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The dissipative dynamics of strongly interacting systems are often characterized by the timescale set by
the inverse temperature 7p ~ i1/ (kgT). We show that near a class of strongly interacting quantum critical
points that arise in the infrared limit of translationally invariant holographic theories, there is a collective
excitation (a quasinormal mode of the dual black hole spacetime) whose lifetime 7, is parametrically

longer than zp: 7.4 > T~'. The lifetime is enhanced due to its dependence on a dangerously irrelevant
coupling that breaks the particle-hole symmetry and the invariance under Lorentz boosts of the quantum
critical point. The thermal diffusivity (in units of the butterfly velocity) is anomalously large near the
quantum critical point and is governed by 74 rather than 7. We conjecture that there exists a long-lived,

propagating collective mode with velocity v, and in this case the relation D = ﬂfreq holds exactly in the

limit 7'z, > 1. While scale invariance is broken, a generalized scaling theory still holds provided that the

dependence of observables on the dangerously irrelevant coupling is incorporated. Our work further
underlines the connection between dangerously irrelevant deformations and slow equilibration.
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In many-body quantum systems with strong interac-
tions, the characteristic timescales relevant for a variety of
dynamical processes are short, and are set by the inverse
temperature 7p = #/(kgT) [1]. For example, 7p has been
shown to control the onset of hydrodynamics in holo-
graphic plasmas, the postquench equilibration of the
Sachdev-Ye-Kitaev model, as well as the Lyapunov expo-
nent characterizing the growth rate of chaos in both of the
aforementioned kinds of theories [2—7]. Transport mea-
surements in the strange metallic phase of high-T, super-
conductors (HTSCs) [8,9] further support the conjecture
that 7p fundamentally bounds the dynamics of strongly
correlated phases [10—-14].

Indeed, in the vicinity of a quantum critical point (QCP),
T is the only energy scale and so the importance of 75 is
manifest [15]. However, there are circumstances in which
nonuniversal effects are important and lead to dynamics
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that survive on timescales much longer than zp. The most
familiar example is near a QCP where translational sym-
metry is broken by an irrelevant coupling g [16-20], leading
to the slow relaxation of momentum and a parametrically
small resistivity. More generally, whenever the dynamics
near a QCP is sensitive to a dangerously irrelevant
coupling, 7p is no longer privileged since the irrelevant
coupling provides an additional energy scale [21]. In such
situations, it is not obvious what the relevant timescales for
dynamical processes are.

We study a class of strongly interacting, (d + 1)-
dimensional, translationally invariant systems whose infra-
red (IR) physics are governed by hyperscaling violating
QCPs with dynamical exponent z = 1. The particle-hole
symmetry and the invariance under Lorentz boosts of the
T =0 IR QCP are broken by an irrelevant deformation
with coupling g « p the density of the state. We show that
in these systems the incoherent current (i.e., the part of the
electric current without momentum drag [22]) acquires a

long lifetime 7.,
TAH 2
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which is parametrically longer than 7p, 7.4 > T-', and
is controlled by the dimension of the coupling A, < 0.
While we expect typical excitations to have a lifetime zp, it
is only after a time 7., that local equilibration will be
achieved and the expected hydrodynamic behavior will
take over. The slowly relaxing mode produces a narrow
peak in the optical conductivity

2

o(w) = -2

:sT+,up5

i o,

; )
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where 6, and 7.4 are given by Eq. (13), p is the charge
density, x4 the chemical potential, and s the entropy density.
We expect that adding slow momentum relaxation to our
theories (as in, e.g., Refs. [23-25]) will broaden the diver-
gent @ — 0 contribution to the conductivity, Eq. (2), into a
Drude-like peak. The interplay between multiple irrelevant
deformations can be subtle but important for transport near
QCPs [19,20,26-28].

We study these systems using gauge-gravity duality,
where the IR QCP is captured by a spacetime metric that is
conformal to AdS,.,, and is a solution of Einstein-Dilaton
theories with an exponential potential [29,30]. It is impor-
tant to note that our models do not capture competing
phases on either side of a QCP, only the dynamics of the
quantum critical region itself. The irrelevant deformation is
realized by a Maxwell field, with exponential coupling to
the dilaton, that backreacts on this spacetime and drives a
renormalization group (RG) flow to a nonzero density
ultraviolet (UV) fixed point. In gravitational language, we
show that certain charged, translationally invariant, asymp-
totically AdS, ., black branes have quasinormal modes
with parametrically long lifetimes ~7,.

Near the QCP, we furthermore show that Teq is the
timescale relevant for transport processes that do not
involve the dragging of momentum. Specifically, at times
1 2 Teq, these processes are diffusive. Near the QCP, they
are characterized by a single diffusivity Dy (the thermal
diffusivity) where

DT = m?]%feq, (3)

6 is a universal number quantifying the violation of
hyperscaling at the QCP, and vy is the “butterfly” velocity
at which quantum chaos spreads. The large value of Dy
resulting from its sensitivity to irrelevant deformations was
established in Ref. [25], and was in potential tension with
the upper bounds on diffusivities proposed to ensure the
causality of diffusive hydrodynamics [31,32]. The result
[Eq. (3)] elegantly resolves this potential tension: at
precisely the timescales at which causality appears to be
violated, the diffusive hydrodynamic description breaks
down due to the existence of the slowly relaxing mode.
This is a consequence of the nontrivial fact that both Dy

and 7. are governed by the same irrelevant deformation of
the QCP.

A number of recent works have established relations
similar to Eq. (3) between thermal diffusivities and the
spreading of quantum chaos [12,25,33—40]. In holographic
theories, these have always been of the form Dy ~ v47p.
Our result, Eq. (3), lends further support to the claim that in
general the timescale appearing in this relation should be
Teq» and not 7p or the Lyapunov time z; (which governs the
growth rate of quantum chaos) [31,32]. These timescales
could not be distinguished in previous examples, which had
Teq ~ 71 ~ Tp [41]. Our results are also nontrivially con-
sistent with the quantum hydrodynamic theory for max-
imally chaotic systems proposed in Ref. [40] and explored
in Ref. [42]. The result Dy ~ v%7p follows from this theory
provided that diffusive hydrodynamics applies at time-
scales t ~ 7p. Assuming the validity of this theory for the
holographic QCPs we study, the parametrically large value
of Dr therefore implies that hydrodynamics must break
down at timescales 7 ~ 7.4 > 7p, as we explicitly show.

Another consequence of the additional energy scale g in
the IR theory is the violation of naive w/T scaling in
response functions near the QCP. We close by illustrating
this explicitly, and by showing that if one carefully takes
into account the g dependence of the critical contribution to
the conductivity, a generalized scaling theory [23,43-45],
which has been applied to dc transport in cuprate strange
metals [46], continues to hold. Nontrivial scaling theories
near QCPs are attractive from a phenomenological point
of view: we know that if the strange metallic phase of high
T, superconductors does originate from a QCP, then it
cannot be governed by a simple, scale invariant theory, as
such a theory is inconsistent with the observed T-linear
resistivity [47].

In the remainder of this Letter, we describe our setup and
outline the calculations leading to the results mentioned
above. We have also found analogous results to Egs. (1) and
(3) in a closely related class of systems that are particle-hole
symmetric and flow to QCPs with dangerously irrelevant
translational symmetry-breaking deformations. The results
for these systems, along with a number of technical details,
are presented in Ref. [45].

Holographic quantum criticality.—In holographic theo-
ries, quantum critical states with dynamical exponent z = 1
can be described by the (d 4 2)-dimensional Einstein-
Dilaton action [29]

St = / d‘”zx\/—_g(R —%(a¢>2 - Voe_5¢>. @)

We study theories where Eq. (4) is the effective action
capturing the low temperature dynamics far from the
boundary of an asymptotically AdS,., spacetime. By
identifying the extra spatial dimension with the energy
scale of a dual quantum field theory, Eq. (4) describes the
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IR dynamics that arise at the endpoint of a RG flow
generated by deforming an UV CFT. The details of the RG
flow will determine the constants V, and &, but are
otherwise not important for our analysis.

The quantum critical dynamics are captured by the
following classical solutions of the action [29,30], in which
the metric transforms covariantly under the z = 1 rescaling
(1, X) = A(t,X)

u\ 2(6/d)-2 _ .
ds* = 7 (=L2df* + L*du® + L2dx?),
;2 (d+1-0)d-0)
_ v ,
2
¢:K1n(%>, © =600~ d). ,«szzg. (5)

u is the radial coordinate in the IR region of the spacetime
u > L. The running dilaton leads to violation of hyper-
scaling, parametrized by 6 < 0 (consistent with the null
energy condition). At small temperatures, the entropy
density s ~7T9? [48] and so the critical state can be
thought of as a “CFT” in (d — @) spatial dimensions
[49,50]. L,, L,, and L are functions of the deformations
of the UV fixed point, and depend on the details of the RG
flow. These length scales typically depend smoothly on the
scalar source at the boundary (the deformation of the UV
CFT) as it is varied over a continuous range of real values.
Each such value allows us to represent a distinct QCP. From
a gravitational perspective these are perhaps better thought
of as quantum critical lines [14,51-53].

The RG flow away from the IR critical point produces
corrections to the solution Eq. (5) in inverse powers of u/L.
For our purposes, the most important correction comes
from the Maxwell action

Z
ASiy = /dd+2x\/ _gZOeM)FﬂDFﬂDv (6)

where the constants Z; and y depend on the details of the
flow to the UV fixed point. y encodes the dimension of an
irrelevant deformation, as we will shortly illustrate.

Solving the Maxwell equations in the spacetime
[Eq. (5)] gives the profile of the gauge field at leading
order in large u/L

A —A0<%>§_1L,dt, {=d—-xy-— (d—2)§. (7)

The density p = —ZC%?A’/\/BD A, at T = 0, so while
the gauge field does not backreact on the metric at the QCP,
particle-hole symmetry is broken at all temperatures. A is
the bulk quantity corresponding to the dangerously irrel-
evant coupling g we referred to in the introduction. Indeed,
the gauge field sources corrections to the solution Eq. (5)
for the metric and dilaton, which at leading order in A,

are ~1 + #AJu**0 with A, = (d — 6+ ¢)/2. This is an

irrelevant deformation if A, < 0 (so the corrections vanish
as u/L — o0), which we demand from now on. Treating u
as an energy scale in the usual way indeed determines
the dimension of the irrelevant coupling A, to be A, and
that of the corresponding irrelevant operator to be A, =
d+1-6—A, [45]. Therefore, A, = A, in Eq. (1).

Charge response near the QCP.—In order to compute
the optical conductivity, we embed the preceding IR theory
into a complete holographic RG flow described by the
action

5= [ as2ry=g(R- 3007 - 22

PV, ®)
where V(¢) and Z(¢) are chosen to reproduce the IR action
(4)+(6) as ¢ — oo. The states we are interested in are
captured by the ansatz for the metric ds®> = —D(r)dt* +
B(r)dr* + C(r)dx?, gauge field A = A(r)dt, and scalar
¢ = ¢(r). r is a radial coordinate that goes to zero at the
boundary, where the metric is asymptotically AdS and
A(0) = u # 0 defines the chemical potential of the state.
We are interested in thermal states, and so we assume
there is a regular black brane horizon at r =r, > 0,
where D(r—r,) =4xT(r,—r)+---, B(r—r,) =
1/(4xT(ry=71))+ -, Clr>r)=Ch+-, dp(r > r;) =
¢n+-- A(r = r,) =A,(r,—r)+--- The charge and
entropy densities are given by the r-independent expres-
sions p = —ZC42A'/\/BD = Z,A,CY* and s = —[pA—
C'"*4/2(D/CY /\/BD)/T = 4xC%*, where Z,=Z(¢(r;)).
We are mainly interested in the low 7 solutions that reduce
to Eq. (5) in the IR as T — 0.
The optical conductivity is given by

o(@) = - 1im <r2—d “—(’)> , )

W r—0 ax(r)

where a, is the ingoing linear perturbation of the spatial
component of the gauge field and obeys the equation [22]

d G
e [FG&,] + o? 7 =0, (10)

with @, = a,/(sT +pA), F=/D/B, G=ZC4/»~1x
(sT + pA)*.
To calculate the low frequency optical conductivity, we

use the usual perturbative ansatz [54]

@ﬂﬁgjwwﬁ+ggzymﬂ,un

where A,(r,) = 0. Substituting this into Eq. (10) and
solving at O(w) gives

r | Cd 1 1
Ai(r) = /,h dr[aﬁﬁ <sT +pA> B T, — 7’}’ (12)
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where a = s3T3Z,,p>(s/4x) >/ This results in an optical
conductivity [Eq. (2)] where

s’T%7, s \1-2/4 A (0)
— = , Toq = — :
(sT + pu)* \4n e 4T

(13)

)

The first term in the optical conductivity [Eq. (2)] is the
usual small @ divergence due to momentum conservation,
while the second term arises from charge-carrying proc-
esses in which no momentum flows [22]. The pole in the
second term at w = —irgql indicates the existence of a
collective excitation with lifetime z.,. The result [Eq. (13)]
for 7.4 can only be trusted if 7,7 > 1, as the perturbative
expansion is reliable for o < T.

For a low T state that is sufficiently close to the QCP
described by Eqgs. (5) and (7), we will now verify that
indeed 7.4 is parametrically longer than T-'. The deep IR
geometry of such a state will have an event horizon at a
large value of u = u,,, but will still be described by Egs. (5)
and (7) over the range ur > u > uyy, with u; > ur and
uyy > L. Integrating over this part of the spacetime yields
a contribution to 7., that is independent of the cutoffs [45]:

CL(d4+1-0) 1 [u,)\2
T L Zo(1-0)F A2

1 TZAAO
t)  “ra W
0

Recalling that A, < 0, this contribution to 7.y is para-
metrically larger than 7~! and should dominate the full
integral in the limit 7 — 0. It is manifest that the irrelevant
deformation sourced by A, is responsible for the slow
relaxation of the mode, and indeed 7 is of the form given
in Eq. (1) with g~ Ay and A, = A, .

Counterparts of the QCPs [Eq. (5)] with z # 1 are well
known [29,30,48]. For these solutions, the deformation
parametrized by A, is marginal (A, = 0), and the integral
for 7 is no longer dominated by the IR spacetime. In these
cases we expect 7.q ~ 1/T, as has been observed numeri-
cally in a variety of holographic theories [55-61].

Diffusivity and hydrodynamics.—As mentioned above,
there are two distinct contributions to the small @ optical
conductivity [Eq. (2)]. The divergence at @ — 0 is due to
current (J) flow that drags (conserved) momentum (P),
while the remainder is due to current flow that does not.
The latter processes can be conveniently isolated by
examining the dynamics of the “incoherent” current
Jine = xppJ — xypP, where y denote static susceptibilities
[22]. We will concentrate on J;,.: its small @ conductivity
Ginc (@) is proportional to the second term of Eq. (2), and is
sensitive to the slowly relaxing mode [62].

Over sufficiently long timescales, we expect relativistic
hydrodynamics to govern the system and thus the conduc-
tivity of J;,. to be @ independent [22]. From Eq. (2), it is
apparent that this is the case at times 7 > 7. In this regime,
long wavelength perturbations of J,,. and its associated

charge 8pin. = s°TS(p/s) diffuse with the usual diffusivity
D of relativistic hydrodynamics (see, e.g., Ref. [63]). D
obeys the Einstein relation D = 6 /y;,. where o =
(sT + up)*c, and y;, is the static susceptibility of Sp;,.
While in general y;,. depends in a complicated way on the
thermodynamic properties of the state, near a QCP it
simplifies to yin. = p*T*(0s/T), [45]. Furthermore, as
o is related to the open-circuit thermal conductivity k by
0% = Tp’k in a relativistic hydrodynamic system [45],
near the QCP D is equal to the thermal diffusivity
Dy =x/(T0s/IT),. Using our explicit results [Eq. (13)]
for holographic theories, in addition to the temperature
scaling of s, both diffusivities near the QCP can be written
simply as Eq. (3).

The relation [Eq. (3)] is possible because Dy, vg, and 74
are all related to near-horizon properties of the dual black
hole [64]. This fact also lies behind the existence of a
relation analogous to Eq. (3) for z # 1 QCPs, with 7,
replaced by 7p [25,34]. But unlike in those cases, where Dy
and vy are both properties of the QCP, for the z = 1 cases at
hand the relation Eq. (3) relies crucially on the fact that both
Dy and 7., depend in the same way on the irrelevant
deformation away from the QCP sourced by A. This is also
different to the case of z =00, § =0 QCPs, where a
relation similar to Eq. (3) with 7. replaced by 7 arises due
to the fact that both D and v% are determined by the same
irrelevant coupling [35-37].

At times <7, relativistic hydrodynamics is not
applicable to the system since it doesn’t incorporate the
dynamics of the slowly relaxing mode that appears at
times 7 ~ 7.4. Since we expect typical excitations near the
QCP to have lifetimes ~T~! < Teq» then it may be possible
to identify an effective theory valid to earlier times ¢ > 7!
by supplementing the hydrodynamic equations to incor-
porate the existence of the slowly relaxing mode [66]. In the
Supplemental Material [76], we compute holographically
the other entries in the matrix of retarded Green’s functions
for / and P and show they match those of a hydrody-
namic theory with a slowly decaying mode Ji,.: 0,Jinc =
—Jinc/Teq, using standard techniques [63,77,78]. Such
effective theories typically display pole collisions in the
lower half frequency plane, whereby a diffusive mode
acquires a real part and turns into a propagating mode at
short distances. The velocity v, of this propagating mode
then determines the diffusivity D = v?req (see, eg, (2.17) of
Ref. [67]). For Eq. (3) to take this form, we require a
velocity v? =2v%/(d+1-0) =1/(d - 0). It is known
[49,50] that z = 1, 8 # 0 theories contain a mode with
this velocity in their spectrum. We therefore conjecture
that this mode of the IR spacetime is promoted to a mode
of the full asymptotically AdS spacetime [79], and thus
it is because D = v%req that Eq. (3) is realized. We plan to
confirm this picture in Ref. [80], using the techniques
developed in Ref. [68].
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In light of this discussion, it would be interesting to
identify for z # 1 QCPs (where the irrelevant deformation
is unimportant) a lifetime 7., ~ 1/7 and velocity v ~ v} of
a collective mode such that Dy = v%req. Such a relation
would indicate that it is not the butterfly velocity vy that
fundamentally sets the thermal diffusivity, but instead that
Eq. (3) arises due to a relation between the velocities of
collective modes and the butterfly velocity near quantum
critical points.

Breakdown of w/T scaling.—The existence of a collec-
tive mode with the parametrically long lifetime 7. is the
most striking consequence of the breakdown in quantum
critical scaling caused by the dangerously irrelevant cou-
pling A, but it is not the only one. It was previously shown
that the conductivity o;,.(@w,T) does not exhibit w/T
scaling near the QCPs [Eq. (5)]: specifically, o, (@,
T =0)~w™* [29,30,43] while ol ~ T¢72(4=9) [22]. By
carefully keeping track of the dependence on A, [45], we
can explicitly attribute this breakdown in w/T scaling to the
presence of the irrelevant coupling in the IR theory:

Gdc

d—0+2A
inc ™ T 0,

Oune(T' = 0) ~ A =0240 (15)
Recalling that A, = (d -6+ {)/2, it is clear that when

=1 we can consistently assign o;,. the dimension
{+2(d—0), and that /T scaling fails because of the
nontrivial dependence of o, on the irrelevant coupling A.

In contrast, near the z # 1 counterparts of the QCPs
[Eq. (5)] where A, sources a marginal deformation
A,, = 0, the incoherent conductivity obeys w/T scaling:
Cinc(@, T = 0) ~ @**(4=270)/2 [2329.30,43] and o ~
T2+(d=2-0)/z [22].

In both cases (z =1 and z # 1), the scaling theory
required to account for the total dimension of oy, is
nontrivial. It involves anomalous dimensions for both the
entropy density A, = d — @ (i.e., hyperscaling violation)
and the charge density A, = d — 60 + ® [23,43,44] and is
explained in more detail in Ref. [45]. The anomalous
dimension for charge density @ is related to the profile of
the Maxwell field [Eq. (7)] by @ = ({ + € — d)/2, and thus
A, = A, (consistent with our previous observation that
p x Ay at T = 0). Note that the close relation between p
and A, supplemented by a matched asymptotics argument,
is at the root of why the charge response near the QCP is
sensitive to the irrelevant deformation sourced by A,,.

Both the anomalous dimensions, and the extra dimen-
sionful coupling Ay, permit a much richer family of T
dependence in the quantum critical contribution to the
conductivity [Eq. (15)] than is allowed in a simple scale
invariant theory [23,44], and may be necessary to explain
the various scalings observed in strange metals [46,47].
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