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Abstract 

The study of phenotypic and genetic intratumor heterogeneity in glioblastoma is attracting a lot of 

attention. Recent studies have demonstrated that transcriptional profiling analysis can help 

interpret the complexity of this disease. Previously proposed molecular classifiers have been 

recently challenged due to the unexpected degree of intratumor heterogeneity that has been 

described spatially and at single cell level. Different computational methods have been employed 

to analyze this huge amount of data, but new experimental designs including multisampling from 

individual patients and single-cell experiments require new specific approaches. In light of these 

results, there is hope that integration of genetic, phenotypic and transcriptional data coupled with 

functional experiments might help define new therapeutic strategies and classify patients 

according to key pathways and molecular targets that can be further investigated to develop 

personalized and combinatorial treatment strategies.  
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analysis. 

 

Tumor heterogeneity 

Cancer is characterized by heterogeneity that is based on extensive phenotypic and genetic 

diversity between tumors of the same type (Intertumor heterogeneity) as well as among cells 

within the same tumor (intratumor heterogeneity) [1].  

Recently, technological advancements have allowed interrogation of cancer genomes at high 

resolution [2]. Deep genome-wide analyses of mutations and complex computational approaches 

have allowed the reconstruction of the genomic history of tumors [3, 4]. This has revealed that 

tumors of the same histological subtype share only a minority of genetic aberrations thus 

explaining the differential patterns of response to therapies among patients with the same tumor.  

Such complexity is further exacerbated by increasing evidence of genetic diversity among areas of 

the same tumor or between the tumor and its metastases (spatial intratumor heterogeneity) [5-

17], serial sampling taken during tumor evolution and relapse (temporal intratumor 

heterogeneity) [18-25], and single cells of the same tumor [26-31].   

This scenario is even more complicated due to the stochastic and unpredictable behavioral 

diversity of subclones with similar genotypes as well as the presence of aberrations that occur 

through post-translational and epigenetic modifications. The tumor microenvironment (including 

endothelial cells, pericytes, immune inflammatory cells, cancer-activated fibroblasts and stromal 

cells) adds an extra level of heterogeneity which affects tumor growth, progression and obviously 

treatment response [32, 33], thus therapeutic targeting should be aimed at several levels to 

achieve disease eradication.  
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Intratumor heterogeneity in glioblastoma 

Glioblastoma (GBM) is the commonest brain tumor in adults and is characterized by a high 

degree of heterogeneity both at cellular and molecular level [34, 35]. At clinical presentation it can 

be classified either as primary or secondary with the former being characterized by absence of 

clinical or histological evidences of a less malignant tumor and the latter being the result of 

progression from a low-grade glioma [36].  

Historically, primary and secondary GBMs have been considered conceptually different but from a 

clinical and histopathological perspective they remain largely identical [36]. In the last decade, it 

has become increasingly clear that primary and secondary GBMs represent different entities 

characterized by distinct genetic pathways. In this text we refer to primary GBM unless specified 

otherwise; yet, here we summarize the genetic alterations and pathways involved in the 

development of both primary and secondary GBMs as a service to the readers. 

Primary and secondary GBMs show genetic alterations that are significantly different in frequency: 

LOH 10q is frequent in both primary and secondary GBMs, whereas epidermal growth factor 

receptor (EGFR) amplification, p16INK4a deletion and phosphatase and tensin homolog (PTEN) 

mutations are more frequent in primary GBMs. Isocitrate dehydrogenase 1 (IDH1) mutations occur 

in approximately 10% of all GBMs [37] and are enriched in secondary GBMs [38]. p53 mutations 

are early common genetic events in secondary GBMs [36] but are present also in approximately 

30% of primary GBMs. Despite this, more than 70% of primary GBMs show alterations in the p53 

pathway [35] .  

In addition to the amplification of EGFR (present in almost 50% of GBM [39-41]) and the presence 

of extrachromosomal double minutes copies of this gene [42], EGFR amplicons are often mutated 

in several variants. Among these, the most common is a deletion of exon 2-7 which generates a  
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truncated receptor that is unable to bind its ligand and is constitutively active (EGFRvIII) [36]. 

Amplification of EGFR is frequently associated with deletion of the INK4a/Arf gene locus that 

encodes two tumor suppressors, p16INK4a and p19Arf (p14Arf in humans), translated from 

alternatively spliced mRNAs [43]. p16INK4a prevents the formation of the complex between cyclin-

dependent kinase 4 (CDK4) and cyclin D1, thus preventing G1 entry [44], while p19Arf stabilizes p53 

through binding to mouse double minute 2 homolog (MDM2).  

The handling of GBM is challenging due to the heterogeneous nature of the disease, 

invasive potential and poor response to chemo- and radio-therapy. Median life expectancy in 

optimally managed patients is only 17-62 weeks with only 25% surviving 2 years [45]. The current 

clinical management of patients diagnosed with a GBM involves a combination of surgery, 

radiotherapy and chemotherapy. Radiotherapy has been the principal therapeutic modality since 

the late 1970s and the addition of targeted chemotherapy has only provided modest benefit [45, 

46].  

The term ‘multiforme’ that is commonly used to describe GBM clearly summarizes the 

various morphological characteristics of the tissue and of the cell populations showing 

heterogeneous tracts in their phenotype and genotype [47]. Despite extensive brain tumor biology 

studies, the definitive identification of the cell type(s) that contribute to tumor growth has yet to 

come [48]. This is extremely relevant in order to provide insights into the cellular target(s) of the 

initial mutational events and to dissect the phenotypic heterogeneity emerging as a result of 

tumor growth.  

Evidences from the cancer stem cell (CSC) hypothesis suggest that tumors hijack the functional 

properties of somatic stem cells and phenotypic heterogeneity is the result of a hierarchical 

organization of the tumor with its cell population showing various degrees of tumorigenic 
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potential regardless of their genotype and epigenetic status [49]. However, the CSC hypothesis 

does not address the issue of cell of origin [50]. More importantly, the lack of identification of 

cellular targets and the phenotypic complexity of the disease at the time of clinical presentation 

have hampered the development of innovative therapeutic approaches aimed at improving 

patient survival. 

 

Spatial and temporal genetic intratumor heterogeneity in glioblastoma 

The most extensive and well-characterized type of heterogeneity in GBM occurs at the 

genetic level. Initial studies in the 1980s revealed intratumor heterogeneity in GBM tissues and 

cells [51, 52] and were complemented by more sophisticated analyses using comparative genomic 

hybridization and laser scanning cytometry of microdissected GBM tissues [53, 54]. Seminal 

molecular studies in the 1990s shed light on the genetic heterogeneity across all glioma grades 

[55-57] and identified critical alterations in pathways that were mutually exclusive in GBM 

(CDKN2A (p16INK4A, MTS1) and CDK4 versus RB) suggesting genetic heterogeneity among patients 

[58, 59]. 

In the last years, large-screening data have elucidated the role of key signaling pathways in 

GBM by performing comprehensive analysis and integrating genomic, epigenomic and 

transcriptional data  [60-62]. Focal somatic copy-number alterations found in The Cancer Genome 

Atlas (TCGA) study are amplification of EGFR, CDK4, CDK6, PDGFRA, MDM2, MDM4, MET, MYCN, 

CCND2 and PIK2CA. In addition to these well-know aberrations in GBM, less common alterations 

were also detected, such as the amplification of the serine/threonine protein kinase AKT3 and the 

homozygous deletions of NF1 and PARK2 [62]. Mutations were also found in PTEN, TP53, EGFR, 

PIK3CA, PIK3R1, NF1, RB1, IDH1 and PDGFRA [60] and an additional 61 mutated genes were  
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identified at low frequency [60]. 

This scenario was further complicated by the elegant observation that amplifications of the 

receptor tyrosine kinases (RTKs; EGFR, PDGFRA and MET) show a mosaic pattern in distinct 

population of cells coexisting in the same GBMs [10, 13]. In particular, a striking example of RTK 

genetic intratumor heterogeneity is found in studies focusing on the expression of EGFR wild type 

and that of its mutant oncogenic variant vIII [63]: while EGFR over-expression is widespread in the 

majority of GBM, immunostaining for EGFRvIII typically shows that only a minority of the tumor 

cells are positive for this variant. Interestingly, GBM characterized by EGFR overexpression and 

presence of EGFRvIII are likely to show ependymal spread of the disease [64]. The interaction 

between EGFR wild type and vIII as well as the downstream signaling pathway activated by this 

functional cooperation has been described in a study by Fan and colleagues [65] who showed that 

EGFR phosphorylates the mutant variant vIII and causes its nuclear translocation. In the nucleus,  

EGFRvIII forms a nuclear complex with STAT3 and is able to drive transformation [65]. The 

coexpression of EGFR wild type and vIII drives the phosphorylation of STAT in vitro and in vivo and 

enhances tumorigenicity providing further insights into the oncogenic cooperation among variants 

of the same genetic lesion. A more recent study has suggested that an additional mechanism 

involving the activation of MET operates between EGFR wild type and vIII [66]. All multiple somatic 

events and the heterogeneous expression of EGFR and its variants in GBM have been 

comprehensively resolved at single-cell level [67]. Mutations in a single RTK, like EGFR, contribute 

to enhance clonal diversification which further expands upon the recent observation of intratumor 

heterogeneity of multiple concurrent RTK amplifications [10, 13]. 

Most recent studies have revealed spatial and temporal intratumor heterogeneity [5, 8, 

26]. Using a fluorescence-guided resection method based on 5-ALA [68, 69] we have been able to  
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dissect distinct regions of the same GBM, starting from the residual disease (margin) that is left 

behind during surgery [68] to the resected disease (tumor mass) [8]. This has allowed us to 

describe the clonal evolutionary trajectories of GBM development and to show that EGFR 

amplification and CDKN2A/B/p14ARF deletion represent early events whereas PDGFRA 

amplification and PTEN deletion emerge later during GBM evolution. 

An even more interesting observation of spatial intratumor heterogeneity came from the 

histological and genomic analysis of the subependymal zone (SEZ), the most well characterized 

neurogenic region of the human brain. Our recent study revealed that this region contributes to 

the genetic intratumor heterogeneity of GBM and is characterized by patterns of drug response 

that differ from the tumor mass [5]. Phylogenetic reconstruction showed different GBM evolution 

patterns in the analyzed patients where tumor cells from the SEZ correspond to clones that are 

generated early during tumor growth [5], in agreement with what proposed in mouse model 

studies [70-75].  

The use of patient-derived xenografts (PDX) has become increasingly popular in recent years, as 

they are believed to faithfully mimic the original human disease. In GBM, it has been shown that 

the ‘avatar’ model based on PDX recapitulates the pathological and genomic features of the 

original tumor and can be used to identify key regulatory signatures of clinical aggressiveness in 

patients [76] and to test novel therapeutic agents [77]. Very recently, we have exploited this 

model to reveal the genetic complexity during GBM evolution by identifying the clones that 

possess the tumor-initiating capacity and are able to transfer the disease to immunosuppressed 

animals [26]. This study represents an initial step into the complexity of GBM temporal evolution 

that is further complicated by the influence of the tumor microenvironment and the application of 

radical treatments, i.e. chemotherapy and radiotherapy, which impact on the clonal architecture 
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of the tumor. There are many examples of drug resistance conferred by the emergence of 

subclones harbouring specific somatic mutations [78] that might be therapy-driven. 

This has been proven true for GBM that arises as a result of progression from a low-grade disease 

[19] but evidences in primary GBM are yet to come. 

 

The influence of epigenetics 

The most challenging type of heterogeneity occurs at the environmental level as this is 

extrinsically dynamic and multifactorial depending on different types of stromal cells, their 

interactions and different niches types (vascular, hypoxic, etc.) [79, 80]. The cellular 

microenvironment impacts the epigenetic status of a cell and the downstream epigenetic marks 

(methylation of cytosine nucleotides, histone protein modifications, chromatin remodeling 

complexes and noncoding RNA interference) will influence the transcriptional potential of the cell.  

Genomic hyper- and hypomethylation has been shown in many cancer types and is associated to 

tumor formation and progression. As DNA methylation occurs primarily at CG dinucleotides in 

mammals, many cancer studies have targeted CG-rich regions and analyzed their aberrant 

‘methylomes’ [81-83].  However, in recent years, non-CpG methylation has been found to regulate 

gene expression in embryonic stem cells and new research has focused on analysing the 

distribution and regulation of non-CpG methylation traits [84-86]. Genomic methylation patterns 

can vary among individual cells within the same tissue and are subject to dynamic changes during 

development [87, 88]. This epigenetic heterogeneity has also been described within tumors where 

only a subset of aberrant DNA methylation events are recurrently found across different tumor 

regions [89-91].  

In patients with GBM the oral alkylating agent temozolomide is the current standard of  
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care. This drug is more effective on tumors where there is epigenetic silencing of the O-6-

methylguanine-DNA methyltransferase (MGMT) gene encoding a methyltransferase that inhibits 

the cytotoxic effect of temozolomide. Two regions in the MGMT promoter have been recently 

identified as critical for transcriptional silencing and prediction of the response to alkylating agents 

[92]. Interestingly, hypermethylation of the MGMT promoter has been observed in all the 

subtypes of the Verhaak classification [34]. Recently, we have shown that MGMT methylation 

status seems to be quite homogeneous in different GBM tumor areas [8] and generally predicts 

response to temozolomide [5].  Notwithstanding, beneficial response to this drug has also been 

seen in MGMT-unmethylated tumors, which suggests that MGMT methylation changes over time 

[93] and is influenced by treatment [94] reflecting a temporal rather than spatial heterogeneous 

status.   

Several groups have described additional promoter hypermethylation in GBM, often influencing 

the expression of GBM tumor suppressor genes like PTEN and P53, as well as of regulatory genes 

involved in cell proliferation, invasion and cytokine signaling [95] . Also the expression of EGFRvIII 

has been shown to be epigenetically modulated through methylation and hystone acetylation [96]. 

Epigenomic profiling in GBM has revealed a distinct subgroup called glioma CpG island methylator 

phenotype (G-CIMP) [97] that is enriched for the proneural expression group. If analyzed in the 

context of the proneural subtype, the G-CIMP group is clinically characterized by longer survival 

and it is associated with IDH1 mutations [95, 97]. Interestingly, the MGMT promoter methylation 

is independent from the CpG island methylator phenotype. 

These findings were followed by a comprehensive epigenetic and biological classification of 

pediatric and adult GBM [98] that defined six GBM subtypes based on global DNA methylation 

patterns, IDH1 mutations and two mutations in aminoacids K27 and G34 of the histone variant 
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H3.3. Interestingly, the authors found that the anatomical localization of K27 and G34 mutant 

tumors was different (midline locations and embryonic regions of neocortex and striatum, 

respectively) and that these mutations occurred mainly in pediatric GBM [98]. The molecular 

mechanisms underlying the transcriptional signature of K27 mutant tumors were described in a 

subsequent study showing that the reduction of K27 trimethylation on histone H3 interferes with 

the enzymatic activity of histone methyltransferase EZH2. This causes alterations in H3K27me3 

occupancy at the transcription start site of promoters across the whole genome of K27 mutant 

tumors. As a result, a pronounced global DNA hypomethylation resetting drives the emergence of 

a K27 mutant-specific gene expression profile [99]. 

Epigenetic modulators are currently being targeted as druggable candidates in several cancers. 

Epigenetic therapy has been applied with reasonable success in hematologic malignancies using 

DNA methyltransferase (decitabine, 5-azacitidine) and histone deacetylase inhibitors (vorinostat, 

romidepsin). In contrast, relatively low efficacies have been achieved on solid tumors; this is likely 

due to their intrinsic heterogeneous nature which allows tumors to develop treatment resistance 

[100]. A fundamental characteristic of epigenetics is that the same genomic sequence can show 

alternative phenotypes by reprogramming gene expression. Thus, intratumor heterogeneity at the 

epigenetic level will be reflected into transcriptional variability within tumors which will affect its 

evolutionary potential and is of vital importance on future clinical decision making.  

 

Transcriptional analysis 

In a critical review of the pathology of cerebral gliomas in 1940, Scherer H.J. described that 

primary GBMs are constituted of at least two or more “distinct pathological entities” [101]. 

Transcriptional analysis in GBM has been extensively used with the aim to dissect the phenotypic 
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complexity well known already by pathologists almost 80 years ago. Following from gene 

expression profiling studies on oligodendrogiomas, astrocytomas and normal brain tissues, in 2005 

complementary DNA (cDNA) microarrays were used to analyze GBM specimens and identify genes 

associated with immune cells, hypoxia, extracellular matrix and cellular proliferation [102]. 

With the initial evidences of the CSC hypothesis applied to solid tumors, transcriptional 

profiling analysis has helped to identify pathways which might suggest normal stem cell parallels 

for cancer cells. In GBM, seminal studies have shown that tumor cells retain a stem cell signature 

[68, 103-107] and a lot of effort has been put in optimizing culture conditions that preserve the 

genetic and transcriptional profile of the original tumor. The ability of GBM tumor cells to mimic 

the functional properties of stem cells has been definitively described in a recent study by Suvà 

and colleagues [108] where transcriptional analysis has been fundamental to identify a set of 

critical neurodevelopmental transcription factors for GBM propagation (POU3F2 [BRN2], SOX2, 

SALL2, and OLIG2). 

In an initial study including all grades of astrocytic tumors, an artificial neural network 

algorithm was developed to define survival prognostic subtypes [109] (denoted ANGIO, INTER, and 

LOWER) that had a perfect correspondence with the histological grade of these tumors.  

More recently, several groups have focused on developing accurate molecular prognostic 

classification systems to specifically stratify GBM patients. To this aim, large cohort genome-wide 

profiling analyses [110-112] have attempted to use microarray gene expression data from 

hundreds of GBM samples. The largest analysis to date [110] identified four GBM subtypes: 

Proneural, Neural, Classical and Mesenchymal, each characterized by a distinct gene expression 

profile associated with prognosis and response to therapy. The Proneural subtype is characterized 

by aberrations in PDGFRA, p53 and IDH1 mutations. The Classical subtype presents all common 
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alterations of GBM (chromosome 7 amplification, chromosome 10 deletion, CDKN2A/B/p14ARF 

deletion and EGFR amplification). The Mesenchymal subtype shows high expression of CHI3L1 

(also known as YKL40) and MET and is characterized by NF1 deletion (that is sufficient to convert a 

Proneural GBM into a Mesenchymal  GBM both in vitro and in vivo [113]). The Neural subtype has 

the highest expression of neuronal markers and genes associated with axon and synaptic 

transmission and  it is typical of samples characterized mainly by normal tissue. Interestingly, the 

Neural subtype has been found to be characteristic of the margin area of GBM  which can be 

identified by using 5-ALA during surgical tumor debulking [68] (Piccirillo SGM et al., unpublished 

data). 

The clinical relevance of this classification relies on its association to survival and response to 

treatment that differs among subtypes: the Proneural subtype is associated with a trend toward 

longer survival but the better response to treatment is observed in the Classical subtype [110]. 

More recently, a different approach based on gene co-expression modules of key pathways, such 

as EGFR and PDGFR, has been explored to develop a clinically relevant classifier for both adult low-

grade and high-grade gliomas [114]. 

However, in the last years it became clear that given the extensive spatial genetic intratumor 

heterogeneity in GBM it is difficult to make sense of these data based on a single GBM sample per 

patient (Fig.1). Also, such classification does not segregate all the GBM key aberrations, in fact 

some are found in more than one subtype, in other words CDKN2A and CDKN2B, and are shared 

with low-grade gliomas [34] suggesting that they are essential for the stepwise malignant growth. 

More recently, transcriptome sequencing has been employed to reveal gene fusions in GBM [61] 

some of which occur in noncoding genes, resulting in the expression of noncoding RNAs that are  

not expressed in normal cells [115].  
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 In colorectal cancer, single-cell PCR gene expression analysis has been used to dissect the 

cellular composition of normal and cancer tissue [116]. In GBM, single-cell transcriptome analysis 

by RNA sequencing has revealed extensive intratumor heterogeneity and a “stem cell-

differentiation gradient” that is not fully recapitulated in in vitro models [27]. More importantly, 

single-cell analysis has confirmed that more than one sub-type coexists in the same tumor as 

previously reported [8] (Fig.1) and suggested that hybrid phenotypic states reminiscent of 

progenitor and differentiated cells are present in individual cells of the same GBM [27]. These data 

highlight the dynamics of cellular states in GBM that can have implications for developing new 

therapeutic approaches. An example of this dynamic regulation has been recently provided in a 

study about extrachromosomal EGFRvIII showing that GBM cells suppress the expression of 

EGFRvIII following treatment with tyrosine kinase inhibitors but is upregulated after drug removal 

[117]. 

In the last decade, thousands of computational methods and bioinformatics tools have 

been developed to analyze gene expression patterns initially derived from gene expression 

microarray measurements and more recently from RNA-sequencing data. Most of these 

bioinformatics tools have used empirical Bayes methods [118-120] or estimates of the mean and 

variance [121, 122] to analyze differential expression levels. These tools have been applied to 

quantify transcription levels among single biopsies from several cancer patients or between cancer 

patients and controls. 

New studies that consider the variability in intratumor expression levels include multiple samples 

from a single patient and/or multiple single cells from the same tumor. These studies aim at 

gaining a better understanding of regional and temporal transcriptional profiles within a tumor. 

However, new dependencies emerge from the measurements (mRNA expression levels for each 
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patient/tumor) taken on this type of experiments as neither the profiled genes nor the tissue 

samples/single cells are likely to be independent from a statistical point of view. These high-

dimensional, complex gene expression datasets lead to important statistical challenges. Firstly, the 

higher number of genes compared to the number of samples limits the application of multivariate 

tests. Secondly, the dependence among the tissue samples for each subject might restrict the use 

of practical approaches that rely on mixing univariate standard testing procedures such as ANOVA 

and multiple testing correction methods. An important factor for accurate identification of 

differentially expressed genes is the number of sample replicates (biological or technical) as most 

methods model the variability in gene expression measurements. However, in light of the 

extensive intratumor heterogeneity, biological replicates are not really adequate to study cancer 

datasets and running technical replicates of tumor samples is often difficult due to limiting starting 

material or elevated cost. Few new methods have been developed to overcome these limitations 

but an increasingly number of multisampling experiments are currently being processed. If not 

addressed, these issues will limit the potential of the multisampling and single-cell experiments 

and ultimately compromise the identification of potential prognostic/predictive signatures to 

develop better therapeutic approaches. Moreover, these problems would also affect the 

downstream functional analyses that investigate the pathways in which dis-regulated genes are 

involved. A recent publication by Touloumis and colleagues [123] describes a suitable method for 

both, studying the heterogeneous transcriptional levels within tumors and identifying those 

pathways or biological processes affected by genes that are heterogeneously expressed in 

different tumor regions. In this study, the authors found differential expression levels between 

three spatially separated regions of GBM tumors: the tumor mass, the SEZ and the tumor margin 

[5, 68]. Furthermore, when genes were classified into one of the Gene Ontology biological 
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processes they found marked functional heterogeneity as most of the analyzed groups harbor 

differentially expressed genes. 

Computational approaches that allow integration of transcriptomic, genomic and 

epigenomic data will be key to achieve a comprehensive understanding of intratumor 

heterogeneity. These methods will lead to new ‘heterogeneity signatures’ that will aid with clinical 

decision making to apply individualised treatments to cancer patients. 

 

Conclusion 

Intratumor heterogeneity highlights the complexity of tumor genomic landscape and may 

present major challenges to biomarker identification and overcoming treatment resistance. The 

existence of treatment resistant clones and the influence of microenvironment favour tumor 

relapse. In GBM initial insights into clonal distribution [5, 8, 26, 27] and cooperativity among EGFR 

variants [65, 124] have shed new light into the mechanisms underlying tumor heterogeneity. At 

trascriptional level, recent studies have shown a previously unrecognised heterogeneous profile in 

distinct region of the same GBMs as well as at single-cell level [5, 8, 27] (Fig. 1). These findings 

support the concept that a detailed molecular inter- and intra-patient analysis is needed to 

develop personalized therapies and eventually target regions of the same GBM with different 

therapeutic approaches.  

By comparing the SEZ and the tumor mass of the same patient, we have observed differential 

pattern of response to the standard treatment based on the alkylating agent temozolomide, 

cisplatin and cediranib [5]. Similar analyses on primary cells derived from different regions of the 

same GBM might inform therapeutic decision. 

Molecular tumor subtypes identified through transcriptional analysis have been proposed to be  
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clinically relevant and important for prognostic value, however these classifications did not take 

into account sample heterogeneity. Analysis of primary tumor cells and single-cell technologies 

might help refining the existing GBM subtype classification and improving patient stratification. 

Unfortunately, there is currently no approved therapy besides the Stupp protocol [45, 46], thus 

clinicians have no alternatives to offer after exhausting the traditional treatments (surgery, 

radiation, alkylating chemotherapy and eventually anti-angiogenetic therapy).  

Hence, performing exhaustive genetic, transcriptomic and epigenetic testing seem invaluable to 

provide insights into more personalized treatments and/or further therapeutic alternatives for 

GBM patients. Nevertheless, these molecular-based tests are certainly time consuming and the 

integration of the data is not trivial which makes the interpretation of the results quite complex. 

 

Future perspective 

 With the emergence of next-generation sequencing technologies, we have changed our 

understanding of tumor heterogeneity. These technologies have revealed an unexpected 

molecular complexity from bulk population to single-cell level and have challenged the way by 

which we think of cancer development and treatment.   

GBM is a remarkable example of a phenotypic and genetic heterogeneous tumor and despite the 

challenges associated with improving current treatments, there is hope that the integration of 

accurate data reflecting the genetic, transcriptional and epigenetic intratumor heterogeneity in 

addition to functional studies may lead to the definitive identification of tumor drivers and 

druggable therapeutic targets (Fig. 2).  

 

Executive summary 
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 Glioblastoma (GBM) is the most common and aggressive brain cancer in adults. 

 The prognosis of GBM remains dismal despite the current treatments based on surgical 

resection and combination of chemo- and radio-therapy.  

 Cancer stem cells have been isolated in GBM and their identification has helped define a 

model of phenotypic intratumor heterogeneity based on a hierarchical organization of cells 

with different tumorigenic potential. 

 Genetic and phenotypic intratumor heterogeneity has been described in GBM in seminal 

studies on RTK expression, phylogenetic reconstruction, high-throughput single-cell 

analysis and differential response to drug treatment. 

 Multiple-sampling and single-cell analysis have revealed different patterns of 

transcriptional profiling in the same GBM. 

 Many computational methods have been developed to interpret tumor transcriptional 

profiles yet, robust methods that are suitable for multi-sampling/single-cell experimental 

designs are much needed.  

 Bioinformatics tools that allow integration of transcriptomic, genomic and epigenetic data 

will be key to achieve a comprehensive understanding of intratumor heterogeneity that 

will lead to better classification of patients and aid to define novel therapeutic strategies 

important for clinical decision making. 

Conclusion 

 Transcriptional profiling needs to be further investigated in light of recent data of 

intratumor heterogeneity in GBM.  

 A comprehensive analysis of distinct tumor areas and single cells can shed new light on the  

molecular mechanisms sustaining tumor growth and develop more refined molecular  
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classifiers of GBM patients.  

Future perspective 

 Integration of genetic, phenotypic and transcriptional data with functional experiments can 

help design new molecular patient-specific therapeutic approaches. 

 

Figure legends  

Fig. 1. Transcriptional profiling of human GBM can be performed using: a single tumor sample, 

multiple samples taken from distinct tumor areas (5 samples from the tumor mass in the example 

shown consistently with Sottoriva&Spiteri and colleagues [8]) or at single-cell level (430 cells/GBM 

as described by Patel and colleagues [27]). The data generated by these 3 different approaches 

can be used to investigate intra-tumor heterogeneity at transcriptional level and potentially gain 

new insights into GBM biology and prognosis. By applying a previously published classifier, the 

multi-sampling scheme and single-cell analysis have revealed that multiple subtypes coexist in the 

same tumor with implications for patients stratification and response to standard therapy. 

Pron=Proneural, Mes= Mesenchymal, Cla= Classical. 

Fig. 2. Integration of spatial genetic, phenotypic, epigenetic and transcriptional intra-tumor 

heterogeneity with temporal analysis before and after treatment and functional in vitro and in vivo 

assays might lead to an in-depth molecular classification and to the development of personalized 

therapies aimed at improving patients survival. 
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