the two swapped monomers 

contact one another via their CTDs, so it is unlikely to represent a functionally relevant 

intermediate form. 

I concluded that SaFtsZ exists in two distinct conformations, open and closed, and that the 

closed form is much more similar to all other FtsZ structures than to the SaFtsZ open 

conformation. 
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2.1.5 Crystal structures of polymerisation compromised SaFtsZ mutants 
reveal structural features of the conformational switch. 

In order to exist in two conformations, SaFtsZ must clearly have structural features that 

rearrange during switching. The large rotation of the C-terminal domain (CTD) versus the 

N-terminal domain (NTD) requires local rearrangement of residues in order to maintain 

hydrophobic contacts, side chain solvation state and generally favourable intramolecular 

interactions in both states. The degree of local rearrangement required is reduced by the 

movement of H7, which moves as to stagger rearrangement across the interior faces of the 

two domains. Displacement of the C-terminal portion of H7 versus the CTD is facilitated by 

a large hydrophobic region on the interior face of the CTD's beta-sheet being able to rotate 

against hydrophobic residues on H7. Side chain rearrangements here are relatively minor. 

Regions of greater rearrangement around H7 are highlighted in Figure 2-4, where structures 

1FOf and 5FCm are compared (and measurements refer to this pair) although all of the 

changes discussed are similar in any pair of open/closed structures. Figure 2-4A and B show 

rearrangements at the NTD-facing side of H7, around the nucleotide pocket. Notably, when 

shifting from closed to open Arg 29 moves from the solvent exposed side of H7 to become 

slotted between H7 and the NTD in the open state (a 6.5 Å displacement of the guanidinium 

carbon), interacting directly with both guanosine and Asp 187 (on H7, in the closed state 

itself interacting with the base). Reassuringly, R29-D187 is a conserved ion pair in many 

FtsZs (Martín-Galiano et al., 2010). Despite the downward movement of H7, Phe 183 (also on 

H7) maintains favourable π-stacking with guanosine, because the base rotates around the 

C1’-N9 bond. The switch from closed to open leads to disruption of ionic interactions across 

the C-terminal part of H7 and NTD residues, however a subtle rearrangement takes place 

to maintain a base-base interaction (Heyda et al., 2010) between Arg 191 and His 33 (Figure 

2-4B, inset): the flexibility and length of the Arg sidechain is used to allow the head group 

to remain almost fixed despite the ~4 Å movement of the Cα atom. 

Figure 2-4C and D illustrate rearrangement in the three-way interactions between the N-

terminal part of H7, the NTD, and the CTD. While the residues from the NTD involved in 

the three-way contact remain relatively fixed in the shift from closed to open, e.g. Leu 169, 

residues from the CTD beta-sheet and H7 move downward in a coordinated fashion and a 

loop (246-258) from the CTD loosens allowing residues 248-250 to move towards H7, 

maintaining solvent exclusion from the hydrophobic pocket. 
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The conformational switch in SaFtsZ does not involve structural changes around the 

phosphate-binding region of the nucleotide-binding pocket (Figure 2-4A). In particular, the 

T3 loop can be ordered in all permutations of nucleotide (GDP/GTP or GTPγS) and 

conformation (open/closed) (1FOf, 3FCm, 5FCm, PDB ID 3WGN), and can even be 

disordered when GTP-bound (2TCm). These observations appear inconsistent with a 

mechanism where a conformation change is associated with nucleotide hydrolysis state 

(Dı ́az et al., 2001; Li et al., 2013), although the terminal phosphate may modulate protein 

dynamics in a non-obvious way.  
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Figure 2-4 – Atomic details of the SaFtsZ regions allowing the conformational switch. 

Structures 1FOf (open, blue) and 5FCm (closed, red) are shown superposed in cartoon 

representation after alignment on the N-terminal domain (NTD). Nucleotides and labelled residues 

are shown as sticks. Non-carbon atoms are coloured by element, except in (A). Viewpoint is indicated 

in small cartoons, colouring as for Figure 2.  

A Top view of FtsZ N-terminal domain. Helices are numbered. Note the very minimal 

rearrangements in this region after both conformational switch and nucleotide hydrolysis. 

B View of the top of H7 and into the nucleotide binding pocket. Cartoons are semi-transparent. Inset 

is at same scale and shows molecule 90° rotated as indicated. 3.6 Å is shift of R191 Cα. Note 

rearrangement of individual sidechains between conformations. 

C, D Identical views of the three-way interaction between the NTD, C-terminal domain (CTD), and 

H7, at the top of H7. In (C) 1FOf is semi-transparent with no sidechains, in (D) 5FCm. Identical 

sidechains are shown in both. The three-way interaction is different in each conformation but solvent 

is excluded from the hydrophobic core in both cases.  
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2.1.6 Closed forms of FtsZs correspond to the free monomer, and open 
forms to the polymerised subunit. 

The five polymerisation-compromised mutant SaFtsZ structures can be classified into two 

groups on the basis of having closed or open conformations, but they can also be grouped 

according to how they are found in relation to other molecules in the crystal. SaFtsZs in 

1FOf, and in previously published open forms (PDB IDs 3WGM, 3VOA, 3VOB, 3VO8, 

4DXD) are arranged in straight, single, tubulin-like filaments extending through the crystal 

– indicated in our naming scheme by the second, lower-case, ‘f’ in 1FOf. Adjacent subunits 

from 1FOf, extracted from the crystal lattice (constructed using crystallographic symmetry 

operators), are shown in Figure 2-5A. As in tubulin, the nucleotide forms a large part of the 

interface between subunits, and it is thought that nucleotide hydrolysis is used to modulate 

interface affinity: an interface with a GTP is stronger (more binding enthalpy) than one with 

GDP (Erickson et al., 2010). The SaFtsZ crystalline filaments have a 44 Å repeat, which 

corresponds well to repeat intervals seen in electron microscopy negatively stained FtsZ 

filaments from a number of species. As a result, it has been hypothesised that the 1FOf–like 

crystal filaments resemble soluble FtsZ filaments (Matsui et al., 2012). 

As discussed, previous work generated SaFtsZ structures in a closed conformation by 

extensive alteration of the T7 loop (PDB IDs 3WGL, 3WGK) (Matsui et al., 2014). These 

structures contain SaFtsZs that are clearly in the closed conformation (Figure 2-2D, Figure 

2-3), and are arranged in straight filaments in the crystal. However, these filaments are not 

the same as the open form filaments, with a much smaller interface buried surface area of 

~700 Å2 as compared to ~1200 Å2 for 1FOf and PDB ID 3VOA (calculated with PDBe PISA 

server (Krissinel and Henrick, 2007)), and a repeat of 45 Å. A dimer from a 3WGL 

pseudofilament is shown in Figure 2-5. The longitudinal contact is made between residues 

from the bottom subunit at the N-terminus of H5 and the preceding loop (including residue 

F138), and the loop between H6 and H7. From the top subunit the T7 loop (replaced in these 

structures), one face of S9, and the loop at the N-terminus of H10 are involved. Interaction 

does not involve any of the residues on the other side of the interface, towards the 

phosphates of the nucleotide. 

In contrast, this work yielded four crystal forms where, for the first time, SaFtsZ is not 

arranged in straight, infinitely long filaments. In three of these, 2TCm, 3FCm and 5FCm, we 

find in each case that one of the molecules in the ASU forms what looks superficially like a 

filament interface via its top face, and the other molecule in the ASU equivalently 
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contributes a bottom face to another pseudo-interface. The crystals are therefore composed 

of pairs of poorly-interacting FtsZs (shown in Figure 2-5B) which pack via further crystal 

contacts that do not resemble interfaces in any way. The pseudo-interfaces have a subunit-

subunit buried surface area (BSA) of 670-800 Å2, and look similar to the interfaces seen in 

the closed T7 mutant structures, only including residues from one side of the top face. 

Given that: (1) the F138A and T66W proteins have compromised filament formation (Figure 

2-1), and (2) they adopt the closed conformation, and (3) they fail to form bona fide interfaces 

in crystals; it seems very likely that these closed forms correspond to the conformation of 

monomeric SaFtsZ in solution. The pseudo-interfaces seen are probably best thought of as 

a consequence of crystallisation, a process that explicitly employs conditions intended to 

enhance protein-protein interactions. If the protein will crystallise it is extremely likely that 

one of the major crystal contacts will imitate the longitudinal interface, as the interface 

regions are most likely sticky and more complementary than other surface regions. 

However, we cannot formally rule out the possibility that this minimal interface (in silico 

repetition of which generates a highly curved filament) is a functionally relevant and/or 

stable way for FtsZs to interact in solution, for example representing an initial capture state 

that precedes filament formation. 

The fact that the phosphate end of the interface is not formed in any of the F138A closed 

form crystals supports the idea that it is the closed conformation that is not compatible with 

formation of bona fide interfaces, not the mutation per se – because the F138A mutation is 

within the pseudo-interface.  

The fourth closed form structure, 4FCs, is arranged very differently within the crystal. 

There are two molecules of FtsZ present in the asymmetric unit (ASU) although the N- and 

C-terminal domains of each polypeptide have become disengaged and reformed in 

domain-swapped FtsZ molecules with the corresponding domains of crystallographic-

symmetry related molecules (Figure 2-5). The two pseudo-FtsZs formed by each pair of 

polypeptides in the ASU both adopt the closed conformation (Cα RMSD for comparable 

atoms in pseudo-monomer vs 2TCm 1.0 Å). The domain-swapped FtsZs do not make any 

crystal contacts that resemble filament interfaces. That a domain swap can happen, and that 

a domain-swapped FtsZ adopts a closed conformation, suggests that the two domains have 

a significant degree of independence and, more importantly here, that when SaFtsZ 

conformation is not modulated by polymerisation or pseudo-interfaces, the molecule 



RESULTS AND DISCUSSION 

 58 

adopts the closed conformation, as implied previously by molecular dynamics (Ramírez-

Aportela et al., 2014). 

 

 

 

 

 

 

Figure 2-5 – Crystallised pairs of FtsZ molecules show the differences in longitudinal 

interactions between open and closed structures 

Pairs of FtsZs were extracted from the indicated crystal structures. Structures are shown in cartoon 

representation, each chain is rainbow coloured blue to red, N terminus to C terminus. Nucleotide 

atoms are coloured by element. In each case the view is from the same orientation after the lower 

molecule is aligned to the NTD of the lower subunit from 1FOf. 4FCs is shown with one chain 

coloured and the other in white to highlight the domain swap.   
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2.1.7 CryoEM of SaFtsZ and EcFtsZ filaments reveals open conformation 
subunits 

In order to reinforce the case that polymerisation into a straight filament is the driving force 

for the conformational switch within crystal structures I turned to cryoEM (See Appendix 

Principles of Electron Cryo-Microscopy (CryoEM), p. 147) to analyse the conformation of 

subunits within frozen-hydrated FtsZ filaments, i.e. not in crystals. 

I began working on filaments of full length SaFtsZ. It was challenging to generate suitable 

cryoEM samples of well dispersed filaments in thin ice due to the antagonistic effects of the 

relatively “lazy” polymerisation of SaFtsZ monomers to form protofilaments and the highly 

cooperative assembly of higher order structures from those protofilaments. Some of the 

higher order structures observed during the long process of sample optimisation are shown 

in Figure 2-6A-D, ranging from tubes (A), double filaments (B), toroids (C), to thick bundles 

(D). 

Eventually I was able to generate a usable sample, shown in Figure 2-6E. Although these 

images have significant background noise (from unpolymerised protein) I was able to 

obtain 2D classes of filament segments with clear secondary structure details, one of these 

is shown in Figure 2-6F. Unfortunately, all of the 2D classes looked like this one – the sample 

suffers from severe preferred orientation – a relatively common problem in cryoEM, and 

one that regularly makes progress impossible or extremely difficult. The problem is most 

often due to the interaction between the sample and the air-water interface at the surfaces 

of the thin film of solvent which exists in the time between blotting and vitrification. That 

we face the problem in this case is perhaps unsurprising: because FtsZ filaments do not (or, 

hardly) twist any hydrophobic patch on the surface of the subunit, when polymerised, will 

be presented in a long, co-linear, array which will interact strongly with the hydrophobic 

air water interface due to avidity. 

In an attempt to move forwards I tried a wide selection of common approaches to improving 

orientation distribution, including various supports (e.g. graphene oxide and thin carbon) 

and a variety of detergents, as well as changing the buffer conditions. None of these were 

successful, 2D classes resulting from two of these attempts are shown in Figure 2-6, G & H. 

Despite this failure, it was possible to gain some confidence in the conclusions from 

crystallography, as the one projection I did recover was consistent with the simulated 
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projection of the straight SaFtsZ filaments found in crystals (Figure 2-6, I, J & K). A full set 

of simulated projections are shown in Appendix Figure 4-5, p. 157. 

After somewhat exhausting my options for improving the SaFtsZ filament data I decided to 

try imaging FtsZ filaments from another species, the distantly related Gram-negative γ-

proteobacterium Escherichia coli (interestingly E. coli FtsZ has stubbornly resisted 

crystallisation, despite significant efforts). EcFtsZ and SaFtsZ have a pairwise identity of 

only ~45% (ClustalOmega). Optimisation of EcFtsZ polymerisation for cryoEM was 

relatively straightforward, although, as for SaFtsZ, higher order filament assembly was 

highly buffer dependent. I was able to generate much better images (Figure 2-7A), and 

although the data still suffer from severe preferred orientation (preferred orientation 

shown in Figure 2-7B), it was possible to reconstruct a medium (~8 Å) resolution map of 

wildtype, full-length E. coli FtsZ straight filaments (Figure 2-7C). The map suffers from 

information anisotropy due to the poor recovery of certain orientations (Figure 2-5C). 

However, the map clearly reveals an FtsZ filament with a 44 Å repeat and a density envelope 

into which SaFtsZ open conformation filaments can be fitted very satisfactorily (Figure 

2-7D,E), and closed form structures cannot be fitted well at all (Figure 2-7F)Figure 2-7. The 

M. jannaschii closed conformation dimer structure PDB ID 1W5A is also shown and poorly 

fitting as it has previously been suggested to represent the conformation of FtsZ filaments 

(Oliva et al., 2004). Several secondary structure elements can be unambiguously identified 

in the reconstruction, including H7 and, crucially, the planes of both N- and C-terminal 

domain beta sheets – showing that the molecule is in the open conformation.  

Given that all FtsZ crystals where bona fide straight filaments are seen in the crystal have 

FtsZs in the open conformation, and that the inverse is also true – SaFtsZ filament crystals 

contain open subunits, and that our intermediate resolution EcFtsZ cryoEM structure also 

contains open subunits, we propose that a polymerisation-driven conformational switch is 

a general property of all FtsZs. One of the consequences of such a switch, namely: 

permitting cooperative assembly of a single-stranded filament, has been discussed 

previously (Elsen et al., 2012; Huecas et al., 2008; Martín-Galiano et al., 2010; Michie and 

Löwe, 2006; Miraldi et al., 2008), however, such a switch confers additional surprising 

properties on a model filament. 
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Figure 2-6 – CryoEM of S. aureus FtsZ filaments 

A-D Higher order SaFtsZ structures seen by cryoEM. 

E Representative micrograph of SaFtsZ polymerised in the presence of GTP. 

F-H Representative 2D classes of SaFtsZ filaments imaged in the conditions indicated. 

I-K Comparison of the preferred projection of SaFtsZ to a simulated projection of the straight SaFtsZ 

filaments found in some crystal forms.  
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Figure 2-7 – CryoEM of E. coli FtsZ filaments 

A Typical micrograph of frozen-hydrated EcFtsZ.GMPCPP filaments. Curved, straight, single and 

double/bundled filaments are seen. 

B Representative EcFtsz filament 2D class produced by RELION 

C EcFtsZ filament cryoEM density is shown at a threshold of 7.5 σ (left), and also with a 1FOf filament 

fitted into it (right) 

E, F FtsZ structures as indicated were fitted into the EcFtsZ cryoEM density using the CHIMERA 

volume viewer fitting tool. The flexible T3 loop region is indicated. (E) A 1FOf 5-mer fits very well 

into the density, as does a 1FOf monomer – with both fits extremely similar. RMSD is for middle 

subunit in rigidly fitted 5-mer and monomer fitted into middle subunit density (F) Closed structures 

do not fit well into the electron density, and certainly not so that a repeating filament can be 

constructed. Some regions of especially poor fit are indicated with black arrowheads. 2TCm was 

fitted using only the NTD, which fitted into the same position as the open structure NTDs.  
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2.1.8 The FtsZ conformational switch between monomer and filament 
provides filament-end asymmetry necessary for treadmilling 

Theoretical considerations of treadmilling can be fraught with intellectual traps. Having 

thought hard about these potential pitfalls I present simplified, yet robust, schema to 

explain how a polymerisation-associated conformational switch provides the end-

asymmetry necessary for treadmilling within a single stranded filament. I focus on the 

specific case where the nucleotide forms part of the filament interface (i.e. in a tubulin-like 

fashion). In these, solvent exposed NDPs (nucleoside diphosphates) are quickly exchanged 

with NTPs (nucleoside triphosphates), NTP hydrolysis is not immediate, and NTP 

interfaces are stronger than NDP interfaces; although many of the conclusions are the same 

for filaments where nucleotide is buried inside subunits and likely has an allosteric effect 

on interface strength (i.e. in an actin-like fashion). 

Treadmilling of cytoskeletal filaments is a useful dynamic property. Treadmilling filaments 

can be used to push or pull molecules in the cell without motor proteins as long as end-

tracking mechanisms or co-factors exist, and these behaviours can be made switchable with 

high flux through the filament (e.g. in eukaryotic anaphase microtubules (Maddox et al., 

2003)). Recently it has been shown that individual FtsZ filaments can treadmill in vitro with 

FtsA (Loose and Mitchison, 2014) and also alone (Ramirez et al., 2016), and that FtsA/Z 

treadmilling in cells guides septal cell wall remodelling (Bisson-Filho et al., 2017; Yang et al., 

2017). Treadmilling can also be useful without tight end-tracking, via a diffusion-and-

capture mechanism, as has recently been suggested for FtsA/Z and a putative end-tracker, 

FtsN (Baranova et al., 2018). However, as has been noted previously (Löwe et al., 2004), a 

single-stranded filament with the above properties and rigid subunits, without 

conformational changes, cannot do robust treadmilling. 

Such a hypothetical filament with rigid subunits is shown in Figure 2-8A. Note that the 

location (top/bottom) of nucleotide binding to the monomer is not important. This filament 

treadmills if a nucleotide gradient along the filament exists, and the kinetic plus end (net 

growth) will be at the end with more NTP. On-rates cannot differ at the two ends because 

they are the same reaction, but off-rate at the minus (NDP) end will be greater than at the 

plus end, so a situation of net growth at one end and net shrinkage at the other can be 

produced at certain monomer concentrations (addition reaction is 1st order with respect to 

monomer, loss is 0 order). This does not represent robust treadmilling however, as 

breakdown of terminal GDP interfaces is equivalent to breakdown of a GDP interface 
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anywhere in the filament – and these processes will occur at the same rate as they are all 

zero order. As noted previously (Bisson-Filho et al., 2015), filament breakage and annealing 

could be an important facet of FtsZ dynamics (analogous to the idea of filament breakage 

and seeding in, for example, tauopathies), but the filament in Figure 2-8A has a more 

fundamental limitation on its biological usefulness: the direction of treadmilling is 

determined entirely by the history of the filament (the direction of the initial NTP-NDP 

gradient), so there is no coupling of kinetic and structural polarity – and the same filament 

could just as easily treadmill in either structure-defined direction. 

Coupling of kinetic and structural polarity requires subunit addition and or loss to proceed 

via different stereochemical pathways at each structure-defined end of the filament. This is 

not the case in Figure 2-8A, the difference in off-rates (the kinetic polarity) is set by the 

nucleotide gradient and not the structural polarity, and we have already seen that there can 

be no difference in on-rates at either end. Filament systems can generate different 

stereochemistry for subunit addition at either end by being multi-stranded and having 

staggered subunits, such as actin (Wegner, 1976), or by using a longitudinal hooking 

mechanism, such as TubZ (Fink and Löwe, 2015). 

Figure 2-8B shows our model for how a single filament very similar to the case in Figure 

2-8A can also couple its structural polarity to a defined kinetic polarity and thus usefully, 

and robustly, treadmill. The crucial difference between the filament in Figure 2-8A and that 

in B is the existence of a polymerisation-associated conformational switch, i.e. subunits are 

no longer rigid, but can exist in one of two conformations – one form associated with the 

polymer, the other adopted in the free monomer. The free energy cost of the 

conformational switch from closed to open is paid for by binding to a filament end, and in 

the other direction through nucleotide hydrolysis and exchange that makes the 

longitudinal NDP intersubunit interface unfavourable. Although formation of a NTP 

interface at either structurally-defined end has the same net energy change, the reaction 

pathways are stereochemically different, and will occur at different rates because two 

different pairs of molecular surfaces are involved in each case initially. This difference is 

illustrated in the context of our structures in Figure 2-9– but note we are not making a 

prediction about which end of a single-stranded FtsZ filament is the kinetic plus end. 

Importantly, the scheme in Figure 2-8B also allows breakage at NDP interfaces within the 

filament to be different to loss of NDP subunits from each end: NDP interfaces in the 

filament are stronger because the energetic cost of losing subunits from ends only is paid 
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for by the favourable switch to the monomer conformation, which the ‘new’ end subunits 

of two halves of a broken filament cannot do because they remain in filaments through one 

remaining interface. Especially important to note here that the scheme in Figure 2-8B can 

also be drawn with nucleotide on the other side of the monomer. Recently, Joe Lutkenhaus 

and co-workers provided convincing evidence that FtsZ has the opposite kinetic polarity to 

eukaryotic tubulin (Du et al., 2018), which may not be as surprising as it sounds as 

microtubules can in fact treadmill in either direction, under certain conditions, (Grego et 

al., 2001).  
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Figure 2-8 – A polymerisation-associated conformational switch allows treadmilling of 

single-stranded filaments. 

Black arrows indicate rates roughly in proportion to their width, similarly sized arrows in (A) indicate 

rates that are exactly equivalent. See main text for discussion of limitations and assumptions of these 

simplified models, particularly regarding implied orientation of molecules. 

A An idealised rigid (lacking a conformational switch), tubulin-like, filament forming protein, for which 

addition/loss of a given NXP is isodesmic. This filament canot do robust treadmilling, as breakage is 

the same as minus end subunit loss, and it cannot couple structural and kinetic polarity 

B A single-stranded version of (A) with a polymerisation-associated conformational switch (between 

blue and red forms), able to treadmill robustly and with coupled kinetic and structural polarities. The 

conformational switch allows filament breakage and subunit loss from ends to be different, and for 

the stereochemistry of subunit addition at either end to be different – meaning that addition will take 

place at different rates in a manner defined by structural polarity.  
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Figure 2-9 – A polymerisation-associated conformational switch generates asymmetry 

between filament end interfaces. 

(Middle) 3 molecules from the open form 1FOf crystal filament, slightly separated for clarity, are 

shown as Cα ribbons. The middle subunit is rainbow coloured blue-red, N- to C-terminus, the top 

and bottom subunits are coloured grey. (Right, left) The middle subunit is replaced with a closed form 

3FCm molecule, aligned to the middle subunit N-terminal domain (NTD) (right) or C-terminal domain 

(CTD) (left). The different pairs of approaching surfaces are labelled B/Tm/f : bottom/top, 

monomer/filament. These modelled closed-open interfaces will not represent the transition state of 

subunit addition at either end of a filament (nor even any position on the reaction pathway), but they 

illustrate the fact that the conformational switch will necessarily lead to stereochemically different 

reaction pathways at each end that allow the two ends to have different rates of subunit addition, 

linking structural and kinetic polarity.  
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2.1.9 Conclusion 

Here we have shown that FtsZs adopt two different conformations: open and closed. The 

open form is adopted by FtsZ in straight filaments, the closed form by FtsZ monomers. The 

implication is that the polymerisation-associated switch from closed to open is made 

favourable by the free energy gain of interface formation of the subunits in the filament. 

Such a polymerisation-associated conformational switch explains how a single-stranded 

filament can show cooperativity in polymerisation, and how it can avoid breaking apart 

when treadmilling. This switch also explains how a single-stranded filament with tubulin-

like properties can couple structural and kinetic polarities to enable robust treadmilling, 

with plus and minus ends being defined by the polarity of the filament. The switch is placed 

in a wider context in Section 2.4. 

At this point it should be highlighted that although single-stranded FtsZ is frequently 

considered the functional unit of the protein in vivo, the potential of the conformational 

switch to generate end-asymmetry could also be exploited in multi-stranded treadmilling, 

and treadmilling in conjunction with the many FtsZ-interacting proteins in vivo. In addition 

to this, we have not directly addressed the structural basis of filament bending – an 

outstanding question in the field. Indirectly, cryoEM of E. coli FtsZ filaments assembled with 

GMPCPP and frozen after a 20-30 second incubation show some degree of bending in 

almost all single filaments, and segments from bent filaments are included in the 

reconstruction showing subunits in the open form - apparently directly undermining 

previous ideas that all bent FtsZ filaments are GDP-bound and/or in a closed or related 

conformation. 
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2.2 ZapA cross-links FtsZ filaments 

This work is unpublished. 

2.2.1 Background 

FtsZ filaments are used to organise cell division but can only do this via interactions with 

other proteins (Haeusser and Margolin, 2016). Known FtsZ filament interacting proteins 

come in several flavours: membrane tethering (required for cell division), severing and 

capping (probably negative regulators of polymerisation), and cross-linking (probably 

positive regulators of polymerisation) (reviewed in Ortiz et al., 2016) (Figure 2-10A). 

The roles of membrane tethering proteins such as FtsA, ZipA, and SepF are relatively well 

understood – they all serve to transmit the spatial information encoded in FtsZ filaments to 

the membrane (exactly why this needs to happen, and which information is important, is 

still not clear, however), and at least one membrane anchor protein is required in cells 

which use FtsZ to divide. All of the known membrane tethers bind to FtsZ via the conserved 

C-terminal “interaction hub”. 

The roles of the severing and capping proteins, such as MinCD, SlmA, SulA and MciZ 

appear to be self-explanatory – they all act to reduce the length of FtsZ filaments (in 

response to a variety of cues), and so inhibit cell division either locally or globally. 

Less clear is the role, or roles, of filament cross-linking proteins. This group includes some 

of the “Z-associated proteins”, or “Zaps”: ZapA, ZapC, and ZapD. These proteins are all 

thought to be oligomeric in the cell, with more than one FtsZ-binding per oligomer, and 

therefore be able to cross-link (or “bundle”) FtsZ filaments (Durand-Heredia et al., 2012; 

Low et al., 2004; Ortiz et al., 2015).  

Here it is worth mentioning that FtsZ literature greatly suffers from usage of the word 

“bundling” to describe a wide spectrum of effects. Essentially, all FtsZ-modulating 

processes are at one point or another investigated via negative-stain EM, and the extent of 

“bundling” assayed, usually in a qualitative manner. One problem inherent in this 

approach is that FtsZ filaments already associate with one another – i.e. bundle, and so 

essentially any change to polymerisation conditions is able to perturb this process: to 

exacerbate or reduce the extent of interaction between filaments (via e.g. change in pH, 

osmolarity, ion balance, etc.). Another problem is that polymerisation (and GTPase activity) 
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and filament bundling, are highly cooperative processes. As a result, the dynamic range of 

any assay which uses the extent of bundling as a readout is necessarily very narrow (this 

motivated me to work on developing better approaches to finding FtsZ inhibitors, see 

Section 2.3, p. 81). Together these problems mean that reports of FtsZ regulation (or 

chemical inhibition) via modulation of bundling should be treated with caution. I refer to 

“cross-linking” of FtsZ filaments when I think that a particular molecule is forming specific 

interactions with two different FtsZ filaments – this will of course often lead to bundling in 

vitro. Nevertheless, it appears that all of ZapA, C, and D, are bona fide FtsZ filament cross-

linkers. 

ZapC and ZapD are thought to interact with the FtsZ C-terminal interaction hub, while 

ZapA has been proposed to bind to the globular domain within FtsZ polymers (Roseboom 

et al., 2018). I was interested in the possible analogy between this mode of FtsZ filament 

binding and the many Microtubule Associated Proteins (MAPS) such as End Binding 3 

(EB3) that interact only with polymerised tubulin. 

ZapA, much like the other crosslinking proteins, has generally been described as promoting 

the assembly of mature Z-rings e.g. (Gueiros-Filho and Losick, 2002; Monahan et al., 2009), 

and more recently has been attributed the role of “focussing” the Z-ring (Buss et al., 2013; 

Woldemeskel et al., 2017). The ΔZapA phenotype is weak, although the gene becomes 

essential in a low FtsZ background (Gueiros-Filho and Losick, 2002). ZapA functions in 

concert with another coiled coil protein, ZapB, though the details of how this works remain 

unclear (Buss et al., 2017; Galli and Gerdes, 2010, 2012). Very recently the role of ZapA was 

carefully investigated in vitro by Caldas et al. in the group of Martin Loose, they found that 

addition of ZapA lead to more coherent FtsA:FtsZ dynamics on a lipid surface, and that it 

did so without reducing the speed of treadmilling (Caldas et al., 2019). 

Two crystal structures of ZapA have been solved, corresponding to the proteins from 

Pseudomonas aeruginosa (Low et al., 2004; Roach et al., 2014) and E. coli (Roach et al., 2014). In 

both, ZapA forms a tetramer with 3 ~C2 symmetry axes (one axis is crystallographic, two 

are approximate as there are two monomers in the asymmetric unit, overall the tetramer 

has ~D2 symmetry) (Figure 2-10B). There is substantial biochemical and genetic evidence 

that the tetramer is a functional form, and that it is the N-terminal head region which binds 

FtsZ (Caldas et al., 2019; Low et al., 2004; Pacheco-Gómez et al., 2013). The implications of 

the high ZapA symmetry for filament binding were discussed by Low et al. in 2004 but have 

not been explicitly investigated since then. It is hard to imagine that none of the ZapA 
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symmetries is used to impose order on the FtsZ filament. Some of the possibilities are 

illustrated in Figure 2-10C. The key uncertainties are: how many of the ZapA symmetries 

are used, and to what extent the ZapA molecule distorts from the almost perfect D2 

symmetric crystallised tetramers to facilitate a crosslinking mode which breaks any of the 

symmetries. I attempted to answer these questions by using cryoEM to visualise the 

interaction of FtsZ and ZapA from E. coli, first though, I was interested in how commonly 

ZapA is found in bacterial genomes.  
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Figure 2-10 – Proposed role of ZapA 

A Model for roles of Z-interacting proteins. FtsZ polymerises, which ultimately leads to cell division. 

Capping and severing proteins reduce the number or length of filaments and inhibit division. 

Membrane anchors attach filaments to membranes, allowing filaments to organise division processes. 

Cross-linking proteins somehow also promote division processes. 

B Structure of EcZapA tetramer (PDB 4P1M). The ASU of the crystal contains pairs of ZapA 

monomers related by approximate C2 axis “c”, which are further paired, and related via 

(crystallographic) C2 axis “b”, to form tetramers which have an additional approximate C2 axis “a”. 

Overall, the tetramer has approximate D2 symmetry.  

C Schematics showing some of the plausible ways that ZapA tetramers could cross-link FtsZ filaments, 

with an indication of whether the ZapA heads would have to distort to bind, and to what extent the 

symmetry of the tetramer is used in the interaction. 
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2.2.2 ZapA is widespread amongst bacteria 

The presence of ZapA has been reported and experimentally verified in several bacterial 

clades, including many mitochondria (Buss et al., 2013; Gueiros-Filho and Losick, 2002; Low 

et al., 2004; Woldemeskel et al., 2017; Yoshida et al., 2009). In order to assess further ZapA 

distribution I searched for the presence of the conserved ZapA domain (described by PFAM 

entry PF05164 (El-Gebali et al., 2019)) in a curated set of non-redundant prokaryotic 

genomes (Mendler et al., 2018), annotated with a standardised phylogenomic taxonomy 

(GTDB v86) (Parks et al., 2018). Using a standardised taxonomy allows for a meaningful 

assessment of the distribution of individual genes across clades, because clades of equal 

taxonomic rank represent roughly comparable levels of genomic divergence. I found that 

ZapA was “common” (present in more than 20% of genomes) in 74 of the 114 phylum-level 

clades in the standardised taxonomy. Hence, ZapA is very widely distributed within 

bacteria. ZapA is virtually ubiquitous within several major clades, including Proteobacteria 

and Bacteroidota (roughly equivalent to NCBI taxonomy phylum Bacteroidetes). I was not 

able to find any evidence of ZapA in the domain Archaea. 
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Figure 2-11 – Distribution of ZapA across Bacteria 

A Phylum level clades from the GTDB taxonomy v86 (Parks et al., 2018) of bacteria are plotted as 

points with the number of non-redundant genomes in the clade against the proportion of genomes 

with at least one ZapA hit. ZapA hits were HMMSEARCH results with PFAM PF05164, using an E-

value cutoff of 1E-7. Pre-computed HMMSEARCH results were retrieved from the AnnoTree server 

v1.1 (Mendler et al., 2018). 

B Euler diagram showing distribution of representative bacterial genomes containing FtsZ-encoding 

genes (search HMM: TIGR00065, E-value cutoff 1E-5) and ZapA-encoding genes (PFAM PF05164, 1E-

5). ZapA hits are very rare in genomes with no detectable FtsZ homologue. GTDB taxonomy v89 

results available at Annotree were used for panel B. 

C Phylogenomic tree of GTDB taxonomy v86 (Parks et al., 2018) (downloaded from Annotree server) 

showing the phylum level clades which are plotted as points in (A). Tips are positioned at the first 

branchpoint within each clade. Outer ring shows proportion of genomes with at least one ZapA hit, 

as for (A). Grey colour indicates that the clade only has one genome (and the proportion of hits is 

not shown).  
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2.2.3 CryoEM shows ladders of EcZapA crosslinking FtsZ filaments 

Although ZapA is thought to crosslink FtsZ filaments the way in which this happens has 

not been directly visualised.Figure 2-12A shows wildtype, full-length, FtsZ and ZapA 

proteins imaged via cryoEM after incubation with GMPCPP (similar structures are visible 

with GTP). 

The two proteins form ladder-like structures. 2D classification and averaging of ladder 

segments reveals the basic architecture of these copolymers: ZapA tetramers link parallel 

FtsZ filaments via interaction with, or close to, the globular domain (a set of interesting 2D 

classes, ordered by descending occupancy from top left to bottom right, is shown in Figure 

2-12B). We can infer the gross architecture from the FtsZ-like 44 Å repeat along the outside 

bars and the recognisable ZapA secondary structure elements linking them. In both 

micrographs and 2D classes, most of the views of the copolymer correspond to orientations 

where ZapA’s long axis is perpendicular to the beam (indicated with a ‘‡’ in Figure 2-12A, 

and most of the classes in Figure 2-12B), but there are apparently some side-views 

corresponding to looking along ZapA’s long axis (indicated with a * in Figure 2-12A, and 

labelled (i) and (xi) in Figure 2-12B). However, there are not very many intermediate views 

(perhaps (xii) and (xiv) in Figure 2-12B). To try and counter this preferred orientation, and 

increase the likelihood of generating a high quality 3D map, I collected several datasets 

while tilting the microscope stage. 

From 2D information alone we can begin to infer something further about the architecture 

of the cofilaments. As discussed, one way to make use of a ZapA symmetry axis would be 

for a pair of heads related by the C2 symmetry axis labelled ‘c’ in Figure 2-10B to interact 

with an antiparallel pair of FtsZ filaments. The projection of an antiparallel pair of FtsZ 

filaments when imaged with the two filaments one on top of each other should have 1) twice 

the intensity of a single filament and 2) a mirror plane perpendicular to the long axis. 

Several of the 2D classes in Figure 2-12B (e.g. (iii), (xiii)) have one side much brighter than 

the other, and although it is difficult to be sure, one side (e.g. the bottom in (xiii) and the top 

in (iii)) appears to have a mirror plane. Other classes show apparently asymmetrical FtsZ 

filaments, which are probably singles (although they could, potentially, be a pair of parallel 

filaments), examples include both sides of (xvi), the top of (x), and the bottom of (vii). One 

side could also appear brighter than the other if there was flexibility in the ZapAs 

connecting them, such that high quality alignment could only be achieved for one side: 
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blurring suggesting this is seen in several of the classes (e.g. (vii) and (viii)). I think it is likely 

that there is a mix of one- and two-stranded FtsZ filaments along the sides of the ladder. 

There appears to be further heterogeneity within the filaments, as the angle between ZapA 

tetramers and the Z-filaments varies significantly, from approximately perpendicular in (x) 

to about 20° off axis in (iv), with intermediate angles visible (e.g. ~10° in (xiv)). Importantly 

these projections cannot be produced by simply rotating a structure with perpendicular 

bars: there really must be significant flexibility either in the ZapA:FtsZ interaction, or 

within the ZapA dimerisation/tetramerisation interface (or both). In some cases there 

appears to be a C2 symmetry axis parallel to the beam, e.g. in class (xvi). 

The possibility of heterogeneity in the interaction mode has been raised before, as genetic 

and MS cross-linking experiments have produced some confusing results (e.g. (Nogueira et 

al., 2015; Roach et al., 2014; Roseboom et al., 2018)). Also, I was not able to recover any 

evidence of specific pairwise interactions from a direct coupling analysis (DCA) of 9,000 

FtsZ/ZapA pairs, suggesting that the interaction could be driven by more general surface 

properties spread over a larger area of one or both molecules – as has been suggested 

previously e.g. Low et al. proposed a charge-based interaction via the conserved acidic 

residues on the ZapA head (although they proposed an interaction with a basic C-terminal 

unstructured region of FtsZ). 

Despite the significant heterogeneity in the sample I attempted to generate a 3D 

reconstruction to gain further insight into the interaction. 
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Figure 2-12 – “Ladders” of FtsZ and ZapA are seen in cryoEM 

A Representative micrograph. Symbols: * indicates a putative side view, ‡ a top view. 

B Selected 2D classes, labelled as discussed in text. Box size is 301.4 Å. The figures in the top right 

of selected panels is the angle between the long axis of the side filaments and the approximate long 

axis of the ZapA “rungs”, crucially, this number varies greatly. 

C Expanded view of panel xvi from B with key distances marked. The 110 Å between the “sides” of 

the ladder distance corresponds well to the length of crystallised ZapA tetramers (see Figure 2-10), 

the 44 Å longitudinal repeat corresponds well to the FtsZ filament repeat (see Figure 2-7)..  
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2.2.4 3D reconstruction of FtsZ:ZapA copolymer 

I tried many different strategies for generating a 3D reconstruction of the FtsZ:ZapA 

copolymer, attempting to compensate for the apparent heterogeneity. I was unable to get 

to a high resolution structure, however. An example strategy is shown in Figure 2-13A, and 

briefly discussed here. 

Despite the heterogeneity in the sample it seemed clear from the 2D classes that most of the 

copolymers have a helical symmetry, with a 44 Å repeat corresponding to the repeat in an 

FtsZ filament. For this reason I decided to put all 111,000 manually picked particles into an 

initial 3D refinement while imposing helical symmetry (He and Scheres, 2017). This 

produced a map with the expected overall “ladder” geometry, although one side was thicker 

than the other. I used the Euler angles determined in 3D refinement to carry out a 2D 

classification of particle images. I discarded particle images which did not contribute to 

classes containing well defined secondary structure, leaving 70,000 particles. I carried out 

another 3D refinement, this time imposing both helical symmetry and C2 symmetry with 

the axis along the helical axis. This choice of symmetry axis would be appropriate if the Z-

filaments along each edge are parallel (Figure 2-13B). I don’t think is the case, but as the 

direction of FtsZ filaments is hard to distinguish at low resolution I was hoping this would 

help to get all the other angles approximately correct. I then carried out a symmetry 

expansion operation, using the same C2 axis. Symmetry expansion duplicates all the 

particles, and generates Euler angles for each duplicate which correspond to putting the 

symmetry related parts of the molecule into the same position in the reconstruction. This 

is useful if the symmetry is not absolute, as further refinement can be carried out on the 

symmetry-related copies independently. Using the expanded particle set (140k asymmetric 

units) I carried out a further 3D refinement, masking on one side. I then carried out a 3D 

classification using the angles assigned during this refinement. As hoped, I was able to 

separate classes in which filaments were apparently running in the two opposite directions, 

suggesting that the symmetry expansion broadly worked (Figure 2-13C). However, I was not 

able to refine these classes further to deliver any confident insight into how the ZapA:FtsZ 

interface is arranged. This is most likely because the data were too weak relative to the small 

mass I was attempting to refine.  

I tried many combinations of possible symmetries in refinement, and I also tried hard to 

isolate just those filaments with highly ordered structure throughout, but none of these 

strategies were successful.  
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Figure 2-13 – Attempted 3D reconstruction of FtsZ:ZapA copolymer 

A Example processing scheme. “k” numbers refer to thousands of particles. Resolutions are 

approximate. 

B Map after helical/C2 symmetry imposed refinement. 

C 6 classes from masked 3D refinement.  
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2.2.5 Comment and future work 

Although it is disappointing that I am unable to present a detailed structure of the 

FtsZ:ZapA interaction, this is the first time that the interaction has been directly visualised. 

In particular, the suspicion that the ZapA head domain contacts the FtsZ globular domain 

was broadly confirmed. Because of this, it is likely that the ZapA:FtsZ interaction is indeed 

somewhat dependent on the dramatic conformational change in the FtsZ globular domain 

upon polymerisation. The heterogeneity observed in the interaction may be functionally 

relevant in allowing ZapA to mediate several, topologically distinct, kinds of FtsZ-FtsZ 

interactions. Exactly why FtsZ needs cross-linkers is not immediately apparent, as Z-

filaments alone form bundles, in a way that is mediated by the disordered C-terminal tails 

(Huecas et al., 2017). It is possible that ZapA is particularly responsible for bringing filaments 

parallel, in a way that might not be possible through forming contacts via the disordered 

tails. Some support for this idea can be found in the recent in vitro experiments indicating 

that ZapA increases the collinearity of treadmilling FtsZ filaments (Caldas et al., 2019). 

I think that high resolution structural information about FtsZ:ZapA could be gained 

through the approach begun here, but will require significantly more, and most likely 

higher quality, data. Alternative approaches would include trying to reduce sample 

heterogeneity by creating ZapA heterotetramers with putative FtsZ interfaces mutated 

away, or by generating mutant FtsZs which do not form pairs of filaments. Subtomogram 

averaging may also be a sensible approach. It is hard to see how a crystallographic approach 

could work. 
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2.3 An assay to find better FtsZ inhibitors 

This work is unpublished but some passages are taken verbatim from an (successful) application to 

the MRC/Astra Zeneca Centre for Lead Discovery (MRC reference: MR/S026150/1) 

2.3.1 Background 

Every year more and more people are dying from bacterial infections which are resistant to 

existing therapeutics (OECD, 2018). There are simply not enough antibiotics available to 

clinicians, and this will not change in the near future, without radical improvements, 

because there are not enough molecules in development to fill the ever-widening gap 

between what’s available and what’s needed (The Review on Antimicrobial Resistance, 

2015). In Europe alone, the disease burden of antibiotic resistant infections is already equal 

to that of influenza, TB and HIV/AIDS combined (Cassini et al., 2019). If current trends 

continue there will have been more than 1 million needless deaths in Europe by 2050 

(OECD, 2018). As is often pointed out there has been only a single truly novel class of 

antibiotics brought to market (the oxazolidinones, discovered in 1978) since the “golden age” 

ended in the 1980s. Especially worrying is the fact that essentially no new drugs whatsoever 

for treating Gram negative infections have entered the pharmacopoeia since the 1960s (Fair 

and Tor, 2014). 

Importantly, several analyses have determined that the “innovation gap” is caused not by a 

severe scientific difficulty in developing novel therapeutics, but instead by a failure of 

economic and policy incentives to stimulate enough effort in this area (OECD, 2018; The 

Review on Antimicrobial Resistance, 2015). The UK based Review on Antimicrobial 

Resistance has estimated that a radical overhaul of the antibiotic pipeline, which would 

likely be enough for antimicrobial innovation to outpace the spread of resistance, would 

cost $16-37 billion over 10 years. To put this in context, resistant infections in the US alone 

cost the healthcare system $20 billion annually (Centres for Disease Control and 

Prevention, 2013). So, the challenge for citizens and politicians is to figure out how to 

mobilise that sort of spending, and the challenge for scientists is to be clear on what should 

be done with it. 

Crudely, the ongoing search for antibacterial compounds is split in two. Many, perhaps 

most, believe that the most efficient way to find new antibiotics is to screen molecules (from 

one of two sources: organic chemists or nature) for their effects on bacterial phenotypes 
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(Wohlleben et al., 2016). Conversely, the major alternative approach is to identify a 

molecular target and attempt to find those molecules that perturb the target biochemically. 

There are also hybrid approaches using well designed reporter strains, e.g. (Stokes et al., 

2005). Target based approaches have fallen out of fashion in antibiotic discovery, although 

they remain the predominant framework for discovery in most other therapeutic areas 

(Knowles and Gromo, 2003). This unpopularity stems largely, it seems, from many 

(expensive) failures in the late 1980s through the 1990s (Mohr, 2016). Personally, I am yet to 

be convinced that target-based approaches are fundamentally flawed: previous failures, 

particularly in the case of FtsZ, are not difficult to explain in addressable ways. In particular, 

technical capabilities and biological understanding have advanced dramatically since 

much of the work that is used to dismiss the feasibility of finding antibiotics via rational 

approaches. I am an optimist in this regard, and this section of my dissertation describes 

the development of a biochemical assay designed to efficiently find effective inhibitors of 

FtsZ from Staphylococcus aureus. 

2.3.2 Why FtsZ from S. aureus? 

As discussed, the most terrifying prospect of increasing resistance amongst pathogenic 

bacteria to antibiotics is that of pathogens which are resistant to all existing therapies – bugs 

with no drugs. In Europe, in 2015, 39% of resistant bacterial infections were resistant to the 

current last line antibiotic (Cassini et al., 2019). Indeed, many pathogenic species have 

acquired multi-drug resistance phenotypes including S. aureus, a firmicute, which is a 

normal component of a healthy microbiome but can also cause fatal systemic infections. 

The World Health Organisation designated S. aureus as one of its seven ‘bacteria of 

international concern’ in 2014, largely due to the increase in resistant infections and the 

associated high mortality (Tacconelli et al., 2018). Recently S. aureus isolates resistant to 

vancomycin, currently the drug of last resort, have been identified, highlighting the urgent 

need for novel therapies (Foster, 2017). 

Almost all bacteria require a functional FtsZ to perform cell division and replicate 

(Haeusser and Margolin, 2016). Inhibition of FtsZ has been proposed as an antibacterial 

therapy for the treatment of many different infections (including S. aureus, (Foster, 2017)), 

leading to many efforts to target the protein (comprehensively reviewed in (Hurley et al., 

2016)), and several FtsZ inhibitors with potent antibacterial activity (e.g. (Kaul et al., 2015)). 

So why then, when: (1), FtsZ is a popular target for antibiotic discovery with significant effort 

expended already on finding inhibitors, and (2), existing FtsZ inhibitors have potent cell 
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killing activity; is any further effort justified? Because: no anti-FtsZ molecule has been 

approved for therapeutic use against S. aureus or any other bacterial species (Hurley et al., 

2016; Kaul et al., 2015). This is for two reasons related to the two statements above: (1) most 

of the efforts to find FtsZ inhibitors have been flawed (and reports of biochemical success 

have often been incorrect - see discussion of “bundling” p.69), and (2), the few validated 

biochemical inhibitors of FtsZ are rapidly escaped via spontaneous mutation. We have 

developed an approach designed to be better both from the perspective of biochemical 

tractability, and to pre-empt the evolution of spontaneous resistance. 

2.3.3 Designing a better FtsZ assay 

Many of the previous efforts to develop biochemical assays for the inhibition of FtsZ have 

been fundamentally limited by their choice of readout: using either filament formation or 

GTPase activity (which is a consequence of polymerisation). Both assays are necessarily 

kinetic, and polymerisation is a highly cooperative process (Hurley et al., 2016; Wagstaff et 

al., 2017), meaning that these assays have an extremely limited dynamic range. 

Furthermore, polymerisation can be difficult to distinguish from aggregation with many 

experimental approaches. 

Instead, I decided to isolate a single, essential, biochemical aspect of FtsZ function: GTP 

binding. This idea has been tried on a small scale before, with a few putative GTP-

competitive compounds being identified (Artola et al., 2015; Keffer et al., 2013; Ruiz-Avila et 

al., 2013). Choosing to readout GTP-binding allows us to confidently screen for inhibition 

using a sensitive and robust assay with a wide dynamic range. In addition, and in common 

with those who have pursued this idea before, I anticipate that a molecule which competes 

directly with GTP and has a high enough affinity for FtsZ will be a potent inhibitor of FtsZ 

polymerisation and cell division (Figure 2-14A,B). Indeed, genetic and biochemical evidence 

suggests that small amounts of inhibited FtsZ may be able to poison cell division ( (Araújo-

Bazán et al., 2016; Hurley et al., 2016; Margalit et al., 2004), including (Du et al., 2018) showing 

that some dominant-negative mutations inhibit cell division at a 1:20 mut:WT ratio. 

As mentioned there is (only) one class of well-characterised small molecule FtsZ inhibitors, 

the benzamide family similar to PC179023 (Hurley et al., 2016; Kaul et al., 2013). The 

benzamides bind in the interdomain cleft of FtsZs (annotated “PC Pocket” in Figure 2-2A, 

p. 49), disrupting filament dynamics by locking the conformation of FtsZ in the 

open/filament state, stabilising filaments and reducing the critical concentration required 
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for polymerisation (Andreu et al., 2010). Taxis Pharmacaeuticals Inc. (NJ, USA) have stated 

an aim to enter Phase I clinical trials with their benzamide derivative TXA709 in 2018 (this 

does not appear to have happened). These molecules are highly effective in vivo inhibitors 

of S. aureus cell division, but they appear to be of very limited clinical use as in infection 

models spontaneous resistance rapidly arises (Kaul et al., 2013). The binding site does not 

seem to be under strong sequence constraints (PC binding site indicated in Figure 2-2, p.49), 

and indeed resistance to TXA709 emerges at a high frequency of ~1 x 10-8 cells in MRSA 

isolates via mutations in the pocket (Kaul et al., 2015). There is an extremely high degree of 

conservation across FtsZ GTP binding pockets (see alignment Figure 2-14C), suggesting that 

evolution of resistance via mutation of the pocket will be unlikely, at least in comparison. 

For the same reason I am cautiously optimistic that compound families which inhibit S. 

aureus FtsZ via the GTP pocket may offer opportunities for optimisation so as to target other 

bacterial species. 

In the context of the work presented here in Section 2.1, I think there is also a strong 

possibility that a GTP competitive inhibitor would have an analogous effect to the 

benzamides, i.e. locking the conformation of FtsZ (as per cartoon Figure 2-14A). As shown 

in Figure 2-4, p. 54, there are a set of interactions between H7 residues and the guanine 

moiety which change upon switching, and these could be targeted during a medicinal 

chemistry campaign to try and lock the conformation from the other side, relative to the 

benzamides. 

Having designed the assay in principle (Figure 2-14B) I began assembling the necessary 

components. 
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Figure 2-14 – Rationale for a GTP-competitive FtsZ inhibitor 

A Models for how a GTP-competitive FtsZ inhibitor could work. 

B Schematic of assay principle: non-polymerising (L272D) apoSaFtsZ+ is incubated with a 

fluorescently labelled GTP (green). The slow-tumbling complex yields high fluorescence polarisation 

(FP). When a competitive inhibitor (red) displaces fluorescent GTP, the small labelled nucleotide 

tumbles more rapidly and yields a low FP signal. 

C Alignment of FtsZ and human alpha tubulin sequences showing only residues which align with 

residues close to GTP in S. aureus FtsZ (within 8Å of GTPγS in PDB 3WGN). FtsZ sequences are 

representative of all culturable bacterial lineages which have FtsZ. Residues with direct contacts to 

GTP (to GDP in PDB 3VOA, and/or to GSP in PDB 3WGN) are shown in red, and their positions 

are marked with dots below the conservation chart. Residue numbering at top refers to S. aureus 

sequence (Uniprot FTSZ_STAAU). Background colouring is by agreement (BLOSUM 62 score) with 

bacterial consensus sequence, dark grey means match to consensus residue, light grey means similar 

residue. 

D Ligplot (Laskowski and Swindells, 2011) diagrams showing interactions between GTP/GDP and S. 

aureus FtsZ in both open and closed conformations. Residues which form contacts in both forms are 

highlighted in pink. Hydrogen bonds are shown in green, hydrophobic contacts are indicated with red 

“waves”. These plots provide context for the alignment panel above (C).  
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2.3.4 A Fluorescence Polarisation assay for GTP-competitive inhibitors of 
SaFtsZ 

For the assay protein, I reused the SaFtsZ crystallography construct (12-316), as the protein 

is well behaved and crystallises readily, although I added a C-term His-tag. I also introduced 

a point mutation designed to entirely ablate polymerisation (L272D – L272 is located on the 

tip of the C-terminal sub-domain, within the longitudinal interface c.f. (Du et al., 2018)); 

ensuring that I was always working with a monomeric sample, even at the relatively high 

concentrations required for some assay validations. Crucially, it was necessary to purify the 

protein without nucleotide, in the “apo” state, to allow binding of the fluorescent probe. A 

pure apo-protein sample on SDS-PAGE is shown in Figure 2-15A. The sample was stable (as 

measured using the final assay) for several days at 4 °C, and more than 24 h at room 

temperature, and (un)freezes well. 

Purification in the apo state required a very slow size-exclusion step (ion exchange over Q 

resin was also partially effective). The apo-protein was extremely unstable in the typical 

buffers used for size-exclusion/Q, a finding that has been replicated by Jose Manuel Andreu 

and Sonia Huecas (CSIC Madrid, personal communication). They identified that the apo 

protein is stabilised by crowding agents and can be worked with more easily in buffers with 

e.g. 20% glycerol. In these crowded solutions the affinity for GTP is greatly increased (or the 

off-rate is decreased) because size-exclusion in these cases is unable to separate the protein 

from the nucleotide. I found that adding DMSO to the assay buffer also increased the 

apparent affinity for GTP (data not shown), presumably via the same mechanism. Other 

buffer components were chosen for similarity to SaFtsZ polymerisation buffers. The final 

buffer used for all of the experiments presented here was 9 mM Tris-HCl, 45 mM KCl, 18% 

v/v glycerol, 10% v/v DMSO, at pH 7.5, with 0.01% casein. 

Previously published fluorescence assays for GTP-replacing FtsZ inhibitors have all used 

2’/3’-mant-GTP as the fluorescent probe (Artola et al., 2015; Ruiz-Avila et al., 2013). The 

affinity of FtsZs for mant-GTP is much lower than for GTP (in my hands, mant-GTP:SaFtsZ 

affinity ~20 uM-1, similar to published value (90 uM-1) for mantGTP:FtsZ from 

Methanocaldococcus jannaschii (Schaffner-Barbero et al., 2010), versus ~ 7 nM-1 and 10 nM-1 

for GTP in each case). This can be rationalised by examining the arrangement of residues 

around guanosine nucleotides in crystal structures of SaFtsZ: the 2’ and 3’ hydroxyls (where 

the Mant moiety is conjugated) are pointing into the pocket (Figure 2-15B). After trying 

several other attachment points, I chose to use a probe with the dye conjugated to the sp2-
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hybridised C8 of the guanine, in place of the hydrogen, which points straight out of the 

pocket into the solvent (Figure 2-15B).  

After trying several dyes attached at C8 which increased the affinity of FtsZ to the probe 

relative to GTP (presumably by interacting directly elsewhere on the surface of FtsZ), I 

settled on the dye ATTO-550, which did not have this problem. The probe, with dye and 

linker, was therefore 8-[(6-amino)hexyl]-amino-GTP-ATTO-550, see Figure 2-15C inset. 

ATTO-550 is a bright and photostable dye, structurally related to Rhodamine 6G and 

Rhodamine B (see, www.atto-tec.com). ATTO-550 has optimal properties for fluorescence 

polarisation in the regime required for this assay (appropriate fluorescence life-time and 

tumbling coefficient relative to FtsZ monomer). The long emission wavelength (576 nm) 

minimises the risk of assay interference by library compounds in a screening setting. 

I measured a dissociation constant (Kd) of ~ 7 nM of ATTO-550-GTP for apo-FtsZ by titrating 

protein into a fixed concentration of probe (saturation binding curve in Figure 2-15C). The 

reverse titration was done initially also, to determine the reasonable range for probe 

concentration to ensure a good signal-to-noise ratio, I found that signal was hard to 

interpret below ~1 nM of probe. For competition assays I used a protein concentration of 25 

nM (~70% binding) and a probe concentration of 2 nM. Competition with unlabelled GTP 

indicated a inhibition constant (Ki ,in this case equal to the dissociation constant) of ~ 8 nM 

(see Appendix: Principles of Fluorescence Polarisation, p. 152). Results of this experiment 

for three different apoSaFtsZ purifications are shown in Figure 2-15D. Thus, the affinity of 

apoSaFtsZ to the probe is essentially the same as that to GTP (both measurements are 

probably only accurate to within a fold change). The very high affinity for the probe, and 

the sufficient brightness of the dye, mean that the assay has a high dynamic range, allowing 

detection of inhibitors with a broad range of affinities for FtsZ (Xinyi Huang, 2003). 

During assay development I also worked to miniaturise the assay to 384-well plate format. 

All data shown here was recorded in 384-well plates, with a final well volume of 20 μL. 
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Figure 2-15 – An FP assay for GTP-competitive FtsZ binding molecules 

A SDS-PAGE gel showing purified nucleotide free S. aureus FtsZ+ (12-316, L272D, C-6xHis) assay 

sample. 

B Shape of GTP binding pocket on SaFtsZ. Surface representation of the region surrounding GDP in 

PDB id 3VOA is shown. The nucleotide is shown in stick representation, coloured by element, with 

the atoms mentioned in the text labelled. 

C Saturation binding curve. ATTO-550-GTP binds apoSaFtsZ+ tightly with a Kd of ~7 nM, giving the 

assay an excellent expected dynamic range. Values plotted here are the mean of three with standard 

deviations shown as error bars. Values are adjusted for gain in fluorescence upon binding and ligand 

depletion as per (Schaffner-Barbero et al., 2010). Final buffer conditions for (C) and (D) are 9 mM 

Tris-HCl pH 7.5, 45 mM KCl, 18% v/v glycerol, 10% v/v DMSO, 0.01 % casein. Inset: Structure of 

probe, ATTO-550-GTP. ATTO-550 structure is not disclosed by ATTO-TEC GmbH but is related 

to the dyes Rhodamine 6G and Rhodamine B. 

D XC50 assays for displacement of ATTO-550-GTP by unlabelled GTP. 3 independent replicates are 

shown (each using an independent protein preparation), giving pXC50 values within +/-0.3 log units. 

ApoSaFtsZ+ at 25 nM (~70% response in main panel), ATTO-550-GTP at 2 nM. pXC50 values imply 

a Ki of ~8 nM (calculated as per (Nikolovska-Coleska et al., 2004)).  

C2’

C3’

C8

25

15

35

40

55

70
100

M ap
oS
aF
tsZ
+

kDa

0

50

100

10− 1 0 10− 9 10− 8 10− 7 10− 6 10− 5 10− 4

[GTP] (M)

Re
sp

on
se

 (%
)

50

100

150

10-10 10-9 10-8 10-7 10-6

[FtsZ] (M)

Co
rr

ec
te

d 
an

iso
tr

op
y 

(m
A)

NH2

N

NH

H

OH

O

NH

N

N

OH

O

O
P

O N

OH

O
OH

O

OH
P

OH

O

O
P

550

atto-550-GTP

c

b d

a

Ki ~ 8 nM

Kd ~ 7 nM



RESULTS AND DISCUSSION 

 91 

2.3.5 SaFtsZ interaction with GTP analogues 

I used the FP assay to determine the affinity of apoSaFtsZ for several nucleotides (Figure 

2-16). 

GTP and GTPγS, (guanosine 5'-O-[gamma-thio]triphosphate) had similar, high, affinities 

for SaFtsZ (low nM-1). The GTP analogue GMPCPP had an affinity ~2 logs lower. 

Interestingly, I was never able to get SaFtsZ to polymerise in the presence of GTPγS 

(whereas it polymerises readily with GMPCPP). 

The gamma phosphate appears to have a major contribution to GTP:SaFtsZ affinity, as the 

affinity for GDP is 3 logs lower than GTP (contrary to the findings for FtsZ from the 

archaeon Methanocaldococcus jannaschii, where affinities for GTP and GDP were very similar 

(Schaffner-Barbero et al., 2010)). As expected, the affinity for ATP is much lower, in the 

micromolar range. 

 
 

Figure 2-16 – Interaction of SaFtsZ with GTP analogues 

Corrected fluorescence anisotropy is plotted against the concentrations of the five nucleotides in a 

an assay mixture containing 25 nM apoSaFtsZ and 2 nM ATTO-550-GTP. Points plotted are the 

average of three measurements and error bars show one standard deviation. Curves and 

corresponding Ki values were fitted as described in the text.  
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2.3.6 Assay validation for high throughput screening 

Before embarking on a high throughput screen it is necessary to conduct several validations 

of the proposed assay. Because in most screening campaigns the primary screen will only 

be carried out once per library molecule, a key question is the ability of an assay to cleanly 

and reproducibly separate positive and negative results. A popular metric to summarise this 

ability is the Z’ (“Z-prime”) score, given by: 

!" = 1 −
3 ∙ ()*+, + )./0)

23./0 − 3*+,2
	 

Where )	and 3 are the standard deviation and mean, respectively, of several measurements 

of positive (“pos”, i.e. 100% response) and negative (“neg”, i.e. background) controls for the 

assay. This score is calculated per plate, and ranges between 0 and 1; “good” scores are above 

0.5 (if standard deviations for both controls are equal, a Z’ of 0.5 means that controls are 

separated by 12 standard deviations). The data for one assay plate with wells containing only 

positive or negative controls is shown in Figure 2-17A, the Z’ score for this plate was 0.82. I 

performed this test for 10 plates, obtaining a mean Z’ of 0.82, ranging between 0.79 and 0.84. 

This is an excellent score, and a very good consistency of scores.  

While moving towards carrying out high throughput screening with the assay I began using 

a lab automation system (Biomek, Beckman Coulter). This required significant 

troubleshooting, including the addition of a blocking agent to minimise interaction of the 

protein with plasticware. After trying several options I chose to use 0.01% casein, which is 

largely disordered and is thought to bind to fewer library compounds than BSA, another 

popular choice. Addition of casein to the assay buffer effectively reduced losses due to non-

specific binding to polypropylene surfaces. 

Using the robot I carried out a small pilot screen of ~4,000 compounds from the Dundee 

Drug Discovery Unit’s “Small Polar” collection. This was useful to highlight the practical 

issues of managing throughput, and led to some small optimisations of the assay protocol. 

The results are shown in Figure 2-17B. The usefulness of being able to simultaneously 

record fluorescence anisotropy (FA) and total fluorescence intensity (FI) is clear: in this 

small set of compounds all of the apparent hits, with reduced FA, were in fact compounds 

which lead to aggregation, visible by the increase in FI. The compounds causing the largest 

drops in FA were rescreened in XC50 experiments, which confirmed that they were all 

aggregating the protein.  
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Figure 2-17 – Validation of FP assay for High Throughput Screening 

A FP measurements were performed on wells with 2 nM ATTO-550-GTP with (negative, black dots) 

or without (positive, grey dots) 15 nM apoSaFtsZ+. Kernel density estimates are shown at right with 

standard deviations for the two control groups. Values on y-axis are mean values for each group. Z’ 

score (0.82) is for plate shown. The average Z’ across 10 plates was also 0.82, ranging from 0.79 - 

0.88. 

B Data from an 11 plate proof-of-principle screen are shown, with both per-well anisotropy and 

intensity plotted, normalised to on-plate control values. Fluorescence intensity (FI) provides useful 

QC data for FP assays as bona fide hits should not significantly change FI (if anything, they should 

reduce it), allowing false positives by FP measurement (causing e.g. aggregation) to be discarded early 

on. 
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2.3.7 Future work 

After validating the final assay for high throughput screening I and my supervisor, Jan 

Löwe, applied to the Astra Zeneca (AZ) – MRC Centre for Lead Discovery (CLD). The CLD 

is a collaborative project in which AZ performs screens using assays developed by MRC 

scientists. Our application was successful and in late 2019 the AZ compound collection (c. 2 

million molecules) will be screened against the assay described here. 

  



RESULTS AND DISCUSSION 

 95 

2.4 Polymerisation-coupled conformational switching across the 

actin and tubulin superfamilies 

This work is unpublished. 

After investigating the polymerisation-coupled conformational switch in FtsZ and 

identifying the potential role of the switch in generating kinetic end-asymmetry required 

for robust treadmilling I became interested in how cytomotive filaments function, in 

general. 

2.4.1 Looking for a mechanistic basis of cytomotivity 

As discussed in the introduction, there are a very large number of protein filament systems 

scattered across the tree of life. Some of these protein filaments are used in cells to position 

other molecules in space and time – but not all of them. For instance, many enzymes appear 

to form filaments for purely regulatory reasons e.g. CTP synthase in organisms spanning E. 

coli to man (Lynch et al., 2017) (Figure 2-18A). I have, and have argued, the view that the term 

“(prokaryotic) cytoskeletons” can be usefully employed to encompass those protein 

filaments which are responsible for positioning other molecules inside cells (Wagstaff and 

Löwe, 2018), although the term has been used in other ways e.g. (Pilhofer and Jensen, 2013). 

In my preferred framework any given filament system forms a single “cytoskeleton”, and 

any given cell may contain several of these cytoskeletons (i.e. a casual description of the 

“eukaryotic cytoskeleton” is not consistent, it would be necessary to specify, for example, 

the “microtubule cytoskeleton”). 

Within the large class of cytoskeletal filaments there are several different ways in which 

filaments are used to position other molecules. One important subclass is that of the 

“cytomotive” filaments (Figure 2-18A) (Löwe and Amos, 2009). Cytomotive filaments make 

use of the plentiful supply of free energy available in the cell by catalysing nucleotide 

hydrolysis in a way that is coupled to their (de)polymerisation cycle, and so are able to do 

the useful work of pushing and pulling of other molecules around via dynamic filament 

growth or shrinkage. This can be done in two modes: treadmilling, or dynamic instability 

(Löwe and Amos, 2009; Mogilner and Oster, 2003; Theriot, 2000). So far, we know of only 

two families of proteins which can form filaments that act as one-dimensional motors in 

this way: the actins and tubulins. There are other systems which come close to being 

cytomotive, inasmuch as they couple polymerisation and nucleotide hydrolysis in order to 
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manipulate other molecules, but these systems have the coupled functionalities spread 

across several proteins (at least one of which does not polymerise). Two prominent 

examples of this mode of decoupled activities are the ESCRT-III like systems, in which 

polymerised ESCRT-III homologues are disassembled by Vps4 ATPase homologue 

(reviewed (Schöneberg et al., 2017)); and MinCD filaments whose intrinsic ATPase activity 

is activated by MinE (reviewed (Szwedziak and Ghosal, 2017)); details in both cases remain 

unclear). 

Given the obvious usefulness of cytomotive filaments, as evidenced by their ubiquity in 

essential cellular processes (see “Perspective on prokaryotic cytoskeletons”, Section 1.6, p. 

37), it is tempting to ask the question: why is it (only) the actin and tubulin superfamilies 

that make these dynamic structures? Asking “why” in biology should be a disguise for a 

smarter question, of course. In this case I think the corresponding question is: which 

evolutionary regime is life in with respect to cytomotive filaments. The observed biology 

can be explained in probably three ways: 

1. Cytomotive filaments are easy to evolve 

a. but two families are enough, or, 

b. but we have not looked hard enough yet 

2. Cytomotive filaments are hard to evolve: actin and tubulin are special 

Some evidence that (1) may well be the case comes from the fact that the most salient 

features of the cytomotive filaments, namely: filament formation and nucleotide hydrolysis, 

both appear to be easily accessible in evolutionary space, and not obviously counter-

selected (e.g. CTP synthase (Ingerson-Mahar et al., 2010)). Of course, these features must be 

integrated so that they are coupled, but again it would seem that this could be 

straightforward if done in the same way as tubulin, for example, where the 

presence/absence of the g-phosphate within the filament interface simply regulates 

interface strength and therefore the propensity to depolymerise. Filament formation in 

particular is so easy to evolve that it has been designed, by David Baker’s group and others 

(Garcia-Seisdedos et al., 2017; Shen et al., 2018). 

Evidence that (1a) may be unlikely includes the observation that the actin and tubulin 

systems have been repurposed so many times, clearly implying that there can be a selective 

advantage in getting a new cytomotive filament system. The proposition that we simply 

have not found other extant cytomotive filament systems (1b) will remain a possibility for a 
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long time, as we know from metagenomic sequencing efforts that we have characterised 

very little of cell-biological diversity (for example, both the Candidate Phyla Radiation in 

bacteria and the DPANN clade in archaea remain essentially unstudied despite their 

constituting huge chunks of the diversity within their respective domains (Hug et al., 2016)). 

On the other hand, it does seem unlikely that there is an unknown, widespread, cytomotive 

filament system with important roles in cell biology in the organisms we understand 

reasonably well. 

The tempting explanation of (2) (even more tempting if you work on these proteins, of 

course), implies that, in fact, the two features of cytomotive filament-forming proteins 

mentioned above are not sufficient for cytomotivity, or that their integration to produce 

cytomotivity is not straightforward. I think that both of those things are possible. The fact 

that we cannot easily rule (2) out clearly suggests that we do not understand cytomotivity 

well – and, whether or not it is “special”, we should invest energy in doing so. 

Obviously, many people have worked on trying to understand the molecular bases of the 

remarkable properties of both eukaryotic actin filaments and microtubules. However, both 

eukaryotic actins and tubulins are extremely homogenous, in terms of sequence, structure, 

and function (even so, I think it would be a stretch to describe either system as fully 

understood). Both filaments are highly optimised for their roles in eukaryotic cells. As a 

result, while working on these proteins it is unavoidably hard to distinguish what is an 

important feature of eukaryotic actin/tubulin, and what is an important feature of a 

cytomotive actin/tubulin filament per se. Luckily, a much smaller group of people, many of 

them my predecessors or contemporaries in Jan Löwe’s group at the MRC LMB, have 

invested serious efforts into understanding the structure and function of actin and tubulin 

superfamily members from outside the narrow slice of biological diversity within 

eukaryotes. 

The expanding zoo of well characterised prokaryotic actin and tubulin superfamily 

filaments from across bacterial and archaeal phyla, discussed in the Introduction, offers an 

opportunity to try and identify the general mechanistic principles by which these proteins 

function. My usage of the word “superfamily” in the remainder of this section is illustrated 

in Figure 2-18B. In words: a set of related sequences, and structures, with potentially diverse 

functions united by a common mechanistic underpinning. This is a slight narrowing of the 

definition of Murzin et al., who wrote “families, whose proteins have low sequence 

identities but whose structures and, in many cases, functional features suggest that a 
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common evolutionary origin is probable, are placed together in superfamilies” (Murzin et 

al., 1995). 

In order to try and better understand the structure ® mechanism principles (the red arrow 

in Figure 2-18B) of the actin and tubulin superfamilies, in both of which the shared 

mechanism is the formation of cytomotive filaments, I analysed the available structural data 

in each case. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-18 – Investigating the conserved basis of cytomotivity 

A Schematic showing the relationship between different classes of protein filaments. 

B Schematic illustrating the concept of a protein superfamily, as the term is used here. Members of a 

superfamily will have many different functions, encoded within their diverse sequences, but they will 

share a structure and also a mechanism, as determined by the structure. The structure and mechanism 

are what is conserved within the superfamily. The actin and tubulin superfamilies share a common 

mechanism – they form cytomotive filaments. The dashed grey arrow goes to the structurally related 

proteins which use a different mechanism (i.e. they would be superfamily members in the Murzin et 

al. framework).  
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2.4.2 Looking at superfamily filaments 

An obvious place to look for clues as to a conserved basis for the remarkable functional 

properties of the cytomotive filament-forming proteins is in the structures of the filaments 

themselves. Within oligomer-forming superfamilies it is indeed common for quaternary 

structure to be conserved (Levy et al., 2008). However, in the case of both actins and tubulins 

this is only partially the case. 

Often, interactions between subunits within protein filaments are considered in terms of 

being either “longitudinal” or “lateral”, reflecting the fact that a filament structure can 

frequently be understood as being formed of protofilaments: one-subunit thick filaments in 

which subunits interact via longitudinal interfaces, and which associate with one another 

via lateral interfaces. This is typically a useful model, but it is important to remember that 

there are other ways to understand the helical symmetries of these objects, which are 

sometimes more relevant to biology – rigorously discussed in (He and Scheres, 2017). 

The ways in which protofilaments come together in the actin and tubulin superfamilies are 

strikingly diverse (see Figure 1-2B and Figure 1-3B, p. 18 and p. 24). Within the tubulins, 

known filament architectures range from single FtsZ filaments to ~13 stranded 

microtubules, via 4-stranded mini-microtubules, and viral tubulin filaments with 3- (PhuZ) 

and 4- (TubZ) protofilaments; with a concomitant variation in lateral contacts (or lack 

thereof). Within actins there is a propensity for double filaments (possibly a consequence 

of the likely domain duplication in the evolutionary history of actin cf. (Bork et al., 1992; 

Levy et al., 2008)), but the relative arrangement of the paired-protofilaments varies greatly, 

as illustrated by the topology cartoons at the bottom of Figure 1-3B, p. 24, as do the lateral 

contacts which facilitate them. 

Longitudinal filament contacts in both actin and tubulin superfamilies are similar across 

the subfamilies, with approximately equivalent subunit surfaces coming together, but there 

are significant variations in both cases. This is very clearly so in the actin superfamily where 

certain subdomains involved in the longitudinal interface have been replaced or lost 

entirely (in the cases of AlfA, and FtsA, respectively (Szewczak-Harris and Löwe, 2018; 

Szwedziak et al., 2012)). 

In summary, it is hard to pull together an explanation for the shared cytomotive properties 

of actin and tubulin filaments from the conserved properties of the filaments themselves 

within each superfamily.  
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2.4.3 Looking at superfamily subunits 

Beyond the filaments formed by actin and tubulin superfamily members, especially in the 

context of having worked on the conformational switch in FtsZ, an obvious place to look 

for a conserved basis of cytomotivity is within the highly conserved subunits themselves, 

and the conformational dynamics thereof. Indeed, many of the studies on individual actin 

and tubulin superfamily members have focussed on conformational changes, but 

surprisingly none have systematically tried to relate these together, in either case. I have 

attempted to do this. 

The approach I have taken to synthesise conformational information from across 

superfamilies is illustrated in Figure 2-19A, and the steps briefly discussed below: 

(i) In order to understand how or whether conformational dynamics are conserved 

across a set of diverse sequences it is necessary to establish a common frame of 

reference for the sequences: an alignment. Structure-based approaches to 

aligning sequences are considered the gold-standard, as they are able to recover 

relationships between residues that cannot be found using sequences alone 

(these approaches are used as approximations of ground truth to benchmark 

sequence alignment algorithms). There are many structure-based alignment 

algorithms to choose from, with the key distinction being between those that 

allow for structural flexibility and those that perform only a global superposition 

to guide sequence alignment. I have used both varieties as discussed below, and 

typically within an overall alignment algorithm which can incorporate both 

structure and sequence-derived constraints (e.g. PROMALS3D and T-Coffee 

(Notredame et al., 2000; Pei et al., 2008)). 

(ii) Assuming that all of the superfamily members work the same way, positions 

with gaps are residues that do not contribute to the core mechanism and can be 

removed from the alignment. This also permits further analysis by e.g. PCA, 

which requires a full matrix. The remaining, ungapped residues, form the 

structurally conserved core of the superfamily fold. 

(iii) To compare structures a different frame of reference is required: a defined 

invariant region (distinct from a sequence based structural alignment, because 

it requires a sequence alignment to mark equivalent residues). I used the 

approach of Gerstein et al., implemented within the bio3d package for the 

statistical programming language R. (Gerstein and Altman, 1995; Gerstein and 



RESULTS AND DISCUSSION 

 102 

Chothia, 1991; Grant et al., 2006). This approach performs iterative rounds of 

global alignment, removing the worst aligned residues as determined by the 

volume of an ellipsoid with dimensions corresponding to the lengths of the 3 

principal eigenvectors of the aligned coordinates for that residue, until all of the 

volumes fall below a threshold. 

(iv) After superposition on the invariant region, sequence-aligned residues can be 

compared with one another on the basis of their position in space by various 

methods including Principal Component Analysis (PCA). The basis of PCA is 

illustrated in Figure 2-19D. PCA in particular is a powerful technique for 

reducing dimensionality of data and allowing the largest sources of variance to 

be effectively visualised, and has been successfully applied to the analysis of 

protein structures many times (Grant et al., 2006). 
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Figure 2-19 – Approach for analysing conservation of conformational dynamics 

A Workflow used for analysing conservation of conformational dynamics within a superfamily. 

B Schematic illustration of Principal Component Analysis (PCA) in a 2D space. Individual observations 

are made of two variables. PCA determines the linear combination of those variables which describes 

the direction of maximum variance (PC1), and the subsequent vector orthogonal to it which describes 

the second largest variance (PC2). These vectors are also eigenvectors of the data matrix.  
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2.4.4 Tubulin superfamily members have a conserved polymerisation-coupled 
conformational switch 

In order to investigate conformational changes in the tubulin superfamily I assembled a 

dataset of protein structures from the Protein Data Bank (PDB). I decided to focus on the 

tubulin superfamily members for which we have a good understanding of subunit 

structures both within and outside of the filaments formed. This decision limited the 

analysis to FtsZs, alpha tubulins, and beta tubulins. 

In total, I analysed 1007 chains, from a total of 266 deposited structures. I selected a non-

redundant set of chains (one from each conformation cluster, RMSD < 0.5 Å, within each 

deposition), maximising resolution and minimising the number of gaps in the 

representative structures. I removed all structures worse than 5 Å, and all structures without 

a bound nucleotide/nucleotide analogue. The final dataset used here contained 551 chains, 

and can be found in Table 4, p.164. 

After a structure-based sequence alignment of the selected structure sequences, 258 un-

gapped positions were identified: the structurally conserved core of the tubulin fold (for 

reference, these residues covered 84% of the SaFtsZ globular domain (aa 12-316)). The 

invariant region was defined as the set of Cα with an eigenvector ellipsoid volume < 1.5 Å, 

this was 43 residues, all located in the beta sheet at the centre of the N-terminal domain. 

The core and invariant region are shown in Appendix Figure 4-6A, p. 148. 

PCA was carried out per subfamily on the matrix of Cα Cartesian coordinates for the 

structurally conserved core residues, after alignment on the invariant region. The results of 

this procedure are shown in Figure 2-20. As discussed, PCA determines the linear 

combination of measured dimensions which maximises the amount of variance in the input 

data that can be explained by moving along that vector; Figure 2-20A shows the proportion 

of the variance that is explained by each of the first five principle components of each 

subfamily analysis. Strikingly, and this is generally true, a very large proportion of the 

variance within a set of homologous protein structures can be explained by very few 

principle components. For instance, 90% of variance in the entire ensemble of FtsZ Cα 

positions is explained by just three principle components. PCA is very good at capturing 

~rigid body motions, which constitute a significant fraction of protein dynamics. Overall 

this means that the high dimensional space of structures (e.g. the space which describes the 

Cαs of the tubulin structurally conserved core has 774 dimensions, the number of residues 
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(258) multiplied by the number of spatial dimensions (3)) can be meaningfully reduced to a 

smaller number of richly descriptive dimensions permitting further analysis.  

A visualisation of PC1 for each subfamily is depicted in Figure 2-20B. Arrows (red) are drawn 

from mean Cα positions (black) for the subfamily, the length/direction of the arrows are 

defined by the loadings for the x,y,z components at that position (as vectors with origin at 

the mean Cα position). The position of the points in the positive direction along the x-axis 

in the PC subspace plot in Figure 2-20C (see below) corresponds to adding increasing 

amounts of the red arrows to the mean positions of the Cαs. All three subfamily PC1s look 

reasonably similar with the variance in the structures being distributed along a vector that 

involved a coordinated, and approximately coaxial, movement of the C-terminal 

subdomain and helix 7. See below and Figure 2-21 for discussion of how similar these PCs 

are, but first it is worth asking whether there is a functional correlate for these PC1s, which 

explain so much of the variance within each subfamily. 

In Figure 2-20C the results of the PCAs are plotted in their respective PC1-PC2 subspaces. 

Each point is one structure, coloured by polymerisation state. Rather dramatically, it is 

immediately obvious that PC1 in all three cases is a discrete classifier for polymerised versus 

monomeric conformations; i.e. a very large proportion of the variation amongst the 

structures linearly describes a conformational change upon polymerisation. In all three 

cases the change corresponds to moving along the red arrows in Figure 2-20B in a filament-

to-monomer conformational change. In Appendix Figure 4-7 p. 159 there is a version of 

Figure 2-20C with the points coloured instead by the hydrolysis state of the nucleotide 

bound – showing that there is no clear relationship between hydrolysis state and position 

in the PC1-PC2 subspace. In essence this pair of observations is a re-affirmation of the 

(finally!) prevailing view of microtubule formation: the “lattice model”, as opposed to the 

“allosteric model”. The lattice model is usually described in terms of the transition from 

kinked heterodimers in solution, to straight ones inside microtubules (reviewed (Brouhard 

and Rice, 2018)). Less often discussed (although certainly noted!) is the fact that a significant 

component of the overall conformation change of the heterodimer arises from the relative 

movement of the subdomains within each of the two subunits (not just movement of the 

monomers relative to one another). To put this consensus differently, both alpha and beta 

tubulins undergo a polymerisation associated conformational change – just like FtsZs.  

  



RESULTS AND DISCUSSION 

 106 

Figure 2-20 – PCA of tubulin superfamily structures 

A Proportion of variance explained by first 5 principal components. 

B PC1 component vectors (red) plotted on mean structure (black) for each subfamily. 

C Results of PCA plotted in PC1-PC2 subspace. Individual structures are coloured as to whether the 

conformation is found in filaments or unpolymerised monomers. Numbered structures, and groups 

of structures are as follows: 

1. 3J8X:A 5Å structure of kinesin bound to MT 

2. Bottom alpha tubulins in stathmin-stabilised-like tetramers 

3. Middle alpha tubulins in stathmin-stabilised-like tetramers 

4. CryoEM MT structures 

5. 5NJH:A/B Triazolopyrimidine bound tetramer 

6. RB3 stathmin like tetramers 

7. 5LOV:B DZ2384:tubulin complex 

8. Low resolution (incorrect) structure 3J8Y 

9. Beta tubulins in stathmin-stabilised-like tetramers 

10. 5H5I:A SaFtsZ R29A mutant 

11. SaFtsZ filament crystals 

12. Various bacterial FtsZs 

13. Methanocaldococcus jannaschii FtsZs 
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An obvious question is whether the change in each case is the “same” one. There are several 

approaches for assessing this, two are shown in Figure 2-21. Because the per-subfamily 

PCAs were carried out on the structurally conserved core residues, and all the structures 

were aligned on the invariant region, it is possible to project the coordinates from one 

subfamily’s structures into the PC space of another. The result of projecting beta tubulin 

and FtsZ structures into the alpha tubulin PC1-PC2 subspace is shown in Figure 2-21A and 

B. The alpha tubulin PC1 effectively separates the beta tubulin and FtsZ 

polymerised/monomeric states. The FtsZ structures have a different midpoint through 

which the conformational change goes, but the vector which separates the two states is 

similar in all cases. We can also ask what proportion of the variance in the projected 

structures is explained by the PC subspace, for example 21% of variance amongst FtsZ 

structures is described by the alpha tubulin PC1. 

A second way to assess the similarity of the vectors is demonstrated in Figure 2-21A, which 

shows the overlap (dot product) of the per-family PC1s and 2s (overlap of one means that 

vectors are parallel, overlap of zero that they are orthogonal – such as the beta-beta overlaps 

in the top right quadrant). The pairwise overlaps between all the PC1s are high, indicating 

that these vectors, which explain the bulk of variance amongst each subfamily’s structures, 

are similar. As we know that each PC1 describes the conformational change upon 

polymerisation within each subfamily, we can begin to conclude that not only do all of the 

families have such a change, but that it is the same change in each case. Perhaps more 

surprisingly, there is also fairly good overlap between the PC2s in each case, which typically 

describe differences between species (or in the case of alpha tubulin, the difference between 

being at the top of, or in the middle of, a stathmin-stabilised dimer of heterodimers). In 

contrast, there is very poor overlap of PC1-PC2 pairs taken from any two subfamilies: 

supporting the idea that the PC1s are similar, because they are orthogonal to not only their 

own PC2 (which they must be, by definition), but also those of the other subfamilies. It is 

worth noting that the similarity of the conformational changes has been noted before, but 

not systematically, e.g. (Buey et al., 2006), and has so far not been widely acknowledged. 

So, there is a polymerisation-associated conformational change within each subfamily, and 

it appears to be the same change. An important question is whether the change reflects a 

switch. Switches are pairs of low energy states separated by high energy transition 

pathways. The low probability of moving from one state to another is exploited in biological 

systems to generate non-linear behaviours. In Section 2.1 I argued that FtsZ switches 



RESULTS AND DISCUSSION 

 109 

conformation upon polymerising, drawing on the evidence that we observe just two, 

discreet, states (in that section using the pairwise RMSDs) – and no intermediates, 

suggesting that those intermediates are unstable. The discrete nature of FtsZ 

conformational states is recapitulated in the PCA analysis. The argument can be extended 

to the alpha and beta tubulins. Again, in all cases, the monomeric and polymerised 

conformations are separated into discrete clusters in the PC space, with no intermediates. 

The argument that the conformational changes are switches is based on the assumption 

that the conformational space is sufficiently sampled by the available structures. This is 

impossible to know for sure, although the extensive structural biology efforts to understand 

both eukaryotic tubulin and FtsZ should give us hope. There is additional evidence in both 

cases, however: 

Another research group has recently shown via Hydrogen-Deuterium Exchange Mass 

Spectrometry (HDX-MS) that FtsZ from Caulobacter crescentus exists in solution in two 

discrete conformations corresponding to the crystal structures (Laura Corrales Guerrero 

and Martin Thanbichler, personal communication). As discussed in Section 2.1.5, p. 52, and 

illustrated in Figure 2-4B, there is an arginine residue (R29 in SaFtsZ) which rearranges 

during the polymerisation associated conformational change from packing against helix 7 

from the “outside” in the monomer to packing against it from the “inside” in the filament, a 

journey which appears to require transition through unlikely looking intermediates, and is 

a candidate for a switch residue, ensuring the bistability of the transition. A paper 

investigating the SaFtsZ conformational switch, Fujita et al., 2017, (published 

simultaneously with our paper, Wagstaff et al. 2017, arising from the work outlined in 

Section 2.1) went further and showed that an R29A mutant in fact did crystallise in an 

intermediate conformation (PDB ID 5H5I:A) – the grey dot numbered ‘10’ in Figure 2-20A . 

Examining existing evidence for a bistable switch in tubulin subunits is complicated by the 

previously discussed fact that models for tubulin typically emphasise the importance of 

conformational changes across the entire heterodimer, which are dominated by the inter-

alpha-beta angle. Interestingly, although many tubulin assembly models have posited the 

importance of a kinked-straight assembly switch (as measured by inter alpha beta angle), 

there are at least two molecular dynamics papers which suggest that such a barrier may not 

exist (i.e. that flexibility across the heterodimer hinge is continuous) (Gebremichael et al., 

2008; Igaev and Grubmüller, 2018). However, there are clues in both that a within-subunit 

conformational switch may exist. Some more convincing evidence comes from a recent 
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study of a beta tubulin mutation on helix 7 (S. cerevisiae T238A), which modulates MT 

dynamics in a way consistent with a conformational switch within beta tubulin (Geyer et 

al., 2015). Further work is required, to establish the conformational (energy) landscape of 

eukaryotic tubulins. 

The functional consequences of a having a polymerisation associated conformational 

switch are discussed below, after the conformational dynamics of actins have been 

examined. 
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Figure 2-21 – The conformational switches within tubulin subfamilies are similar 

A Projection of all structures into the alpha tubulin PC1-PC2 subspace. 

B Kernel density estimation showing distribution of all structures, coloured by polymerisation state, 

projected projected along alpha tubulin PC1. 

C Overlap between PCs 1 and 2 of the three subfamilies.  
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2.4.5 Cytomotive actin superfamily members also have a conserved 
conformational switch 

I analysed the filament forming actin superfamily members in a similar way to the tubulins. 

Again, I selected the subfamilies with well-characterised structures corresponding to both 

polymerised and monomeric states, limiting the analysis to: eukaryotic actin, crenactin, 

MamK, ParM from the E. coli R1 plasmid, and MreB. 

I initially downloaded 888 chains, from a total of 251 deposited structures. I selected a non-

redundant set of chains (one from each conformation cluster, RMSD < 0.5 Å, within each 

deposition), maximising resolution and minimising the number of gaps for the 

representative structures. I removed all structures worse than 5 Å, and all structures without 

a bound nucleotide/nucleotide analogue. The final dataset used here contained 209 chains, 

listed in Table 5, p.172. 

After a structure-based sequence alignment of the selected chain sequences, 177 un-gapped 

positions were identified: the structurally conserved core of the actin fold. This core 

encompasses eukaryotic subdomains IA, IIA and some of IIB, but does not include IB. The 

core corresponds well to the most minimalistic actin identified so far: AlfA from the Bacillus 

plasmid pLS32 (Szewczak-Harris and Löwe, 2018). The invariant region was then defined as 

the set of Cα with an eigenvector ellipsoid volume < 1 Å, this was 26 residues, mostly located 

in the subdomain IIA beta sheet beneath the nucleotide. The core and invariant region are 

shown in Appendix Figure 4-6B. 

PCA was carried out per subfamily on the Cα Cartesian coordinates for the structurally 

conserved core residues after alignment on the invariant region. The results of this are 

shown in Figure 2-22. As for the tubulins, in all cases the first few PCs describe the total 

conformational variability well. Visualisation of PC1s on the mean structures for each 

subfamily illustrates that the major structural transitions occur in subdomain IIA, as it 

moves in or out relative to the rest of the molecule, and in some cases also rotating around 

an axis approximately passing through the centres of subdomains IA and IIA. In MreB and 

ParM there are also some larger PC1 loadings at residues on the IIA/B half. 

As for the tubulins, when the actin structures are plotted in their respective PC1-PC2 

subspaces and coloured by their polymerisation state (Figure 2-22C) it is clear that PC1 

cleanly separates monomeric from polymerised conformations – with one exception: MreB. 

The MreB PC1 describes the relatively small conformational differences between the 
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monomeric and single filament states (negative PC1 values) and the double filament state 

(positive PC1 values). As for the tubulins, there is no obvious relationship between PC1-PC2 

subspace position and the hydrolysis state of the bound nucleotide (Appendix Figure 4-8). 

The conformational change upon polymerisation in eukaryotic actin is well characterised 

as the “propeller twist” of subdomains IA/B versus IIA/B (reviewed (Dominguez and 

Holmes, 2011)). One interesting point is the structure labelled ‘4’, this is a cryoEM structure 

of an actin filament bound with the severing protein cofilin, as can be seen this structure 

lies in the monomeric portion of PC1 – recapitulating the depositing authors’ conclusions 

that cofilin binding forces the actin subunit into a conformation less compatible with 

polymerisation (Tanaka et al., 2018). 

Within the framework of the PCA we can ask whether the changes upon polymerisation in 

actin are similar across the subfamilies using the same analyses as for tubulins (Figure 2-23). 

In Figure 2-23A all of the structures are projected into the eukaryotic actin PC1-PC2 

subspace. Remarkably the actin PC1 cleanly separates monomeric and polymeric structures 

for all of the subfamilies, with the exception of MreB, for which all of the structures are 

placed on the polymeric side of the plot. Figure 2-23B shows the overlap of the first three 

PCs for all of the subfamilies, again the pairwise PC1 overlaps are generally very high. PC2 

and PC3 (which mostly seem to encode species differences) are a little scrambled but in 

many cases overlap well pairwise. The exception, again, is MreB whose PCs show limited 

overlap with the other subfamilies. 

So, like the tubulins, the actins subfamilies all undergo a polymerisation associated 

conformational change, and it appears to be the same change – with the caveat that none of 

this seems to be true for MreB. And, again, like the tubulins, the conformational change has 

the appearance of a switch, exhibiting two apparently discrete states. 

Very recently, a group produced a structural survey of eukaryotic actin structures, similar 

to that presented here (and with similar conclusions), but also molecular dynamics 

evidence that the polymerised and monomeric subunit conformational ensembles are 

indeed separated by high-energy transition pathways (Oda et al., 2019). Remarkably, this 

appears to be the first time that anyone has proposed the existence of an assembly switch 

in actin polymerisation. 
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Figure 2-22 – PCA of actin superfamily structures 

A Proportion of variance explained by first 5 principal components. 

B PC1 component vectors (red) plotted on mean structure (black) for each subfamily. 

C Results of PCA plotted in PC1-PC2 subspace. Individual structures are coloured as to whether the 

conformation is found in filaments or unpolymerised monomers. 

Numbered structures and groups of structures are as follows: 

1. 2HMP:A uncomplexed actin monomer (cleaved between residues 42/43) 

2. Mostly complexed actins (e.g. with gelsolin) 

3. Two structures with very wide open clefts c.f. MamK monomer #9 

4. 5YU8 cryoEM structure of a cofilin (actin diassembler) decorated actin filament 

5. cryoEM structures of actin (co)-filaments 

6. 2ZWH first F-actin model derived from fibre diffraction 

7. 5LY3:A crenactin in complex with arcadin-2 peptide 

8. 5MW1 cryoEM structure of crenactin filament 

9. 5LJW:B wide open MamK monomer 

10. 5LJW:A less open MamK monomer 

11. 5LJV cryoEM structure of MamK filament 

12. Caulobacter MreB monomeric and single filament structures 

13. 4CZJ Caulobacter MreB double filament 

14. 1JCG Thermotoga MreB single filament 

15. 4A61:A E. coli ParM in complex with AMPNPP 

16. Monomeric ParMs 

17. 4A62:A E. coli ParM in complex with ParR peptide (polymerisation nucleator) 

18. 5AEY cryoEM structure of ParM filament 

 



RESULTS AND DISCUSSION 

 115 

 

 
  

1 2 3 4 5

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

PC

Pr
op

or
tio

n 
of

 v
ar

ia
nc

e
a b c

-25 0 25 50

-20

-10

0

10

-20

-10

0

10

-20

-10

0

10

-20

-10

0

10

-20

-10

0

10

PC 1

PC
 2

filament monomer

actin

crenactin

MamK

MreB

ParM

other

11

15

16

90°
IIB

nuc IA

IIA

64

2 5

1

3

7
8

9

10

12
13

14

17 18



RESULTS AND DISCUSSION 

 116 

 
 
 

Figure 2-23 – The conformational switches within cytomotive actin subfamilies are similar 

A Projection of all structures into the eukaryotic actin PC1-PC2 subspace. 

B Overlap between PCs 1, 2 and 3 of the subfamilies. 
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2.4.6 What is the role of conformational changes upon polymerisation? 

The fact that conformational changes happen upon polymerisation has been noted in actin 

and tubulin superfamily systems, here I am making the case that these changes are 

switches, that they happen in essentially all of the studied subfamilies, and that within each 

subfamily it is the same switch. Some of the mechanistic consequences of subunit-intrinsic 

conformational changes upon polymerisation have been recognised in the context of 

various systems. In particular: 

1. The straightening of the kinked soluble tubulin heterodimer upon polymerisation 

into MTs has been extensively discussed, and the most common explanation for this 

is that lateral interactions between protofilaments (PFs) pay for the unfavourable 

straightening, storing strain within the MT lattice (Buey et al., 2006). 

2. The flattening of the eukaryotic actin monomer in the G to F (polymerisation) 

transition has also been extensively discussed. The most common explanation for 

this is that the change is important for stimulating the intrinsic NTPase activity of 

the monomer, by positioning the catalytic glutamine (and histidine) correctly (Chou 

and Pollard, 2019; Merino et al., 2018; Oda et al., 2009). Of course, in tubulins the 

potentiation of NTPase activity is also achieved via polymerisation, by the enforced 

proximity of the catalytic T7 loop from the next subunit to the bound NTP. 

3. The importance of a switch for cooperative assembly of a single stranded filament 

(FtsZ) has been rigorously modelled by Miraldi et al. (2008), although the principle 

was first introduced (to my knowledge) by Michie and Löwe (2006). This is 

essentially equivalent to (1), but invoking the importance of longitudinal 

interactions (rather than lateral ones) to pay for the otherwise unfavourable switch. 

My proposal is that the switch is important for all of these things, and that it is also critical 

for coupling of kinetic and structural polarities, as introduced in Section 2.1.8 for FtsZ. 

2.4.7 How are structural and kinetic polarities coupled across the actin and 
tubulin superfamilies? 

Cytomotive filaments are thought of as working in one of two ways: by treadmilling, or by 

exhibiting dynamic instability. Both actins and tubulins have been ascribed the ability to 

do each of these. I would argue that these two modes are not as different as they appear, 

with the minus end of a treadmilling filament being somewhat equivalent to a de-capped 

end of a dynamically unstable filament undergoing catastrophe. This idea has recently also 
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been proposed by Harold Erickson (Erickson, 2019). The feature which unites the two 

mechanisms is the directed 1D motor of (de)polymerisation. 

The ability of nucleotide-hydrolysing filament-forming proteins to do useful work as 1D 

motors has been formally treated in energetic and kinetic terms in a series of historic 

papers, beginning with the seminal work on actin treadmilling by Albrecht Wegner, or as 

he termed it, “head-to-tail polymerisation” (Wegner, 1976). Wegner’s conclusions were 

extended and generalised to include microtubules and to incorporate the effects of 

resistance at filament ends on filament dynamics by Terence Hill and Mark Kirschner (Hill 

and Kirschner, 1982). These, and subsequent, models all assume the fact that the 1D-

filament-motors have slow- and fast-growing ends, also referred to as the minus- and plus-

ends, respectively, but these models do not themselves explain the origin of this kinetic 

polarity, nor how it is coupled to structural polarity (as it clearly is, and needs to be to be 

useful). 

Some, though surprisingly few, attempts have been made to rationalise the origin of kinetic 

polarity, and its observed coupling to structural polarity in both eukaryotic actin filaments 

and microtubules. 

In the case of microtubules, the difference in growth rates at the two ends is typically 

attributed to the fact that minus ends are thought to be blunt while plus ends form open, 

ragged, funnels (as reviewed in, for example, (Brouhard and Rice, 2018)) and incoming 

subunits will therefore traverse different addition pathways at either end (permitting 

different on-rates). Note that this argument for structural end-differences is dependent on 

the multi-strandedness of the microtubule. The paradigm of the two different end-

structures has recently faced a significant challenge from a very thorough study of 

microtubule ends which suggests that polymerisation and depolymerisation at both plus- 

and minus-ends takes place in 1-subunit thick single protofilaments, in vivo and in vitro 

(McIntosh et al., 2018). I expect to see significant efforts to settle this question of end 

structures in the near future, but for now it remains a very real possibility that, at their ends, 

microtubules polymerise and depolymerise as single protofilaments. 

In eukaryotic actin, one study purports to show that the pair of subunits at the minus-end 

(“pointed end”) of the double filament adopt an alternative structure (alternative to both 

monomeric or within-filament polymerised subunits) which enforces a slower binding 

regime on incoming monomers (Narita et al., 2011). The evidence presented there consists 
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of a low resolution (~20 Å) cryoEM reconstruction and is not convincing, but illustrates the 

unmet need for an explanation. Whereas, in one of the two recent papers (Chou et al. (2019), 

the other being  Merino et al. (2018)) describing the structures of an apparently full set of 

eukaryotic actin filament structures (all of: ATP-, ADP-Pi-, and ADP-bound structures), the 

authors put forward an explanation for the origin of kinetic polarity essentially identical to 

that presented here for FtsZ (and previously published by us (Wagstaff et al., 2017)), i.e. that 

it is the difference between the pairs of interfaces interacting at each end (top of monomer, 

in monomer conformation, and bottom of filament subunit, in polymerised conformation, 

at one end, and vice versa at the other) that explains the difference in kinetics at the two 

ends. Again, this argument does not directly depend on the multi-strandedness of the actin 

filament, but is compatible with it. 

I hope that it is now becoming clear that the argument put forward in Section 2.1.8 for single-

stranded FtsZ: that the generation of kinetic end-polarity, and its coupling to structural 

polarity, can be achieved robustly via a polymerisation-associated conformational switch; 

is consistent with the data available for many of the actin and tubulin superfamily members 

discussed here. And, that this argument could fill a gap in our understanding of these 

remarkable dynamic protein assemblies. In summary, I am proposing that the 

requirements of a protein to form a useful cytomotive filament are the following: 

1. Binds nucleotide 

2. Can polymerise 

3. Polymer stability is linked to nucleotide state 

4. Has intrinsic NTPase activity, activated by polymerisation 

a. Creates NTP/NDP gradient 

5. Limited nucleotide (NTP for NDP) exchange after hydrolysis 

6. Conformational switch upon polymerisation  

a. Enforces cooperative assembly 

b. Imposes kinetic end-asymmetry and sets direction of NTP/NDP gradient, 

thus coupling kinetic and structural polarity 

(1,2,3) are clearly necessary. (4) sets up the NTP/NDP gradient, (5) maintains it. (6) is crucial 

for enforcing cooperative assembly during nucleation, and as proposed here (and Wagstaff 

et al., (2017)), for setting the direction of the NTP/NDP gradient by coupling structural and 

kinetic polarities, and preventing single-stranded filaments from falling apart at the same 

rate as end subunits are lost. 
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2.4.8 MreB 

The arguments laid out here are preliminary, although I am optimistic that further work 

will bear out the conclusions. During the course of the superfamily analysis I was very 

interested in the case of MreB. As noted above, MreB does not appear to undergo a 

polymerisation associated conformational switch (Figure 2-22), instead it appears to be 

“locked” in the conserved filament state. This would appear to be a stumbling block for the 

ideas above, as MreB has regularly been described as a cytomotive filament (e.g. (Aylett et 

al., 2011)). However, the emerging picture (as briefly discussed in the Introduction) is that 

MreB does not in fact, form cytomotive filaments. Instead, the filaments are thought to act 

as “rudders” for cell wall synthesis enzymes, using their tight curvature to align 

perpendicular to the long axis of the cell, and transmitting this orientation to the rod 

complex/elongasome (Garner et al., 2011; Hussain et al., 2018; Teeffelen et al., 2011). This 

should perhaps not come as a surprise, given the importance of directionality in the 

application of cytomotivity: as we know that MreB forms antiparallel double filaments, 

which are inherently non-polar (van den Ent et al., 2014). The fact that a filament we know 

to be not cytomotive does not have a polymerisation associated switch adds to the 

circumstantial evidence that this is a relevant observation. 

2.4.9 Conclusions and future work 

The proposition laid out here is qualitative and will require a rigorous mathematical 

treatment by both coarse-grained modelling of systems with the properties defined here, 

and also high-quality molecular dynamics approaches. Key uncertainties are: 

• Just how necessary bistable conformational switches are (as opposed to continuous 

conformational changes)? 

• Whether the role of multistrandedness is more than just potentiation of the payoff 

from longitudinal contact formation? 

• How to integrate these ideas with the mass of literature covering the post-hydrolysis 

states of subunits within filaments: both eukaryotic actin filaments and MTs 

apparently have functionally relevant, and structurally distinct, NDP.Pi and NDP 

states (Alushin et al., 2014; Merino et al., 2018)? (Although as can be seen from the 

analysis above, these changes are far smaller than the changes associated with 

polymerisation itself) 
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If indeed the switch is shown to be important, it will be crucial to understand the molecular 

basis of bi-stability: which residues are responsible for the energy barrier. Ways to approach 

this would include analysing pairs of high quality structures within each family to try and 

identify conserved (or not) residues which undergo noticeable changes in torsion angles, 

contact networks; and by analysing large sets of sequences for correlation with 

coevolutionary relationships and/or raw conservation. It may be necessary to use a higher 

level of abstraction to define equivalence, e.g. secondary structure units, as the precise 

position of critical residues may vary even if the mechanistic principle is conserved. 

Returning to the question of whether evolving cytomotivity is easy or hard, as far as it is 

possible to say, it does seems that the two cytomotive folds do indeed contain a set of 

functionalities that might be difficult to integrate in such small domains. More importantly 

though, the idea that polymerisation-coupled conformational switches are the conserved 

basis for the coupling of kinetic and structural polarities in these filament forming 

superfamilies is an attractive one, which appears to explain a large amount of historical 

data, and I am excited about going further in demonstrating that this really is the case. 
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3 MATERIALS AND METHODS 

3.1 General methods 

All reagents were purchased from Sigma Aldrich unless stated otherwise.  

3.1.1 Preparation of electrocompetent cells and transformation 

Electrocompetent cells were prepared as follows. Frozen stocks were streaked out on TYE 

plates with no antibiotics and incubated overnight at 37 °C. The next day a 10 mL 2xTY 

starter culture was inoculated with a single colony, and incubated overnight with shaking 

at 37 °C. On the third day, the overgrown 10 mL culture was added to 1 L 2xTY and incubated 

with shaking (200 rpm) at 37 °C until OD600 of 0.35-0.4 was reached at which point the flask 

was immediately surrounded with ice. The flask was allowed to chill for 20-30 minutes with 

occasional swirling to ensure even cooling. The 1 L culture was then split and transferred to 

four ice-cold centrifuge bottles and spun at 1000 g for 20 minutes at 4 °C. The supernatant 

was discarded and the pellets resuspended in 200 mL each ice-cold ddH2O. The 

centrifugation was repeated, and the pellets resuspended in 100 mL each ice-cold ddH2O, 

before combining into two bottles and centrifuging again. These two pellets were 

resuspended in 40 mL each ice-cold 10% glycerol before transferring to ice-cold, pre-

washed, 50 mL Falcon tubes. The centrifugation step was then repeated. Pellets were 

resuspended in 1 mL ice-cold 10% glycerol by swirling for a final OD600 of ~200-250. The 

suspension was aliquoted (25-100 μL) into 1.5 mL Eppendorf tubes on ice before snap 

freezing in lN2, and stored at -80 °C. Competence was tested for each batch using a control 

plasmid, using the transformation protocol below. 

Electrocompetent cells were transformed with plasmids or Gibson reaction products as 

follows. Aliquots of cells were thawed on ice before 25 μL was added on top of 1 μL DNA in 

a chilled electroporation cuvette (2 mm gap, Flowgen Bioscience) and gently mixed by 

tapping. A voltage of 2500 V was applied using an Eppendorf Eporator, and 900 μL of SOC 

was quickly added. The transformed cells were incubated at 37 °C for 30 minutes to allow 

expression of resistance genes, before plating on agar with appropriate antibiotics. 
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3.1.2 Cloning procedures 

All the plasmids used here are listed in Table 1, p.161. All cloning by me was done in 

Escherichia coli MAX EfficiencyTM DH5aTM cells (Thermofisher Scientific). See Section 3.2 

Strains, below. 

All Polymerase Chain Reactions (PCR) were done with Q5 Hot Start High-Fidelity DNA 

Polymerase (NEB) in accordance with the manufacturer’s instructions. All oligonucleotides 

were synthesised by Sigma Aldrich, and stored at 100 mM in ddH2O at -20 °C. 

Plasmids were assembled using the isothermal assembly method, also known as Gibson 

Assembly (Gibson et al., 2009), using a kit (NEB), and following the manufacturer’s 

instructions. Appropriate primers were designed using the NEBuilder Assembly Tool (v1, 

NEB). 

Mutagenesis was achieved via blunt end ligation using the Q5 Site-Directed Mutagenesis 

Kit (NEB) according to the manufacturer’s instructions. 

Plasmids were purified using a QIAprep Spin Miniprep Kit (QIAGEN NV), and quality was 

checked using a NanoDrop Microvolume Spectrophotometer (Thermofisher Scientific) by 

assessing 230/260/280 nm absorbance ratios. All plasmids were sequenced through coding 

regions by GATC Gmbh (now Eurofins Genomics) with appropriate primers. 

3.1.3 Agarose gel electrophoresis 

DNA was visualised on agarose gels made by dissolving 1.5% w/v agarose (Biogene.com) in 

1 x TBE buffer with 1:1000 v/v SYBR Safe (Invitrogen). Samples were mixed with dye 

(GelPilot DNA Loading Dye, 5x (Qiagen)) before loading. Agarose gels were run at 100 V for 

45 minutes before imaging of UV fluorescence with a Gel Doc XR+ imaging system (Bio-

rad). 

3.1.4 SDS-PAGE 

Protein samples were visualised via SDS-PAGE. Samples were mixed with protein loading 

dye and loaded onto an SDS-PAGE gel (10-20% gradient, Bio-Rad). The gel was typically 

run at 300 V for 30 minutes in 1x SDS-PAGE buffer before staining with Quick Coomassie 

stain (Generon) and imaging with a Gel Doc XR+ imaging system (Bio-rad). 
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3.1.5 Electrospray ionisation mass spectrometry 

All protein samples were analysed by electrospray ionisation mass spectrometry to confirm 

expected molecular weights (accurate to 1 in 10,000). Solubilisation in an appropriate 

solvent mix (e.g. 50 % MeOH with 1 % formic acid or 50 % acetonitrile with 1 % formic acid) 

was achieved using the procedure of (Whitelegge et al., 1999). Samples were analysed on a 

Micromass LCT Classic TOF instrument (Waters).  
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3.2 Strains 

Strain Genotype Reference 
Escherichia coli C41 
(DE3) 

BL21(DE3) derivative (Miroux and Walker, 
1996) 

Escherichia coli MAX 
EfficiencyTM DH5aTM 

F- φ80lacZ∆M15 ∆(lacZYA-argF) U169 
recA1 endA1 hsdR17 (rk-, mk+) phoA supE44 
λ- thi-1 gyrA96 relA1  

ThermoFisher Scientific 

 

3.3 Growth Media and Standard Solutions 

3.3.1 TYE Plate 

10 g tryptone 

5 g yeast extract 

8 g NaCl 

15 g agar 

Formedium TYEA09L premix used. Final pH 7.0 at 25 °C, made up to 1 L with milliQ water 

then autoclaved and poured. Antibiotics added after autoclaving at around 55 °C if needed. 

3.3.2 SOB liquid media 

28 g SOB ready mix (VMR) 

Made up to 1 L with milliQ water, pH adjusted to 7.0 before autoclaving. For SOC media 18 

mL / L 20% Glucose was added. 

3.3.3 2xTY liquid media 

16 g tryptone 

10 g yeast extract 

5 g NaCl 
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Formedium YBD20L premix used. Made up to 1 L with milliQ water, and pH adjusted to 7.4 

before autoclaving. 

3.3.4 1x SDS running buffer 

30 g Trizma Base 

144 g glycine 

10 g SDS 

Made up to 10 L with distilled water. 

3.3.5 10X TBE 

108 g Trizma Base 

9.3 g EDTA 

55 g boric acid 

Made up to 1 L with MilliQ water, autoclave. 

3.3.6 Protein loading buffer 

0.6 g Trizma Base 

0.77 g DTT 

2 g SDS 

10 g sucrose 

0.095 g EDTA 

0.25% w/v bromophenol blue 

Made up to 50 mL with MilliQ water and pH adjusted to 6.8.  
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3.4 Expression and purification of proteins 

All chromatography steps were carried out using an Äkta purifier system (GE Healthcare) 

at 6 °C (in a cold room) unless stated otherwise. All proteins I purified were expressed in 

Escherichia coli C41 cells (details in Section 3.2, p.122). 

3.4.1 Full-length SaFtsZ (I) and mutants 

Protocol carried out by María A. Oliva and Alba García-Sanchez at Centro de Investigaciones 

Biológicas, CSIC, Madrid, Spain for the biochemistry experiments discussed in section 2.1.2, p.44. 

Full-length (FL) SaFtsZ (Uniprot ID: FTSZ_STAAU) was amplified using PCR from 

genomic DNA and cloned into the NdeI and SapI sites of pTXB1 (NEB IMPACT system, 

NEB Ipswich, MA), generating a C-terminal fusion to the Mxe intein/chitin binding domain 

which self-cleaves upon the addition of DTT. PCR mutagenesis using this vector as a 

template generated mutants T66W and F138A. 

Full-length fusion proteins were expressed in E. coli BL21 (DE3) cells, which were grown in 

LB media with ampicillin (100 mg/L) at 37 °C with 200 rpm shaking to an OD600 of 0.6. 

Cultures were then shifted to 16 °C and after 1 hour expression was induced by the addition 

of 0.4 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG), before overnight incubation. 

Cells were collected by centrifugation and resuspended in buffer FL.A (50 mM HEPES-

KOH, 50 mM NaCl, 20mM EDTA, pH 8.5) with 100 μg/mL lysozyme, 10 μg/mL DNAse and 

4 mg/mL PMSF, before lysis via 2-3 passes through a French press. Lysate was clarified by 

centrifugation at 100,000 g and 4 °C for 1 hour. Soluble protein was captured on a chitin 

column (NEB) equilibrated and washed with buffer FL.A. Intein activity and release of the 

untagged, full-length protein was initiated by overnight incubation in buffer FL.B (buffer 

FL.A with 50 mM DTT) at 4 °C followed by elution. Eluate was further purified by anion-

exchange chromatography on a 5 mL HiTrap Q column (GE Healthcare, Little Chalfont, 

UK). The column was equilibrated and washed with buffer FL.Q.A (50 mM Tris-HCl, 1 mM 

EDTA, pH 7.5) and bound protein was eluted with a linear gradient of buffer FL.Q.B (FL.Q.A 

with 1 M NaCl). Peak fractions were further purified by size-exclusion on a 70 mL Sephadex 

75 (GE Healthcare) column in Buffer FL.GF (20 mM Tris-HCl, 150 mM NaCl, 10% glycerol, 

pH 8.0). Peak fractions were pooled and concentrated using centrifugal concentrators 

(Vivaspin, Sartorius, Epsom, UK) to 5-8 mg/mL before freezing in liquid nitrogen and 

storage at -80 °C. Protein integrity was confirmed by electrospray mass spectrometry. 
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3.4.2 Full-length Sa FtsZ (II) 

The protocol carried out by me to generate protein for cryoEM experiments at MRC LMB. Early 

iterations were developed by Tim Nierhaus. 

Full-length (FL) SaFtsZ (Uniprot ID: FTSZ_STAAU) was amplified using PCR from 

genomic DNA and cloned into a pHis17 plasmid derivative, with no tag, via Gibson 

assembly. This plasmid was a gift from Tim Nierhaus (herein pJW1). FL SaFtsZ was 

expressed in E. coli C41 (DE3) cells (Lucigen) grown in 2xTY media with ampicillin (100 

mg/L) at 37 °C with 200 rpm shaking to an OD600 of 0.6. Cultures were then shifted to 16 °C 

and after 1 hour expression was induced with the addition of 0.5 mM IPTG, before overnight 

incubation. Cells were collected by centrifugation and resuspended in Buffer FL.Q.A2 (50 

mM Tris-HCl, pH 7.5). 1 cOmplete protease inhibitor tablet (Roche, IN USA) per L was 

added, as well as DNAse I. Cells were lysed by passing through a cell disruptor (Constant 

Systems, Daventry, UK) at 25 kpsi. The lysate was clarified by centrifugation at 100,000 g 

and 4 °C for 30 minutes. The soluble fraction was loaded onto Blue Sepharose (GE 

Healthcare) resin (40 mL bed volume, packed in a XK50 column (GE Healthcare)) 

equilibrated in Buffer FL.Q.A2, before elution with a gradient of Buffer FL.Q.B2 (Buffer 

FL.Q.A2 wth 1M KCl). Fractions with protein were pooled and concentrated using 

centrifugal concentrators (Vivaspin, Sartorius) before further purification by size-exclusion 

chromatography on a HiLoad Sephacryl S300 16/60 column (GE Healthcare) in Buffer 

FL.GF2 (50 mM PIPES-KOH, 250 mM KCl, 1 mM NaN3, pH 6.8). Fractions with protein were 

diluted 10-fold in Buffer FL.Q.A2 before being loaded onto a Mono Q 4.6/100 (1.7 mL) PE 

column (GE Healthcare) equilibrated and washed with Buffer FL.Q.A2 before elution with 

a linear gradient of Buffer FL.Q.B2. The cleanest fractions were pooled and concentrated 

using centrifugal concentrators (Vivaspin, Sartorius) before freezing in liquid nitrogen and 

storage at -80°C. Protein integrity was confirmed by electrospray mass spectrometry. 

3.4.3 Untagged Sa FtsZ 12-316, and mutants 

Truncated (TR) (12-316), SaFtsZ (Uniprot ID: FTSZ_STAAU) was cloned into a pHis17 

plasmid derivative, with no tag, via Gibson assembly (Gibson et al., 2009). PCR mutagenesis 

using the resulting plasmid (herein pJW3) as a template generated mutants T66W (herein 

pJW4) and F138A (herein pJW5). These plasmids were a gift from Matthew Tsim. 

Truncated SaFtsZ proteins were expressed in E. coli C41 (DE3) cells (Lucigen) grown in 2xTY 

media with ampicillin (100 mg/L) at 37 °C with 200 rpm shaking to an OD600 of 0.6. Cultures 
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were then shifted to 16 °C and after 1 hour expression was induced by the addition of 0.5 

mM IPTG, before overnight incubation. Cells were collected by centrifugation and 

resuspended in Buffer TR.A (50 mM Tris-HCl, 30 mM NaCl, pH 8.0) before lysis by passing 

through a cell disruptor (Constant Systems, Daventry, UK) at 25 kpsi. 1 cOmplete protease 

inhibitor tablet (Roche, IN USA) per L was added, as well as DNAse I. The lysate was 

clarified by centrifugation at 100,000 g and 4 °C for 30 minutes. The soluble fraction was 

loaded onto a HiTrap Q anion-exchange column (GE Healthcare), washed with Buffer 

TR.Q.A, and eluted with a linear gradient of Buffer TR.B (TR.A with 1 M NaCl). Peak 

fractions were pooled, and protein was precipitated by adding saturated ammonium 

sulphate to 35% v/v. Precipitated protein was centrifuged at 28,000 g and 4 °C for 30 minutes, 

and the pellet resuspended in Buffer TR.A. Resuspended protein was further purified by 

size-exclusion chromatography on a HiLoad Sephacryl S300 16/60 column (GE Healthcare) 

in Buffer TR.A. Peak fractions were pooled, concentrated to 15-25 mg/mL using centrifugal 

concentrators (Vivaspin, Sartorius) before freezing in liquid nitrogen and storage at -80°C. 

Protein integrity was confirmed by electrospray masspectrometry. 

3.4.4 Full-length Ec FtsZ 

Full length, untagged, E. coli FtsZ (Uniprot ID: FTSZ_ECOLI) was cloned into the 

BamH/NdeI sites of pET9a (Novagen), with no tag. This plasmid (pSZ65) was a gift from 

Piotr Szwedziak, herein named pJW18. Purification of E. coli FtsZ (EcFtsZ) was by a modified 

version of established protocols (Rivas et al., 2000). Protein was expressed in E. coli C41 

(DE3) cells (Lucigen) grown in 2xTY media with kanamycin (50 mg/L) at 37 °C with 200 rpm 

shaking to an OD600 of 0.6. Cultures were then shifted to 20 °C and, after 1 hour, expression 

was induced by the addition of 0.5 mM IPTG, before overnight incubation. Cells were 

collected by centrifugation and resuspended in Buffer PEM (50 mM PIPES-KOH, 5 mM 

MgCl2, 1 mM EDTA, pH 6.5) before lysis by passing through a cell disruptor (Constant 

Systems) at 25 kpsi. 1 cOmplete protease inhibitor tablet (Roche, IN USA) per L was added, 

as well as DNAse I. The lysate was clarified by centrifugation at 100,000 g and 4 °C for 30 

minutes. FtsZ was separated by GTP and calcium-induced precipitation, as follows. Lysate 

was adjusted to pH 7 with acetic acid then GTP and CaCl2 were added to 1 mM and 20 mM 

respectively. This mixture was then centrifuged at 11,000 g and 4 °C for 15 minutes. The 

pellet, containing FtsZ, was resuspended in buffer PEM and insoluble debris was removed 

by centrifugation at 100,000 g and 4 °C for 30 minutes. FtsZ was further purified by anion 

exchange chromatography over a Mono Q 4.6/100 (1.7 mL) PE column (GE Healthcare) 
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equilibrated and washed with Buffer ECZ.Q.A (50 mM Tris-HCl, 50 mM KCl, 1 mM EDTA, 

10% glycerol, pH 8.0), bound protein was eluted with a linear gradient of Buffer ECZ.Q.B 

(Buffer ECZ.Q.A with 1 M KCl). Peak fractions were pooled, concentrated to 20 mg/mL using 

centrifugal concentrators (Vivaspin, Sartorius) before freezing in liquid nitrogen and 

storage at -80°C. Protein integrity was confirmed by electrospray masspectrometry. 

3.4.5 EcZapA 

Full length E. coli ZapA (Uniprot ID: ZAPA_ECOLI) was cloned into a pTXB1 backbone 

(NEB) (Chong et al., 1997), as a C-terminal fusion to a self-cleaving intein / Chitin Binding 

Domain (CBD) tag, via Gibson assembly (Gibson et al., 2009), to make plasmid pJW19. Full 

length E. coli ZapA (EcZapA) was expressed in E. coli C41 (DE3) cells (Lucigen) grown in 6L 

2xTY media with ampicillin (100 mg/L) at 37 °C with 200 rpm shaking to an OD600 of 0.6. 

Cultures were then shifted to 20 °C and, after 1 hour, expression was induced by the addition 

of 0.5 mM IPTG, before overnight incubation. Cells were collected by centrifugation and 

resuspended in buffer ZAPA.C (20 mM Tris-HCl, 500 mM NaCl, pH 8.5) before lysis by 

passing through a cell disruptor (Constant Systems, Daventry, UK) at 25 kpsi, twice. 1 

cOmplete protease inhibitor tablet (Roche, IN USA) per L was added, as well as DNAse I. 

The lysate was clarified by centrifugation at 100,000 g and 4 °C for 30 minutes, then filtered 

through a 0.45 um PVDF mesh. The ~200 mL soluble fraction was loaded onto ~65 mL of 

chitin binding resin packed in a XK50 column (GE Healthcare) at a flow rate of 2.5 mL/min, 

before washing with 250 mL of buffer ZAPA.C. Cleavage on the column was achieved by 

washing with 180 mL of buffer ZAPA.D (ZAPA.C with 50 mM DTT), followed by incubation 

overnight. Liberated full-length, untagged, EcZapA was collected in fractions. Fractions 

containing EcZapA were concentrated to 2.5 mL using centrifugal concentrators (Vivaspin, 

Sartorius). 1 mL of concentrated eluate was further purified by size-exclusion 

chromatography over a Superdex 75 pg 16/600 column (GE Healthcare) in Buffer ZAPA.GF 

(50 mM Tris-KOH, 50 KCl, 1 mM EDTA, 5% v/v glycerol, pH 7.9). The peak fractions were 

pooled and concentrated using centrifugal concentrators (Vivaspin, Sartorius) to 500 μL of 

~10 mg/mL, before freezing in liquid nitrogen and storage at -80°C. Protein integrity was 

confirmed by electrospray mass spectrometry. 

3.4.6 Nucleotide-free SaFtsZ 12-316 L272D C-His6 

A series of mutations designed to prevent SaFtsZ polymerisation (11 combinations in total) 

were introduced into pJW1 (full length WT SaFtsZ in pHis17 with no tag). These full-length 
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constructs were then truncated to residues 12-316 by various PCR and Gibson assembly 

steps (Gibson et al., 2009) to make untagged, N-terminally His6-tagged, and C-terminally 

His6-tagged versions of each. Small scale expression of all of these was carried out and the 

L272D C-His6 construct (pJW62) was chosen for further work due to its high level of 

expression and predicted strong inhibition of polymerisation. Purification of the protein in 

the apo state (without bound nucleotide) was carried out, as follows. 

SaFtsZ 12-316 L272D C-His6 was expressed in E. coli C41 (DE3) cells (Lucigen) grown in 2xTY 

media with ampicillin (100 mg/L) at 37 °C with 200 rpm shaking to an OD600 of 0.5. 

Expression was induced by the addition of 0.5 mM IPTG, before a 5 hour incubation. Cells 

were collected by centrifugation and resuspended in Buffer HisA (50 mM Tris, 300 mM 

NaCl, pH 8.0) before lysis by passing through a cell disruptor (Constant Systems, Daventry, 

UK) at 25 kpsi. The lysate was clarified by centrifugation at 100,000 g and 4 °C for 30 

minutes, then filtered through a 0.45 um PVDF mesh.The soluble fraction was loaded onto 

a 5 mL HisTrap HP column (GE Healthcare). The column was washed extensively with 

Buffer HisA before elution with 2% Buffer HisB (Buffer HisA plus 1M imidazole). Fractions 

with FtsZ were pooled and diluted 10-fold in cold ddH2O before loading onto a HiTrap Q 

HP (GE Healthcare) in Buffer APO.A (25 mM Tris-KOH, 25 mM NaCl, pH 8.0). Elution was 

by gradient of Buffer APO.B (Buffer A, 1M NaCl), two peaks of FtsZ were visible, the first is 

apoFtsZ, the second still had nucleotide bound. Both peaks were collected, pooled and 

concentrated using centrifugal concentrators (Vivaspin, Sartorius). The protein at this stage 

was rather unstable and had to be kept on ice, and sharp motions avoided, to prevent 

precipitation. Concentrated FtsZ was loaded onto a Superdex 200 16/60 column (GE 

Healthcare) in Buffer APO.GF (50 mM PIPES-KOH, 250 mM KCl, 20 mM EDTA, pH 6.8) 

which was run very slowly (0.1 mL/min) to gradually separate the nucleotide from the 

protein. The apoFtsZ peak (very low 260/280 nm absorption) was pooled and concentrated 

using centrifugal concentrators (Vivaspin, Sartorius) before exchanging with a spin column 

(Zebaspin) into the final Buffer APO.GLY (10 mM Tris-HCl, 50 mM KCl, 20% v/v glycerol, 

pH 7.5), in which apoFtsZ is stable. Aliquots were snap frozen in l N2 and stored at -80°C. 

Protein integrity was confirmed by electrospray mass spectrometry. Absence of nucleotide 

was confirmed by UV/Vis spectroscopy of samples after precipitation with 0.5 N cold 

HClO4. 
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3.5 X-ray crystallography 

3.5.1 Protein crystallisation 

Crystallisation conditions were found using the LMB in house high-throughput 

crystallisation platform, by mixing 100 nL truncated SaFtsZ T66W or F138A solution at 5 or 

10 mg/mL, with GTP at 10 mM, with 100 nL of 1920 different crystallisation reagents in MRC 

vapour diffusion sitting drop crystallisation plates (Gorrec and Löwe, 2018). Conditions 

yielding crystals were optimised, and crystals from either the initial screens or subsequent 

optimization were selected for data collection. Conditions giving the crystals for which 

structures are presented are in Table 2, p. 162. 

3.5.2 Crystallographic data collection and structure determination 

Diffraction images were collected from single frozen crystals at beamlines at either DLS 

(Diamond Light Source, Harwell, UK) or ESRF (European Synchrotron Radiation Facility, 

Grenoble, France) as indicated in Table 2, at 100 K. Diffraction images were processed with 

XDS, POINTLESS and SCALA software (Evans, 2006; Kabsch, 2010). Initial phases were 

determined by molecular replacement using PHASER with search models as indicated in 

Table 2 (McCoy et al., 2007). Models were rebuilt manually using MAIN and refined using 

REFMAC and PHENIX.REFINE alternately and iteratively (Afonine et al., 2018; Murshudov 

et al., 1997; Turk, 2013). Ramachandran plots and MOLPROBITY statistics were used to 

validate the structures as per Table 2, p. 162 (Williams et al., 2018). 
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3.6 Electron cryo-microscopy (cryoEM) 

3.6.1 SaFtsZ 

For collection of the datasets from which 2D classes shown in Figure 2-6 were produced, 

SaFtsZ was prepared at a final concentration of 0.2 mg/mL in Buffer SAZAB2 (100 mM KCl, 

10 mM magnesium acetate, 50 mM PIPES-KOH, pH 6.8), with or without 0.005 % TWEEN-

20. GTP or GMPCPP was added to 5 or 0.1 mM respectively, and the solution was mixed and 

incubated for 8 minutes before 2.5 μL sample was applied to freshly glow-discharged 

Quantifoil Cu R2/2 200 mesh grid and plunge frozen using a Vitrobot Mark III (FEI 

Company, OR) into liquid ethane maintained at 93.0 K using an ethane cryostat (Russo et 

al., 2016). The Vitrobot chamber temperature was set to 10 °C and humidity to 100 %. 

Micrograph movies of FtsZ filaments were collected with an FEI Tecnai G2 Polara 

microscope operating at 300 kV. Data were acquired on a Falcon III direct electron detector 

prototype at a calibrated pixel size of 1.34 Å and an approximate total dose of 40 e-/Å2 using 

the automated acquisition �software EPU (FEI Company). Images were processed with the 

helical pipeline implemented in RELION (He and Scheres, 2017). 

3.6.2 EcFtsZ 

For cryoEM, E. coli FtsZ was prepared at 0.5 mg/mL in Buffer ECZAB3 (50 mM HEPES-KOH, 

100 mM potassium acetate, 5 mM magnesium acetate, pH 7.7), at 20 °C. GMPCPP was added 

to 0.1 mM. 2.5 μL sample was immediately applied to freshly glow-discharged Quantifoil Cu 

R2/2 200 mesh grid and plunge frozen using a Vitrobot Mark III (FEI Company, OR) into 

liquid ethane maintained at 93.0 K using an ethane cryostat (Russo et al., 2016). The Vitrobot 

chamber temperature was set to 10 °C and humidity to 100 %. The time between GMPCPP 

addition and vitrification was ~30 s. 

Micrograph movies were collected as for SaFtsZ. A total of 3688 movies were collected at -1 

to -4 μm defocus in 46 frames during each 1.5 s exposure. 

All image processing was carried out within RELION 2.0 (Scheres, 2012). Micrograph 

movies were motion corrected using MotionCor2 (Zheng et al., 2016) with 5 x 5 patches 

and a grouping of 10 frames. Helical autopicking in RELION was used in order to find 

segments along the filaments at 4.3 nm intervals with confidence. Boxes of 190 x 190 pixels 

were extracted around each segment. After 2D classification, a 3D autorefinement of the 
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remaining 943,277 filament segments was performed in RELION using helical 

reconstruction options (He and Scheres, 2017), against an atomic protofilament model 

derived from PDB ID 3VO8, filtered to 20 Å (similar results were obtained with a smooth 

cylinder, they just took longer to converge). The resulting two half maps were used in post 

processing to sharpen the map (B-factor -360 Å-1 ) and to obtain a gold standard FSC-based 

resolution estimate of 6.7 Å (0.143 FSC criterion), however the map is anisotropic, 

preventing interpretation of features at this resolution. 

In the absence of an E. coli FtsZ crystal structure, CHIMERA  (Pettersen et al., 2004) was used 

to determine that the SaFtsZ filament structure, showing the open conformation, fits very 

well into the E. coli filament density, as opposed to any other structure containing closed 

conformations (see Figure 2-5, p.58). 

3.6.3 EcFtsZ with EcZapA 

EcFtsZ (0.04 mg/mL final) and EcZapA (0.2 mg/mL final) were prepared for cryoEM in 

Buffer ECZAB3 (50 mM HEPES-KOH, 100 mM potassium acetate, 5 mM magnesium 

acetate, pH 7.7), with TWEEN-20 (5.6 μL, 0.05% stock, 0.007% final), on ice in 28 μL aliquots. 

GMPCPP (2 μL, 0.1 mM, 0.02 uM final) was added, the solution was transferred to 20 °C, 

incubated for 1 minute (total time from addition to freezing) before 2.5 μL was applied to 

freshly glow-discharged Quantifoil Cu R2/2 200 mesh grid and plunge frozen using a 

Vitrobot Mark III (FEI Company, OR) into liquid ethane maintained at 93.0 K using an 

ethane cryostat (Russo et al., 2016). The Vitrobot chamber temperature was set to 10 °C and 

humidity to 100 %. 

Four datasets were merged for the analysis shown in Section 2.2.3. These are summarised 

in the table below: 

Name Microscope Pixel size (Å) Stage tilt (°) # images # particles 
Pol1 Polara 1.37 35 494 30941 
Pol3 Polara 1.37 0 1175 37701 
Dia0 Krios 1.34 0 1673 26033 
Dia25 Krios 1.34 25 1895 17026 

Polara: FEI Tecnai G2 Polara microscope operating at 300 kV, with Falcon III direct electron 

detector prototype. Krios: FEI Titan Krios microscope operating at 300 kV, with K3 detector. 
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In all cases movies were collected with a total dose of ~40 electrons/Å2. Between- and 

within-frame motion was corrected with MotionCor2, and approximate dose weighting 

was done at the same time (Zheng et al., 2017). Defocus/CTF estimation was using 

CTFFIND4 (Rohou and Grigorieff, 2015), and for tilted datasets refined using GoCtf (Su, 

2019). All subsequent processing was using RELION3 (Zivanov et al., 2018). Ends of helices 

were picked manually and segments extracted at 45 Å intervals, to yield the ‘# particles’ in 

the table above. Particles were extracted and scaled to a consistent pixel size of 2.74 Å/pix in 

110 x 110 pixel boxes. An initial model for 3D refinement was constructed using the 

published structures of ZapA and FtsZ, before filtering to 60 Å. As described in the text a 

wide variety of refinement and classification strategies were attempted within the Relion 

framework.  
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3.7 Fluorescence polarisation assay for GTP-competitive inhibitors 

of FtsZ 

3.7.1 Fluorescence polarisation assay 

Assay mixture components were combined in an order so as to minimise the concentration 

of DMSO to which the protein was exposed. Final buffer in all cases was: 9 mM Tris-HCl, 

45 mM KCl, 18% v/v glycerol, 10% v/v DMSO, 0.01 % casein, pH 7.5. Unless otherwise stated 

in figure legends, the concentration of S. aureus FtsZ 12-316 L272D (apoSaFtsZ) was 15 nM, 

and the concentration of 8-[(6-Amino)hexyl]-amino-GTP-ATTO-550 (Jena Bioscience NU-

830-550) was 2 nM. 

20 µL volumes of assay mixtures were dispensed into wells of black, low volume, Corning 

384-well plates (CLS4514), with a non-binding surface and a U-bottom using the Span8 head 

of a Biomek FXp liquid handling system (Beckman Coulter) using 50 μL tips, or by hand, 

and mixed by pipetting up and down by 10 μL 5 times. Plates were centrifuged at 100 g for 1 

minute and then incubated at 25 °C for 30 minutes, allowing equilibrium to be reached (in 

actuality this happens much faster). All of these steps were carried out in low lighting to 

minimise photo-bleaching of the probe. 

FP measurements were made with a BMG Pherastar FSX instrument using a “FP 540-20 

590-20 590-20” filter block, with 200 flashes per well. 

3.7.2 Pilot screen 

For the pilot screen, assay plates were stamped with concentrated DMSO solutions of 

library compounds at the Dundee Drug Discovery Unit before being sealed, frozen and sent 

to LMB, where I stored them at -20 °C. Assay solutions were pipetted on top of the 

compounds to bring the final concentration of library compounds to 30 μM and mixed as 

above. 

3.7.3 Binding analysis 

All analysis was carried out using custom R scripts, which made extensive use of the 

tidyverse (Wickham, 2017). Non-linear least squares estimates of model parameters (as 

per Appendix: Principles of Fluorescence Polarisation p.152) were determined using the 

nls function in R’s stats package. 
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3.8 Superfamily analysis 

All analysis was carried out using custom scripts written in R, making extensive use of the 

bio3d (Grant et al., 2006) and tidyverse (Wickham, 2017) packages. Many of the details 

of the method are described in the main text. 

3.8.1 Datasets 

Structure datasets were collected programmatically from the PDB by running individual 

phmmer (Eddy, 2011) searches of PDB sequences with a representative from each of the 

subfamily investigated. 

3.8.2 Alignment 

Sequences from the downloaded PDB depositions were extracted and aligned as follows. 

Firstly, a high-quality representative structure was selected for each subfamily, and these 

were aligned for each superfamily via a hybrid approach combining structural and 

sequence alignments, including information from large alignments of homologues, with 

the PROMALS3D web server with defaults (Pei et al., 2008). Sequences were then aligned 

within each subfamily to the representative, using MUSCLE (Edgar, 2004) (with some 

manual adjustments), before all sequences were combined into a super alignment on the 

basis of the representative alignment (with some manual adjustments). 

3.8.3 Structure annotation 

Structures were annotated by downloading the Uniprot entry listed in the PDB annotation. 

Polymerisation state was assigned semi-automatically on the basis of experimental 

technique, but checked manually. Similarly, nucleotide state was assigned semi-

automatically on the basis of ‘ligand’ annotation in the PDB. 

3.8.4 Structural analysis 

Structure analysis was carried out as described in Section 2.4.3, p.100. The structurally 

conserved core was found using the bio3d::core.find routine. The structures were 

aligned on the core using bio3d::fit.xyz. PCA was done using bio3d::pca.pdbs. 
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4 APPENDICES 

4.1 Principles of X-ray Crystallography 

We are very lucky to be living in the best period of human history so far. Every day we 

benefit from a vast array of technologies which exploit our knowledge of the universe to 

improve our lives. There have been many advances in natural science to bring us to this 

point, but few have had an impact as large as that of X-ray crystallography. 

X-ray crystallography, for the first time, allowed us to visualise the structure of matter at the 

smallest scale – that of atoms. Information about how atoms are arranged relative to one 

another underpins our ability to understand and manipulate substances, including those in 

biological systems. The very first atomic structure, solved by Lawrence Bragg in 1913, 

revealed the now-familiar fact that sodium chloride was not, in fact, composed of Na-Cl 

molecules. This was the first of many insights into the world to be gained from shining X-

rays through regular arrays of atoms. The principles by which structural information is 

obtained in this way are briefly outlined below. 

4.1.1 Molecular imaging 

In order to get some information about the structure of an object using another one the two 

must interact. The diffraction limit tells us that the interrogating object must be, at largest, 

of a similar scale to the smallest features on the interrogated object we want to resolve. If 

we wish to interrogate atomic structures we typically turn to subatomic particles, notably: 

electrons, neutrons, or photons; this is for two reasons. Firstly, these particles do interact 

with the components of atoms (protons, neutrons, and electrons, though not in all 

combinations), and secondly these particles have sizes, or wavelengths, similar to or smaller 

than the scales of interatomic interactions. This scale is on the order of 10 billionths of a 

metre (10-10 m), or 1 ångström (abbrev. Å), for instance, the Van der Waals radius of a Carbon 

atom is 1.70 Å, and the typical length of a C-C bond is 1.54 Å. All of electrons, neutrons, and 

photons can be coerced to form waves of appropriate wavelengths to resolve atomic 

features. In particular, neutrons and electrons must be accelerated to high energies, while 

similarly high energy photons, in the hard X-ray part of the spectrum or beyond must be 

used. 
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When these interrogating particles pass through a molecule of interest one of three things 

can happen. The most likely of these is: nothing. In the case of X-rays almost all of the 

photons will not interact with the molecule. When interaction does occur, we call this 

scattering and this can happen in two ways. An inelastic scattering event results in 

deposition of energy in the molecule, resulting in radiation damage and the re-emission of 

a particle different in energy, and, in wave-speak, phase to the incoming one. An elastic 

scattering event results in the re-emission, without energy loss or a change in phase, of a 

particle much like the incoming one, but in a direction that is dependent on the structure 

of the molecule. Both kinds of scattering events can be used to infer information about 

molecular structure, but it is elastic scattering events which are useful in X-ray diffraction 

experiments. 

The inverse linear relationship between energy and wavelength (given by the Planck-

Einstein relationship for photons, and the De Broglie relationship for matter waves of 

electrons and neutrons) results in the fact that waves of sufficiently short wavelength to 

interrogate atomic structures also carry energy that is in the regime that will destroy atomic 

interactions via inelastic scattering events. It is therefore impossible to repeatedly irradiate 

an individual molecule until sufficient information has been recovered to generate a 

structure. In most cases, for a single molecule of interest, it is difficult to record even one 

interaction because the molecule is destroyed so quickly. One solution is to use very short 

(10s of femtoseconds), and very bright, pulses of X-ray photons in X-ray Free Electron Laser 

(XFEL) experiments. In these experiments the photon-matter interaction finishes before 

the molecule has had time to disintegrate. Even in an XFEL, though, only a single image 

can be obtained, which is rarely enough to generate a structure. Also, XFELs are amongst 

the most expensive scientific instruments ever built. 

While we cannot repeatedly irradiate a single molecule we can approximate doing so by 

looking at many copies of that molecule. In the case of single particle imaging approaches 

(such as single particle XFEL imaging, or single particle analysis of electron micrographs), 

as the name suggests, information from many noisy images of single molecules is combined. 

The combination step can be very challenging, due to the noise (See Principles of Electron 

Cryo-Microscopy (CryoEM), below). In the case of crystallographic diffraction methods we 

exploit the special interaction between waves and regular arrays of molecules (in particular, 

Bragg’s Law) to keep the quantity of scattering events constant, both damaging inelastic 

ones, and useful elastic ones, but increase the amount of information we extract from each 
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elastic collision. Changing the ratio between the damage done and the information 

extracted can, in the best cases, allow us to record enough information to generate a 

structure. 

4.1.2 Diffraction by an object yields its Fourier transform 

As alluded to above, whilst it is helpful to think about the interaction between irradiating 

subatomic particles and matter in terms of collisions of particles, in fact crystallographic 

theory requires us to consider the wave-like properties of incident radiation. The 

interaction of waves and matter is governed by diffraction theory. 

A wave consists of many (infinitely) small regions of space which oscillate with respect to 

some property. Each point can be considered as the source of a propagating spherical wave. 

For a propagating plane wave, points in a plane oscillate together, and the planar waveform 

can be explained by the sum of the spherical waveforms over space. When a wave interacts 

with scattering medium, each part of the scattering object itself acts as a point source, with 

the amplitude corresponding to the strength of the interaction with the incident wave. 

Although within the scattering medium the interactions between the scatter sources are 

complex due to interference between non-parallel waves, further from the object parallel 

waves dominate and the radial pattern is another plane wave (the scattered/diffracted 

wave), with properties determined by the structure of the scattering object. 

In particular, the intensity of the scattered wave in any direction is determined largely by 

two things: the scattering density (the real space distribution of scattering potential), and 

the relative phase between scattered waves, which governs their interference and hence the 

measured intensity. 

Figure 4-1 illustrates how we can derive an expression for the phase difference, ∆6, at a 

position 7 away from the origin O, for a given scattering vector, 8. ∆6 is given by: 

∆6 = 8 ∙ 7 

After weighting for the distribution of the scattering potential, 9(7), we can integrate over 

real space to get an expression for the scattered waveform, :(8): 

:(8) = ; 9(7) ∙ <(=>?8∙7)	@7 



APPENDICES 

 142 

The introduction of the imaginary component into this formulation arises from the 

accounting trick of using Euler’s formula to incorporate the phase of a wave into 

calculations in terms of vectors.   

Importantly, this expression is in the form of a Fourier transform of the distribution of 

scattering potential in real space: the structure! Performing the inverse Fourier transform 

(something which is eminently tractable thanks to Fast Fourier Transform algorithms) on 

the scattered waveform, measured in frequency/reciprocal space, will therefore yield the 

scattering density: 

9(7) = 	; :(8) ∙ <(A=>?8∙7)@8 

Critically, to do this reverse transform we will need both the real valued amplitudes of the 

scattered waveform :(8) and the complex-valued phases. Unfortunately, in simple X-ray 

diffraction experiments we are only able to measure the amplitude of scattered waveforms, 

this is the origin of the infamous “phase problem” in crystallography, whose solution will 

be discussed below. 

In practical terms, because of radiation damage as discussed above, we are not able to 

reconstruct 9(7) from the X-ray diffraction pattern of a single molecule (even if we could 

recover phase information), which is why we instead measure scattering by crystals. 

 

 
Figure 4-1- Diffraction by an arbitrary object 

See text for description.  
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4.1.3 Diffraction by a crystal  

Crystals are highly symmetric objects. Symmetry describes a property of an object such that 

a geometric transformation can be applied to it and the returned object is indistinguishable 

from the original. The fundamental symmetry possessed by all crystals is the translational 

symmetry defined by the “lattice group”. This symmetry is described in terms of a set of 

three vectors, a,b, and c, each of which shifts any point in the lattice to an equivalent one, 

and together also describe the boundaries of the “unit cell”. There is a limited set of possible 

lattice symmetries in three dimensions, these are known as the 14 Bravais lattices. They are 

distinguished by the relationships between a,b, and c. For instance, in a tetragonal lattice 

|a|=|b|≠|c|, and all three are perpendicular to one another. 

Crystals also very often possesses additional “point group” symmetries within the unit cell, 

which describe symmetry operations relating copies of the asymmetric unit, of which there 

may be many within the unit cell, to each other. For chiral molecules, such as peptides and 

nucleic acids, the possible point group symmetry operations are limited to rotations and 

screw axes (which combine rotation with displacement by real fractions of the unit cell 

vectors). Only certain combinations of lattice and point groups are possible, for achiral 

asymmetric units there are 230 possibilities, known as “space groups”. For chiral 

asymmetric units, this is reduced to 65. Importantly, an asymmetric unit may contain 

several identical molecules, related by additional symmetry operations (this is known as 

non-crystallographic symmetry, or

At first glance we might imagine that the diffraction pattern observed in the waves scattered 

by a crystal would simply be a multiplication of the diffraction pattern of the unit cell, as we 

are simultaneously irradiating many identical copies of that unit cell, in identical 

orientations. However, this is not the case, again due to the effects of interference between 

scattered waves. 

In a large ensemble of scattered waves, only those separated in phase by a whole number 

of wavelengths, i.e. precisely in phase, will constructively interfere, and all others will 

destructively interfere.  In the context of a crystal this restriction is the key to recovering 

interpretable information. Bragg’s law succinctly describes when waves diffracted by 

equivalent points within each unit cell in the lattice (which will lie on a set of regularly 

spaced planes, see Figure 4-2) will be in phase, in terms of the distance between those 
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planes, d, the angle between the incident beam and the plane family, C, and the wavelength, 

D: 

E = 	d ∙
2GHEC
D

 

Scattered waves will only constructively interfere for integer values of n. Clearly the set of 

conditions which will generate integer n is rather small, and we can work them out, as 

follows. The concepts are illustrated in 2D in Figure 4-2. 

The families of planes on which equivalent points lie can be conveniently described by a 

set of indices, h,k, and l , denoted Miller indices, which have several derivations. The Miller 

indices for a plane family, hkl, are the number of times planes intersect each of the unit cell 

vectors abc. There are an infinite number of plane families for any lattice. More importantly, 

and less intuitively, the Miller indices are also related to the “reciprocal lattice”. The 

reciprocal lattice is defined by the reciprocal lattice vectors, a*, b*, and c*, which are of 

reciprocal lengths relative to their real space counterparts, and to which their relative 

orientations are defined in trigonometric terms. A given integer reciprocal lattice vector, 

d*hkl , can be decomposed as ℎJ∗ + 	LM∗ + NO∗, and corresponds to the normal to a lattice 

plane with Miller indices hkl.  

If we now extend Bragg’s Law to 3 dimensions, we can see that constructive interference by 

the waves scattered by a plane family will only occur when the scattering vector S is equal 

to d*hkl. This condition is expressed geometrically in the Ewald’s Sphere construction, 

depicted in Figure 4-2. The usefulness of the reciprocal lattice now becomes clear, because 

when we do a diffraction experiment we know S, we can index the diffraction pattern in 

terms of hkl, and this will correspond to one slice of the reciprocal lattice. By rotating the 

crystal relative to the incident waveform, and with it the reciprocal lattice, and measuring 

the scattered waves at a plane (the detector) we can systematically record the entirety of the 

reciprocal lattice (which is really just the Fourier transform of the real lattice). 

So far, we have only considered diffraction by lattice points, but the same conclusions hold 

for arbitrary scattering density in the unit cell. Due to the properties of the Fourier 

transform, the diffraction pattern of a crystal corresponds to a convolution of the Fourier 

transform of the lattice and the unit cell. Point group symmetries within the unit cell, have 

a different effect, that of producing “systematic absences” in the diffraction pattern. The 
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reasons for this are not discussed here, but these absences are critically important for 

inferring the space group and ensuring a correct structure solution. 

In summary, by recording the X-rays scattered by a crystal we are recording the Fourier 

transform of the electron density distribution in the crystal. 

 
 
 
 
 
 

 
Figure 4-2 - Diffraction by a lattice 

See text for description.  
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4.1.4 The phase problem 

So, if we can collect measurements of F(S) (the amplitudes and phases of the scattered rays) 

for a crystalline array of the molecule we are interested in, we will be able to do the Fourier 

transform to recover an approximation for the electron scattering density for the 

asymmetric unit. However, we are not out of the woods yet, as we cannot typically measure 

the phase component of F(S). There are two ways to experimentally derive the relative 

phases of scattered waves: “isomorphous replacement” and “anomalous dispersion”, both 

make use of heavy atoms (often incorporated via soaking crystals in salt solutions, or by 

replacement of methionine with selenomethionine during protein production) in the 

crystal, and I will not discuss them further as I did not do them. For the crystal structures 

determined here I was able to use the non-experimental approach of “molecular 

replacement”, which allows the approximation of the unknown phases with calculated 

phases from a homologous molecule. 

Even without phases, the way forward is to carry out a Fourier transform of the measured 

amplitudes of F(S), to yield the Patterson Map. This 3-dimensional, real-valued, map has 

the interesting property of being an autoconvolution of the unit cell electron scattering 

density, with peaks corresponding to vectors between regions of high scattering density. 

For simple molecules the Patterson Map can be interpreted directly, and this is how the first 

crystal structures were solved, however for more complex molecules such as proteins this 

is not possible.  

During molecular replacement, the number of copies of the homologous structure in the 

unit cell is estimated and a Patterson Map simulated for this number of copies, in various 

relative positions. These relative positions are optimised to maximise the similarity of the 

observed and calculated Patterson Maps. This search is greatly accelerated by the fact that 

Patterson Maps are centrosymmetric meaning that independent rotational and 

translational searches can be carried out. When a good agreement is found between the 

synthetic and measured maps, phases can be approximated for the observed F(S) 

amplitudes, to give the “structure factors” which are used for model building and further 

refinement. These downstream processes are not discussed here.   
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4.2 Principles of Electron Cryo-Microscopy (CryoEM) 

As discussed above, molecular structure can also be probed by firing electrons at a sample 

of interest. Here, I will discuss the basic principles of electron cryo-microscopy for single 

particle analysis (SPA). 

4.2.1 Transmission electron microscopy 

Transmission electron microscopy (TEM) is highly analogous to light microscopy, with 

optics based on lenses which can be thought of as being able to bend and focus rays and 

therefore generate magnified projection images. A typical optical scheme is shown in 

Figure 4-3. One important difference in the two modalities is the charge carried by the 

imaging particle, this causes many additional complications not discussed here. As is often 

mentioned, the wavelength of electrons used for electron microscopy is very small and the 

diffraction limit is rarely (never, for biological experiments) the limiting factor for the 

resolution ultimately obtained (e.g. D of a 300 keV electron is 1.96 pm). Instead, resolution is 

limited by the comparatively poor quality of electron lenses, and, in the case of native 

biological specimens, by the rate of radiation damage. 

CryoEM experiments for SPA use the TEM in bright field mode. Projection images are 

collected, with the intensity measured at any point on the detector corresponding to a line 

integral of the electron scattering (Coulomb) potential at a position in the sample. As we 

will see, by collecting images of many copies of a molecule of interest a 3-dimensional 

reconstruction of the electron scattering potential throughout the object can be calculated. 
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Figure 4-3 – Typical electron microscope optics 

After Williams and Carter.  
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4.2.2 Cryo methods for biological samples 

As alluded to, a major limitation for the imaging of native biological material is the radiation 

sensitivity of molecules built from low Z atoms. There are additional problems associated 

with working on biological material in a TEM, not least the fact that biological systems are 

typically functional in the aqueous phase (not compatible with the high vacuum required 

within the TEM column). A major breakthrough in biological EM was made by Jacques 

Dubochet and colleagues with the perfection of methods to freeze biological molecules in 

a thin layer of vitreous (amorphous) ice. In this “frozen hydrated” state molecular structure 

and solvent interaction is apparently preserved, and the low temperatures are radiation 

protective. For amorphous ice to remain so it must be kept below ~136 K, which necessitated 

the development of elaborate experimental procedures to ensure the sample is always cold. 

4.2.3 Generating contrast for low Z specimens 

Not only are low-Z atoms radiation sensitive, they generate very poor contrast – there is not 

much difference in the electron scattering potential of a biological carbon and a water 

oxygen. To generate additional contrast cryoEM images are typically collected with an 

applied defocus. This has the unfortunate consequence that the projection image of the 

Coulomb potential is convoluted with the so-called Contrast Transfer Function (CTF), a 

quasi-periodic sine function, in reciprocal space. The CTF must be modelled and corrected 

for during image processing, this is now possible to a very high degree of accuracy. The CTF 

also absolutely limits resolution, with greater defocus leading to a tighter limit, and data 

should be collected with the minimum defocus that still permits accurate particle 

alignment. 

4.2.4 Projection matching 

Given a collection of CTF-corrected images corresponding to many projections of the 

Coulomb potential distribution in the molecule of interest, all that is required is to 

accurately assign a set of “Euler angles” to the experimental images such that a consensus 

3D reconstruction can be calculated. This task is somewhat complicated by several factors, 

however. 

Firstly, sample heterogeneity will clearly prevent the finding of a single solution for angle 

assignment, and some classification scheme must be employed (several exist). Secondly, all 

of the reconstruction algorithms are local optimisers, and the initial model must be chosen 
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carefully to avoid becoming trapped in a local minimum of refinement. Additionally, even 

with the various advances in direct electron detectors, microscope optics, and data 

collection strategies, cryoEM data are extremely noisy and recovering useful information is 

not a foregone conclusion, even for a well behaved sample. 

Nevertheless, cryoEM reconstructions can now be determined to resolutions approaching 

those achieved via crystallography – the current record is ~1.5 Å. All high resolution cryoEM 

reconstructions are generated via iterative projection matching approaches. This can be 

carried out in real space but there are several computational advantages to carrying out the 

equivalent procedure in reciprocal space. A scheme illustrating this process is shown in 

Figure 4-4. 

 
 
 
 
 
 
 
 

Figure 4-4 -  Iterative projection matching and the central slice theorem 

Adapted from (Nogales and Scheres, 2015).  

A The central slice theorem states that 2D slices of the 3D Fourier transform of a volume are also 

2D Fourier transforms of a 2D projection image of that volume. As mentioned in the text, many 

image processing operations are computationally easier in reciprocal space (notably, the specification 

of the smoothness prior which guards against overfitting in RELION). 

B In the first instance an initial model is generated, and projections from many possible viewpoints, 

with defined Euler angles, are generated in silico. 

C For each image, or “particle”, in the dataset the best matching simulated projection is identified, 

and an approximate set of Euler angles is assigned (In RELION, probabilities that a particle 

corresponds to each of the viewpoints are assigned instead) 

D In real space, an improved model (essentially, a tomographic reconstruction) is then generated 

using the angles assigned to the particle images.  

E As implied by the central slice theorem, this process of reconstruction can be carried out very 

effectively in reciprocal space. 

By iterating over steps B-E, an improved model is generated, and, in the best cases, this iterative 

approach can drive the resolution of the reconstruction down to that required to resolve atomic 

details.  



APPENDICES 

 151 

 
 
 
 
 
 
 
 
 
 
 

  

a b

d

c

e



APPENDICES 

 152 

4.3 Principles of Fluorescence Polarisation 

The Invitrogen Fluorescence Polarisation Technical Resource Guide (Invitrogen, 4th 

edition) is an extremely useful practical guide to carrying out calculations for FP assays and 

guided me to the analysis strategies outlined here. 

4.3.1 Fundamentals 

Fluorescence polarisation (FP) is a powerful technique for monitoring interactions between 

a fluorescent probe and another molecule, largely developed for this purpose by Gregorio 

Weber (Jameson, 2001). The FP of a fluorophore is calculated after excitation with polarised 

light by measuring the intensity of the light emitted in two channels, one parallel to the 

electric vector of the excitation light (I∥) and one perpendicular (I⊥) to it. The FP (P) is given 

by the difference in these two channels normalised by their sum: 

R =
S∥−ST
S∥+ST

 

The difference can also be normalised by the total fluorescence (IT), given by: 

SV = S∥+2ST 

This gives the fluorescence anisotropy (FA, A): 

W =
S∥−ST
S∥+2ST

 

Which is related simply to the FP: 

W =
2R
3 − R

 

FA is preferred for calculations (because it makes them simpler) but the technique is usually 

referred to as FP. In typical regimes the two numbers are extremely similar. FP and FA 

values are often expressed in milli-units (mP and mA), these are simply the raw values 

multiplied by 1000.  

FP (the technique) generates useful information because not all of the individual (identical) 

fluorophores in solution will respond the same way to the polarised excitation light. 
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Fluorophores with their absorption transition dipole more closely aligned with the electric 

vector of the excitation light are more likely to absorb light, and will then emit it, all else 

being equal, also polarised parallel to the excitation light. This is known as 

“photoselection”. Because fluorophores in solution are randomly orientated there is a 

maximum observable FA of 0.4. The observed FA value can depend on other factors 

however – which is why FP can be useful. 

For a spherical (fluorescent) molecule, the observed FA is given by the Perrin equation 

(Perrin, 1926): 

W = 	
WX

1 + Y/C
 

Where A0 is the fluorophore’s intrinsic anisotropy (for a molecule with parallel excitation 

and emission dipoles, i.e. most common fluorophores, this is 0.4), τ is the fluorescence 

lifetime, and θ is the rotational correlation time (the time taken to rotate through one 

radian). The rotational correlation time is itself a function of several variables: 

C =
[\
L]^

 

Where [ is the viscosity of the solution, \ is the volume of the fluorescent molecule, L] is 

the Boltzmann constant, and ^ is the temperature. 

FP’s usefulness in biology stems from the fact that the differences in rotational correlation 

times arising from typical differences between the volumes of biological macromolecules 

are on the same order of magnitude as the fluorescence lifetimes of common fluorophores 

(Hall et al., 2016). This means that changes in the volume of fluorescent molecules, for 

instance the binding/unbinding of a fluorescent probe to a protein can be sensitively 

measured via FP. 

4.3.2 Compensation for changes in fluorescence intensity upon binding 

The quantum yield of many fluorophores is highly dependent on the chemical 

environment. In the context of FP this usually means that the FI of bound fluorophores is 

higher than unbound ones. This can be corrected for, however. 
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Measurements of total FI over a titration of the non-fluorescent binding partner (the 

“receptor”) against a constant concentration of the fluorescent molecule (the “probe”) can 

be used to determine the quantum yield ratio (Q) of fluorescence emission intensities for 

bound (Ib) and free (If) fluorophore (_ = S̀ S]⁄ ). If the titration curve is sigmoid when 

plotted on a semi-log scale then the FI changes upon binding (_ ≠ 1) and must be corrected 

for. Ib and If are the asymptotes of a simple one-site binding model: 

S = S̀ + cS] + S̀ d ∙
eV

fg + eV
 

Where I is observed FI and RT is total receptor concentration. Fitting this model will yield 

accurate values of Ib and If (but not of the other parameters!), and allow calculation of Q. 

We also need estimates of the FA for the bound (Ab) and free (Af) probe, which we can get 

from the same data, as these values are the asymptotes of a model which describes the 

measured anisotropy during titration of the receptor: 

W = W` + cW] + W`d ∙
eV

fg + eV
 

With these values in hand the corrected anisotropy (Acorrected) can be calculated from the 

“apparent” anisotropy (A) using the relationship (Dandliker et al., 1981): 

Wh/ii+hj+g =

W − W`
W] − W

∙ _ ∙ W] = W`

1 +
W − W`
W] − W

∙ _
 

4.3.3 Estimation of Kd from binding isotherm 

The corrected FA signal is shown for the titration of SaFtsZ into a fixed concentration of 

ATTO-550-GTP in Figure 2-15, p.88. An accurate Kd can be estimated from this experiment 

by fitting a binding model which corrects for receptor depletion (Swillens, 1995): 

Wh/ii+hj+g = W` + (W] − W`) ∙
(kV + fg + eV) − l(−kV − fg − eV)= − 4 ∙ kV ∙ eV

2 ∙ kV
 

Where kV is the total concentration of the probe, eV  is the total concentration of receptor, 

fg  is the dissociation constant, and anisotropy values are as above. 
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4.3.4 Estimation of Ki from IC50 

Calculating Ki (in this case equal to Kd) values for FP-based competition assays is non-trivial 

when the affinity of inhibitors and probes is close to the concentration of the receptor 

and/or probe. A set of robust equations for this purpose were derived in (Nikolovska-

Coleska et al., 2004). The key points are laid out here. 

For a system where receptor, e, and ligand, k, bind with 1:1 stoichiometry to form a complex 

ek, and a competitive inhibitor, S, is added, at any time: 

[e]V = [e] + [ek] + [eS]	

[k]V = [k] + [ek]	

[S]V = [S] + [eS] 

And where fg  and f?  are the dissociation constants of ek and eS, respectively, we also know 

that at equilibrium: 

fg =
[e][k]
[ek]

	

f? =
[e][S]
[eS]

 

Working through from fundamental principles of FP (when corrected for fluorescence 

changes upon binding) it can be shown (non-obviously) that: 

[ek]pX =
[ek]X
2

 

Where [ek]pX is the concentration of protein:probe complexes at 50% inhibition and [Rk]X 

is the concentration of the complex in the absence of an inhibitor. Using this and 

substituting in the obvious relationships described above it can be shown that: 

f? =
[S]pX

[k]pX + [e]X
fg

+ 1
 

All of the numbers required to compute this can be calculated: [S]pX, the free inhibitor 

concentration at 50% inhibition, [k]pX, the free ligand at the same time, and [e]X, the 

concentration of free protein in the absence of inhibitor. 
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Considering the 0% inhibition scenario it can be shown that [e]X is the positive root of a 

quadratic equation, such that: 

[e]X =
−(fg + kV − eV) + l(fg + kV − eV)= − 4 ∙ (−eV ∙ fg)

2
 

[ek]X and [k]X are then easily determined: 

[ek]X = [e]V − [e]X	

[k]X = kj − [ek]X	 

And we can then solve for the concentrations at the 50% inhibition point (Sq50 is the total 

concentration of inhibitor at this point): 

[ek]pX =
[ek]X
2

	

[k]pX = [k]V − [ek]pX	

[S]pX = Sq50 − e +
fg ∙ [ek]pX
[k]pX

+ [ek]pX 

Finally allowing calculation of f? ! This is the approach used for the f?  values shown in 

Figure 2-15B, p.88, and Figure 2-16, p.90, after IC50 is determined by fitting the competition 

model: 

Wh/ii+hj+g = W` +
W] − W`

1 +
[S]V
Sq50
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4.4 Additional figures 

 

Figure 4-5 – Calculated projections of SaFtsZ crystal filaments 

Projections of a SaFtsZ protofilament modle constructed using the coordinates and 

symmetry of PDB entry 5MN4 (1FOf as per Section 2.1). Simulated EM density was 

generated using the EMAN2 script e2pdb2mrc.py, and the projections generated using 

relion_project with a maximum resolution of 10 Å. The filament is rotated along its 

long axis by the number of degrees indicated.  
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Figure 4-6 – Invariant regions plotted on conserved structural cores  

Conformationally invariant residues (see text) are shown as yellow spheres on a black Cα pseudo-

ribbon joining residues which form the structurally conserved core of the tubulin (A) and actin (B) 

superfamilies. 

  

a

b



APPENDICES 

 159 

 
Figure 4-7 – PCA of tubulin subfamilies, coloured by nucleotide state 

Same plot as Figure 2-20, with structures coloured instead by the hydrolysis state of the 

bound nucleotide, as indicated. 
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Figure 4-8 – PCA of actin subfamilies, coloured by nucleotide state 

Same plot as Figure 2-22, with structures coloured instead by the hydrolysis state of the 

bound nucleotide, as indicated. 
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5 TABLES 

Table 1 – Plasmids 

Plasmid Source Backbone Gene Construct Tag Resistance Inducer 

pJW1 
Tim 

Nierhaus 
pHis17 SaFtsZ 

Full 

length 
None Amp IPTG 

pJW3 Matt Tsim pHis17 SaFtsZ 12-316 None Amp IPTG 

pJW4 Matt Tsim pHis17 SaFtsZ 
12-316, 

F138A 
None Amp IPTG 

pJW5 Matt Tsim pHis17 SaFtsZ 
12-316, 

T66W 
None Amp IPTG 

pJW18 
Piotr 

Szwedziak 
pET9a EcFtsZ 

Full 

length 
None Kan IPTG 

pJW19 This work pTXB1 EcZapA 
Full 

length 

C-intein-

Chitin 

Binding 

Domain 

Amp IPTG 

pJW62 This work pHis17 SaFtsZ 
12-316, 

L272D 
C-His6 Amp IPTG 
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Table 3 – Protein sequences 

 

  

Protein Sequence 
  
SaFtsZ 
Uniprot P0A031 

MLEFEQGFNHLATLKVIGVGGGGNNAVNRMIDHGMNNVEFIAINTDGQ

ALNLSKAESKIQIGEKLTRGLGAGANPEIGKKAAEESREQIEDAIQGA

DMVFVTSGMGGGTGTGAAPVVAKIAKEMGALTVGVVTRPFSFEGRKRQ

TQAAAGVEAMKAAVDTLIVIPNDRLLDIVDKSTPMMEAFKEADNVLRQ

GVQGISDLIAVSGEVNLDFADVKTIMSNQGSALMGIGVSSGENRAVEA

AKKAISSPLLETSIVGAQGVLMNITGGESLSLFEAQEAADIVQDAADE

DVNMIFGTVINPELQDEIVVTVIATGFDDKPTSHGRKSGSTGFGTSVN

TSSNATSKDESFTSNSSNAQATDSVSERTHTTKEDDIPSFIRNREERR

SRRTRR 

EcFtsZ 
Uniprot P0A9A6 

MFEPMELTNDAVIKVIGVGGGGGNAVEHMVRERIEGVEFFAVNTDAQA

LRKTAVGQTIQIGSGITKGLGAGANPEVGRNAADEDRDALRAALEGAD

MVFIAAGMGGGTGTGAAPVVAEVAKDLGILTVAVVTKPFNFEGKKRMA

FAEQGITELSKHVDSLITIPNDKLLKVLGRGISLLDAFGAANDVLKGA

VQGIAELITRPGLMNVDFADVRTVMSEMGYAMMGSGVASGEDRAEEAA

EMAISSPLLEDIDLSGARGVLVNITAGFDLRLDEFETVGNTIRAFASD

NATVVIGTSLDPDMNDELRVTVVATGIGMDKRPEITLVTNKQVQQPVM

DRYQQHGMAPLTQEQKPVAKVVNDNAPQTAKEPDYLDIPAFLRKQAD 

 

EcZapA-Intein-CBD 
Cleavage site: “|” 
ZapA Uniprot P0ADS2 

MSAQPVDIQIFGRSLRVNCPPDQRDALNQAADDLNQRLQDLKERTRVT

NTEQLVFIAALNISYELAQEKAKTRDYAASMEQRIRMLQQTIEQALLE

QGRITEKTNQNFE|CITGDALVALPEGESVRIADIVPGARPNSDNAID

LKVLDRHGNPVLADRLFHSGEHPVYTVRTVEGLRVTGTANHPLLCLVD

VAGVPTLLWKLIDEIKPGDYAVIQRSAFSVDCAGFARGKPEFAPTTYT

VGVPGLVRFLEAHHRDPDAQAIADELTDGRFYYAKVASVTDAGVQPVY

SLRVDTADHAFITNGFVSHATGLTGLNSGLTTNPGVSAWQVNTAYTAG

QLVTYNGKTYKCLQPHTSLAGWEPSNVPALWQLQ 
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Table 4 – Deposited structures used for tubulin superfamily analysis 

PDB ID Family Polymerisation state Nucleotide state 
5syc_A a f T 
5syg_A a f T 
5sye_A a f T 
5syf_A a f T 
5ij0_A a f T 

5n5n_G a f T 
5ij9_A a f T 

4drx_A a m T 
5lp6_A a m T 
5lp6_C a m T 
5gon_A a m T 
5gon_C a m T 
6evw_A a f T 
5kmg_A a f T 
5c8y_A a m T 
5c8y_C a m T 
5xi7_C a m T 
5xi7_A a m T 
5xi5_C a m T 
5xi5_A a m T 
5cb4_A a m T 
5cb4_C a m T 
5xhc_A a m T 
5xhc_C a m T 
5ca1_C a m T 
5ca1_A a m T 
5yl4_C a m T 
5yl4_A a m T 
5ezy_A a m T 
5ezy_C a m T 
6bry_A a m T 
6bry_C a m T 
6br1_C a m T 
6br1_A a m T 
6brf_A a m T 
6brf_C a m T 
5h74_C a m T 
5h74_A a m T 
6bs2_A a m T 
6bs2_C a m T 
5h7o_C a m T 
5h7o_A a m T 
4i4t_A a m T 
4i4t_C a m T 
4ihj_A a m T 
4ihj_C a m T 
5jh7_C a m T 
5jh7_A a m T 
5xlz_C a m T 
5xlz_A a m T 
5njh_C a NA T 
5njh_A a m T 
5xlt_C a m T 
5xlt_A a m T 
4i55_C a m T 
4i55_A a m T 
5fnv_A a m T 
5fnv_C a m T 
4i50_A a m T 
4i50_C a m T 
5j2t_A a m T 
5j2t_C a m T 
5o7a_C a m T 
5o7a_A a m T 
4o4l_A a m T 
4o4l_C a m T 



TABLES 

 165 

5lov_C a m T 
5lov_A a m T 
5iyz_C a m T 
5iyz_A a m T 
5itz_A a m T 

4o4h_C a m T 
4o4h_A a m T 
5lxt_C a m T 
5lxt_A a m T 

5nm5_A a m T 
5ogc_A a f T 
4o4i_A a m T 
4o4i_C a m T 
4o2b_A a m T 
4o2b_C a m T 
6fkl_A a m T 
6fkl_C a m T 
6fjm_A a m T 
6fjm_C a m T 
5eib_C a m T 
4tv9_C a m T 
4tv9_A a m T 
5nqt_A a m T 
5m5c_A a f T 
4iij_C a m T 
4iij_A a m T 
5lxs_A a m T 
5lxs_C a m T 
4tv8_A a m T 
4tv8_C a m T 

5m7g_C a m T 
5m7g_A a m T 
5m8g_A a m T 
5m8g_C a m T 
5bmv_C a m T 
5bmv_A a m T 
5osk_A a m T 
5osk_C a m T 
4o2a_A a m T 
4o2a_C a m T 
5jvd_C a m T 
5jvd_A a m T 
5nfz_A a m T 
5nfz_C a m T 
6fjf_C a m T 
6fjf_A a m T 

5m7e_A a m T 
5m7e_C a m T 
4yj2_A a m T 
4yj2_C a m T 
4yj3_C a m T 
4yj3_A a m T 
6fii_A a m T 
6fii_C a m T 

5m8d_A a m T 
5m8d_C a m T 
5la6_A a m T 
5la6_C a m T 
5xag_C a m T 
5xag_A a m T 
5j2u_A a m T 
5j2u_C a m T 

4wbn_A a m T 
4wbn_C a m T 
5mio_A a m T 
6fkj_C a m T 
6fkj_A a m T 
5ng1_C a m T 
5ng1_A a m T 
6bbn_A a m T 
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6bbn_C a m T 
4tuy_A a m T 
4tuy_C a m T 
1jff_A a f T 

5nqu_A a m T 
5lyj_C a m T 
5lyj_A a m T 
5ov7_C a m T 
5ov7_A a m T 
4o4j_C a m T 
4o4j_A a m T 
5xaf_A a m T 
5xaf_C a m T 
5nd4_A a f T 
5mf4_A a m T 
5mf4_C a m T 
3j8x_A a f T 
3jas_A a f T 
5yls_C a m T 
5yls_A a m T 
6evy_A a f T 
6dpv_A a f T 
6bjc_A a f T 
3jat_A a f T 
6evz_A a f T 
3jak_A a f T 

6dpw_A a f T 
5ca0_A a m T 
5ca0_C a m T 
6ew0_A a f T 
5xkg_A a m T 
5xkg_C a m T 
6b0c_A a m T 
6b0c_C a f T 
3jal_A a f T 

6dpu_A a f T 
3jar_A a f T 
6b0i_A a f T 
6cvn_B a f T 
5ylj_A a m T 
5ylj_C a m T 

6evx_A a f T 
5xkf_C a m T 
5xkf_A a m T 
5yl2_C a m T 
5yl2_A a m T 

4zhq_C a m T 
4zhq_A a m T 
4zi7_C a m T 
4zi7_A a m T 
3j8y_A a f T 
5xiw_C a m T 
5xiw_A a m T 
5jcb_C a m T 
5jcb_A a m T 
5xkh_C a m T 
5xkh_A a m T 
5xp3_C a m T 
5xp3_A a m T 
5jqg_C a m T 
5jqg_A a m T 
3jaw_A a f T 
6cvj_A a f T 
5xke_A a m T 
5xke_C a m T 
4zol_A a m T 
4zol_C a m T 
6b0l_A a f T 
3ryc_A a m T 
3ryc_C a m T 



TABLES 

 167 

3ryf_A a m T 
3ryf_C a m T 
4f61_C a m T 
4f61_A a m T 
3ryi_C a m T 
3ryi_A a m T 

4eb6_C a m T 
4eb6_A a m T 
3ut5_A a m T 
3ryh_C a m T 
3ryh_A a m T 
4hna_A a m T 
4f6r_A a m T 
4lnu_A a m T 
5eyp_A a m T 
1sa0_A a m T 
1tvk_A a f T 
1sa1_A a m T 
3e22_A a m T 
1z2b_A a m T 
1tub_A a f T 
3j6f_A a f T 
3j6e_A a f T 

5mm4_A a f T 
1ffx_A a m T 
5jco_A a f T 
3hkb_A a m T 
3n2k_A a m T 
4x1y_A a m T 
4x1y_C a m T 
4x20_C a m T 
4x20_A a m T 
3hkd_A a m T 
3hkc_A a m T 
4x1i_A a m T 
4x1i_C a m T 

3hke_A a m T 
3n2g_A a m T 
4x1k_C a m T 
4x1k_A a m T 
5kx5_C a m T 
5kx5_A a m T 
5ucy_A a f T 
4u3j_A a m T 
4ffb_A a m T 

5w3h_A a f T 
5w3j_A a f T 
5w3f_A a f T 
5mjs_E a f T 
5mlv_B a f T 
5syc_B b f D 
5syg_B b f D 
5sye_B b f D 
5syf_B b f D 
5ij0_B b f D 
5ij9_B b f D 

4drx_B b m T 
5lp6_D b m D 
5lp6_B b m D 
5gon_B b m D 
5gon_D b m D 
5kmg_B b f D 
5c8y_B b m D 
5c8y_D b m D 
5xi7_B b m D 
5xi7_D b m T 
5xi5_D b m T 
5xi5_B b m D 

5cb4_D b m D 
5cb4_B b m D 
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5xhc_B b m D 
5xhc_D b m T 
5ca1_B b m D 
5ca1_D b m D 
5yl4_B b m D 
5yl4_D b m T 
5ezy_B b m D 
5ezy_D b m T 
6bry_D b m D 
6bry_B b m D 
6br1_D b m D 
6br1_B b m D 
6brf_D b m D 
6brf_B b m D 
5h74_D b m T 
5h74_B b m D 
6bs2_B b m D 
6bs2_D b m D 
5h7o_B b m D 
5h7o_D b m T 
4i4t_B b m D 
4i4t_D b m D 
4ihj_D b m D 
4ihj_B b m D 
5jh7_D b m D 
5jh7_B b m D 
5xlz_D b m T 
5xlz_B b m D 
5njh_B b NA D 
5njh_D b m D 
5xlt_B b m D 
5xlt_D b m D 
4i55_D b m D 
4i55_B b m D 
5fnv_B b m D 
5fnv_D b m T 
4i50_D b m D 
4i50_B b m D 
5j2t_D b m D 
5j2t_B b m D 
5o7a_B b m D 
5o7a_D b m D 
4o4l_D b m D 
4o4l_B b m D 
5lov_B b m D 
5lov_D b m D 
5iyz_D b m D 
5iyz_B b m D 
5itz_B b m D 

4o4h_B b m D 
4o4h_D b m D 
5lxt_B b m D 
5lxt_D b m D 

5nm5_B b m D 
5ogc_B b f D 
4o4i_D b m D 
4o4i_B b m D 

4o2b_D b m D 
4o2b_B b m D 
6fkl_B b m D 
6fkl_D b m D 
6fjm_B b m D 
6fjm_D b m D 
5eib_D b m T 
4tv9_D b m D 
4tv9_B b m D 
5nqt_B b m D 
5m5c_B b f D 
4iij_B b m D 
4iij_D b m D 
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5lxs_B b m D 
5lxs_D b m D 
4tv8_B b m D 
4tv8_D b m D 
5m7g_B b m D 
5m7g_D b m D 
5m8g_D b m D 
5m8g_B b m D 
5bmv_D b m D 
5bmv_B b m D 
5osk_B b m D 
5osk_D b m D 
4o2a_D b m D 
4o2a_B b m D 
5jvd_B b m D 
5jvd_D b m D 
5nfz_B b m D 
5nfz_D b m D 
6fjf_D b m D 
6fjf_B b m D 

5m7e_D b m D 
5m7e_B b m D 
4yj2_D b m D 
4yj2_B b m D 
4yj3_D b m D 
4yj3_B b m D 
6fii_D b m D 
6fii_B b m D 

5m8d_D b m D 
5m8d_B b m D 
5la6_B b m D 
5la6_D b m D 
5xag_D b m D 
5xag_B b m D 
5j2u_B b m D 
5j2u_D b m D 

4wbn_D b m D 
4wbn_B b m D 
5mio_B b m D 
6fkj_D b m D 
6fkj_B b m D 
5ng1_B b m D 
5ng1_D b m D 
6bbn_B b m D 
6bbn_D b m D 
4tuy_B b m D 
4tuy_D b m D 
1jff_B b f D 

5nqu_B b m D 
5lyj_B b m D 
5lyj_D b m D 
5ov7_D b m D 
5ov7_B b m D 
4o4j_B b m D 
4o4j_D b m D 
5xaf_B b m D 
5xaf_D b m D 
5nd4_B b f D 
5mf4_D b m D 
5mf4_B b m D 
3j8x_B b f D 
3jas_B b f D 
5yls_D b m T 
5yls_B b m D 
6evy_B b f T 
6dpv_B b f D 
6evz_B b f D 
3jak_B b f T 

6dpw_B b f T 
5ca0_B b m D 
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5ca0_D b m D 
6ew0_B b f D 
5xkg_B b m D 
5xkg_D b m T 
6b0c_B b m D 
6b0c_D b f D 
3jar_B b f D 
6b0i_B b f D 
6cvn_A b f D 
6cvn_C b f D 
5ylj_B b m D 
5ylj_D b m T 
6evx_B b f D 
5xkf_D b m T 
5xkf_B b m D 
5yl2_B b m D 
5yl2_D b m T 

4zhq_D b m D 
4zhq_B b m D 
4zi7_B b m D 
4zi7_D b m D 
3j8y_B b NA D 
5xiw_B b m D 
5xiw_D b m T 
5jcb_B b m D 
5jcb_D b m D 
5xkh_B b m D 
5xkh_D b m T 
5xp3_D b m T 
5xp3_B b m D 
5jqg_B b m D 
5jqg_D b m T 
3jaw_B b f T 
6cvj_C b f D 
6cvj_B b f D 
5xke_B b m D 
5xke_D b m T 
4zol_B b m D 
4zol_D b m D 
6b0l_B b f D 
3ryc_D b m T 
3ryc_B b m D 
3ryf_B b m T 
3ryf_D b m T 
4f61_B b m D 
3ryi_B b m D 

4eb6_B b m D 
4eb6_D b m D 
3ut5_B b m D 
3ut5_D b m D 
4hna_B b m D 
4f6r_B b m D 
4lnu_B b m D 
5eyp_B b m D 
1sa0_B b m D 
3du7_D b m T 
1tvk_B b f D 
1sa1_B b m D 
3e22_B b m D 
1z2b_B b m D 
1tub_B b f D 
3j6f_B b f D 

5mm4_B b f D 
1ffx_B b m D 

3hkb_B b m D 
3n2k_B b m D 
4x1y_D b m D 
4x1y_B b m D 
4x20_B b m D 
4x20_D b m D 
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3hkd_B b m D 
3hkc_B b m D 
4x1i_D b m D 
4x1i_B b m D 
3hke_B b m D 
3n2g_B b m D 
4x1k_B b m D 
4x1k_D b m D 
5kx5_D b m D 
5kx5_B b m D 
5ucy_B b f D 
4u3j_B b m T 
4ffb_B b m T 

5w3h_B b f D 
5w3j_B b f D 
5w3f_B b f D 
5mjs_A b f D 
5mlv_C b f D 
2vap_A z m D 
1w5e_A z m T 
1fsz_A z m D 

1w5b_A z m T 
1w5b_B z m T 
1w5a_A z m T 
1w5a_B z m T 
4m8i_A z f D 
5h5g_A z f D 
5h5g_B z m D 
5xdu_A z f D 
5xdt_A z f D 
3voa_A z f D 
3vob_A z f D 
5xdv_A z f D 
5xdw_A z f D 
3vo8_A z f D 
3wgn_A z f T 
5h5h_A z f D 
5h5i_A z NA D 

4dxd_A z f D 
5mn4_A z f D 
5mn6_B z m D 
5mn6_A z m D 
5mn8_A z m T 
5mn5_A z m T 
5mn5_B z m T 
3wgl_A z m D 

3wgm_A z f T 
3wgk_A z m D 
1rlu_A z m T 

4kwe_A z m D 
5zue_A z m T 
2q1y_A z m T 
1rq7_A z m D 
5v68_E z m D 
5v68_B z m D 
2rho_B z m D 
2rho_A z m T 
2rhl_A z m D 
2rhl_B z m D 
1ofu_A z m D 
1ofu_B z m D 

2vaw_A z m D 
2r6r_1 z m D 
2r75_1 z m T 
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Table 5 – Deposited structures used for actin superfamily analysis 

PDB ID Family Polymerisation state Nucleotide state 
4bql_B crenactin m D 
4bql_A crenactin m D 
5ly3_A crenactin m D 

5mw1_A crenactin f D 
4cj7_A crenactin m D 
4bql_D crenactin m D 
5ljv_A mamk f D 
5ljw_B mamk m T 
5ljw_A mamk m T 
5aey_A parm f T 
4a61_A parm m T 
4a62_A parm f T 
2zgy_A parm m D 
2zgz_A parm m T 

1mwm_A parm m D 
1jcg_A mreb f T 
4czk_A mreb f T 
4czf_A mreb f D 
4czh_A mreb f D 
4czg_A mreb f D 
4czj_A mreb f T 
4czl_A mreb m D 

4czm_B mreb m T 
4czm_A mreb m T 
4a2b_A ftsa f T 
4a2a_A ftsa f T 
1e4g_T ftsa m T 
3wqt_B ftsa f T 
3wqt_C ftsa f T 
3wt0_A ftsa m T 
3wqt_A ftsa f T 
3wqu_C ftsa f T 
3wqu_A ftsa f T 

5jlf_A actin f D 
4cbw_A actin m T 
4cbu_A actin m T 
5mvv_A actin m T 
5ogw_A actin f D 
5ce3_A actin m T 
4ci6_A actin m T 

4m63_D actin m T 
4m63_E actin m T 
4m63_C actin m T 
5wfn_A actin m T 
4rwt_A actin m T 

3mn9_A actin m T 
2hf4_A actin m T 

3mn7_A actin m T 
3mn6_A actin m T 
3mmv_A actin m T 
2hf3_A actin m D 
3el2_A actin m T 
3eku_A actin m T 
3eks_A actin m T 
4jhd_A actin m T 
1nm1_A actin m T 
1nmd_A actin m T 
1nlv_A actin m T 
3ci5_A actin m T 
3cip_A actin m T 
1c0f_A actin m T 

3chw_A actin m T 
3a5n_C actin m T 
3a5l_C actin m D 
3a5o_C actin m T 
3a5m_C actin m T 
5jlh_A actin f D 
1d4x_A actin m T 
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4efh_A actin m D 
1c0g_A actin m T 
1dej_A actin m T 
1hlu_A actin m T 
2btf_A actin m T 
6f1t_H actin f T 

3ub5_A actin m T 
3u4l_A actin m T 
2oan_A actin m T 
3ffk_E actin m T 

2asp_A actin m T 
4gy2_B actin m T 
3buz_B actin m T 
2ff6_A actin m T 
3cjb_A actin m T 
4b1w_B actin m T 
3tpq_D actin m T 
3u9z_A actin m D 
2q0r_A actin m T 
2fxu_A actin m T 
4pkh_F actin m D 
3mn5_A actin m T 
3ffk_B actin m T 
3sjh_A actin m T 
3u8x_A actin m T 
3u9d_C actin m T 
3u9d_A actin m T 

1ijj_A actin m T 
1sqk_A actin m D 
3ue5_A actin m T 
2gwk_B actin m T 
5ooe_A actin f T 
4k43_A actin m D 
4k42_A actin m D 
1eqy_A actin m T 

2hmp_A actin m T 
2aso_A actin m T 
2pav_A actin m T 
1s22_A actin m T 

1wua_A actin m T 
1esv_A actin m T 
1lot_B actin m T 

3hbt_A actin m T 
1yxq_A actin m T 

2hmp_B actin m T 
1qz6_A actin m T 
2gwj_A actin m T 
1ma9_B actin m T 
1yxq_B actin m T 
4z94_A actin m T 
4pki_A actin m T 
4pkg_A actin m T 
6fm2_A actin m D 
2vcp_A actin m T 
5onv_A actin f D 
5ooc_A actin f D 
6fhl_A actin f DPi 
5ood_A actin f DPi 
5oof_A actin f D 
2a42_A actin m T 
2d1k_A actin m T 
2a3z_A actin m T 
2a41_A actin m T 
3j8a_A actin f D 
2a40_A actin m T 
2zwh_A actin f D 
1j6z_A actin m D 
1atn_A actin m T 
4b1z_B actin m T 

3m6g_A actin m T 
1nwk_A actin m T 
2q97_A actin m T 
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1y64_A actin m T 
2vyp_A actin m T 
2ff3_B actin m T 

4pkh_A actin m D 
1t44_A actin m T 
2q31_A actin m T 
3m1f_A actin m T 
4b1y_B actin m T 
3tpq_B actin m T 
2v52_B actin m T 
2q1n_A actin m T 
4h0t_B actin m T 
4h0y_B actin m T 
4h0x_B actin m T 
1mdu_B actin m T 
2pbd_A actin m T 
2vyp_B actin m T 
1rgi_A actin m T 

6avb_A actin f D 
6av9_A actin f D 
2v51_B actin m T 
2yjf_A actin m T 
2yjf_E actin m T 
2yje_A actin m T 
4b1v_A actin m T 
4b1z_A actin m T 
4b1u_B actin m T 
4h03_B actin m T 
2a5x_A actin m T 
4h0v_B actin m T 
1kxp_A actin m T 
2q0u_A actin m T 
2asm_A actin m T 
1qz5_A actin m T 
4pl8_B actin m T 
4pl8_A actin m T 
3tpq_E actin m T 
3tpq_A actin m T 
5yu8_A actin m D 
2gwk_A actin m T 
4b1x_B actin m T 
4eah_D actin m T 
1h1v_A actin m T 
4k41_A actin m T 
2q36_A actin m T 
5ubo_A actin m T 
3cjc_A actin m T 
6c1h_A actin f D 
6c1g_A actin f D 
6c1d_A actin f D 
6bnp_F actin f D 
6bnp_A actin f D 
6bnp_B actin f D 
6bnp_D actin f D 
3tu5_A actin m T 
3j8i_D actin f D 

3daw_A actin m T 
1rfq_A actin m T 
1rfq_B actin m T 

1rdw_X actin m T 
4wyb_A actin m T 
1lcu_A actin m T 
4pkh_I actin m D 
1p8z_A actin m T 
3w3d_A actin m T 
1yag_A actin m T 

5nbm_C actin m T 
5nbn_C actin m T 
1yvn_A actin m T 
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