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Abstract 

Photocatalysis is deemed as an appealing strategy to exploit solar energy for 

simultaneous fuel production and pollutant utilisation. However, current photocatalytic 

systems rarely couple both processes and suffer from restricted scalability and 

sustainability as they use toxic and/or ultraviolet light harvesters, combined with noble-

metal co-catalysts under corrosive conditions. Here, we show the synthesis of ultra-

scalable and low-cost carbon nanodots from lignocellulosic waste, which when 

combined with a non-precious Ni-based co-catalyst, use visible light to drive H2 

production in untreated river and sea water. Organic pollutants and chloride anions in 

these untreated media do not only allow unhindered photocatalytic activities, but also 

function as electron donors leading to economical pollutant utilisation. This system 

combines Earth’s most abundant resources (biomass, solar energy, untreated water), 

and functions at ambient temperature, pressure and physiological pH creating 

perspectives for simultaneous fuel synthesis and pollutant utilisation of sustainable 

and practical character. 
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Introduction 

Solar-driven catalysis has the potential to store the abundant energy of sunlight in high 

energy density fuels, such as H2 (120 MJ kg–1), simultaneously with aqueous pollutant 

utilisation at ambient conditions.1 However, the implementation of environmentally and 

economically sustainable processes for such purposes requires scalable and robust 

photo-catalysts of low cost and toxicity, which operate with good performances in 

untreated water resources. Many photoabsorbers under intensive investigation, such 

as TiO2, cadmium chalcogenide quantum dots, ruthenium and organic dyes, as well 

as carbon nitride, suffer from limited visible-light absorption, toxicity, instability or poor 

interfacial interactions and electron transfer kinetics.2  

Carbon dots (CDs) are ideal photocatalysts for such applications, since they overcome 

all these limitations, and they can be readily prepared from calcination of molecular 

organic precursors.2-7 Lignocellulosic waste is a particularly attractive low-cost 

precursor for CD synthesis, as it is the largest sustainable source of organic carbon 

worldwide (2.2 × 1014 kg),8, 9 and does not compete with food production10 and biofuel 

synthesis.11 Biomass-derived CDs are currently under investigation in bioimaging,12 

drug delivery13 and selective ion sensing,14-16 but their use in photocatalysis is less 

common and restricted in photoreduction of Au3+/graphene oxide composites17 and 

organic oxidation without ‘green’ fuel formation.18-21 

Most photocatalytic systems do not only rely on non-scalable and toxic photocatalysts, 

but also require operation in organic solvents and/or purified water, in the presence of 

expensive sacrificial electron donors (SEDs).22, 23 These requirements prevent 

currently the implementation of an economic process, particularly in areas without 

access to plentiful clean water.24, 25 Demonstrations of practical photocatalysis using 

untreated river and seawater are rare,26 due to the restricted durability of the catalysts, 
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especially at high salinities.27 In addition, the majority of systems use expensive noble-

metal co-catalysts (Pt), usually combined with UV-light TiO2 absorbers, to drive H2 

production in extremely acidic synthetic water, using targeted pollutants as SEDs 

(Table S1).28-30 However, such studies ignore significant light attenuation effects from 

organic substances, which coexist with pollutants at high concentrations in untreated 

water, and often absorb on the photocatalyst surface.31 Latest advances in the field 

involve sensitisation with multiple photoabsorbers (i.e., CdS,32 carbon nitride33) to 

enhance visible light absorption (Table S1). This strategy has been traditionally 

applied to systems which only degrade pollutants without fuel production, relying on 

hydroxyl radicals generated from O2 reduction and water oxidation(Tables S2,S3).34 

Photocatalysis in artificial sea water using CuO/TiO2
35

 and MoS2/TiO2,36 showed 

suppressed H2 production compared to pure water, due to Cl− adsorption on TiO2 to 

form TiCl, showcasing the need for alternative materials. Thus, non-toxic, precious-

metal free and single-atom photocatalysts that are robust in untreated water and 

scalable at low cost, could open new avenues toward applications in the field.26, 31, 37 

Herein, we show to overcome these limitations by utilising Earth’s most abundant 

resources, biomass waste, sunlight and untreated water, to simultaneously produce a 

“green” fuel and utilise aqueous pollutants. Pure lignocellulosic biomass components, 

-cellulose, xylan and lignin, as well as crude biomass sources from leaves and cotton, 

were employed as precursors for the synthesis of visible-light absorbing CDs (Fig. 

1a,b and Fig. S1). The biomass-derived CDs were first studied for H2 evolution in 

purified water (Fig. 1c) in the presence of ethylenediaminetetraacetic acid (EDTA) as 

SED and with a molecular bis(diphosphine) Ni co-catalyst (NiP) (Fig. 1c, S2).3, 4 Under 

real-world conditions operating in untreated sea and river water, no external SED is 
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required for this CD/NiP system, and hole scavenging occurs by oxidising organic 

pollutants and anionic species present in these media (Fig. 1c). 

 

Fig. 1. a, Schematic representation of lignocellulosic structure with its lignin, xylan and 

-cellulose components used for CD synthesis. b, Optical images of locally sourced 
biomass waste used for the synthesis of CDs. c, Schematic representation of the 
photocatalytic H2 evolution and pollutant utilisation system, composed of CDs (light-
harvesters) and NiP (H2 evolution co-catalyst). EDTA served as sacrificial electron 
donor in purified water, whereas the photogenerated holes were quenched by water 
pollutants or chlorides in untreated water media resulting in pollutant utilisation. 

 

Results and Discussions  

Synthesis of CDs 

Pyrolysis of the biomass precursors under air to form the CDs was optimised for high 

photocatalytic activity, by varying the calcination temperature and time (Fig. S3–S5). 

First, CDs from purified biomass components were synthesised to correlate their 

photocatalytic activities with the properties of the pure precursors. As such, -
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cellulose-, xylan- and lignin-derived CD photoabsorbers were prepared by heating -

cellulose, xylan and lignin (Fig. 1a) for four days at 320, 250 and 300 ºC, respectively 

(Fig. S3–S4). Next, the potential of -cellulose-rich waste samples for the synthesis 

of CDs was evaluated by calcinating commercial cotton wool, pads and recyclable 

cotton fabric (T-shirt) at 320, 340 and 340 ºC, respectively (Fig. S1, S5). Cotton-based 

precursors are excellent for this purpose as they have high cellulose (≤ 97.7%) and 

limited hemicellulose and lignin contents (≤ 0.5%).38 

To further demonstrate the versatility of our synthetic approach and establish a 

correlation between biomass composition and CD photocatalytic activity, we employed 

waste precursors that contain -cellulose, xylan and lignin at various contents. We 

selected inedible plant waste from Galanthus (G.) nivalis, Garrya ( G.) elliptica, Taxus 

(T.) baccata, Elaeagnus (E.) X. ebbingei and olive tree (Fig. 1b and Fig. S1) because 

they are abundant in various climates, have no special growth requirements, and could 

be obtained at low cost in great quantities.39  

The optimal conditions for CD synthesis from these waste precursors depend on their 

relative contents in -cellulose, xylan and lignin as well as their morphologies.40  

Thermogravimetric analysis (TGA) traces of the plant leaves show three main bands 

(Table S4 and Fig. S6): xylan degrades first (210–300 ºC), followed by -cellulose 

(303–345 ºC), and lignin as a shoulder at higher temperatures (381–434 ºC).41, 42 Olive 

leaves show additional bands at 460 and 490 ºC, possibly due to the presence of other 

polyphenols in the sample.43  

Deconvolution of xylan, -cellulose and lignin bands in the TGA plots (Fig. S6), 

allowed to determine the relative fractional areas (RFAs) for each component (Table 

S4). The calcination temperature was optimised below the decomposition temperature 

of the dominating component for each sample, and CDs with the best photocatalytic 
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activities were obtained upon the following heat treatments; 230 ºC for G. nivalis, G. 

elliptica and T. baccata, 275 ºC for E. X. ebbingei and 290 ºC for olive leaves. 

Calcination resulted in shrinkage and colour change for all leaves to black, but their 

overall macroscopic morphologies remained unchanged (Fig. S7). 

 

Characterisation of CDs 

The biomass-derived CDs underwent in-depth spectroscopic, structural and optical 

characterisation to shed light into their core structures and surface functionalities, 

which bestow them with distinctive photocatalytic properties. X-ray photoelectron 

spectroscopy (XPS) suggests that -cellulose CDs consist of graphitic sp2 cores 

(C═C, 284.8 eV), decorated with alkoxy/epoxy (C–O, 286.3 eV) and carboxylate 

functionalities (C═O, 288.5 eV), providing them with good solubility in water (Fig. 2a).4, 

44, 45 Carboxylates (531.8 eV, 89.5%) are the predominant surface functionalities, 

which coexist with a smaller number of C–O groups (534.1 eV, 10.5%; Table S5, entry 

1 and Fig. S8).46, 47 In contrast, the other purified biomass-derived CDs from xylan and 

lignin, show significantly higher surface coverage by C–O groups (63–70%) compared 

to carboxylates (30–37%) (Table S5 and Fig. S9).  

Elemental analysis revealed that CDs from raw biomass contain significant amounts 

of nitrogen (C/N ratios; 5.5–11), due to the N-content of the leaf precursors. The only 

exception are CDs from cotton wool as the precursor mainly consists of -cellulose 

(Fig. S10). The N-doping in the waste-derived photoabsorbers, as indicated by XPS, 

originates from graphitic quaternary (Q) nitrogen (N-Q, ~400 eV) and pyrrolic 

functionalities (~399 eV) for most samples (Fig. 2b, Table S5 and Fig. S11), except 

for pyridinic (~398 eV) and N-Q groups in G. elliptica- and olive leaf-CDs (Fig. S12).48
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Fig. 2. XPS C 1s and N 1s spectra of a, -cellulose and b, G. nivalis-derived CDs. The black traces show the ‘as recorded’ spectra 

and the coloured plots (pink, blue and green) are the deconvoluted bands for each element. c and d, TEM images of -cellulose and 
G. nivalis-derived CDs, respectively. The white lines denote the (100) intralayer spacings. e, Raman spectra of the CDs derived from 
purified and real-world biomass samples. The intensity was normalised with respect to the G band for all samples. f, UV/vis spectra 
of CDs dispersed in water (0.1 mg mL–1) at 25 oC.  

 



9 
 

Waste-biomass photoabsorbers also show alike C 1s and O 1s environments to CDs 

from purified biomass (Fig. 2b and Fig. S11, S12), and increased hydrophilicity due 

to C═O groups (61–79%). Exception are the photoabsorbers from E. X. ebbingei, 

which display a higher C–O content (54%, Table S5). 

Fourier Transform Infrared (FTIR) spectroscopy also confirms the coexistence of C–

OH, C═O and O–H functionalities at the CD surfaces ( = 1130; 1380 and 1560,3, 4 

3000─3500 cm–1, respectively),44 with skeletal vibrations from the graphitic core 

tentatively assigned at 1611 cm–1 (Fig. S13).44 

Transmission electron microscopy (TEM) images show that CDs from -cellulose, 

cotton wool, G. nivalis and olive leaves are graphitic with average diameters ≤ 11 nm 

(Fig. 2c,d, Table S6 and Fig. S14-S16). Lattice fringes allow the assignments of the 

(100) intralayer spacings; 3.0 Å for -cellulose and 2.6 Å for cotton wool, G. nivalis 

and olive leaf CDs. The remaining photoabsorbers are of larger sizes ≥ 45 nm (Table 

S6 and Fig. S17). 

Raman spectroscopy supports low-defect graphitic nanostructures for -cellulose, 

cotton wool, G. nivalis and olive leaf-derived CDs. Specifically, their D (1331 cm–1, 

defective sp2 carbon) to G (1580 cm–1, intact sp2 carbon)49 band intensity ratios (ID/IG), 

are ≤ 0.21 (Fig. 2e and Fig. S18), far below those reported for other graphitic CD 

systems (≥ 0.75),4, 46, 50 suggesting their higher sp2 character. The remaining 

photoabsorbers display higher ID/IG ratios (≤ 0.55), indicating more defective graphitic 

structures (Fig. 2e). 

Powder X-ray diffraction (XRD) shows alike patterns for CDs from -cellulose and 

cotton wool (Figure S19) perhaps due to the chemical and structural similarities of the 

organic precursors; broad peaks centred at 27.6o 2θ that correspond to lattice 

spacings of 3.2 Å, consistent with the (002) reflection of graphitic materials (d002 = 
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3.35).51 Photoabsorbers from G. Nivalis, G.elliptica, T. baccata and E. X. ebbingei 

exhibit broad bands with maxima at 25.3o 2θ, which indicate interlayer spacings of 3.5 

Å. The low signal-to-noise ratio for T. baccata- and E. X. ebbingei-derived materials is 

indicative of their more amorphous nature compared to the rest samples. 

13C nuclear magnetic resonance (NMR) studies further support predominant sp2 core 

environments for the CDs from -cellulose, cotton wool, G. nivalis and olive leaves  

with peaks between 110 and 150 ppm4, 52 (Fig. S20). Surface carboxylate groups were 

also detected (160–180 ppm), whereas the absence of signals between 10 and 70 

ppm, supports limited sp3 character in these CDs. The other photoabsorbers exhibit 

higher sp3 character than -cellulose-, cotton wool-, olive leaf- and G. nivalis-derived 

CDs (Fig. S20). 

The UV-vis absorption spectra (Fig. 2f) of all photoabsorbers show strong absorption 

in the UV region with featureless tails extending into the visible region.4 These 

properties are assigned to -* (C═C, core) and n-* (C═O, surface) transitions of the 

carbonaceous structures.3 Higher graphitic character results in enhanced absorption,4 

as indicated by the stronger absorption profiles of -cellulose-, cotton wool- and G. 

nivalis-derived CDs, compared to the other photoabsorbers. 

 

Photocatalysis with CDs in purified water 

CDs from purified biomass components and biomass waste were used as 

photoabsorbers to generate H2 in the presence of EDTA (0.1 M, pH 6, 3 mL) as SED 

and NiP (50 nmol) as the H2 evolution co-catalyst. All photocatalytic experiments were 

carried out upon irradiation with simulated solar light (AM 1.5 G, 100 mW cm–2), under 

N2 atmosphere (2% CH4 as internal gas chromatography standard) at 25 oC. Gas 

samples of the headspace (20 µL) were taken from the photoreactor (total volume, 7.7 
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mL), and analysed periodically by gas chromatography to quantify H2. The results after 

6 and 24 h of irradiation are discussed below. 

The quantity of CDs was first systematically varied between 0.03 and 2.8 mg (Fig. 3a 

and Fig. S21) to optimise the system’s performance for maximum H2 yield (in µmol), 

from which the specific activities (µmol H2 (gCDs)–1 h–1) were determined. NiP turnover 

numbers (TONNiP, mol H2 (mol NiP)−1) were calculated at 50 nmol NiP (Table S7). 

-Cellulose CDs (2.2 mg) showed the highest H2 yield (15.6 ± 0.7 µmol) and TONNiP 

(312.8 ± 14.6) among all CDs synthesised from purified biomass components after 24 

h of irradiation (Fig. 3a and Fig. S21). A benchmark specific activity of 13,450 µmol 

H2 (gCDs)–1 h–1 was achieved with 0.03 mg -cellulose CDs (Fig. 3b) after 1h of 

irradiation, which outperforms previously reported carbonaceous photocatalysts (CDs 

and carbon nitrides), when combined with noble-metal free co-catalysts (activities ≤ 

7,950 µmol H2 (gCDs)–1 h–1, Table S8).2-4, 53 It is also higher than what has been 

reported for numerous benchmark non-carbonaceous and/or multi-absorber systems 

in purified water (19−12,000 µmol H2 g–1 h–1, Table S2), which serve H2 evolution and 

pollutant degradation separately, under N2 and O2, respectively.54-61 The H2 production 

rate drops after 6 h of irradiation for all photoabsorbers, due to instability and 

decomposition of the molecular framework of the NiP catalyst (Fig. 3a).62 

Control experiments in the absence of CDs or NiP resulted in no H2 generation, 

indicating that -cellulose CDs themselves are not catalytic for proton reduction. 

Without EDTA, negligible H2 was generated, suggesting insignificant CD autooxidation 

and the necessity for a SED (Fig. S22a and Table S9). 

During photocatalysis under visible-light irradiation only (λ > 400 nm), in the presence 

of EDTA and NiP, -cellulose CDs showed lower (28%) but still persistent 
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photocatalytic fuel production, suggesting their good activity as visible-light 

photoabsorbers (Table S9 and Fig. S22b). 

Fig. 3. a, H2 produced (in µmol) from -cellulose, xylan and lignin-derived 
photoabsorbers after 6 h (solid bars) and 24 h (empty bars) of irradiation, in purified 
water in the presence of EDTA and NiP. Error bars indicate the standard deviation as 
derived from three measured samples from each CD system. b, Maximum specific 

activities of -cellulose, xylan and lignin derived light-harvesters after 1 h of irradiation. 
c, H2 production (in µmol) from waste biomass photoabsorbers after 24 h of irradiation 
in purified water in the presence of EDTA and NiP. For comparison, the hydrogen yield 

of -cellulose CDs is shown (red close symbols) under the same conditions. The 

numbers on the right, indicate the RFAs of -cellulose in all leaf precursors used for 
the CD synthesis. d, 4D plot which correlates the photocatalytic properties of CDs with 
the RFAs of their precursor components and their structural properties, such as their 

graphitic characters (ID/IG) and fractions of surface carboxylate (C═O) groups; A: -
cellulose, B: cotton wool, C: G. Nivalis, D: Olive leaves, E: G. Elliptica, F: T. bacatta, 
G: E. X. ebbingei, H: xylan and K: lignin. Conditions for photocatalytic experiments in 
a, b and c; CDs were irradiated with simulated solar light (AM 1.5G, 100 mW cm–2, 25 
°C) for 6 and 24 h, in EDTA (0.1 M, pH 6, 3 mL) with NiP (50 nmol), under N2 
atmosphere with 2% CH4. 
 

Xylan- and lignin-derived photoabsorbers in EDTA solutions yielded 4.7 ± 0.3 and 0.5 

± 0.1 µmol H2 after 24 h irradiation (Fig. 3a and Table S7), and maximum specific 
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activities of 625 and 87 µmol H2 (gCDs)–1 h–1 after 1h of irradiation, respectively (Fig. 

3b). The distinctive photocatalytic properties of CDs from different purified biomass 

components are presumably associated with their unique chemical compositions, 

architectures and microstructures (Fig. 1a). -cellulose is a linear homopolymer that 

packs into insoluble fibrils which are partially crystalline, whereas xylan is an 

amorphous branched polysaccharide. Lignin is also amorphous consisting of 

randomly cross-linked phenolic units.9 As such, the pyrolysis of more crystalline 

polymers of regular microstructures, such as -cellulose, might support the formation 

of CDs with improved photocatalytic performances. 

Using biomass waste for CD synthesis enables an economically viable approach to 

synthesise photocatalysts for sustainable fuel production. As a demonstration, we 

tested the photocatalytic performances of CDs from commercial cotton and readily 

available plant leaves. Although cotton wool-derived CDs showed almost identical 

photocatalytic activity to -cellulose CDs (11.8 ± 0.3 µmol H2 after 6 h; Fig. 3c and 

Table S10), given the similar nature of their precursors, photoabsorbers from cotton 

pads and a T-shirt are less active (4.9 ± 0.2 and 1.7 ± 0.2 µmol H2, respectively, 6 h). 

This is presumably due to additives in the commercial materials (Table S10 and Fig. 

S5, S23).  

Photoabsorbers from plants, due to the composite nature of the precursors (Fig. 1b), 

showed lower H2 evolution yields than -cellulose CDs. The best performances were 

observed for CDs from G. nivalis and olive leaves (6.2 ± 0.1 and 5.3 ± 0.3 µmol H2, 

respectively, 6h), which are consistent with their highest RFAs for -cellulose, and 

lowest for xylan and lignin (Fig. 3c and Tables S4, S10). The H2 evolution yields for 

the remaining photoabsorbers declined as the RFA of -cellulose in their precursors 

was reduced. As such, light-harvesters from T. baccata and E. X. ebbingei with 
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minimum -cellulose RFAs, show the lowest H2 yields (3.5 ± 0.1 and 3.2 ± 0.2 µmol 

H2, respectively, 6 h; Fig. 3c and Tables S4, S10).  

The correlation between the RFAs of the precursor components and the photocatalytic 

performances of the derived photoabsorbers, gives therefore for the first time a 

qualitative predictor for photocatalytic efficiencies of lignocellulosic-derived CDs 

(Table S11 and Figure 3d). Also, a correlation between the photocatalytic activities 

of the synthesised CDs and their structural properties is observed; the best properties 

are associated with smaller size and more graphitic CD cores (lower ID/IG), and higher 

surface coverage by carboxylate groups (Figure 3d). 

 

Coupled photocatalysis and pollutant utilisation with CDs 

A common limitation in photocatalysis is the requirement for (i) pure water to avoid 

catalyst poisoning at high salinities and/or impurity content,27 and (ii) an external and 

expensive SED.23 Given the global shortage of clean water supplies,24, 25 and 

challenges of water purification in many developing countries, we sought to establish 

the photocatalytic activity of our biomass-derived CDs in untreated sea (Gulf of 

Mexico) and river water (river Cam), first in the presence and subsequently in the 

absence of EDTA (Fig. 4). 

Simulated solar irradiation of -cellulose CDs in sea and river water, with NiP and 

EDTA (0.1 M, pH 6, 3 mL), resulted in a slight improvement in the photocatalytic 

activity (~15%) compared to purified water (12.6 ± 0.6 µmol H2, 6 h, Fig. 4a and Tables 

S12, S13). 

Control experiments using -cellulose CDs without NiP but in the presence of EDTA, 

resulted in no H2 evolution in untreated water, suggesting that no species (i.e. metal 

traces) exist in raw water that could drive proton reduction (Table S9 and Fig. S24).  
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Fig. 4. a, Photo-H2 production with -cellulose CDs in the absence (filled symbols) and 
presence (open symbols) of EDTA (0.1 M, pH 6, 3 mL). b, Solar-H2 generation using 

-cellulose CDs in KPi (0.1 M, pH 6, 3 mL), in the absence of EDTA, but upon addition 
of organic pollutants (200 µmol) and chloride ions (3.2 wt%) found in river (open 
symbols) and sea water (filled symbols). The results in the absence of any electron 
donor are also provided for comparison. c and d, Photo-H2 production in sea and river 

water, respectively, using CDs form -cellulose and biomass waste, in the presence 
of EDTA (0.1 M, pH 6, 3 mL). All experiments were carried out under full solar light 
irradiation (AM 1.5 G, 100 mW cm–2), for 24 h, in the presence of CDs (2.2 mg) and 
NiP (50 nmol), under N2 atmosphere containing 2% CH4, at 25 oC. Error bars indicate 
the standard deviations as derived from three measured samples from each CD 
system. 

 

However, without EDTA but in the presence of NiP, -cellulose CDs after 6 h 

photogenerated 2.9 ± 0.5 and 3.4 ± 0.2 µmol H2 in sea and river water (pH 6), 
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respectively. These activities deviate significantly from those of the -cellulose CD/NiP 

system in purified water, under the same conditions, where negligible H2 production 

was observed (Fig. 4a and Table S14). This indicates that pollutants present in the 

untreated aqueous media, act as SEDs to extract photogenerated holes.4 Untreated 

sea water contains a cocktail of organic compounds,63 among which benzaldehyde 

and atrazine could act as SEDs (Fig. S25). Chloride anions that are abundant in 

seawater could also serve the same role.64 Similarly, untreated river water is rich in 

organic herbicides/pesticides,65 among which prometryn and terbutryn can quench the 

photogenerated holes (Fig. S25).  

To confirm this, an aqueous -cellulose CD phosphate solution (KPi, 0.1 M, pH 6, 3 

mL), without EDTA, was bestowed with these species (200 µmol), in the presence of 

NiP. After 6 h of irradiation (AM 1.5 G, 100 mW cm–2), 2.1 ± 0.2 to 5.0 ± 0.2 µmol H2 

was produced (Fig. 4b, Table S15 and Fig. S26a), which is close to that obtained in 

untreated water, in the absence of EDTA (Fig. 4a). As such, the unwanted toxic 

substances and/or Cl¯, do not only allow unhindered photocatalytic performances, but 

also eliminate the need for additional expensive SEDs, facilitating simultaneously fuel 

synthesis and pollutant utilisation. This is perhaps due to good affinities between the 

CDs (OH groups) and the pollutants which favour closer proximities and possibly 

improved hole transfer and thus substrate oxidation.25 

To the best of our knowledge, this is the first time that photogenerated CD holes, drive 

the oxidation of pollutants in untreated water (neutral pH), simultaneously with H2 

generation, using a noble-metal free co-catalyst. Such an overall process has been 

rarely reported in raw water, but instead in extremely acidic synthetic water, enriched 

with pollutants. TiO2-based UV-light harvesters or multi-absorber systems, in 

combination with noble catalysts (Au, Pt) have been employed (Table S1).28-30 
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However, such systems ignore attenuated photoabsorption effects (originated from 

background organics in untreated water) which could also inhibit photocatalysis, and 

also competitive organics over pollutant adsorption onto the photocatalytic 

components that suppresses pollutant utilisation.31 

Finally, the photocatalytic performances of CDs from biomass waste, were also 

evaluated in untreated water in the presence of EDTA and NiP. In sea water, after 24 

h of irradiation, all CDs showed higher photocatalytic performances than in purified 

water, under the same conditions (Fig. 4c, Table S12 and Fig. S26b). On the other 

hand, all systems show slightly lower performances in river compared to sea water 

(Fig. 4d, Table S13 and Fig. S26b). These results suggest the robust characters of 

our photocatalytic systems, which maintain their good photocatalytic properties, 

independently of the purity and origin of the aqueous phase. As such, the toxic water 

contaminants do not restrict the performances of the CDs by hindering 

photoabsorption and/or electron transfer, and more remarkably do not poison the 

molecular NiP catalyst. Instead, the photocatalytic performances of our systems (17.3 

µmol H2, 13,660 µmol H2 (gCDs)–1 h–1, Table S12, entries 2,3), even in untreated water, 

remain the highest among metal-free photoabsorbers combined with precious metal-

free catalysts (Table S8).2-4, 53 They are also tremendously higher than those of the 

state-of-art TiO2-Pt systems (≤ 500 µmol H2 (gCDs)–1 h–1) which couple pollutant 

degradation to fuel production  under benign conditions  (pH  6, Table S1, entries 1-

3).28-30, 66 They also outperform other dual-function photocatalytic systems (2−1,500 

µmol H2 g–1 h–1, Table S1, entries 4-9) which use either TiO2 alone or combined with 

visible light-harvesters, such as CdS and/or carbon nitride to boost photoabsorption.32, 

33, 35, 67-69 The only exception is a MoS2−TiO2 systems for which overestimated 

activities up to 380,000 µmol H2 g–1 h–1 were reported (Table S1, entry 10), upon 
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neglecting the mass of the TiO2 component.36 It is also worth noting that -cellulose 

CDs show activities about 500 times higher compared to a TiO2-Au system which is 

also operated in untreated water (28 µmol H2 g–1 h–1, Table S1, entry 8) instead of 

synthetic water.69 

 

Conclusions 

A photocatalytic system based on CDs derived from raw biomass waste and a Ni co-

catalyst has been established for simultaneous H2 production and pollutant utilisation. 

This approach creates new perspectives as it allows the production of low-cost and 

non-toxic CD photocatalysts from lignocellulosic waste to convert polluted river and 

sea water into energy carriers on virtually any inhabited location worldwide. Water 

pollution does not affect the versatile character of the presented systems, but instead 

works to their advantage by eliminating the need for external SEDs through pollutant 

oxidation. This waste-derived energy production-system operates at room 

temperature and neutral pH, using a single-atom photocatalyst without the need for 

noble-metal co-catalysts and synthetic wastewater to achieve high performances. This 

solar process encourages the development of scalable and economically sustainable 

dual-function photocatalytic systems. 

 

Experimental Section 

Materials. The purified biomass components, -cellulose, xylan and lignin, as well as 

natural sea water (from Gulf of Mexico) and EDTA were purchased from Sigma-Aldrich 

and used without any further purification. Cotton wool, cotton pads and a cotton T-shirt 

were purchased from local merchants in Cambridge, UK. The crude plant biomass 

samples, G. nivalis, G. elliptica, T. baccata and E. X. ebbingei were collected from the 
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gardens of St John's College, University of Cambridge, UK, whereas the olive leaves 

were sourced from Trachoni, Cyprus. The untreated river water was obtained from the 

river Cam (Midsummer Park), Cambridge, UK. 

CD synthesis. All organic precursors were calcinated in muffle Carbolite furnaces for 

4 days in air, at optimised temperatures. -Cellulose and cotton wool were treated 

thermally at 320 oC, xylan at 250 oC, lignin at 300 oC, cotton pads and T-shirt at 340 

oC, G. nivalis, G. elliptica and T. baccata at 230 oC, E. X ebbingei at 275 oC and olive 

leaves at 290 oC. All precursors (10 g) were calcinated in glass vessels, without any 

pretreatment. The samples after carbonization were grounded into fine powders and 

used in their crude form for all types of characterisation and photocatalytic 

experiments.  

Nickel bis(diphosphine) (NiP) synthesis. The hydrogen evolution co-catalyst, NiP, 

was synthesised and characterised as reported previously.70 

Structural, spectroscopic and optical characterisation. XPS characterisation of 

CDs was performed on a K-Alpha spectrometer (Thermo Scientific, East Grinstead, 

UK), utilising a monochromatic Al Kα X-ray source (1486.6 eV, 400 μm spot size, 36 

W). Samples were prepared by drop casting the CD aqueous solutions (2 mg mL–1) 

on clean fluorine-doped indium tin oxide (FTO)–coated glass slides (2 × 1 cm), and 

drying at room temperature, under atmospheric pressure. The spectra were collected 

at NEXUS (Newcastle University, UK). High resolution spectra were recorded at a 

pass energy of 40 eV. Each sample was measured at 3 different points with similar 

results. The data were processed using CasaXPS. 

FTIR spectra were recorded on a ThermoScientific Nicolet iS50 FTIR spectrometer 

equipped with an Attenuated Total Reflectance (ATR) accessory, in the range of 400 

to 4000 cm−1, and analysed using the Omnic software. Raman spectra were acquired 
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on a Horiba LabRAM HR Evolution system using a 473 nm laser. 13C NMR spectra for 

all CD samples were measured using a 400 MHz Bruker NMR spectrometer in D2O. 

All samples were prepared upon dispersing 150 mg of the CDs in 0.7 mL D2O. The 

optical properties of the CDs (0.1 mg mL−1) were investigated with a Varian Cary 50 

UV/vis spectrophotometer, in the wavelength range between 250 and 800 nm (in 

water), using quartz cuvettes with 1 cm pathlength. The TEM images of the 

carbonaceous materials were obtained using a JEOL JEM–2011 electron microscope 

equipped with a Gatan 794 CCD camera, and fitted with a LaB6 filament, operating at 

an accelerating voltage of 250 kV. For this purpose, a droplet from the aqueous 

solutions of the samples was placed on a 300 mesh copper grid containing a holey 

carbon film and dried under atmospheric pressure. TGA measurements were 

performed with a Mettler Toledo TGA analyser, from 50 to 800 o C at a heating rate of 

10 °C min−1 under N2 flow. 

Photocatalytic experiments. The samples for photocatalytic experiments were 

prepared in borosilicate glass vials (7.7 mL) by first dispersing the as calcinated -

cellulose CDs (0.03–2.80 mg) and NiP (50 nmol, 200 µL, 0.25 mM) in aqueous EDTA 

solutions (0.1 M, 3 mL, pH 6). The vials were subsequently sealed with rubber septa 

(Subaseal), purged with N2 containing 2% CH4 (internal gas chromatography 

standard) for about 20 min and irradiated using a Newport Oriel solar light simulator 

(100 mW cm−2) equipped with an air mass 1.5 global filter (AM 1.5G), unless otherwise 

stated. Photocatalytic experiments under visible-light irradiation only, were carried out 

in the presence of a longpass filter (λ > 400 nm). The samples were kept at 25 °C and 

stirred constantly during irradiation. Samples of the headspace gas (20 μL) were taken 

from the photoreactor and analysed by gas chromatography at an hourly basis for the 

first 6 h and after 24 h. For this purpose, an Agilent 7890A gas chromatograph, 
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equipped with a 5 Å molecular sieve column and a thermal conductivity detector (TCD) 

was used. 

The photocatalytic performances of the remaining CDs were evaluated as described 

above, upon dispersing 2.2 mg of the as calcinated CDs along with NiP (50 nmol) in 

EDTA solutions (0.1 M, 3 mL, pH 6). For the investigation of the photocatalytic 

activities of the CDs in sea and river water, the aqueous phases were first passed 

through a 0.20 μm filter, to remove any solids and/or microorganisms, prior the addition 

of EDTA. 

Photocatalytic experiments in purified water in the presence of organic pollutants (200 

µmol) and chloride ions (3.2 wt%, same concentration as sea water), were carried out 

by dispersing the -cellulose CDs (2.2. mg) in phosphate solution (KPi, 0.1 M, pH 6, 3 

mL), without EDTA, in the presence of NiP (50 nmol). 

Data treatment. All photocatalytic experiments were carried out as triplicates, and the 

derived performances are reported as mean values ± standard deviations (σ). 

Internal Quantum Efficiency (IQE) determination. H2 evolution was driven upon 

irradiation of an O2-free solution of the -cellulose CDs with monochromatic light (λ = 

360 nm and light intensity (I) of 4.05 mW cm-2) produced by a solar simulator (LOT 

LSN 254) equipped with a monochromator (LOT MSH 300). IQE was determined using 

equation 1 (eq. 1), where nH2 is the moles of photoproduced H2, tirr the irradiation time 

(in s), A the irradiation cross-section (in cm2), α the percentage of absorbed light, NA 

and h are the Avogadro and Planck constants, respectively, and c the speed of light. 

𝐼𝑄𝐸 (%) =
(2 ∙ 𝑛𝐻2

∙ 𝑁𝐴 ∙  ℎ ∙ c)

𝑡𝑖𝑟𝑟  ∙ 𝜆 ∙  𝐼 ∙ 𝐴 ∙ 𝛼
∙  100        (eq. 1) 
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Carbon dots from biomass waste as efficient photoabsorbers for sustainable and 

scalable coupled solar-driven H2 evolution and pollutant utilisation. 

 
 


