
Journal of Magnetic Resonance 281 (2017) 188–198
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
Obtaining sparse distributions in 2D inverse problems
http://dx.doi.org/10.1016/j.jmr.2017.05.010
1090-7807/� 2017 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: ajs40@cam.ac.uk (A.J. Sederman).
A. Reci, A.J. Sederman ⇑, L.F. Gladden
Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 April 2017
Revised 19 May 2017
Accepted 22 May 2017
Available online 25 May 2017

Keywords:
L1 regularization
Inverse problems
2D NMR correlation experiments
2D inverse Laplace transformation
The mathematics of inverse problems has relevance across numerous estimation problems in science and
engineering. L1 regularization has attracted recent attention in reconstructing the system properties in the
case of sparse inverse problems; i.e., when the true property sought is not adequately described by a
continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus
on the application of L1 regularization to a class of inverse problems; relaxation-relaxation,
T1–T2, and diffusion-relaxation, D–T2, correlation experiments in NMR, which have found widespread
applications in a number of areas including probing surface interactions in catalysis and characterizing
fluid composition and pore structures in rocks. We introduce a robust algorithm for solving the L1 regular-
ization problem and provide a guide to implementing it, including the choice of the amount of regulariza-
tion used and the assignment of error estimates. We then show experimentally that L1 regularization has
significant advantages over both the Non-Negative Least Squares (NNLS) algorithm and Tikhonov regular-
ization. It is shown that the L1 regularization algorithm stably recovers a distribution at a signal to noise
ratio < 20 and that it resolves relaxation time constants and diffusion coefficients differing by as little as
10%. The enhanced resolving capability is used to measure the inter and intra particle concentrations of
a mixture of hexane and dodecane present within porous silica beads immersed within a bulk liquid
phase; neither NNLS nor Tikhonov regularization are able to provide this resolution. This experimental
study shows that the approach enables discrimination between different chemical species when direct
spectroscopic discrimination is impossible, and hence measurement of chemical composition within por-
ous media, such as catalysts or rocks, is possible while still being stable to high levels of noise.
� 2017 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

In many applications, the properties of the system to be mea-
sured, referred to as the ‘distribution’, are distorted by a physical
process or the measuring instrument itself. When the system prop-
erties and the physical process are known, it is easy to simulate
what the acquired signal should be. This is called a forward prob-
lem. In contrast, recovering the system properties from knowledge
of the acquired signal and the physical process is known as an
inverse problem. Inverse problems occur in areas as diverse as
quantum mechanics [1], molecular electrostatics [2], capillary fill-
ing [3], chemical reactions [4], electron ionisation [5] and Nuclear
Magnetic Resonance (NMR) [6]. In this work, we focus on a partic-
ular class of inverse problems, spin–lattice relaxation - spin–spin
relaxation, T1–T2, and diffusion – spin–spin relaxation, D–T2, corre-
lation experiments in NMR. 2D NMR experiments are increasingly
used to characterise multi-component, multi-phase systems. In
addition to well-established 2D and multi-dimensional NMR spec-
troscopy experiments [7], T1–T2 experiments are used in character-
izing the pore structure of rocks [8], probing adsorbate–adsorbent
interactions [9], and discriminating between tissues in medicine
[10] and D–T2 experiments have found application in characteriz-
ing fluids in porous media [11], in correlating D and T2 with the vis-
cosity of heavy oils [12], and in analysing the pore geometry in
conjunction with Magnetic Resonance Imaging (MRI) [13].

Unlike forward problems, inverse problems are typically ill–
conditioned. This means that small differences in the acquired sig-
nal from an experiment, caused by the random nature of noise or
experimental error, can lead to significantly different recon-
structed distributions. It follows that the reconstruction of distri-
butions from ill-conditioned inverse problems has attracted
much attention [14–21]. The simplest method of inversion is the
Non-Negative Least Squares (NNLS) algorithm [14]. However, the
problem with this approach is that it does not address the
ill-conditioning issue and the reconstructed distribution is very
sensitive to the noise in the acquired signal. This can result in an
over–estimate or under–estimate of the number of peaks assigned
to the resulting distribution which can, of course, lead to misinter-
pretation of the experimental data [22,23]. The most common
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method of inversion is Tikhonov regularization [15] and successful
algorithms have been developed to solve this regularized problem
[16,17]. Tikhonov regularization addresses the ill–conditioning by
imposing constraints to the reconstructed distribution. A distin-
guishing feature of this method is that the reconstructed distribu-
tion is smooth; i.e. there is a gradual transition from one feature to
another. This method works well when the distribution is a priori
known to be smooth and it has been successfully used in various
applications [24–26]. However, due to the smoothness, features
in the distribution which are close together cannot be resolved
properly [6,27,28], and therefore the spectral resolution is low.
When applied to distributions which are sparse, that is with only
a few non-zero entries, the magnitude and spread of the features
can be incorrectly estimated. If the features are close together,
Tikhonov regularization will often not distinguish between them.

The emerging idea of Compressed Sensing [29] and its increas-
ing exploitation in different areas [30–34] has introduced a new
form of regularization which is based on an L1 minimization prob-
lem. The principle idea of Compressed Sensing is the reduction in
the number of samples needed to reconstruct a distribution which
is sparse in some domain. However, the form of regularization that
it uses, which from now on will be referred to as L1 regularization,
also promotes the sparsity of the distribution in a particular
domain. For distributions which are expected to be sparse, the
enforcement of sparsity is synonymous with an increase in the
spectral resolution of the reconstructed distribution. In addition
to the potential for higher spectral resolution, an L1 regularized
problem is also expected to be more stable to noise than the
non-regularized version. Indeed, L1 regularization has been used
in denoising sparse signals [35]. The potential of L1 regularization
to increase spectral resolution in inverse problems, while being
stable to high levels of noise, has only recently begun to be realised
[32,36–38]. Indeed, the recent work of Benjamini and Basser
[36,37] showed how L1 regularization could be used as a tool to
reduce the amount of data required for 2D NMR relaxation–diffu-
sion data reconstruction, but did not focus on the attributes of L1
regularization in reconstructing sparse distributions and its stabil-
ity to noise. One reason for the late arrival of L1 regularization in
applications to inverse problems in science and engineering is that
the algorithms that have been developed to solve the L1 regular-
ized problem [39–41] are only suited to inverse problems where
the signal and the distribution are related by transforms which
are computationally easy to invert, such as the Fourier transform
or the identity transform. However, in many inverse problems,
the signal and the distribution are related by transforms which
are harder to invert, such as exponential decay functions in the
case of 2D NMR correlation experiments.

In this manuscript, an algorithm is introduced which is robust
in reconstructing distributions from ill-conditioned, L1 regularized
inverse problems. A guide to the implementation of the L1 mini-
mization algorithm is given, including the choice of the regulariza-
tion parameter and the assignment of error estimates. The
algorithm is demonstrated experimentally by applying it to T1–T2
and D–T2, correlation experiments, where the signal and the distri-
bution are related by exponential decay functions. It is shown that
the L1 regularized inverse problem gives accurate results at signal-
to-noise ratios (SNR) < 20. In contrast, the NNLS algorithm required
SNR > 20 for the accurate discrimination of discrete components.
Further, it is shown that when L1 regularization is applied, chemi-
cal components with relaxation time constants and diffusion coef-
ficients that differ from one another by as little as 10% can be
distinguished. In contrast, Tikhonov regularization typically
requires a factor 3 difference in relaxation constants or diffusion
coefficients if the individual relaxation times or diffusion coeffi-
cients are to be identified [6].
While, in the present work, L1 regularization and the algorithm
proposed to solve the L1 regularized inverse problems are applied
to T1–T2 and D–T2 NMR experiments, their application is not lim-
ited to these experiments. The approach is readily applied to other
2D NMR correlation experiments, such as T2–T2 [42,43] and D–D
[44,45], as well as to the inverse problems which occur in areas
other than NMR [1–5], as long as there is a prior knowledge that
the true distribution is sparse. Of particular interest could be the
application to D–d, or Diffusion Ordered Spectroscopy (DOSY)
[46] experiments, where d stands for the chemical shift.

The paper is structured as follows: in Section 2 the mathemat-
ical formalism of the NNLS algorithm and Tikhonov regularization
are presented, as well as the proposed L1 regularization and its
implementation. In Section 3 the materials and methods used are
described, and a practical guide to implementing the L1 minimiza-
tion algorithm with an objective level of sparsity is given. Further,
a method to assign error estimates is suggested. The experimental
results for the application of the three inversion methods in the
processing of 2D NMR correlation data are shown in Section 4.
We investigate samples in which separation of components based
on the 2D NMR signal is of increasing difficulty, with the most dif-
ficult being mixtures of hexane and dodecane imbibed within por-
ous silica beads which remain immersed within the bulk liquid
mixture; thereby forming a system in which discrimination of both
chemical species existing in the bulk liquid state and within the
porous medium is required. In this system, hexane and dodecane
cannot be resolved spectroscopically neither in the bulk phase
nor imbibed within the porous silica beads. Further, the similarity
of relaxation time constants and diffusion coefficients of hexane
and dodecane make it impossible to resolve these two components
using the NNLS algorithm or Tikhonov regularization in 2D NMR
correlation experiments. Resolving the individual diffusion coeffi-
cients and relaxation time constants in both the bulk liquid phase
and within the porous medium, as well as quantifying the relative
amount of each component in both phases, within the same exper-
iment, is invaluable in understanding the behaviour of multiple
chemical components inside catalysts [47] and rocks [48] in situ.

2. Mathematical treatment

2.1. Conventional inversion algorithms

This work will focus on inverse problems that can be written as:

S ¼ K F þ E ð1Þ

where S is the 2D signal matrix, F is the 2D distribution matrix to be

found, K is the kernel matrix representing physical processes and E
is a 2D unknown noise matrix, assumed to be inherent in the signal

and of Gaussian distribution. By using the vectorized forms of S, F

and E [49], the problem can be transformed into a 1D problem.

Therefore, it will be assumed from now on that S, F and E are vec-

tors. In most practical applications, F is constrained to non-

negative entries, a physical constraint denoted by FP 0. The inver-

sion problem is then formulated as: Given S and K, how can F be
estimated?

The NNLS algorithm solves the following minimization
problem:

F ¼ arg minFP0jjK F � Sjj22 ð2Þ
where the term being minimized is the called the fidelity term. The
fidelity term is an example of a Euclidean or L2 norm. In general, the

Lp norm of a vector A, with entries a1, a2, . . ., an is defined as:



Table 1
Pseudocode that solves Eq. (9) numerically, based on the PDHGM method.

Step 1. Choose algorithm step parameters s;r and the regularization
parameter, a

Step 2. Set the convergence tolerance, TOL

Step 3. Calculate B ¼ ðI þ saKTKÞ�1

Step 4. Initialize Yð0Þ ¼ 0; Fð0Þ–0 and ~Fð0Þ ¼ Fð0Þ

Step 5. Initialize count number, k ¼ 1 and convergence tracker, �ð0Þ ¼ 1
Step 6. while �ðkÞ > TOL do

a. ~YðkÞ  Y ðk�1Þ þ r~Fðk�1Þ
b. Y ðkÞ  ~Y ðkÞ

maxð1;j~Y ðkÞ jÞ All operations in this line are element-wise.

c. FðkÞ  Bð~Fðk�1Þ � sY ðkÞ þ saKTSÞ
d. FðkÞ  maxð0; FðkÞÞ All operations in this line are element-wise

e. ~FðkÞ  2FðkÞ � Fðk�1Þ

f. �ðkÞ  jjFðkÞ�Fðk�1Þ jj2
jjFðk�1Þ jj2

g. k kþ 1
end while
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LpðAÞ ¼ jjAjjp ¼
Xn
i¼1
jaijp

 !1=p

ð3Þ

If the determinant of the kernel matrix K is close to zero (as it is
when the transform relating the signal and distributions is com-
posed of exponential decays), the kernel matrix is called ill-

conditioned and slight variations in the acquired signal, S, can lead

to significantly different reconstructed distributions, F. Therefore,
the reconstructed distribution from the NNLS algorithm in Eq. (2)
is unstable and it does not address the ill-conditioning issue.

Tikhonov regularization addresses the ill–conditioning by look-
ing for a trade–off between the fidelity term and a penalty term
which penalizes solutions that do not fit certain constraints:

F ¼ arg minFP0
a
2
jjK F � Sjj22 þ

1
2
jjR Fjj22

� �
ð4Þ

where R is a regularization matrix and a is a regularization param-
eter. In the literature, a is sometimes placed in front of the first term
and sometimes in front of the second term. In this work, the nota-
tion in Eq. (4) will be used. The reason why Tikhonov regularization
is more stable than the NNLS algorithm with respect to noise can be
explained using a singular value decomposition (SVD) approach
[50]. In most occasions, the constraint that one imposes on a phys-

ical basis, is for F to be smooth. Hence, the preferred Rwould ideally

be the matrix that performs the second derivative of F. While this
second derivative operator is easy to construct for 1D matrices, tak-
ing the second derivatives of 2D matrices is not straightforward.

Therefore this is almost never done. Instead, R = I (identity matrix),
has been exclusively used for the Tikhonov regularization of 2D
problems. A small regularization parameter, a, gives a smooth dis-
tribution. A large regularization parameter gives a distribution
which fits the experimental data better. The main disadvantage of
Tikhonov regularization is that it relies on the fact that the distribu-

tion F is smooth. If the distribution F is discrete, i.e. composed of
only a few non-zero entries and these features are close to each
other, Tikhonov regularization cannot distinguish between these
features because it over–smooths the distribution. Therefore, Tikho-
nov regularization is not suitable for these cases.

2.2. Proposed inversion algorithm

The motivation for the present work is to develop an inversion
algorithm which can distinguish close features in sparse distribu-
tions, while being stable to high levels of noise. In order to obtain

a sparse distribution, F, it is proposed to solve the following mini-
mization problem:

F ¼ arg minFP0
a
2
jjK F � Sjj22 þ jjFjj1

� �
ð5Þ

This will be called an L1 regularized problem because the penalty
term is the L1 norm of the distribution. The fact that Eq. (5) is reg-
ularized will give more stability to noise [35], as compared to the
NNLS algorithm. In addition, the use of the L1 penalty term is
expected to give a much sparser solution than the use of the L2 pen-
alty term in Tikhonov regularization [51].

Eq. (5) is challenging to solve because of the non–differentiabil-
ity of the L1 norm. A common technique is to transform Eq. (5) into

a primal–dual problem by introducing a dual variable Y:

ðF;YÞ ¼ arg minFP0maxY
a
2
jjK F � Sjj22 þ YTF � vðYÞ

� �
ð6Þ

where v(Y) is an indicator function [52], defined as:
vðYÞ ¼ 0 jjY jj1 6 1
þ1 jjYjj1 > 1

�
ð7Þ

Eq. (6) is of the form:

ðF; YÞ ¼ arg minFP0max Y ðg1ðFÞ þ YTF � g2ðYÞÞ ð8Þ

with g1(F) = a/2||K F – S||2
2 and g2(Y) = v(Y) being convex functions.

Eq. (8) can be solved by the Primal-Dual Hybrid Gradient Method
(PDHGM) [53]. In overview, the method proposes the following
explicit iteration scheme:

Fðkþ1Þ ¼ ðI þ s@g1Þ�1ðFðkÞ � sY ðkÞÞ
Y ðkþ1Þ ¼ ðI þ s@g2Þ�1ðY ðkÞ þ rð2Fðkþ1Þ � FðkÞÞÞ

(
ð9Þ

where og1 denotes the sub-differential of g1, which is a generaliza-

tion of the classical differential for convex functions. (I + s og1)�1 is

called a resolvent operator, which when applied to a vector A, is
defined as:

ðI þ s@g1Þ�1ðAÞ ¼ arg minX
1
2
jjX � Ajj22 þ sg1ðXÞ

� �
ð10Þ

The parameters s and r are step size parameters, which control
convergence and stability of the algorithm. Table 1 describes a
pseudocode which implements the iteration scheme in Eq. (9).
The iteration scheme will be used in this paper to obtain distribu-
tions from L1 regularized problems.

2.3. Inverse problems in 2D NMR correlation experiments

In this manuscript, we will focus on a particular class of inverse
problems, T1–T2 and D–T2 correlation experiments in NMR. It can
be shown that the acquired signal in a T1–T2 experiment can be
expressed as:

Sðt1; t2Þ ¼
Z 1

0

Z 1

0
f ðT1; T2Þð1� 2e�2t1=T1 Þe�t2=T2dT1dT2 þ Eðt1; t2Þ

ð11Þ
and the acquired signal in a D–T2 experiment can be expressed as:

Sðb; t2Þ ¼
Z 1

0

Z 1

0
f ðD; T2Þe�bDe�t2=T2dDdT2 þ Eðb; t2Þ ð12Þ

In Eqs. (11) and (12), f is the 2D distribution map, E is the error map,
while t1, t2 and b are points in the grids of the different dimensions
(T1, T2 and D) at which signal is acquired. In a discrete version, both
equations can be written as:

S ¼ K F þ E ð13Þ
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Therefore, T1–T2 and D–T2 experiments can be treated as inverse
problems.
Table 2
The relaxation time constants, T1, T2 and diffusion coefficient, D, of the chemicals used
in the experiments, obtained using 1D NMR relaxation and diffusion experiments. The
quoted uncertainty is the fitting standard error.

Material T1/s T2/s D (�10–9)/
m2 s–1

0.25 mM GdCl3�6H2O
solution

0.150 ± 0.005a 0.120 ± 0.004b 2.00 ± 0.03d

0.36 mM GdCl3�6H2O
solution

0.080 ± 0.004a 0.080 ± 0.003b 2.00 ± 0.04d

Pure bulk hexane 1.90 ± 0.01a 1.60 ± 0.01c 3.80 ± 0.05d

Pure bulk dodecane 1.00 ± 0.02a 0.88 ± 0.03c 0.76 ± 0.02d

Pure hexane imbibed in
silica beads

1.30 ± 0.06a 0.60 ± 0.05c 2.50 ± 0.06d

Pure dodecane imbibed in
silica beads

0.74 ± 0.03a 0.48 ± 0.02c 0.43 ± 0.02d

a Obtained from IR pulse sequence.
b Obtained from CPMG pulse sequence.
c Obtained from PROJECT pulse sequence.
d Obtained from PGSTE pulse sequence.
3. Experimental

3.1. Materials

NMR measurements were conducted on a number of liquid
samples in bulk and imbibed within a porous medium. Liquids
used were: water deionised using PURELAB

�
; n–hexane (Sigma

Aldrich, �99.7% purity); and n–dodecane (Sigma Aldrich, �99.8%
purity). The porous medium used was meso-porous silica beads
of approximately spherical shape and diameter of 3–4 mm and
with a mean pore size of 10 nm, provided by Johnson Matthey.
Gadolinium (III) chloride hexahydrate (GdCl3�6H2O) (Alfa Aesar,
�99.8% REO purity) was used to reduce the relaxation time con-
stant of water. Electronic scales (Precisa 205 A) with a precision
of 0.1 mg were used for gravimetric measurements. Validation of
the NMR concentration measurements was made by Gas Chro-
matography (GC) (Agilent Technologies 7890A). The calibration
standard error on the GC concentration measurements was
20 ng ll–1 on a 1 ll sample.

Four pairs of samples were prepared for testing the proposed
inversion technique. These correspond to samples in which separa-
tion of the NMR signals is of increasing difficulty.

(i) Two solutions of GdCl3�6H2O in water were prepared which
had concentrations of 0.25 mM and 0.36 mM. From these
solutions, two samples were prepared: sample A1 was sim-
ply the 0.25 mM solution; sample A2 was composed of the
two solutions which were physically separated with a vol-
ume ratio 1:1.

(ii) Two samples composed of bulk binary liquid mixtures of
hexane and dodecane were prepared, with respective mass
fractions of dodecane of 0.267 ± 0.003 (sample B1) and
0.532 ± 0.003 (sample B2).

(iii) Two samples composed of binary mixtures of hexane and
dodecane imbibed within silica beads were prepared as fol-
lows: A binary bulk mixture of known mass fraction was ini-
tially prepared and the silica beads were immersed in the
mixture. After 24 h, the beads were taken out and the drain-
ing liquid removed. The composition of the liquid imbibed
within the beads was calculated by measuring the composi-
tion of the remaining bulk liquid using GC and performing a
mass balance. The dodecane mass fractions of the liquid
imbibed within the beads were calculated to be 0.20 ± 0.02
(sample C1) and 0.45 ± 0.05 (sample C2), respectively.

(iv) Two samples composed of mixtures of hexane and dodecane
residing both inside the silica beads (intra particle) and
between the silica beads (inter particle) were prepared by
immersing the silica beads into each of two bulk binary mix-
tures of hexane and dodecane; the two bulk liquid mixtures
being characterised by dodecane mass fractions of
0.246 ± 0.003 (sample D1) and 0.516 ± 0.003 (sample D2),
respectively. The NMR measurements were then performed
on the immersed beads.

3.2. NMR acquisitions

All experiments were conducted on a Bruker DMX300 spec-
trometer, operating at a resonant frequency of 300.13 MHz for 1H
observation. The maximum gradient amplitude of the gradient
set was 1176 G cm–1 and the radiofrequency (RF) coil had a diam-
eter of 5 mm. Experiments were performed at a temperature of
20 ± 1 �C.
1D NMR relaxation time analysis and diffusion experiments
were performed on the individual chemicals used and for pure
single-component hexane and decane imbibed within the silica
beads, as follows. The Carr-Purcell-Meiboom-Gill (CPMG) [54,55]
or PROJECT [56] pulse sequences were used to measure T2; the
Inversion-Recovery (IR) [57] pulse sequence was used to measure
T1; the Pulsed Field Gradient Stimulated Echo (PGSTE) [58] pulse
sequence was used to measure D. The PROJECT sequence was used
for the experiments where the samples contained hexane or dode-
cane in order to suppress J–modulation. The results from these 1D
experiments are summarized in Table 2; these are used as refer-
ence values for the 2D NMR correlation experiments.

The pulse sequence used for the T1–T2 correlation experiments
of the water solutions was an IR–CPMG [24] sequence. The pulse
program used for the D–T2 correlation experiments of the water
solutions was a PGSTE–CPMG [11] sequence. For the mixtures of
hexane and dodecane, the CPMG sequence was substituted with
a PROJECT sequence.

The echo time in the CPMG and PROJECT sequences was 1 ms
and the maximum number of echoes was such that the maximum
time observed in the T2 decay was �5T2. For the IR pulse sequence,
the maximum time observed in the T1 decay was �5T1. The diffu-
sion time in the PGSTE sequence was 5 ms, the gradient pulse
duration was 1 ms and the maximum gradient strength was such
that an attenuation of the signal to �0.5% of the maximum value
was achieved in the Stejskal-Tanner decay. The number of data
points used for the IR and PGSTE sequences was 16, apart from
the experiment to characterise liquid mixtures present in both
the inter and intra particle space (i.e., samples D1 and D2), in
which case 32 steps were used.

The data points for the IR, PGSTE, CPMG and PROJECT sequences
were spaced linearly for all experiments, apart from the experi-
ments on samples D1 and D2. In the case of samples D1 and D2,
four components are expected in the distribution maps. In these
systems, we expect the two intra particle relaxation time constants
and diffusion coefficients to be similar to each other, but relatively
different to the two inter particle values. In turn, we expect the two
inter particle measurements of the relaxation time constants and
diffusion coefficients to be similar. For this case, the linear sam-
pling scheme did not offer enough resolution. In particular, in the
case in which we wish to identify 4 diffusion coefficients where
D1 > D2� D3 > D4, the linear sampling scheme will resolve the
two pairs (D1, D2) and (D3, D4) but does not resolve within the pairs
(i.e. D1 from D2, or D3 from D4). In order to get a better resolution,
the sampling density of points, q(b), was changed from linear to
being proportional to the following expression:
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qðbÞ / ðe�bD4 � e�bD3 Þ þ ðe�bD2 � e�bD1 Þ ð14Þ
with b being defined in Eq. (12). This sampling scheme effectively
allows denser sampling in the regions where there is a larger differ-
ence between the signals acquired from components of similar dif-
fusion coefficients.

3.3. Implementation of the algorithm

The 2D time-domain NMR signals were initially projected onto
a truncated singular value basis of the kernel matrix [59]. All distri-
bution maps were reconstructed on a 32 � 32 grid, with linearly
spaced points. This makes the quantification of the amounts of
each component straightforward. Simulations showed that the rel-
ative performance of the NNLS method, Tikhonov and L1 regular-
ization with linearly spaced points in the distribution maps is
similar to the case when logarithmically spaced points are used,
which is also commonly performed in the literature.

The regularization parameter, a, for Tikhonov regularizationwas
chosen using the Generalized Cross Validation (GCV) method [60].
In GCV, for a given a, each point in the NMR signal is removed in
turn (cross-one out method) and the distribution reconstructed.
The difference between the actual removed point and the predicted
value of that point from the reconstructed distribution is noted. An
average of all these values is called the GCV score for that value of a:

GCVðaÞ ¼ sjjK F � Sjj22
ðs�mðaÞÞ2

ð15Þ

where:

mðaÞ ¼ trðaKðaKTK þ IÞ�1KTÞ ð16Þ
is known as the effective number of parameters or the degrees of

freedom for Tikhonov regularization and s is the size of S. The best
value for a is then chosen at the minimum of this curve.

The regularization parameter, a, in the L1 regularization problem
was chosen using a variant of GCV. An analytical expression for the
GCVcurvedoesnotexist in this case.However, by rewritingEq. (5) as:

F ¼ arg minFP0
a
2
jjK F � Sjj22 þ

Xn

i¼1
F2
i

jFij

 !
ð17Þ

(where n is the size of F) which looks similar to Tikhonov regulariza-
tion, one can approximate the degrees of freedom of an L1 regular-
ization problem by [61,62]:

mðaÞ ¼ trðaKðaKTK þW�Þ�1KTÞ ð18Þ

where W– is the generalized inverse of W, with W defined as
diag(|Fi|). This value of the degrees of freedom can then be used
to calculate the GCV score in Eq. (15). The best value of a is again
found at the minimum of the score. More accurate estimations of
the degrees of freedom in the L1 regularization problem have been
recently devised [63–65]. However, they are less practical to calcu-
late and were not used in this work.

From a statistical point of view, GCV is a model selection
method, similar to the Akaike Information Criterion (AIC) [66],
Bayesian Information Criterion (BIC) [67] or Cp method [68], in
the sense that it invokes a parsimony argument: as the regulariza-
tion parameter a changes, the number of fitted parameters m(a)
varies, and model selection methods decide on the optimal a based
on a trade–off between fidelity to the data andm(a). Although GCV
has been the most commonly used model selection method, other
methods have also been used in the inversion of 2D NMR correla-
tion data [21]. Practically, all these methods give very similar
results, but GCV is more practical as it does not require a knowl-
edge of the noise level in the data.
Other methods of choosing the regularization parameter for the
L1 regularization problem were also considered: in particular, the
adaptation of the L–curve method [69] in Tikhonov regularization
to the L1 regularization problem (called the Pareto curve [70]) and
the Morozov discrepancy principle [71]. However, simulations
showed that the Pareto curve is unsuitable for T1-T2 and D-T2
experiments because ||F||1 is constrained by the first signal point
acquired, S(0), while the Morozov discrepancy principle was sensi-
tive to the estimate of the noise level in the acquired signal. There-
fore, these two methods were not used in choosing the
regularization parameter.

The uncertainty in the magnitude of each peak in the distribu-
tion map is estimated using an adaptation of the Cramér–Rao
Lower Bound (CRLB) theory [72]. In overview, the CRLB theory
states that the variance of the parameters Fi which we are trying
to extract has a lower bound, related to the Fisher Information

Matrix M(F) by the inequality:

VarðFiÞP ðM�1ðFÞÞii: ð19Þ
Assuming Gaussian noise of variance r2 in Eq. (1), the Fisher Infor-

mation Matrix simplifies to M(F) = 1/r2 KTK, which is not a function

of F. However, since K is ill-conditioned, estimating the inverse of M
is unstable. Therefore, it is impractical to assign error estimates for

all the elements of F. However, it is possible to assign error esti-

mates on the non-zero elements of F (the peaks of the distribution)
using the method that follows. If it is assumed that the map has k
discrete peaks whose indices are in a set X (such that if i 2X,

Fi > 0 and if i RX, Fi = 0), then M(F) = 1/r2 KX
T KX, where KX is the

kernel matrix K with only the columns whose indices are in X.
The estimated uncertainties using this approach, termed the oracle
estimates [73], are low because of the assumption of having prior
knowledge of the position of the peaks. In order to correct for this
assumption, it has been proved [74–76] that the true estimate of
the variance of any of the parameters is related to the oracle esti-
mate with a high probability by only a constant factor:

VarðFiÞ ¼ ck lnðnÞr2ððKT
XKXÞ�1Þii ð20Þ

where c is a constant which depends on the application and the nor-
malization of the signal. For the T1–T2 and D–T2 correlation experi-
ments with the NMR signal being normalized to a maximum of 1,
simulations showed that c = 0.25 gives reliable estimates for the
uncertainties.

The method described above for estimating the uncertainties in
the magnitude of the peaks of the distribution is not specific to the
algorithm introduced in this work; it can also be applied if other
algorithms are used to solve the L1 regularization problem. Apart
from being able to assign error estimates, the method can be used
to determine a priori whether L1 regularization is capable of quan-
tifying the different peaks, therefore guiding experimental design.
Indeed, if prior knowledge exists of where to expect the peaks in
the distribution maps, one can calculate the uncertainties expected
using Eq. (20) and arrive at a decision on whether those uncertain-
ties are low enough for the L1 regularization to be used or not. Fur-

ther, given that the kernel matrix K depends on the sampling
pattern (the particular values of t1, t2 and b in Eq. (11) and Eq.
(12)), Eq. (20) can be used to customize the sampling pattern in
order to achieve a desired uncertainty level.

The convergence of the algorithm in Table 1 is guaranteed if the
following condition is met [53]:

sr 6 1 ð21Þ
However, the particular choice of s and r is heuristic. A smaller s
will increase the stability while reducing the convergence speed
of the algorithm. A good compromise between the two was found
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when s = 0.1 and r = 10. The best values of s and r will depend
slightly on the scaling of the signal. To avoid this, it is best to nor-
malize the NMR signal to a maximum of 1, a technique which
was followed in this study.

The algorithmic complexity of the algorithm is O(n). A typical
number of iterations needed for the algorithm to converge was
10,000. The time in which this convergence is achieved for a
32 � 32 distribution map will depend on the processing speed of
the computer. With a 2.0 GHz CPU and 16 GB RAM, 10,000 itera-
tions took approximately 17 s.

The initialization of the algorithm has no impact on the recon-
structed distribution because the function being minimized is con-
vex. Practically, it was also observed that the convergence speed is
unaffected.
Fig. 1. (a, b) T1–T2 and (c, d) D–T2 distribution maps of sample A1, a 0.25 mM
GdCl3�6H2O deionised water solution, reconstructed for SNR = 20 using (a, c) the
NNLS and (b, d) L1 regularization methods.
4. Results and discussion

Initially, experimental results on a single component sample are
used to investigate the stability to noise of the L1 regularization
method, as compared to the NNLS and Tikhonov regularization
methods. Then, experimental results of bulk binary liquid mixtures
and binary liquid mixtures imbibed within the porous beads sys-
tems are used to compare the spectral resolution of the L1 regular-
ization method and the Tikhonov regularization method. Finally,
the L1 regularization method is used to process 2D NMR correlation
experiments of mixtures of hexane and dodecane in different phys-
ical environments (i.e., inter and intra particle space) where the
NNLS and Tikhonov regularization methods fail to distinguish
between the different components.
4.1. Stability to noise

To test the stability of algorithms to noise, experiments were
performed on a single component sample and increasing levels of
Gaussian noise were added. T1–T2 and D–T2 experiments were per-
formed on sample A1, the 0.25 mM GdCl3�6H2O solution. From
Table 2, the distributions are expected to have one peak at
T1 = 0.150 ± 0.005 s, T2 = 0.120 ± 0.004 s and D = (2.00 ± 0.03) �
10–9 m2 s–1. Random Gaussian noise of increasing magnitude was
added to the 2D NMR signal, such that a range of signal to noise
ratios (SNR) from 5000 to 5 was studied. The 2D distributions were
then reconstructed by applying the NNLS and the L1 regularization
method. For SNR > 20, no difference was seen in the reconstruc-
tions from the NNLS algorithm and the L1 regularization method.
For this reason, they are not shown here. However, for SNR < 20,
the NNLS method failed to reconstruct the distribution accurately,
incorrectly predicting more than one peak in the distribution. In
contrast, the L1 minimization method correctly predicted the dis-
tributions at all SNR studied.

Fig. 1 shows the reconstructed T1–T2 and D–T2 distributions
from the NNLS and L1 regularization methods at SNR = 20. The
NNLS algorithm incorrectly predicts two peaks in both T1–T2 and
D–T2 maps, while the L1 regularized problem predicts the position
of the single peak in the distribution at T1 = 0.15 ± 0.01 s,
T2 = 0.12 ± 0.01 s and D = (2.0 ± 0.1) � 10–9 m2 s–1, which is in
excellent agreement with the expected values shown in Table 2.

Over the full range of SNR studied, no difference was observed
between the reconstructed distributions from the L1 and Tikhonov
regularization methods and both methods reconstructed the distri-
butions accurately. Therefore, the reconstructions from Tikhonov
regularization are not shown.

The stability to noise offered by the L1 regularization method
can be used to reduce the extent of signal averaging that is needed
to achieve sufficient SNR for subsequent analysis. Since SNR is pro-
portional to B0

7/4, where B0 is the permanent magnetic field
strength [77], this method could therefore be useful in extending
measurement capabilities at low magnetic field.
4.2. Spectral resolution

In order to compare the spectral resolution of algorithms,
experiments were performed on a two-component sample, in
which the resolution of the signal from the individual components
is expected to be challenging using Tikhonov regularization. T1–T2
and D–T2 experiments were performed on sample A2, composed of
two physically separate GdCl3�6H2O solutions of concentrations
0.25 and 0.36 mM and volume ratio 1:1. From Table 2, it is
expected that the distribution maps will show two peaks: one at
T1 = 0.150 ± 0.005 s, T2 = 0.120 ± 0.004 s and D = (2.00 ± 0.03) �
10–9 m2 s–1 and the other at T1 = 0.080 ± 0.004 s, T2 = 0.080 ±
0.003 s and D = (2.00 ± 0.04) � 10–9 m2 s–1.

Fig. 2 shows the reconstructed T1–T2 and D–T2 distribution
maps obtained using Tikhonov and L1 regularization methods. It
can be seen that Tikhonov regularization cannot distinguish
between the two solutions; the peaks associated with each of the
two solutions are included in a single broad peak. This is to be
expected since the resolution of Tikhonov regularization is typi-
cally limited to a factor of 3 in the relaxation times or diffusion
coefficients [6]. In contrast, the L1 regularization method predicts
two peaks: one at T1 = 0.15 ± 0.01 s, T2 = 0.12 ± 0.01 s and D =
(2.0 ± 0.1) � 10–9 m2 s–1, corresponding to the 0.25 mM solution,
and the other at T1 = 0.08 ± 0.01 s, T2 = 0.08 ± 0.01 s and D =
(2.0 ± 0.1) � 10–9 m2 s–1, corresponding to the 0.36 mM solution.
The position of these peaks is in excellent agreement with those
given in Table 2 for each of the component liquids. In addition,
the ratio of the amounts of each solution present, measured by
the ratio of the areas of each peak in the maps is 1.0 (to 2 s. f.),
for both T1–T2 and D–T2 distribution maps, consistent with the
1:1 volume ratio of the two-component sample.

The SNR in the acquired T1–T2 and D–T2 signals was 3000 and
1900, respectively. At these high SNR, no difference was observed
between the reconstructed maps by the L1 regularization and NNLS



Fig. 2. (a, b) T1–T2 and (c, d) D–T2 distribution maps of sample A2, composed of
physically separate 0.25 and 0.36 mM GdCl3�6H2O deionised water solutions,
reconstructed using (a, c) Tikhonov regularization and (b, d) L1 regularization
methods. The SNR in the NMR signal was 3000 for the T1–T2 experiment and 1900
for the D–T2 experiment. The component with the larger T2 is the 0.25 mM solution.

ig. 3. T1–T2 distribution maps of mixtures of hexane and dodecane (a, b) in bulk
nd (c, d) imbibed within silica beads, reconstructed using the L1 regularization
ethod. The samples shown are (a) sample B1, (b) sample B2, (c) sample C1, and (d)
mple C2. The component with the larger T2 is hexane. The SNR in the NMR signal
as approximately 2500 in all the experiments.
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methods. Therefore, the reconstructed maps from the NNLS
method are not shown.

These results show that the L1 regularization method has the
potential to be used to resolve features in inverse problems which
were previously unable to be resolved by methods such as Tikho-
nov regularization. This conclusion is in agreement with the obser-
vations of Benjamini and Basser [37].

4.3. Resolving individual components of mixtures: Hexane and
dodecane in bulk liquid mixtures and within porous media

In this section we apply the inversion algorithms to samples for
which both NNLS and Tikhonov regularization fail to predict the
distributions, while the L1 regularization method succeeds. T1–T2
and D–T2 experiments were performed on bulk liquid mixtures of
hexane and dodecane (samples B1 and B2) and mixtures of hexane
and dodecane imbibed within silica beads (samples C1 and C2).
Samples at different mass fractions of dodecane are included to
demonstrate the quantitative nature of the method at different
concentrations. It is well known that the relaxation time constants
and diffusion coefficients of alkanes in a mixture become more
similar relative to the pure single component values [78,79]; the
relaxation time constants and diffusion coefficient of an alkane in
a mixture depend not only on the chain length of the alkane, but
also on the mean chain length of the mixture. Therefore, we would
expect that in the T1–T2 and D–T2 maps the peaks corresponding to
hexane and dodecane would be closer to one another than the val-
ues in Table 2 suggest, making it more difficult to resolve these
chemicals.

Fig. 3 shows the T1–T2 distribution maps of the bulk mixtures of
hexane and dodecane and of the mixtures of hexane and dodecane
imbibed within silica beads, reconstructed using the L1 regulariza-
tion method. Figs. 3(a) and 3(b) show the T1–T2 distribution maps
of two different bulk mixtures, with corresponding dodecane mass
fraction of 0.267 ± 0.003 (sample B1) and 0.532 ± 0.003 (sample
B2). Two peaks are clearly observable in both distribution maps:
F
a
m
sa
w

hexane at T1 = 1.5 ± 0.1 s, T2 = 1.4 ± 0.1 s and dodecane at
T1 = 1.4 ± 0.1 s, T2 = 1.2 ± 0.1 s. Fig. 3(c) and (d) show the T1–T2 dis-
tribution maps of two different mixtures of hexane and dodecane
imbibed within silica beads, with corresponding dodecane mass
fractions of 0.20 ± 0.02 (sample C1) and 0.45 ± 0.05 (sample C2).
Two peaks are clearly identified in these maps: intra particle hex-
ane at T1 = 1.0 ± 0.1 s, T2 = 0.4 ± 0.04 s and intra particle dodecane
at T2 = 0.10 ± 0.02 s. The relaxation constant T1 of intra particle
dodecane is T1 = 0.94 ± 0.04 s for sample C1 and T1 = 0.78 ± 0.04 s
for sample C2. The relaxation time constants T2 of the intra particle
liquid are significantly shorter than the corresponding values in the
bulk liquid mixture due to the additional dephasing of nuclear
spins caused by the magnetic heterogeneity in the porous medium
and the interaction with the pore surface [9].

Fig. 4 shows the corresponding D–T2 distribution maps for the
same samples discussed in Fig. 3; the D–T2 distribution maps have
been reconstructed using the L1 regularization method. Fig. 4
(a) and (b) show the D–T2 distribution maps of samples B1 and
B2, while Fig. 4(c) and (d) show the D–T2 distribution maps of sam-
ples C1 and C2. Hexane and dodecane are clearly identifiable in all
of these maps. The relaxation time constants T2 obtained using the
D–T2 maps differ by <10% from the corresponding relaxation con-
stants T2 obtained using the T1–T2 maps. The agreement between
the T1–T2 and D–T2 data effectively reduces the uncertainty in
the measured T2.

The results in Figs. 3 and 4 show that the L1 regularization
method can resolve components in T1–T2 and D–T2 distribution
maps even if their difference in relaxation constants is as low as
10%. This is a major improvement over the factor of 3 that the res-
olution of Tikhonov regularization is typically limited to [6].

Both the NNLS and Tikhonov regularization methods failed to
reconstruct the T1–T2 and D–T2 distributions correctly. One exam-
ple of this is shown for sample C2 in Fig. 5. Sample C2 is chosen as
it represents one of the cases in which, relative to the other sam-
ples, it should be easier for the NNLS and Tikhonov regularization



Fig. 4. D–T2 distribution maps of mixtures of hexane and dodecane (a, b) in bulk
and (c, d) imbibed within silica beads, reconstructed using the L1 regularization
method. The samples shown are (a) sample B1, (b) sample B2, (c) sample C1, and (d)
sample C2. The component with the larger T2 is hexane. The SNR in the NMR signal
was approximately 2000 in all the experiments.

Fig. 6. Comparison of dodecane mass fraction measured using the L1 regularization
method in the inversion of 2D NMR correlation experiments with the mass fraction
measured using the gravimetric and GC methods described in Section 3.1. As
discussed in the text, larger errors are associated with GC analysis compared to
gravimetric measurements.
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methods to predict the correct distributions because the compo-
nents have a difference in the expected T2 of a factor of 4. Fig. 5
(a) shows the D-T2 distribution of sample C2, reconstructed using
the NNLS method. Three peaks are predicted from the method,
when only two are expected. The prediction of extra peaks is a typ-
ical artefact of the NNLS method. Fig. 5(b) shows the D–T2 distribu-
tion of sample C2, reconstructed using the Tikhonov regularization
method. The method predicts a single broad peak (extending over
the range of the two expected peaks). This is a typical artefact of
the Tikhonov regularization method.

Quantitative comparison of the mass fraction of dodecane mea-
sured from the T1–T2 and D–T2 distribution maps in Figs. 3 and 4 is
shown in Fig. 6 with the mass fraction of dodecane measured using
gravimetric and GC methods. The first observation is that the mass
fractions of dodecane measured using the T1–T2 maps has an aver-
Fig. 5. D–T2 distribution maps of sample C2, a mixture of hexane and dodecane imbibed w
methods. The SNR in the NMR signal was 2000.
age difference of 0.02 from the corresponding mass fractions of
dodecane measured using the D–T2 maps. The second observation
is that each of these measures has an average difference of 0.01
from the measurements using gravimetric and GC methods. The
results in Fig. 6 therefore show that, in addition to being able to
resolve very close features, the L1 regularization method can be
used quantitatively to obtain information on the amounts of each
component present, even when the liquid mixture is imbibed
within the porous medium.
4.4. Resolving inter and intra particle hexane and dodecane
compositions

In this section, the L1 regularization method is applied to deter-
mine D, T2 and the chemical composition of hexane and dodecane
mixtures imbibed within porous silica beads which remain
ithin silica beads, reconstructed using (a) the NNLS and (b) Tikhonov regularization



Fig. 7. D–T2 distribution maps of (a) sample D1 and (b) sample D2, which are liquid mixtures of hexane and dodecane in silica beads with inter and intra particle liquid
present. In an order of increasing T2, the peaks correspond to intra particle dodecane, intra particle hexane, inter particle dodecane and inter particle hexane. The SNR in the
NMR signal was approximately 1500 in both experiments.

Table 3
The relaxation time constants, T2, and the diffusion coefficients, D, of the components in samples D1 and D2, extracted from a D–T2 correlation experiment processed with the L1
regularization method. The D-T2 maps are shown in Fig. 7.

Component Sample D1 Sample D2

T2/s D ( � 10–9)/m2 s–1 T2/s D ( � 10–9)/m2 s–1

Inter particle hexane 1.4 ± 0.1 1.7 ± 0.2 1.5 ± 0.1 1.8 ± 0.1
Inter particle dodecane 1.2 ± 0.1 1.5 ± 0.1 1.3 ± 0.1 1.5 ± 0.1
Intra particle hexane 0.6 ± 0.1 1.3 ± 0.1 0.6 ± 1 1.4 ± 0.1
Intra particle dodecane 0.2 ± 0.1 1.1 ± 0.1 0.2 ± 0.1 1.2 ± 0.1

196 A. Reci et al. / Journal of Magnetic Resonance 281 (2017) 188–198
immersed in the bulk liquid mixture. D–T2 experiments were per-
formed on samples D1 and D2. Four peaks are expected in the D–T2
distribution maps, corresponding to intra particle dodecane, intra
particle hexane, inter particle dodecane and inter particle hexane.

Fig. 7 shows the D–T2 distribution maps of samples D1 and D2
reconstructed using the L1 regularization method. Four compo-
nents are clearly observable in each of the maps. The values of
the relaxation time constant, T2, and the diffusion coefficient, D,
extracted from these distributions for each of the components is
given in Table 3. Although there is less than 10% difference in the
relaxation time constants and diffusion coefficients of the inter
particle or the intra particle components, the L1 regularization
method has successfully resolved them.

The D–T2 maps were used to estimate the total mass fraction of
dodecane in each of the samples. For sample D1 this was estimated
to be 0.22 ± 0.04 and for sample D2 this was estimated to be
0.53 ± 0.02. These mass fractions differ by less than 0.03 from the
measurements using the gravimetric technique demonstrating
that the L1 regularization method can be used quantitatively.

More importantly, the maps in Fig. 7 can be used to obtain the
inter and intra particle composition of the liquid. The dodecane
mass fraction for the inter particle liquid in samples D1 and D2
is 0.30 ± 0.02 and 0.59 ± 0.02, respectively. The dodecane mass
fraction for the intra particle liquid in samples D1 and D2 is
0.19 ± 0.03 and 0.43 ± 0.02, respectively. The ability to obtain the
difference in the concentration between the inter and intra particle
liquid is invaluable in, for example, identifying mass transfer limi-
tations in heterogeneous catalysts.

T1–T2 experiments were also performed on these samples. How-
ever, the L1 regularization method was unable to resolve between
the inter particle hexane and inter particle dodecane. Both the
NNLS and Tikhonov regularization methods were unable to recon-
struct neither the T1–T2 nor the D–T2 distribution maps. These
maps are not shown here.
4.5. Potential and limitations

It was shown in Sections 4.1–4.4 that the proposed L1 regular-
ization method is able to reconstruct sparse T1–T2 and D–T2 distri-
bution maps, even if the components of the maps differ in
relaxation time constants or diffusion coefficients by less than
10% or if the SNR < 20. These are considerable improvements over
the capabilities of the NNLS and Tikhonov regularization methods.
The L1 regularization method can be applied in a similar way to
other 2D NMR correlation experiments [42–45]. In addition, the
method can be applied to other inverse problems in science and
engineering [1–5], as long as the distribution is expected to be

sparse. The only modification needed is the kernel function, K,
which is specific to a given application.

The algorithm is recommended only for cases in which there is
a prior knowledge that the distribution is sparse. If the true distri-
bution is broad, the algorithm can give inaccurate reconstructions.
When applying the L1 regularization method, the typical indication
that the true distribution might actually be broad is if the recon-
structed distribution shows a cluster of peaks within a narrow
region.
5. Conclusions

L1 regularization has attracted recent attention in processing
ill–conditioned sparse inverse problems. A robust algorithm was
introduced to numerically solve the L1 regularized problem and
methods were described for objectively choosing the amount of
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regularization needed and assigning error estimates to the recon-
structed maps. The L1 regularization method was applied to a class
of ill–conditioned inverse problems: spin–lattice relaxation – spin–
spin relaxation, T1–T2, and diffusion – spin–spin relaxation, D–T2,
correlation experiments in NMR. It was shown that the L1 regular-
ized problem is stable even at SNR < 20, while the conventional
NNLS method fails at these high values of noise. In addition, it
was shown that using the L1 regularization method, components
with relaxation time constants and diffusion coefficients differing
by as little as � 10% can be resolved. The typical resolution limita-
tion of the conventional Tikhonov regularization is a factor of 3 dif-
ference in the relaxation time constants and diffusion coefficients.
The increased resolution capability obtained from the algorithm
presented here was used to extract inter and intra particle liquid
compositions of a binary mixture of hexane and dodecane. This
measurement capability will be valuable in extending our ability
to characterise the composition, and chemically-specific molecular
diffusion and surface interaction properties of multi-component
mixtures in porous media. Amongst other applications, it offers a
method to directly characterise mass transfer limitations in hetero-
geneous catalysts. Further, the robustness to noise of the method
makes it particularly applicable to low field measurements and
its ability to separate similar coefficients could be very useful in
separating similar molecules in DOSY (diffusion NMR) experi-
ments. The L1 regularization method can be easily extended to
other 2D NMR correlation experiments and ill–conditioned inverse
problems from molecular dynamics to tomography. The only pre-
requisite is that the expected property needs to be sparse.
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