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1) Archaeological Sites and Data Generation

Gabriele Scorrano', Abigail Ramsee', Charleen Gaunitz', Lasse Vinner', Thorfinn Sand
Korneliussen', Fabrice Demeter', Marie Louise S. Jorkov?, Stig Bermann Mgller®, Bente Springborg?,

Lutz Klassen*, Inger Marie Hyldgard®, Niels Wickmann®

'"Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen,
Ostervoldgade 5-7, DK-1350K, Copenhagen, Denmark

*Laboratory of Biological Anthropology, Department of Forensic Medicine, University of

Copenhagen, Denmark
3Alborg Historiske Museum, Nordjyske Museer, Vang Mark 25, 9380 Vestbjerg, Denmark
*Museum @stjylland. Stemannsgade 2, DK-8900 Randers C, Denmark

*Museum Vestsjelland, Forten 10, 4300 Holbaek, Denmark

Archaeological sites

The churchyard of Our Lady/Vor Frue Kirkegédrd AHM6093

Alborg Sogn, Hornum Herred, Alborg Amt Sted- og lokalitetsnr: 120516-107
Marie Louise Jorkov, Stig Bergmann Mgller, Bente Springborg

The urban medieval churchyard of Our Lady (Vor Frue) and associated building structures were
excavated by Aalborg Historiske Museum/Nordjyske Museer between 2011 to 2013. The churchyard
belonged to the church and convent of Our Lady and is located in the eastern part of the medieval
town of Aalborg. Approximately 900 graves were recovered of which 272 could be sampled for DNA
analysis. The churchyard was excavated in connection with a large sewerage project, and only parts of

the churchyard was exhumed.

The church of Our Lady was a parish church as well as a convent for nuns, probably of the Order of
Saint Augustine, and date to the first half of the 12th century. A few radio-carbon dates open up a
slight possibility that the churchyard, with an associated wooden church, can be dated back to the 11th
century'.



The convent was abandoned after the reformation in 1536. The area of the churchyard was used for
burials from 1000/1050 to 1806. Burials were dated based on arm-positions (A to D), and all were
represented”. However, since dating from arm-positions is somewhat uncertain, dating was also
determined based on stratigraphy, dendrochronology, archaeological findings, as well as few

radio-carbon dates®*.
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Ahlgade 15-17, MHO 71/85, Holbak Parish, Holbak, Sealand.

Marie Louise Jorkov and Niels Wickman

The cemetery Ahlgade 15-17 is an urban cemetery in the center of Holbak, north of the main street of
Ahlgade and adjacent to the fjord and the harbour. It was excavated in 1985 to 1986 by Museum
Vestsjelland, previously called Museet for Holbaek og Omegn.

The cemetery belonged to the former parish church of St. Nicolai and date from the late 12th century
to 1573 when the church was abandoned. However, the cemetery is thought to have been taken out of

use shortly after the reformation in 1536.

Holbak was a small medieval town that came into existence around 1200. It had two Parish churches:

St. Nicolai and the contemporary Parish of Our Lady, located in the eastern part of town. There was
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also a castle, which according to written sources dates from the beginning of the 13th century'. The

town was inhabited by families of craftsmen, farmers, fishermen and tradesmen.

The cemetery of St. Nicolai church is the first fully excavated urban cemetery in Denmark. It covered
an area of ca. 480m2 where a minimum of 583 graves have been excavated'?. The majority of the
graves were dated based on arm positions of the skeletons (i.e. A-B-C and D) when lying in supine
position and often with the head towards the east. These were identified in 309 graves but represents
some degree of uncertainty® as there are considerable overlap between the use of arm positions and
the time periods. The most commonly found arm position was position B, most likely corresponding
to the time period 1300-1350. Selected graves have been radio carbon dated to confirm the dating
range of the arm positions'. Only few burials could be dated from archaeological findings. The graves
contained burials of adults and subadults and the distribution of adults were more or less equally
divided in males and females in all periods. The majority of the subadult skeletons, however were
found in the upper lays of the cemetery. This is most likely a reflection of poor preservation in the

lower layers rather than specific burial practice.

Scallopshells from Santiago de Compostella were found in five of the graves 10 scallopshells in total.
Two of these graves are included in this study (EG272 (CGG 2_101751) and EG620 (CGG 2_101617;
2 101588). The skeleton in grave EG272, an old adult individual of 50+ years, was buried with arm
position B. The skeleton in grave EG620, a male aged 40-60 years, was found resting on the right side
with bended legs and is also assumed to date to the 12th century'.

A large dietary stable isotope study was carried out by Jerkov which showed that the population
subsisted largely on a mixed diet of terrestrial animal plant protein as well as marine/brackish food

sources*’.
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Tjerby, Gimming Parish, Randers, Jutland. KHM 0899. 14.09.04-20, GPS
coordinates: 567982, 6259161.

Marie Louise Jorkov, Lutz Klassen, Inger Marie Hyldgard

Rural cemetery ca. 5 km east of Randers on the north side of Randers fjord. It was excavated by
Kulturhistorisk Museum Randers in 1998 to 2010. The excavation area revealed a stone church, and a
cemetery containing ca. 1200 graves from which 351 individuals were sampled for DNA analysis in
this project. The cemetery dates to ca. 1050 to late 1536, but skeletal remains were only preserved
from graves dating after 1200. Remnants of a farmhouse and a wooden church predating the cemetery

(900-1100) were also recovered'. The surrounding area consisted of forest and meadows.

The cemetry area measured ca. 45x42 meters (1900m2) and has been fully excavated. In nearly half of
the graves, no skeletons were preserved. The remaining burials (673 in total) contained skeletons of
varying degree of preservation from few poorly preserved fragments to well preserved and nearly
complete skeletons due to the varying soil conditions in the area. The best preserved skeletons were
found south of the church. Evidence of wooden coffins were found in some of the graves, but the
majority of the individuals had been buried without. 57% of the graves with preserved bones

contained adults (male and female), 10% subadults and 33% children.

The graves were dated based on the arm position of the skeletons® as well as from C-14 dating on
selected individuals and from few archaeological finds such as coins and ceramics. More than half of
the skeletons were found with arm position A (arms and hands down the side) representing period AD
1200-1300. One third had arm position B (arms along the side but hands on thigh or hips), which
starts to appear in the 13" century, dominates in the 14™ century and disappears around AD 1400. The
remaining skeletons were buried with arm position C (elbows bended and lower arms on stomach) or
D (arms bended and hands crossed over chest) representing the latest period AD 1400-1536. The
majority of the graves were found south of the church. There was a significant decrease in burials

during the period of use in particular in the latest period.
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Data Generation

Sampling, lab work and sequencing

Charleen Gaunitz, Lasse Vinner

Sequencing data was generated from a total of 86 Medieval samples (ST1), using semi-automated
laboratory procedures. Laboratory work on aDNA was conducted in the dedicated ancient DNA
clean-room facilities at the Lundbeck Foundation GeoGenetics Centre (Globe Institute, University of

Copenhagen).

In brief, two parallel sub-samples of <150 mg were obtained from human skeletal material and
demineralized as described earlier, using pre-digestion for 30 min (Damgaard et al., 2015). Two
aDNA extractions were performed per subsample, using a 96 well format, combining 150 pl of
demineralized material with 1.5 ml binding buffer (500 ml Qiagen PB, supplemented with 15 ml
Sodium acetate 3M, and 1.25 ml 5M NaCl, phenol red, adjusted to pH=5) and 10 ul of paramagnetic
beads (G-Bioscience, #786-915) for 15 minutes (Rohland et al., 2018). Pelleted beads were washed
twice in 450 pl and 100 pl 80% ethanol + 20% 10mM Tris-HCI, respectively, and eluted in 10 mM
Tris-HCI + 0.05% Tween-20. From each subsample one extract (35 ul) was incubated with 10 ul
USER enzyme (NEB #M5505) for 3h at 37°. DNA shotgun sequencing libraries were prepared in
96-well format essentially as described elsewhere (Meyer and Kircher 2010), using a small (25ul) or
large (50ul) total reaction volume for non-USER and USER-treated extracts, respectively, including
21.25 ul or 42.5 ul DNA template. Clean-up procedures after end-repair and adapter-ligation were
performed with 10 ul of paramagnetic beads (G-bioscience) in 10 volumes of the binding buffer
described above. The requirement for PCR amplification was evaluated by qPCR using 1pl of
pre-amplified library. Indexing PCR, using 8-bp unique dual indexing (Illumina TruSeq
UDI0001-0096) in 50 or 100 ul reaction volumes, with KAPA HiFi HotStart Uracil+
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(KapaBiosystems #KR0413) according to manufacturer’s recommendations, with typically 14
amplification cycles. Final purification of libraries was performed using a 1:1.6 ratio of library to
HighPrep™ PCR beads (MagBio, #AC-60250). Length distribution and concentration of individual
purified libraries was controlled using the Fragment Analyzer (High Sensitivity kit). Libraries were
pooled equimolar before sequencing. Sequencing was performed on [llumina NovaSeq6000 at the

GeoGenetics Sequencing Core, Copenhagen, using S4 200 cycles kits version 1.5.
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Rep. 5, 11184 (2015).
2. Meyer, M. and Kircher, M. Illumina sequencing library preparation for highly multiplexed
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Libraries authentication

Gabriele Scorrano, Abigail Ramsge, Thorfinn Sand Korneliussen

All libraries with at least 1X MT coverage for each sample were separately evaluated for
contamination using ContamMix' before merging to sample level (Supplementary Table 2).
ContamMix quantifies the fraction of exogenous reads in the mitochondrial reads by comparing the

mtDNA consensus genome to possible contaminant genomes.

For each library, an in-house perl script was used to construct the endogenous mitochondrial genome.
The parameters to do this depended on the coverage of each library: for libraries below 5X (but above
1X), sites were called if it was at least 2X coverage, whereas for libraries above 2X this value was set
to a 5X cutoff. For both methods, bases were only called if 70% of reads at a site agreed with the

consensus call.

We further investigated libraries showing over 5% contamination (<95% map authentic value). Two
libraries showed over 5% contamination with a very low MT depth coverage (1.96X and 2.40X,
Supplementary Table 2) however low coverage, below 3 X, can return unreliable results'. One library
with coverage ~ 14 X had a map authenticity close to the edge (94,5%). However, merging these

libraries with the other ones from the same samples did not result in a meaningful level of
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contamination (Supplementary Table 2). The slight levels of contamination reported by ContamMix
are thus most probably due to errors while constructing the consensus genome caused by a
combination of very low depth and the characteristic C->T damage of non-USER treated ancient

samples. Then all the libraries have been merged and included in the analysis.

References

1. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial

genomes. Curr. Biol. 23, 553-559 (2013).

15



Figure S1: ADMIXTURE results performed with Caucasus hunter-gatherers (CHG), Eastern
hunter-gatherers (EHG), Western hunter-gatherers (WHG), Anatolian Neolithic and Russia

Bronze Age Yamnaya (Steppe ancestry) as the source populations from k=2 to k=10.
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Figure S2: Three-way gpAdm model with the source populations Luxemburg_Mesolithic

(WHG), Russia_Bronze Age Yamnaya (Steppe ancestry) and Anatolia Neolithic.

The length of the colour bar shows the proportion of each ancestry. Error bars represent standard

errors of the proportion of each ancestry component (n=838230 SNPs). The complete results are

reported in Table S15.

Table S15: Results obtained by gpAdm analysis for the three-way admixture model.

Component Standard Deviation nSNPs | p-value
Anatolia | Russia_ | Luxemb | Anatolia | Russia | Luxemb
_Neolith | BronzeA | urg Mes | Neolith | BronzeA | urg Mes
ic ge_Yam | olithic ic ge_Yam | olithic
naya naya
Denmar | 33.4 52.3 14.3 1.8 1.7 0.5 838230 |0.07
k Medie
val
Denmak | 35.9 50.4 13.6 1.7 1.6 0.5 838230 [0.30
_Viking
Age
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Analysis of mtDNA sequence

Gabriele Scorrano

Methods

We carried out a phylogenetic tree analysis using the reconstructed mitochondrial genomes from the
individuals presented in this study. We reconstructed the mitochondrial consensus sequence from
genome-wide bam files by ANGSD v.0.928 filtering out reads with a mapping quality lower than 20.
Moreover, we limited the minimum depth of coverage to 5x and used -doFasta 2, -doCounts 1 and
-trim 5 (which trims the first and last five nucleotides from each read) options (Korneliussen et al.
2014). All fasta files have finally been aligned using mafft and following phylotree recommendations
(van Oven and Kayser, 2009). The phylogenetic tree analysis was performed by BEASTv1.10.4
(Drummond et al. 2012) and BEAUti v1.10.4 was used to generate the input file for the analysis.
After having analysed the aligned fasta file with jModelTest 2.1.10 (Darriba et al., 2012), we applied
the TrN (Tamura and Nei, 1993) substitution model with gamma plus invariant sites and strict clock
with a prior of 2.74 10® p/site/year (Posth et al., 2016). We used the Bayesian Skyline coalescent with
10 as group members and piecewise-linear as the Skyline model (Posth et al., 2016). We performed
two MCMC runs with 50% states and sampled every 10° states and evaluated the runs by Tracer (v1.6)
(http://tree.bio.ed.ac.uk/software/tracer/). The two independent runs were combined using
LogCombiner v1.8.1 and summarized in a Maximum Clade Credibility (MCC) tree using
TreeAnnotator v1.8.1 (both programs included in the BEAST package). The resulting trees were
annotated by TreeAnnotator v1.8.4 and visualized by FigTreev1.4.3

(http:/tree.bio.ed.ac.uk/software/figtree/).

Results

The phylogenetic tree gives an overview of the distribution of mitochondrial haplogroups in our
dataset (Figure S3). The frequency of haplogroups is similar to that found in the modern population

(Bybjerg-Grauholm et al., 2018), H is the haplogroup with highest frequency (33.7%).
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Figure S3: Mitochondrial phylogenetic tree

Phylogenetic tree of mitochondrial haplogroups found in the 86 Danish Medieval and post-Medieval

samples. Estimated bootstrap values for principal nodes are reported in red.

Among the most common haplogroups identified we find haplogroup U, of which the subclade U5

which is commonly observed among Western European Hunter-Gatherers.

The most common subclades of U5 are U5a and USb. Most of the Medieval and post-Medieval
individuals belong to the sub-haplogroups U5al. U5al has eastern origin, and has been found among
Mesolithic individuals from Russia, Ukraine and also from Sweden (Lazaridis et al., 2014). It is also
found in high frequencies among the Yamnaya population (Allentoft et al., 2016), suggesting that the
spread of this sub-haplogroup in Europe could be associated with the spread of the Steppe ancestry
from Eastern Europe. U5al shows high frequency in Denmark during the Viking age (Margyaran et
al., 2020). This result is congruent with the autosomal structure of Danish populations through time
(Figure S1 and Figure S2) where a genetic continuity from the Viking age to the post-Medieval period
has been highlighted.

The first individual with U5b comes from 30 kya, U5Db is in fact one of the most ancient mitochondrial

European haplogroups and it spreads around 20 kya (Fu et al. 2016; Scorrano et al., 2021) but today it
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appears with low frequencies among the modern populations (De Angelis et al. 2018; Scorrano et al.

2021a).

The genetic influence of the spread of Early Farmers into Europe is shown by the great frequencies of
the haplogroups K (9.3%) and J (10.5%). In particular the sub-clades K1a and K1b are mainly found
in Neolithic populations across Europe (Antonio et al., 2019; Brunel et al., 2020; Gamba et al., 2014;
Hofmanova et al., 2016). Moreover, they had great frequencies across the Scandinavian Viking age

people (Margyaran et al., 2020).

Conclusion

In conclusion we find most of the haplogroups still present in the modern-day Danes suggesting that
there have been no major migrations in Denmark since the Medieval period. The sub-clades identified
are in accordance with the autosomal results showing a great frequency of the mitochondrial
haplogroups associated with the spread of Steppe ancestry, but at the same time also a mitochondrial
Neolithic contribution. Moreover, the mitochondrial results show a mitochondrial genetic continuity

from the Viking age to the post-Medieval period.
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Sex determination and Y chromosome analysis

Gabriele Scorrano

Methods

Genetic sex for each individual was determined following the method suggested by Skoglund et al.
(2013). For the male individuals Y chromosome haplogroup assignment was inferred and a clustering
tree has been performed following an already published workflow (Scorrano et al 2021). EPA-ng
(Barbera et al., 2019) has been used to place the ancient Y-chromosome sequences in the reference

tree.

Results

Sex determination

We unambiguously determined genetic sex for all 86 individuals (37 female, 49 males; ST1). In
Figure S4 the individuals form two clearly separated clusters corresponding to male (XY) and female

(XX) using the normalised sequencing coverage across the sex chromosomes: X and Y.
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Figure S4: Sex determination plot

Plot showing the normalised X and Y coverage by autosomal coverage for each individual reported in

this study. Symbol colors indicate the inferred sex chromosome karyotype.

Phylogenetic placement

We built a clustering tree to analyse the Y-chromosome diversity across the 49 Medieval and
post-Medieval male individuals from Denmark (Figure S5) and different haplogroups and

sub-haplogroups have been identified.

One individual belongs to the sub-haplogroup E1b1b, identified for the first time in Mesolithic Israeli
samples of the Natufian culture, and exists today at a low frequency in northern Europe (Lazaridis et
al., 2016). One sample belongs to the sub-haplogroups Nlala, a subclade that has higher average
frequency in northern Europe (Derenko et al., 2007; Lappalainen et al., 2008). However, most of the

samples fall within two main haplogroups: I and R.
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Figure S5: Y chromosome phylogenetic tree

Phylogenetic tree with most likely placements of ancient samples here presented.

Haplogroup I is the oldest major haplogroup in Europe, haplogroup 1J is thought to have arrived from
the Middle East to Europe around 35,000 years ago, developing later into haplogroup 1.

It was speculated that I1 lineage was among the Mesolithic European hunter-gatherers
(Szécsényi-Nagy et al. 2015) and spread in Scandinavia from northern Germany. The sub-haplogroup

I1a is the most common Y-chromosome I haplogroup in Northern Europe and it was already identified

in Danish individuals from the Viking age (Margyaran et al., 2020).

The sub-haplogroup 12 originated during the Late Paleolithic, the oldest 12 sample was recovered

from Bichon (13,500 year-old), a Late Palaeolithic man from Switzerland (Jones et al., 2015).
Loschbour from Mesolithic Luxembourg is the oldest 12a1b individual (Lazaridis et al., 2014), while
in Scandinavia the first evidence of 12a1b is with Motala (7,800 year-old) (Mittnik et al., 2018).
However, most of the individuals belong to the sub-lineages of the haplogroup R1: R1a and R1b. The
sub-lineages R1a-M417 (R1alal) is the most prevalent male lineage in the extant eastern and northern

European people, and it was associated with the spread of Steppe ancestry in Europe (Allentoft et al.,
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2015; Haak et al., 2015). The R1a identified lineages have been present in Denmark since the Viking
Age (Margyaran et al., 2020).

Appreciable frequency of male sub-lineage R1b was identified in northern Europe starting from the
Mesolithic (Jones et al., 2017), through the Neolithic (Allentoft et al., 2015) and the Viking age
(Margyaran et al., 2020) until the Medieval. Today it is the most common Y-chromosome haplogroup

in Western Eurasia.

Conclusion

In conclusion male haplogroups found with high frequencies are already identified during the Viking
age, suggesting a Y-chromosome genetic continuity from the Viking Age to the post-Medieval period.
Moreover, the haplogroups observed with high frequency are still the most abundant male lineage of

Western Europe.
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Methods

Cluster Analysis

In order to understand whether risk-conferring haplotypes evolved in the Steppe population, or in a
pre- or post-dating population in which Steppe ancestry is high, we used k-means clustering on the
dosage of each ancestry for each selected significant SNP and investigated the dosage distribution of
clusters with significantly higher MS prevalence. For the target SNPs, the Elbow method (Thorndike
1953). suggested selecting around 5-7 clusters, of which we chose 6. After performing the k-means
cluster analysis, we calculated the average probability for each ancestry for case individuals.
Furthermore, we calculated the prevalence of MS in each cluster, and performed a one-sample t-test to
investigate whether it differs from the overall MS prevalence (0.487%). This tests whether particular
combinations of ancestry are associated with the phenotype at a SNP. Clusters with high MS
risk-ratios have high Steppe components (Figure S7), leading to the conclusion that Steppe ancestry

alone is driving this signal.

Weighted Average Prevalence

In order to quantify the risk of each ancestry for each SNP, we calculated the weighted average

prevalence (WAP) for each ancestry based on the result of k-means clustering (above).

For the jth SNP, let P, =mn, P denote the sum of the kth ancestry probabilities of all the
Jjkm jm  jkm
individuals in the mth cluster (k, m = 1,..,, 6), where Wi is the cluster size of the mth cluster. Let o

denote the prevalence of MS in the mth cluster, the weighted average prevalence for the kth ancestry

is defined as:
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where P]_ m is defined as the weight for each cluster.
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and s(yjm) is the standard deviation of the outcome for the individuals in the mth
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For each ancestry, WAP measures the association of that ancestry with MS risk across all clusters. To
make a clear comparison, we calculated the risk ratio (compared to the overall MS prevalence) for
each ancestry at each SNP, and assigned a mean and confidence interval for the risk ratios of each

ancestry at each chromosome (Figure 3, Extended Data Figure 7).

PCA/UMAP of WAP/average dosage

To sort risk-associated SNPs into ancestry patterns according to that risk, we performed PCA on the
average ancestry probability and WAP at each MS-associated SNP (Figure S8). The former shows that
all of the HLA SNPs except three from HLA class II and III have much larger Outgroup components
compared with the others. The latter analysis indicates a strong association between Steppe and MS
risk. Also, Outgroup ancestry at rs10914539 from chromosome 1 exceptionally reduces the incidence
of MS, while Outgroup ancestry at rs771767 (chromosome 3) and rs137956 (chromosome 22)
significantly boosts MS risk.

GWAS

Local ancestry and genotype GWAS

We used the UK Biobank to fit GWAS models for local ancestry values and genotype values
separately, using only SNPs known to be associated with the phenotype (‘fine-mapped” SNPs). We
used the following phenotype codes for each phenotype: MS: Data-Field 131043; RA: Data-Field
131849 (seropositive).

Let Y, denote the phenotype status for the ith individual (i = 1,..., 399998), which takes value 1 for a
case and 0 for control, and let o= Pr(Yi = 1) denote the probability that this individual has the

event. Let X ik denote the kth ancestry probability (k = 1,.., K) for the jth SNP (j = 1,..,, 205) of the
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ith individual. € i is the cth predictor (¢ = 1,.., N C) for the ith individual. We used the following

logistic regression model for GWAS, which assumes the effects of alleles are additive:
K N,
T
Yi~Bm(1, ni); log( 1_“1') = k§1 Bijijk + El Y, Cic.

We used N, =20 predictors in the GWAS models, including sex, age and the first 18 PCs, which are

sufficient to capture most of the population structure in the UK Biobank (Sarmanova et al., 2020").

First, we built the model with K = 1. By using only one ancestry probability in each model, we
aimed to find the statistical significance of each SNP under each ancestry. Then, we built the model
with K = 5, i.e. using all 6 local ancestry probabilities which sum to 1. We calculated the variance

explained by each SNP by summing up the variance explained by X ijk(k=1,...,5).

We considered fitting the multivariate models by using all the SNPs as covariates. However, the
dataset only contains 1,982 cases. Even though only one ancestry is included, the multivariate model
contains 191 predictors, which could result in overfitting problems. Therefore, the GWAS models are

preferred over multivariate models.

We also fitted a logistic regression model for GWAS using the genotype data as follows:
NC
T,
Yi~Bln(1, ni); log( n ) = Binj + ) Y, Cic,

c=1

where X i € {0, 1, 2} denotes the number of copies of the reference allele of the jth SNP (
j = 1,.., 205) that the ith individual has, and C c (c=1.,N C) denotes the covariates including age,

sex and first 18 PCs for the ith individual, where N,=20. Due to the UK Biobank being underpowered

compared to the Case-Control study from which these SNPs were found, the only statistically

significant (at p < 10_5) association is in the HLA class II tagging HLA-DRB1*15:01.

Comparison of local ancestry and genotype gwas

We compared the variance explained by SNPs from the GWAS model using the painting data (all 6
local ancestry probabilities) with that from GWAS model using the genotype data. McFadden’s
pseudo R squared measure (McFadden et al., 1973%) is widely used for estimating the variance

explained by the logistic regression models. McFadden’s pseudo R squared is defined as

2 ln(LM)
R =1- tm(L) "’
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where LM and 0 are the likelihoods for the fitted and the null model, respectively. Taking overfitting

into account, we propose the adjusted McFadden’s pseudo R squared by penalizing the number of
predictors:

In(L,)/(N—k)

. 2
Adjusted R =1 —W,

where N is the sample size and k is the number of predictors.

Specifically, RZ(S NPs) is calculated as the extra variance in addition to sex, age and 18 PCs that can

be explained by SNPs:

R*(SNPs) = R’(sex + age + 18 PCs + SNPs) — R (sex + age + 18 PCs).

Notably, two SNPs stand out for explaining much larger variance than others when fitting the GWAS
model using the genotype data, but overall more SNPs from GWAS painting explain more than 0.1%
variance, which indicates the painting data are probably more efficient for estimating the effect sizes
of SNPs and detecting significant SNPs. Also, some SNPs from GWAS models using painting data
explain almost the same amount of variance, suggesting that these SNPs consist of very similar

ancestries.
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Results

Association with MS risk at externally ascertained SNPs for ancestries and

genotypes
(a) Manhattan plot for Ancestries at SNPs
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Figure S6: Association with MS risk at externally ascertained SNPs, for (top) ancestry, and
(bottom) SNPs.
The p-values are from a two-sided t-test, with the red and blue lines representing p=1e-10 and p=1e-5,

respectively. Due to the UK Biobank being less powered (having fewer cases) than the Case-Control

study from which these SNPs were found, the only statistically significant association is in the HLA.
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Cluster analysis comparing between MS-risk and local ancestry for 3 example

SNPs

(a) rs3135388 (HLA-II: 32,413,051)
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Figure S7: Comparison between MS-risk and local ancestry for 3 example SNPs.

In the HLA Class-II region, all SNPs share a pattern in which high Steppe ancestry is associated with

high MS-risk. The risk decreases monotonically and is not present in the Steppe precursor populations

(Hunter Gathers), but is with the admixed Bronze-age European populations (Steppe + Farmer).

32



PCA plots for average ancestry and weighted average prevalence of

MS-associated SNPs

(a) Average ancestry (b) Weighted average prevalence
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Figure S8: Decomposition of individuals’ ancestry at MS risk SNPs in terms of (left) the

ancestry of those SNPs alone, or (right) the Weighted average prevalence of MS in each ancestry

after “logit” transformation.
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Introduction

Because panels of ancient individuals are small and geographically biased, allele frequency estimates
based directly on aDNA genotype calls have low confidence (Dehasque et al., 2020). Equally,
selection or drift (e.g. from population bottlenecks) mean that the allele frequency in an ancient
population does not necessarily reflect the proportion of effect alleles that that ancestry eventually
contributed to a modern population. Therefore, a better estimate of an ancestral contribution is to
generate allele frequencies based on local ancestry: if a haplotype is under-sampled in the ancient data
or undergoes subsequent positive selection, this will be reflected in an allele frequency that is higher
in the estimate based on the painting than one based on the ancient data. We refer to these frequencies

as “painting frequencies”.

This approach was used to estimate ancestral contributions to a range of phenotypes in Irving-Pease et

al. (2022), re-capitulating already known contributions such as height, hair colour and eye colour.

Methods

All code for implementing these analyses can be found at https://github.com/will-camb/ms_paper.

Imputation of local ancestry

Because not all SNPs in the GWAS data were painted, for each variant in each GWAS dataset we
imputed the local ancestry by taking the average of the painting values of the SNPs on either side,
weighted by their physical distance (impute_ancestry.py).

Ancestral risk score

Following methods developed in Irving-Pease et al. (2022), we calculated the effect allele painting

frequency for a given ancestry f {anci) for SNP i using the formula:
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where there are M of

foct individuals homozygous for the effect allele, M alt individuals homozygous

M
effect
for the other allele, and ), Painting certainty Gianc
; iy

) is the sum of the painting probabilities for

that ancestry anc in individuals homozygous for the effect allele at SNP i. This can be interpreted as
an estimate of an ancestral contribution to effect allele frequency in a modern population. Per-SNP

painting frequencies can be found in ST4, STS5, and ST6.

To calculate the ancestral risk score (ARS) we summed over all I pruned SNPs in an additive model:

E3
{anc,i} betai'

I

ARS = EL: f

We then ran a transformation step as in Berg & Coop (2014). To obtain 95% confidence intervals, we
ran an accelerated bootstrap over loci, which accounts for the skew of data to better estimate

confidence intervals (Frangos & Schucany, 1990).
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Figure S9. Ancestral Risk Scores (ARS) for fine-mapped data for MS using all SNPs (left), only
SNPs on the HLA (centre), and only SNPs not on the HLA (right).

Confidence intervals are estimated by bootstrapping over SNPs (1000 bootstrap resamples over n=204
(left), n=15 (centre), n=189 (right) SNPs), which can be interpreted as testing whether ancestry is
associated with MS genome-wide. Centre values were calculated as the ARS for all SNPs and all

individuals.
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Ancestral Risk Score
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Figure S10. Ancestral Risk Scores (ARS) for fine-mapped data for RA using all SNPs (left), only

SNPs on the HLA (centre), and only SNPs not on the HLA (right).

Confidence intervals are estimated by bootstrapping over SNPs (1000 bootstrap resamples over n=55

(left), n=3 (centre), n=52 (right) SNPs), which can be interpreted as testing whether ancestry is

associated with RA genome-wide. Centre values were calculated as the ARS for all SNPs and all

individuals.
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Methods

Definition

We propose Haplotype Trend Regression with eXtra flexibility (HTRX) which searches for haplotype
patterns that include single SNPs and non-contiguous haplotypes. HTRX is an association between a
template of # SNPs and a phenotype. A template gives a value for each SNP taking values of ‘0’ or
‘1’, reflecting whether the reference allele of each SNP is present or absent, or an ‘X’ meaning either
value is allowed. For example, haplotype ‘1X0’ corresponds to a 3-SNP haplotype where the first
SNP is the alternative allele and the third SNP is the reference allele, while the second SNP can be
either the reference or the alternative allele. Therefore, haplotype ‘1X0’ is essentially only a 2-SNP
haplotype.

To examine the association between a haplotype and a binary phenotype, we replace the genotype

term with a haplotype from the standard GWAS model:
NC
Yi~Bin(l,m); log(G=-) = BH, + X v.C

c=1

where H i denotes the jth haplotype probability for the ith individual:

1 if 4th individual has haplotype j in both genomes,
Hij=141/2 if ith individual has haplotype j in one of the two genomes,

0 otherwise.

HTRX can identify gene-gene interactions, and is superior to HTR not only because it can extract

combinations of significant SNPs within a region, leading to improved predictive performance, but
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the haplotypes are more interpretable as multi-SNP haplotypes are only reported when they lead to

increased predictive performance.

HTRX Model selection procedure for shorter haplotypes

Fitting HTRX models directly on the whole dataset can lead to significant overfitting, especially when
the number of SNPs increases. When overfitting occurs, the models experience poorer predictive
accuracy against unseen data. Further, HTRX introduces an enormous model space which much be

searched.
To address these problems, we implement a two-step procedure.

Step 1: select candidate models. This is to address the model search problem, and is chosen to obtain

a set of models more diverse than traditional bootstrap resampling (Efron, 1979")

(1) Randomly sample a subset (50%) of data. Specifically, when the outcome is binary, stratified
sampling is used to ensure the subset has approximately the same proportion of cases and controls as

the whole data;

(2) Start from a model with fixed covariates (18 PCs, sex and age), and perform forward regression on
the subset, i.e. iteratively choose a feature (in addition to the fixed covariates) to add whose inclusion
enables the model to explain the largest variance, and select s models with the lowest Bayesian

Information Criteria (BIC) (Kass 1995) to enter the candidate model pool;

(3) repeat (1)-(2) B times, and select all the different models in the candidate model pool as the

candidate models.
Step 2: select the best model using 10-fold cross-validation.

(1) Randomly split the whole data into 10 groups with approximately equal sizes, using stratified

sampling when the outcome is binary;

(2) In each of the 10 folds, use a different group as the test dataset, and take the remaining groups as

the training dataset. Then, fit all the candidate models on the training dataset, and use these fitted
. . . 2, .
models to compute the additional variance explained by features (out-of-sample R ") in the test dataset.

Finally, select the candidate model with the biggest average out-of-sample R’ as the best model.
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HTRX Model selection procedure for longer haplotypes (Cumulative HTRX)

Longer haplotypes are important for discovering interactions. However, there are 3 -1 haplotypes
in HTRX if the region contains k SNPs, making it unrealistic for regions with large numbers of SNPs.
To address this issue, we proposed cumulative HTRX to control the number of haplotypes, which is

also a two-step procedure.
Step 1: extend haplotypes and select candidate models.

(1) Randomly sample a subset (50%) of data, use stratified sampling when the outcome is binary. This

subset is used for all the analysis in (2) and (3);

(2) Start with L randomly chosen SNPs from the entire k SNPs, and keep the top M haplotypes that
are chosen from the forward regression. Then add another SNP to the M haplotypes to create

3M + 2 haplotypes. There are 3M haplotypes obtained by adding "0', *1' or ‘X' to the previous M
haplotypes, as well as 2 bases of the added SNP, i.e. "XX...X0' and 'XX...X1' (as X' was implicitly
used in the previous step). The top M haplotypes from them are then selected using forward

regression. Repeat this process until obtaining M haplotypes which include k — 1 SNPs;

(3) Add the last SNP to create 3M + 2 haplotypes. Afterwards, start from a model with fixed
covariates (18 PCs, sex and age), perform forward regression on the training set, and select s models

with the lowest BIC to enter the candidate model pool;

(4) repeat (1)-(3) B times, and select all the different models in the candidate model pool as the

candidate models.

Step 2: select the best model using 10-fold cross-validation, as described in “HTRX Model selection

procedure for shorter haplotypes”.

We note that because the search procedure in Step 1(2) may miss some highly predictive haplotypes,

cumulative HTRX acts as a lower bound on the variance explainable by HTRX.

As a model criticism, only common and highly predictive haplotypes (i.e. those with the greatest

: 2 . : .
adjusted R ) are correctly identified, but the increased complexity of the search space of HTRX leads
to haplotype subsets that are not significant on their own but are significant when interacting with

other haplotype subsets being missed. This issue would be eased if we increase all the parameters s, [,
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M and B but with higher computational cost, or improve the search by optimizing the order of adding
SNPs. This leads to a decreased certainty that the exact haplotypes proposed are “correct', but together

reinforces the inference that interaction is extremely important.

Simulation for HTRX

To investigate how the total variance explained by HTRX compare to GWAS and HTR, we used a
simulation study comparing:

(1) linear models (denoted by "Im") and generalized linear models with a logit link-function (denoted
by "glm");

(2) models with or without actual interaction effects;

(3) models with or without rare SNPs (frequency smaller than 5%);

(4) remove or retain rare haplotypes when rare SNPs exist.

We started from creating the genotypes for 4 different SNPs Gl_jq (i = 1,..,,100, 000 denotes the index

of individuals, j = 1("1XXX"), 2("X1XX"), 3("XX1X") and 4("XXX1") represents the index of
SNPs, and g = 1, 2 for two genomes as individuals are diploid). If no rare SNPs were included, we

sampled the frequency Fj of these 4 SNPs from 5% to 95%; otherwise, we sampled the frequency of
the first 2 SNPs from 2% to 5% (in practice, we obtained F = 2.8% and F , = 3. 1% under our
seed) while the last 2 SNPs from 5% to 95%. For the ith individual, we sampled Gijq~Bin(1, Fj) for
the gth genome of the jth SNP, and took the average value of two genomes as the genotype for the jth

G +G_
SNP of the ith individual: Gl,j = —”Tl& Based on the genotype data, we obtained the haplotype data

for each individual, and we considered removing haplotypes rarer than 0.1% or not when rare SNPs

were generated. In addition, we sampled 20 fixed covariates (including sex, age and 18 PCs) C i

where ¢ = 1,...,, 20 from UK Biobank for 100000 individuals.

Next, we sampled the effect sizes of SNPs BG and covariates BC , and standardize them by their
j c

standard deviations: BG ~%L and BC ~ ﬂsd_(%L for each fixed j and c, respectively. When
i J c c

interaction exists, we created a fixed effect size for haplotype "11XX" as twice the average absolute

K

SNP effects: BH = % > B G | where H L refers to "11XX"; otherwise, H L= 0. Note that
1 j=1

F = 0.09% when rare SNPs are included.

Hl

Finally, we sampled the outcome based on the outcome score (for the ith individual)
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4

20
0,= I BL* ¥(T 8,6, + B, H +e+w

where v is the effect scale of SNPs and haplotype "11XX", ei~N (0, 0.1) is the random error and w is

a fixed intercept term. For linear models, the outcome YL, = Oi; while for generalized linear models,

0.
we sampled the outcome from binomial distribution: Yl,~Bin(1, T[i), where To= °— is the
1+e '

probability that the i th individual has the case.

As the simulation is intended to compare the variance explained by HTRX, HTR and SNPs (GWAS)
in addition to fixed covariates, we tripled the effect sizes of SNPs and haplotype "11XX" (if
interaction exists) by setting y = 3. In "glm", to ensure a reasonable case prevalence (e.g. below 5%),

we set w =— 7, which was also applied in "Im".

We applied the procedure described in “ HTRX Model selection procedure for shorter haplotypes”

for HTRX, HTR and GWAS, and visualized the distribution of the out-of-sample R’ for each of the
best models selected by each method in Figure S11. In both "Im" and "glm", HTRX has equal
predictive performance as the true model. It performs as well as GWAS when the interaction effects is
absent, explains more variance when an interaction is present, and is significantly more explanatory
than HTR. When rare SNPs are included, the only effective interaction term is rare. In this case the
difference between GWAS and HTRX becomes smaller as expected, and removing the rare

haplotypes hardly reduces the performance of HTRX.

In conclusion, we demonstrate through simulation that our HTRX implementation a) searches
haplotype space effectively, and b) protects against overfitting. This makes it a superior approach
compared to HTR and GWAS to integration SNP effects with gene-gene interaction. Its robustness

also retains when there are rare effective SNPs and haplotypes.
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Results

HTRX simulation
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Figure S11: Simulation study with four SNPs showing the boxplots of out-of-sample variance
(from n=10 test folds. Bounds of box: Q1 (25% quantile) to Q3 (75% quantile); Whiskers: from
Q1-1.51QR to Q3+1.5IQR; Centre red line: mean; Minima and Maximum: black dots)
explained by HTRX compared to GWAS, HTR and the true model.

The total variance explained by HTRX is the same as SNP and bigger than HTR when there are no

interactions. When interaction (with subtitle "int") exists, HTRX significantly outperforms GWAS and

HTR. In all the situations, HTRX works similarly as the truth. The existence of rare haplotypes

(subtitle “rare” refers to having 2 rare SNPs, and “rare_remove” refers to having 2 rare SNPs while

removing haplotypes rarer than 0.1%) has negligible impact on the overall conclusion.
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Introduction

The rates and prevalence of auto-immune diseases in present-day populations varies considerably
across West Eurasia. The drivers of this variation are complex, and include both environmental and
genetic components. Understanding the genetic component of auto-immune disease is important for
predicting patient risk and for developing novel therapeutics. Auto-immune disease susceptibility, like
other complex traits, has been subject to evolutionary processes that have shaped the patterns of
genetic variation seen in present-day populations. To understand how natural selection has influenced
the genetic component of auto-immune disease risk, we sought to model the allele frequency
trajectories of risk associated variants through time, in a large panel of ancient genomes, and to test
for evidence of polygenic selection acting on two auto-immune diseases: (i) multiple sclerosis (MS);

and (ii) theumatoid arthritis (RA).

Methods

The computational pipeline to perform these analyses was written in the snakemake workflow
management system'. For a full list of all the software and versions used, see Table S16. All pipeline
code, custom scripts and a conda environment to replicate the analyses are available in the GitHub

repository (https://github.com/ekirving/ms_paper).

Sample data

Our analyses are undertaken on a large sample of shotgun-sequenced ancient genomes, presented in
the accompanying study ‘Population Genomics of Stone Age Eurasia’®. This dataset comprises 1,664
imputed diploid ancient genomes and more than 8.5 million SNPs. Here, we used a subset of 1,015
imputed ancient genomes from West Eurasia, which passed all quality control filters. To account for
population structure in our samples, we applied a novel chromosome painting technique based on

inference of a sample’s nearest neighbours in the marginal trees of an ARG that contains labelled
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individuals. Details of the chromosome painting methods are presented in the accompanying study
‘The Selection Landscape and Genetic Legacy of Ancient Eurasians’® and further described in

reference *.

GWAS ascertainment

We obtained genome-wide association study (GWAS) summary statistics for two auto-immune
diseases: (i) multiple sclerosis’; and (ii) rheumatoid arthritis®®. To ascertain statistically independent
and genome-wide significant markers, we filtered the GWAS summary statistics to retain only
biallelic SNPs that passed quality control filters in our imputed dataset, then performed LD-based
clumping using the software PLINK’, with the parameters ——clump-pl 5e-8 --clump-r2
0.05 --clump-kb 250, using the 1000 Genomes Project (1000G) Phase 3 populations FIN,
GBR and TSI'" as the combined LD reference panel. We also obtained fine-mapped SNPs for each of
the two traits, and inferred proxy SNPs in high LD with variants which were not present in our

imputed ancient callset (see methods).

Selection analysis

We inferred allele frequency trajectories and selection coefficients for all genome-wide significant
trait associated variants using a modified version of the software CLUES", following the methods
described in our companion paper’. In brief, we jointly inferred genome-wide genealogies and a
population size history for the 1000G populations FIN, GBR and TSI using the software Relate. We
then used CLUES to infer allele frequency trajectories and selection coefficients using a time-series of
imputed ancient DNA (aDNA) genotype probabilities, and using the population size history from
Relate. We produced four additional models for each trait associated variant, by conditioning the
analysis on one of the four ancestral path labels from our chromosome painting model: either Western
hunter-gatherers (WHG), Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG), or
Anatolian farmers (ANA). We determined statistical significance of each CLUES model by applying a

Bonferroni correction for the number of tests performed for each trait.

Polygenic selection analysis

We inferred polygenic selection gradients () and p-values for MS and RA using the software
PALM". We used the modified version of CLUES to extract the posterior likelihood surface for each
statistically independent marker, using the ——1 ik argument, and restructured the outputs into the
PALM folder structure. We then transformed the GWAS summary statistics into PALM format (w/
beta and SE scores) and standardised allele polarisation (ALT as the effect allele), then ran the

polygenic selection analysis in single trait mode.
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Pleiotropic trait analysis

To explore the extent to which selected variants share pleiotropic associations with other traits, we
obtained GWAS summary statistics for 4,359 traits from the UK Biobank

(UKB)"" and 2,202 traits from the FinnGen study'®. We filtered the summary statistics to retain only
genome-wide significant trait associations (p < 5e-8) for SNPs which were found to be statistically
significant (using a Bonferroni corrected significance threshold) in our CLUES analysis for MS and
RA. We then produced plots for each UK Biobank trait with more than one significant SNP, showing

the trajectories of pleiotropic SNPs polarised by their effect direction in the marginal trait.

Joint polygenic selection analysis

To determine if the observed signal of polygenic selection in MS could be better explained by
selection acting on a genetically correlated trait, we performed a systematic analysis of traits in UKB
and FinnGen. To identify traits with a shared genetic architecture to MS, we took the list of SNPs with
significant CLUES p-values from the MS analysis and queried both UKB and FinnGen to retrieve a
list of all traits in which the selected MS SNPs also had a genome-wide association with another trait.
We then used a cut off of 20% overlap to narrow down the list of 6,561 possible traits (i.e. for a trait to
be considered, at least 20% of the MS selected SNPs must also be associated with that trait). This
resulted in 115 traits with a shared architecture to MS, including 49 in UKB and 66 in FinnGen.

To ensure that all SNPs used in the joint analysis were callable in both the focal GWAS (i.e. MS) and
the marginal GWAS (i.e. UKB or FinnGen) we took the intersection of the SNPs available in both
GWAS and in our imputed ancient callset. We then performed SNP clumping in the marginal trait,
following the same procedure as we used for MS, to ascertain a list of independent markers. We then
ran the J-PALM joint analysis, comparing MS to each of the 115 marginal traits, and repeated this for
each of the 5 ancestry paths. Full results are available in table ST14.
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Table S16 Software and versions used in the polygenic selection pipeline

Software Version  URL Reference
beftools 1.15 https://github.com/samtools/bcftools o
biopython 1.79 https://github.com/biopython/biopython 17
clues d8ec8b4  https://github.com/standard-aaron/clues 1
conda 4.14.0 https://github.com/conda/conda 8
numpy 1.22.2 https://github.com/numpy/numpy 19
palm 1d3b7fc  https://github.com/standard-aaron/palm 12
pandas 1.3.4 https://github.com/pandas-dev/pandas 20
plink 1.90b6.21 https://www.cog-genomics.org/plink/ ’
pysam 0.18.0 https://github.com/pysam-developers/pysam 2
python 3.9.7 https://www.python.org 2
r-base 4.0.5 https://www.r-project.org/ 3
r-dplyr 0.8.0.1 https://github.com/tidyverse/dplyr 2
r-ggplot2 3.1.1 https://github.com/tidyverse/ggplot2 »
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Results

Multiple sclerosis

The CLUES results for all genome-wide significant MS associations are available in ST8, and the

results for the subset of statistically independent markers used in the PALM analysis are available in
ST7.

Pan-ancestry analysis

The PALM results for the pan-ancestry analysis of MS, using 62 LD-pruned markers, found

statistically significant evidence for directional polygenic selection (p = 1.02e-5; @ = 0.017).

Multiple sclerosis (r~2 < 0.05; window 250 kb) (n = 62) | All ancestries | w = 0.017 | se = 0.0037 | z = 4.412 | p = 1.02e-05
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Figure S12. Stacked line plot of the pan-ancestry PALM analysis for Multiple sclerosis, showing
the CLUES inferred allele frequency trajectories of each statistically independent SNP (n=62).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted
by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from
0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are
sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Western hunter-gatherer ancestral path

The PALM results for the WHG ancestral path analysis of MS, using 62 LD-pruned markers, found

no significant evidence for directional polygenic selection (p = 7.22e-5; @ = 0.021).
Multiple sclerosis (r~2 < 0.05; window 250 kb) (n = 62) | Western Hunter-gatherers | w = 0.021 | se = 0.0052 | z = 3.969 | p = 7.22e-05
-0.40
-0.35

-0.30

-0.25

-log10(p)

v 24.8
217
S 186
0208 155
z 12.4

9.3

n 6.2
31x

L)

-0.10

-0.05

14 13 12 11 10 9 8 7

or Bép 5 4 3 2 1 0
Figure S13. Stacked line plot of the WHG ancestry PALM analysis for Multiple sclerosis,

showing the CLUES inferred allele frequency trajectories of each statistically independent SNP
(n=62).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted
by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from
0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are
sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Eastern hunter-gatherer ancestral path

The PALM results for the EHG ancestral path analysis of MS, using 62 LD-pruned markers, found no

significant evidence for directional polygenic selection (p = 2.60e-3; ® = 0.016).

Multiple sclerosis (r~2 < 0.05; window 250 kb) (n = 62) | Eastern Hunter-gatherers | w = 0.016 | se = 0.0054 | z = 3.012 | p = 0.0026
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Figure S14. Stacked line plot of the EHG ancestry PALM analysis for Multiple sclerosis,

showing the CLUES inferred allele frequency trajectories of each statistically independent SNP
(n=62).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted
by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from
0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are
sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Caucasus hunter-gatherer ancestral path
The PALM results for the CHG ancestral path analysis of MS, using 62 LD-pruned markers, found

statistically significant evidence for directional polygenic selection (p = 3.06e-2; @ = 0.009).

Multiple sclerosis (r~2 < 0.05; window 250 kb) (n = 62) | Caucasus Hunter-gatherers | w = 0.009 | se = 0.0041 | z = 2.162 | p = 0.0306
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Figure S15. Stacked line plot of the CHG ancestry PALM analysis for Multiple sclerosis,
showing the CLUES inferred allele frequency trajectories of each statistically independent SNP
(n=62).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted
by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from
0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are
sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Anatolian farmer ancestral path

The PALM results for the ANA ancestral path analysis of MS, using 62 LD-pruned markers, found no

significant evidence for directional polygenic selection (p = 6.43e-1; ® = 0.004).

Multiple sclerosis (r~2 < 0.05; window 250 kb) (n = 62) | Anatolian Farmers | w = 0.004 | se = 0.0093 | z = 0.464 | p = 0.643
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Figure S16. Stacked line plot of the ANA ancestry PALM analysis for Multiple sclerosis, showing
the CLUES inferred allele frequency trajectories of each statistically independent SNP (n=62).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted
by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from
0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are
sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Cross ancestry comparisons

Multiple sclerosis (r~2 < 0.05; window 250 kb)
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Figure S17. Density plots of the change over time in scaled PRS for each SNP in each marginal

ancestry for Multiple sclerosis.

Delta PRS per SNP is calculated from the CLUES models by taking the difference between the

maximum likelihood estimates of the frequency of each SNP in the most recent and most ancient time

points, weighted by the scaled effect size of the SNP in the focal trait.
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Figure S18. Scatter plots showing the delta PRS per SNP and the directional -log10(p-value) for

each SNP in each marginal ancestry for Multiple sclerosis.

Solid lines with shading show the best-fit linear regressions and standard errors. SNPs that do not
achieve statistical significance in the marginal CLUES test but which have a large delta PRS are

labelled as outliers.
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Pleiotropic UK Biobank traits
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Figure S19. Allele frequency plots for positively selected MS-associated SNPs that are also
associated with other phenotypes in the UK Biobank. Traits 1-5.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their
effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered
according to the number of common SNPs, portions of the trajectory with low posterior density are
cropped off, and the background is shaded for the approximate time period in which the ancestry

existed as an actual population.
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Figure S20. Allele frequency plots for positively selected MS-associated SNPs that are also
associated with other phenotypes in the UK Biobank. Traits 6-10.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their
effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered
according to the number of common SNPs, portions of the trajectory with low posterior density are
cropped off, and the background is shaded for the approximate time period in which the ancestry

existed as an actual population.
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Figure S21. Allele frequency plots for positively selected MS-associated SNPs that are also
associated with other phenotypes in the UK Biobank. Traits 11-15.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their
effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered
according to the number of common SNPs, portions of the trajectory with low posterior density are

cropped off, and the background is shaded for the approximate time period in which the ancestry

existed as an actual population.
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Multiple sclerosis (r*2 < 0.05; window 250 kb) selected SNPs

Malabsorption/coeliac disease [20002_1456] (n=18)
Neutrophill count [30140_irnt] (n=17)
Lymphocyte count [30120_irnt] (n=16)
White blood cell (leukocyte) count [30000_irnt] (n=16)
Haemoglobin concentration [30020_irnt] (n=15)
Standing height [50_irnt] (n=15)
Eosinophill count [30150] (n=14) ®
Hypothyroidism/myxoedema [20002_1226] (n=14)
Treatment/medication code: levothyroxine sodium [20003_1141191044] (n=14)
High light scatter reticulocyte count [30300_irnt] (n=13)
Intestinal malabsorption [K90] (n=13)
Multiple sclerosis [20002_1261] (n=13)
Started insulin within one year diagnosis of diabetes [2986] (n=13) [ ]
Treatment/medication code: insulin product [20003_1140883066] (n=13) [ ]
Hayfever, allergic rhinitis or eczema [6152_9] (n=12 [ ]
Monocyte count [30130_irnt] (n=12
Red blood cell (erythrocyte) distribution width [30070_irnt] (n=12,
Reticulocyte count [30250_irnt] (n=12,
[ ]

Count of SNPs

o
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None of the above [6152_100] (n=11
Sitting height [20015_irnt] (n=11

UKBB top 20 overlapping phenotypes (26 of 32 selected SNPs)

Figure S22. Upset plot showing a histogram of selected MS-associated SNPs which share a

pleiotropic association with one or more marginal phenotypes in the UK Biobank.

Top 20 traits shown. Of the 32 selected MS-associated SNPs, 26 (81%) are also associated with one or

more of the top 20 genetically correlated phenotypes.
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Pleiotropic FinnGen traits

ALL ANA EHG WHG
1.0 491:C 9368699:T
R BT30S rs757260 c FIIeTRT A
08 rs210131:C rs3paa03ls rs9368699:T s1521.T s TP
' \?iﬁg{%%fé 1318773047 r513194401:C r5210131:C il 8.3
. rs3134954:T rs1521:T rs241447:T 15217 '~ 525
06 re3129934:C rs1794275:G rS7T6TI6TA 131506177 1332
04 Is2Lr 24144/ 7 pAES
E rs : G 5
rsa186d7.C rs416622 c Fg%é%é@%g 2%8
0.2 rs v rs : v
reg%68530:¢ = ¥
00 4 r59268530:C _— 152070600:T /r52070600:T
1.0 rs13194491:C rs A
7767167:A : : 2
08 % redelied 1537320106 rs9266773:T r51521 T Eé%‘%gé% EREY
I it | Sigec g it
! rs H rs i cac
0.6 rs1521:T . rs7767167A r5241447:T 130617.T S5=583
131306177 [eLIE2TEG rs4648356 ¢ (3114477 TREZE
s 12416622:C si1giere GzEGE
: rs3806156:T 129206015:C 2883 e
02 r5416622:C 338
rs9368699:C 20706007 % 28
00 , 159368699:C ) _— 152070600:T = o368600.c & ©
1.0 rs9368699:T 9368699:T
rs210131:C rs2735076:G rs757260:C %767167 A5
0.8 rs7767167:A 12757260:C. rs9368699:T r51521 T 2 15886 2
: %%%giégﬁg rs%g%zgﬁdﬁ r5210131 C % F gi'& s
w 06 re3129934:C r1764275:G rs7767167:A 15241447:T 1215217 =352
rs1521:T r53130617T io8%
O o4 rsﬂgggyg r524é44; T gg§(g
- rs. iC \ ~g2a
0 rs3806156:T 1$416622:C éé%gzgg 8.,.
0.0 4 r59268530:C —— r52070600:T __/62070600 T2
1.0 rs T . rs757260:C rs9368699:T
r1e 4. 124133830 T rs9266773:T rs2070600:C r52070600:C
rs 4
0.8 : rs757260:C r$9368699:T rs1521:T r23138334:L =0
re4113819:L re1077394:T F£3139934iC 1S
00 Sl RiSirs s e 7of
rs3806156:G 713610:;T RQ2
0.4 rs416622:C \_ /_ ?2%47113421;:57 Sgg
02 rs416622:C Fﬁgé%ggég% 8%
Is. N
oo 4 159268530:C s :
1.0 . rs7767167:A =
;gqg%gﬁ rs2735076:G rs3idaosar  EZ
S sie S
rs1521T ; E 3130617:T =
0.6 231506177 131754275:G rs1767167:A rs241447:T rs241ad7r 23
2
ea16629-C rs4648356:C rS%ZSé%ZE G g3
0.4 &2
: rs3806156:T %%4%% é E%
0.2 rs416622:C I8
r52070600:T 1520706500 58
-1210-8 -6 -4 -2 0 -1210-8 -6 -4 -2 0 -1210-8 -6 -4 -2 0 -1210-8 -6 -4 -2 0 -12-10-8 -6 -4 -2 0
kyr BP

Figure S23. Allele frequency plots for positively selected MS-associated SNPs that are also
associated with other phenotypes in the FinnGen study. Traits 1-5.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their
effect on the marginal FinnGen trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered according
to the number of common SNPs, portions of the trajectory with low posterior density are cropped off,
and the background is shaded for the approximate time period in which the ancestry existed as an

actual population.
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Figure S24. Allele frequency plots for positively selected MS-associated SNPs that are also
associated with other phenotypes in the FinnGen study. Traits 6-10.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their
effect on the marginal FinnGen trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered according
to the number of common SNPs, portions of the trajectory with low posterior density are cropped off,
and the background is shaded for the approximate time period in which the ancestry existed as an

actual population.
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Figure S25. Allele frequency plots for positively selected MS-associated SNPs that are also

associated with other phenotypes in the FinnGen study. Traits 11-15.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal FinnGen trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered according

to the number of common SNPs, portions of the trajectory with low posterior density are cropped off,

and the background is shaded for the approximate time period in which the ancestry existed as an

actual population.
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Multiple sclerosis (r*2 < 0.05; window 250 kb) selected SNPs

Count of SNPs
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FinnGen top 20 overlapping phenotypes (27 of 32 selected SNPs)

Figure S26. Upset plot showing a histogram of selected MS-associated SNPs which share a

pleiotropic association with one or more marginal phenotypes in the FinnGen study.

Top 20 traits shown. Of the 32 selected MS-associated SNPs, 27 (84%) are also associated with one or
more of the top 20 genetically correlated phenotypes.
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Multiple sclerosis (r*2 < 0.05; window 250 kb) selected SNPs

2-

Count of SNPs

-0

AB1_SEXUAL_TRANSMISSION_NOS (n=4)
N14_CERVICAL_DYSPLASIA_ALL

0- ‘ I I I I I I
N14_CERVICAL_HSIL (n=3)
N14_FEMALE_GENITAL_DYSPLASIA_ALL

H7_IRIDOACUTE (n=16) I ® ® ® : : I
RHEUMA_ARHTROPAT_REACTIVE (n=7)
J10_LOWCHRON (n=6)
L12_BULLOUS (n=6)
H7_OPTNEURITIS (n=5)
[ ]
N14_FEMALE_GENITAL_HSIL (n=3)
N14_FEMALE_GENITAL_LSIL

n=2)
n=2)
n=2)
n=2)
n=2)
n=1)
n=1)
n=1)
n=1)
n=1)
n=1)
n=1) [ J
n=1) [ ]
n=1) [ ]

FinnGen infectious disease phenotypes and symptoms (18 of 32 selected SNPs)
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Figure S27. Upset plot showing a histogram of selected MS-associated SNPs which share a
pleiotropic association with one or more infectious disease phenotypes and symptoms in the

FinnGen study.

Of the 32 selected MS-associated SNPs, 18 (56%) are also associated with one or more infectious

disease phenotypes.
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Joint polygenic selection analysis
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Figure S28. Dot plot showing the R-scores from the J-PALM tests of MS against each of 49

overlapping traits in UK Biobank.

The dotted red lines show the Bonferroni corrected significance threshold. No marginal trait

significantly attenuates the signal of selection seen in MS.
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Figure S29. Dot plot showing the R-scores from the J-PALM tests of MS against each of 66

overlapping traits in FinnGen.

The dotted red lines show the Bonferroni corrected significance threshold. No marginal trait

significantly attenuates the signal of selection seen in MS.
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Rheumatoid arthritis

The CLUES results for all genome-wide significant RA associations are available in ST10, and the
results for the subset of statistically independent markers used in the PALM analysis are available in

ST9.

Pan-ancestry analysis

The PALM results for the pan-ancestry analysis of RA, using 153 LD-pruned markers, found

statistically significant evidence for directional polygenic selection (p = 3.26e-3; @ =-0.007).

Rheumatoid arthritis (r~2 < 0.05; window 250 kb) (n = 153) | All ancestries | w = -0.007 | se = 0.0023 | z = -2.942 | p = 0.00326
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Figure S30. Stacked line plot of the pan-ancestry PALM analysis for Rheumatoid arthritis,
showing the CLUES inferred allele frequency trajectories of each statistically independent SNP
(n=153).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted
by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from
0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are
sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Western hunter-gatherer ancestral path

The PALM results for the WHG ancestral path analysis of RA, using 153 LD-pruned markers, found

no significant evidence for directional polygenic selection (p = 8.63e-1; ® =-0.001).

Rheumatoid arthritis (r~2 < 0.05; window 250 kb) (n = 153) | Western Hunter-gatherers | w = -0.001 | se = 0.0029 | z =-0.173 | p = 0.863
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Figure S31. Stacked line plot of the WHG ancestry PALM analysis for Rheumatoid arthritis,

showing the CLUES inferred allele frequency trajectories of each statistically independent SNP

(n=153).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted

by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from

0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are

sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Eastern hunter-gatherer ancestral path

The PALM results for the EHG ancestral path analysis of RA, using 153 LD-pruned markers, found

no significant evidence for directional polygenic selection (p = 6.24e-1; ® =-0.003).

Rheumatoid arthritis (r~2 < 0.05; window 250 kb) (n = 153) | Eastern Hunter-gatherers | w = -0.003 | se = 0.0057 | z = -0.490 | p = 0.624
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Figure S32. Stacked line plot of the EHG ancestry PALM analysis for Rheumatoid arthritis,
showing the CLUES inferred allele frequency trajectories of each statistically independent SNP
(n=153).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted
by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from
0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are
sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Caucasus hunter-gatherer ancestral path

The PALM results for the CHG ancestral path analysis of RA, using 153 LD-pruned markers, found

statistically significant evidence for directional polygenic selection (p = 6.33e-2; @ =-0.014).

Rheumatoid arthritis (r~2 < 0.05; window 250 kb) (n = 153) | Caucasus Hunter-gatherers | w = -0.014 | se = 0.0073 | z = -1.857 | p = 0.0633
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Figure S33. Stacked line plot of the CHG ancestry PALM analysis for Rheumatoid arthritis,

showing the CLUES inferred allele frequency trajectories of each statistically independent SNP

(n=153).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted

by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from

0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are

sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Anatolian farmer ancestral path
The PALM results for the ANA ancestral path analysis of RA, using 153 LD-pruned markers, found

statistically significant evidence for directional polygenic selection (p = 1.49¢-1; o = -0.006).

Rheumatoid arthritis (r~2 < 0.05; window 250 kb) (n = 153) | Anatolian Farmers | w = -0.006 | se = 0.0038 | z = -1.443 | p = 0.149
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Figure S34. Stacked line plot of the ANA ancestry PALM analysis for Rheumatoid arthritis,
showing the CLUES inferred allele frequency trajectories of each statistically independent SNP
(n=153).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted
by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from
0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are
sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Cross ancestry comparisons

Rheumatoid arthritis (r"~"2 < 0.05; window 250 kb)
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Figure S35. Density plots of the change over time in scaled PRS for each SNP in each marginal

ancestry for Rheumatoid arthritis.

Delta PRS per SNP is calculated from the CLUES models by taking the difference between the
maximum likelihood estimates of the frequency of each SNP in the most recent and most ancient time

points, weighted by the scaled effect size of the SNP in the focal trait.
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Figure S36. Scatter plots showing the delta PRS per SNP and the directional -log10(p-value) for

each SNP in each marginal ancestry for Rheumatoid arthritis.

Solid lines with shading show the best-fit linear regressions and standard errors. SNPs that do not

achieve statistical significance in the marginal CLUES test but which have a large delta PRS are

labelled as outliers.
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Figure S37. Allele frequency plots for positively selected RA-associated SNPs that are also

associated with other phenotypes in the UK Biobank. Traits 1-5.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered

according to the number of common SNPs, portions of the trajectory with low posterior density are

cropped off, and the background is shaded for the approximate time period in which the ancestry

existed as an actual population.
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Figure S38. Allele frequency plots for positively selected RA-associated SNPs that are also
associated with other phenotypes in the UK Biobank. Traits 6-10.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their
effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered
according to the number of common SNPs, portions of the trajectory with low posterior density are
cropped off, and the background is shaded for the approximate time period in which the ancestry

existed as an actual population.
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Figure S39. Allele frequency plots for positively selected RA-associated SNPs that are also
associated with other phenotypes in the UK Biobank. Traits 11-15.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their
effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered
according to the number of common SNPs, portions of the trajectory with low posterior density are
cropped off, and the background is shaded for the approximate time period in which the ancestry

existed as an actual population.
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Figure S40. Upset plot showing a histogram of selected RA-associated SNPs which share a

pleiotropic association with one or more marginal phenotypes in the UK Biobank.
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Top 20 traits shown. Of the 55 selected RA-associated SNPs, 49 (89%) are also associated with one or

more of the top 20 genetically correlated phenotypes.
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Figure S41. Allele frequency plots for positively selected RA-associated SNPs that are also
associated with other phenotypes in the FinnGen study. Traits 1-5.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their
effect on the marginal FinnGen trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered according
to the number of common SNPs, portions of the trajectory with low posterior density are cropped off,
and the background is shaded for the approximate time period in which the ancestry existed as an

actual population.
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Figure S42. Allele frequency plots for positively selected RA-associated SNPs that are also
associated with other phenotypes in the FinnGen study. Traits 6-10.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their
effect on the marginal FinnGen trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered according
to the number of common SNPs, portions of the trajectory with low posterior density are cropped off,
and the background is shaded for the approximate time period in which the ancestry existed as an

actual population.
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Figure S43. Allele frequency plots for positively selected RA-associated SNPs that are also
associated with other phenotypes in the FinnGen study. Traits 11-15.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their
effect on the marginal FinnGen trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered according
to the number of common SNPs, portions of the trajectory with low posterior density are cropped off,
and the background is shaded for the approximate time period in which the ancestry existed as an

actual population.
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FinnGen top 20 overlapping phenotypes (43 of 55 selected SNPs)

Figure S44. Upset plot showing a histogram of selected RA-associated SNPs which share a

pleiotropic association with one or more marginal phenotypes in the FinnGen study.

Top 20 traits shown. Of the 55 selected RA-associated SNPs, 43 (78%) are also associated with one or

more of the top 20 genetically correlated phenotypes.
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FinnGen infectious disease phenotypes and symptoms (29 of 55 selected SNPs)

Figure S45. Upset plot showing a histogram of selected RA-associated SNPs which share a
pleiotropic association with one or more infectious disease phenotypes and symptoms in the

FinnGen study.

Of the 55 selected RA-associated SNPs, 29 (53%) are also associated with one or more infectious

disease phenotypes and symptoms.
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Discussion

To understand how natural selection has influenced the genetic component of auto-immune disease
risk, we sought to model the allele frequency trajectories of risk associated variants through time, in a
large panel of ancient genomes, and to test for evidence of polygenic selection acting on two

auto-immune diseases: (i) multiple sclerosis (MS); and (ii) rheumatoid arthritis (RA).

We used two different callsets of trait associated variants for our two auto-immune diseases. The first
callset contained fine-mapped variants; however, a large fraction of these variants were not callable in
our imputed ancient dataset, due to quality control filtering and the difficulty of accurately inferring
HLA alleles in ancient samples®'. The resulting loss of so many high-effect HLA variants meant that
our polygenic selection tests were statistically underpowered, and we did not identify any evidence of
selection using this callset. To address this loss of statistical power, we ascertained a second callset of
statistically independent and genome-wide significant markers, by LD-pruning the full set of

genome-wide summary statistics for each auto-immune disease.

For multiple sclerosis, our our LD-pruned analyses identified statistically significant evidence of
positive polygenic selection for trait associated variants in the ALL analysis (p = 1.02e-5; @ =0.017),
and in the WHG (p = 7.22e-5; @ = 0.021), EHG (p = 2.60¢-3; ® = 0.016) and CHG (p =3.06e-2; ® =
0.009) ancestral paths, but not in the ANA (p = 6.43e-1; ® = 0.004) path. For rheumatoid arthritis, our
analyses identified statistically significant evidence of negative polygenic selection for trait associated
variants in the ALL analysis (p = 3.26¢-3; o = -0.007) only, although the CHG (p = 6.33e-2; ® =
-0.014) path came close to reaching nominal significance. The WHG (p = 8.63¢-1; ® =-0.001), EHG
(p =6.24¢-1; ® =-0.003) and ANA (p = 1.49¢-1; @ =-0.006) ancestral paths showed no significant

evidence of selection, although they all exhibited a negative selection gradient.

Our results also demonstrate that the strength of evidence for selection in a marginal selection test
(i.e., the p-value for an individual SNP) is only partially correlated with the longitudinal effect of that
variant on the trait itself (Figues S18. and S36). Our CLUES selection test is best powered to identify
selection under a model in which the change in frequency is rapid. When changes in frequency occur
gradually over a long period of time, it is harder to reject a neutral model of drift. Consequently, small
but rapid changes in allele frequencies achieve low p-values, whilst large but slow changes achieve
higher p-values. These small rapid changes may achieve statistical significance in a marginal test,
whilst having very little longitudinal effect on the trait of interest. Conversely, large gradual changes

with substantial longitudinal effect may not achieve statistical significance in a marginal test.
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We caution that our results do not indicate that either MS or RA were directly under selection; and we
are not suggesting that MS was evolutionary adaptive, or that ancient people suffered from either of
these diseases. Rather, we observe that there is a very high degree of pleiotropy in auto-immune
disease associated variants, consistent with the hypothesis that selection has favoured a strong
immune response to exposure to environmental pathogens as a result of the transition to a pastoralist
lifestyle, which may have driven the observed positive signals of polygenic selection for MS. We also
note that RA has many overlapping SNPs with MS, and that the direction of effect for these SNPs is

often opposing between the two traits.

Because MS would not have conferred a fitness advantage on ancient individuals, it is likely that this
selection was driven by traits with shared genetic architecture, of which increased risk for MS in the
present is a pleiotropic by-product. We therefore looked at LD-pruned MS-associated SNPs that
showed statistically significant evidence for selection using CLUES (n=32) and which also had a
genome-wide significant trait association (p < 5e-8) in any of the 4,359 traits from the UK
Biobank'*!* and 2,202 traits from the FinnGen study'®. We observed that many selected SNPs were
also associated with a variety of other traits, including type 1 diabetes (FinnGen, n=21), celiac disease
(FinnGen, n=19; UKB, n=18), ankylosing spondylitis (FinnGen, n=17), white blood cell count (UKB,
n=16), and lymphocyte count (n=16 UKB) (Figure S19 - S26). To determine if the observed signal of
polygenic selection favouring MS risk could be better explained by selection acting on a genetically
correlated trait, we performed a systematic analysis of traits in UK Biobank and FinnGen with at least
20% overlap among the MS-associated selected SNPs (n=115 traits). Using a joint test in PALM,
specifically designed for disentangling polygenic selection on correlated traits, we did not identify any
UK Biobank or FinnGen traits where the selection signal favouring MS risk was significantly
attenuated by selection acting on a genetically correlated trait, when accounting for the number of
tests (Figures S28 - S29). In the UK Biobank the trait which showed the strongest attenuating effect
in the ALL ancestry path was mean platelet (thrombocyte) volume (30100 irnt) (p = 1.06e-3),
although it did not achieve nominal significance. In the FinnGen study, the trait which showed the
strongest attenuating effect in the ALL ancestry path was psoriatic arthropathies (M13_PSORIARTH)
(p = 8.46e-3). These results show that the signal of polygenic selection favouring MS risk is at least
partially independent of all other tested traits, consistent with our hypothesis that genetic risk for MS
is the result of a complex evolutionary response to changes in exposure to multiple pathogens during

the Bronze Age.
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7) Ancestry linkage disequilibrium (LDA) and Ancestry
linkage disequilibrium score (LDAS)
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Methods

Definition

In population genetics, linkage disequilibrium (LD) is defined as the non-random association of
alleles at different loci in a given population (Slatkin, 2008"). We propose an ancestry linkage

disequilibrium (LDA) approach to measure the association of ancestries between SNPs.

Let A(i, j, k) denote the probability of the kth ancestry (k = 1,.., K) at the jth SNP (j = 1,..,]J) of a

chromosome for the ith individual (i = 1,.., N).

We define the distance between SNP [ and m as the average L , horm between ancestries at those

SNPs. Specifically we compute the L, norm for the ith genome as

K
D(Lm) = |AG,L ") — AG,m, )|, = \/%ka(,q(i, Lk) — AGi,m, k).

Then we compute the distance between SNP [ and m by averaging Di(l, m):

N
D(L,m) = %;1 D (Lm).

We define D*(l, m) as the theoretical distance between SNP [ and m if there were no linkage

disequilibrium of ancestry (LDA) between them. D*(l, m) is estimated by

N
D(Lm) ~ X |IAG,L-) - AGi,m, ol
i=1

1

where i* € {1,.., N} are re-sampled without replacement at SNP [. Using the empirical distribution of

ancestry probabilities accounts for variability in both the average ancestry and its distribution across
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SNPs. Ancestry assignment can be very precise in regions of the genome where our reference panel
matches our data, and uncertain in others where we only have distant relatives of the underlying

populations.

The LDA between SNP [ and m is a similarity, defined in terms of the negative distance — D (I, m)

normalized by the expected value D*(l, m) under no LD, as:

D (Lm)—D@m)
D'(Lm)

LDA(l,m) =
LDA therefore takes an expected value 0 when haplotypes are randomly assigned at different SNPs,

and positive values when the ancestries of haplotypes are correlated.

LDA is a pairwise quantity. To arrive at a per-SNP property, we define the LDA score (LDAS) of SNP
j as the total LDA of this SNP with the rest of the genome, i.e. the integral of the LDA for that SNP.
Because this quantity decreases to zero as we move away from the target SNP, this is in practice
computed within an XcM-window (we use X = 5 as LDA is approximately zero outside this region in
our data) on both sides of the SNP. Note that we measure this quantity in terms of the genetic distance,
and therefore LDAS is measuring the length of ancestry-specific haplotypes compared to

individual-level recombination rates.

As a technical note, when the SNPs approach either end of the chromosome, they no longer have a
complete window, which results in a smaller LDAS. This would be appropriate for measuring total
ancestry correlations, but to make LDAS useful for detecting anomalous SNPs, we use the LDAS of

the symmetric side of the SNP to estimate the LDAS within the non-existent window.

d(j)+X . )
ggd;,) " LDA(j,1) dgd if X < gd(j) < tg— X,

LDAS(j; X) = [ LDA(j,1) dgd + [0 LDA(j,1) dgd if gd(j) < X,

d
fgd (7)-X LDA(4,1) dgd + fiigggj th LDA(j,1)dgd if gd(j) > tg — X.

where gd(l) is the genetic distance (i.e. position in cM) of SNP [, and tg is the total genetic distance
of a chromosome. We also assume the LDA on either end of the chromosome equals the LDA of the

SNP closest to the end: LDA(j, gd = 0) = LDA(j, lmin(gd)) and

ax(g d)) , where gd is the genetic distance, lmin () and lmax(gd) are the

indexes of the SNP with the smallest and largest genetic distance, respectively.

LDA(j, gd = td) = LDAG,L_
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gd(H+X
The integral | LDA(j, )dgd is computed assuming linear interpolation of the LDA score
ga(N—X

between adjacent SNPs.

LDA thus quantifies the correlations between the ancestry of two SNPs, measuring the proportion of
individuals who have experienced a recombination leading to a change in ancestry, relative to the
genome-wide baseline. The LDA score is the total amount of genome in LDA with each SNP

(measured in recombination map distance).

Simulation for selection: LDA

An ancient population P 0 evolved for 2200 generations before splitting into two sub-populations P L
(Steppe) and P2 (Farmer). After evolving 400 generations, we added mutation “ml” and “mZ” at the
different locus in P1 and Pz' Both added mutations were then positively selected in the following 300
generations, after which they merged to P 2 where both added mutations experienced strong positive
selection for 20 generations. Finally, we sampled 1000 individuals from P3 to compute their ancestry
proportions of P L and P 5 using the "chromosome painting" technique, and calculated the LDA score

of the simulated chromosome positions.
The above describes the simulation in Figure S46.

We investigated balancing selection at 2 loci as well. The balancing selection in P L and P 5 ensured the

mutated allele reaches around 50% frequency, while positive selection made the mutated allele

become almost the only allele. In P, if m, orm, was positively selected, its frequency reached more
than 80% regardless of whether the allele experienced balancing or positive selection in P1 or Pz’
because we set a strong positive selection. If m, orm, was balancing selected in P3, its frequency
slightly increased, e.g. if m 1 underwent balancing selection in P1’ it had 25% frequency when P 5 Was

created, and the frequency reached around 37.5% after 20 generations of balancing selection in P 5
The results (Figure S47) show that positive selection in P, resulted in low LDA scores around the

selected locus, if this allele was not uncommon (i.e. had 50% (balancing selection) or 100% frequency

(positive selection) in subpopulation P L or P 2). Note that the balancing selection in P L or P ) worked
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the same as “weak positive selection”, because m, and m, were rare when they first occured, which

were positively selected until 50% frequency.
We also performed simulations for selection at a single locus (Figure S47 & Figure S48).

Stage 1: We added a mutation m L in the 1600 generation in P o which then underwent balancing
selection until generation 2200, when Po split into P1 and Pz’ where the frequency of m, was around

50%.

Stage 2: Then we explored different combinations of positive, balancing and negative selection of m,
in P L and P » the frequency of m L reached 80%, 50% and 20% when it was positively, balancing or
negatively selected, respectively, until generation 2899. Here we sampled 20 individuals each in P1

and P ,as the ancient samples.

Stage 3: Then P L and P ) merged into P 3 in generation 2900. In P i for each combination of selection
in Stage 2, we simulated positive, balancing and negative selection for m,. The selection lasted for 20

generations, and then we sampled 4000 individuals from P ,as the modern population.

Results: when m, was positively selected in only one of P1 and Pz’ and it experienced negative
selection in P - the LDA scores around the locus of m, were low. Otherwise, no abnormal LDA

scores were found at m E

89



Results

Simulation for LDA scores with selection in one or two loci

(a) Model for simulating selection at 2 loci

(b) LDA score for simulation with m1(P1):positive; m2(P2):positive; m1(P3):positive; m2(P3):positive
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Figure S46: Simulating Low LDA score.
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Chromosome position (Mb)

Left: A simulated history in which a single population splits into two (“Steppe” and “Farmer”) after

2200 generations and experiences positive selection on different loci (m1 in P1 and m, in Pz)' After

2900 generations the populations merge (“Europeans”) but selection continues on both loci.
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(a) mO(P1):positive; mO(P2):positive; m0(P3):positive () mO(P1):positive; m0(P2):positive; mO(P3)-balancing
16

LDA score
3

(m) Model for simulating selection at 1 locus
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Figure S47: LDAS simulation with positive or balancing selection in the modern population.

The left two columns show simulations with a single variant satisfying the observed constraint that

modern-day frequencies are not decreasing (i.e. not negative selection). The right column shows

simulations with two variants, also obeying this constraint. The model for simulating 2 loci is the

same as in Figure S46, and that for 1 locus is in the top right of this plot (which differs only in the

location of the selected variant in the separated populations).
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(b) mO(P1):positive; m0(P2):balancing; m0(P3):negative

(a) mO(P1):positive; mO(P2):positive; mO(P3):negative

0.8

LDA score
o
(%)

0.4

(c) mO(P1):positive; mO(P2):negative; mO(P3):negative

LDA score

IS

o
™

LDA score

o
S

Figure S48: LDAS simulation with single locus negatively selected in the modern population.

In two cases this generates a low LDAS score, which requires recent negative selection (which is

ruled out for HLA by the observed frequency trend). The model used is in the top right of Figure S47.
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LDA score for chromosome 2 and 6

(a) LDA score for chromosome 2
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Figure S49: LDAS on chromosome 6 and 2.
LDA score is a) high in the LCT/MCMS6 region while is b) low in the HLA region.
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LD plot for chromosome 6 MS-associated SNPs
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Figure S50: Pairwise Linkage Disequilibrium (LD) plot (measured by D’) for all the

MS-associated SNPs on chromosome 6.
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Introduction

Autoimmune disease susceptibility is unlikely to be selected due to any beneficial effect on survival.
We propose that an increase in the risk of autoimmune disease is more likely a byproduct of selection
for gene variants associated with, e.g., advantageous immune responses to the pathogenic challenges

ancient populations faced.

The current incidence of RA (Figure S51) is approximately 100 times higher than that of MS.
Although people commonly develop RA between the age of 35 to 60, it can occur at any age. The
average age of early-onset RA is 14. MS can develop at any age, but onset usually occurs between
20-40. Women are more frequently affected by both RA and MS. Studies of ancient skeletons suggest
that RA has affected people for thousands of years but the prevalence over time is unknown
(Entezami et al., 2011). MS leaves no unique marks on the skeleton, so we cannot know how

frequently MS developed in ancient times; the first MS patient was described in 1859.

RA and MS are autoimmune diseases with genetic and environmental risk factors. While several
pathogens are thought to play a part in MS disease development, EBV has been identified as a major
risk factor for MS, especially if infection occurs after 18 years of age (Bjornevik et al., 2022). In
contrast, although several bacteria and respiratory viruses have been implicated as potential RA
disease triggers, no single pathogen stands out (Joo et al., 2019). Multiple RA studies suggest that
mucosal surfaces, particularly the periodontal region, lung and gut, may be sites of inflammation and
potential generation of RA-related autoimmunity in the preclinical period of the disease (Deane et al.,
2017). Whether the pathogens that trigger MS and RA today were present to the same extent in

ancient times is unknown.
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HLA-DRBI1*15:01 has been associated with some protection against tuberculosis (Tervi et al., 2022),
while HLA-DRB1*04:01 has been suggested to be associated with better outcomes in, e.g., hepatitis
C virus (HCV) (Hydes et al., 2015), Hepatitis B virus (HBV) (Yan et al., 2012), and SARS-CoV-2
infections (Langton et al., 2021) in people of European descent, and with strong immune responses to

influenza peptides (Danke & Kwok, 2003).
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Figure S51. Modern prevalences of RA.

Modern-day geographical distribution of RA prevalence in Eurasia and North Africa. Prevalence data
for RA (cases per 100,000) was obtained from Safiri et al. (2019).
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Figure S52. Association between genome-wide Steppe ancestry, MS prevalence and DRB1*15:01
frequency in modern populations in the UK Biobank.

97



L]

0.14

0.12

o
"N
o

0.08

o
(2]
Modern DRB1*04:01 frequency (%)

0.00

Figure S53. Ancient and modern prevalences of HLA-DRB1*04:01 (rs3817964).

Top: Ancient distributions of HLA-DRB1*04:01, the largest genetic risk factor in RA. Average
frequency across all populations is shown (blue line, 10 time bins) as well as the Bronze Age (red
shading).

Bottom: Modern distribution of HLA-DRB1*04:01 in Eurasian and North African populations in the
UK Biobank. NB the tag SNPs may be less effective at tagging these types in non-European
populations, so we urge caution in interpretation - especially in African populations.
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Figure S54. Modern prevalences of MS.

Modern-day geographical distribution of MS prevalence in Eurasia and North Africa. Prevalence data
for MS (cases per 100,000) was obtained from Atlas of MS, third edition (2020).
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Methods

Pleiotropic trait analysis

To investigate possible selective pressures driving these signals, we analysed the pleiotropic
pathogen- and/or infectious disease-associated effects of alleles found to have been under positive
selection (Supplementary Note 6) in each of the four ancestry paths and the pan-ancestry path by
systematically searching for associations in existing literature in PubMed, the UK Biobank, and the

Finngen Biobank.

We observed three main types of protective links: (i) to distinct pathogens, e.g., herpes simplex virus
(HSV), or their associated diseases, e.g., chickenpox, which is caused by varicella zoster virus (VZV),
(i1) to diseases affecting specific systems, e.g., respiratory infections, or, (iii) to distinct diseases
caused by nonspecific parasites, bacteria, fungi or viruses in, e.g., the skin and subcutis. These SNP

associations are shown in ST11 and ST12.

Our analyses had several limitations. We cannot identify alleles associated with protection against
pathogens known to have exerted strong selective pressures on human populations throughout history
for which no GWAS data exists, e.g., plague and smallpox. Neither is robust GWAS data available
that identify alleles associated with protection against pathogens which we currently vaccinate most of
the populations against, e.g., mumps, rubella, measles, H. influenza and polio. Moreover, some studies
are small, and some SNP associations might differ between ethnicities (for example due to different
LD patterns between populations). As a result, many of these associations are suggestive rather than

conclusive and may be limited to European populations.
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Results

Pleiotropic trait analysis of SNPs associated with multiple sclerosis

We identified 32 selected MS SNPs (ST8, ST11); of these, six (6/32, 19%) were not associated with
protection against any specific pathogen or infectious disease. Two of these seven selected SNPs were
associated with positive selection of the risk allele for MS. In many of these cases, SNPs were
associated with, e.g., decreased risk of diabetes type I and coeliac disease (rs3134931; OR 0.750 and
0.818, respectively), coeliac disease and malabsorption (rs3806156; OR 0.658 and 0.672,
respectively), diabetes and coeliac disease (rs9368699; OR 0.339 and 0.308, respectively), which

suggests the presence of potentially strong, non-infectious selective forces.

We observed shared protective alleles when considering Epstein-Barr Virus (EBV). 1/32 positively
selected SNPs (~3%) were associated with a lower risk of EBV-associated disease: this conferred

protection to both EBV and HSV in ANA (rs2735076; HLA-A).

Overall, 4/32 SNPs (~13%) were linked to protection against cellulitis and/or abscesses in different
body parts, usually encompassing arms, hands, legs, feet and toes (ST11) (rs2735076, HLA-A, ANA
path; rs9261588, TRIM26, WHG and pan-ancestral paths; rs1077667, TNFSF14, ANA path;
rs1794275, ANA and WHG but in opposite directions). For each SNP there were additional links to
protection against different pathogens and/or diseases such as herpes simplex virus (HSV), keratitis
and keratoconjunctivitis (rs1794275), HSV and EBV (rs2735076), and retrovirus infection
(rs9261588).

This analysis revealed two protective alleles against the mumps virus (MuV) (rs2070600, AGER,
WHG and EHG paths; rs241447, HLA-DOB, WHG and EHG paths). Both SNPs were also associated

with protection against a range of other pathogens.

Four of the 32 SNPs (~13%) were associated with protection against chickenpox or shingles (caused
by varicella zoster virus (VZV)) and each were found in unique genes. One SNP was selected
exclusively in the CHG path (rs7747873, HLA-E), one in the EHG, WHG and CHG paths (2735046,
HLA-F), one in the WHG, and pan-ancestral paths (rs17576984, PGBD1), and one in the CHG path
(rs9266773, MICA). Whereas no other protective effects were associated with rs17576984, the other
four SNPs were associated with protection against other non-specific or specific pathogens or
diseases, e.g., coronavirus, viral infections, pyogenic arthritis, sexually transmitted diseases

(1s9266773, MICA).
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One SNP was associated with protection against influenza or influenza and pneumonia: rs210131 was

exclusively selected in the EHG and pan-ancestral paths (rs210131, BAK1).

Two SNPs were associated with protection against streptococcus pneumonia: one in WHG
(rs9296015, NOTCH4), and one in WHG and the pan-ancestry paths (rs3129934, TSBP1). Several

SNPs were associated with protection against non-specific viral or bacterial pneumonia (ST11).

Three SNPs were associated with protection against non-specific or specific parasites, and some had
additional protective effects against viruses and/or bacteria or broadly against infection regardless of
associated pathogen. One parasite-associated protective SNP was observed in the WHG and EHG
paths (rs241447, HLA-DOB), one in the WHG path (rs7200786, CLEC16A; specifically protective
against helminths), and one SNP was shared between the ANA and EHG paths (rs757260, TRIM40).

We found four selected SNPs were linked to protection against gastrointestinal infections; two of
these were specifically linked to protection against clostridium difficile in CHG and the pan-ancestry
paths (rs416622, HLA-DOA) and in the ANA path (rs1077394, APOM). Moreover, one SNP was
protective against bacterial enteritis in CHG and WHG (rs9268530, BTNL2) and one against
intestinal infections in the WHG and EHG paths (rs241447, HLA-DOB). One SNP was protective
against spirochetes in WHG (rs2248372, HCPS, MICB); no protective SNPs were found against

spirochetes in the RA analysis.

One MS-risk SNP was associated with protection against cytomegalovirus (CMV) infection

(rs12210887, NEU1). This protective allele was selected in the WHG and pan-ancestry paths.

We found several SNPs linked to protection against pneumonia caused by streptococcus (n=2,
r$9296015, NOTCH4, WHG and rs3129934, TSBP1, WHG and pan-ancestral paths). One SNP was
associated with protection against infection with mycobacteria, including Mycobacterium tuberculosis
in the WHG path (rs4902647, ZFP36L1). Overall, most of the associated SNPs allowed for protection
against pathogens/diseases affecting the respiratory system, the gastrointestinal tract, and genitalia. A

complete list of SNP associations is available in ST11 and are outlined in Extended Data Figure 9.1.

Pleiotropic trait analysis of SNPs associated with rheumatoid arthritis
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We identified 55 selected RA SNPs (ST9, ST12); 17 (31%) were not associated with protection
against any specific pathogen or infectious disease (ST12). Seven of these 17 selected SNPs were
associated with positive selection of the risk allele for RA in EHG, WHG, ANA, or CHG. SNPs were
associated with e.g., a reduced risk of thyrotoxicosis (OR 0.889), intestinal malabsorption (OR 0.722),
and celiac disease (OR 0.691) (rs2294880, BTNL2, WHGQG), or a lower risk of malabsorption (OR
0.608, rs9380260, MICB, CHG) and celiac disease (OR 0.628, rs9380260, MICB, CHG). In the other
12 cases, the selected variant alleles decreased the risk of RA. As RA could also develop in ancient
times (Entezami et al., 2011), the disease itself and the impaired ability to combat other infections
caused by RA-associated inflammation (Listing et al., 2013), would likely impose a negative selective

pressure on the risk alleles as it would negatively impact the affected person's chances of survival.

In the RA analysis, two protective alleles against HSV were selected in the WHG path (rs72887765,
RGL2), and the ANA, CHG, EHG, WHG and the pan-ancestral paths (rs9927316, LINC02132).

One RA-associated SNP was linked to a lower risk of EBV infection (1/55 SNPs, 2%) resulting in
infectious mononucleosis (rs3130062, ATP6V1(G2), and positive selection was only identified in the

WHG and pan-ancestry paths.

The RA selection analysis included one protective allele against MuV (rs404860, NOTCH4) in the
ANA, CHG and the pan-ancestry paths. This SNP was different from the protective SNPs found in the
WHG and EHG paths in the MS selection analysis.

Six RA-risk SNPs were associated with protection against cellulitis and abscesses and were also
linked to a reduction of the risk of several other pathogens and diseases. One SNP was linked to broad
protection against bacterial and parasitic diseases and was found in the EHG and WHG paths
(rs3130192, HLA-DPAT1). One SNP was linked to a decreased risk of dermatophytosis and erysipelas
and was selected in the WHG path (rs3087243, CTLA4). Postdysenteric arthropathy typically
manifests after a bacterial gastrointestinal infection. Two SNPs were selected in either the WHG and
pan-ancestry paths (rs2240069, TRIM31), or only in ANA (rs1953126, PHF19); these also decreased
the risk of viral hepatitis in pregnancy and during the puerperium (rs2240069, TRIM31) or
bronchopneumonia and lung abscesses (rs1953126, PHF19). Of the two SNPs selected in the WHG
path, one also protected against meningitis and other infections caused by Neisseria meningitidis
(rs8075737, NEUROD?2). One SNP was selected in the ANA and pan-ancestry paths and protected
against sexually transmitted diseases and optic neuritis (rs3130182; HLA-DPB1) and one SNP
selected in WHG decreased the risk of puerperal infections, i.e infections during childbirth and during

the subsequent 6 weeks thereafter (rs2301888, PADIO6).
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We observed one selected SNPs associated with protection against measles. This was selected in

EHG, CHG, ANA and the pan-ancestry analysis (rs707939, MSHS).

Five SNPs were associated with protection against VZV-associated disease (9%). Of these SNPs, one
was only associated with protection against VZV and was observed in the CHG path (rs2523668,
MICB), while the rest also have been associated with protection against other pathogens/diseases. One
was selected in the CHG, EHG and pan-ancestry paths (rs4713242, HLA-F), and was broadly
protective against several viruses (e.g., viral haemorrhagic fevers and coronavirus). One SNP was
found in the EHG path (rs1265096, PSORS1C2), and one in the CHG, EHG, ANA and pan-ancestry
paths (rs6902493, CYP21A2). None of the VZV-protective SNPs in the MS and the RA analyses

overlapped.

Two SNPs were protective against tuberculosis; one was only selected in the ANA path (rs7764777,
HLA-G) and one was selected in the EHG, CHG, ANA and the pan-ancestry paths (rs2596543,
MICA). This latter SNP is also associated with protection against candida infections. One SNP was
associated with protection against pneumococcal pneumonia and was shared between the ANA and
WHG paths (152856822, HLA-DPAT1). One SNP was associated with protection against
asthma-related pneumonia, and was selected in the ANA path (rs9262138, DHX16). One SNP was
associated with protection against asthma-related acute respiratory infections in ANA, CHG and the

pan-ancestry paths (rs404860, NOTCH4).

Five SNPs were associated with protection against parasites; all of these had additional protective
effects against bacteria and possibly viruses and fungi (ST12). Two were also associated with
protection against some sexually transmitted diseases, including one also protecting against influenza.
All but one of the parasite-protective alleles were exclusively selected in one population path: EHG
(rs876938, PRXL2B and rs1042663, CF8), and WHG (rs3128947, HLA-DOA and rs2894381,
HLA-DQ?2). The one shared SNP was selected in the EHG and WHG paths (rs3130192, HLA-DPAT1).
Two SNPs were linked to protection against viral hepatitis; the first SNP was associated with
protection against hepatitis A, B and C virus and was selected in CHG (rs7383287, HLA-DOB). This
was also associated with protection against clostridium difficile and the latter against a vast range of
pathogens. The second was associated with protection against other forms of viral hepatitis
(rs2240069, TRIM31) and was selected in the WHG and pan-ancestry paths. One SNP was associated
with protection against arthropod-borne and other viral haemorrhagic fevers and was selected in the

EHG, CHG and pan-ancestry paths (rs4713242, HLA-F).
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We found one selected SNP was linked to protection against gastrointestinal infections; this was
specifically linked to protection against clostridium difficile in CHG (rs7383287, HLA-DOB), and

also offered protection against several other pathogens.

Overall, we found that 38 of the 55 (69%) RA-risk SNPs were associated with specific pathogens
and/or diseases. Of these 38 SNPs, many were associated with pathogens or diseases linked to
mucosal surfaces in the mouth, respiratory tract, or with pathogens which first replicate in the
respiratory tract (e.g., measles (Lin et al., 2021), mumps (Katoh et al., 2015), EBV (Egan et al., 1995),
VZV (Zerboni et al., 2014)), to gastrointestinal infections caused by parasites, bacteria or viruses, to
urinary tract infections, or to infections in the genital tract. A complete list of SNP associations is

available in ST12 and are outlined in Extended Data Figure 9.1.
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Discussion

The SNPs associated with the risk of MS or RA under selection were often linked to protection
against the same pathogens or diseases, e.g. EBV, HSV, VZV, mumps, acute respiratory infections,
tuberculosis, viral hepatitis, cellulitis and abscesses and sexually transmitted diseases/genital
infections. Some protective alleles were linked to a single pathogen or disease while others were
associated with several pathogens and/or diseases. The observation that the MS and RA risk SNPs in
most cases were linked to the same pathogens and/or diseases suggests that we have identified some
of the significant infectious challenges encountered by ancient Bronze Age populations (Extended

Data Figure 9.1).

Within the MS and RA analyses, we often identified protective SNPs in different genes selected for by
the same pathogen(s)/diseases within the same or different ancestry paths. We also observed some
shared SNPs between ancestral paths that were selected by the same pathogen(s)/disease. However,
the number of MS- and RA-associated SNPs linked to protection against a given pathogen or disease

could vary significantly.

In the MS analysis, one EBV-protective SNP was observed (~3% of all SNPs), in the ANA path
(rs2735076; HLA-A). In the RA analysis, one SNP (~2% of all SNPs) was linked to a lower risk of
EBYV infection (rs3130062, ATP6V1(G2) and positive selection was identified in the WHG and
pan-ancestry paths. This result suggests that adaptation to decrease the risk of infection by a given
pathogen - or the risk associated with a given disease once infected - can occur through modifications
of genes affecting multiple different immune response pathways which might haphazardly increase or
decrease the risk associated with a given autoimmune disease. In some populations, this adaptation
increases or decreases the risk of MS or RA through one or several immune pathways; in other
populations, the risk is increased or decreased through changes in different immune pathways or
combinations of pathways. The population structure of EBV correlates with the genetic ancestry of
infected populations and EBV diversification has been found to be shaped by host immune responses

(Wegner et al., 2019).

It is perhaps surprising that MS-associated risk SNPs can be associated with protection against EBV, a
significant risk factor for MS, especially if people are infected after puberty (Bjornevik et al., 2022). It
is tempting to speculate that the protective effects of some of these allele variants might be

age-dependent, but no data exists to prove or disprove the suggestion.
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Distinct protective mumps alleles were found in the MS and RA analyses in the pan-ancestry path and
in the CHG or ANA paths, respectively. Accurate estimates of the origin of mumps are not available
at present, but Hippocrates described an outbreak of mumps on the Greek island of Thasos at
approximately 2432 YBP, suggesting that the selective pressure from mumps could have been
significant even earlier, and that mumps was not endemic in the Bronze Age but occurred as local and

severe outbreaks.

The many unique SNPs within the different populations associated with protection against the same
pathogen or disease(s) suggest that population-specific adaptations were common. In the MS selection
analysis, we found one SNP linked to protection against HSV in the ANA path (rs2735076, HLA-A).
In contrast, in the RA analysis, two SNPs were linked to protection against HSV and were selected in
the ANA, CHG, WHG, EHG and pan-ancestry paths (rs9927316, LINC02132-LINC01082), and in
the WHG (rs72887765, RGL2) path. The HSV-protective SNPs in the RA analysis were different
from the one observed in the MS analysis. These results suggest that HSV circulated in all the
analysed Bronze Age populations. Phylogenetic analyses have estimated that the European lineage of
HSV originated approximately 5000 years before the present (YBP) (Guellil et al., 2022). This result
suggests that the Bronze age lifestyles, increased population densities and population dispersals

resulted in an increased incidence of HSV facilitating the generation of a European HSV lineage.

In the MS selection analysis, four of the 32 SNPs (~13%) were associated with protection against
chickenpox or shingles/zoster (caused by VZV) and each were found in unique genes. One SNP was
selected exclusively in the CHG path (rs7747873, HLA-E), one in the WHG and CHG paths
(rs2735046, HLA-F), one in the EHG, WHG, and pan-ancestral paths (rs17576984, PGBD1), and one
in the CHG and ANA path (rs9266773, MICA). Similarly, in the RA analysis, five SNPs were
associated with protection against VZV-associated disease (9%). Of these SNPs, one was only
associated with protection against VZV and was observed in the CHG (rs2523668, MICB) path, while
the rest also have been associated with protection against other pathogens/diseases. The percentage of
protective SNPs against VZV was higher than against any other specific pathogen in both the MS
(4/32, 13%) and RA (5/55, 9%) analyses, making it tempting to speculate that the selective pressure
on the Bronze Age populations from this virus might have been especially strong. VZV appears to be
a uniquely human pathogen as no animal reservoir has been identified. Although VZV might have
migrated with modern humans out of Africa, the greatest diversity is found in Europe and the VZV
strains currently in existence seems to have originated in Europe about ~5000 years ago (Weinert et

al., 2015; Pontremoli et al., 2019), i.e. during the Bronze age.

Our results highlight that interrogating SNPs associated with only one autoimmune disease risk can

thwart the understanding of virus selection pressures in the analysed populations. We found no
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overlap between the many EBV- and VZV-associated protective SNPs in the MS and RA selection

analysis.

Among the MS-risk SNPs, no protective alleles were found against measles (measles morbillivirus
(MeV)). In contrast, among the RA-risk SNPs we identified one MeV protective SNPs in the EHG,
ANA, CHG, and the pan-ancestry paths (rs707939, MSHY).

MeV is an exclusively human pathogen, and it is assumed, though not formally established, that it
results from a spill-over from cattle infected with Rinderpest morbillivirus (RPV). MeV and RPV are
closely related to Peste des petite ruminants virus (PPRV), which primarily infects wild and domestic
goats and sheep, bharals, ibexes, and gazelles, but can cause infections in other hosts like camels and
dogs (Dou et al., 2020). Phylogenetic analysis has estimated that the divergence between PPRV and
the Mev/RPV ancestor happened at approximately 5221 YBP (95% HPD: 6655 - 3923 YBP),
coinciding with an increase in pastoralism (Dux et al., 2020). The divergence between MeV and RPV
is estimated to have occurred at about 2530 YBP (95% HPD: 3196 - 2187 YBP) (Dux et al., 2020).
These estimates are calculated based on very few old MeV sequences and are uncertain. Although
RPV primarily infects cattle, it also can infect humans. As the host range of the common ancestor to
MeV/RPV is unknown, selective pressure from morbillivirus on ancient populations might predate the
MeV/PRV split. Nevertheless, these results suggest that MeV, and possible other morbilliviruses,
might have exerted a selective pressure on human populations since ~5000 YBP, and for sure since
2500 YBP, which is in line with the MeV-associated protective alleles identified in our RA-risk SNP

analysis.

In the MS analysis, we observed a SNP linked to protection against spirochetes. It is unlikely to have
been positively selected because it protects against syphilis; this disease is caused by treponema
pallidum and the prevailing, but unproven, theory is that syphilis was brought into Europe (Naples,
Italy) in 1493 AD by the ship from the New World (America). However, new studies have
demonstrated a high diversity in the treponema pallidum family in Europe during the last ~1500 years
and have estimated the origin of the European lineages at approximately 5000 YBP (Majander et al.,
2020). Moreover, the spirochete protective SNP could also, or only, have been selected to combat
Borrelia burgdorferi, a bacteria transmitted to humans through the bite of infected ticks causing Lyme

disease.

We observed one SNP that exclusively protected against infection with mycobacteria including
tuberculosis in WHG in the MS selection analyses (rs4902647, ZFP36F1) and one weakly protective
allele against respiratory tuberculosis in the RA selection analysis which was selected in the EHG

path (rs2596543, MICA). MICA has been demonstrated to be involved in the immune response to
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several bacterial infections apart from tuberculosis; these include brucellosis and listeriosis (Das et al.,

2001).

HLA DRBI1*15:01 is associated with protection against TB in European populations but not in other
ethnic groups (Tervi et al., 2022). Studies have suggested a Neolithic emergence of the
Mycobacterium tuberculosis complex (Bos et al., 2014; Sabin et al., 2020), with a particularly strong
disease burden in the last 2,000 years (Kerner et al., 2021). TB can be transmitted through respiratory
aerosols and humans can contract zoonotic TB from cattle (Mycobacterium bovis) through
consumption of unpasteurised milk and handling sick animals (Gompo et al., 2020). Human TB can
also, but less frequently, infect cattle (Lombard et al., 2021). Cold climate, overcrowding, and
consumption of unpasteurized milk is known to facilitate transmission and lack of UV light and

Vitamin D can increase the risk of TB reactivation (Fares 2011).

HLA DRB1*04:01 is associated with increased risk of RA and with better outcomes in, e.g., hepatitis
C virus (HCV) (Hydes et al., 2015), Hepatitis B virus (HBV) (Yan et al., 2012), and SARS-CoV-2
infections (Langton et al., 2021), and with strong immune responses to influenza peptides (Danke &
Kwok, 2003). We have found that RA risk was greatest in WHG and EHG and that the overall risk of
RA has been under negative selection since the Bronze Age. It might be important to underscore that
we estimate genetic risk in WHG and EHG, not disease incidence. While the genetic risk in WHG and
EHG was high, their exposure to several respiratory or gastrointestinal pathogens linked to triggering
RA was probably low. Consequently, their high genetic risk likely did not necessarily translate into
high disease frequencies because of a lack of exposure to pathogen triggers. However, when these
genetic risk factors were then present during the Bronze Age, the increased population sizes and the
associated increased risk of transmission of ‘crowd diseases’, e.g., influenza, coronavirus infections,
measles and morbilli, suddenly increased the risk of triggering RA pathogenesis. The inflammatory
immune responses linked to RA pathogenesis have been estimated to approximately double the risk of
a serious outcome of subsequent infections (Listing et al., 2013). Consequently, the effect of novel
lifestyles during the Bronze Age might have resulted in a negative selection of alleles conferring a

genetic risk of RA.

We found that most of the RA-risk SNPs linked to protection against pathogens and/or infectious
diseases were protective against pathogens and/or diseases infecting mucosal surfaces. This result is
somewhat surprising as multiple RA studies suggest that mucosal surfaces might be sites of
inflammation and potential generation of RA-related autoimmunity in the preclinical period of the
disease (Deane at al., 2017). However, this adaptation pattern to pathogens that might be disease
triggers is in line with our observation that two MS-associated risk SNPs are also associated with

protection against EBV, a major environmental MS risk factor. It is tempting to speculate that our RA
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results might reflect host adaptation in genes related to RA-risk that aim to reduce the risk of infection
or serious illness by pathogens that might trigger RA. If this speculation is correct, then some of the
SNPs linked to protection against a given pathogen might reveal which pathogens are most likely to
trigger autoimmune disease. Determining whether these speculations are correct will require further

studies.

Several SNPs were associated with protection against bacterial and viral pneumonia. One SNP was
associated with protection against influenza in the MS analysis in the EHG and pan-ancestry paths,
and one was identified only in WHG in the RA analysis. None of the SNPs selected in the MS and RA

analysis overlapped.

The MS and the RA selection analyses revealed several protective alleles against parasites within
many population paths suggesting that parasites exerted strong selective pressure on each population.
None of these SNPs were overlapping between the MS and RA analyses. Likewise, several SNPs
were associated with cellulitis and abscesses within the MS-risk SNPs (n=4), and within the RA-risk
SNPs (n=6), but none overlapped. Cellulitis and abscesses are usually caused by bacteria, typically
staphylococcus or streptococcus, that enter the skin and subcutaneous tissue through cuts and
abrasions. Such lesions are likely to occur frequently, and our results suggest that strong selective

pressures acted on reducing the harmful effects of these bacterial infections.

We found protective alleles against unique pathogens or diseases among the MS-risk and the RA-risk
SNPs. The unique specific pathogens or diseases found among the MS-risk SNPs included
streptococcus pneumonia (rs9296015, NOTCH4, WHG; rs3129934, TSBP1, WHG and pan-ancestry
paths) and spirochetes (rs2248372, HCP5, MICB, WHG). Among the RA-risk SNPS, three SNPs
reduced the risk of unique diseases or pathogens: pneumococcal pneumonia (rs2856822, HLA-DPAI,
ANA, WHG), Entamoeba histolytica (rs3128947, HLA-DOA, WHGQG), and meningococcal infection
(rs8075737, NEUROD2, WHG). Entamoeba histolytica causes amebiasis or amebic dysentery; today

about 1/500 recorded infections are fatal.

Our analysis of MS- and RA-risk SNPs suggests that the growing population sizes and extensive
population dispersals of the Bronze Age likely facilitated zoonosis (e.g., possibly MeV) and disease
transmission of e.g., HSV and VZV. The infectious challenges from new pathogens and the more
intense spread and exposure to old pathogens, e.g. through overcrowded living conditions, the use of
manure and human waste as fertilisers and consumption of unpasteurised dairy products, likely
resulted in the selection of strong anti-parasite Th2 responses and strong antiviral and antibacterial
Th1 responses. Because Th2 responses hamper the efficiency of Th1 responses, an increase in the

strength of the former will necessitate an increase in the latter if survival is to be ensured. While the
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immune response adaptations during the Bronze Age facilitated survival, today, in places with, e.g.,
better hygiene and less exposure to parasites, these strong immune responses can misfire and result in

autoimmune diseases.
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