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Numerical modelling of current transfer in nonlinear

anisotropic conductive media

Summary

Current transfer behaviour in anisotropic superconducting bodies is the central topic of

this thesis and focuses on the effect that the nonlinearity of the electric field dependence

upon the local current density value and anisotropy have on the nature of current transport.

The main motivation for this work was the desire for a better understanding of the

conceptually difficult behaviour of current transport in superconducting bodies and

examines current transfer quantitatively for a number of important problems on the

macroscopic and microscopic scale. This behaviour is examined both experimentally and

using computer models. The successful development of a powerful, robust and adaptable

numerical model for analysing the complex current transfer behaviour has been the

primary aim of this work.

The range of parameters appropriate to macroscopic models of the Bi-2212 CRT system

has been experimentally examined using a specifically constructed apparatus for the

measurement of current transport characteristics. A study of the self-field properties of the

Bi-2212 CRT material using a new experimental technique and mathematical analysis is

presented and has allowed the importance of the self-field effect in the numerical model to

be assessed. An essential requirement for the practical application of high current

superconducting devices is the development of low resistance current contacts. The

research presented examines this macroscopic current transfer problem and aims to

explain experimentally observed current transfer characteristics at high applied currents.

Existing models cannot explain these characteristics. Current transfer on the microscopic

scale is also examined. Models of current transfer have been developed from descriptions

of specific microstructures that are thought to characterise the microstructure of Bi-2223

and Bi-2212 silver-sheathed tapes. This thesis specifically presents modelling of current

transfer between c-axis, low-angle c-axis and edge-on c-axis tilt oriented grain interfaces;

the principal current transfer paths between individual current elements of the

microstructural models of current flow in polycrystalline HTSs.
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Index of symbols

The use of units complies with the SI convention and units style conventions agree with

BIPM standards1. A right hand rectangular Cartesian co-ordinate frame with axes x , y

and z  is used throughout this thesis when discussing physical spaces and is referred to as

the global co-ordinate frame. Local Cartesian co-ordinate frames have axes ′x , ′y  and

′z . Scalars and the magnitude of vectors are shown in italics; vectors and matrices in bold.

0µ permeability of free space ( 4 10 12 566 107 7π × = ×− −. ...  N⋅A-2)2

h Planks constant ( 6 6260755 10 34. × −  J⋅s)2

e elementary charge (160217733 10 19. × −  C)2

kB Boltzmann constant (1380658 10 23. × −  J⋅K-1)2

Φ0 magnetic flux quantum ( h e2 2 06783461 10 15= × −.  T⋅m2)2

H magnetic field strength

E electric field strength

J current density vector

B magnetic field

w width

t thickness

l length

T temperature

Tc critical temperature

λ magnetic penetration depth

λ L London magnetic penetration depth

m effective mass of the superconducting electrons

es effective charge of the superconducting electrons

ns density of the superconducting electrons
ψ superconducting order parameter

ξ Ginzberg-Landau coherence length

κ Ginzberg-Landau parameter ( λ ξ )

Hc thermodynamic critical field

Hc1 lower critical field strength

Hc2 upper critical field strength

FL Lorentz force per unit volume
ρ f flux flow resistivity

U L energy of the Lorentz force (U J BVL c c= )

Vc volume of flux subject to a Lorentz force
η flux line jump rate
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ω 0 flux line vibration frequency

U effective activation energy

U AK effective activation energy of the Anderson-Kim model
Iapp applied current

cI critical current; usually defined by a voltage criterion

n critical exponent, where E J n∝
Ec critical electric field value

Jc critical current density; usually defined by a voltage criterion
Jc x, x -component of the critical current density
Jc y, y -component of the critical current density

Jx x -component of the current density
Jy y -component of the current density

α critical current anisotropy ratio α = ′ ′J Jc x c y, ,

Jc c, critical current density along the crystallographic c-axis
Jc ab, critical current density along the crystallographic ab-plane

Jc
norm critical current normal to the tape plane

J m macroscopic average current density

Jc
m macroscopic average critical current density

nρ resistivity in normal region

ρ ′x resistivity in the ′x  axis direction
ρ ′y resistivity in the ′y  axis direction

ρc resistivity in the crystallographic c-axis direction

ρab resistivity in the crystallographic ab-plane

R sample radius

∆M irreversible magnetisation

Λ current scaling length

B⊥ applied magnetic field perpendicular to the tape plane
B|| applied magnetic field parallel to the tape plane

θ angle of the applied magnetic field to the tape plane

φ m effective mean misalignment angle

Bc⊥
* critical magnetic field component normal to the tape plane

Jc||
critical current density value measured with the applied magnetic field
parallel to the tape plane

Jc⊥
critical current density value measured for applied magnetic field
perpendicular to the tape plane

Hirr irreversibility field strength

J Hc ab ab, ||3 8 critical current density along the ab plane for applied magnetic field parallel
to the tape plane

J Hc ab ab, ⊥1 6 critical current density along the ab plane for applied magnetic field
perpendicular to the tape plane
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Hx x -component of the magnetic field strength
Hy y -component of the magnetic field strength

Hz z -component of the magnetic field strength
Hsf self-field strength
Happ applied field strength

H *

the value of Happ  applied parallel to the surface of a sample and

perpendicular to the current for which the field inside the sample is zero at
one surface

HA field strength at position A in superconducting sample

HB field strength at position B in superconducting sample

J A current density at position A in superconducting sample

JB current density at position B in superconducting sample

∆H H HB A−
∆Hsf value of ∆H  at zero applied field

α c propagation constant of TL model

Rc resistance of a current contact

∆V total voltage drop across a current contact

d length of current contact

ρcm resistivity of the contact metal of current contact

R’ transmission line series resistance per unit length

G’ transmission line parallel shunt line conductance per unit length

ρ i current contact interface resistivity

ts superconductor thickness of in-situ or lap current contacts
φ gc angle between the c-axes of two connected colonies/grains

Pgc
normalised power dissipation calculated from solutions of the LAC and
EOC models

γ aspect ratio

f source function

n vector normal to boundary

D a smooth function (functional coefficient of Ficks law)

u unknown function

û approximation to u (trial function)

v test function

Ω any domain
eΩ the domain of an element

Γ boundary of Ω , or the Gamma function

uΓ boundary where Dirirchlet boundary condition applies

qΓ boundary where Neumann boundary condition applies
e
uΓ element boundary where Dirichlet boundary condition applies
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e
qΓ element boundary where Neumann boundary condition applies
eN , e

jiN element shape matrix and the components of eN
nml ,, local nodes on linear triangular element

Ue
i
eU,

nodal values of the solution variables on a particular element and the
components of Ue

Ae element area
e
ji

e K,K element stiffness matrix and components of eK
e
j

e f,f element load vector and components of ef
e
ji

e M,M element damping matrix and components of eM

jiK,K global stiffness matrix and components of K

jf,f global load vector and components of f

jiM,M global damping matrix and components of M

U nodal points of Ω

Index of abbreviations

HTS high temperature superconductor

Bi-2212 Bi2Sr2CaCu2Ox

Y-123 YBa2Cu3Ox

EJ the electric field dependence upon the local current density value

Bi-2223 Bi2Sr2Ca2Cu3Ox

TAFF thermally assisted flux flow

PIT powder-in-tube

CRT the composite reaction texturing method

IEEE Institute of Electrical and Electronics Engineers

SCPI Standard Communications for Programmable Instruments

ACS a.c. susceptibility

PDE partial differential equation

FE finite element

BE boundary element

FD finite difference

TL the Murrmann-Widmann current contact model

LAC low-angle c-axis
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CHAPTER 1

Introduction and thesis overview

1.1 Introduction

The phenomenon of superconductivity was first discovered by Heike Kamerlingh Onnes

and his colleagues in 1911. While studying the temperature dependence of the d.c.

electrical resistivity of mercury, it was observed that, over a small temperature interval,

the measured value of the resistivity of mercury became zero below a temperature of

around 4.2 K. The temperature at which this effect occurs is known as the critical

temperature Tc . The material undergoes a transition from the resistive (normal) state to the

superconducting state when the temperature rises above this characteristic critical value.

Further investigation revealed that the normal state of a superconductor can be restored at

a temperature below Tc  by applying a magnetic field, known as the thermodynamic

critical field, Hc . Superconductors also exhibit the property of perfect diamagnetism,

often referred to as the Meissner effect, which was discovered by Meissner and

Ochsenfeld1. They observed that, not only is magnetic flux excluded from a

superconductor below Tc , consistent with the expected behaviour of a perfect conductor,

but also that at a field below Hc  magnetic flux is expelled from the interior of an

originally normal sample as it is cooled through the transition temperature. Various

theoretical descriptions of the underlying physics of superconducting bodies have been

proposed and are discussed in chapter 2.

In 1986 Bednorz and Müller2 discovered a new superconducting compound in the

La-Ba-Cu-O system that has a Tc  of 35 K. This was the first of a new class of materials

called high temperature superconductors (HTSs). Since this discovery, a number of HTSs

have been found, including Bi2Sr2CaCu2Ox (Bi-2212) and YBa2Cu3Ox (Y-123); the

subscript x indicates the content/doping of an individual element in the compound. The

highest Tc  currently reported is 164 K3. These materials have a number of other properties

that distinguish them from their low temperature counterparts. These include larger

theoretical values for the maximum magnetic field under which HTSs can prevent full
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penetration of magnetic flux and a layered structure that results in highly anisotropic

physical properties. However, the principal technological significance of the discovery of

HTSs is that most are superconducting at temperatures above the boiling point of liquid

nitrogen, rather than helium in the case of low temperature superconductors. This reduces

cooling power costs, affords easier cryogenic management, and thereby offers substantial

potential for the practical application of HTSs.

1.2 Subject and aim of this thesis

Current transfer behaviour in anisotropic superconducting bodies is the central topic of

this thesis. This behaviour is examined both experimentally and using computer models.

The main motivation for this work has been the desire for a better understanding of the

conceptually difficult behaviour of current transport in superconducting bodies. This study

focuses on the effect that the anisotropy and nonlinearity of the electric field dependence

upon the local current density value ( EJ  characteristic) have on the nature of current

transport. Local transport properties on the macroscopic and microscopic scales have been

found to play an important, and often dominant, role in the global (macroscopic) transfer

of transport current. The recent review by Prester4 of current transfer and initial

dissipation in HTSs introduces the topic by asking the following question. ‘What do the

current paths in high-Tc  superconductors (HTSs) really look like on various spatial scales

and how are these paths determined by local properties?’

Given reasonable assumptions, this thesis hopes to answer this question quantitatively for

a number of important problems on the macroscopic and microscopic scale. In order to

answer this question a uniquely powerful, robust and adaptable numerical model for

analysing this complex nonlinear current transfer behaviour has been developed; the

mathematical description, exhaustive model validation and computer implementation of

which are described. The numerical model represents a useful tool for analysing current

transport behaviour in anisotropic nonlinear conductive media and the successful

development of a model has been the primary aim of this work.

The models developed examine current transport in nonlinear media and are therefore

applicable to superconducting systems in general. However they principally, but not

exclusively, model the behaviour of the composite reaction textured Bi-2212 system, and

for this reason the range of parameters appropriate to macroscopic models has been

examined experimentally. A study of the self-field properties of the composite reaction
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textured Bi-2212 material is also presented and examines a basic assumption of the

mathematical description of the current flow models.

An essential requirement for the practical application of high current superconducting

devices is the development of low resistance current contacts. Research has concentrated

on processing techniques that reduce the value of the contact interface resistance, and little

work has been done on the nature of current transfer through current contacts to bulk

superconductors. The research presented examines this macroscopic current transfer

problem and aims to explain experimentally observed current transfer characteristics at

high applied currents. Existing models cannot explain these characteristics. Furthermore,

this system allows the comparison of experimentally accessible physical parameters with

the results of numerical models of similar systems.

Current transfer on the microscopic scale is also examined. Bulk superconductor

optimisation has focused upon understanding the current transfer mechanism within the

microstructure of polycrystalline HTSs. Models of current transfer have been developed

from descriptions of the specific microstructure characterising the real material and have

concentrated on the microstructure of Bi2Sr2Ca2Cu3Ox (Bi-2223) and Bi-2212

silver-sheathed tapes. This thesis specifically presents modelling of current transfer

between c-axis, low-angle c-axis, and edge-on c-axis tilt oriented grain interfaces. These

grain connexions represent the principal current transfer paths between individual current

elements of the microstructures of these models. Quantitative and qualitative results have

been derived from these mainly qualitative microstructural descriptions.

1.3 Overview of the thesis

This chapter has presented a short summary of some of the history of superconductivity as

well as a brief discussion of the specific subject area and objectives of this thesis. An

overview of the individual chapters of the thesis is also outlined here.

Chapter 2 presents a brief introduction to the theory of critical currents in type II

superconductors and focuses on the principal concepts used in this thesis. These include

the nonlinearity of the EJ  characteristic, the critical state, anisotropy, and microstructural

models of current transfer in HTSs. Some aspects of the basic phenomenological theory

are also discussed.
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Chapter 3 describes the experimental equipment and techniques used. The processing

methods and basic electrodynamic characteristics of composite reaction textured Bi-2212

are the subject of the first part of this chapter. An apparatus for the measurement of

current transport characteristics has been constructed and is described. A study of the

self-field properties of the composite reaction textured Bi-2212 material using a new

experimental technique is presented. A mathematical analysis is also outlined that enables

part of the magnetic field profile to be deduced directly from transport measurements.

Chapter 4 discusses the principal approaches used in the numerical solution of partial

differential equations and introduces the electromagnetic formulation used to express

mathematically the physical model of current flow as a partial differential equation. An

overview of the finite element representation employed in the numerical solution of the

partial differential equation is presented and examined in detail. The computational

efficiency and accuracy of various numerical solution methods have been examined and

are reported. The issues involved in developing and executing the data processing and

visualisation programs used in this work are also considered.

Chapter 5 presents a comparison of the solutions of numerical models against exact

analytical solutions and the solutions of problems that can be arrived at intuitively. The

validity of the finite element technique and computer implementation is verified by the

comparison of results with intuitive and analytical models in the steady state and transient

regimes for both isotropic and anisotropic models. Further verification is derived from the

comparison of the solutions of a steady state and a transient model in the long-time limit

for the isotropic and anisotropic cases. A preliminary discussion of the characteristic

behaviour of current flow in nonlinear conductive media is presented and the specific case

of current transport near macroscopic defects that form permanent barriers to current flow

in superconductors is considered. A discussion of active current paths in polycrystalline

superconductors is presented in chapter 7.

Chapter 6 describes modelling of current transport in the contact region of in-situ current

contacts to isotropic and anisotropic HTSs. The nature of current transport in this system

is examined and three different models are presented. The numerical solutions of various

models are compared to the results of experimental studies of current transfer in in-situ

current contacts to composite reaction textured Bi-2212.
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Chapter 7 presents modelling of current transfer between c-axis, low-angle c-axis, and

edge-on c-axis tilt oriented grain interfaces. The brick-wall and railway-switch models are

reviewed. The first part of this chapter examines current transfer behaviour in a weak link

free brick-wall model. The later part of this chapter presents the results of a model of

current transfer in strongly connected low-angle c-axis and edge-on c-axis tilt grain

boundaries.

Chapter 8 reviews the principal conclusions presented in this thesis. Modifications to the

numerical model developed in this work and studies of other interesting current flow

problems that could be analysed are suggested.

1.4 References

1 W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933).
2 G. Bednorz and K. A. Müller, Z. Phys. B64, 189 (1986).
3 L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H. K.

Mao, Physical Review B-Condensed Matter 50, 4260-4263 (1994).
4 M. Prester, Superconductor Science & Technology 11, 333-357 (1998).
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CHAPTER 2

Magnetic flux and critical currents in

high-Tc superconductors

2.1 Basic phenomenological theory

Two years after the discovery of the Meissner effect, the first phenomenological theory to

describe the properties of a superconducting body was proposed by H. London and

F. London. They derived the following electrodynamic equations

E J= δ
δ

λ µ
t L

2
03 8 (2.1)

B J= −∇ × λ µL
2

03 8 (2.2)

where λ
µL

s s

m

n e
2

0
2= (2.3)

and m , es  and ns  are the effective mass, the effective charge, and the density of the

superconducting electrons respectively. The zero resistivity property of a superconductor

cannot be described by Ohm’s law and is replaced by equation (2.1) which describes the

acceleration of the superconducting electrons by an electric field in the absence of

scattering. The solution of equation (2.2) and the fourth Maxwell equation (µ0J B= ∇ × )

with respect to the magnetic field in the quasi-static limit describes an exponential decay

of the magnetic field at the surface of a superconductor with characteristic length scale,

λ L , called the London penetration depth.

The phenomenological theory of Ginzburg and Landau is based on the theory of the

second order phase transition at the superconducting transition and as such only really

applies near Tc , however it is often used outside this realm of applicability. Ginzburg and

Landau proposed that a complex pseudo-wavefunction, ψ , describe the order parameter

of the superconducting electrons. The density of the superconducting electrons, ns , is

represented by the square of the modulus of the order parameter, ψ 2
, which is zero in the
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normal state. Ginzburg-Landau theory derives two coupled differential equations from the

minimisation of the Gibbs free energy functional as represented by a series expansion in

powers of ψ 2
. Two important length scales, ξ  and λ , which are closely related to the

coefficients of these differential equations can be introduced and determine the scale of

the spatial variations of the order parameter and the magnetic field respectively.

Abrisokov calculated1 general solutions of the Ginzburg-Landau differential equations,

which can be classified into two groups depending on the value of the Ginzburg-Landau

parameter, κ λ ξ= . If κ is less than 1 2 the surface energy between a superconducting

and a normal region within a sample is positive (type I). As a consequence, the

superconducting state undergoes a sudden transition to the normal state on the application

of magnetic fields greater than Hc  (in samples with zero demagnetisation factor).

However, if κ  is greater than 1 2  the surface energy is negative (type II) and the

superconducting state exhibits perfect diamagnetism only in applied field strengths less

than the lower critical field, Hc1 . At applied field strengths greater than Hc1  the magnetic

field penetrates the sample as a periodic structure of flux tubes (the flux line lattice) with

each tube containing one flux quantum, Φ0 , ( h e2 2 07 10 15= × −.  T⋅m2). For a type II

superconductor it becomes favourable energetically to enter a mixed state of

superconducting and normal regions. The mixed state persists until the upper critical field

value, Hc2 , is reached. The flux line lattice was first observed directly by Essman and

Träuble2 in 1967 by a decoration technique in which iron particles were evaporated onto

the surface of a mixed state superconductor.

2.2 Flux lines in type II superconductors

Attractive forces can trap moving flux lines as they pass defects within a sample and ‘pin’

them to the site of the defect. Motion of the flux line lattice leads to the dissipation of

energy and the loss of the perfect conducting state. Even in the pinned state, the resistivity

is not exactly zero at temperatures above absolute zero, because flux lines can become

thermally activated and move between pinning sites. This resistive component influences

the EJ  characteristic. The nature of flux pinning, the thermal activation of flux lines, and

the representation of the EJ  characteristic are dealt with in this section.
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2.2.1 Flux pinning in type II superconductors

Flux lines predominantly experience an attractive ‘pinning’ force to defects within a

superconducting sample. Defects create a local variation in the free energy of the

superconducting system and thereby attract flux lines to low energy sites where the order

parameter is locally depressed. Pinning forces also arise from magnetic and vortex current

energy distribution considerations. For example, thin films with thickness variations can

trap flux at locations of smallest thickness where the flux lines are shortest and therefore

the magnetic energy at a minimum.

The application of an external current to a type II superconductor in the mixed state

produces a Lorentz force, per unit volume, of

F J BL = × . (2.4)

In the absence of pinning sites, flux lines move freely under the influence of this Lorentz

force and, according to Faraday’s law, induce electric fields in a direction normal to their

movement and the magnetic field direction. This leads to the dissipation of energy and

consequently the presence of an electrical resistance. Pinning sites prevent flux lines from

moving and hence dissipation.

If the Lorentz force density exceeds the pinning force and removes flux lines from pinning

centres, the flux lines begin to move and dissipate energy. The current density necessary to

produce such a Lorentz force is known as the critical current density3, Jc . The free

movement of flux lines is called flux flow and a simple model of the dissipation

mechanism of flux motion was developed by Bardeen and Stephen. Their model suggests

that the resistivity of a superconductor in the flux flow state, ρ f , can be expressed as

ρ ρf n
c

E

J

H

H
= =

2

(2.5)

where ρn  is the normal state resistivity of the superconducting material.

2.2.2 The thermal activation of flux lines in type II superconductors

Even when the pinning force is stronger than the Lorentz force (originating from the

transport current) thermal fluctuations enable pinned flux lines or flux bundles to jump

from one pinning centre to another by overcoming the intervening energy barrier, U0

(pinning potential). This hopping motion leads to a diffusive motion of flux in the

direction of the Lorentz force. In the absence of an applied transport current, thermal

activation causes the flux distribution to slowly equilibrate randomly and therefore with
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no net voltage developed. Below cJ , flux creep and

thermally assisted flux flow (TAFF) are the two principal

regimes of thermally activated flux motion and represent

limiting cases of a thermally activated flux hopping

model first proposed by Anderson and Kim4,5.

The flux creep regime differs from the TAFF regime in

the amount of energy associated with the Lorentz force,

U J BVL c c= , relative to the thermal energy, k TB ; Vc  is the volume of the flux subject to

the Lorentz force. The activation of a flux line can occur if the sum of these two energies

exceeds the energy barrier U0 . Flux creep occurs when U k TL B>> , whereas TAFF occurs

when U k TL B<<  and requires a comparatively smaller current density to unpin flux lines.

The flux motion mechanisms of TAFF, flux creep and flux flow lead to three regimes of

dissipation within the superconductor as characterised by the different dependencies of the

electric field and current density, as described by the EJ  curve of figure 2.1.

Models of thermally activated flux motion principally use the Arrhenius rate equation to

describe the effective jump rate of flux lines

η ω= −0 exp U k TB1 6 (2.6)

where ω 0  is a characteristic vibration frequency of the flux lines and U  the effective

activation energy. Models differ in the functional form of the activation energy and are

either physically or phenomenologically based. The simplest model is the Anderson-Kim

model, which assumes an effective activation energy of the form

U J JAK c1−1 6
and corresponds to a sawtooth shaped pinning potential tilted by the energy potential of

the applied current. Further developments of this model provide a more realistic shape, for

which U  can be written

U J JAK c

p
1−1 6

where the exponent p = −15 2.  is related to the curvature of the pin potential (see figure

2.2). Other models include the phenomenological logarithmic6 and the vortex-glass7

activation barrier functions.

2.2.3 Flux creep and the EJ  characteristic

The electric field due to flux creep can be written as

Figure 2.1
The EJ  characteristic, indicating
different dissipative regimes.
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E J U J J B T k Tc B= −ρ0 exp , ,1 62 7 (2.7)

where ρ0  is an effective flux flow resistivity8 and the exponential term gives the

probability of a thermally activated flux hop. On substitution of the activation barrier

function into equation (2.7), various expressions for the EJ  curve can be obtained. These

are often employed in the numerous studies examining magnetic diffusion in 1D and

rectangular geometries possessing electrical material properties governed by a nonlinear

EJ  characteristic. Gurevich has performed theoretical analyses of nonlinear flux

diffusion9 and shows that the relaxation of the electric field proves to be similar for

different models while the long-time decay of the magnetic moment is essentially model

dependent.

The model presented in this thesis introduces an alternative numerical method of

generating solutions to flux diffusion problems, however the principal aim of this thesis is

to analyse the current transfer behaviour in nonlinear media as few studies have examined

this. Throughout this work, I use a power law expression for the EJ  characteristic of the

superconducting electrically conductive media, which in the isotropic case is of the form

E JJ E J J Jc c

n1 6 = where 1 ≤ < ∞n . (2.8)

This power law behaviour is observed in numerous experiments, including the

experimental work on Bi-2212 presented in this thesis, and was used in theories on

creep10,11 and flux penetration12,13. This corresponds to the logarithmic current

dependence of the activation energy described in the previous section. This representation

in isotropic form contains only two independent parameters, E Jc c
n  and n , and

interpolates from Ohmic ( n = 1) behaviour over the creep regime ( n = −2 20) to hard

superconductors with Bean behaviour ( n → ∞ ).

The nonlinear nature of the EJ  characteristic can also be

attributed to sample inhomogeneity. The curved EJ

characteristics of heterogeneous structures such as

multifilamentary composites and granular superconductors

can often be approximated using the power law expression

of equation (2.8). It has been shown that the degree of

inhomogeneity of a sample is directly related to the n -value

of the EJ  curve and that n Jc J≈ σ2 75 3
; where Jc  is the

mean critical current density and σ J  the standard deviation

Figure 2.2
(a) Tilted sawtooth pinning
potential. (b) Sawtooth pinning
potential with curvature. The
hopping motion of a flux line is
indicated schematically.

(a)

(b)
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of Jc . The critical current, Ic , is often defined as the current at which the electric field

reaches some specific critical value, Ec , and a value of 1 10 4× −  V⋅m-1 is used throughout

the rest of this thesis. The critical current density is typically defined as the critical current

divided by the cross sectional area through which current flows normal to the plane of the

area. If this cross section covers the entire plane through the superconductor then this is

referred to as the macroscopic critical current density, Jc
m , to differentiate this current

density from the local critical current density.

2.3 The critical state model

Critical state models describe how the spatial distribution of magnetic flux within a

sample changes when applied fields or currents change. The presence of pinning centres

impedes the movement of magnetic flux within a superconducting sample. The pinning of

magnetic flux creates a flux gradient inwards from the sample surface and gives rise to

irreversible magnetisation and hysteresis. The concept of the critical state was introduced

independently by Bean14,15 and London16, and assumes that the magnitude of the local

current density is either zero or equal to the critical current density. Solutions of the

magnetic field distribution, and hence the current distribution and magnetisation, in a

sample can be determined from the force balance equation, which equates the pinning

forces within the sample to the magnetic driving force

BJc = × ∇ ×B H1 6 . (2.9)

Regions within a sample at which the local

current density exceeds the critical current

density enter the resistive flux flow state, as

determined by the EJ  characteristic of the

sample. This allows further magnetic flux

penetration until the local current density value

again equals the critical state value. Reversing the

applied field leads to a set of negative currents

penetrating from the sample surface and reducing

the local field value. Examples of the local flux

density profile, according to the Bean critical

state model, in the rectangular slab geometry in

Figure 2.3
Local magnetic flux density profile, according
to the critical state model, in a slab geometry
for increasing applied magnetic field and
applied current, I

app
. Grey and black lines

indicate two different applied field and current
values.
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uniform applied field and self-field are shown schematically in figure 2.3.

The Bean model of the critical state assumes that the value of the critical current density is

constant and independent of the local value of the magnetic field. Extensions of the Bean

model that use phenomenological expressions to take into account a local magnetic field

dependence of the critical current can also be used but the Bean approximation is often

more than sufficient for a first approximation. The magnetic field distribution in

superconducting bodies with rectangular slab and other simple geometries have been

calculated using numerical computer models17 and are often calculated using the Bean

approximation12,18. As previously mentioned, the numerical simulations presented in this

thesis also calculate the magnetic flux distribution but present the results as an analysis of

current distribution.

2.4 Models of current transfer in polycrystalline HTS

Polycrystalline high- Tc  superconductors consist of an array of superconducting particles,

which are to some degree weakly linked. Current transfer within this system is determined

not only by flux pinning but also by defects in the microstructure that control the

connectivity of the superconducting particles. Some defects such as cracks, voids and

large second phase particles act as permanent barriers to current flow, while others exhibit

a weak coupling that is often field and temperature dependent. This spatial distribution of

the superconducting paths available for current transfer produces percolative current flow.

Clearly minimisation of the number and size of permanent obstacles to current flow

improves current transfer and increases critical current density values in bulk HTS

artefacts. With respect to the current carrying volume of polycrystalline HTSs, it is now

well established that the type and/or properties of the boundaries between the

superconducting particles control the macroscopic current transfer of all polycrystalline

high- Tc  superconductors. A number of analytical, but principally qualitative, models have

been proposed to describe current transfer. The task is a challenging one, as direct

evidence of the behaviour of current flow on a microscopic scale is inconclusive19-21, and

the suggested contributing factors are numerous and difficult to quantify. The first models

to describe current transfer in superconductors employed the percolation theory of

networks22 and looked at the factors influencing the critical path within networks of

various types of weak links; predominantly Josephson-coupled weak links. Alternative

models of current transfer have been developed from descriptions of the specific
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microstructure characterising the real material. These have

focused on the microstructure of Bi-2223 and Bi-2212

silver-sheathed tapes. These tapes are fabricated by a

process known as the powder-in-tube23 (PIT) technique

which produces a textured microstructure that is

characterised by plate-like grains or colonies (see section

2.5) that are well aligned with the crystallographic c-axis of

the grains preferentially oriented normal to the tape plane.

The first model of this type was the brick-wall model24, which has a microstructure with a

grain configuration that can be described as a stack of rectangular blocks (see figure 2.4).

Current transfer between grains occurs exclusively at c-axis twist grain boundaries, which

act as weakly coupled short Josephson junctions. Alternative descriptions based upon the

brick-wall morphology have also been suggested25. Microstructural analysis and electrical

transport measurements suggest that the current transfer mechanism described by the

brick-wall model is not the dominant mechanism of current transfer in high temperature

superconductors26-28.

An extension of the brick-wall model is the railway-switch model26. This model suggests

that current flow is restricted to the ab-planes, and frequent low-angle c-axis grain

boundaries provide current paths in the ab-plane and indirectly in the c-axis direction (see

figure 2.5) forming a complex 3D superconducting network. Numerous recent reports

present a modified railway-switch model and suggest that low-angle ab-axis rather than

low-angle c-axis grain boundaries are the predominant intergranular route of current

transfer20,28-30. Limiting the number of grain boundaries, and therefore current limitation,

by increasing the aspect ratio of the grains using improved texturing techniques is a

suggested method of increasing the macroscopic critical current density common to both

the brick-wall and railway-switch models.

A recent addition to these microstructural models is the

freeway model31. This proposes that significant current

transfer occurs through edge colony boundaries, facilitated

by c-axis current redistribution. Due to the complexity

implied in these predominantly qualitative descriptions,

recent numerical analyses have returned to using percolation

theory to describe limiting cases of the railway-switch

Figure 2.4
Schematic representation of the
brick-wall model, showing
meandering current flow via c-axis
twist grain boundaries.

Figure 2.5
Schematic of the railway-switch
microstructural model, showing
current flow via low-angle c-axis
grain boundaries.
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model32,33. Specific models are discussed in greater detail in chapter 7.

2.5 Anisotropy of HTS materials

Most high- Tc  oxide superconductors consist of a highly

anisotropic layered orthorhombic or tetragonal structure made

up of CuO2 planes, coincident with the ab-plane of the atomic

structure, separated by planes of other oxides. The CuO2

layers of this structure are, to various degrees, insulated from

adjacent CuO2 layers and it is believed that charge transport is

mainly confined to the CuO2 planes34. This layered structure

gives rise to a very large resistive anisotropy above Tc  of

ρ ρc ab ≈ −10 104 5  for Bi-221227 and ρ ρc ab ≈ 100  for

Y-12335. At temperatures below around 75 K for Y-12336 and at practically all

temperatures below Tc  in the remaining high- Tc  superconductors, the coherence length

becomes smaller than the CuO2 layer spacing, d , and the layered structure must be

explicitly taken into account.

The Lawrence-Doniach model37 treats the layered superconductor as a stack of

Josephson-coupled superconducting layers. In the 2D limit, the flux line can be considered

as composed of a stack of pancake vortices parallel to the c-axis, and Josephson vortices

parallel to the ab-plane38. Instead of a cylinder of current circulating the individual flux

lines perpendicular to the ab-plane, the layered structure separates the current cylinder into

disks of current, pancake vortices, that circulate in the ab-plane of the superconducting

layers coupled by lower current densities crossing between the adjacent layers (see figure

2.6). The Josephson junction currents between superconducting layers break the ellipticity,

due to the anisotropic penetration depth, of the current

streamlines of the Josephson vortex core (see figure 2.7).

If the thermal energy of the pancake vortices becomes

greater than the Josephson coupling between the

superconducting layers the pancake vortices decouple

and move within the superconducting layers

independently of the vortices in other layers,

transforming the 3D pancake lattice into a 2D planar

vortex structure.

Figure 2.6
Schematic diagram of flux
pancakes showing 2D coupled
stacks.

Figure 2.7
Schematic of the current distribution
around a Josephson vortex in a
layered superconductor. Grey layers
are superconducting and insulating
layer are white.

λc

λab

y

x
z
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The high- Tc  oxide superconductors exhibit strong critical current anisotropy. Fabrication

techniques also impart anisotropy to Jc  by producing an anisotropic distribution of

pinning centres or highly textured grain structures. The behaviour of current transfer and

therefore critical current anisotropy can be considered on both the microscopic and bulk

polycrystalline macroscopic scales.

2.5.1 Anisotropy of HTS materials on the microscopic scale

The microscopic scale involves current flow within

individual grains or colonies of grains. A colony is a stack

of grains with a common c-axis (see figure 2.8) and are

thought to be a basic transfer element of current transport

in many polycrystalline HTS materials. The anisotropy of

the transport properties manifests itself in a strongly

reduced critical current density along the crystallographic

c-axis, Jc c, , in comparison to the critical current along the ab-planes, Jc ab, . The value of

the critical current falls off more strongly for field applied perpendicular to the ab-plane

than for fields parallel to the ab-plane. Typical values of the c-axis critical current for lead

doped and undoped Bi-2212 single crystals are presented in table 2.1. In the

superconducting state, dissipation for currents along the ab-planes and c-axis is thought to

occur by two different mechanisms. The magnitude of the ab-plane intralayer current is

determined by the motion of pancake vortices39; whereas current transfer along the c-axis

seems to be limited by Josephson coupling between the adjacent layers40. The critical

current densities Jc c,  and Jc ab,  have different temperature dependencies. Ginzburg-Landau

theory predicts dependencies close to Tc  of the form

J T Tc c c, ∝ −1 6
and J T Tc ab c, ∝ −1 63 2

.

The value of the critical current anisotropy on the microscopic scale, J Jc ab c c, , , is

therefore temperature dependent and ranges in value.

The experimental determination of the Bi-2212 single crystal value of J Tc c, 1 6  at

temperatures close to Tc  suggests a number of possible dependencies40,41, .such as

J T Tc ab c, ∝ −1 61 2
 and J Tc c, tanh∝ 11 6  consistent with c-axis Josephson coupling.

Figure 2.8
Schematic representation of a grain
colony. Adjacent grains are
separated by c-axis twist grain
boundaries.
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Recent results suggest that current flow is predominantly at the edges of Bi-2212 single

crystals rather than in the bulk due to the presence of strong Bean-Livingston and/or

geometric surface barriers44,45. However strong bulk pinning, relative to surface barrier

strength, could dominate the effect on current flow, particularly at low temperatures.

Uniform current flow is also found at elevated temperatures for which the HTS is in a

highly dissipative state. It is also suggested that very weak bulk pinning could overcome

the effects of surface pinning, placing a stringent limit on the regime in which surface

barriers would dominate the behaviour of current flow46.

2.5.2 Anisotropy of HTS materials on the macroscopic scale

Current flow on the macroscopic scale of polycrystalline bulk samples exhibits different

behaviour to current flow on the microscopic scale. Texturing techniques that induce a

degree of alignment to individual grains within a sample result in an anisotropy of the

macroscopic critical current. Measurements of the

macroscopic anisotropy have been performed on

silver-sheathed superconducting tapes, melt textured

Y-123, and composite reaction textured Bi-2212. The

studies using HTS tape and melt textured Y-123 have

measured the critical current normal to the tape plane,

Jc
norm , and parallel to the tape plane, Jc , and expressed the

macroscopic critical current density as the ratio, J Jc c
norm .

Values of J Jc c
norm  are presented in table 2.2. A study of

the critical current anisotropy of the composite reaction

textured Bi-2212 is presented in section 3.4.3. In the

Table 2.1 Values of J
c c,

 and J J
c ab c c, ,

 in lead doped and undoped single crystal Bi-2212.

Reference HTS Temperature K Jc c,  A⋅m-2 Anisotropy
J Jc ab c c, ,

Kleiner41 Bi2Sr2CaCu2O8 4.2 15 106. × -
Kleiner41 (Bi1-x, Pbx)2Sr2CaCu2O8 4.2 70 106× -

Latyshev42 Bi2Sr2CaCu2O8 0 (extrapolated) 10 106. × -
Cho43 Bi2Sr2CaCu2O8 82 0 24 106. × -
Cho43 Bi2Sr2CaCu2O8 84 0 0725 106. × -
Cho43 Bi2Sr2CaCu2O8 0 (extrapolated) 2 0 106. × -

Martin40 Bi2Sr2CaCu2O8 86 015 106. × 833
Martin40 Bi2Sr2CaCu2O8 87 0 05 106. × 1000

Figure 2.9
Schematic of the macroscopic
(intercolony) current flow in
Bi-2223 tapes, showing the
zig-zag current path. The
macroscopic critical current

densities parallel , J
c , and normal,

J
c

norm

, to the tape plane are also
indicated.



CHAPTER 2. MAGNETIC FLUX AND CRITICAL CURRENTS IN HIGH-Tc SUPERCONDUCTORS

18

framework of the railway-switch model, the current path for Jc
norm  consists of a zigzag

route from one side of the tape core to the other (see figure 2.9) and as such represents a

macroscopic average. Whereas the value of the macroscopic anisotropy does not bear an

academic interest within microstructural models of current transport in polycrystalline

materials, it is a realistic value to use in models of current transfer in bulk HTS devices.
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CHAPTER 3

Bi-2212 CRT: Experimental

characterisation and assessment

3.1 Introduction

One of the main tasks in the development of bulk HTSs for large-scale application is the

further improvement of the critical current density value achievable in these materials. In

order to fabricate large-scale artefacts the superconductor must be a polycrystalline

material. As discussed in section 2.4 the polycrystalline microstructure of bulk

superconducting samples limits current transfer in HTSs and textured microstructures

favour high critical current values. A number of techniques have been employed to induce

texture in HTSs including melt texture processing1 and deformation processing of PIT

tape2. The material studied in this thesis is Bi-2212 prepared by the composite reaction

texturing (CRT) method3,4, where a composite aligned MgO fibre/Bi-2212 preform,

prepared by a polymer binding and processing route, undergoes partial melt processing.

The MgO fibres provide nucleation sites and lattice matching of the fibres and the melt

produces melt growth in the crystallographic ab and c directions, as dictated by the fibre

orientation. The processing technique distributes fibres randomly in a planar manner

relative to the flat surface of a sample, and can be cast with some preferred fibre

alignment, resulting in a textured microstructure with the c-axis preferentially aligned

perpendicular to the plane of the fibres.

The implementation of Bi-2212 in power system applications requires characterisation that

accurately evaluates the benefits of fabrication procedures and the suitability of the

electrodynamic properties for an intended application. To measure the basic characteristics

of Bi-2212 CRT superconductors, an apparatus for the measurement of current transport

characteristics has been constructed. The basic characteristics and measurement apparatus

are the subjects of the first part of this chapter. Although the models developed in this

thesis examine current transport in nonlinear media and are therefore applicable to

superconducting systems in general, they principally, but not exclusively, model the
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 behaviour of the Bi-2212 CRT system. For this purpose, the range of parameters

appropriate to macroscopic models has been experimentally examined.

The models presented assume the critical state of the superconductor has no magnetic field

dependence. The validity of this assumption and the range of parameters used in the

models is examined in more detailed measurements in the latter part of the chapter, with

specific reference to the aspects of current transfer, anisotropy and the self-field effect.

3.2 Experimental apparatus for current transport

measurements

Measurement of the magnetisation of a superconductor is a powerful technique for the

study of critical currents. However, transport measurements are in some respects more

appropriate. Transport measurements can show how a superconductor will behave in

applied situations and are not subject to the same approximations used in the analysis of

magnetisation measurements. Current transport measurements have been performed using

a specially built apparatus (see figure 3.1). Current-voltage characteristics were measured

using the four terminal method with the sample at 77 K in both self-field and applied field.

The apparatus is composed of three control/measurement systems:

• Magnetic field control and measurement.

• Current-voltage control and measurement.

• Cryogen control.

Each system has interdependent functions and all are controlled from a single personal

computer (see figure 3.2).

3.2.1 Control hardware and software

Data acquisition and control of the transport measurement apparatus is performed using a

Viglen P133 personal computer. This uses an IOTECH general purpose interface board

and corresponding visual basic driver for communication over an IEEE bus, which

employs both standard Keithly IEEE device dependent communication protocols and the

SCPI command language. Communication with the computer parallel port uses a dynamic

link library supplied with ‘The Visual Basic Programing API’ book. The control and

acquisition software is programed in the visual basic 3.0 programing language. The

graphical user interface of the control and acquisition program is a standard windows

environment and allows the user to set up a series of current-voltage measurements each
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with different specifications; such as applied

magnetic field, starting current and ramping

current increment. Each measurement is

plotted as a real time graph and is terminated

when a user defined applied current or sample

voltage criterion is reached. A datum point is

measured every 0.3 s during a measurement of

the EJ  characteristic. All the settings for each

of the instruments can be changed from the

user interface and the acquired data can be

saved onto disc after the measurement series.

The program has extensive error prevention,

safe guarding the user from entering incorrect

values or values that are out of the

instrumentation’s range. In addition, the

program has extensive capabilities for handling and trapping errors that occur in the

program code or that arise from serial requests.

3.2.2 Magnetic field control and measurement

During the measurement of an EJ  characteristic, a magnetic field can be applied to the

sample. A Helmholtz split pair of solenoids produces the magnetic field, with iron pole

pieces at their furthest separation, 115 mm. The maximum field produced is 0.43 T and is

homogenous to ±1 mT within a volume 20 mm perpendicular to the pole piece axis. The

accuracy of the applied field is 0.3 mT and was confirmed with a hand held probe over the

150 mT range. The magnet is powered by a 35 A, 60 V Hewlett Packard 6574A power

supply operating in the constant current mode. The field direction can be changed by

reversing the direction of the applied current and is accomplished using a Telemechanique

contactor, which is switched from a mains supply controlled by the output of channel 0 of

the computer parallel port, LPT2. The relay can only be switched at zero applied voltage.

This prevents the emf of the magnet damaging the power supply if accidentally switched.

The magnet cycles before a measurement series to ensure the magnet calibration is

reproducible and not affected by magnetic hysteresis within the iron pole pieces. An offset

current is applied to the electromagnet to ensure an initial applied field value of zero. The

magnetic field strength is measured at each measurement datum point using a Seimens

Figure 3.1
Picture of critical current measurement
apparatus.
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KSY10 Hall effect probe, mounted on a magnet pole piece. The Hall probe is supplied by

a current source, stable to 0.01 %, which ensures a similarly stable field dependent Hall

probe voltage response. This voltage is measured using a Keithly 2000 digital multimeter

and scan card. The Hall effect probe has been calibrated with respect to Hall probe voltage

using a Hirst GM04 gaussmeter. The calibrated field value is deduced from two 3rd order

polynomials, covering two different field ranges. The computer magnet control uses a

calibration of field against applied current to approach the user defined set field quickly

and iterative measurement of the Hall probe voltage to attain the user defined set field.

The angle, which the plane of the sample surface makes with the applied field direction,

can also be changed, to an accuracy of 0.01 degrees, by the rotation of a goniometer in

which the sample mount rests. At high currents, the applied current return lead from the

sample generates a magnetic field, which in measurements on Bi-2212 does not have a

negligible effect on the sample. To eliminate this effect an aluminium cylinder, in which

the sample is at the centre, acts as the applied current return path.

3.2.3 Current-voltage control and measurement

The applied sample current is supplied by a Hewlett Packard 6031A power supply in

constant current mode and can supply a maximum current of 122 A accurate to 10 mA.

The value of the sample current is monitored using the voltage across a 0.01 Ω manganese
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Schematic representation of apparatus for current transport measurements, inset shows instrumentation
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resistor in series with the sample current circuit. The voltage across the sample is

measured using a Keithley 182 nanovoltmeter.

Thermal emfs are the principal cause of noise in the voltage measurement. Noise is

minimised by using low noise contacting techniques and minimising thermal gradients in

the voltage leads. Because the noise changes slowly over time, using the nanovoltmeters

pre-programed filters or changing the signal integration time is ineffective. In order to

further reduce the effect of thermal emf noise several EJ  characteristics are measured and

averaged.

3.2.4 Cryogen control

Measurements are taken with the sample immersed in a liquid nitrogen reservoir. Liquid

nitrogen must be periodically added to the reservoir to compensate for nitrogen gas boil

off. This is performed by a specially designed nitrogen filler and controlled by the

computer. An led sensor at a prescribed height in the reservoir monitors the liquid nitrogen

level, when the level is low the reservoir is filled. The nitrogen filler controls the filling

and the computer controls when this can be performed in order to avoid filling during a

measurement. Two electronically controlled valves are used to fill the reservoir from a

nitrogen dewar, one to fill the sample space and one to release dewar overpressure.

Attempts were made to vary the sample temperature by using the lower partial pressure of

liquid nitrogen in a pumped helium-nitrogen mix to vaporise liquid nitrogen, the enthalpy

of which would cool the surrounding liquid nitrogen5; however, this proved unsuccessful.

3.3 Basic characteristics of Bi-2212 CRT current leads

Some of the basic properties of the Bi-2212 CRT material are examined in this section.

These include grain connectivity, the temperature dependencies of the critical current and

resistivity, and because of its importance in the specification of the models presented in

this thesis, the nonlinearity of the EJ  characteristic.

3.3.1 Transport current-voltage characteristics

The apparatus described above allows for more detailed, accurate and reliable d.c.

transport measurements of the Bi-2212 CRT material than previously available. The

self-field EJ  characteristic of the material (see figure 3.3) is well described by a power

law curve fit (see subplot of figure 3.3) and typically has an exponent of 6-8. The sample

annealing and reaction process can further modify this range. The room temperature
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normal state resistivity of this material is 2 10 5× −  Ω⋅m. Transport measurements of the

EJ  characteristic of Bi-2212 CRT samples in magnetic field have been performed. All

measurements are field cooled and as such could include magnetic field history effects.

The hysteretic behaviour of the samples in applied field has been examined. Measurement

of the transport Jc  of the Bi-2212 CRT material at 77 K as a function of increasing

(upward leg) and decreasing (downward leg) applied field over a 120 mT field range (see

figure 3.4), the largest field applied of the transport measurements presented, does not

show any hysteretic behaviour on the scale of 0.25 A; the current increment for all of the
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A plot of a typical EJ  characteristic. The inset shows a log-linear plot of the EJ  curve, and demonstrates
power law behaviour. The EJ  curve presented has an n -value of 8.

Figure 3.4
Plot of critical current versus applied magnetic field; closed black symbols indicate increasing field and
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transport measurements presented in this chapter. Hysteretic behaviour is only likely to

occur for inhomogeneous or granular superconductors which have very different values of

Jc  in the grains and the grain boundaries; this leads to flux motion between grains while

flux within grains remains pinned6. The nonhysteretic behaviour of the Bi-2212 CRT

material suggests the samples are homogeneous and possess good grain connectivity. This

is corroborated in section 3.3.3 where the length scales over which current loops circulate

in magnetised samples is discussed and found to be of the same scale as the sample

dimension.

3.3.2 Measurement of the transition temperature in bulk Bi-2212 leads

As discussed in section 1.1 the transition temperature is an important characteristic of

superconducting materials. It was decided to develop a non-destructive Tc  measurement

method for bulk Bi-2212 leads since existing apparatus could measure the Tc  of only

small samples. The sample was placed within a slot in a large copper block, with sample

current leads, voltage sensing leads and a thermocouple attached (see figure 3.5); a copper

block was then gently inserted into the slot on top of the sample. The entire arrangement

was then cooled in liquid nitrogen, removed, and allowed to warm. On removal from the

liquid nitrogen, a small sample current was applied and the voltage drop across the sample

and temperature monitored. The Tc  of post annealed Bi-2212 CRT material is about 90 K

as can be seen from both the transport resistivity measurement and a.c. susceptibility

(ACS) measurement of figure 3.6.

3.3.3 Magnetisation measurements

Calculations of the critical current density of the Bi-2212 CRT material from

magnetisation measurements have been performed and are based upon the Bean model of

Figure 3.6
Plot of in phase voltage signal versus temperature (ACS
measurement) and resistivity versus temperature (transport
measurement), both indicate T

c
≈ 90 K .

Figure 3.5
Schematic of apparatus used to measure
T

c
 of bulk Bi-2212 current leads.
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the critical state7. Measurements were taken using an Oxford Instruments vibrating sample

magnetometer8 with 12 T superconducting magnet and continuous flow cryostat with a

temperature range of 4.2 K to 300 K. Magnetisation measurements of a sample with

dimensions l = × −192 10 3. , w = × −194 10 3. , t = × −0 41 10 3.  m were used to calculate the

magnetisation critical current data presented. The sample was assumed to approximate the

geometry of a disc and the following formula9 used to calculate Jc

J
M

Rc = 3

2

∆
(3.1)

where R  is the radius of the disc ( ≈ × −193 10 3.  m), approximated as lw π1 61 2
and ∆M is

the irreversible magnetisation of the sample as determined from the magnetic hysteresis

cycle. The applied field was perpendicular to the broad face of the sample. This data was

combined with transport critical current measurements, courtesy of M. Chen, to evaluate

the temperature dependence of cJ  in zero field4 (see figure 3.7). A progressive increase in

cJ  with decreasing temperature is observed and is approximately linear with temperature

in the range 69-82 K, reaching 55 107. ×  A⋅m-2 at 69 K and tailing off at around 90 K in

agreement with the transport and ACS measured value of Tc . The marked increase in cJ

below 20 K leads to a value of 1 109×  A⋅m-2 in zero field at 5 K and is in excess of

6 108×  A⋅m-2 at 5 K and 12 T.

Figure 3.7
Plot of critical current density as a function of temperature, calculated from transport current and
magnetisation measurements on Bi-2212 CRT material; transport measurements (grey closed circles)
courtesy of M. Chen.
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The cJ  calculated from magnetisation data in polycrystalline HTS materials requires

careful interpretation. Poor grain connectivity can hinder the magnetically induced current,

preventing flow between neighbouring grains (intergranular current) and constraining flow

to within the volume of single grains (intragranular current). Measuring the irreversible

magnetisation for a sample with successively reduced dimension, R , allows one to clarify

which type of current flow is dominant within a measured sample and investigate the grain

connectivity. Equation (3.1) implies that if only intragranular currents flow the slope of a

plot of ∆M  against the sample dimension R  should be zero; i.e. cleaving the sample does

not effect the current path. Similarly, non-zero gradient implies dominant intergranular

current flow. Measurements of the irreversible magnetisation of a successively reduced

sample were taken at different temperatures and field values, and plotted against the

sample dimension (see figure 3.8). Further analysis of the scale over which current loops

circulate in magnetised samples was performed using the current scaling length analysis of

Angadi et al10. This employs the slope of the reverse leg of a magnetic hysteresis loop

measurement, as the field is reduced slowly from its maximum value, to determine the

length scale, Λ , of the critical current path in the sample. The current scaling length for a

thin uniform disc of superconducting material with radius R  and thickness t  in an applied

field perpendicular to the radius is

Figure 3.8
Plot of current length scale, Λ , and absolute magnetisation, ∆M , versus the approximated radius of a

sample which is progressively reduced in size. The plot presents data at several magnetic field and
temperature values.
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Λ Θ= �
��

�
��

dm

dH π 2

1

3
(3.2)

where Θ = �
��

�
�� −ln

8 1

2

R

t
.

Again approximating a square slab geometry to that of a disc the dimension of the current

scaling length has been calculated, for a sample at 20 K and 30 K at various field strengths

(see figure 3.8), and found to be of approximately the same size as the sample. This

indicates that current flow does not occur on a scale of the order of the grain size and that

the current path occupies the entire volume of the sample; which implies good grain

connectivity in that current flow is inhibited principally by the dimension of the sample

and not by grain boundaries. Figure 3.8 shows that both analyses suggest that the current

scaling length is of the order of the sample size and that grain connectivity in the Bi-2212

CRT material is good. This indicates that the combination of magnetisation and transport

measurements in figure 3.7 is at least justifiable in terms of the current length scales

involved.

3.4 Magnetic field and critical current anisotropy of Bi-2212

CRT

The magnetic field anisotropy has been investigated to characterise the Bi-2212 CRT

material and assess its contribution to the self-field effect in anisotropic HTSs. The

measurements have also been used to study the texture of this system. Finally, for the

purposes of modelling macroscopic systems the value of the critical current anisotropy

was examined.

3.4.1 Magnetic field anisotropy

The Bi-2212 system has one of the largest critical current anisotropies of the HTS

systems. The magnetic field anisotropy of the critical current parallel to the tape plane was

characterised with the magnetic field applied perpendicular, B⊥ , and parallel, B|| , to the

tape plane; the critical current was determined from the average of 20 EJ  curves per field

value. For B||  the reduction of Jc  with increasing field can be divided into two regions,

demarked by a change in slope occurring at 12 mT (see figure 3.9). The different

behaviour of Jc  with field direction confirms that the sample is anisotropic, and is an

indication of a textured microstructure. The kink is absent in untextured Bi-2212 without
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MgO fibres and comparison with Bi-2212 single crystal J Bc ( )  data4,11 further suggests

that grains within the sample are aligned.

3.4.2 Magnetic field anisotropy and texture

Single crystal and tape measurements12 indicate that the magnetic field limitation of the

critical current is primarily a function of the magnetic field component normal to the CuO2

planes13; i.e. parallel to the c-axis. This suggests that in granular materials the

misalignment of individual grains with respect to the tape plane is the principal cause of

the magnetic field limitation of the critical current. Analysis has been performed to

investigate granular misalignment in Bi-2212 CRT. Following the analysis of Hensel et

al14, using J Bc ( )  data for applied field directions along a range of angles, J Bc ( , )θ , to the

tape plane (see figure 3.10, plot a) the effective mean misalignment angle, φ m , which

determines the decay of Jc  for field directions parallel to the tape plane, has been

determined. The effective mean misalignment angle can be calculated by scaling J Bc ( , )θ

as J Bc ( cos )θ  and using the expression

cos( ) /*90o − = ⊥φ m cB B

where Bc⊥
*  is the critical field component normal to the tape plane, defined by Hensel as

the intersection of the plateau value with the master curve (see figure 3.10, plot b). Values

are presented in table 3.1. Note J Bc ( )  for B  parallel to the c-axis is represented by the

master curve and shows an exponential decay of cJ  with field.

Figure 3.9
Plot of the critical current as a function magnetic field applied both parallel and perpendicular to the sample
surface and perpendicular to the applied current direction.
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The mean misalignment angle measured from the sample surface, S , or more accurately

the mean texture plane, has also been calculated from J Bc ( )  data for field directions

parallel, J Hc S||3 8 , and perpendicular, J Hc S⊥1 6 , to the sample surface, employing the

relation15

J H J Hc S c S m||3 8 1 6= ⊥ tanφ .

For the samples measured the values for the two methods agree within their standard

deviations (see table 3.1). A range of misalignment angles is found with values which

predominantly indicate poor texture. The 10° misalignment angle calculated for sample

246 is in approximate agreement with pole figure analysis which reveals that over 70% of

the Bi-2212 grains are aligned to within 15° of the normal to the texture plane in this

sample.

Table 3.1 Study of misalignment angle in Bi-2212 CRT, sample 246 results courtesy of M. Chen.

Sample name φ m  (Hensel) φ m  (Miu)
246 10°
an05 22°
rb3a Mean=26°±2° (std) 25°
an02 Mean=25°±2° (std) 27°

3.4.3 Critical current anisotropy

The flexibility of the CRT process allows for the production of large section textured

samples. This enables the application of voltage taps across the thickness of a sample and

Figure 3.10
Plot (a), magnetic field dependence of the critical current density at 77 K for various field directions relative

to the tape plane. Plot (b), data of plot (a) replotted as J
c

cosθ( ) , and B
c⊥

*  indicated.
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thereby the measurement of the critical current normal to the tape plane, Jc
norm . The

self-field critical current density value normal to the tape plane of a thick textured sample

is 2 4 106. ×  A⋅m-2 which gives a critical current anisotropy ratio, J Jc c
norm/ , of 5. An

anisotropy value of 3 was obtained on a similar sample by A. Kursumovic. In contrast a

value of 30 was obtained by M. Chen4 prior to this work. Whereas this comparatively high

value could be attributed to a reduction of the Jc  of recently measured samples, both the

values of Jc  and Jc
norm  have decreased and increased respectively compared to the values

of reference 4. A range of anisotropy ratios and by implication varying degrees of texture

has been found in the samples measured. This is thought to be a consequence of the

sensitivity to processing conditions and MgO fibre quality of the Bi-2212 CRT material.

Development problems encountered in the large-scale production of MgO fibres, in

preparation for, and during the technology transfer of the Bi-2212 CRT HTS system,

along with changes in sample processing personnel has meant that throughout the

experimental period of this work the texture quality of the samples available has been

poorer. This has in turn lead to smaller critical current density values and less significant

magnetic field anisotropy. Recent refinement of the processing techniques has produced

samples with cJ  values of over 30 106×  A⋅m-2, which surpass the cJ  values obtained at

the beginning of the CRT project.

To investigate the effect on anisotropy in the macroscopic systems modelled, a range of

values has been used in order to reflect the range found in the real Bi-2212 CRT system.

The range employed is consistent with values obtained by experiment and values in the

literature (see section 2.5.2) and is limited only by the convergence criteria of the solution.

The appropriate description of anisotropy in both microscopic and macroscopic modelled

systems is not trivial and is discussed at greater length in section 4.3.

3.5 The self-field in HTS

The models of current flow described in this thesis assume that the superconductor has no

critical state field dependence. In this section, a study of the magnitude of the self-field

effect on the transport properties of the Bi-2212 system and aspects of the critical state

dependence on the magnetic field are presented.
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3.5.1 Transport properties and the self-field

The transport current through a conductive media

possessing slab geometry with width several times its

thickness produces a self-field at the edges, with a strong

component perpendicular to the sample surface16,17. For a

thin sample of thickness 2t  carrying a current density J ,

the field is purely perpendicular at the edges and

approximately of magnitude Jt . In a textured material,

with ab-planes parallel to the slab surface this component

is perpendicular to the ab-planes. The critical current

density along the ab-planes, Jc ab, , and the irreversibility

field, Hirr , for anisotropic superconductors is much lower

when the magnetic field is perpendicular, H ab⊥ , to the ab-planes than when the magnetic

field is parallel, H ab|| , to the ab-planes18,19. In such a case, the critical current density is

J Hc ab ab, ||3 8  at the centre of the sample and approaches the smaller value J Hc ab ab, ⊥1 6
towards the edges of the sample resulting in a critical current distribution across the

sample cross section. This underestimates the self-field unaffected value of the transport

critical current density as measured values are of the macroscopic average critical current

density Jc
m , J I Ac

m
app= /  (see section 2.2.3). Attempts have been made to reduce the

Figure 3.11
Schematic arrangement of the
superconductor and the copper
conductors for the reduction of the
perpendicular component of the
self-field. All three conductors
carry the same current and have
the same dimensions: w=6.48mm,
2t=0.95mm, h=0.2mm.

Copper Superconductor
y

x
z

H=I/2w

I

2t

h

w
H

I

Solution line

Figure 3.12
Contour plots of magnetic flux density distribution in the vicinity of the three and single conductor
configurations, white rectangles delineate conductor cross sections. Each conductor has an applied current
which is equal to the I

c
 of the superconducting device, which is 75A. Dimensions are in metres and the

colour index refers to units of magnetic flux density in Tesla.
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self-field effect by aligning two superconductors side by side20. In the method presented

here two copper conductors with the same cross section as the superconductor are placed

on either side of the sample, as shown in figure 3.11, and equivalent currents passed down

all three conductors. The magnetic fields of the individual conductors superpose

producing, approximately, a field that is homogenous and parallel over the superconductor

surface. A computer simulation of the magnetic field of a single conductor and of the

three-conductor configuration using a finite element model has been performed. The

dimensions used for the model were exactly as stated in figure 3.11. The model assumes

all the conductors carry a uniform applied current density equal in magnitude to the

critical current density of the superconductor. The specification of a uniform current

density distribution is not a limitation of the finite element analysis. Whereas a multiple

parameter fit to a generalised critical state model may have given some indication of the

form of the current density profile of the sample, direct comparison between a single

conductor, which has complicated perpendicular components modifying the field profile

within the conductor and the three-conductor model would then not be possible. Figure

3.12 shows a contour plot of the magnetic field density of the different configurations.

Plots of the magnitude of the x  and y  components of the magnetic flux density along the

width of the geometries, calculated just above the upper surface of the conductors (see

figure 3.13), indicate that at self-field the maximum perpendicular component of magnetic
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Figure 3.13
Plot of the x  and y  components of the magnetic flux density above the current carrying single and

three-conductor configurations, see indicated solution line in figure 3.12, as computed by finite element
analysis.
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field near the edge of the sample is reduced by a factor of 6; this is of particular

significance for anisotropic samples.

The three-conductor geometry allows the critical current density to be measured as a

function of field strictly along the ab-planes, by applying a magnetic field along the

ab-planes and perpendicular to the current direction. The critical current density as a

function of magnetic field is shown in figure 3.14 for two cases: (a) for all three

conductors carrying the same current and (b) where only the superconducting sample

carries current. In the first case, the critical current at zero applied field, is higher than the

second by more than 20 %. At high magnetic fields the two curves are almost

indistinguishable and decrease slowly with increasing field.

3.5.2 The critical state field dependence and the self-field

The Bean treatment of the critical state involves a critical current density which is

independent of the local magnetic field (see section 2.3) and is constant inside the

superconductor. In a slab geometry the internal field varies linearly with position.

However, the critical state is often more realistically described by a field dependent

critical current density J Bc 1 6  for which the field profile varies with position in a way

determined by Maxwell’s equation ∇ × =H J ; with J J Bc= 1 6  determined by the pinning

mechanism and summation model applicable for the particular material21. The critical

current field dependence is often deduced by performing magnetisation measurements or

Figure 3.14
Critical current as a function of applied magnetic field applied both parallel to the sample surface and
perpendicular to the applied current direction. Curve (a) three-conductor configuration, curve (b) single
conductor.
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measurements of a.c. field penetration in superconducting

cylinders. Fitting routines are used to distinguish between

different critical state models; some involving three

unknown parameters22. In collaboration with

N. Adamopoulos a method that enables the deduction of

part of the magnetic field profile directly from transport

measurements has been developed23 which can be

applied to any class of HTS material.

For a slab geometry the self-field peaks at the edges of

the sample, where it turns around the cross section (see

figure 3.13). In the case of an anisotropic high- Tc

material textured with the ab-planes parallel to the slab

surface, the y -component of the self-field reduces the

local value of the critical current density. Other groups

have studied this self-field effect by measuring the value of the critical current as a

function of sample thickness as the material is progressively thinned11,24. Although this

demonstrates that the self-field does affect the transport critical current, it is not

quantitative, since samples with different thicknesses correspond to different spatial

variations of the self-field and therefore y -axis field component. In the three-conductor

configuration, the self-field is uniform across the sample width both in direction and

magnitude and the field profile inside the material is independent of sample size and

determined only by the field dependence of J Hc ab ab, ||3 8 .

A schematic profile is shown in figure 3.15, which qualitatively shows the main properties

of the critical state. The current density dH dyx /  is maximum at the centre ( Hx = 0 ) and

minimum at the surface ( H H x ax sf= =1 6 ). Curve (a) corresponds to the self-field

situation, while curves (b), (c) and (d) correspond to different values of the applied field

directed parallel to the sample surface. Curve (b) represents the magnetic flux profile for a

small increment of the applied magnetic field from zero, for which the profile is displaced

along the x -axis. At some characteristic value H *  of the applied field, the field at one

surface of the sample becomes zero, curve (c). Since the field gradient is high at the

surface, the flux profile is sensitive, locally, to small changes of the magnetic field. At

larger fields, the field profile has the shape shown by curve (d). Assuming that the

Figure 3.15
A hypothetical field profile, f x( ) ,

inside a superconducting slab of
width 2a at zero applied field and
its evolution under an applied
magnetic field parallel to the
surface of the sample and
perpendicular to the current. The
field is shown (a) for the self-field
situation, (b) for a small increment
of the magnetic field from zero, (c)

at a characteristic value H *  and
(d) at larger fields.
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magnetic field at one surface is H H x aA = = −1 6  and H H x aB = =1 6  at the other when

the magnetic field, Happ , is applied, the measured critical current is

I H w H w w H H w Hc B A A B= − = − = ∆ (3.3)

or
I

w
Hc = ∆

with ∆H H HB A= − . Correspondingly, the applied field is given by

H
H H

app
B A=

+1 6
2

. (3.4)

For the Bean critical state ∆H , and therefore cI , remains constant. However, this is not

the case for field dependent critical states where ∆H  and cI  progressively decrease.

When Happ  reaches some critical value H * , the magnetic field HA  becomes zero and

H Happ = ∆ / 2 . At this point the variation of cI  with Happ  will show a point of inflection,

as any small change of the applied field will affect HA  much more than HB , due to the

high gradient of the flux profile at A . At higher applied fields, the magnetic fields HA  and

HB  approach each other, corresponding to a gradual reduction of the critical current with

increasing field.

The field distribution inside the sample at self-field possesses some characteristic

properties. The field distribution, described by the function f x1 6  in figure 3.15, once

determined, describes the properties of the magnetic flux distribution, and measured

critical current, at all levels of the applied field. If J A  and JB  are the current densities at

the two surfaces ( J df x dxA x a
= + =−δ1 6 /  and J df x dxB x a

= + =δ1 6 / ), from equations (3.3)

and (3.4) we have

d H

dH

J J

J Japp

A B

A B

∆1 6 = −
+

2 . (3.5)

This can also be written as

J

J d H

dH

R HB

A

app

app=
+

− =4

2

1
∆1 6 3 8 .

Equation (3.5) shows that the quantity d H dHapp∆1 6 /  attains a maximum value of 2 at

H Happ = * , in the extremum case when the critical current density JB  approaches zero. At
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the point of inflection, where H Happ = *  and ∆H H= 2 * , the magnetic field at point B ,

HB , will be 2H *  and that at point A , HA , will be 0. Therefore, equation (3.5) becomes

J H R H J2 0* *2 7 2 7 1 6= (3.6)

where R Happ3 8 , which is a measured quantity, gives the ratio between J A  and JB  at any

instant. Using a series of expansions applied to an arbitrary field profile (see Appendix A)

one can find the expression for the ratio of the two defined current densities at A  and B ,

J 01 6  and J Hsf∆ / 23 8  where ∆Hsf  is the value of ∆H  at zero applied field

J J
H d H

dH
sf

app
H Happ

0
2

1
1

2
1 6 1 6=

�
��

�
�� −
�

�
��

�

�
��

=

∆ ∆

*

. (3.7)

Given the field dependence of the critical current for an applied magnetic field aligned

strictly parallel to the ab-planes of a measured sample, equations (3.6) and (3.7) give the

field dependence of the self-field unaffected critical current density at the two different

field values, 2H * and ∆Hsf / 2  (normalised with respect to the value at zero magnetic

field).

The above analysis assumes perfect cancellation of y -axis components of the self-field at

the edges of the superconductor, whereas figure 3.13 shows the magnitude of these

components is only reduced. Further, no sample is perfectly textured, and there are always

inhomogeneities such as porosity and cracks. In the application of this analysis to real

materials these approximations must always be considered. However, for an ideal sample,

the above treatment has shown that properties and features of the field profile can be

deduced without the use of any fitting routines.

It was believed that the entire field profile could be deduced by just considering the flux

profile to be a single function that moves within the bounds of a sample under the

influence of an applied field. However such a solution is not analytically soluble and

requires fitting routines thereby providing no improvement upon existing methods. If

fitting routines are used, the three-conductor configuration allows the field profile to be

measured independent of sample size as a function of field strictly along the ab-planes; i.e.

subject to the combined field of the applied field and self-field directed parallel to the

ab-planes. This allows the horizontal axis of figure 3.14 to be more readily corrected. The

magnetic field x -component plotted in figure 3.13 indicates that an offset of 7 mT for the

zero field datum point would be reasonable.
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The above analysis of the critical current as a

function of the applied field requires that the

point of inflection and the first derivative at

this point, as well as at subsequent points, can

be deduced from the experimental results. A

simple way to find the point of inflection is to

note that when the applied field reaches H * ,

HA = 0  and so ∆H H= 2 * . Therefore, the

point of inflection occurs at the field value

coinciding with the intersection of the line

I w Hc app/ = 2  with the experimental line

I H wc app3 8 /  (see figure 3.16). For the data

presented the field value is 6.8 mT. Also the

field value corresponding to ∆Hsf / 2  as employed in equation (3.8) is 7.4 mT. The

gradient of the experimental line, I H wc app3 8 / , and the normalised critical current values

at these fields are shown in table 3.2.

These normalised values of the self-field unaffected critical current density, suggest a

relatively weak magnetic field dependence of the critical current density in the Bi-2212

CRT material. This indicates that the omission of a self-field critical current field

dependence in the computer models developed in this thesis is reasonable for this material.

Given that there is a 20 % reduction in the critical current density measured for the single

conductor in self-field, this weak self-field dependence suggests that the perpendicular

component of the self-field gives rise to the underestimate of the measured value of the

critical current density as given by curve (a) of figure 3.14. This further suggests, that this

Bi-2212 CRT sample is anisotropic which indicates that this sample of the material is well

textured, an assumption of this analysis, and that it is this anisotropy that is the principal

Table 3.2 Critical current normalised with respect to J 0( ) .

Field at which
critical current

density
calculated

Field
value
mT

Absolute value of the
gradient of

I H wc app3 8 /  at field

value

Equations
used

Self-field unaffected
critical current density

at field, normalised
with respect to J 01 6

H * 6.3 0.1645 (3.6)&(3.7) 0.85

∆Hsf / 2 7.4 0.1521 (3.8) 0.92
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Figure 3.16
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strength, indicating the intersection of the

experimental line I H w
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/ = 2 .
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cause of the materials self-field critical current limitation. In contrast the critical current

density of sample an02 measured using the three-conductor arrangement is 8 % larger than

that measured using a single conductor arrangement and has a relatively large calculated

misalignment angle (see section 3.4.2) which suggests it is poorly textured.

The above treatment has implications for a wide class of materials and measurement

configurations. The self-field effect is expected to be enhanced in samples with thickness

comparable to their width, in which the field non-uniformity extends deep inside the

material and away from the edges. In thin films, the edges are subjected to a stronger field

than the middle part, and the strong perpendicular component will severely affect the

depinning of vortices25. These issues have to be addressed for a meaningful comparison of

results taken from different samples and under different conditions.

3.6 Summary

An apparatus for current transport measurements and, briefly, the processing methods of

the Bi-2212 CRT material have been described. The basic characteristics of the Bi-2212

CRT material have been determined such as Tc , the temperature dependence of cJ in zero

field and the current scaling length. The range and value of suitable input parameters for

models of the macroscopic behaviour of this material have been studied. It has been

shown that the EJ  characteristic of the Bi-2212 CRT material can be described well by a

power law and has n -values typically in the range 6-8. The critical current

anisotropy, J Jc c
norm/ , in this material covers a range from near isotropic to possibly as

high as 30.

Properties of the self-field of the Bi-2212 CRT material have been studied using a method

to measure the critical current density as a function of field strictly along the ab-planes of

a HTS sample, which is only nominally affected by perpendicular magnetic field

components. Further, a mathematical analysis has been developed that enables the

deduction of part of the magnetic field profile directly from transport measurements which

can be applied to any class of HTS material. Employing this analysis it has been found

that the Bi-2212 CRT material has a weak critical current field dependence and that the

magnetic field anisotropy is the principal cause of this materials self-field critical current

limitation. Finally, given that the 2D models used throughout this work assume magnetic

field z -component derivatives tend to zero, it is reasonable to ignore the self-field effect

when modelling this class of materials.
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CHAPTER 4

A model of current transport in

nonlinear media

4.1 Introduction

The mathematical representation of current flow in conductive media can be described by

either a partial differential equation (PDE) or an integral equation. Only in the very

simplest of cases is it possible to find exact analytical solutions to these equations, and in

general one has to rely on numerical techniques to find approximate solutions. The finite

element (FE) method is a general technique for numerical solution of differential and

integral equations and is the main, but not exclusive, method employed for solving current

transfer problems in this thesis. The method was introduced by engineers in the late

1950’s and early 1960’s for the numerical solution of PDEs in structural engineering.

When the mathematical study of the FE method started in the mid 1960’s it soon became

clear that it is a general technique for the numerical solution of PDEs and integral

equations.

This chapter describes the FE method employed in the current flow models presented in

this thesis. The principal approaches used in the numerical solution of PDEs and the

electromagnetic formulation used to express mathematically the physical model of current

flow as a PDE are discussed. An overview of the FE representation of the PDE describing

the physical system is presented and examined in detail. Finally, the numerical solution of

the FE equation system and other computational aspects are considered.

4.2 Alternative modelling approaches

The approach used to solve numerically PDEs requires considerable investigation and

testing to determine the most appropriate modelling methods to use. Three principal

methods are used:
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• Boundary Element (BE)

• Finite Element (FE)

• Finite Difference (FD)

The BE method was not chosen, as computational costs for large problems are prone to

escalate more rapidly than other methods. In addition, these methods are comparatively in

their infancy and methods for the solution of regions containing nonlinear media are not

widely covered in the literature.

The FE method requires only the co-ordinates of the solution points within the region

modelled, PDE coefficient values, and boundary condition information to solve a problem.

This generality and flexibility allows for easy application of the method to numerous

different physical problems and for this reason was the method chosen to model current

transfer in superconducting systems. The principal disadvantages with such methods are

that they require complex mathematical analysis and extensive computer programing.

Therefore, a commercial package (ABAQUS in conjunction with Femgen) was adopted.

This package although used predominantly for structural analysis, does contain options for

heat conduction analysis and claims to solve nonlinear problems. Using the electrical

conduction analogue for heat conduction an exhaustive set of test models were computed

and analysed to assess the software’s ability to solve nonlinear problems. It was found that

this package could reliably model systems only with very weak nonlinear properties and

was abandoned.

A FD method was subsequently successfully developed and employed to calculate current

transfer behaviour in current contacts (see section 6.4). This method however is not as

general as the FE method and any significantly different current flow problem requires an

entirely new program. The FE method was the final approach chosen and the principal

method used for the modelling presented in this thesis as further development of nonlinear

current transfer models required the flexibility previously mentioned. This was

accomplished through the development of a suite of functions and programs written for

the Matlab (matrix laboratory) mathematical analysis package. This takes advantage of the

high level functionality of this software and most importantly its computational efficiency

in handling matrix calculations, the principal mathematical operation of FE computation.

Numerous alternatives are available for the FE representation of a PDE and subsequent

solution. Each alternative is more appropriate for specific problems than others and

considerable effort was invested in choosing the most suitable. The FE method presented
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in this chapter is the most robust and general for the particular problem of current flow in

nonlinear media.

4.3 The physical model

Numerical methods must be employed to model the current distribution in HTSs

principally because of three reasons:

• The composite nature of many superconducting systems.

• The complex geometry of typical systems.

• The nonlinear resistivity of superconducting regions.

Most nonlinear models that describe current flow in HTSs are based on magnetic flux

diffusion models and consider either isotropic superconductors1,2, anisotropic

superconductors in simple geometries3,4 or superconductors in an a.c. magnetic field5,6.

The principal methods used to solve the magnetic flux diffusion problems are collocation

by points7-9 and FD methods6,10-13, all of which employ a rectangular grid of solution

points. Only of late have a limited number of solutions employing FE methods

emerged2,14. As far as the author is aware, the model presented in this thesis is the only FE

model that solves current flow problems in anisotropic nonlinear media. Further, this is the

only model that calculates the solutions of relatively complex geometries, composite

structures, and geometries with crystallographic orientation that is not coincident with the

global co-ordinate system of the geometry.

4.3.1 Magnetic flux diffusion

The current flow and electric field distribution are derived from the solution of a magnetic

flux diffusion equation that describes the problem modelled. Superconducting regions are

essentially treated as homogeneous nonlinear conductive media; i.e. the local resistivity of

the media is nonlinearly dependent upon the local current density. This can be expressed

by a constitutive relation between the local electric field vector, E , and local current

density vector, J

E J J= ρ1 6 (9.1)

which is a local and instantaneous response law on the time and space scales applicable in

this model. For the purposes of the mathematical formulation used in the FE analysis and

to ensure stable solutions the nonlinear function of resistivity, ρ J1 6 , must be increasingly,

and at least weakly, monotonic.
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The nonlinear flux diffusion equation is essentially a quasilinear parabolic equation for

transient problems, which reduces to a quasilinear harmonic elliptical equation for steady

state problems. The differential equation is quasilinear in that the nonlinearity occurs in

the coefficients of the PDE and not the partial derivatives. In the low frequency limit, the

electromagnetic fields of composite materials, consisting of normal and superconducting

regions, can be described by the following Maxwell equation

∇ × = −E
Hµ0

d

dt
(9.2)

where the quantity 0µ is the permeability of free space and H is the magnetic field strength

vector. The model neglects the effect of the Meisner current using the simplification that

the lower critical field is zero such that B H= µ 0 , in which case the transport current is

only related to the pinning forces and can be expressed as

∇ × =H J . (9.3)

This is a reasonable approximation for fields larger than Hc1  in high-κ  superconductors

for which H Hc c1 2<< 15. As alluded to previously, the model is defined in a right hand

rectangular Cartesian co-ordinate frame with axes x , y  and z ; referred to as the global

frame. The H  field is parallel to the z -axis, for the 2D models described, which for

non-zero value of H  engenders flux diffusion into the body of any magnetic material

present. The induced current is assumed to be confined to the xy -plane. All model

geometries are considered slab geometries that extend in the z -axis direction, and physical

units are based upon unit integration through the thickness. Components of any fringing

effect are assumed zero. Therefore, z -component derivatives of the magnetic field tend to

zero and can be ignored. Combining equations (9.1), (9.2) and (9.3) the magnetic flux

diffusion equation is derived

µ ρ0

dH

dt
H Hz

z z= ∇ • ∇1 62 7 (9.4)

where the current dependence of ρ  is now replaced by a functional dependence upon the

gradient components of Hz . The time asymptotic solution of this equation provides the

steady state solution of equation (4.4)16

∇ • ∇ =ρ H Hz z1 62 7 0 . (9.5)

The FE solution using linear interpolative functions over the solution region of equation
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(4.5) (see section 4.4.1) is a more accurate but equivalent solution to models of current

flow in nonlinear resistor networks.

In a similar manner, it is possible to derive a diffusion equation in terms of the electric

field5, as opposed to the magnetic field formulation presented above

µ ρ0

d

dt
E

E
E= ∇ • ∇1 6 . (9.6)

The magnetic field formulation is adopted in this work for two principal reasons. Firstly,

the inclusion of a magnetic field dependence in the resistivity term allows for the study of

a field dependent EJ  characteristic; equation (4.6) cannot be manipulated to provide such

a dependence. Secondly, the functional dependence of the EJ  characteristic used in this

work develops a singularity at E = 0  for ρ E1 6  in the nonlinear regime, which presents

difficulties in the numerical solution of equation (4.6). Models using the E  field

formulation, with and without approximating the singularity, have been found not to

converge using the nonlinear matrix equation numerical solving routines employed in this

work.

In order to constrain the solution of equation (4.5) the PDE is supplemented by a set of

boundary conditions along the boundary of the geometry, Γ , over which the magnetic

diffusion equation is to be applied. The boundary condition required for the definition of

the transport current is obtained from the limitation that the current must flow parallel to

the surfaces of the model along insulating boundaries, J n• = 0 ; where n  is a unit vector

normal to Γ . Given that the derivative of a constant valued function is zero, equation (4.3)

implies

H Gz = (9.7)

where G  is a constant. This corresponds to a boundary condition of the first type, also

called a Dirichlet boundary condition. The field difference between boundaries of constant

field value determines the applied current, which using Ampere’s law for unit integration

through the thickness for two boundaries, A  and B , gives

H l• = − =I d H H IA B appΓ
.

At the point of current injection E n× = 0 , using equation (4.1) and (4.3) this can be

expressed in terms of the magnetic field as ρ Hz1 61 6∇ × × =H n 0 , which for 2 dimensions

reduces to

ρ H
H

z
z1 6 ∂

∂
=

n
0. (9.8)
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This corresponds to a zero value boundary condition of the second type, more commonly

known as a homogeneous Neumann boundary condition. The application of boundary

conditions is further discussed with respect to the FE method in section 4.4.4.

The functional form of equation (4.1) is still yet to be defined. The models presented in

this thesis use the functional dependence of ρ  adopted by Schuster et al3 for anisotropic

superconductors

ρ ′
′

′

′
−

′

= =x
x

x
c

x

n

c x

n

E

J
E

J

J

1 6
2 7

1

,

(4.9a)

ρ ′
′

′

′

−

′

= =y
y

y
c

y

n

c y

n

E

J
E

J

J

3 8
3 8

1

,

(4.9b)

α = ′

′

J

J
c x

c y

,

,

(4.10)

where the directions of the components of E  and J  and the critical currents Jc x, ′  and

Jc y, ′  are defined in a local co-ordinate frame with axes ′x  and ′y , and α  is the

anisotropy ratio. When ′x x|| and ′y y||  the prime superscript is omitted. A power law

dependence is widely used to describe the EJ  characteristic of many superconducting

systems and therefore allows the application of this model to very general problems

involving superconducting components. This dependence is also typical of the behaviour

of the EJ  characteristic of Bi-2212 CRT material (see section 3.3.1). A range of values of

α  and n  are used in this work to investigate the influence of these parameters upon

current flow and reflect the range found by experiment. Values obtained from

measurements on bulk materials are only applicable for use in models of a macroscopic

scale, where the density of solution points is still approximately small enough to emulate

the behaviour of the bulk material; i.e. the spatial resolution of the model is not on the

same scale as the more complex behaviour and geometry of the microstructure of a

superconductor. Models on the microscopic scale similarly use a range of values, however

this is more for the purposes of qualitative assessment of the effect these parameters have

on the current transfer behaviour.
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4.4 Finite element approximation of the physical model

The physical problem has already been approximated by the mathematical description of

PDE. The representation of the approximate solution to the PDE over the region, or

domain Ω , by a matrix equation using the FE method is described in this section. The

domain, Ω , is used to describe both the region in Ü3  and Ü2  over which the physical

model and FE approximation applies (see figure 4.1). The surface bounding Ω  is denoted

by Γ . At this boundary, different conditions apply such as Dirichlet and Neumann

boundary conditions, denoted by Γu  and Γq  respectively. The principal schemes for

forming the FE description of the underlying PDE are the variational and weak

formulation methods. Deriving an appropriate energy function for use in the variational

method for nonlinear differential equations, or a situation where discontinuous interface

conditions exist, is complicated and a suitable function may not even exist. Indeed tests

for existence themselves are not trivial. In developing a model that can be used with

greatest generality the weak formulation is chosen in preference, since it holds for a large

class of problems, including nonlinear PDEs.

A classical solution of equation (4.4) or (4.5) that is defined at every point over Ω  must

have continuous second order partial derivatives. However, if discontinuities exist in the

solution, for example across internal boundaries between dissimilar magnetic media, then

this continuity condition no longer holds. This requires the reformulation of the PDE into

a weak representation, as described in section 4.4.2, where the requirement for second

order continuous derivatives is weakened at the expense of the introduction of another

solution variable. The continuous solution of the classical solution is replaced by a

discrete solution that applies only at a certain number of points, nodes, over Ω . In the

method presented, these nodes coincide with the vertices of planar triangles that tessellate

over Ω  forming a mesh. Approximating functions are used to describe the solution over

the triangle and substituted into the weak formulation of the PDE over the triangle. A

matrix equation, which describes the solution over the

entire problem, is found by the summation of the weak

integral of every triangle in the problem geometry and

subsequent application of boundary conditions. The

solution of this matrix equation gives the solution of the

PDE, or equivalently the coefficients of the approximating

Figure 4.1
Diagram indicating both global
and elemental domains and
boundaries.

Domain Ω

Subdomain Ω
e

Γ

Γ
ey

x
z
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functions, from which the solution is derived.

4.4.1 Overview of the finite element method

The FE method involves separating the continuum of space over which a differential

equations applies (the domain Ω ) by imaginary lines into a number of polygonal,

non-overlapping sub-regions, Ωe , (finite elements), (see figures 4.1 and 4.2). For the

models presented, the element shape is the plane triangle. The solution over the element is

assumed to follow a local approximating trial function, $u , and for a plane triangle defined

by the three vertices or nodes l , m , n , a component of the solution may be approximated

by the simple polynomial

$ ,
, ,

u x y N x y Ui
e

i l m n

i
e

e

= + + =
=

∑α α α1 2 3 1 6
Ω

. (4.11)

The approximation of the solution over each element is generated by functions of position

called shape functions, Ni
e , (see Appendix B) that linearly interpolate the local value of

the solution with respect to the nodal values that represent the discreet solution, and are

the points that correspond to the solution values calculated. The functions Ni
e  maintain

continuity at the element boundaries in that they satisfy the conditions N x yi
e

l l,1 6 = 1 while

N x y N x yi
e

m m i
e

n n, ,1 6 1 6= = 0, etc. That is, the shape functions preserve the nodal values of

the function at the node positions. The derivative of $u  is obtained by direct partial

differentiation of equation (4.11) and is calculated at the triangle barycentre. This

calculation provides the value of the components of the local current density; the

dependent variable of the nonlinear resistivity function used in the FE models of this

thesis.

For the weak formulation FE method employed in this

work the PDE representing the physical problem is

replaced with an integral equation over the element and the

trial function is substituted. By using a weak formulation

of the integral equation the continuity conditions of the

solution can be reduced at the expense of introducing a

weighting function. This is discussed in the next section.

Due to the implicit satisfaction of the boundary conditions

at element boundaries, the elemental integrals can be

Figure 4.2
Schematic of finite element mesh,
indicating the planar triangular
element and nodes at triangle
vertices.

Mesh

Triangular
element
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z
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summed to provide the integral over the entire domain Ω  by a process known as

assemblage. Whereas the homogeneous Neumann boundary conditions used in the models

presented are automatically satisfied by the integral equation, in order to satisfy the

Dirichlet boundary conditions the integral equation is constrained by specifying the value

of the solution at the nodes along the boundary condition. The final integral equation is

usually expressed as a matrix equation, the solution of which gives the best fit for the trial

function parameters and hence the solution values at the nodes. The solution of matrix

equations is a separate branch of numerical mathematics and is considered in greater detail

in section 4.5.1.

4.4.2 The weak formulation

The magnetic field solution of the heterogeneous structures of the composite and nonlinear

systems modelled in this thesis, where the conductivity changes spontaneously across a

region, are in general not smooth functions and therefore can not be differentiated as many

times as the governing differential equation requires. Indeed this is why the PDE system is

not soluble analytically, in the sense of providing classical solutions. To overcome this

problem the differential equation is replaced by an equivalent integral relation. This has

the advantage that it involves fewer derivatives of the unknown function than the solution

of the equivalent PDE and in this way accommodates solution discontinuities.

Consider the more general form of equation (4.4) with solution variable u

ε ∂
∂

− ∇ • ∇ =u

t
D u f1 6 on Ω (4.12)

u l x y z t= , , ,1 6 on Γu (4.13)

D
u

n

∂
∂

= 0 on Γq (4.14)

and initial condition

u h x y z= , ,1 6 at t = 0 (4.15)

where 
∂
∂

≡ ∇ •u

n
u n  is the normal derivative on Γ  and Γ Γ Γ= ∪u q  with Γ Γu q∩  disjoint;

further ε  and f  are a constants and D  is a smooth function which can depend on x , y ,

z  or u  as well as the first derivatives of u .

To obtain the integral relation of the above system, the PDE is multiplied by the smooth

function, v  ( v C∈ 2 Ω1 6 ), called the test function, and integrated by parts over Ω  and Γ

using Green’s first identity17,18
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Φ Γ Φ∇ Ω Ω
ΩΓ Ω

K u d K u d K u d∇ • = • ∇ + ∇Φ • ∇II In 1 6 1 6 .

This identity is valid for u , K  and Φ , together with the first derivatives of u  and K , and

the second derivative of Φ  continuous in Ω  ( u C K C C∈ ∈ ∈1 1 2Ω Ω Φ Ω1 6 1 6 1 6, , ).

Integrating by parts

ε ∂
∂

= ∇ • ∇ +I I Iu

t
vd v D u d fvd

Ω Ω Ω
Ω Ω Ω1 62 7

= − ∇ • ∇ + ∇ • +I IIv D u d vD u d fvd1 6 Ω Γ Ω
Ω ΩΓ

n (4.16)

and since Γ   is the disjoint union of Γu  and Γq

vD u d vD u d vD u d
u q

∇ • = ∇ • + ∇ •I I In n nΓ Γ Γ
Γ Γ Γ

. (4.17)

If the choice of u  is restricted to satisfy the Dirichlet boundary condition, equation (4.13),

then the first term of (4.17) can be omitted by restricting the choice of v  to functions that

vanish ( v ≡ 0) near the boundary Γu  (see section 4.4.4). Applying the homogenous

Neumann boundary condition, equation (4.14), the second term of (4.17) becomes zero,

such that natural boundary conditions do not explicitly enter equation (4.17). Combining

equation (4.16) and (4.17), gives the weak formulation of the system of equations

(4.12)-(4.15),

ε ∂
∂

= − ∇ • ∇ +I I Iu

t
vd v D u d fvdΩ Ω Ω

Ω Ω Ω
1 6 . (4.18)

The integral now involves only first order differentials and can be calculated for non-zero

finite values of the first order derivatives, piecewise continuous, of u , v

( u C v C∈ ∈0 0Ω Ω1 6 1 6, ) and non-zero finite values of D .

If u  is a twice differentiable solution of the system of equations (4.12)-(4.15) then u  is a

classical or strong solution. However, if u  is a solution of equations (4.12)-(4.15) but does

not have the required number of derivatives to be a classical solution then u  is a weak

solution. The weak solution reduces the order of the derivative of u  in the governing PDE

at the price of a higher order of derivative for v . This formulation allows the specification

of a system with discontinuous solutions and coefficients.

4.4.3 The Galerkin method

Having specified the governing PDE as an integral relation and introduced the test

function v , a choice now remains as to the functional form of v . The function that is most

widely used is the same function that approximates u . The FE method that employs this
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choice of test function is called the Galerkin method19 and is chosen in this analysis. This

method is considered the most consistent for good accuracy in a wide range of problems

and is the most examined in the literature. In linear analyses, this method frequently leads

to symmetric matrices and therefore greater computational efficiency (see section 4.5.3).

The solutions of the models presented are in the 2D space of the xy -plane. Expanding the

scalar product of the weak formulation of equation (4.18) into the constituent partial

derivatives over the elemental domain, Ωe , and equating all z -derivatives to zero by

imposing the zero fringing field condition gives

ε ∂
∂

= − ∂
∂

∂
∂

+ ∂
∂

∂
∂

�
��

�
�� +I I Iu

t
vd

v

x
D

u

x

v

y
D

u

y
d fvd

e e e
Ω Ω Ω

Ω Ω Ω
. (4.19)

Substitution of the trial function and test function, with shape functions N j
e , into the weak

formulation provides a matrix equation for the solution of u  over a single element

M U K U f 0e e e e e& + + = (4.20)

with

K
N

x
D

N

x

N

y
D

N

y
dji

e j
e

i
e

j
e

i
e

e
=

∂
∂

∂
∂

+
∂
∂

∂
∂

�
��

�
��I Ω

Ω

f N fdj
e

j
e

e
= −I Ω

Ω

M N N dji
e

j
e

i
e

e
= I ε Ω

Ω

&U Ue ed

dt
≡ .

The matrix K e  is known as the element stiffness matrix, the matrix f e  is the element load

vector and Me  is called the element damping matrix. The integration of these terms is

carried out numerically. If D  is a function of position over Ωe  then numerical integration

is computationally expensive. It is generally more efficient to assume D  has a single

value over the element and obtain the desired accuracy of the solution by using a finer

mesh. This is particularly so in the case of linear elements that often do not describe

accurately the solution on coarse meshes. Numerous numerical integration schemes exist.

This analysis adopts a scheme using the area co-ordinate system. This is the most

appropriate for linear elements with single valued D  as the integration can be carried

using simple formulae20 and is therefore computationally inexpensive. These equations

only apply over the region of a single element and must be extended to approximate the
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solution over the entire region of the problem modelled; this involves the construction of

global system matrices.

4.4.4 The global system matrix and application of boundary conditions

The elemental approximation must be extended to cover the entire domain, Ω , and in this

analysis is constructed element by element as opposed to nodal composition. The element

equations are assembled for the whole problem by superposition, removing redundancy at

shared nodes. This process is known as assemblage and forms a matrix equation akin to

(4.20) where the locally defined element matrices are replaced by global system matrices.

The construction of the global integral from the elemental integral uses the property of the

definite integral that over the volume V  the total integral is equivalent to the sum of the

integrals of the subdomains, V e , composingV ; that is

1 6 1 6
V V

dV dV
eI I∑= . (4.21)

The approximation of u  over each element was defined to satisfy automatically the

continuity conditions imposed by the weak integral and therefore the inter-element

continuity required by (4.21). Therefore

K Kji ji
e= ∑

f fj j
e= ∑

M Mji ji
e= ∑

and equation (4.20) can be rewritten as

MU KU f 0& + + = (4.22)

where U  lists all the nodal points of Ω  and M , K , f  are the summations of the element

matrices Me , K e , f e  and constitute the global system matrices respectively.

Also, note

&U U≡ d

dt
.

The construction of the global matrices must respect the topology of the elements defined

in the mesh constructed over Ω . Various ordering schemes exist to ensure this criterion is

met21,22. The process of assemblage is one of systematic ordering and offers no insight

into the FE formulation and will not be described; other than to say that assemblage orders

the global matrix using the local element nodes l , m , n  with the global node list U .
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The homogeneous Neumann boundary condition is automatically satisfied by equation

(4.20) however it remains to apply the conditions necessary to satisfy the Dirichlet

boundary conditions. Prescribing the value of the solution at the nodes along the boundary

where the Dirichlet condition applies, Γu , fixes, and thereby reduces some of the

unknowns. There a several methods used to set the value at the nodes along Γu , such as

wiping columns and rows in the system matrices or the reduced formulation. The models

described in this thesis use Lagrange multipliers to specify the constraints placed upon

these nodes. Forcing equation (4.22) to satisfy implicitly the Dirichlet boundary condition

term ensures the condition v 0≡ , discussed in section 4.4.2, is met and the first term of

equation (4.17) vanishes.

4.4.5 Meshing the problem domain

As stated previously the region over which the PDE system applies is approximated by a

union of geometrical objects, elements, that form a mesh (see figure 4.2). A series of

Matlab functions are used to generate automatically the mesh for the model geometries

presented. Triangular elements are used because they readily describe non-rectilinear

geometries, unlike rectangular elements that require finer meshing at oblique boundaries

or a transformation of the local co-ordinate system to ‘bend’ element edges on curved

boundaries. The simplicity of the mathematical description of triangular linear elements

leads to computational simplicity in the FE analysis and in turn to computational

efficiency; i.e. automatic meshing algorithms, shape functions and numerical integration

formulae are easily calculated. The construction of a suitable mesh is not an exact science.

Experience must often be relied upon to decide how to size and position the component

elements optimally, in order to obtain an accurate solution that efficiently uses a finite

number of solution points. Indeed, much of the effort involved in defining a new problem

is expended in finding a suitable mesh. This has lead to the increasing use of neural

networks, taught by FE engineers, to generate suitable meshes for different FE

problems23. However, there are some general rules that can be applied when defining, or

accepting, an automatically generated mesh:

• The sides of a triangular element should run in the direction of greatest change in the

approximate solution, such that the greatest change in the approximate solution is

integrated along the greatest dimension.

• Equilateral elements are more accurate than long narrow triangular elements.
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• The region of greatest change in the solution should be finely meshed. This not only

gives greater accuracy of the solution in this region but by more accurately

representing the solution over the entire domain leads to greater accuracy in regions

where the solution changes little.

4.5 Solution methods, limitations and efficiency

The FE method transforms the PDE representing the physical problem into a matrix

equation, the solution of which is a different branch of mathematics. Numerous solution

methods have been examined for accuracy and computational efficiency, and are

discussed in this section. The range of parameters for which a solution to a model can be

found and the influence of the FE mesh are also discussed.

4.5.1 The solution of nonlinear matrix equations

Once the matrix equation (4.22) is constructed it can almost be considered a different

problem; that of the numerical solution of simultaneous equations. If the parameter D  of

equation (4.22) is constant and therefore the system of equations is linear then the solution

of (4.22) is simply obtained by the operation of matrix division. However if D  is

nonlinear then the global stiffness matrix K  has a nonlinear dependence on the solution,

K U1 6 , and an iterative solution process must be used. Equation (4.22) becomes

MU K U U f 0& + + =1 6 (4.23)

and in the steady state

K U U f 01 6 + = . (4.24)

For the magnetic flux diffusion equation employed in the solution of current transfer

problems the dependent solution variable U  represents the magnetic field strength,

denoted by the variable H .

The nonlinear solution method adopted in this work is the Newton-Raphson method,

which is a robust solution process for many nonlinear equations. Nonlinear solution

methods invariably rely upon the Jacobian of the nonlinear term of the matrix equation.

Quite often, even if the Jacobian can be expressed in explicit functional form, it is so large

and/or functionally complex that it is computationally inefficient to use. Two principal

methods were used to approximate the Jacobian:

Fixed: The Jacobian of a nonlinear matrix is approximated as equivalent to the nonlinear

matrix, K U1 6 .
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Finite Difference: The Jacobian is calculated by a finite difference approximation.

A test model was used to determine the most appropriate Jacobian to use and it was found

that both produced solutions accurate to the same significant figure, for a number of

different boundary values. Solutions obtained using a fixed Jacobian were fastest, and this

approximation has been used in all FE models presented.

Alternatives to, and variations upon, the Newton-Raphson solution method have been

examined for accuracy and speed of computation, with steady state models using standard

and modified Matlab functions. Newton-Raphson and the Levenberg-Marquardt

algorithms using either a cubic, mixed quadratic and cubic, or Armijo-Goldstein line

search methods have been tried along with fixed or finite difference approximation of the

Jacobian (see table 4.1). All variations failed to provide a solution except certain

variations upon the Newton-Raphson method. Either the nonlinear matrix became singular

or the solution process was summarily terminated because the solution took a prohibitive

amount of time. The Newton-Raphson method employing the Armijo-Goldstein line

search strategy was found the fastest and has been used for all the models developed.

Numerous different desktop personal computers and workstations have been used during

the course of this work and any solution times quoted in this thesis refer to solutions

computed using a Pentium II Xeon 400 MHz processor with 512 Kb on board cache and

256 Mb RAM which was dedicated to this work.

Solution of the transient problem, equation (4.23), requires somewhat different numerical

methods. Initially, implicit, semi-implicit and explicit methods were coded to solve simple

nonlinear transient problems. Whereas implicit methods were found to be faster than

explicit methods, convergence to the solution was still slow. The Matlab functions for

solving ordinary differential equations have been found to be faster and have replaced the

implicit and explicit solution methods. The function ‘ode15s’ in combination with a

bespoke function determining the fixed Jacobian per solution iteration solves the transient

Table 4.1 The nonlinear solution methods of a FE matrix equation.

Mixed quadratic and
cubic

Cubic Armijo-Goldstein

Fixed
Jacobian

Finite
difference
Jacobian

Fixed
Jacobian

Finite
difference
Jacobian

Fixed
Jacobian

Finite
difference
Jacobian

Newton-
Raphson

Solution No
solution

No
solution

No
solution

Solution Solution

Levenberg-
Marquandt

No
solution

No
solution

No
solution

No
solution

N/A N/A
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equation (4.22) using numerical differentiation formulae24. This function is superior to the

explicit and implicit schemes in that it can solve problems that have a greater degree of

stiffness and, through the use of a variable time step increment, do so more efficiently. A

stiff problem is one that changes on a time scale that is very short compared to the time

interval over which the change in the solution is of interest. This decreased the time of

convergence to the solution and allowed more complex problems to be solved. However

all the steady state problems that have been analysed, except some of those presented as

validation models in chapter 5, possess too high a degree of stiffness to be solved for the

transient case on a desktop personal computer and so are not dealt with in this work except

for the purposes of model validation.

4.5.2 The computational limitations of the finite element model

The main factors that govern the cost of computation for a solution to a model are the

number of nodes within the mesh of the model and the degree of nonlinearity imposed on

the system of governing equations. A fundamental requirement of any solution to a model

is that the spatial resolution is sufficient to analyse the behaviour of current flow on the

scales of interest. Mesh design can minimise the number of nodes in a mesh suitable for

this requirement but at some point places a lower limit on the number of nodes used in the

solution. Consequently, the physical parameters used in the model ultimately determine

computational costs of a solution. Whereas in principal the range of values and

functionality is only limited by the proviso that such values and functions do not become

singular (i.e. remain finite), the computation times involved in their solution may become

prohibitive and thereby place limitations on the range of physical parameters a model can

practically solve. The value of α  and n  control the severity of the functional nonlinearity

of a solution interdependently and therefore the ease of convergence of the solution to

within a defined accuracy. This interdependence is complex so the practical availability of

a solution for a particular set of α  and n  was determined by trial and error.

4.5.3 Computational efficiency and matrix properties

Computational efficiency must always be considered where an iterative solution method is

employed. Various matrix properties can effect the speed of solution of a matrix equation.

Specifically, four matrix properties were considered and optimised for maximum

computational efficiency, both in the program code and Matlab proprietary functions.

These are discussed below.
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Matrix sparsity

FE methods require operations on matrices that contain only a small proportion of

non-zero elements; these matrices are called sparse matrices. Computation time is reduced

if only the non-zero elements and their indices are stored, as this both eliminates

operations on zero elements and reduces the amount of memory storage used.

Matrix factorisation

Solution of the matrix equation

Ax B=

where A  and B  are given sparse matrices, is the most computationally expensive

operation involved in the FE process. Direct as opposed to iterative methods to solve this

equation are faster, and involve factorisation of the matrix. The factorisation splits the

original matrix equation into a set of further equations each involving one of the factors.

Matrix factorisation schemes, that produce a matrix product involving a triangular matrix,

have advantages in that forward or back substitution depending on whether an upper or

lower triangular matrix is formed respectively can be used to solve the equation. These

methods are in of themselves relatively fast and the symmetry of triangular matrices can

be employed to reduce further computational storage and operations costs.

Matrix reordering

Reordering schemes help make the matrix factors expanded from a matrix sparser.

Methods generally achieve this by reducing the bandwidth of the matrix, or producing a

fractal like structure with large blocks of zeros.

Matrix symmetry

In a symmetric matrix, the elements above and below the leading diagonal are mirror

images of each other, consequently half of the full matrix is implicitly known. A

symmetric matrix therefore requires less storage and floating point operations per matrix

operation. Matrix equations involving symmetric matrices also have more efficient

solution methods and reordering schemes. However, with the exception of the mass matrix

of the transient solution, the nonlinear matrix systems solved in this thesis did not contain

symmetric matrices and therefore lacked the computational efficiency of the symmetric

matrix.
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4.6 Postprocessing

The mathematical representation of the solution of a model is a matrix of solution values

that are associated with a matrix of solution point co-ordinates. The solutions presented

contain between 10,000 and 120,000 solution points and as such are impossible to

interpret without transposition to a graphical representation. Different solution properties

such as J and E  must be calculated for the visualisation of different physical

characteristics. The mathematical manipulation and visualisation of the FE solution is a

process known as postprocessing. Solutions have been processed and plotted through the

use of specifically tailored functions and high level Matlab graphing routines. As

discussed previously the FE model produces the magnetic field solution, H , of a problem.

Other physical quantities can be obtained from this solution by the application of the laws

of electromagnetism. Principal amongst these quantities are J , E , ρ  and differences in

the electrical potential, φ , throughout the model geometry. The current dependence of ρ

is introduced by equation (4.3), and used to generate current density plots. For the

limitations placed on H  and J  as described in section 4.3.1

yxJ
x

H

y

H zz

δ
δ

δ
δ

−= .

From which the local resistivity distribution of nonlinearly resistive components can be

readily calculated using equations (4.9a) and (4.9b). Given J  and ρ , the constitutive

relation (4.1), facilitates the calculation of the electric field distribution within the model,

from which the electric potential can be determined using the line integral

φ φr r E lB A A

B
d1 6 1 6− = − •I .

One of the disadvantages with using the magnetic field formulation to calculate the current

density and electric field distribution within a model is that both these quantities involve

the first order derivative of the solution and so require greater mesh refinement to describe

accurately J  and E  over the model geometry.

The three principal graphing techniques used are contour, vector and line plots. Vector

plots have been used in combination with contour plots to describe the distribution of J ,

E , ρ  and their x  and y  components. Such plots provide both intuitive understanding of

the physical problem modelled and an insight into important features of the current

transfer. However, in light of the hundreds of solutions that are calculated for each model

and the high information density of the contour plots of the physical variables and their
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components, a systematic evaluation of the behaviour of a model that explores the entire

solution and set of variables is unwieldy and inefficient; as any characteristic behaviour is

implicitly expressed throughout the set. Line plots of the solution variables along a single

dimension of the models and surface integrals have been used to describe more concisely

aspects and dependencies of the current transfer behaviour. An extensive set of data

processing and graphics routines has been written and adapted for each model. As these

routines perform complex operations on gigabytes of solution data the length of

postprocessing computation time must be considered when determining the number of

model solutions to calculate and the interpolation density of postprocessed output.

4.7 Summary

The physical model and mathematical techniques employed in the coding of the computer

implementation of the model have been researched and described. Different approaches to

the solution of the physical model have been researched and discussed. Various solution

methods of the nonlinear matrix equation have been examined for optimal efficiency and

accuracy. The issues involved in developing and executing the data processing and

visualisation programs used in this work have been presented. The high accuracy of the

computer model described in this chapter is demonstrated in the following chapter where

solutions of the model are verified against analytical and intuitive models.
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CHAPTER 5

Validation of solution techniques

5.1 Introduction

The solutions of any numerical model must be tested, if possible, against known solutions

of the system modelled in order to verify that it is correctly described. This process is one

of validation1 and employs intuitive and analytical solutions for the purposes of testing2.

Only after validation can a numerical model be reliably used to approximate the solutions

of a system that are not self-evident, or beyond the scope of analytical solution techniques.

This chapter presents such a comparison of numerical solutions of FE models against

exact analytical solutions and the solutions of problems that can be arrived at intuitively.

During development various checks of the computer program were carried out. Although

most solutions presented are for the nonlinear regime, the program was tested to see

whether it could produce the correct solution to a linear model as a limiting case. The

series summation approximation of the exact analytical linear anisotropic solution of the

Laplace equation in a rectangular geometry with various applied boundary conditions was

compared to a FE approximation, and found to be in good agreement. The computed

solutions have routinely been checked for self-consistency of the inferred physical values

such as J , E  and the local resistivity value, as well as for appropriate mapping behaviour

of the solution at lines of symmetry within the geometry of a model. For example, note the

symmetry of figures 5.4, 5.6 and 5.7. Fulfilment of the conditions that E  and J  must

satisfy at boundaries with applied Neumann and Dirichlet conditions have also been

checked. Compliance with the maximum-minimum principle has been verified for all the

models computed. The theorems of this principle require that the maximum and minimum

values of the solution of the steady state equation used in this analysis (an equation with

solution variable H ), as described by an harmonic elliptical equation, must occur on the

closed continuous boundary of the region over which the problem is defined3. The results

of this chapter show that the numerical methods used provide solutions which are

consistent with the known solution of several models. When methods are used to solve

more complex problems with unknown solutions it is good practice to compare solutions
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with several error tolerances and initial guesses as a further validity check. This has been

performed for all the models presented in this thesis.

The models detailed in section 5.2 demonstrate, principally through the use of intuitive

models, that the programming methods employed correctly deal with the nonlinearity of

the EJ  characteristic and anisotropy of the critical current density in the steady state; the

main physical aspects explored in the major work of this thesis. The effects of these

parameters within the models are also investigated and are presented in section 5.3. The

transient response is covered in the latter half of the chapter to illustrate the computer

programs ability to approximate, exact analytical solutions satisfactorily; a further

indication of the validity of the steady state models.

5.2 The slab and constricted slab models: An intuitive model

comparison

The constricted slab geometry is described in this section and used to validate the solution

technique for models in the steady state. The FE models described in this thesis treat the

superconducting components of composite structures as nonlinear electrically conductive

media; i.e. locally, the resistance of the superconducting region is determined by a power

law current dependence (see section 4.3). This makes current transfer in many situations

difficult to grasp intuitively. Understanding how geometry will influence the current

distribution is complicated by the implicit dependence of the local resistivity upon the

local current density; i.e. a high local current density will induce a high local resistivity

value, which in turn favours a low local current density. The addition of a critical current

anisotropy factor further complicates the matter, since these dependencies are different for

perpendicular directions within the geometry.

5.2.1 The slab model

Any set of geometry and boundary conditions that induces a non-uniform current

distribution (for example current crowding at the corner of an L-shaped current lead)

introduces a local resistivity contribution to the current transfer. The converse however is

not true. A current dependent local resistivity distribution cannot be supported by a

uniform current distribution since a single valued current density automatically implies a

single valued resistivity across the entire geometry. Given a nonlinear media, only one
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geometry subject to an applied constant current condition

has uniform current flow. This is the rectangular or square

slab with applied current at opposing ends (see figure 5.1).

A 2D FE model of the geometry of figure 5.1 in plan view

was calculated to test that the current distribution was

uniform. Indeed the current density was single valued,

J = ×2 107  A⋅m-2, throughout the geometry. The electric field was also single valued,

E = × −32 10 3.  V⋅m-1, and appropriate for a superconducting region with an n -value of 5

and electric field and current density criteria of 1 10 4× −  V⋅m-1 and 1 107×  A⋅m-2

respectively.

5.2.2 The constricted slab model

To demonstrate the solution techniques employed accurately calculate the steady state

current flow in a superconductor, as approximated by the model, a numerical model that

possesses an intuitive solution was developed for comparison. This was composed of two

abutting slab geometries, one half the width of the other; the interface region between the

slabs having a step-like structure which forms a constriction (see figure 5.2). The model

incorporated a nonlinear resistivity and the same current condition as the slab model of

section 5.2.1 was applied at the ends of the constricted slab geometry, as shown in figure

5.2. At locations away from the region of constriction, where edge effects can be

neglected, the geometry simplifies locally to the slab geometry and the current distribution

is uniform. Within the one model there are two regions with uniform current distribution,

one with half the area and therefore twice the current density. Therefore, the two regions

have different electric field values. In the nonlinear case, these are not simply different by

a factor of two but by a factor of 2n , where n  is the exponent of the power law describing

the EJ  characteristic. The E  and J  values along the midline of the model geometry (see

figure 5.2) were determined from a FE approximation of

this model (see figure 5.3). The FE model had an n -value

of 5 and an applied current, I J Aapp c
m= , within the region

of current injection. The physical dimensions are described

in figure 5.2; the figure indicates that the x -axis

co-ordinate of the constriction is 0. Figure 5.3 shows that

E  changes by a factor 25  in good agreement with the

Figure 5.1
Schematic of slab geometry,
arrows show the applied current
direction. Dimensions are in
millimetres.
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Schematic of constricted slab
geometry, arrows show the applied
current direction. Dimensions are
in millimetres.
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intuitive model. Further note that E  and J  are correctly related by the n = 5  power law

EJ  characteristic.

The behaviour of the constricted slab geometry has also been examined in the anisotropic

regime. In the models studied the direction of the x -axis has been defined as the easy path

for current flow. To verify that the nonlinear anisotropy conditions are correctly described,

a model of two constricted slab geometries, side by side, with the same dimensions,

identical anisotropic resistivity functions and applied current conditions was constructed.

One of the geometries was rotated through an angle of 90° and therefore had regions of

uniform current flow which were subject to different components of the anisotropic

resistivity function. For a power law resistivity function with n -value 5 and anisotropy

factor 10, the electric field value was found to be 1 10 4× −  V⋅m-1 and 10 V⋅m-1 along the

broad section and 32 10 3. × −  V⋅m-1 and 320 V⋅m-1 along the narrow section of the

horizontal and vertical geometries respectively. This is in agreement with values

calculated using equations (4.9a) and (4.9b).

5.3 Current flow in the constricted slab model

The behaviour of current flow in the constricted slab model is examined in this section.

The isotropic and anisotropic regimes are investigated and discussed with reference to

macroscopic inhomogeneity in bulk HTS. The approximation of structures composed of

nonlinear media using Ohmic conductors is also studied.
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5.3.1 The isotropic constricted slab model

The behaviour of the constricted slab geometry has been examined in the isotropic regime.

Figure 5.4 presents contour plots of the current density magnitude in the constricted slab

geometry and shows that current crowding occurs at the inner corners of the constriction.

Examination of the current density magnitude along the midline of the solution for

n = −1 10  ( n = 1 is equivalent to the Ohmic resistance ρ0 ) (see figure 5.5) indicates that

current transfers over a smaller longitudinal region in the nonlinear regime ( n ≠ 1). This is

an artefact of the of the current density distribution, current density contour lines are

convex in the isotropic linear regime, becoming increasingly concave in the nonlinear

regime. In the nonlinear regime, current crowding at the corners of the constriction leads

to high local resistivity values compared to the linear regime. In order to minimise the

local resistivity value, current transfers through the constriction more evenly across the

width of the geometry (note that for positions greater than 128 10 4. × −  m, J ( n =1) <

J ( n >1)).

Figure 5.5 indicates that the length over which the current density change along the

midline becomes smaller. However, for n > 2  this is inconclusive. Solutions were

calculated employing three different meshes and some variation of the midline current

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) Figure 5.4
Current density plots of solutions to the
constricted slab model. Plots (a) to (j) have an
anisotropy ratio of 1 and n -values of 1-10
respectively. Arrows represent current density
vectors. The colourbar legend indicates the
magnitude of the current density in A⋅m2. Axes
indicate region of model geometry plotted;
dimensions are in millimetres.
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density value was observed (see figure 5.5). The J  values for the three different meshes

had a maximum percentage standard deviation from the mean of 1.8 %. Error in such line

plots is introduced by interpolation from local nodes to specified points along the line.

However, the effect of meshing upon the final solution cannot be discounted as a possible

further cause of the observed error. It must be noted however that this effect occurs over a

length of 8 10 4× −  m. An order of magnitude larger than the side dimensions of the mesh

triangles in this region. It is interesting to note that the curves pass through a locus at a

position of 128 10 4. × −  m. As stated above, the principal aim of this model is model

validation, which ignores edge effects at the constriction. The physical extent of this effect

is small compared to the entire geometry and as such the nature of the current density

distribution near the constriction can only be considered as a second order effect.

5.3.2 The anisotropic constricted slab model

The behaviour of current flow in the constricted slab geometry in the anisotropic regime

has been explored. All the solutions in the range of n -values 1 8−  and anisotropy values

5, 10, 15, 20 have been calculated; the applied current condition described in section 5.2.1

was used. Contour plots of current density magnitude in the constricted slab geometry (see

figures 5.6 and 5.7) show the effects of increasing anisotropy ratio and n -value

respectively. Again, current crowding occurs at the inner corners of the constriction, with

the maximal value of J  at the corner decreasing with increasing n -value and anisotropy

ratio.

Figure 5.5
Current density values along midline of isotropic constricted slab model, with n =5.
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5.3.3 Discussion of the current flow in nonlinear conductive media

The electric field distribution in a nonlinear electrically conductive medium will always

adjust so as to minimise power loss, subject to the independent constraints of the external

source; i.e. minimisation cannot be accomplished by the trivial zero current condition.

This results in a redistribution of current density. However, in nonlinear media this

redistribution must also minimise power loss with respect to the current dependent

resistivity of the media. For a nonlinear media with power law EJ  characteristic,

increasing local current density leads to a direct increase in local power loss and an

increase in local resistivity value, which adds a further nonlinear increase in local power

loss.

It is suggested that this current dependent nonlinear local resistivity minimises current

crowding and the formation of high current density regions in favour of a more even

distribution of current, which in accordance with current conservation, is over a larger

region. That is, a larger region with larger mean value of local resistivity is favoured

instead of a smaller high current density region with exponentially increasing local

resistivity value. In both linear and nonlinear regimes, the region over which the current

density distribution is non-uniform is larger in the anisotropic case than the isotropic case.

This can be explained with reference to equations (4.9a) and (4.9b). In the isotropic case

the prefactors of equations (4.9a) and (4.9b) are identical for all powers of n , whereas in

the anisotropic regime the nonlinear resistivity prefactor is higher for components of Jy ,

exponentially increasing with n . Therefore regions with J > cJ  possess larger resistivities

(a) (b) (c)

(d) (e)
Figure 5.6
Current density plots of solutions
to the constricted slab model.
Plots (a) to (e) have an n -value
of 5 and anisotropy ratios of 1, 5,
10, 15 and 20 respectively.
Arrows represent current density
vectors. Axes indicate region of
model geometry plotted;
dimensions are in millimetres.
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in the anisotropic regime than the isotropic regime. As discussed previously, anisotropy

introduces a proportionally larger dependence on the components of the local current

density and therefore an increased spreading of current across the width of a components

current path. This is exhibited by the larger longitudinal extent of the region of

non-uniform current (compare figure 5.6, plots b-h and figure 5.7, plots b-h). Examination

of the value of the current density magnitude along the midline reveals that the region of

non-uniform current flow increases in size with increasing anisotropy (see figure 5.8,

compare the nonlinear solutions of plots a and b) consistent with the spreading of current

away from the corners of the constriction where most current crowding occurs.

5.3.4 A linear approximation of the nonlinear constricted slab model

A linear simplification of the nonlinear model was constructed by replacing the local

nonlinear resistivity function with single resistivity values, for each of the adjoining slabs

of the constricted geometry. The resistivity of each slab was determined from the EJ

characteristic of the nonlinear model, approximated using the macroscopic average current

density. The macroscopic average, J I Am
app= / , was derived from the applied current

value and the cross sectional area, A , of the model perpendicular to the direction of

current flow. Comparison of J  along the midline for the linear and nonlinear regimes and

linear approximation (see figure 5.8) reveals that the linear approximation agrees well

with the nonlinear model near the constriction in both the isotropic and anisotropic cases.

The linear, and linear approximation agree well further from the constriction, neither

agreeing with the nonlinear model. In the isotropic case the current density distributions

(compare figure 5.4, plot a and figure 5.4, plots b-j) suggest that this disagreement is due

to the increasingly convex curvature of the current density distribution about the midline

in nonlinear models.

5.3.5 Discussion necking and cracks in bulk HTS

Current transport in bulk superconductors is determined principally by pinning and the

microstructure of the superconductor. Defects in the microstructure, such as cracks,

high-angle grain boundaries, variations in stoichiometry and large aggregations of second

phase particles, can hinder the current transport. Necking of the superconductor, cracks
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and isolated regions of non-superconducting material all affect macroscopic current flow

in a similar way, in that they cause an abrupt narrowing of the cross section available for

current transport in the superconductor. As such, they will be the focus of the discussion in

this section with reference to the constricted slab model.

Formation of these defects can occur for a number of reasons. During processing the

intrinsic brittleness of the superconductor powder and any mismatch in the mechanical

properties between any supporting material, in the case of dip coated conductors, or

sheathing, in the case of PIT conductors, often causes necking or cracking of the

conductor. Short binder burn off stages in the processing of binder systems, such as CRT,

may also result in cracking or inclusions formed by trapped gas bubbles, which also form

in short duration partial melt stages4. Poorly conducting or non-conducting regions may be

present in the microstructure due to the incongruent decomposition of the partial melt into

second phase precipitates. The mechanical deformation techniques employed in the

production of PIT tapes can introduce cracks, either parallel or perpendicular to the tape

width, dependent upon whether rolling or pressing of tapes is performed. It is suggested

that the generally lower cJ  of rolled tapes is due to cracks perpendicular to current flow

blocking the supercurrent6.

(a) (b) (c)

(d) (e) (f)

(g) (h)
Figure 5.7
Current density plots of solutions
to the constricted slab model.
Plots (a) to (h) have an
anisotropy ratio of 10 and
n -values of 1-8 respectively.
Arrows represent current density
vectors. Axes indicate region of
model geometry plotted;
dimensions are in millimetres.
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In addition to optimising the above parameters other methods have been used to eliminate

defects, or reduce their influence on current flow. These include the addition of silver

powder to increase homogeneity of the partial melt4 or to form thin ribbons in PIT tapes5

and thereby improve the deformability and texturing of the superconductor. Various

methods have been employed to characterise the effect of superconductor inhomogeneity

on the transport and magnetic properties of superconductors. These include local hall

probe magnetometry7,8, magneto-optical imaging9 and resistive four probe

measurements10.

A qualitative understanding of the influence of a constriction in the superconducting

volume of a conductor can be derived from the constricted slab geometry model, if one

assumes that defects such as necking, cracks and inclusions can be approximated as a

step-like narrowing of the immediate superconductor cross section. For qualitative

analysis the physical scale of the model is unimportant. However it must be mentioned

that in superconductor-metal composites (e.g. PIT and dip-coated conductors) the normal

metal can shunt current past low cJ  regions unlike the constricted slab model. The

nonlinear model results indicate that the influence of a narrowing in the cross section

available for current flow has a long-range effect on the current distribution outside the

constriction compared to that of linear numerical and perhaps conceptual models. This

indicates that uniform current flow is more readily perturbed in nonlinear media. The

effect is most pronounced when the EJ  characteristic is highly nonlinear, as is the case

Figure 5.8
Current density values along midline of constricted slab model, for α =1 in nonlinear regime with n =1,5
and linear approximation with n =5 (a) and for α =10 in nonlinear regime with n =1,5 and linear
approximation with n =5.
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for large α  and n -value. Current does not crowd as closely and current fills the volume

of the superconductor more evenly around and especially through the region of

constriction, mitigating regions of high current density.

The constricted slab model solutions also provide insight into the commonly used

experimental technique of necking in four point resistive measurements, where a region of

a superconducting sample is polished to a fraction of its original cross section. It is

assumed that this narrowed section allows for more uniform current flow and therefore the

determination of the macroscopic current density in this region is a better approximation

of the current density in the material. The results of the model imply that this is a better

approximation in a superconductor than in normal metal conductors as current distributes

more evenly in the constricted region of the nonlinear model.

5.4 The linear slab model in the transient regime: An analytical

comparison

For the purposes of validation of the program in the transient regime, the numerical

solution was compared against the analytical solution of a linear problem. To this end, the

solutions of a 1D flux diffusion equation
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where w = × −1 10 3  m, u0
310 10= ×  A⋅m-1 and g = × −1 10 11

0/ µ  Ω⋅m2⋅H-1, were examined.

This partial differential equation and set of boundary conditions has the following exact

analytical solution11

u x t B e
r x

wr
r

r gt w, sin/1 6 = �
��

�
��=

∞
−∑

1

2 2 2π π
where B

u

rr = 2 0

π
. (14.2)

Approximate solutions of this analytical expression were calculated for r = …1 400, , . A

transient FE solution to equation (9.1) with the prescribed parameters was calculated as

the solution along a line in a 2D slab geometry model. Dirichlet boundary conditions were

applied along the long edges of the slab and homogeneous Neumann conditions along the

other two sides, as schematically shown in figure 5.9. The starting solution for the FE

transient analysis was zero throughout the xy  plane of the geometry, in accordance with

the third boundary condition of equation (9.2). As figure 5.10 indicates the solution is



CHAPTER 5. VALIDATION OF SOLUTION TECHNIQUES

74

close to the steady state solution after the time interval

0.025 s. Little disparity was found between the FE

solution and the approximation of the analytical

expression throughout the 0-0.025 s time interval. It was

also found that the numerical solutions decrease

exponentially to base e with time t , in agreement with

the analytical form11. The approximation of the

analytical solution was found not to differ in the 15th

decimal place by comparison of solutions employing

r = …1 300, , , r = …1 400, ,  and r = …1 600, , . Indicating

that the maximum percentage field difference of 6 % between the numerical solutions,

plotted in figure 5.10, and the approximated analytical solutions is predominantly an error

in the numerical solution (see subplot of figure 5.10). This is probably an interpolation

error of the type discussed in section 5.3.1.

5.5 The nonlinear slab model in the transient regime: An

analytical comparison

Experimental evidence for a nonlogarithmic time dependence of magnetisation relaxation

in HTS suggests that some superconductors possess a nonlinear dependence of the pinning

potential on current. Approximate and exact analytical solutions of the magnetisation
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Figure 5.10
Profiles of flux penetration into slab geometry with linear diffusivity term, calculated using FE model.
Subplot shows difference between FE and analytical solutions.

Figure 5.9
Schematic of the geometry of the
flux diffusion model and applied
boundary conditions. Solid bold lines
indicate Dirichlet boundary
conditions and homogeneous
Neumann boundary conditions are
indicated by dashed bold lines.
External field magnitude represented
by z -axis. Dimensions are in
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relaxation involving a flux pinning potential that depends logarithmically on current have

been formulated from models of nonlinear diffusion12,13, and some agreement with

experiment found14.

For the further validation of the solution technique in the nonlinear regime, an exact

solution of a nonlinear diffusion process with a power law electrodynamic characteristic13

was compared to a FE solution with identical physical parameters. The time evolution of

the position of the flux front, x f , is given by the exact relation

x w t
tf

k
= −�� ��

+
1

1
2

*4 9 (5.3)

where t
k

k k
k

k
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and

x c0 04= πσ1 6 , τ πσ0 01 4= 1 6 , β 0 0= E , k n= −1 and w  is the sample width. The

geometry and placement of the boundary conditions is identical to that of the model of

section 5.4.

The time evolution of the position of the flux front across a lead of width 1 10 3× −  m is

compared for isotropic resistivity deduced from an EJ  curve with n = 4 , σ 0
111 10= ×

Ω-1⋅m-1 and E0
41 10= × −  V⋅m-1. Using these parameters the exact calculated value of t *

Figure 5.11
Comparison of the exact solution and the FE numerical solution.
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using equation (5.4) is 5.612 × −10 3  s. I gratefully acknowledge the assistance A. M.

Campbell in deriving a dimensionally correct value of t *  from equation (5.4)

The numerically calculated flux profile is a set of points along a line interpolated from the

values of the solution at the nodes of the mesh. The position of the flux front is taken to be

at the interpolated point that has the closest value to 25 A⋅m-1 (0.25 % of that of the

boundary value). Figure 5.11 plots a comparison of the numerically calculated flux front

evolution and the exact solution of equation (5.3). The solutions are almost exactly the

same and both follow the same functional dependence of equation (5.4). The exact

solution is only valid for t t< *  ( t * = × −5.612 10 3  s), and as figure 5.11 shows the fit is

poor beyond t = × −5 612 10 3.  s, where the analytical solution is invalid, demonstrating

further agreement between the predictions of the exact and numerical solutions. Note that

the numerical model provides a solution outside of the valid range of the exact solution. A

single parameter Levenberg-Marquardt regressive curve fit of the numerically derived

value of x tf 1 6  over the valid time range t = − × −0 5612 10 3.  s is also shown in figure 5.11.

The functional form of equation 5.4 was used for the fit and calculates t* .= × −5778 10 3  s,

which compares favourably to the exact calculated value.

Whereas numerical calculations of nonlinear flux diffusion in slab geometries exist in the

literature15,16 this is the first solution employing the Galerkin FE method. This is also

further confirmation of the steady state solution, as the transient solution at a single time

point is the solution of the steady state equation with a source term, (see section 4.2); the

source term being represented by the value of the time derivative at that time point.

5.6 The constricted slab model: A comparison of the transient

and steady state

The solution of a transient model approaches the steady state solution with increasing

time. Therefore, after a sufficiently long time interval the transient solution should be

similar to the steady state solution for the same system. For further validation of the

methods employed to generate solutions in the nonlinear regime, comparison of the steady

state solution (which has been verified against intuitive models) and the analytically

verified transient solution has been made. The model compared is the constricted slab

model with n = 5  in both the isotropic case (α = 1) and anisotropic case (α = 5).
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The transient solution at a time t = 01.  s was found to be sufficiently close to the steady

state solution for comparison. The same mesh of 180 nodes was used for all the solutions

enabling direct comparison of the solution values at the nodes. The maximum percentage

difference between the values at the nodes for the steady state and transient ( t = 01.  s)

solutions was 0.03 % and 0.02 % (see table 5.1), for the isotropic and anisotropic cases

respectively. This indicates good consistency between the steady state and transient

numerical models. As table 5.1 shows the anisotropic transient solution requires more time

steps. This is because the anisotropic solution contains higher resistivity components,

which introduce faster flux fronts into the solution; in order to describe accurately the flux

fronts, smaller time steps are needed. However because of the presence of flux fronts

along both the x  and y  axes directions, lower resistivity components are also present so

the solution does not near the steady state any more rapidly. Whereas 180 nodes are

adequate for the purpose of validation, this number of nodes does not provide sufficient

spatial resolution for comparison to real systems. Unfortunately, transient models

employing fine meshes take a prohibitive amount of time to compute on desktop personal

computers and so are not dealt with any further in this work.

5.7 Summary

The validity of the FE technique and computer implementation has been verified by the

comparison of results with intuitive and analytical models in the steady state and transient

regimes for both isotropic and anisotropic models. For further consistency, agreement

between the steady state and a transient model in the long time limit for the isotropic and

anisotropic cases has also been demonstrated. It has been shown that current flow in

nonlinear media limits current crowding and that this results in a spreading of current over

a greater region of the conductor than in linear media. Analogy has been drawn between

the constricted slab geometry and macroscopic defects that form permanent barriers to

current flow in superconductors. This suggests that such defects have a long-range effect

Table 5.1 Comparison of transient and steady state solutions.

Maximum
percentage
difference

(%) at nodes

No of time
steps in
transient
solution

No of nodes in
transient and
steady state
comparison

No of nodes in
steady state

solution

Isotropic (α = 1) 0.03 11587 180 2687
Anisotropic (α = 5) 0.02 42933 180 2739
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on the current distribution outside the constriction, which increases with increasing

n -value and anisotropy ratio.
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CHAPTER 6

Current transfer on the macroscopic

scale: Current contacts

6.1 Introduction

Many applications of bulk HTSs in power engineering systems require high quality

current contacts between normal metal and HTS components for ready integration into

power systems based on normal metal conductors. Such contacts must have a low and

uniform effective contact resistivity to avoid increased local power dissipation and thereby

localised thermal quenching at regions of high current transfer or high resistivity. A large

contact resistance also results in increased cooling power costs. Research on current

contacts to bulk HTS materials has predominantly focused on experimental techniques to

reduce the contact interface resistance with values for the yttrium based and bismuth based

superconducting systems over the range presented in figure 6.1.

The butt, lap and in-situ current contact (see figure 6.2) are the principal geometries used

commercially and for research. Whereas the butt contact provides ideal current transfer the

structure has low mechanical strength and requires additional mechanical support. The lap

contact typically allows for a larger contact interface region and therefore greater

mechanical strength, and along with in-situ current contacts, provides a mechanism for

current sharing between the contact and HTS component. This minimises power loss,

particularly at high currents. The contact interface resistivity and mechanical strength of

both butt and lap current contacts degrade with thermal cycling1. The in-situ current

contact typically has lower contact resistivity and eliminates the separate steps involved in

contact preparation but requires different processing during HTS manufacture.

This chapter describes modelling of current transport in the contact region of in-situ

current contacts to isotropic and anisotropic HTSs. The numerical solutions of the model

compare favourably to the results of experimental studies of the voltage distribution along

in-situ current contacts to Bi-2212 CRT. The in-situ current contact and the general
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current transfer behaviour of in-situ currents contact are

described in section 6.2. The properties of current contacts

are usually investigated at applied currents, Iapp , lower

than the critical current of the superconductor, cI , and do

not analyse the current distribution within the contact2,3.

These models are described in section 6.3. Power

engineering applications, such as fault current limiters often demand maximum operating

currents significantly larger than the critical current of the superconducting component.

Under these conditions, the superconductor enters a resistive flux flow state which

changes the current transfer behaviour of the current contact4,5. The nonlinear and

anisotropic behaviour of the superconducting component of current contacts operating

below and above Ic has been modelled extensively using two different approaches, the

results of which are discussed in sections 6.4 and 6.5.

6.2 Current transfer in current contacts

There are two principal contributions to the effective electrical surface resistivity of a

current contact, one from the interface resistance and the other from the bulk resistivity of

the device material. Current injection across the butt contact to an homogeneous nonlinear

material is uniform across the entire contact area and as such the bulk resistivity term and

current transport behaviour can be described on both local and global scales solely by the

EJ  characteristic of the bulk material. In geometries where the direction of current

injection is not perpendicular to the contact-device material interface, there is bending of

the current path away from the injection direction. This

results in current passing across the contact area

non-uniformly, becoming increasingly unevenly

distributed, as the resistivities of the contacted materials

become more dissimilar. Current crowding at the interface

nearest the injection point becomes more congested in the

extreme case of a superconducting device material

contacted to a normal metal.

The contact interface resistance and the bulk resistivity of

the device material both contribute to the effective contact

resistivity of a current contact. The usually negligible bulk

Figure 6.2
Schematic of the butt, lap and
in-situ current contact geometries
relative to the x y z, ,   co-ordinate

frame shown.

Figure 6.1
Range of current contact interface
resistivity values for the yttrium
based and bismuth superconducting
systems.
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-16

1.10
-9

Bismuth
HTS

Contact interface resistivity mΩ 2⋅



81

resistivity term of the HTS becomes significant on a local scale across the current contact

for J Jc≥ , introducing a spatially complex current dependent bulk resistivity contribution

to the effective contact resistivity. Due to the nonlinear nature of the EJ  characteristic,

current transfer in contacts to nonlinearly conducting devices is difficult to analyse both

analytically and numerically. Further complications arise due to the macroscopic current

anisotropy of many bulk HTSs because the principle critical current transfer component

across the contact interface, Jc y, , can be upwards of a factor of 10 less than Jc x, ; such that

local current density values below that of the macroscopic average can engender a flux

flow condition.

6.3 1D transmission line model of current transfer across a

current contact

In 1971, two basic models for contacts to planar devices were developed in the field of

semiconductor physics and remain, under various guises in the field of superconductivity,

the two principle theoretical descriptions to date. The two models represent two extremes

of behaviour, the Kennedy-Murley model6 solves the electrical conduction equations over

the 2D geometry of a semiconductor current contact with zero contact resistance and the

Murrmann-Widmann model7 (TL model) solves a 1D line contact with nonzero contact

resistance but zero semiconductor device material thickness. This section describes the TL

model. Section 6.4 describes a model that solves the electrical conduction equations of a

2D current contact with nonzero contact resistance and improves upon existing models by

calculating current flow in contacts to anisotropic nonlinear media using FD techniques.

Employing the approach of Berger2 the TL model can be derived for the case of a current

contact to a superconducting device. Compare the cross

section of the contact and the transmission line section in

d.c. operation as illustrated in figure 6.3. The roles of the

contact and device material in the Berger derivation have

been swapped for the purposes of the lap contact geometry

employed in this derivation. The TL contact comparison

indicates that the resistivity of the contact metal, ρcm  ( ρ Ag

and ρ Au  for silver and gold contacts respectively),

corresponds to the series resistance per unit length of the

Figure 6.3
Schematic of metal-HTS contact
and transmission line circuit
diagram.
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transmission line, R’, and the interface resistivity, ρ i , is the counterpart of the parallel

shunt line conductance per unit length G’. For unit width, w , and thickness, t , R’ and

G’equate with ρcm  and ρ i

′ =R
wt

cmρ
(20.1)

and G
w

i

’=
ρ

. (20.2)

The line equations, equations (20.3) and (20.4), describe the current and voltage

distribution along the contact of figure 6.3

v x v x i Z xc c1 6 = −1 1cosh sinhα α (20.3)

i x i x v Z xc c1 6 = −1 1cosh sinhα α (20.4)

with characteristic d.c. impedance

Z
R

G w t
cm i= �
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�� = �

��
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��
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2
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21 ρ ρ
(20.5)

and propagation constant

α ρ
ρc
cm
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R G
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= =
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��’ ’1 61

2

1

2

. (20.6)

In the case of the terminal contact, i1 0≠  and i2 0=  (see figure 6.3). Given the condition

i2 0= , combining equations (9.1) and (9.2), the application of a hyperbolic trigonometric

identity gives

v x i Z
d x d

dc

1 6 1 6
=

−
1

1cosh

sinh

α
α

(20.7)

where d  is the contact length at which point i2 0= . This derivation treats the current

contact within a 1D limit, in that it assumes that equipotential lines extend across the

contact width perpendicular to the device edge, and that the contact metal has zero

Figure 6.4
Schematic describing in-situ contact geometry, indicating half geometry modelled and point of initial
interface contact x =0.
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thickness. This terminal contact model equivalently describes current transfer behaviour in

the lateral half geometry of the in-situ contact (see figure 6.4) if the current transfer in the

in-situ contact is assumed negligible at x d= . A characteristic current transfer length, lt ,

can be defined as the reciprocal of the propagation constant, α c . The contact resistance

Rc  (units of Ω) is simply related to the total voltage drop ∆V  along the contact by

R V ic = ∆ 1 . Substitution of x d=  in equation (6.7) gives ∆V  and hence

R Z d lc t= cosech1 6 . (6.8)

The power dissipation, P V i= 0 1 , can be expressed as

P i Z d lt= 1
2 cosech1 6 . (6.9)

In the limit d lt<< , cosech d l d lt t1 6 1 6≈ −1
 and therefore, R G dc = ′1 1 6  and

P i G d≈ ′1
2 1 6 8. Thus, relatively short contacts suffer from power dissipation that

increases as 1 d . In the limit d lt>> , cosech d lt1 6 ≈ 1 and therefore, R R Gc ≈ ′ ′1 61 2

which is the characteristic d.c. impedance (equation (6.5)) and P i R G≈ ′ ′1
2 1 21 6 8. Thus,

increasing the contact length neither decreases the resistance nor the power dissipation.

Due to the symmetrical half geometry of the in-situ current contact, the effective thickness

of the metal contact lead is t 2  and width 2w  compared to a lap geometry contact. In the

limit d lt>>  the contact resistance can therefore be written as

R
w tc

i cm= �
��

�
��

1

2

2
1 2ρ ρ

. (6.10)

This model can only be applied in the low applied current regime for which the bulk

resistivity of the superconducting component is negligible. A 1D nonlinear model, based

upon the TL model, has been developed and replaced the contact interface resistivity, ρ i ,

term of equation (6.6) with a contact resistivity that has constant and current dependent

resistivity components ρ ρ ρni i J x= + 1 62 7  (results not presented).

6.4 2D finite difference model of current transfer across a

current contact

The 1D TL model only deals with 1D current flow in current contacts to isotropic Ohmic

materials with zero contact metal thickness. For further examination of the 2D current

flow in contacts to superconductors a model employing an anisotropic nonlinear

conductive device media has been developed. The Kennedy-Murley model investigates
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the electrical properties of contacts to semiconductor devices using a 2D FD method. In a

similar manner to that used by Kennedy and Murley a 2D model using control volumes9

has been developed to investigate the electrical properties of Au-HTS current contacts10.

This model replaces the semiconductor EJ  characteristic with the power law

characteristic described in section 4.3.1. The model also accounts for critical current

anisotropy and incorporates a contact interface resistivity boundary condition between the

gold and superconducting components.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.5
Current density distributions (a)-(f) of the Au-HTS in-situ contact with applied current equal to the critical
current of the device. The current density distributions are derived from FD model solutions. The
superconducting region in plots (a)-(c) has an n -value of 1 and anisotropy ratios of 1, 5 and 10 respectively.
The superconducting region in plots (d)-(f) has an n -value of 9 and anisotropy ratios of 1, 5 and 10

respectively. The region x = − × −0 2 10 3.  to x = × −2 10 3  m is shown in plots (a)-(e) and the region

x = − × −0 2 10 3. to x = × −3 10 3  m is shown in plot (f). Arrows indicate current density vectors.
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The numerical solution to the 2D FD model solves a number of electrostatic state variables

in the 2D geometry of the in-situ contact4, the geometry of which is shown schematically

in figure 6.4. The symmetry of the lateral midline of the contact geometry is used to halve

the region over which the solution is calculated. The electrical conduction problem is

represented mathematically by the uniformly elliptic harmonic nonlinear Laplace equation

and the current continuity equation. The solution of these simultaneous equations is

approximated at a number of discrete points ( ≈ 250) arranged in a rectangular grid over

the contact geometry using the FD control volume method. This involves discretising the

solution region into a rectangular grid of solution points (nodes), where the local electric

potential, resistivity and the x  and y  axis components of the current density vector are

calculated using a set of balance equations. Electrical potential boundary conditions at

both ends of the contact induce a current flow in the composite Au-HTS structure subject,

in the anisotropic case, to different nonlinear resistivities in the x  and y  axis directions.

Other FD models used solutions of the voltage distribution over the entire contact to fix

boundary conditions for models of smaller regions of interest (results not presented). The

nonlinearity is a current dependent resistivity of the same functional form as equations

(4.9a) and (4.9b). The resulting sets of nonlinear equations are solved by least squares

optimisation employing the Levenburg-Marquardt search direction method. A linear

solution obtained by direct matrix solution is used as the starting guess for the nonlinear

optimisation. The dimensions of the 2D contact and physical parameters describing the

material properties of the contact components are detailed in list 6.1. Figure 6.5 compares

the current density distribution in the linear and nonlinear models of the in-situ current

contact for anisotropy ratios of 1, 5 and 10. Figure 6.6 shows plots of the current density

List 6.1 Physical parameters of the 2D FD model of the in-situ current contact.

Contact metal resistivity @ 77 K (Au) 152 10 8. × −  Ω⋅m
Thickness of contact metal (Full geometry) 62 5 10 6. × −  m
Superconducting component n -value range 9

Thickness of superconducting component (Full geometry) 2 10 3× −  m

Jc x,  of superconducting component using 1 10 4× −  V⋅m-1 criterion 10 106×  A⋅m-2

Critical current of device, cI 100 A

Critical current anisotropies of superconducting component 1, 5, 10, 20, 30

Notional width of current contact 5 10 3× −  m
Contact interface length 6 10 3× −  m
Contact interface resistance 2 5 10 11. × −  Ω⋅m2
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distribution normalised with respect to the macroscopic current density, I t wapp s1 6 , for

different applied current conditions. Normalisation of the current density distribution

allows easier examination of the evolution of the distribution with increasing current

density and still allows for current density values, below I t wapp s1 6  of a particular

solution, to be determined, given the value of Jc  (see list 6.1). Normalised current density

distributions derived from solutions with n = 1 possess the same single valued resistivity

term for each component and so are identical for every value of Iapp .

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.6
Current density distributions (a)-(f) of the Au-HTS in-situ contact normalised with respect to the
macroscopic current density, I t w

app s0 5 , for applied currents of 0 9. I
app

, 1I
app

, 11. I
app

, 1 4. I
app

, 15. I
app

 and

1 6. I
app

 respectively. The current density distributions are derived from FD model solutions. The

superconducting region has an n -value of 9 and anisotropy ratio of 5. The region x = − × −0 2 10 3.  to

x = × −2 10 3  m is shown in plots (a)-(c) and the region x = − × −0 2 10 3.  to x = × −2.5 10 3  m is shown in
plots (d)-(f). Arrows indicate current density vectors.
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From the point of initial contact between the normal metal and the HTS, x = 0 , a

2 10 3 103 3× − ×− −  m length of current contact is shown in figures 6.5 and 6.6. The current

density distributions described by the plots of figures 6.5 and 6.6 possess good qualitative

agreement with FE models of Au-HTS and Ag-HTS in-situ current contacts. This

qualitative agreement between the two modelling methods based upon different

mathematical representations of the underlying physical system further demonstrates the

consistency of the modelling approaches employed. The current transfer behaviour of the

in-situ current contact as described by the physical model of current transport in nonlinear

conductive media is described in the next section.

6.5 2D finite element model of current transfer in the current

contact region

As mentioned in section 4.2 a FD model of a physical problem cannot be readily adapted

to different geometries and structures, and such techniques should only be applied to

specific problems. The FD models of the in-situ current contact possess, at most, 250

solution points and take 1-4 hours to solve. This section presents the results of a FE model

of the in-situ current contact that has been developed in order to overcome the

inflexibility, lack of spatial resolution in the computed solution, inefficiency and relative

inaccuracy of the FD model.

At low applied currents the current transfer across the contact interface is exactly

described by the linear TL model (the TL regime). As the applied current value increases

the bulk resistivity of the superconductor becomes increasingly significant and the current

transfer behaviour deviates from that of the linear TL model (the non-TL regime). For the

in-situ contacts modelled and experimentally measured, the TL regime typically occurs for

I Iapp c<  and the non-TL regime for applied currents greater than the critical current of the

contacted device, I Iapp c≥ . The applied current that differentiates the TL and non-TL

regime is an approximate value. Anisotropy of the bulk superconducting material

introduces two critical current density values. In regions of current flow involving both x

and y -axis current density components, the value of the applied current below which the

TL regime occurs is not simply the critical current value of the bulk superconducting

component, which assumes uniform current flow in the x -axis direction, but a value

below Ic .
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In the following sections the characteristic current transport behaviour of these two

regimes is discussed and compared to experimental measurements of current transfer

characteristics in in-situ current contacts to HTSs. In addition, the current transfer of lap

current contacts has been modelled and is discussed. Gold and silver in-situ current

contacts and gold lap contacts have been modelled. In a similar manner to that of the FD

model, the symmetry of the lateral midline of the current contact is used to halve the size

of the solution space. Contact dimensions and other physical parameters describing the

material properties of the contact components are detailed in list 6.2.

6.5.1 The in-situ current contact in the linear regime

For small applied currents, I Iapp c< , the transmission line model can be used to describe

the voltage distribution along the contact midline, V x1 6 , and agrees well with the

experimental determination of the voltage drop along an in-situ contact (see figure 6.7).

Electrical measurements along a sample were performed by measuring the voltage drop

across a series of voltage contacts placed on the in-situ contact metal insert.

For small applied currents, the distribution V x1 6 , as calculated by the linear (n = 1) and

nonlinear FE models ( n = 5 6,  ), agrees exactly with the analytical expression (equation

(6.7)) describing the voltage drop along the contact midline and therefore agrees with the

experimentally determined voltage distribution along the contact midline. An accurate

solution cannot be obtained using the numerical models presented in this thesis for contact

lengths d  greater than 4 10 3× −  m. This is smaller than the typical contact length of

Bi-2212 CRT in-situ current contacts and so a direct comparison of FE model solutions

and the experimental data is not possible. Direct comparison is also not possible due to the

different n -value of the EJ  characteristic of the experimental sample and FE model. In

List 6.2 Physical parameters of the 2D FE model of silver and gold in-situ and lap current contacts.

Contact metal resistivity @ 77 K (Ag) 0 29 10 8. × −  Ω⋅m
Contact metal resistivity @ 77 K (Au) 152 10 8. × −  Ω⋅m
Thickness of contact metal (Full geometry) 62 5 10 6. × −  m
Superconducting component n -value range 1-6
Thickness of superconducting component (Full geometry) 15 10 3. × −  m
Jc x,  of superconducting component using 1 10 4× −  V⋅m-1 criterion 10 106×  A⋅m-2

Critical current of device, cI 15 103×  A
Critical current anisotropies of superconducting component 1, 3, 5, 10
Notional width of current contact 1 m
Contact interface length 4 10 3× −  m
Contact interface resistance 2 5 10 11. × −  Ω⋅m2
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the low current regime the FE model calculated distribution V x1 6  is independent of α ;

this is however not the case in the non-TL regime and is discussed in the next section. In

this regime the bulk resistivity of the superconductor over the region of initial current

transfer even on a local scale is small, 12 10 14. × −  Ω⋅m near the point of largest transfer

( I Iapp c= 0 25. , n = 6 , α = 1, Ag-HTS contact), and so does not contribute to the current

transfer characteristic along the metal contact. The nonlinear FD model calculation of

V x1 6  agrees closely with the analytical expression in the low current regime.

The total voltage difference along the contact midline between x = 0  and x d= , ∆V , is a

useful characteristic parameter for comparison of the in-situ contact current transfer

behaviour. The experimental value of ∆V  was measured as the voltage drop between

voltage contacts placed at x = 0  and at a point on the bulk superconductor far removed

Figure 6.7
Plots of the voltage distribution along the Ag contact metal insert midline for various applied current values.
Grey closed circles indicate TL model calculated values of the voltage along the contact midline, using the
same contact parameters as those determined by experiment. Black closed circles indicate the experimentally
determined voltage along the contact midline of the Ag-HTS in-situ current contact. Experimental data
courtesy of A. Kuršumovic.
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from the contact region. The value of ∆V , as derived from the FE solution, was calculated

from the electric field distribution using the expression

∆V
d

= •IE dl
0

.

Plots of ∆V  as a function of applied current, normalised with respect to the critical current

value, calculated from solutions with n > 1, indicate that ∆V Iapp3 8  has a the linear

dependence for values below approximately Ic  (see figure 6.8). For solutions with n = 1,

∆V Iapp3 8  has a linear dependence for all values of Iapp  and is the same for α =1, 3, 5, 10.

In the TL regime, the FE model and experimental values of ∆V Iapp3 8  agree exactly (see

figure 6.8). The contact resistance is given by the gradient of the linear region of the

∆V Iapp3 8  curve. Both numerically and experimentally derived values of the gradient agree

exactly with the calculated value of 37 10 6. × −  Ω given by the TL model using equation

(6.10). This further demonstrates that the nonlinear FE model correctly reproduces both

the experimental and TL model results in the TL regime. For I Iapp c> , ∆V Iapp3 8  deviates

from linear behaviour (except the ∆V Iapp3 8  curve derived from the FE solution with

n = 1) for applied current greater than approximately Ic  (see figure 6.8). This is discussed

in the following section.

Figure 6.8
Plot of DV across the Ag in-situ metal contact insert as a function of the applied current normalised with
respect to the critical current. Experimental and FE model derived values are presented. The FE model data
presents solutions with n -values of 1 and 6 for anisotropy factors of 1, 3, 5 and 10. Experimental data
(black closed circles, no line) courtesy of A. Kuršumovic.
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6.5.2 The in-situ current contact in the nonlinear regime

For applied currents, I Iapp c> , the TL model no longer agrees well with the experimental

determination of the voltage distribution along the contact midline, V x1 6 , (see figure 6.9,

plot b). The distribution V x1 6  deviates from the distribution computed by the TL model

with increasing applied current. This is most pronounced near x = 0 , at which point the

experimental voltage is greater in value than that calculated by the TL model, (see figures

6.8 and figure 6.9, plot b). At this point, the local resistivity value in the superconducting

component is maximum. The current density component J y  across the interface is

maximal and Jx  is zero. The increasing contribution to the contact resistivity of the bulk

component in the experimental sample with increasing applied current leads to an increase

at x = 0 , in the required voltage to accommodate the same constant current condition as

applied in the TL model.

Comparison of plots a and b of figure 6.9 indicates that the deviation from V x1 6  as

calculated by the TL model is similar in form for both the FE model and experiment. A

larger applied current value is required to generate similar behaviour to that of the

experimental V x1 6  curve due to the lower n -value associated with the FE model EJ

characteristic of the superconducting component. The experimental and FE model V x1 6
curves do not exhibit the characteristic exponential functionality of the TL model,

Figure 6.9
Comparison of the voltage distribution along the Ag contact midline, determined from a FE model solution
(plot a) and experimentally (plot b), with TL model approximations. Grey closed circles indicate TL model
calculated values of the voltage along the contact midline. Black closed circles indicate the experimentally
determined voltage along the contact midline of the Ag-HTS in-situ current contact. Black closed triangles
indicate the FE model calculated values of the voltage distribution along the contact midline for a solution
with n = 6  and α = 5 . The experimental data is provided courtesy of A. Kuršumovic.
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indicating that the additional current dependent bulk resistivity is not single valued but a

complex spatial distribution. This is confirmed by the evolution of the current density

distribution with increasing current, (see figure 6.11). On application of increasing applied

current values, the length over which most current is transferred to the superconducting

component does not increase linearly at high applied currents as prescribed by equation

(6.7), but increases nonlinearly at an increased rate. At very high currents, current transfer

is more evenly distributed along the whole contact8.

The current distribution in the HTS component is different for linear models and nonlinear

models in the entire current range I I Iapp c c= −0 25 5.  and for anisotropy ratios 1, 3 and 5

(see figure 6.10, compare plots a-c and d-f). The ‘hump-like’ high current density region

at the contact interface is typical of in-situ contact models with nonlinear HTS component

(see figures 6.5 and 6.10). Within the superconducting component, the current density

(a)

(b)

(c) (f)

(e)

(d)

Figure 6.10
Current density distributions (a)-(f) of the Ag-HTS in-situ contact with applied current equal to the critical
current of the device. The current density distributions are derived from FE model solutions. The
superconducting region in plots (a)-(c) has an n -value of 1 and anisotropy ratios of 1, 3 and 5 respectively.
The superconducting region in plots (d)-(f) has an n -value of 6 and anisotropy ratios of 1, 3 and 5
respectively. The region x = − × −0 2 10 3.  to x = × −2 10 3  m is shown. Arrows indicate current density
vectors.
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reaches a maximum value in this region away from the point of initial current transfer in

the TL regime. The maximum starts near x = 0  for low applied current values and moves

along the interface for increasing current and increasing anisotropy value. Maximum

power dissipation will occur coincident to this location in the form of Joule heating and is

therefore likely to be the site from which thermal quenching of the superconductor

propagates in the event of inadequate local cooling power. This maximum is principally

due to a local maximum in the current density component Jx . Under the influence of an

applied electric potential along the x -axis the current transferred near x = 0  flows

predominantly near and parallel to the contact interface. The local absolute magnitude of

the current density becomes maximal near (but not at) the contact interface as additional

current transfers across the interface further along the contact. The mitigation of the

current density component, Jy , at x =0 allows the component, Jx , to dominate the

resolved J  at a point further down the contact. It is important to note that in the low

applied current regime, the nonlinear model does not approximate the linear model; the

current density distributions remain different.

Current transfer and thereby current sharing between metal contact and the HTS is

mediated by Jy  across the contact interface. Increasing mitigation of Jy  with increasing

(a) (b)

(c) (d)

Figure 6.11
Current density distributions of the Ag-HTS in-situ contact normalised with respect to the macroscopic
current density, I t w

app s0 5 , for applied currents of 0 5. I
app

, 1I
app

, 2 I
app

 and 3I
app

 (plots a-d respectively).

The current density distributions are derived from FE model solutions. The superconducting region has an
n -value of 6 and anisotropy ratio of 5. The region x = − × −2 10 3  to x = × −2 10 3  m is shown. Arrows
indicate current density vectors.
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current anisotropy, leads to greater current sharing and a larger region of high current

transfer between the normal and superconducting contact components, as plots a-c and d-f

of figure 6.10 indicate. Whereas the anisotropy ratio has an effect upon the current density

distribution of the HTS component for solutions with n = 1, a factor of 5 increase in the

y -axis components of the HTS resistivity is not sufficient to change the contact transfer

characteristic V x1 6 . All solutions with n = 1 only exhibit TL model behaviour.

Examination of the normalised current density shows a gradual change in the distribution

with increasing applied current (see figure 6.11). As the applied current increases, the

local resistivity value increases over the superconducting region and becomes an

increasing hindrance to current flow. This also leads to greater current sharing between the

metal contact and HTS bulk material with a more gradual transfer across the contact

interface along the length; as indicated by the current density vectors. This is also manifest

in the deviation from the analytical, approximately exponential, behaviour of V x1 6 .

For increasing applied current, the current dependent nonlinear local resistivity minimises

current crowding and the formation of high current density regions in favour of a more

even distribution, which in accordance with current conservation is over a larger region.

The spreading of this current density leads to an increasingly smaller region of high

normalised current density as plots a-d of figure 6.11 show. Both gold in-situ and lap

current contacts have been modelled. The geometry of the lap contact was identical to that

of the in-situ contact except for a boundary condition at x d=  which prevented current
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Figure 6.12
Plot ofDV  across the Au in-situ metal contact insert as a function of the applied current normalised with
respect to the critical current. FE model derived values are presented. The FE model data presents solutions
with n -values of 1 and 6 for anisotropy factors of 1 and 10.
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transfer across the end of the contact metal insert.

For solution values with n =1, 5, 6 and α =1, 3, 5

there is no significant difference between the

current density distributions for the two

geometries. Current density values in the metal

contact near x d=  were both exceedingly small,

which corroborates the assumption of section 6.3.

The current transfer behaviour described in this

chapter can also therefore be used to describe

current transfer behaviour in the current contact

lap geometry.

Comparison of ∆V Iapp3 8  for the FE model of the

Ag contact and experiment shows good agreement

(see figure 6.8). The nonlinear FE model and the

experimental data possess the same quadratic functional dependence as the experimental

data over the entire current regime. Whereas the FE model shows similar behaviour to the

experimental data, exact agreement is not expected due the experimental sample’s higher

values of n  and d  of 8 and 8 10 3× −  m respectively. The FD model solutions exhibit

similar behaviour over the applied current regime I I Iapp c c= −1 16.  examined. The

quadratic functional dependence of ∆V Iapp3 8  can be attributed to the current dependence

of the bulk resistivity component of the contact resistance, which increases with increasing

applied current.

The distribution ∆V Iapp3 8  of the FE model of the Au contact has a larger Rc  value as

indicated by the steeper slope of the linear section of ∆V Iapp3 8  and has a value the same

as that calculated using equation (6.10). The balance of current sharing between the HTS

component and contact metal shunt is different for gold and silver contacts. The greater

resistivity of gold leads to a smaller proportion of current per unit length in the gold

contact. By implication a greater proportion of current flows in the HTS component. This

is evident in the deviation from the TL model (n =1, α = 1) at lower values of I Iapp c  for

the gold contact than the silver contact (0 2. I Iapp c ) and for increasing values of α . The

curvature of ∆V Iapp3 8  is also greater in the case of the gold contact than the silver contact,

Figure 6.13
Comparison of the contact resistivity of the
Ag (black closed circles) and Au (grey closed
circles) in-situ metal contact insert as a
function of the applied current normalised
with respect to the critical current. FE model
derived values are presented. The FE model
data presents solutions with n =6 and α =1.
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irrespective of the steeper slope of the linear

section. This is more clearly shown by

comparison of the contact resistivities of the

silver and gold contacts (see figure 6.13).

The contact resistivity of a contact to a

nonlinear device is a spatially complex

quantity. Assuming the contact length is

much greater then the length over which

most current transfers from the contact to the

device, an approximation using equation

(6.10) can be calculated and is presented in

figure 6.13; direct comparison of the

curvature of the plots is independent of this

approximation. Figure 6.13 also more clearly

shows the constant contact resistivity component of the contact resistivity. Deviation of

∆V Iapp3 8 , calculated for the nonlinear case, from the TL model occurs at a smaller value

of Iapp . This indicates that a greater contact metal resistivity and/or anisotropy value

(better texturing) leads to an increase in the significance of nonlinear effects at a smaller

applied current. Examination of the voltage distribution along the contact at the same

applied current (compare figure 6.9 plot a and figure 6.14) shows higher values of the

voltage at x = 0  (as expected for a more resistive contact material) and a more rapid decay

of V x1 6  over the contact length; a result of greater current transfer per unit length from the

contact to the HTS component.

6.6 Summary

A model, which accounts for the current transfer behaviour of current contacts to HTSs at

current in excess of the critical current has been presented and corroborated by numerical

modelling. Comparison of the total voltage drop across the contact as a function of applied

current for both the FE model and experiment shows good agreement. The nonlinear FE

model reproduces exactly the analytical behaviour of the TL model and experimental data

in the low applied current regime; and exhibits the same functional dependence as the

experimental data over the entire current regime for both ∆V Iapp3 8  and V x1 6 . The

Figure 6.14
Comparison of the voltage distribution along the Au
contact midline, determined using a FE model, with
the voltage distribution calculated using a TL model
approximation. Grey closed circles indicate TL
model calculated values of the voltage along the
contact midline. Black closed triangles indicate the
FE model calculated values of the voltage
distribution along the contact midline for a solution
with n = 6  and α = 5 .
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behaviour of current transfer in current contacts to HTSs has been described and can be

considered to possess different behaviour in two different regimes. At applied currents in

excess of the critical current of a contacted device, the contact interface resistance and

current transfer length increase nonlinearly. This presents a further factor to consider in

the development of current contacts for high power HTS applications. The resistivity of

the metal contact material has also been shown to have a more complex influence on the

current transfer behaviour of contacts to nonlinear devices than contacts to devices with

linear EJ  characteristics. Current transfer has been shown to be practicably identical in

the in-situ and lap contact geometries of the dimension modelled in this chapter. A high

current density region at the contact interface to nonlinear media forms at a point near but

not coincident with x = 0 , unlike contacts to ohmic conductors. This maximum moves

along the interface for increasing current and increasing anisotropy value.
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CHAPTER 7

Current transfer on the microscopic

scale: Microstructural current transfer

models

7.1 Introduction

As discussed in section 2.4, it is now well established that macroscopic current transfer

within the electrically connected volume of polycrystalline high- Tc  superconductors is

determined principally by the type and/or properties of the boundaries between the

superconducting grains. The brick-wall and railway-switch models propose that c-axis

twist grain boundaries and c-axis tilt grain boundaries are the dominant intergranular

connexions that control the macroscopic current transfer in textured bulk polycrystalline

Bi-2212 and Bi-2223 PIT superconducting tapes. This chapter presents modelling of

current transfer between c-axis, low-angle c-axis and edge-on c-axis tilt oriented grain

interfaces and produces quantitative and qualitative results from these mainly qualitative

microstructural descriptions. The first part of this chapter examines current transfer

behaviour in a weak link free brick-wall model. The later part presents the results of a

model of current transfer in strongly connected low-angle c-axis and edge-on c-axis tilt

grain boundaries, which form the suggested current transfer mechanism of the

railway-switch model.

7.2 Current transfer models in polycrystalline HTSs

Bulk superconductor optimisation has moved from an heuristic assay of preparation

parameters to a more focused strategy based upon understanding the current transfer

mechanism within the microstructure of polycrystalline HTSs and relating this to aspects

of the preparation techniques.
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As discussed in section 2.5.1 the colony is the basic current transport element of the

brick-wall and railway-switch models and both models examine current transfer at

different types of boundaries between such colonies. Individual grains in the colonies are

separated by twist grain boundaries and therefore colony boundaries consist of grain

boundaries of different types. However, these models principally discuss current transfer

at colony boundaries that only consist of a single type of grain boundary connexion. The

numerical models presented in this chapter similarly only examine pure types of boundary

and therefore the terms grain and colony boundary only differentiate the scale of current

transfer discussed. Table 7.1 indicates that there is a range of typical colony and grain

sizes (where the term ‘grain’ is referenced as an ambiguous microstructural unit), for HTS

materials with suspected brick-wall or railway-switch model current behaviour. Whereas

the aspect ratio of the modelled systems is of import, the absolute sizes of the

grains/colonies should be immaterial in assessing the qualitative behaviour of current

transfer in brick-wall and railway-switch models. The current elements of the models

presented in this chapter most closely comply with the size of colonies in the brick-wall

and railway-switch models i.e. in Bi-2223 PIT tapes. Bulk transfer of current through the

geometry of the brick-wall and railway-switch models is assumed. Recent studies suggest

this may not be appropriate for all field and temperature regimes (see section 2.5.1). This

section discusses the brick-wall and railway-switch models, the two principal

microstructural models of current in bulk polycrystalline HTS.

7.2.1 The brick-wall model

The brick-wall microstructure, as discussed in section 2.4, restricts intergrain current flow

between c-axis twist grain boundaries. Dimos et al5 have shown that there is a strong

reduction of the critical current density across tilted and twisted ab-plane thin film Y-123

bicrystal grain boundaries and that the presence of a weak magnetic field further limits the

grain boundary critical current. The brick-wall model assumes zero current transfer at

twisted and tilted ab-plane grain boundaries in bismuth polycrystalline HTS systems, and

Table 7.4 Colony and ‘grain’ size of several polycrystalline HTS compounds.

Reference HTS Microstructural
unit

Length
(ab-plane) m

Thickness
(c-axis) m

Grindatto,
Bulaevskii1

Bi-2223 Colony 10 20 10 6− × − 1 10 6× −

Pashitski2 TlBa2Ca2Cu3Ox Colony 1 2 10 3− × − 5 30 10 6− × −

Adamopoulos3 Bi-2212 (CRT) ‘Grain’ 50 10 6× − 1 10 6× −

Pardo4 Gd1Ba2Cu3O7 ‘Grain’ 80 10 6× − -
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as such, represent the main obstacles to current, especially in the presence of a magnetic

field. The brick-wall model further assumes that the macroscopic current in polycrystalline

HTSs is determined by the Jospephson critical current at c-axis twist boundary weak links.

Therefore, the critical current of a single c-axis twist boundary determines the

macroscopic critical current as well as its magnetic field and temperature dependencies. A

generalised brick-wall model has been developed that takes into account a distribution of

grain sizes and weak link coupling strengths, and includes ab-plane Jospehson coupled

weak links1.

The results of various studies of silver clad bismuth polycrystalline HTS tapes do not

match the assumptions and predictions of the brick-wall model. These studies indicate that

any weak links that may exist within the microstructure reduce the active cross-sectional

area of a tape but do not limit the critical current in the strongly connected fraction of the

conductor. Microstructural studies have demonstrated that c-axis twist colony/grain

boundaries occur infrequently in the superconducting core of Bi-2223 tapes and typically

contain amorphous layers at the boundary which are likely to be insulating6-8. This

indicates that the brick-wall microstructure is unrealistic and that c-axis current transfer is

unlikely. The measured value of J Jc c
norm  in Bi-2223 tapes is several orders of magnitude

smaller than that characteristic of Bi-2212 crystals and the resistivity normal to the plane

is metallic in contrast to the semiconducting temperature dependence of Bi-2212 crystals9.

If the physical properties of Bi-2212 are similar to those of the Bi-2223 material, this

suggests that macroscopic current transfer in the c-axis direction is not via single crystal

c-axis conduction in contradiction with the brick-wall model. Investigations of the c-axis

critical current transport of single crystal Bi-2212, Y-123, (Bi1-x, Pbx)2Sr2CaCu2O8 and

Tl2Sr2CaCu3O10 show that these materials behave like stacks of

superconductor-insulator-superconductor Josephson junctions10. Hensel et al11 assume

that a lower limit for Jc c,  of a single crystal is simply J Jc c c
m

, = γ , where γ  is the aspect

ratio of a single grain (typically γ = 20 ). Given that the Jc  of bulk Bi-2223 tapes

typically has a value 650 106×  A⋅m-2 at 4.2 K and zero field, Jc c,  is still higher than

typical single crystal values (see table 2.1) and also higher than the zero-field Josephson

critical current density across a c-axis twist grain boundary12. This implies that single

crystal Josephson weak links do not determine the macroscopic current transport.
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Examination of the temperature and magnetic field dependence of Jc  further suggests that

macroscopic current transport involves little or no c-axis conduction. The scaling of the in

plane Jc  and Jc
norm  as a function of the direction of an applied magnetic field (see section

3.4.2) is very similar and indicates that the dissipation of the components of the critical

current results from the same physical origin, namely the dissipation of the in plane

component of the current13. This is corroborated by the similar magnetic field dependence

of the normal and in plane resistivities9. The temperature dependence of Jc c,  for single

crystals and Jc  for tapes should be very similar if current transfer is controlled by c-axis

twist grain boundaries. This is not observed experimentally14, adding further doubt on the

ability of the brick-wall model to describe realistically current transfer in Bi-2223 tapes or

bulk polycrystalline Bi-2212.

7.2.2 The railway-switch model

The railway-switch model relies on current transport inside the ab-planes of

interconnecting colonies and the assumption that low-angle c-axis tilt boundaries

constitute strong connexions. Section 7.2.1 details some of the evidence that suggests

current transport in polycrystalline HTSs is determined predominantly by ab-planar

current transport. There are principally two structurally identified boundary types joining

the colonies at the edges; low-angle c-axis (LAC) grain boundaries and edge-on c-axis

(EOC) tilt grain boundaries. The LAC boundary (see figure 7.1) consists of one colony

edge meeting the broad face of another colony at a low angle. EOC boundaries (see figure

7.1) are formed by conjoining the edges of two neighbouring colonies whose c-axes lie in

the same plane but are tilted with respect to each other. Detailed microstructural

investigations of Bi-2223 PIT tapes reveal that tilt boundaries, in contrast to c-axis twist

boundaries, are common15. Goyal et al16 have shown that over 40 % of boundaries are

low-angle; i.e. have misorientation angles of less than 15°.

LAC and EOC boundaries are not the dominant current transfer limiting mechanism of the

railway-switch model. The railway-switch model contends that LAC and EOC boundaries

are strong connexions in the sense that they do not represent weak links, in apparent

contradiction to the thin film transport current studies of Dimos et al5. Current distribution

in the direction normal to the tape plane occurs along the ab-plane of misoriented grains

and colonies. However, the railway-switch model contends that this mechanism alone is

insufficient to explain the high Jc
norm  values observed in Bi-2233 PIT tapes. It is suggested
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that current is mediated by a 3D current flow path that

connects 2D layers of EOC boundaries. This 3D path is

formed by LAC boundaries, which are considered an

essential component of the railway-switch model.

Irrespective of the precise current flow path, the percolative

nature of the macroscopic current has been ascribed to

sample inhomogeneity. Magnetic measurements of the EJ

characteristic and current length scales combined with

transport measurements of a Bi-2223 polycrystalline sample

indicate that at high magnetic fields the distribution of

current fragments into macroscopic islands connected by

narrow bridges of current17. This field and temperature

dependent fragmentation is attributed to a weak link network in which current flows

through a series of grain boundaries, which provide links of varying coupling strength.

Increasing field moderates the weak link behaviour and some different dissipation

mechanism becomes dominant. It is suggested that this mechanism is related to the

low-angle grain boundaries of the railway-switch model18.

7.3 Finite element model of current flow in the brick-wall model

microstructure

This section examines current transfer behaviour in a weak link free brick-wall model as a

limiting case of the more complex railway-switch model. The bricks of the microstructure

have been treated as nonlinear anisotropic electrically conductive media and current flow

calculated using a FE model. The following section describes the geometry of the model.

The calculated results presenting current flow in this structure are discussed in the latter

sections.

Although the brick-wall model is no longer considered a dominant mechanism for

macroscopic current transfer in high quality tapes, it is a simpler and more readily

analysed system than the railway-switch model, and there is some evidence that it may

play a minor role1. The brick-wall model may, however, describe more realistically

current transfer in tapes with less textured inhomogeneous microstructures8. Such poor

quality tapes contain many barriers to current flow along the plane of the tape, which may

induce current flow along c-axis direction. The numerical model results of section 5.3.2

Figure 7.1
Schematic representation of the
brick-wall microstructure and the
brick-wall unit cell geometry.
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suggest that such current transfer would occur via uniform current transport in the c-axis

direction between current barriers. The J Hc 1 6  characteristics of Gd1Ba2Cu3O7 have been

found to agree well with the behaviour of the brick-wall model4 and suggest that current

transfer in this material may be described well by the brick-wall model.

The models presented in this chapter assume strong brick boundary connexions. There is

evidence from Bi-2212 bicrystal measurements that high angle twist grain boundaries do

not demonstrate weak link behaviour19, however even if this is not representative of c-axis

twist boundaries in bulk HTSs the current transfer model presented is only intended as a

simplification. Indeed the specification of a field dependent grain boundary condition,

although possible, would introduce greater complexity into an already numerous set of

interdependent parameters.

Certain practical applications require large or relatively complex HTS ceramic structures,

e.g. large HTS cylinders. Some of the limitations imposed on component manufacture by

ceramic processing techniques can be overcome by joining individual components to form

a composite structure. The geometry of the model described in section 7.3 is identical to

that of the joint section of an idealised joint between two superconducting leads. The

results and discussion of current transfer in the brick-wall microstructure therefore also

describe the behaviour of current flow in superconducting joints.

7.3.1 Finite element model of the brick-wall unit cell

A single unit cell of the brick-wall microstructure has been modelled (see figure 7.2). No

weak link behaviour is assumed at the interface between the two brick quarter sections that

constitute the unit cell. A single brick of the brick-wall model has symmetry lines along its

longitudinal and transverse axes. Deep within a sample, where external edges can be

assumed to have negligible effect, the basic repeating unit cell of the brick-wall

microstructure is a single quadrant, as delineated by the symmetry lines, of a single brick

(see figure 7.2). Mirror inversion and translation of the current flow pattern in this cell

recreates the macroscopic current flow pattern of the brick-wall microstructure. The

identical current flow patterns either side of the longitudinal symmetry line give rise to a

constant field condition along the symmetry line and is a boundary condition of the model.

Similarly, the transverse symmetry line possesses a constant field condition along the

symmetry line. For the case of current injection or egress from the unit cell, the transverse

symmetry line engenders an electric field condition which is normal to the symmetry line
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in order to maintain a symmetric current distribution

immediately either side. These Dirichlet and Neumann

boundary conditions are shown schematically in figure 7.2.

A number of solutions (�600) have been calculated using

different aspect ratio, γ , n -value, and anisotropy ratio.

The applied current has a value equal to the critical current

as derived from the critical current density value, defined as

Jc = ×5 106  A⋅m-2, and the brick cross sectional area in the

yz -plane (see figure 7.2). The thickness of the bricks is

1 10 6× −  m and was kept constant. Changing the

longitudinal x -axis dimension of the bricks changed the aspect ratio. The bricks in the

model are of approximately the same size as Bi-2223 colonies. To keep the spatial

resolution of the mesh similar in models of different physical size, the mesh for models of

different aspect ratio was refined to varying degrees. The models contain between

10 103× and 35 103×  solution points.

7.3.2 Current flow in the brick-wall microstructure

As an aid to the conceptualisation of current flow in the brick-wall model, the current

density distribution in small sections of brick-wall microstructures composing of bricks

with aspect ratios of 10 and 20 has been constructed using the current density distribution

of individual unit cells (see foldout figure 7.3). Comparison of the brick-wall

microstructure with aspect ratio of 20 in the linear ( n = 1) and nonlinear case ( n > 1),

shows a more even distribution of current density in the region of the current constriction

(ab-plane grain boundaries, shown schematically as black vertical lines in figure 7.3) for

n ≠ 1 as discussed in section 5.3.3. Within a single brick with n > 1 the current

distribution is more uniform across the cross section at a single point along the brick than

the n = 1 case. The cross section available for current transfer at the aligned ab-plane grain

boundaries is half that of the macroscopic cross section available for current transfer

elsewhere in the brick-wall microstructure. In the region midway between the aligned

ab-plane grain boundaries, the current density value is maximum and approaches the

macroscopic average value midway between the constriction and an ab-plane boundary.

At the ab-plane boundary (bottom and top of the unit cell), the current density value

reduces to zero. The ab-plane obstacle to current flow forces current to flow from brick to

Figure 7.2
Schematic representation of the
low-angle c-axis (indicated as
LAC) and the edge-on c-axis
(indicated as EOC) grain/colony
boundary geometries.
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brick across the c-axis boundary, the reduction in the current density value and current

value over the half brick length is indicative of this y -axis component of current transfer

between bricks.

In the linear case the only constraints on the current density distribution are those imposed

by the geometry and anisotropy, whereas the nonlinearly conducting brick-wall

microstructure has the further current density value minimisation requirement imposed by

the EJ  characteristic of the conductor. This results in the bulk of current transferring over

much more of the ab-plane interface between bricks in the nonlinear structure in order to

minimise local high current density values. Current transfer in the linear structure does not

have this further constraint and therefore equilibrates over a much smaller volume.

7.3.3 The current distribution in the brick-wall unit cell

The behaviour of current flow in the brick-wall unit cell is characteristic of the entire

brick-wall microstructure and is used to study the γ , n  and α  dependencies of current

flow. Figure 7.4 shows plots of the normalised current density distribution in the

brick-wall unit cell for n -values of 1, 4, 6, 8  and α = 1 (figure 7.4, plots a-d) and 20

(figure 7.4, plots e-h).  Comparison of current distributions in figure 7.4, plots a and e,

with the rest of the plots again shows the more uniform distribution of current at the

region of constriction. This is most clearly shown by the current density vectors extending

beyond the brick geometry near the point of current egress. Further comparison of current

flow shows different qualitative behaviour. The brick-wall unit cell with n = 1 only

contains lines of constant current density value with positive or negative curvature

whereas lines of constant current density value in plots with n > 1 comprise a mixture of

the two and zero curvature (concave up, concave down and straight line).

Increasing n -value, increases the power dissipation at regions of high current density and

decreases the maximum current density value within the geometry as shown in table 7.2.

The maximum value of J  decreases more gradually with increasing n . With increasing

n , the system approximates the Bean critical state model with increasing accuracy and the

highest current density value gradually approaches the critical value. Note most current

density vectors in the n =1 plots are smaller because current density vectors are

normalised with respect to the maximum current density value, this is higher in the linear

case because current crowding is more readily achieved.
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(f)

(e)

(d)

(g)

(h)

(c)

(b)

(a)

Figure 7.4
Current density distributions of the brick-wall unit cell normalised with respect to the macroscopic current
density, ( Iapp × unit cell cross sectional area) and an aspect ratio of 20. Iapp  is equal to the critical current

of the brick-wall unit cell. Plots (a)-(d) present isotropic solutions with n -values of 1, 4, 6, 8 respectively.
Plots (e)-(h) present anisotropic solutions with α =20 and n -values of 1, 4, 6, 8 respectively. The colourbar
legend indicates the magnitude of the current density in A⋅m-2. Arrows indicate current density vectors.
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The brick-wall unit cells with n = 4 6 8, ,   and α = 1 have very similar current density

distributions. For α = 20  and n = 4 6 8, ,   the power dissipation dependence is more

sensitive to the local value of Jy . Current preferentially transfers in the x -axis direction

and distributes itself in the y -axis direction more uniformly across the ab-plane interface

between bricks (midline of the brick-wall unit cell, as illustrated in figure 7.2). Figure 7.4

shows the redistribution of current for increasing anisotropy value in the linear and

nonlinear cases. The increasing preference for current transfer in the x -axis direction with

increasing α  is most clearly shown by the gradual alignment with the x -axis of the

current density vectors near the point of current egress (see figure 7.4, plots e-h).

The current distribution in the brick-wall unit cell with n = 8  and α = 20  for various

aspect ratios is presented in figure 7.5. For increasing aspect ratio, the region of uniform

current flow in the middle of the brick-wall unit cell extends over a greater proportion of

the unit cell length. The central sections of the current distribution show uniform current

flow with current density value equal to the macroscopic critical current density value of

5 106×  A⋅m-2 and are not shown in order to maximise the plot size (see figure 7.5, plots c

and d). Increments along the x -axis are spaced in 1 10 6× −  m intervals. Comparison of the

relative size of the current density vectors across the cross section of the unit cell

geometry, indicates that current flow becomes uniform across the cross section over a

shorter distance as the value of γ  increases.

Figure 7.6 is a plot of the current density value along the brick to brick interface. The zero

current density value at the boundary has been omitted from the plots for clarity. The

region over which the current density value plateaus at 5 106×  A⋅m-2 has uniform current

flow along the x -axis with zero y -axis current density component. The non-plateau

regions are where y -axis current transfer mediates the current transfer to the next brick.

The current density value along the brick to brick interface does not have a plateau region

for approximately α γ≥ . This finding is consistent for all anisotropy and aspect ratios

calculated in this study. A simple model of current transfer in the brick-wall unit cell

based on global current flows, provides some insight into this finding. To facilitate total

Table 7.2 Maximum current density values in brick-wall unit cell geometry for various n  and α .

Maximum J
A⋅m-2, n = 1

Maximum J
A⋅m-2, n = 4

Maximum J
A⋅m-2, n = 6

Maximum J
A⋅m-2, n = 8

α = 1 1.7544 ×108 3.3609 ×107 2.4170 ×107 2.1058 ×107

α = 20 1.6343×108 1.9726 ×107 1.5271×107 1.4049 ×107
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Figure 7.5
Current density distributions of the brick-wall unit cell normalised with respect to the macroscopic current density, (Iapp /unit cell cross sectional area). All the plots presented
are of solutions with n=8 and an anisotropy ratio of 20. Plots (a)-(d) have aspect ratios of 10, 20, 40, 80 respectively. Broken lines indicate regions of uniform current flow
which have been removed for purposes of presentation. The colourbar legend indicates the magnitude of the normalised current density. Arrows indicate current density
vectors.
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current egress all current must pass from the upper half of the brick-wall geometry to the

lower half. Consider the total cross sections for the current flow in the x  and y  directions,

although Jc y,  is a factor α  larger than Jc x, , the total cross section available for current

transfer in the y -axis direction is a factor γ  larger than that in the x -axis direction. For

the applied current condition I Iapp c=  as described in section 7.3.1, brick-wall unit cell

solutions with α γ≥  possess the condition J Jy c y≥ ,  at least at one point across the

interface since a uniform current flow condition cannot support the condition J Jy c y< , .

Given this condition, current flow in the y -axis direction utilises the entire xz -plane cross

sectional area in order to minimise the significant ρ y  component of the local resistivity

which becomes comparable and increasingly larger than ρ x  for J Jy c y≥ , ; thereby

minimising an exponential increase in power loss. For increasing n -value the current

density line plots along the brick to brick interface are virtually identical and show that the

current density value equilibrates to the macroscopic current density value over a short

distance, 0 47 10 0 64 106 6. .× − ×− −  m, from the point of current injection.

The path across the brick-wall unit cell, along which the current density value has

maximal value, has been calculated and is illustrated in figure 7.7. Path discontinuities are

due to interpolation errors. Regions of uniform current flow possess current density values

that only differ by the error associated with the solution and postprocessing

approximations. Therefore the path of maximum current density cannot be defined in such
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Figure 7.6
Plot of current density magnitude along the ab-plane interface of the brick-wall unit cell (see figure 7.1) for
solutions with n =8, γ =20 and several aspect ratios, α =1, 5, 10, 15, 20.
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regions and is omitted in figure 7.7. Increasing n -value and anisotropy factor seem to

shift the point of maximal current transfer across the ab-plane brick interface from the

midpoint closer to the point of current injection. Consistent with the picture of increasing

anisotropy constraining current flow in the y -axis direction, especially for n > 1, the

current path wends about the ab-plane brick interface on a smaller pitch (as viewed in 2D

projection).

7.4 Finite element model of current flow in the railway-switch

model microstructure

Current transfer in LAC and EOC grain/colony boundary structures of Bi-2223 tapes has

been modelled. The colonies of the microstructure have been treated as nonlinear

anisotropic electrically conductive media and current flow calculated using a FE model.

The following section describes the geometry of the models and how the resistivity of

grains with crystallographic orientation that is not coincident with the global co-ordinate

system of the geometry is dealt with. Solutions of the current flow in these structures are

presented and discussed in the latter sections.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 7.7
Plots indicating the path of maximum current density across a brick-wall unit cell possessing an aspect ratio
of 10. Plots (a)-(d) are calculated from solutions with α =20 and n =1, 4, 6, 8 respectively. Plots (e)-(g) are
calculated from solutions with n =8 and α =5, 10, 20 respectively. Increments along the x -axis are spaced
in 0 5 10 6. × −  m intervals
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7.4.1 Finite element model of the railway-switch LAC and EOC boundaries

A c-axis tilt boundary consists of two colonies/grains with crystallographic orientations

that are not coincident with one another such the c-axes of each colony/grain point in

directions at an angle, φ gc , to each other. Any physical properties that depend upon

relative direction to crystal axes, such as conductivity, can no longer be defined with

respect to one set of axes. For representation within a FE model, these material properties

must be transformed such that they can be defined in a single frame of reference. The

geometries of the current transport models presented are schematically identical to those

presented in figure 7.1. As mentioned in section 4.3.1 equations (4.9a), (4.9b) and (4.10)

are defined in a local co-ordinate frame with axes ′x  and ′y . Within the individual grain

the local resistivity is determined by equations (4.9a) and (4.9b), with local current

preferentially flowing along the ab-planar direction. The c-axis of individual grains lies

parallel to ′y , and the ′x -axis lies in the ab-plane. If one grain is oriented such that �x x||

and �y y|| , then the local co-ordinate axes of the other grain are at an angle φ gc  to the

global co-ordinate system (see figure 7.8). The FE model only has a single global frame in

which the components of the resistivity terms of each part of a composite structure are

defined. An equivalent resistivity matrix in the global frame must therefore be calculated

from the local resistivity term. An orthotropic material with local resistivity matrix

ρ
ρ

′ ′

′ ′

�
! 

"
$#

x x

y y

0

0

can be transformed to an equivalent global resistivity matrix

ρ ρ
ρ ρ
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which leads, for a tilted colony/grain, to the following new global frame resistivity

components of the magnetic flux diffusion equation (4.4)

ρ ρ φ ρ φxx x x gc y y gc= +′ ′ ′ ′cos sin2 2

ρ ρ ρ ρ φ φxy yx x x y y gc gc= = −′ ′ ′ ′3 8cos sin

ρ ρ φ ρ φyy x x gc y y gc= +′ ′ ′ ′sin cos2 2 .
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A number of solutions (�1300) have been calculated using

different tilt angle, n -value, applied current condition and

anisotropy ratio. The dimension of the LAC colony

coincident with the global axes (branch 1) was 2 10 6× −  m

by 30 10 6× −  m and the rotated colony (branch 2)

approximately of dimension 2 10 6× −  m by 24 10 6× −  m,

depending upon the angle of rotation. Both branches of the

EOC geometry have lengths of 30 10 6× −  m and widths of 2 10 6× −  m. The colonies in the

model are of approximately the same size as Bi-2223 colonies. The models have between

80 103×  and 120 103×  solution points. The value of the applied current injected into

branch 1 and branch 2 of the LAC and EOC solutions presented, is the same. In the case of

solutions to the LAC boundary model this leads to a current value, at the position of

current egress, double that of either branch 1 or 2. The value of the applied current is

presented in this chapter as a fraction of the critical current of branch 1.

In order to examine the relative ease of current flow in the different geometries of the

LAC and EOC boundary models, an expression for the power consumption of the entire

current flow distribution has been numerically calculated. The rate of Joule heating within

a volume V  subject to an electric field E and passing current density J  is given by the

expression

J E•I dV
V

.

For unit width and uniform current flow across the plane formed by the z -axis and y -axis

the above expression can be written in the form

J E•I dS
S

(7.1)

where S  is the area of volume V  in the xy -plane. The total areas of different geometries

are different and therefore lead to different values of the power consumption. For the

purposes of comparison, the power consumption values given in this chapter are

normalised with respect to the total area, S , over which they are calculated; this

normalised value is referred to in this text as Pgc . The integral of the scalar product over

S  was calculated numerically using an adaptive recursive Newton-Cotes formula.

Figure 7.8
Diagram indicating the rotation of
the local axes ′x and ′y  with

respect to the global axis frame
( x  and y  axes) by an angle φ gc .
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7.4.2 Current transfer in LAC boundaries

The geometry of the LAC boundary influences the current distribution in two principal

ways. Firstly, the magnitude of the current density increases, from left to right of the LAC

geometry, in the region of the connexion of branches 1 and 2, as the available cross

section decreases. Secondly, across the interface from left to right of the LAC geometry

the magnitude of the current density increases, as current flows along the shortest path

between the point of current injection in branch 2 and the common point of egress in

branch 1. Both of these geometrical influences lead to a local increase in the current

density magnitude (‘hotspot’) in the vicinity of p2  (see figure 7.1). The shorter path for

current flow between the point of current injection and egress, via p2 , leads to a local

Figure 7.9
Current density distributions of the LAC boundary model. All the plots presented are of solutions with
φ gc =14 and I Iapp c= 1 . Plots (a) and (b) are of solutions with n =1 and anisotropy ratios of 1 and 5

respectively. Plots (c) and (d) are of solutions with n =8 and anisotropy ratios of 1 and 5 respectively. The
colourbar legend indicates the magnitude of the current density in A⋅m-2. Arrows indicate current density
vectors.

(a)

(b)

(c)

(d)
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decrease in the magnitude of the current density (‘coldspot’) near p1 ; a longer path for

current traversal across the LAC geometry.

Figure 7.9 shows a comparison of the current distribution for I Iapp c= 1 , in linear (n = 1)

and nonlinear (n = 8) conductive media and in the isotropic (α = 1) and anisotropic

regimes (α = 5). Current flow in the isotropic media is more uniform in both branches of

the LAC boundary geometry, as indicated by the smaller degree of curvature in the

contour lines of plots a and b in comparison to plots c and d of figure 7.9. The maximum

value of the current density in the linear solution (see figure 7.9, plot b) is 45 % greater

than the nonlinear solution (see figure 7.9, plot d) in the isotropic regime, and 98 %

greater in the anisotropic regime. This is due to the exponential increase in power

dissipation at hotspots in nonlinear models, which leads to more uniform current flow, as

discussed in section 5.3.3, and is revealed by the smaller degree of curvature in the current

density contour lines of plot a in comparison to plot c of figure 7.9.

In both the linear and nonlinear anisotropic cases the current distribution in branch two is

non-uniform with a negative gradient in the magnitude of the current density across the

width in a direction approximately normal to the inner bottom boundary of branch 2. This

gradient is steeper in the nonlinear anisotropic case with a larger low current density

region near p2  (see figure 7.9, plot d).

As discussed previously, anisotropy introduces a proportionally larger dependence on the

components of the local current density and therefore an increased spreading of current

across the width, of a components current path, as current transfers in the component

direction over a greater distance. This is exhibited by the larger extent of the region of

non-uniform current along the axial direction of branch 2 (perpendicular to the local frame

current density ′y -component); the redistribution of current at the LAC boundary

interface is accommodated by a greater non-uniformity of current flow in branch 2.

Figure 7.10 shows a comparison of the current distribution for anisotropic nonlinear

(α = 5 , n = 8) solutions of the LAC boundary model with φ gc =8, 10, 12, 14, 16, 20. I

suggest two principal factors related to the angle φ gc  could influence the current

redistribution with increasing φ gc  value. The current component across the LAC boundary

interface increases with increasing φ gc , this could lead to higher resistivity components at

p2  and therefore induce a more uniform distribution across the interface and thereby lead

to a lower value of J  at the hotspot. However, the interface cross section decreases with
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(a)

(e)

(f)

(d)

(c)

(b)

Figure 7.10
Current density distributions of the LAC boundary model. All the plots presented are of solutions with n =8
and I Iapp c= 1 . Plots (a)-(f) are of solutions with α =5 and values of φ gc =8, 10, 12, 14, 16, 20

respectively. The colourbar legend indicates the magnitude of the current density in A⋅m-2. Arrows indicate
current density vectors, and have been omitted from plots (b)-(f) for clarity.
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increasing φ gc  which leads to a greater current density across the interface which should

also engender a higher value of J  at the hotspot. It is observed that the maximum value of

J  for the solutions plotted increases with increasing φ gc . Analysis of current density plots

for solutions with various applied current conditions, in the range I Iapp c= −0 5 5. , reveals

that there is no change in the current density distribution with increasing current for any

solution combining the parameters n = 1 8,   and α = 1 5,   with φ gc =8, 10, 12, 14, 16, 20.

Figure 7.11 presents plots the normalised power dissipation calculated, from LAC

boundary geometry solutions with n =8 and α =1 using equation (7.1), as a function of

normalised applied current value, P I Igc app c3 8 , for colony/grain angles φ gc =8, 10, 12, 14,

15, 16, 18, 20, 22. The curve P I Igc app c3 8  has a strictly power law functional behaviour

with integer exponent, directly related to the n -value by the expression n +1. As the

angle between branch 1 and branch 2 increases the normalised power dissipation in the

LAC boundary model increases and, as figure 7.11 shows, as φ gc  increases the curves

P I Igc app c3 8  for each angle lie increasingly close to one another, particularly above the 14°

angle. This implies that the increase in normalised power dissipation with increasing φ gc ,

plateau’s at high values of φ gc . The smaller increase of Pgc  with increasing angle can be

seen in the surface plot of figure 7.12 and occurs for all values of the normalised applied
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Figure 7.11
Plot of the normalised power dissipation, calculated from LAC boundary geometry solutions with n =8 and
α =1 as a function of normalised applied current value, I Iapp c/ , for grain/colony angles φ gc =8, 10, 12,

14, 15, 16, 18, 20, 22.
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current value, I Iapp c . For a constant value of I Iapp c , the curve Pgc gcφ3 8  is an empirical

relation which is qualitatively the same for all values of I Iapp c , as demonstrated by the

constant value of the ratio P Pgc gc gc gcφ φ3 8 3 8= 8  for increasing I Iapp c  value. The curve

Pgc gcφ3 8  is also qualitatively the same for different n -values ( n =1, 6, 8) and all plateau at

14°. The expression Pgc gcφ3 8  cannot be fitted by any common mathematical function,

including the function 1 sin φ gc3 8  which relates the size of the contact cross sectional area

to the angle between branch 1 and branch 214.

For solutions of the LAC boundary model, for which the superconductor EJ  critical

exponent is n , the normalised power dissipation can be expressed using the relation

P h I Igc gc app c

n
∝

+
φ3 83 8 1

(7.2)

where h gcφ3 8  is an empirical expression and can be deduced from the surface plot of

figure 7.12. The relationship between Pgc  and the anisotropy of the colonies/grains of the

LAC boundary model is unclear. Plots of P I Igc app c3 8  for a specified angle and different

Figure 7.12
Surface plot of the normalised power dissipation, calculated from LAC boundary geometry solutions with
n =8 and α =1 as a function of normalised applied current value, I Iapp c/ , and colony/grain angle φ gc .

The colourbar legend indicates the magnitude of the normalised power dissipation in W.
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anisotropy ratios (α =1, 3, 5) appear coincident and analysis of the coefficients of a power

law, derived using Levenberg-Marquardt regressive curve fitting, shows no clear trend.

This agrees with the conclusions drawn from measurements of YBCO boundaries grown

on SrTiO3 substrates, which suggest that the intrinsic anisotropy of the layered HTS

system is not a principal cause of critical current degradation20. Only a small range of α

has been studied compared to the range found in real HTS systems and this range may be

inadequate to detect any dependence of Pgc  on the parameter α . However, due to the

nonlinearity of the EJ  curves as measured for directions along the ab-plane and c-axis, an

anisotropy value of 5 can make a difference in a local value of ρ x  and ρ y  of several

orders of magnitude at values of J  in excess of Jc y, .

The simple power law normalised current dependence of Pgc  can be related to the general

expression for power dissipation P EJ J= = ρ 2  by substituting the nonlinear constitutive

relation equation (2.8) such that

P
E

J
Jc

c
n

n=
�
��

�
��

+1 .

The simple current dependence of Pgc  is a consequence of the absence of any evolution of

the current density distribution with increasing current such that the local power

dissipation as represented by equation (7.2) also describes the global dissipation of power

in the LAC boundary model. The abrupt change to an approximate plateau region of

Pgc gcφ3 8  at a value of φ gc  close to 14°, falls within the range of suggested values below

which current transfer across grain boundaries is critically limited2,14,21.

The simple dependence of P I Igc app c3 8  on the value of n , for both linear and nonlinear

regimes, the independence or weak dependence of Pgc  on α  and the same qualitative

dependence of Pgc gcφ3 8  on the value of n  suggests that the dependence of Pgc  on φ gc  is

geometry dependent. To test this hypothesis, a study of the LAC boundary model with a

different geometric dimension to that described previously has been performed. The

alternative geometry is identical to that described previously with the exception that

branch 2 is half the width (1 10 6× −  m) and longer by a factor of 1.5. Solutions for n =1, 8,

α =1 and φ gc =8, 10, 12, 14, 16, 20 have been calculated for two applied current

conditions, one with equal applied current values in both branches and one with half the
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applied current value in branch 2. Solutions of the LAC boundary model with equal and

unequal applied current conditions reveal a plateau at a critical value of φ gc =10°. Any

difference in the critical value of φ gc  for the two applied current conditions is smaller than

2°, the interval in φ gc  over which the models were calculated. The development of a

plateau region is similar to that of the LAC model with the geometry described in section

7.4.1 and suggests that the geometry of the LAC boundary is the principal factor that

determines the critical value of φ gc .

7.4.3 Current transfer in EOC boundaries

Figure 7.13 shows a comparison of the current distribution in linear ( n = 1) and nonlinear

( n = 6 8,  ) conductive media in the isotropic (α = 1) and anisotropic regimes (α = 3) of

the EOC boundary model. All the solutions exhibit a hotspot at the point p2 , which lies on

the shortest path between the point of current injection in branch 2, and the point of egress

(b)

(c) (f)

(e)

(a) (d)

Figure 7.13
Current density distributions of the EOC boundary model. All the plots presented are of solutions with
φ gc =14 and I Iapp c= 1 . Plots (a)-(c) are of solutions with α =1 and n -values of 1, 6, 8 respectively. Plots

(d)-(f) are of solutions with α =3 and n -values of 1, 6, 8 respectively. The top scale of the colourbar legend
indicates the magnitude of the current density in A⋅m-2 for plots (a)-(c) and the bottom scale refers to plots
(d)-(f).  Arrows indicate current density vectors, and have been omitted from plots (b)-(f) for clarity.
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in branch 1. I suggest that the energy dissipation in the region of the hotspot is favoured

by the system over the energy dissipation generated by shunting the same current via a

longer path and therefore larger volume of resistive material. The EOC boundary models

that employ nonlinearly conductive media have hot and cold spots, which occupy smaller

regions than models that employ Ohmic conductive media; a consequence of a higher

degree of current spreading across the width of the colony/grain in nonlinear models as

indicated by the smaller maximum J  value of the nonlinear solutions. The higher values

of the components of the local resistivity of anisotropic solutions result in lower values of

the maximum current density value for anisotropic solutions compared to isotropic

solutions and greater spreading of the current density distribution along the branch axes of

the EOC geometry, which increases with increasing n -value. Similar to the current

distribution of the LAC boundary model, the current density distribution of the EOC

boundary model is also independent of the value of the applied current in the range

I Iapp c= −0 5 5. , for any solution combining the parameters n = 1 6 8,  ,   and α = 1 3,   with

φ gc =8, 10, 12, 14, 16, 20.

Figure 7.14 shows a comparison of the current distribution of an anisotropic (α = 3) and

nonlinear ( n = 8) solution of the EOC boundary model with I Iapp c= 1   for φ gc =8, 10, 12,

14, 16, 20. A hotspot occurs near p2  as current flows preferentially along the shortest

current path between the point of injection and the point of egress. The longitudinal extent

of spreading of the current density distribution increases with increasing φ gc . As discussed

in section 7.4.2 the more redistribution necessary at the interface, the greater the

non-uniformity of current flow in branch 2. The cross sectional area of the EOC interface

boundary increases with increasing φ gc  as a function of 1 2cos φ gc3 8  and I suggest that

the greater cross sectional area available for current transfer in the region of the interface

is the cause of the decreasing observed maximum current density value with increasing

φ gc . Larger values of the component Jy  at the interface in branch 2 could also be a

contributing factor, as suggested in section 7.4.2.

The current dependence of Pgc  is the same as the LAC boundary model and has a strictly

power law functional behaviour with integer exponent, directly related to the n -value by

the expression n +1. The normalised power dissipation of the EOC boundary model has

no dependence on the parameter φ gc  in the range φ gc =8-20. The coefficients of a power
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law fit, using Levenberg-Marquardt curve regression, to plots of P I Igc app c3 8  for various

values of φ gc  have a constant value of 1457.1 and are independent of the value of n . A

weak dependence of Pgc  on φ gc  could be present, but not detectable, since the numerical

integration of the solution is accurate only to the third significant figure.

The relationship between Pgc  and the anisotropy of the colonies/grains of the EOC

boundary model is, similar to the LAC boundary model, unclear. Plots of P I Igc app c3 8  for

a specified angle and different anisotropy ratios (α =1, 3) appear coincident and analysis

of the coefficients of a power law, derived using Levenberg-Marquardt regressive curve

fitting, again shows no clear trend. Assuming any weak dependence of Pgc  on α  is

negligible, the normalised power dissipation can be expressed as the function

P I Igc app c

n
=

+
14571

1
. 3 8 . (7.3)

Figure 7.14
Current density distributions of the EOC boundary model. All the plots presented are of solutions with
α =3, n =8 and I Iapp c= 1 . Plots (a)-(f) are of solutions with values of φ gc =8, 10, 12, 14, 16, 20

respectively. The top scale of the colourbar legend indicates the magnitude of the current density in A⋅m2 for
plots (a)-(c) and the bottom scale refers to plots (d)-(f). Arrows indicate current density vectors, and have
been omitted from plots (b)-(f) for clarity.

(b)

(c) (f)

(e)

(a) (d)
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Again it is found that the local power dissipation, expressed by equation (7.3), also

describes the total power dissipation of the LAC boundary model.

The normalised power dissipation is approximately half that of the LAC model for

solutions with the same value of φ gc , α  and I Iapp c , indicating the EOC colony/grain

boundary affords easier current transfer. Comparison of the normalised power dissipation

in linear and nonlinear solutions of the LAC and EOC models indicates that power

dissipation estimates of HTS systems based on approximations using Ohmic conductors

may exaggerate the total power dissipation for applied currents below Ic  and greatly

underestimate the power dissipation above Ic . However, approximations which ignore the

complex current density distributions accurately relate the normalised power dissipation

and the applied current for a specific value of n .

7.5 Summary

A review of the brick-wall and railway-switch models of current transfer in polycrystalline

HTSs has been presented. Models of current transfer between c-axis, low-angle c-axis and

edge-on c-axis tilt oriented grain interfaces have been developed and solved to provide

quantitative and qualitative descriptions of current flow in polycrystalline HTSs. The

current density distribution in small sections of a weak link brick-wall microstructure has

been solved and plotted as an aid to the conceptualisation of current flow. Comparison of

current flow in Ohmic and nonlinear models of the brick-wall microstructure shows

different qualitative behaviour. It has been shown that, with increasing aspect ratio, the

region of uniform current flow in the middle of the brick-wall ab-plane interface develops

over a shorter distance from the point of current injection and extends over a greater

proportion of the unit cell length. Consideration of the path of maximal current transfer in

the brick-wall unit cell has revealed that, across the ab-plane brick interface, the path

moves from the midpoint of the brick-wall unit cell towards the point of current injection

for increasing values of n  and α .

It has been suggested that the geometry of the LAC and EOC boundary models is the

principal factor that determines the current distribution in these geometries. Power

dissipation, and by association the ease of current transfer, in the LAC and EOC boundary

models can be expressed by a simple power law directly related to the n -value by the

expression n +1, indicating that local power dissipation also describes the global power

dissipation in the LAC boundary model. Power dissipation in both the LAC and EOC
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models has been found to possess a weak dependence or independence on the anisotropy

ratio α . Finally, the EOC boundary model has lower power dissipation than the LAC

boundary model for the same set of solution parameters.
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Figure 7.3
Current density distributions in small sections of brick-wall microstructures, composed of bricks with aspect ratios of
20 (plot a-b) and 10 (plot c). The current density is normalised with respect to the macroscopic current density, Jc

m .

Plots a-c present anisotropic solutions with α =20 and n -values of 1, 8 and 8 respectively. Arrows indicate current
density vectors and bold black lines indicate ab-plane grain boundaries, which act as permanent obstacles to current
flow. Bold grey lines delineate the boundary of individual bricks in the microstructure.
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CHAPTER 8

Conclusions and future development

8.1 Conclusions

This thesis has presented a study of current flow in high- Tc  superconductors by treating

the superconducting components of electrically conductive systems as anisotropic

nonlinear conductive media. Current transfer in bulk HTSs can be characterised by

different mechanisms on various spatial scales. This thesis has examined current transfer

from the scale of bulk devices to the scale of macroscopic defects within superconducting

devices, and on to the microscopic scale of colony/grain connexions. The conceptual

picture of current flow in these superconducting systems is typically based upon

descriptions of current flow in Ohmic media, and as such is misleading and inaccurate. It

has been shown that current flow in nonlinear media limits current crowding and that this

results in a spreading of current over a greater region of the conductor than in linear

media. Anisotropy introduces a proportionally larger dependence on the components of

the local current density and therefore an increased spreading of current across the width

of a components current path.

This work has relied upon the successful development of numerical models of current

transfer and has shown by exhaustive intuitive model, analytical model, and experimental

comparisons, that the Galerkin FE method can be used to model current transfer in

superconducting systems. The range, value and functionality of suitable input parameters

for models of the macroscopic behaviour of the Bi-2212 CRT material have been studied.

The development of new experimental and mathematical techniques to investigate the

self-field effect has allowed confirmation of the FE model assumption that the self-field

effect is negligible in the Bi-2212 CRT system.

The behaviour of current flow in current contacts to superconducting components is of

considerable technological importance. This macroscopic current transfer problem has

been examined and good consistency between various numerical, analytical and

experimental results has been demonstrated. It has been found that the bulk resistivity, of

the superconducting component of in-situ and lap contacted devices, adds a nonlinear
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component to the contact resistivity. For currents approximately in excess of the critical

current of a device this bulk component becomes significant and results in a nonlinear

increase of the contact interface resistance and current transfer length. Modelling also

reveals that the region of maximum current density within the superconducting component

is at a position removed from the point of initial metal-HTS contact and is likely to be the

site from which thermal quenching of the superconductor propagates in the event of

inadequate local cooling power. A greater contact metal resistivity and/or anisotropy value

(better texturing) has been shown to lead to an increase in the degree of nonlinear effects

at smaller applied currents. On the scale of an individual device, the electrically

conductive media of a superconductor has been assumed to homogeneous. However, on

the local scale of macroscopic inhomogeneities within a bulk superconducting device,

defects can have a long-range effect on the current distribution, which increases in range

for increasing values of n  and anisotropy ratio.

Current transfer on the microscopic scale of colony/grain connexions has been examined

in the context of the brick-wall and railway-switch models. Solutions of a model of current

flow in the brick-wall microstructure reveal that, with increasing aspect ratio, uniform

current flow along the ab-plane interface develops over a shorter distance from the point

of current injection and extends over a greater proportion of the interface. This region of

uniform current flow tends to zero for values of the critical current anisotropy

approximately in excess of the colony/grain aspect ratio; for this condition, c-axis current

components transfer across the entire interface. Further, the path of maximal current

transfer, across the ab-plane interface, moves from the midpoint of the brick-wall interface

region towards the point of current injection for increasing values of n  and α .

Examination of the principal current transfer elements of the railway-switch model has

shown that the global power dissipation within these elements can be described by a

simple nonlinear local power dissipation expression, which has either a weak dependence

or independence on the critical current anisotropy ratio. Numerical modelling of low-angle

c-axis and edge-on c-axis colony/grain connexions demonstrates that the latter provides a

path for lower dissipation of current transfer. It is suggested that the principal factor that

determines the ease of current transfer within these two colony/grain connexions is the

colony/grain connexion geometry.
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8.2 Future development

The work presented could be developed in two ways. Firstly, a considerable number of

current flow problems could be investigated using the programs developed in this work,

some of which are suggested as the basis for further work at the end of this section.

Secondly, by further development of the computer programs more complex current flow

problems could be examined. Such problems include the effect of a local magnetic field

dependence of the critical current, the transient response of current flow problems, and the

effect local heating and heat transfer can have on the current transfer properties of a

superconducting system.

Thorough research of the often myriad available methods must be instigated when

determining the best method to implement a modification to the numerical model and the

limitations of the methods employed must be taken into consideration when constructing

new problems to solve. The models in this thesis have proven to give very complex

behaviour and adding further functionality to the model may produce results from which

no clear physical insight or general behaviour can be inferred. For this reason, solutions

involving a weakly nonlinear self-field dependence in the nonlinear resistivity term (as

discussed in section 4.3.1) were not studied. I suggest that such developments should only

be pursued after the current flow of the specific problem is fully understood.

With more computing power, the transient solution of some complex systems could be

investigated. The Hitachi SR2201 vector parallel processor at the Cambridge University

computing centre can readily execute programs written in either Fortran or C and thereby

avoids the necessity of learning the complex message-passing interface language standard

that is used on parallel processing machines. Although C code typically executes a factor

of 10 slower than Fortran, a Matlab to C compiler is available, that can convert Matlab

scripts and functions to C code. This would clearly enable faster and easier

implementation of the existing programs on vector parallel processing platforms.

For high applied currents, local heating can become an important factor in

superconducting device design. Local heating within a superconductor increases cooling

power costs and can lead to localised thermal quenching. The existing programs could be

modified to take into account the local heating effect by introducing a power dependent

thermal conductivity term in a coupled heat transfer model, the temperature variation of

which is a dependent variable of the electrical conductivity term in the current model. A

coupled heat and electrical conduction model must be developed, since incorporating a



CHAPTER 8. CONCLUSIONS AND FUTURE WORK

128

power dependence in the local resistivity term assumes the superconducting material is

adiabatic on a local scale. Electrical conduction and heat conduction are analogous

systems and can be described by the same PDE. This has the advantage that the suit of

programs used to calculate current flow could be used to calculate both the current flow

and heat transfer components of the coupled system.

The existing programs could also be modified to provide a quasi-3D solution of a

modelled geometry that accounts for changes in the width of a sample. This could be

performed by multiplying the resistivity function by a spatially dependent function that

determines the z -axis depth of the geometry, f x y,1 6 . This is only a quasi-3D analysis as

the current flow is assumed uniform along the z -axis direction.

There are a number of current flow problems which could be modelled using the programs

developed in this thesis. The studies presented have assumed the superconducting material

to be homogeneous. A study of current sharing between nonlinear conductive bodies with

different n -values and/or Jc  would allow for comparison of the relative significance of

these factors for inhomogeneous materials. Current sharing between a HTS component

and a normal metal substrate has been analysed in the vicinity of the initial contact region.

However, a more detailed study of current flow at a point removed from the contact region

could examine the behaviour of current flow at defects in HTSs and at the HTS normal

metal interface. This could be useful in assessing current limiting mechanisms in PIT, dip

coated, and other bulk HTS systems.



129

Appendix A

A.1 Field dependence of the critical current at different field

values

Consider an arbitrary field profile f x1 6 . Given the assumed symmetry of the magnetic

field profile considered in section 3.5.2, we have
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where f xn1 6 1 6  is the nth derivative of f x1 6 .
At an applied magnetic field, the field profile is given by the function f x + δ1 6 , since

f x1 6  is displaced by an amount δ  and we can then write

f x
n

f x

f a
n

f a

f a
n

f a

n

n

n

n

n

n

n

n

n

+ =

+ =

− + = −

=

∞

=

∞

=

∞

∑

∑

∑

δ δ

δ δ

δ δ

1 6 1 6

1 6 1 6

1 6 1 6

1 6

1 6

1 6

!

!

!
.

0

0

0

Since ∆H f a f a= + − − +δ δ1 6 1 6  and H f a f aapp = + + − +δ δ1 6 1 6 / 2 , we have

∆H
n

f a
n

n

nδ δ1 6 1 61 6=
=

∞

∑2
0 2 4 !, . ...

H
n

f aapp

n
n

n

δ δ1 6 1 61 6=
=

∞

∑ !, , ...1 3 5

(A.1)

and therefore
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d H

dH

d H

d

d

dH

n
f a

n
f aapp app

n

n

n

n

n

n

∆ ∆1 6 1 6 1 6 1 6

1 6 1 6

1 6

1 6
= =

−

−

−

=

∞

−

=

∞

∑

∑δ
δ

δ

δ
2

1

1

1

2 4
1

1 3

!

!

, ...

, ...

.

In addition, at the point of inflection, the slope of the field profile at the surface A  is

df x dx
x1 6 / =0

 since the profile has been displaced half the thickness of the sample, and

from

df x

dx

dH

d
x

A1 6
=

=
0

δ
 and H H

H
A app= − ∆

2
,

 we have

J
df x

dx

dH

d

d H

dH
x

app

app

0 1
1

2
0

1 6 1 6 1 6= = −
�
��

�
��= δ

∆
.

Substituting a +δ  in equation (A.1) gives

H a f a
a

f aapp = + +
+

+δ
δ1 6 1 6 1 6 1 61 6 1 61

3
3

3!
... ,

from which we have the result

dH

d
f a

a
f aapp

δ
δ

= +
+

+1
2

3

2
1 6 1 61 6 1 6 1 6 ... .

By neglecting terms above the second derivative, and using the fact that

f a J H J Hsf x a
1 21 6 1 6 3 8 1 6= ==, /∆ , where Hsf x a, =  is the field at x a=  at zero applied field

and ∆Hsf  is the value of ∆H  at zero applied field, we get the expression of section 3.5.2,

J J
H d H

dHapp H Happ

0
2

1
1

2
1 6 1 6= �

��
�
�� −
�
�
��

�
�
��

=

∆ ∆max

*

.
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Appendix B

B.1 The linear triangular element and shape function

A typical triangular element is defined by nodes (or solution points) nml ,,  at the vertices

with positions ( ) ( ) ( )nnmmll yxyxyx ,,,,, , joined by straight-line boundaries. A linear

variation of the solution is assumed throughout the element, with the solution possessing

one degree of freedom at each node. The solution at any position yx,  within the element

can be represented by the simple polynomial

yxu 321ˆ ααα ++= .

If the nodes nml ,,  are numbered 1,2,3 then the values at those nodes are

3

2

1

ˆ

ˆ

ˆ

uu

uu

uu

=
=
=







==
==
==

33

22

11

,at 

,at 

,at 

yyxx

yyxx

yyxx

and thus









++=
++=
++=

333213

232212

131211

yxu

yxu

yxu

ααα
ααα
ααα

. (B.1)

Solving for 321 ,, ααα  gives

α 1 2 3 3 2 1 3 1 1 3 2 1 2 2 1 3

1

2
= ���

�
�� − + − + −

A
x y x y u x y x y u x y x y ue  1 6 1 6 1 6

α 2 2 3 1 3 1 2 1 2 3

1

2
= ���

�
�� − + − + −

A
y y u y y u y y ue  1 6 1 6 1 6 (B.2)

α 3 3 2 1 1 3 2 2 2 3

1

2
= ���

�
�� − + − + −

A
x x u x x u x x ue  1 6 1 6 1 6 .

Where eA is the element area defined by

( ) ( ) ( )2332311312212 yxyxyxyxyxyxAe −+−+−= .

Combining (B.1) and (B.2) provides an approximation for u over the element in terms of

the nodal values

332211ˆ uNuNuNu eee ++= (B.3)

where the shape functions eee NNN 321 ,,  are given by
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N x y
A

x y x y y y x x x ye
e1 2 3 3 2 2 3 3 2

1

2
,1 6 1 6 1 6 1 6= ���

�
�� − + − + − 

N x y
A

x y x y y y x x x ye
e2 3 1 1 3 3 1 1 3

1

2
,1 6 1 6 1 6 1 6= ���

�
�� − + − + − 

N x y
A

x y x y y y x x x ye
e3 1 2 2 1 1 2 2 1

1

2
,1 6 1 6 1 6 1 6= ���

�
�� − + − + − .

The approximation for the element, with domain eΩ  and nodes nml ,,  can be represented

more succinctly in the form

( ) [ ] ee

e
n

e
m

e
l

e
n

e
m

e
l

nmli
e
i

e
i

a

a

a

NNNayxNuu
e

aN=















==≈ ∑

=

Ω

,,

,ˆ (B.4)

where the components of the matrix eN are the shape functions ( eN  is also referred to as

the shape function) and ea represents the nodal values of the solution variables on a

particular element. The functions eN  naturally maintain continuity at the element

boundaries in that they satisfy the following condition

1),( =ll
e
i yxN

while

0),(),( == nn
e
imm

e
i yxNyxN , etc.

The shape functions preserve the nodal values of the function at the node positions; i.e.

1=e
iN  at lx and ly  but zero at other vertices, and similarly for the other nodal sites1.
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