
Elevated genetic risk for multiple sclerosis 
emerged in steppe pastoralist populations

In the format provided by the 
authors and unedited

Nature | www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-023-06618-z



Elevated genetic risk for Multiple Sclerosis

emerged in Steppe Pastoralist populations

Supplementary Information

Contents
Contents..................................................................................................................................1
Key to Supplementary Data Tables in file “Supplementary_Tables_July23.xlsx”........... 4
1) Archaeological Sites and Data Generation..................................................................... 6

Archaeological sites........................................................................................................... 6
The churchyard of Our Lady/Vor Frue Kirkegård ÅHM6093........................................ 6
Ahlgade 15-17, MHO 71/85, Holbæk Parish, Holbæk, Sealand.................................. 7
Tjærby, Gimming Parish, Randers, Jutland. KHM 0899. 14.09.04-20, GPS
coordinates: 567982, 6259161.....................................................................................9

Data Generation............................................................................................................... 10
Sampling, lab work and sequencing...........................................................................10
Libraries authentication...............................................................................................11

References....................................................................................................................... 12
Figure S1: ADMIXTURE results performed with Caucasus hunter-gatherers
(CHG), Eastern hunter-gatherers (EHG), Western hunter-gatherers (WHG),
Anatolian Neolithic and Russia Bronze Age Yamnaya (Steppe ancestry) as
the source populations from k=2 to k=10....................................................... 13
Figure S2: Three-way qpAdm model with the source populations
Luxemburg_Mesolithic (WHG), Russia_Bronze_Age_Yamnaya (Steppe
ancestry) and Anatolia Neolithic..................................................................... 14
Table S15: Results obtained by qpAdm analysis for the three-way admixture
model..............................................................................................................14

2) Analysis of mtDNA sequence, Sex determination and Y chromosome analysis...... 16
Analysis of mtDNA sequence...........................................................................................16

Methods......................................................................................................................16
Results....................................................................................................................... 16

Figure S3: Mitochondrial phylogenetic tree.................................................... 17
Conclusion..................................................................................................................18

Sex determination and Y chromosome analysis.............................................................. 19
Methods......................................................................................................................19
Results....................................................................................................................... 19

Sex determination.................................................................................................19
Figure S4: Sex determination plot.................................................................. 20

Phylogenetic placement....................................................................................... 20

1



Figure S5: Y chromosome phylogenetic tree................................................. 21
Conclusion..................................................................................................................22

References....................................................................................................................... 22
3) Cluster Analysis, Weighted Average Prevalence and Local Ancestry GWAS........... 24

Methods............................................................................................................................24
Cluster Analysis..........................................................................................................24
Weighted Average Prevalence................................................................................... 24
PCA/UMAP of WAP/average dosage.........................................................................25
GWAS.........................................................................................................................25

Local ancestry and genotype GWAS....................................................................25
Comparison of local ancestry and genotype gwas............................................... 26

Results............................................................................................................................. 28
Association with MS risk at externally ascertained SNPs for ancestries and
genotypes...................................................................................................................28

Figure S6: Association with MS risk at externally ascertained SNPs, for (top)
ancestry, and (bottom) SNPs..........................................................................28

Cluster analysis comparing between MS-risk and local ancestry for 3 example SNPs.
29

Figure S7: Comparison between MS-risk and local ancestry for 3 example
SNPs.............................................................................................................. 29

PCA plots for average ancestry and weighted average prevalence of MS-associated
SNPs.......................................................................................................................... 30

Figure S8: Decomposition of individuals’ ancestry at MS risk SNPs in terms of
(left) the ancestry of those SNPs alone, or (right) the Weighted average
prevalence of MS in each ancestry after “logit” transformation...................... 30

References....................................................................................................................... 30
4) Ancestral risk scores.......................................................................................................31

Introduction.......................................................................................................................31
Methods............................................................................................................................31

Imputation of local ancestry........................................................................................31
Ancestral risk score.................................................................................................... 31

Results............................................................................................................................. 32
Figure S9. Ancestral Risk Scores (ARS) for fine-mapped data for MS using all
SNPs (left), only SNPs on the HLA (centre), and only SNPs not on the HLA
(right).............................................................................................................. 32
Figure S10. Ancestral Risk Scores (ARS) for fine-mapped data for RA using
all SNPs (left), only SNPs on the HLA (centre), and only SNPs not on the HLA
(right).............................................................................................................. 33

References....................................................................................................................... 33
5) Haplotype Trend Regression with eXtra flexibility (HTRX).......................................... 34

Methods............................................................................................................................34
Definition.................................................................................................................... 34
HTRX Model selection procedure for shorter haplotypes...........................................35
HTRX Model selection procedure for longer haplotypes (Cumulative HTRX)............36
Simulation for HTRX...................................................................................................37

Results............................................................................................................................. 39

2



HTRX simulation........................................................................................................ 39
Figure S11: Simulation study with four SNPs showing the boxplots of
out-of-sample variance (from n=10 test folds. Bounds of box: Q1 (25%
quantile) to Q3 (75% quantile); Whiskers: from Q1-1.5IQR to Q3+1.5IQR;
Centre red line: mean; Minima and Maximum: black dots) explained by HTRX
compared to GWAS, HTR and the true model............................................... 39

References....................................................................................................................... 40
6) Polygenic selection analysis for auto-immune disease risk....................................... 41

Introduction.......................................................................................................................41
Methods............................................................................................................................41

Sample data............................................................................................................... 41
GWAS ascertainment................................................................................................. 42
Selection analysis.......................................................................................................42
Polygenic selection analysis.......................................................................................42
Pleiotropic trait analysis..............................................................................................43
Joint polygenic selection analysis.............................................................................. 43

Table S16 Software and versions used in the polygenic selection pipeline....44
Results............................................................................................................................. 45

Multiple sclerosis........................................................................................................ 45
Pan-ancestry analysis.......................................................................................... 45

Figure S12. Stacked line plot of the pan-ancestry PALM analysis for Multiple
sclerosis, showing the CLUES inferred allele frequency trajectories of each
statistically independent SNP (n=62)..............................................................45

Western hunter-gatherer ancestral path...............................................................46
Figure S13. Stacked line plot of the WHG ancestry PALM analysis for Multiple
sclerosis, showing the CLUES inferred allele frequency trajectories of each
statistically independent SNP (n=62)..............................................................46

Eastern hunter-gatherer ancestral path................................................................47
Figure S14. Stacked line plot of the EHG ancestry PALM analysis for Multiple
sclerosis, showing the CLUES inferred allele frequency trajectories of each
statistically independent SNP (n=62)..............................................................47

Caucasus hunter-gatherer ancestral path............................................................ 48
Figure S15. Stacked line plot of the CHG ancestry PALM analysis for Multiple
sclerosis, showing the CLUES inferred allele frequency trajectories of each
statistically independent SNP (n=62)..............................................................48

Anatolian farmer ancestral path............................................................................49
Figure S16. Stacked line plot of the ANA ancestry PALM analysis for Multiple
sclerosis, showing the CLUES inferred allele frequency trajectories of each
statistically independent SNP (n=62)..............................................................49

Cross ancestry comparisons................................................................................ 50
Figure S17. Density plots of the change over time in scaled PRS for each
SNP in each marginal ancestry for Multiple sclerosis.....................................50
Figure S18. Scatter plots showing the delta PRS per SNP and the directional
-log10(p-value) for each SNP in each marginal ancestry for Multiple sclerosis.
51

Pleiotropic UK Biobank traits................................................................................ 52
Figure S19. Allele frequency plots for positively selected MS-associated
SNPs that are also associated with other phenotypes in the UK Biobank.

3



Traits 1-5.........................................................................................................52
Figure S20. Allele frequency plots for positively selected MS-associated
SNPs that are also associated with other phenotypes in the UK Biobank.
Traits 6-10.......................................................................................................53
Figure S21. Allele frequency plots for positively selected MS-associated
SNPs that are also associated with other phenotypes in the UK Biobank.
Traits 11-15.....................................................................................................54
Figure S22. Upset plot showing a histogram of selected MS-associated
SNPs which share a pleiotropic association with one or more marginal
phenotypes in the UK Biobank....................................................................... 55

Pleiotropic FinnGen traits..................................................................................... 56
Figure S23. Allele frequency plots for positively selected MS-associated
SNPs that are also associated with other phenotypes in the FinnGen study.
Traits 1-5.........................................................................................................56
Figure S24. Allele frequency plots for positively selected MS-associated
SNPs that are also associated with other phenotypes in the FinnGen study.
Traits 6-10.......................................................................................................57
Figure S25. Allele frequency plots for positively selected MS-associated
SNPs that are also associated with other phenotypes in the FinnGen study.
Traits 11-15.....................................................................................................58
Figure S26. Upset plot showing a histogram of selected MS-associated
SNPs which share a pleiotropic association with one or more marginal
phenotypes in the FinnGen study................................................................... 59
Figure S27. Upset plot showing a histogram of selected MS-associated
SNPs which share a pleiotropic association with one or more infectious
disease phenotypes and symptoms in the FinnGen study............................. 60

Joint polygenic selection analysis.........................................................................61
Figure S28. Dot plot showing the R-scores from the J-PALM tests of MS
against each of 49 overlapping traits in UK Biobank...................................... 61
Figure S29. Dot plot showing the R-scores from the J-PALM tests of MS
against each of 66 overlapping traits in FinnGen........................................... 62

Rheumatoid arthritis................................................................................................... 63
Pan-ancestry analysis.......................................................................................... 63

Figure S30. Stacked line plot of the pan-ancestry PALM analysis for
Rheumatoid arthritis, showing the CLUES inferred allele frequency
trajectories of each statistically independent SNP (n=153)............................ 63

Western hunter-gatherer ancestral path...............................................................65
Figure S31. Stacked line plot of the WHG ancestry PALM analysis for
Rheumatoid arthritis, showing the CLUES inferred allele frequency
trajectories of each statistically independent SNP (n=153)............................ 65

Eastern hunter-gatherer ancestral path................................................................66
Figure S32. Stacked line plot of the EHG ancestry PALM analysis for
Rheumatoid arthritis, showing the CLUES inferred allele frequency
trajectories of each statistically independent SNP (n=153)............................ 66

Caucasus hunter-gatherer ancestral path............................................................ 67
Figure S33. Stacked line plot of the CHG ancestry PALM analysis for
Rheumatoid arthritis, showing the CLUES inferred allele frequency
trajectories of each statistically independent SNP (n=153)............................ 67

Anatolian farmer ancestral path............................................................................68

4



Figure S34. Stacked line plot of the ANA ancestry PALM analysis for
Rheumatoid arthritis, showing the CLUES inferred allele frequency
trajectories of each statistically independent SNP (n=153)............................ 68

Cross ancestry comparisons................................................................................ 69
Figure S35. Density plots of the change over time in scaled PRS for each
SNP in each marginal ancestry for Rheumatoid arthritis................................69
Figure S36. Scatter plots showing the delta PRS per SNP and the directional
-log10(p-value) for each SNP in each marginal ancestry for Rheumatoid
arthritis............................................................................................................70

Pleiotropic UK Biobank traits................................................................................ 70
Figure S37. Allele frequency plots for positively selected RA-associated
SNPs that are also associated with other phenotypes in the UK Biobank.
Traits 1-5.........................................................................................................70
Figure S38. Allele frequency plots for positively selected RA-associated
SNPs that are also associated with other phenotypes in the UK Biobank.
Traits 6-10.......................................................................................................71
Figure S39. Allele frequency plots for positively selected RA-associated
SNPs that are also associated with other phenotypes in the UK Biobank.
Traits 11-15.....................................................................................................72
Figure S40. Upset plot showing a histogram of selected RA-associated SNPs
which share a pleiotropic association with one or more marginal phenotypes
in the UK Biobank...........................................................................................73

Pleiotropic FinnGen traits..................................................................................... 73
Figure S41. Allele frequency plots for positively selected RA-associated
SNPs that are also associated with other phenotypes in the FinnGen study.
Traits 1-5.........................................................................................................74
Figure S42. Allele frequency plots for positively selected RA-associated
SNPs that are also associated with other phenotypes in the FinnGen study.
Traits 6-10.......................................................................................................74
Figure S43. Allele frequency plots for positively selected RA-associated
SNPs that are also associated with other phenotypes in the FinnGen study.
Traits 11-15.....................................................................................................75
Figure S44. Upset plot showing a histogram of selected RA-associated SNPs
which share a pleiotropic association with one or more marginal phenotypes
in the FinnGen study.......................................................................................76
Figure S45. Upset plot showing a histogram of selected RA-associated SNPs
which share a pleiotropic association with one or more infectious disease
phenotypes and symptoms in the FinnGen study...........................................77

Discussion........................................................................................................................ 78
References....................................................................................................................... 80

7) Ancestry linkage disequilibrium (LDA) and Ancestry linkage disequilibrium score
(LDAS)................................................................................................................................... 83

Methods............................................................................................................................83
Definition.................................................................................................................... 83
Simulation for selection: LDA..................................................................................... 85

Results............................................................................................................................. 87
Simulation for LDA scores with selection in one or two loci....................................... 87

Figure S46: Simulating Low LDA score..........................................................87
Figure S47: LDAS simulation with positive or balancing selection in the

5



modern population..........................................................................................88
Figure S48: LDAS simulation with single locus negatively selected in the
modern population..........................................................................................89

LDA score for chromosome 2 and 6...........................................................................90
Figure S49: LDAS on chromosome 6 and 2...................................................90

LD plot for chromosome 6 MS-associated SNPs....................................................... 91
Figure S50: Pairwise Linkage Disequilibrium (LD) plot (measured by D’) for all
the MS-associated SNPs on chromosome 6..................................................91

References....................................................................................................................... 91
8) Pleiotropic effects of selected SNPs associated with multiple sclerosis or
rheumatoid arthritis............................................................................................................. 92

Introduction.......................................................................................................................92
Figure S51. Modern prevalences of RA......................................................... 93
Figure S52. Association between genome-wide Steppe ancestry, MS
prevalence and DRB1*15:01 frequency in modern populations in the UK
Biobank...........................................................................................................94
Figure S53. Ancient and modern prevalences of HLA-DRB1*04:01
(rs3817964).................................................................................................... 95
Figure S54. Modern prevalences of MS......................................................... 96

Methods............................................................................................................................97
Pleiotropic trait analysis..............................................................................................97

Results............................................................................................................................. 98
Pleiotropic trait analysis of SNPs associated with multiple sclerosis......................... 98
Pleiotropic trait analysis of SNPs associated with rheumatoid arthritis...................... 99

Discussion...................................................................................................................... 103
References..................................................................................................................... 109

6



Key to Supplementary Data Tables in file

“Supplementary_Tables_July23.xlsx”

No. Description

Supplementary Table 1 Metadata for 87 new Danish Medieval and post-Medieval samples

Supplementary Table 2 Data for each library analysed

Supplementary Table 3 rsIDs used for fine-mapped variants in Patsopoulos 2019 ST11

Supplementary Table 4 ‘Fine-mapped’ and proxy SNPs used for MS, with painting effect

allele frequencies

Supplementary Table 5 Fine-mapped’ and proxy SNPs used for RA, with painting effect

allele frequencies

Supplementary Table 6 Fine-mapped’ and proxy SNPs used for CD, with painting effect

allele frequencies

Supplementary Table 7 CLUES results for LD-pruned SNPs for MS

Supplementary Table 8 CLUES results for all SNPs associated with MS showing evidence of

selection

Supplementary Table 9 CLUES results for LD-pruned SNPs for RA

Supplementary Table 10 CLUES results for all SNPs associated with RA showing evidence of

selection

Supplementary Table 11 Protective pleiotropic effects of MS-associated SNPs showing

statistically significant evidence of selection

Supplementary Table 12 Protective pleiotropic effects of RA-associated SNPs showing

statistically significant evidence of selection

Supplementary Table 13 Metadata for all ancient samples used in this study, including original

publications

Supplementary Table 14 Full results from Joint polygenic selection analysis

7



8



1) Archaeological Sites and Data Generation
Gabriele Scorrano1, Abigail Ramsøe1, Charleen Gaunitz1, Lasse Vinner1, Thorfinn Sand

Korneliussen1, Fabrice Demeter1, Marie Louise S. Jørkov2, Stig Bermann Møller3, Bente Springborg3,

Lutz Klassen4, Inger Marie Hyldgård4, Niels Wickmann5

1Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen,

Østervoldgade 5-7, DK-1350K, Copenhagen, Denmark

2Laboratory of Biological Anthropology, Department of Forensic Medicine, University of

Copenhagen, Denmark

3Ålborg Historiske Museum, Nordjyske Museer, Vang Mark 25, 9380 Vestbjerg, Denmark

4Museum Østjylland. Stemannsgade 2, DK-8900 Randers C, Denmark

5Museum Vestsjælland, Forten 10, 4300 Holbæk, Denmark

Archaeological sites

The churchyard of Our Lady/Vor Frue Kirkegård ÅHM6093

Ålborg Sogn, Hornum Herred, Ålborg Amt Sted- og lokalitetsnr: 120516-107

Marie Louise Jørkov, Stig Bergmann Møller, Bente Springborg

The urban medieval churchyard of Our Lady (Vor Frue) and associated building structures were

excavated by Aalborg Historiske Museum/Nordjyske Museer between 2011 to 2013. The churchyard

belonged to the church and convent of Our Lady and is located in the eastern part of the medieval

town of Aalborg. Approximately 900 graves were recovered of which 272 could be sampled for DNA

analysis. The churchyard was excavated in connection with a large sewerage project, and only parts of

the churchyard was exhumed.

The church of Our Lady was a parish church as well as a convent for nuns, probably of the Order of

Saint Augustine, and date to the first half of the 12th century. A few radio-carbon dates open up a

slight possibility that the churchyard, with an associated wooden church, can be dated back to the 11th

century1.

9



The convent was abandoned after the reformation in 1536. The area of the churchyard was used for

burials from 1000/1050 to 1806. Burials were dated based on arm-positions (A to D), and all were

represented2. However, since dating from arm-positions is somewhat uncertain, dating was also

determined based on stratigraphy, dendrochronology, archaeological findings, as well as few

radio-carbon dates3,4.

References

1. Kieffer-Olsen, J. 1993: Grav og gravskik i det middelalderlige Danmark. Århus: Department

of Medieval Archaeology.

2. Springborg, B. 2012: Vor Frue kirke og kloster. Udgravninger i 2011 og 2012. Nordjyllands

Historiske Museum. Årbog 2012, s. 21-33.

3. Springborg B. and S. Bergmann Møller 2016: ÅHM 6093R011. Beretning for arkæologisk

undersøgelse i kvarteret omkring Vor Frue kirke. Aalborg sogn, Hornum Herred, tidl. Aalborg

amt. Sted- og lokalitetsnr. 120516-107. Kampagne: 08-09-2011 KUAS nr.

2011-7.24.02/NJM-0028. Udgravningsrapport, Aalborg Historiske Museum.

4. Møller, S. Bergmann 2021: Crown and Church in early Aalborg and Odense. In: Runge, M.,

M.R. Beck, M.M. Bjerregaard & T.B. Sarauw (ed.): From Central Space to Urban Place.

Urbanisation processes in Viking Age and Medieval Odense and Aalborg, Denmark.

University Press of Southern Denmark 2021, s. 254-267.

Ahlgade 15-17, MHO 71/85, Holbæk Parish, Holbæk, Sealand.

Marie Louise Jørkov and Niels Wickman

The cemetery Ahlgade 15-17 is an urban cemetery in the center of Holbæk, north of the main street of

Ahlgade and adjacent to the fjord and the harbour. It was excavated in 1985 to 1986 by Museum

Vestsjælland, previously called Museet for Holbæk og Omegn.

The cemetery belonged to the former parish church of St. Nicolai and date from the late 12th century

to 1573 when the church was abandoned. However, the cemetery is thought to have been taken out of

use shortly after the reformation in 1536.

Holbæk was a small medieval town that came into existence around 1200. It had two Parish churches:

St. Nicolai and the contemporary Parish of Our Lady, located in the eastern part of town. There was
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also a castle, which according to written sources dates from the beginning of the 13th century1. The

town was inhabited by families of craftsmen, farmers, fishermen and tradesmen.

The cemetery of St. Nicolai church is the first fully excavated urban cemetery in Denmark. It covered

an area of ca. 480m2 where a minimum of 583 graves have been excavated1,2. The majority of the

graves were dated based on arm positions of the skeletons (i.e. A-B-C and D) when lying in supine

position and often with the head towards the east. These were identified in 309 graves but represents

some degree of uncertainty3 as there are considerable overlap between the use of arm positions and

the time periods. The most commonly found arm position was position B, most likely corresponding

to the time period 1300-1350. Selected graves have been radio carbon dated to confirm the dating

range of the arm positions1. Only few burials could be dated from archaeological findings. The graves

contained burials of adults and subadults and the distribution of adults were more or less equally

divided in males and females in all periods. The majority of the subadult skeletons, however were

found in the upper lays of the cemetery. This is most likely a reflection of poor preservation in the

lower layers rather than specific burial practice.

Scallopshells from Santiago de Compostella were found in five of the graves 10 scallopshells in total.

Two of these graves are included in this study (EG272 (CGG 2_101751) and EG620 (CGG 2_101617;

2_101588). The skeleton in grave EG272, an old adult individual of 50+ years, was buried with arm

position B. The skeleton in grave EG620, a male aged 40-60 years, was found resting on the right side

with bended legs and is also assumed to date to the 12th century1.

A large dietary stable isotope study was carried out by Jørkov which showed that the population

subsisted largely on a mixed diet of terrestrial animal plant protein as well as marine/brackish food

sources4,5.

References

1. Asmussen E. (1997). Ahlgade 15-17, Holbæk. Archaeology and history from 1200AD until

present day. Det Kgl. Nordiske Oldskriftselskab, København.

2. Jørgensen, J.B. (1997). Skeletfundene fra den middelalderlige St. Nicolai kirkegård i Holbæk.

In Asmussen E. (ed.): Ahlgade 15-17, Holbæk. Archaeology and history from 1200AD until

present day. Det Kgl. Nordiske Oldskriftselskab, København, pp.225-262.

3.

4. Jørkov MLJ. (2007). Drinking with the rich and dining with the poor in Roman Iron Age

Denmark. A methodological study based on stable isotope analysis. Ph.D. dissertation,

Copenhagen University.
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5. Jørkov MLJ, Jørgensen L, Lynnerup N (2010). Uniform diet in a diverse society: Revealing

new dietary evidence of the Danish Roman Iron Age based on stable isotope analysis.

American Journal of Physical Anthropology 143(4):523-533.

6. Kieffer-Olsen J. 1993. Grav og gravskik i det middelalderlige Danmark. Århus:

Department of Medieval Archaeology.

Tjærby, Gimming Parish, Randers, Jutland. KHM 0899. 14.09.04-20, GPS

coordinates: 567982, 6259161.

Marie Louise Jørkov, Lutz Klassen, Inger Marie Hyldgård

Rural cemetery ca. 5 km east of Randers on the north side of Randers fjord. It was excavated by

Kulturhistorisk Museum Randers in 1998 to 2010. The excavation area revealed a stone church, and a

cemetery containing ca. 1200 graves from which 351 individuals were sampled for DNA analysis in

this project. The cemetery dates to ca. 1050 to late 1536, but skeletal remains were only preserved

from graves dating after 1200. Remnants of a farmhouse and a wooden church predating the cemetery

(900-1100) were also recovered1,2. The surrounding area consisted of forest and meadows.

The cemetry area measured ca. 45x42 meters (1900m2) and has been fully excavated. In nearly half of

the graves, no skeletons were preserved. The remaining burials (673 in total) contained skeletons of

varying degree of preservation from few poorly preserved fragments to well preserved and nearly

complete skeletons due to the varying soil conditions in the area. The best preserved skeletons were

found south of the church. Evidence of wooden coffins were found in some of the graves, but the

majority of the individuals had been buried without. 57% of the graves with preserved bones

contained adults (male and female), 10% subadults and 33% children.

The graves were dated based on the arm position of the skeletons3 as well as from C-14 dating on

selected individuals and from few archaeological finds such as coins and ceramics. More than half of

the skeletons were found with arm position A (arms and hands down the side) representing period AD

1200-1300. One third had arm position B (arms along the side but hands on thigh or hips), which

starts to appear in the 13th century, dominates in the 14th century and disappears around AD 1400. The

remaining skeletons were buried with arm position C (elbows bended and lower arms on stomach) or

D (arms bended and hands crossed over chest) representing the latest period AD 1400-1536. The

majority of the graves were found south of the church. There was a significant decrease in burials

during the period of use in particular in the latest period.
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Data Generation

Sampling, lab work and sequencing

Charleen Gaunitz, Lasse Vinner

Sequencing data was generated from a total of 86 Medieval samples (ST1), using semi-automated

laboratory procedures. Laboratory work on aDNA was conducted in the dedicated ancient DNA

clean-room facilities at the Lundbeck Foundation GeoGenetics Centre (Globe Institute, University of

Copenhagen).

In brief, two parallel sub-samples of <150 mg were obtained from human skeletal material and

demineralized as described earlier, using pre-digestion for 30 min (Damgaard et al., 2015). Two

aDNA extractions were performed per subsample, using a 96 well format, combining 150 µl of

demineralized material with 1.5 ml binding buffer (500 ml Qiagen PB, supplemented with 15 ml

Sodium acetate 3M, and 1.25 ml 5M NaCl, phenol red, adjusted to pH=5) and 10 µl of paramagnetic

beads (G-Bioscience, #786-915) for 15 minutes (Rohland et al., 2018). Pelleted beads were washed

twice in 450 µl and 100 µl 80% ethanol + 20% 10mM Tris-HCl, respectively, and eluted in 10 mM

Tris-HCl + 0.05% Tween-20. From each subsample one extract (35 µl) was incubated with 10 µl

USER enzyme (NEB #M5505) for 3h at 37°. DNA shotgun sequencing libraries were prepared in

96-well format essentially as described elsewhere (Meyer and Kircher 2010), using a small (25ul) or

large (50ul) total reaction volume for non-USER and USER-treated extracts, respectively, including

21.25 µl or 42.5 µl DNA template. Clean-up procedures after end-repair and adapter-ligation were

performed with 10 µl of paramagnetic beads (G-bioscience) in 10 volumes of the binding buffer

described above. The requirement for PCR amplification was evaluated by qPCR using 1µl of

pre-amplified library. Indexing PCR, using 8-bp unique dual indexing (Illumina TruSeq

UDI0001-0096) in 50 or 100 µl reaction volumes, with KAPA HiFi HotStart Uracil+
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(KapaBiosystems #KR0413) according to manufacturer’s recommendations, with typically 14

amplification cycles. Final purification of libraries was performed using a 1:1.6 ratio of library to

HighPrep™ PCR beads (MagBio, #AC-60250). Length distribution and concentration of individual

purified libraries was controlled using the Fragment Analyzer (High Sensitivity kit). Libraries were

pooled equimolar before sequencing. Sequencing was performed on Illumina NovaSeq6000 at the

GeoGenetics Sequencing Core, Copenhagen, using S4 200 cycles kits version 1.5.

References

1. Damgaard, P. B. et al. Improving access to endogenous DNA in ancient bones and teeth. Sci.

Rep. 5, 11184 (2015).

2. Meyer, M. and Kircher, M. Illumina sequencing library preparation for highly multiplexed

target capture and sequencing. Cold. Spring Harb. Protoc. pdb.prot5448 (2010).
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Libraries authentication

Gabriele Scorrano, Abigail Ramsøe, Thorfinn Sand Korneliussen

All libraries with at least 1X MT coverage for each sample were separately evaluated for

contamination using ContamMix1 before merging to sample level (Supplementary Table 2).

ContamMix quantifies the fraction of exogenous reads in the mitochondrial reads by comparing the

mtDNA consensus genome to possible contaminant genomes.

For each library, an in-house perl script was used to construct the endogenous mitochondrial genome.

The parameters to do this depended on the coverage of each library: for libraries below 5X (but above

1X), sites were called if it was at least 2X coverage, whereas for libraries above 2X this value was set

to a 5X cutoff. For both methods, bases were only called if 70% of reads at a site agreed with the

consensus call.

We further investigated libraries showing over 5% contamination (<95% map authentic value). Two

libraries showed over 5% contamination with a very low MT depth coverage (1.96X and 2.40X,

Supplementary Table 2) however low coverage, below 3 X, can return unreliable results1. One library

with coverage ~ 14 X had a map authenticity close to the edge (94,5%). However, merging these

libraries with the other ones from the same samples did not result in a meaningful level of
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contamination (Supplementary Table 2). The slight levels of contamination reported by ContamMix

are thus most probably due to errors while constructing the consensus genome caused by a

combination of very low depth and the characteristic C->T damage of non-USER treated ancient

samples. Then all the libraries have been merged and included in the analysis.
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Figure S1: ADMIXTURE results performed with Caucasus hunter-gatherers (CHG), Eastern

hunter-gatherers (EHG), Western hunter-gatherers (WHG), Anatolian Neolithic and Russia

Bronze Age Yamnaya (Steppe ancestry) as the source populations from k=2 to k=10.
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Figure S2: Three-way qpAdmmodel with the source populations Luxemburg_Mesolithic

(WHG), Russia_Bronze_Age_Yamnaya (Steppe ancestry) and Anatolia Neolithic.

The length of the colour bar shows the proportion of each ancestry. Error bars represent standard

errors of the proportion of each ancestry component (n=838230 SNPs). The complete results are

reported in Table S15.

Table S15: Results obtained by qpAdm analysis for the three-way admixture model.

Component Standard Deviation nSNPs p-value

Anatolia

_Neolith

ic

Russia_

BronzeA

ge_Yam

naya

Luxemb

urg_Mes

olithic

Anatolia

_Neolith

ic

Russia_

BronzeA

ge_Yam

naya

Luxemb

urg_Mes

olithic

Denmar

k_Medie

val

33.4 52.3 14.3 1.8 1.7 0.5 838230 0.07

Denmak

_Viking

Age

35.9 50.4 13.6 1.7 1.6 0.5 838230 0.30
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Denmar

k_IronA

ge

31 53.8 15.1 2.8 2.7 0.9 838230 0.61

Denmar

k_Bronz

eAge

32.7 50.6 16.6 2.3 2.2 0.8 838230 0.53
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2) Analysis of mtDNA sequence, Sex determination and

Y chromosome analysis
Gabriele Scorrano1

1Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen,

Østervoldgade 5-7, DK-1350K, Copenhagen, Denmark

Analysis of mtDNA sequence

Gabriele Scorrano

Methods
We carried out a phylogenetic tree analysis using the reconstructed mitochondrial genomes from the

individuals presented in this study. We reconstructed the mitochondrial consensus sequence from

genome-wide bam files by ANGSD v.0.928 filtering out reads with a mapping quality lower than 20.

Moreover, we limited the minimum depth of coverage to 5x and used -doFasta 2, -doCounts 1 and

-trim 5 (which trims the first and last five nucleotides from each read) options (Korneliussen et al.

2014). All fasta files have finally been aligned using mafft and following phylotree recommendations

(van Oven and Kayser, 2009). The phylogenetic tree analysis was performed by BEASTv1.10.4

(Drummond et al. 2012) and BEAUti v1.10.4 was used to generate the input file for the analysis.

After having analysed the aligned fasta file with jModelTest 2.1.10 (Darriba et al., 2012), we applied

the TrN (Tamura and Nei, 1993) substitution model with gamma plus invariant sites and strict clock

with a prior of 2.74 10-8 µ/site/year (Posth et al., 2016). We used the Bayesian Skyline coalescent with

10 as group members and piecewise-linear as the Skyline model (Posth et al., 2016). We performed

two MCMC runs with 508 states and sampled every 105 states and evaluated the runs by Tracer (v1.6)

(http://tree.bio.ed.ac.uk/software/tracer/). The two independent runs were combined using

LogCombiner v1.8.1 and summarized in a Maximum Clade Credibility (MCC) tree using

TreeAnnotator v1.8.1 (both programs included in the BEAST package). The resulting trees were

annotated by TreeAnnotator v1.8.4 and visualized by FigTreev1.4.3

(http://tree.bio.ed.ac.uk/software/figtree/).

Results
The phylogenetic tree gives an overview of the distribution of mitochondrial haplogroups in our

dataset (Figure S3). The frequency of haplogroups is similar to that found in the modern population

(Bybjerg-Grauholm et al., 2018), H is the haplogroup with highest frequency (33.7%).
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Figure S3: Mitochondrial phylogenetic tree

Phylogenetic tree of mitochondrial haplogroups found in the 86 Danish Medieval and post-Medieval

samples. Estimated bootstrap values for principal nodes are reported in red.

Among the most common haplogroups identified we find haplogroup U, of which the subclade U5

which is commonly observed among Western European Hunter-Gatherers.

The most common subclades of U5 are U5a and U5b. Most of the Medieval and post-Medieval

individuals belong to the sub-haplogroups U5a1. U5a1 has eastern origin, and has been found among

Mesolithic individuals from Russia, Ukraine and also from Sweden (Lazaridis et al., 2014). It is also

found in high frequencies among the Yamnaya population (Allentoft et al., 2016), suggesting that the

spread of this sub-haplogroup in Europe could be associated with the spread of the Steppe ancestry

from Eastern Europe. U5a1 shows high frequency in Denmark during the Viking age (Margyaran et

al., 2020). This result is congruent with the autosomal structure of Danish populations through time

(Figure S1 and Figure S2) where a genetic continuity from the Viking age to the post-Medieval period

has been highlighted.

The first individual with U5b comes from 30 kya, U5b is in fact one of the most ancient mitochondrial

European haplogroups and it spreads around 20 kya (Fu et al. 2016; Scorrano et al., 2021) but today it
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appears with low frequencies among the modern populations (De Angelis et al. 2018; Scorrano et al.

2021a).

The genetic influence of the spread of Early Farmers into Europe is shown by the great frequencies of

the haplogroups K (9.3%) and J (10.5%). In particular the sub-clades K1a and K1b are mainly found

in Neolithic populations across Europe (Antonio et al., 2019;   Brunel et al., 2020; Gamba et al., 2014;

Hofmanova et al., 2016). Moreover, they had great frequencies across the Scandinavian Viking age

people (Margyaran et al., 2020).

Conclusion
In conclusion we find most of the haplogroups still present in the modern-day Danes suggesting that

there have been no major migrations in Denmark since the Medieval period. The sub-clades identified

are in accordance with the autosomal results showing a great frequency of the mitochondrial

haplogroups associated with the spread of Steppe ancestry, but at the same time also a mitochondrial

Neolithic contribution. Moreover, the mitochondrial results show a mitochondrial genetic continuity

from the Viking age to the post-Medieval period.
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Sex determination and Y chromosome analysis
Gabriele Scorrano

Methods
Genetic sex for each individual was determined following the method suggested by Skoglund et al.

(2013). For the male individuals Y chromosome haplogroup assignment was inferred and a clustering

tree has been performed following an already published workflow (Scorrano et al 2021). EPA-ng

(Barbera et al., 2019) has been used to place the ancient Y-chromosome sequences in the reference

tree.

Results

Sex determination

We unambiguously determined genetic sex for all 86 individuals (37 female, 49 males; ST1). In

Figure S4 the individuals form two clearly separated clusters corresponding to male (XY) and female

(XX) using the normalised sequencing coverage across the sex chromosomes: X and Y.
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Figure S4: Sex determination plot

Plot showing the normalised X and Y coverage by autosomal coverage for each individual reported in

this study. Symbol colors indicate the inferred sex chromosome karyotype.

Phylogenetic placement

We built a clustering tree to analyse the Y-chromosome diversity across the 49 Medieval and

post-Medieval male individuals from Denmark (Figure S5) and different haplogroups and

sub-haplogroups have been identified.

One individual belongs to the sub-haplogroup E1b1b, identified for the first time in Mesolithic Israeli

samples of the Natufian culture, and exists today at a low frequency in northern Europe (Lazaridis et

al., 2016). One sample belongs to the sub-haplogroups N1a1a, a subclade that has higher average

frequency in northern Europe (Derenko et al., 2007; Lappalainen et al., 2008). However, most of the

samples fall within two main haplogroups: I and R.
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Figure S5: Y chromosome phylogenetic tree

Phylogenetic tree with most likely placements of ancient samples here presented.

Haplogroup I is the oldest major haplogroup in Europe, haplogroup IJ is thought to have arrived from

the Middle East to Europe around 35,000 years ago, developing later into haplogroup I.

It was speculated that I1 lineage was among the Mesolithic European hunter-gatherers

(Szécsényi-Nagy et al. 2015) and spread in Scandinavia from northern Germany. The sub-haplogroup

I1a is the most common Y-chromosome I haplogroup in Northern Europe and it was already identified

in Danish individuals from the Viking age (Margyaran et al., 2020).

The sub-haplogroup I2 originated during the Late Paleolithic, the oldest I2 sample was recovered

from Bichon (13,500 year-old), a Late Palaeolithic man from Switzerland (Jones et al., 2015).

Loschbour from Mesolithic Luxembourg is the oldest I2a1b individual (Lazaridis et al., 2014), while

in Scandinavia the first evidence of I2a1b is with Motala (7,800 year-old) (Mittnik et al., 2018).

However, most of the individuals belong to the sub-lineages of the haplogroup R1: R1a and R1b. The

sub-lineages R1a-M417 (R1a1a1) is the most prevalent male lineage in the extant eastern and northern

European people, and it was associated with the spread of Steppe ancestry in Europe (Allentoft et al.,
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2015; Haak et al., 2015). The R1a identified lineages have been present in Denmark since the Viking

Age (Margyaran et al., 2020).

Appreciable frequency of male sub-lineage R1b was identified in northern Europe starting from the

Mesolithic (Jones et al., 2017), through the Neolithic (Allentoft et al., 2015) and the Viking age

(Margyaran et al., 2020) until the Medieval. Today it is the most common Y-chromosome haplogroup

in Western Eurasia.

Conclusion
In conclusion male haplogroups found with high frequencies are already identified during the Viking

age, suggesting a Y-chromosome genetic continuity from the Viking Age to the post-Medieval period.

Moreover, the haplogroups observed with high frequency are still the most abundant male lineage of

Western Europe.

References

1. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172

(2015).

2. Barbera, P. et al. EPA-ng: Massively Parallel Evolutionary Placement of Genetic Sequences.

Syst. Biol. 68, 365–369 (2019).

3. Derenko et al. Contrasting patterns of Y-chromosome variation in South Siberian populations

from Baikal and Altai-Sayan regions. Hum. Genet. 118, 591–604 (2006).

4. Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat.

Commun. 6, 8912 (2015).

5. Jones et al. The Neolithic transition in the Baltic was not driven by admixture with early

European farmers. Curr. Biol. 27, 576–582 (2017).

6. Haak et al. Massive migration from the steppe was a source for Indo-European languages in

Europe. Nature 522, 207–211 (2015).

7. Lappalainen et al. Migration Waves to the Baltic Sea Region. Ann. Hum. Genet. 72, 337–348

(2008).

8. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day

Europeans. Nature 513, 409–413 (2014).

9. Lazaridis et al. Genomic insights into the origin of farming in the ancient Near East. Nature

536, 419–424 (2016).

10. Margaryan, A. et al. Population genomics of the Viking world. Nature 585, 390–396 (2020).

11. Mittnik et al. The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442 (2018).

25



12. Scorrano et al. The genetic and cultural impact of the Steppe migration into Europe. Ann.

Hum. Biol. 48, 223-233 (2021).

13. Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identification of

ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482

(2013).

14. Szécsényi-Nagy et al. Tracing the genetic origin of Europe’s first farmers reveals insights into

their social organization. Proc. R. Soc. B 282, 20150339 (2015).

26
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Local Ancestry GWAS
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Methods

Cluster Analysis

In order to understand whether risk-conferring haplotypes evolved in the Steppe population, or in a

pre- or post-dating population in which Steppe ancestry is high, we used k-means clustering on the

dosage of each ancestry for each selected significant SNP and investigated the dosage distribution of

clusters with significantly higher MS prevalence. For the target SNPs, the Elbow method (Thorndike

1953). suggested selecting around 5-7 clusters, of which we chose 6. After performing the k-means

cluster analysis, we calculated the average probability for each ancestry for case individuals.

Furthermore, we calculated the prevalence of MS in each cluster, and performed a one-sample t-test to

investigate whether it differs from the overall MS prevalence (0.487%). This tests whether particular

combinations of ancestry are associated with the phenotype at a SNP. Clusters with high MS

risk-ratios have high Steppe components (Figure S7), leading to the conclusion that Steppe ancestry

alone is driving this signal.

Weighted Average Prevalence

In order to quantify the risk of each ancestry for each SNP, we calculated the weighted average

prevalence (WAP) for each ancestry based on the result of k-means clustering (above).

For the th SNP, let denote the sum of the th ancestry probabilities of all the𝑗 𝑃
𝑗𝑘𝑚

= 𝑛
𝑗𝑚

𝑃
𝑗𝑘𝑚

𝑘

individuals in the th cluster ( ), where is the cluster size of the th cluster. Let𝑚 𝑘, 𝑚 = 1,..., 6 𝑛
𝑗𝑚

𝑚 π
𝑗𝑚

denote the prevalence of MS in the th cluster, the weighted average prevalence for the th ancestry𝑚 𝑘

is defined as:

,π
𝑗𝑘

=
𝑃

𝑗𝑘𝑚
π

𝑗𝑚

𝑚=1

6

∑ 𝑃
𝑗𝑘𝑚
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where is defined as the weight for each cluster.𝑃
𝑗𝑘𝑚

The standard deviation of is computed as , where ,π
𝑗𝑘

𝑠𝑑(π
𝑗𝑘

) =
𝑚=1

6

∑ 𝑤
𝑗𝑘𝑚

2σ
𝑚

2 𝑤
𝑗𝑘𝑚

=
𝑃

𝑗𝑘𝑚

𝑚=1

6

∑ 𝑃
𝑗𝑘𝑚

and is the standard deviation of the outcome for the individuals in the thσ
𝑚

=
𝑠(𝑦

𝑗𝑚
)

𝑛
𝑗𝑚

𝑠(𝑦
𝑗𝑚

) 𝑚

cluster. We also test the hypothesis that against , and compute the p-value𝐻
0
:  π

𝑗𝑘
= π 𝐻

1
:  π

𝑗𝑘
≠ π

as .𝑝
𝑗𝑘

= 2(1 − ϕ(
π − π

𝑗𝑘
|||

|||
𝑠𝑑(π

𝑗𝑘
)

))

For each ancestry, WAP measures the association of that ancestry with MS risk across all clusters. To

make a clear comparison, we calculated the risk ratio (compared to the overall MS prevalence) for

each ancestry at each SNP, and assigned a mean and confidence interval for the risk ratios of each

ancestry at each chromosome (Figure 3, Extended Data Figure 7).

PCA/UMAP of WAP/average dosage

To sort risk-associated SNPs into ancestry patterns according to that risk, we performed PCA on the

average ancestry probability and WAP at each MS-associated SNP (Figure S8). The former shows that

all of the HLA SNPs except three from HLA class II and III have much larger Outgroup components

compared with the others. The latter analysis indicates a strong association between Steppe and MS

risk. Also, Outgroup ancestry at rs10914539 from chromosome 1 exceptionally reduces the incidence

of MS, while Outgroup ancestry at rs771767 (chromosome 3) and rs137956 (chromosome 22)

significantly boosts MS risk.

GWAS

Local ancestry and genotype GWAS

We used the UK Biobank to fit GWAS models for local ancestry values and genotype values

separately, using only SNPs known to be associated with the phenotype (‘fine-mapped’ SNPs). We

used the following phenotype codes for each phenotype: MS: Data-Field 131043; RA: Data-Field

131849 (seropositive).

Let Yi denote the phenotype status for the ith individual ( ), which takes value 1 for a𝑖 = 1,..., 399998

case and 0 for control, and let denote the probability that this individual has theπ
𝑖

= 𝑃𝑟(𝑌
𝑖

= 1)

event. Let denote the th ancestry probability ( ) for the th SNP ( ) of the𝑋
𝑖𝑗𝑘

𝑘 𝑘 = 1,..., 𝐾 𝑗 𝑗 = 1,..., 205
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th individual. is the th predictor ( ) for the th individual. We used the following𝑖 𝐶
𝑖𝑐

𝑐 𝑐 = 1,..., 𝑁
𝑐

𝑖

logistic regression model for GWAS, which assumes the effects of alleles are additive:

𝑌
𝑖
~𝐵𝑖𝑛(1, π

𝑖
);  𝑙𝑜𝑔(

π
𝑖

1−π
𝑖
) =

𝑘=1

𝐾

∑ β
𝑗𝑘

𝑋
𝑖𝑗𝑘

+
𝑐=1

𝑁
𝑐

∑ γ
𝑐 

𝐶
𝑖𝑐

.

We used Nc=20 predictors in the GWAS models, including sex, age and the first 18 PCs, which are

sufficient to capture most of the population structure in the UK Biobank (Sarmanova et al., 20201).

First, we built the model with . By using only one ancestry probability in each model, we𝐾 = 1

aimed to find the statistical significance of each SNP under each ancestry. Then, we built the model

with , i.e. using all 6 local ancestry probabilities which sum to 1. We calculated the variance𝐾 = 5

explained by each SNP by summing up the variance explained by (k=1,...,5).𝑋
𝑖𝑗𝑘

We considered fitting the multivariate models by using all the SNPs as covariates. However, the

dataset only contains 1,982 cases. Even though only one ancestry is included, the multivariate model

contains 191 predictors, which could result in overfitting problems. Therefore, the GWAS models are

preferred over multivariate models.

We also fitted a logistic regression model for GWAS using the genotype data as follows:

𝑌
𝑖
~𝐵𝑖𝑛(1, π

𝑖
);  𝑙𝑜𝑔(

π
𝑖

1−π
𝑖
) = β

𝑗
𝑋

𝑖𝑗
+

𝑐=1

𝑁
𝑐

∑ γ
𝑐 

𝐶
𝑖𝑐

,

where denotes the number of copies of the reference allele of the jth SNP (𝑋
𝑖𝑗

∈ {0, 1, 2}

) that the th individual has, and ( ) denotes the covariates including age,𝑗 = 1,..., 205 𝑖 𝐶
𝑖𝑐

𝑐 = 1,..., 𝑁
𝑐

sex and first 18 PCs for the ith individual, where Nc=20. Due to the UK Biobank being underpowered

compared to the Case-Control study from which these SNPs were found, the only statistically

significant (at ) association is in the HLA class II tagging HLA-DRB1*15:01.𝑝 < 10−5

Comparison of local ancestry and genotype gwas

We compared the variance explained by SNPs from the GWAS model using the painting data (all 6

local ancestry probabilities) with that from GWAS model using the genotype data. McFadden’s

pseudo R squared measure (McFadden et al., 19732) is widely used for estimating the variance

explained by the logistic regression models. McFadden’s pseudo R squared is defined as

𝑅2 = 1 −
𝑙𝑛(𝐿

𝑀
)

𝑙𝑚(𝐿
0
) ,
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where and are the likelihoods for the fitted and the null model, respectively. Taking overfitting𝐿
𝑀

0

into account, we propose the adjusted McFadden’s pseudo R squared by penalizing the number of

predictors:

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −
𝑙𝑛(𝐿

𝑀
)/(𝑁−𝑘)

𝑙𝑛(𝐿
0
)/(𝑁−1) ,

where N is the sample size and k is the number of predictors.

Specifically, is calculated as the extra variance in addition to sex, age and 18 PCs that can𝑅2(𝑆𝑁𝑃𝑠)

be explained by SNPs:

𝑅2(𝑆𝑁𝑃𝑠) = 𝑅2(𝑠𝑒𝑥 + 𝑎𝑔𝑒 + 18 𝑃𝐶𝑠 + 𝑆𝑁𝑃𝑠) − 𝑅2(𝑠𝑒𝑥 + 𝑎𝑔𝑒 + 18 𝑃𝐶𝑠).

Notably, two SNPs stand out for explaining much larger variance than others when fitting the GWAS

model using the genotype data, but overall more SNPs from GWAS painting explain more than 0.1%

variance, which indicates the painting data are probably more efficient for estimating the effect sizes

of SNPs and detecting significant SNPs. Also, some SNPs from GWAS models using painting data

explain almost the same amount of variance, suggesting that these SNPs consist of very similar

ancestries.
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Results

Association with MS risk at externally ascertained SNPs for ancestries and

genotypes

Figure S6: Association with MS risk at externally ascertained SNPs, for (top) ancestry, and

(bottom) SNPs.

The p-values are from a two-sided t-test, with the red and blue lines representing p=1e-10 and p=1e-5,

respectively. Due to the UK Biobank being less powered (having fewer cases) than the Case-Control

study from which these SNPs were found, the only statistically significant association is in the HLA.
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Cluster analysis comparing between MS-risk and local ancestry for 3 example

SNPs

Figure S7: Comparison between MS-risk and local ancestry for 3 example SNPs.

In the HLA Class-II region, all SNPs share a pattern in which high Steppe ancestry is associated with

high MS-risk. The risk decreases monotonically and is not present in the Steppe precursor populations

(Hunter Gathers), but is with the admixed Bronze-age European populations (Steppe + Farmer).
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PCA plots for average ancestry and weighted average prevalence of

MS-associated SNPs

Figure S8: Decomposition of individuals’ ancestry at MS risk SNPs in terms of (left) the

ancestry of those SNPs alone, or (right) the Weighted average prevalence of MS in each ancestry

after “logit” transformation.
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Introduction

Because panels of ancient individuals are small and geographically biased, allele frequency estimates

based directly on aDNA genotype calls have low confidence (Dehasque et al., 2020). Equally,

selection or drift (e.g. from population bottlenecks) mean that the allele frequency in an ancient

population does not necessarily reflect the proportion of effect alleles that that ancestry eventually

contributed to a modern population. Therefore, a better estimate of an ancestral contribution is to

generate allele frequencies based on local ancestry: if a haplotype is under-sampled in the ancient data

or undergoes subsequent positive selection, this will be reflected in an allele frequency that is higher

in the estimate based on the painting than one based on the ancient data. We refer to these frequencies

as “painting frequencies”.

This approach was used to estimate ancestral contributions to a range of phenotypes in Irving-Pease et

al. (2022), re-capitulating already known contributions such as height, hair colour and eye colour.

Methods

All code for implementing these analyses can be found at https://github.com/will-camb/ms_paper.

Imputation of local ancestry

Because not all SNPs in the GWAS data were painted, for each variant in each GWAS dataset we

imputed the local ancestry by taking the average of the painting values of the SNPs on either side,

weighted by their physical distance (impute_ancestry.py).

Ancestral risk score

Following methods developed in Irving-Pease et al. (2022), we calculated the effect allele painting

frequency for a given ancestry for SNP using the formula:𝑓
{𝑎𝑛𝑐,𝑖}

𝑖

34

https://github.com/will-camb/ms_paper


𝑓
{𝑎𝑛𝑐,𝑖}

= 𝑗

𝑀
𝑒𝑓𝑓𝑒𝑐𝑡

∑ 𝑃𝑎𝑖𝑛𝑡𝑖𝑛𝑔 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
{𝑗,𝑖,𝑎𝑛𝑐}

𝑗

𝑀
𝑎𝑙𝑡

∑ 𝑃𝑎𝑖𝑛𝑡𝑖𝑛𝑔 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
{𝑗,𝑖, 𝑎𝑛𝑐}

 + 
𝑗

𝑀
𝑒𝑓𝑓𝑒𝑐𝑡

∑ 𝑃𝑎𝑖𝑛𝑡𝑖𝑛𝑔 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
{𝑗,𝑖, 𝑎𝑛𝑐}

,

where there are individuals homozygous for the effect allele, individuals homozygous𝑀
𝑒𝑓𝑓𝑒𝑐𝑡

𝑀
𝑎𝑙𝑡

for the other allele, and is the sum of the painting probabilities for
𝑗

𝑀
𝑒𝑓𝑓𝑒𝑐𝑡

∑ 𝑃𝑎𝑖𝑛𝑡𝑖𝑛𝑔 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
{𝑗,𝑖,𝑎𝑛𝑐}

that ancestry in individuals homozygous for the effect allele at SNP . This can be interpreted as𝑎𝑛𝑐 𝑖

an estimate of an ancestral contribution to effect allele frequency in a modern population. Per-SNP

painting frequencies can be found in ST4, ST5, and ST6.

To calculate the ancestral risk score (ARS) we summed over all pruned SNPs in an additive model:𝐼

𝐴𝑅𝑆
𝑎𝑛𝑐

=
𝑖

𝐼

∑ 𝑓
{𝑎𝑛𝑐,𝑖}

*  𝑏𝑒𝑡𝑎
𝑖
.

We then ran a transformation step as in Berg & Coop (2014). To obtain 95% confidence intervals, we

ran an accelerated bootstrap over loci, which accounts for the skew of data to better estimate

confidence intervals (Frangos & Schucany, 1990).

Results

Figure S9. Ancestral Risk Scores (ARS) for fine-mapped data for MS using all SNPs (left), only

SNPs on the HLA (centre), and only SNPs not on the HLA (right).

Confidence intervals are estimated by bootstrapping over SNPs (1000 bootstrap resamples over n=204

(left), n=15 (centre), n=189 (right) SNPs), which can be interpreted as testing whether ancestry is

associated with MS genome-wide. Centre values were calculated as the ARS for all SNPs and all

individuals.
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Figure S10. Ancestral Risk Scores (ARS) for fine-mapped data for RA using all SNPs (left), only

SNPs on the HLA (centre), and only SNPs not on the HLA (right).

Confidence intervals are estimated by bootstrapping over SNPs (1000 bootstrap resamples over n=55

(left), n=3 (centre), n=52 (right) SNPs), which can be interpreted as testing whether ancestry is

associated with RA genome-wide. Centre values were calculated as the ARS for all SNPs and all

individuals.
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Methods

Definition

We propose Haplotype Trend Regression with eXtra flexibility (HTRX) which searches for haplotype

patterns that include single SNPs and non-contiguous haplotypes. HTRX is an association between a

template of n SNPs and a phenotype. A template gives a value for each SNP taking values of ‘0’ or

‘1’, reflecting whether the reference allele of each SNP is present or absent, or an ‘X’ meaning either

value is allowed. For example, haplotype ‘1X0’ corresponds to a 3-SNP haplotype where the first

SNP is the alternative allele and the third SNP is the reference allele, while the second SNP can be

either the reference or the alternative allele. Therefore, haplotype ‘1X0’ is essentially only a 2-SNP

haplotype.

To examine the association between a haplotype and a binary phenotype, we replace the genotype

term with a haplotype from the standard GWAS model:

,𝑌
𝑖
~𝐵𝑖𝑛(1, π

𝑖
);  𝑙𝑜𝑔(

π
𝑖

1−π
𝑖
) = β

𝑗
𝐻

𝑖𝑗
+

𝑐=1

𝑁
𝑐

∑ γ
𝑐 

𝐶
𝑖𝑐

where denotes the th haplotype probability for the ith individual:𝐻
𝑖𝑗

𝑗

HTRX can identify gene-gene interactions, and is superior to HTR not only because it can extract

combinations of significant SNPs within a region, leading to improved predictive performance, but
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the haplotypes are more interpretable as multi-SNP haplotypes are only reported when they lead to

increased predictive performance.

HTRX Model selection procedure for shorter haplotypes

Fitting HTRX models directly on the whole dataset can lead to significant overfitting, especially when

the number of SNPs increases. When overfitting occurs, the models experience poorer predictive

accuracy against unseen data. Further, HTRX introduces an enormous model space which much be

searched.

To address these problems, we implement a two-step procedure.

Step 1: select candidate models. This is to address the model search problem, and is chosen to obtain

a set of models more diverse than traditional bootstrap resampling (Efron, 19791)

(1) Randomly sample a subset (50%) of data. Specifically, when the outcome is binary, stratified

sampling is used to ensure the subset has approximately the same proportion of cases and controls as

the whole data;

(2) Start from a model with fixed covariates (18 PCs, sex and age), and perform forward regression on

the subset, i.e. iteratively choose a feature (in addition to the fixed covariates) to add whose inclusion

enables the model to explain the largest variance, and select models with the lowest Bayesian𝑠

Information Criteria (BIC) (Kass 1995) to enter the candidate model pool;

(3) repeat (1)-(2) times, and select all the different models in the candidate model pool as the𝐵

candidate models.

Step 2: select the best model using 10-fold cross-validation.

(1) Randomly split the whole data into 10 groups with approximately equal sizes, using stratified

sampling when the outcome is binary;

(2) In each of the 10 folds, use a different group as the test dataset, and take the remaining groups as

the training dataset. Then, fit all the candidate models on the training dataset, and use these fitted

models to compute the additional variance explained by features (out-of-sample ) in the test dataset.𝑅2

Finally, select the candidate model with the biggest average out-of-sample as the best model.𝑅2
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HTRX Model selection procedure for longer haplotypes (Cumulative HTRX)

Longer haplotypes are important for discovering interactions. However, there are haplotypes3𝑘 − 1

in HTRX if the region contains SNPs, making it unrealistic for regions with large numbers of SNPs.𝑘

To address this issue, we proposed cumulative HTRX to control the number of haplotypes, which is

also a two-step procedure.

Step 1: extend haplotypes and select candidate models.

(1) Randomly sample a subset (50%) of data, use stratified sampling when the outcome is binary. This

subset is used for all the analysis in (2) and (3);

(2) Start with randomly chosen SNPs from the entire SNPs, and keep the top haplotypes that𝐿 𝑘 𝑀

are chosen from the forward regression. Then add another SNP to the haplotypes to create𝑀

haplotypes. There are haplotypes obtained by adding `0', `1' or `X' to the previous3𝑀 + 2 3𝑀 𝑀

haplotypes, as well as 2 bases of the added SNP, i.e. `XX...X0' and `XX...X1' (as `X' was implicitly

used in the previous step). The top haplotypes from them are then selected using forward𝑀

regression. Repeat this process until obtaining haplotypes which include SNPs;𝑀 𝑘 − 1

(3) Add the last SNP to create haplotypes. Afterwards, start from a model with fixed3𝑀 + 2

covariates (18 PCs, sex and age), perform forward regression on the training set, and select models𝑠

with the lowest BIC to enter the candidate model pool;

(4) repeat (1)-(3) times, and select all the different models in the candidate model pool as the𝐵

candidate models.

Step 2: select the best model using 10-fold cross-validation, as described in “HTRXModel selection

procedure for shorter haplotypes”.

We note that because the search procedure in Step 1(2) may miss some highly predictive haplotypes,

cumulative HTRX acts as a lower bound on the variance explainable by HTRX.

As a model criticism, only common and highly predictive haplotypes (i.e. those with the greatest

adjusted ) are correctly identified, but the increased complexity of the search space of HTRX leads𝑅2

to haplotype subsets that are not significant on their own but are significant when interacting with

other haplotype subsets being missed. This issue would be eased if we increase all the parameters , ,𝑠 𝑙
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and but with higher computational cost, or improve the search by optimizing the order of adding𝑀 𝐵

SNPs. This leads to a decreased certainty that the exact haplotypes proposed are `correct', but together

reinforces the inference that interaction is extremely important.

Simulation for HTRX

To investigate how the total variance explained by HTRX compare to GWAS and HTR, we used a

simulation study comparing:

(1) linear models (denoted by "lm") and generalized linear models with a logit link-function (denoted

by "glm");

(2) models with or without actual interaction effects;

(3) models with or without rare SNPs (frequency smaller than 5%);

(4) remove or retain rare haplotypes when rare SNPs exist.

We started from creating the genotypes for 4 different SNPs ( denotes the index𝐺
𝑖𝑗𝑞

𝑖 = 1,..., 100, 000

of individuals, represents the index of𝑗 = 1("1𝑋𝑋𝑋"),  2("𝑋1𝑋𝑋"),  3("𝑋𝑋1𝑋") 𝑎𝑛𝑑 4("𝑋𝑋𝑋1")

SNPs, and for two genomes as individuals are diploid). If no rare SNPs were included, we𝑞 = 1, 2

sampled the frequency of these 4 SNPs from 5% to 95%; otherwise, we sampled the frequency of𝐹
𝑗
 

the first 2 SNPs from 2% to 5% (in practice, we obtained and under our𝐹
1

= 2. 8% 𝐹
2

= 3. 1%

seed) while the last 2 SNPs from 5% to 95%. For the th individual, we sampled for𝑖 𝐺
𝑖𝑗𝑞

~𝐵𝑖𝑛(1, 𝐹
𝑗
)

the th genome of the th SNP, and took the average value of two genomes as the genotype for the th𝑞 𝑗 𝑗

SNP of the th individual: . Based on the genotype data, we obtained the haplotype data𝑖 𝐺
𝑖𝑗

=
𝐺

𝑖𝑗1
+𝐺

𝑖𝑗2

2

for each individual, and we considered removing haplotypes rarer than 0.1% or not when rare SNPs

were generated. In addition, we sampled 20 fixed covariates (including sex, age and 18 PCs) 𝐶
𝑖𝑐

where from UK Biobank for 100000 individuals.𝑐 = 1,..., 20

Next, we sampled the effect sizes of SNPs and covariates , and standardize them by theirβ
𝐺

𝑗

β
𝐶

𝑐

standard deviations: and for each fixed and , respectively. Whenβ
𝐺

𝑖

~ 𝑈(−1,1)
𝑠𝑑(𝐺

𝑗
) β

𝐶
𝑐

~ 𝑈(−1,1)
𝑠𝑑(𝐶

𝑐
) 𝑗 𝑐

interaction exists, we created a fixed effect size for haplotype "11XX" as twice the average absolute

SNP effects: where refers to "11XX"; otherwise, . Note thatβ
𝐻

1

= 1
2

𝑗=1

4

∑ |β
𝐺

𝑗

| 𝐻
1

𝐻
1

= 0

when rare SNPs are included.𝐹
𝐻

1

= 0. 09%

Finally, we sampled the outcome based on the outcome score (for the th individual)𝑖
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,𝑂
𝑖

=
𝑐=1

20

∑ β
𝑐
𝐶

𝑖𝑐
+ γ(

𝑗=1

4

∑ β
𝐺

𝑗

𝐺
𝑖𝑗

+ β
𝐻

1

𝐻
1
) + 𝑒

𝑖
+ 𝑤

where is the effect scale of SNPs and haplotype "11XX", is the random error and isγ 𝑒
𝑖
~𝑁(0, 0. 1) 𝑤

a fixed intercept term. For linear models, the outcome ; while for generalized linear models,𝑌
𝑖

= 𝑂
𝑖

we sampled the outcome from binomial distribution: , where is the𝑌
𝑖
~𝐵𝑖𝑛(1, π

𝑖
) π

𝑖 
= 𝑒

𝑂
𝑖

1+𝑒
𝑂

𝑖

probability that the th individual has the case.𝑖

As the simulation is intended to compare the variance explained by HTRX, HTR and SNPs (GWAS)

in addition to fixed covariates, we tripled the effect sizes of SNPs and haplotype "11XX" (if

interaction exists) by setting . In "glm", to ensure a reasonable case prevalence (e.g. below 5%),γ = 3

we set , which was also applied in "lm".𝑤 =− 7

We applied the procedure described in “ HTRXModel selection procedure for shorter haplotypes”

for HTRX, HTR and GWAS, and visualized the distribution of the out-of-sample for each of the𝑅2 

best models selected by each method in Figure S11. In both "lm" and "glm", HTRX has equal

predictive performance as the true model. It performs as well as GWAS when the interaction effects is

absent, explains more variance when an interaction is present, and is significantly more explanatory

than HTR. When rare SNPs are included, the only effective interaction term is rare. In this case the

difference between GWAS and HTRX becomes smaller as expected, and removing the rare

haplotypes hardly reduces the performance of HTRX.

In conclusion, we demonstrate through simulation that our HTRX implementation a) searches

haplotype space effectively, and b) protects against overfitting. This makes it a superior approach

compared to HTR and GWAS to integration SNP effects with gene-gene interaction. Its robustness

also retains when there are rare effective SNPs and haplotypes.
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Results

HTRX simulation

Figure S11: Simulation study with four SNPs showing the boxplots of out-of-sample variance

(from n=10 test folds. Bounds of box: Q1 (25% quantile) to Q3 (75% quantile); Whiskers: from

Q1-1.5IQR to Q3+1.5IQR; Centre red line: mean; Minima and Maximum: black dots)

explained by HTRX compared to GWAS, HTR and the true model.

The total variance explained by HTRX is the same as SNP and bigger than HTR when there are no

interactions. When interaction (with subtitle "int") exists, HTRX significantly outperforms GWAS and

HTR. In all the situations, HTRX works similarly as the truth. The existence of rare haplotypes

(subtitle “rare” refers to having 2 rare SNPs, and “rare_remove” refers to having 2 rare SNPs while

removing haplotypes rarer than 0.1%) has negligible impact on the overall conclusion.
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Introduction

The rates and prevalence of auto-immune diseases in present-day populations varies considerably

across West Eurasia. The drivers of this variation are complex, and include both environmental and

genetic components. Understanding the genetic component of auto-immune disease is important for

predicting patient risk and for developing novel therapeutics. Auto-immune disease susceptibility, like

other complex traits, has been subject to evolutionary processes that have shaped the patterns of

genetic variation seen in present-day populations. To understand how natural selection has influenced

the genetic component of auto-immune disease risk, we sought to model the allele frequency

trajectories of risk associated variants through time, in a large panel of ancient genomes, and to test

for evidence of polygenic selection acting on two auto-immune diseases: (i) multiple sclerosis (MS);

and (ii) rheumatoid arthritis (RA).

Methods

The computational pipeline to perform these analyses was written in the snakemake workflow

management system1. For a full list of all the software and versions used, see Table S16. All pipeline

code, custom scripts and a conda environment to replicate the analyses are available in the GitHub

repository (https://github.com/ekirving/ms_paper).

Sample data

Our analyses are undertaken on a large sample of shotgun-sequenced ancient genomes, presented in

the accompanying study ‘Population Genomics of Stone Age Eurasia’2. This dataset comprises 1,664

imputed diploid ancient genomes and more than 8.5 million SNPs. Here, we used a subset of 1,015

imputed ancient genomes from West Eurasia, which passed all quality control filters. To account for

population structure in our samples, we applied a novel chromosome painting technique based on

inference of a sample’s nearest neighbours in the marginal trees of an ARG that contains labelled
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individuals. Details of the chromosome painting methods are presented in the accompanying study

‘The Selection Landscape and Genetic Legacy of Ancient Eurasians’3 and further described in

reference 4.

GWAS ascertainment

We obtained genome-wide association study (GWAS) summary statistics for two auto-immune

diseases: (i) multiple sclerosis5; and (ii) rheumatoid arthritis6–8. To ascertain statistically independent

and genome-wide significant markers, we filtered the GWAS summary statistics to retain only

biallelic SNPs that passed quality control filters in our imputed dataset, then performed LD-based

clumping using the software PLINK9, with the parameters --clump-p1 5e-8 --clump-r2

0.05 --clump-kb 250, using the 1000 Genomes Project (1000G) Phase 3 populations FIN,

GBR and TSI10 as the combined LD reference panel. We also obtained fine-mapped SNPs for each of

the two traits, and inferred proxy SNPs in high LD with variants which were not present in our

imputed ancient callset (see methods).

Selection analysis

We inferred allele frequency trajectories and selection coefficients for all genome-wide significant

trait associated variants using a modified version of the software CLUES11, following the methods

described in our companion paper3. In brief, we jointly inferred genome-wide genealogies and a

population size history for the 1000G populations FIN, GBR and TSI using the software Relate. We

then used CLUES to infer allele frequency trajectories and selection coefficients using a time-series of

imputed ancient DNA (aDNA) genotype probabilities, and using the population size history from

Relate. We produced four additional models for each trait associated variant, by conditioning the

analysis on one of the four ancestral path labels from our chromosome painting model: either Western

hunter-gatherers (WHG), Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG), or

Anatolian farmers (ANA). We determined statistical significance of each CLUES model by applying a

Bonferroni correction for the number of tests performed for each trait.

Polygenic selection analysis

We inferred polygenic selection gradients (ω) and p-values for MS and RA using the software

PALM12. We used the modified version of CLUES to extract the posterior likelihood surface for each

statistically independent marker, using the --lik argument, and restructured the outputs into the

PALM folder structure. We then transformed the GWAS summary statistics into PALM format (w/

beta and SE scores) and standardised allele polarisation (ALT as the effect allele), then ran the

polygenic selection analysis in single trait mode.
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Pleiotropic trait analysis

To explore the extent to which selected variants share pleiotropic associations with other traits, we

obtained GWAS summary statistics for 4,359 traits from the UK Biobank

(UKB)13,14 and 2,202 traits from the FinnGen study15. We filtered the summary statistics to retain only

genome-wide significant trait associations (p < 5e-8) for SNPs which were found to be statistically

significant (using a Bonferroni corrected significance threshold) in our CLUES analysis for MS and

RA. We then produced plots for each UK Biobank trait with more than one significant SNP, showing

the trajectories of pleiotropic SNPs polarised by their effect direction in the marginal trait.

Joint polygenic selection analysis

To determine if the observed signal of polygenic selection in MS could be better explained by

selection acting on a genetically correlated trait, we performed a systematic analysis of traits in UKB

and FinnGen. To identify traits with a shared genetic architecture to MS, we took the list of SNPs with

significant CLUES p-values from the MS analysis and queried both UKB and FinnGen to retrieve a

list of all traits in which the selected MS SNPs also had a genome-wide association with another trait.

We then used a cut off of 20% overlap to narrow down the list of 6,561 possible traits (i.e. for a trait to

be considered, at least 20% of the MS selected SNPs must also be associated with that trait). This

resulted in 115 traits with a shared architecture to MS, including 49 in UKB and 66 in FinnGen.

To ensure that all SNPs used in the joint analysis were callable in both the focal GWAS (i.e. MS) and

the marginal GWAS (i.e. UKB or FinnGen) we took the intersection of the SNPs available in both

GWAS and in our imputed ancient callset. We then performed SNP clumping in the marginal trait,

following the same procedure as we used for MS, to ascertain a list of independent markers. We then

ran the J-PALM joint analysis, comparing MS to each of the 115 marginal traits, and repeated this for

each of the 5 ancestry paths. Full results are available in table ST14.
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Table S16 Software and versions used in the polygenic selection pipeline

Software Version URL Reference

bcftools 1.15 https://github.com/samtools/bcftools 16

biopython 1.79 https://github.com/biopython/biopython 17

clues d8ec8b4 https://github.com/standard-aaron/clues 11

conda 4.14.0 https://github.com/conda/conda 18

numpy 1.22.2 https://github.com/numpy/numpy 19

palm 1d3b7fc https://github.com/standard-aaron/palm 12

pandas 1.3.4 https://github.com/pandas-dev/pandas 20

plink 1.90b6.21 https://www.cog-genomics.org/plink/ 9

pysam 0.18.0 https://github.com/pysam-developers/pysam 21

python 3.9.7 https://www.python.org 22

r-base 4.0.5 https://www.r-project.org/ 23

r-dplyr 0.8.0.1 https://github.com/tidyverse/dplyr 24

r-ggplot2 3.1.1 https://github.com/tidyverse/ggplot2 25

r-ggrepel 0.9.1 https://github.com/slowkow/ggrepel 26

r-ggridges 0.5.1 https://github.com/wilkelab/ggridges 27

r-stringr 1.4.0 https://github.com/tidyverse/stringr 28

relate 1.1.3 https://myersgroup.github.io/relate 29

scipy 1.8.0 https://github.com/scipy/scipy 30

snakemake 6.12.3 https://github.com/snakemake/snakemake 1
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Results

Multiple sclerosis

The CLUES results for all genome-wide significant MS associations are available in ST8, and the

results for the subset of statistically independent markers used in the PALM analysis are available in

ST7.

Pan-ancestry analysis

The PALM results for the pan-ancestry analysis of MS, using 62 LD-pruned markers, found

statistically significant evidence for directional polygenic selection (p = 1.02e-5; ω = 0.017).

Figure S12. Stacked line plot of the pan-ancestry PALM analysis for Multiple sclerosis, showing

the CLUES inferred allele frequency trajectories of each statistically independent SNP (n=62).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted

by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from

0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are

sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Western hunter-gatherer ancestral path

The PALM results for the WHG ancestral path analysis of MS, using 62 LD-pruned markers, found

no significant evidence for directional polygenic selection (p = 7.22e-5; ω = 0.021).

Figure S13. Stacked line plot of the WHG ancestry PALM analysis for Multiple sclerosis,

showing the CLUES inferred allele frequency trajectories of each statistically independent SNP

(n=62).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted

by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from

0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are

sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Eastern hunter-gatherer ancestral path

The PALM results for the EHG ancestral path analysis of MS, using 62 LD-pruned markers, found no

significant evidence for directional polygenic selection (p = 2.60e-3; ω = 0.016).

Figure S14. Stacked line plot of the EHG ancestry PALM analysis for Multiple sclerosis,

showing the CLUES inferred allele frequency trajectories of each statistically independent SNP

(n=62).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted

by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from

0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are

sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Caucasus hunter-gatherer ancestral path

The PALM results for the CHG ancestral path analysis of MS, using 62 LD-pruned markers, found

statistically significant evidence for directional polygenic selection (p = 3.06e-2; ω =   0.009).

Figure S15. Stacked line plot of the CHG ancestry PALM analysis for Multiple sclerosis,

showing the CLUES inferred allele frequency trajectories of each statistically independent SNP

(n=62).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted

by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from

0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are

sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Anatolian farmer ancestral path

The PALM results for the ANA ancestral path analysis of MS, using 62 LD-pruned markers, found no

significant evidence for directional polygenic selection (p = 6.43e-1; ω = 0.004).

Figure S16. Stacked line plot of the ANA ancestry PALM analysis for Multiple sclerosis, showing

the CLUES inferred allele frequency trajectories of each statistically independent SNP (n=62).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted

by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from

0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are

sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Cross ancestry comparisons

Figure S17. Density plots of the change over time in scaled PRS for each SNP in each marginal

ancestry for Multiple sclerosis.

Delta PRS per SNP is calculated from the CLUES models by taking the difference between the

maximum likelihood estimates of the frequency of each SNP in the most recent and most ancient time

points, weighted by the scaled effect size of the SNP in the focal trait.
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Figure S18. Scatter plots showing the delta PRS per SNP and the directional -log10(p-value) for

each SNP in each marginal ancestry for Multiple sclerosis.

Solid lines with shading show the best-fit linear regressions and standard errors. SNPs that do not

achieve statistical significance in the marginal CLUES test but which have a large delta PRS are

labelled as outliers.
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Pleiotropic UK Biobank traits

Figure S19. Allele frequency plots for positively selected MS-associated SNPs that are also

associated with other phenotypes in the UK Biobank. Traits 1-5.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered

according to the number of common SNPs, portions of the trajectory with low posterior density are

cropped off, and the background is shaded for the approximate time period in which the ancestry

existed as an actual population.
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Figure S20. Allele frequency plots for positively selected MS-associated SNPs that are also

associated with other phenotypes in the UK Biobank. Traits 6-10.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered

according to the number of common SNPs, portions of the trajectory with low posterior density are

cropped off, and the background is shaded for the approximate time period in which the ancestry

existed as an actual population.
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Figure S21. Allele frequency plots for positively selected MS-associated SNPs that are also

associated with other phenotypes in the UK Biobank. Traits 11-15.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered

according to the number of common SNPs, portions of the trajectory with low posterior density are

cropped off, and the background is shaded for the approximate time period in which the ancestry

existed as an actual population.
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Figure S22. Upset plot showing a histogram of selected MS-associated SNPs which share a

pleiotropic association with one or more marginal phenotypes in the UK Biobank.

Top 20 traits shown. Of the 32 selected MS-associated SNPs, 26 (81%) are also associated with one or

more of the top 20 genetically correlated phenotypes.
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Pleiotropic FinnGen traits

Figure S23. Allele frequency plots for positively selected MS-associated SNPs that are also

associated with other phenotypes in the FinnGen study. Traits 1-5.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal FinnGen trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered according

to the number of common SNPs, portions of the trajectory with low posterior density are cropped off,

and the background is shaded for the approximate time period in which the ancestry existed as an

actual population.
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Figure S24. Allele frequency plots for positively selected MS-associated SNPs that are also

associated with other phenotypes in the FinnGen study. Traits 6-10.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal FinnGen trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered according

to the number of common SNPs, portions of the trajectory with low posterior density are cropped off,

and the background is shaded for the approximate time period in which the ancestry existed as an

actual population.
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Figure S25. Allele frequency plots for positively selected MS-associated SNPs that are also

associated with other phenotypes in the FinnGen study. Traits 11-15.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal FinnGen trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered according

to the number of common SNPs, portions of the trajectory with low posterior density are cropped off,

and the background is shaded for the approximate time period in which the ancestry existed as an

actual population.
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Figure S26. Upset plot showing a histogram of selected MS-associated SNPs which share a

pleiotropic association with one or more marginal phenotypes in the FinnGen study.

Top 20 traits shown. Of the 32 selected MS-associated SNPs, 27 (84%) are also associated with one or

more of the top 20 genetically correlated phenotypes.
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Figure S27. Upset plot showing a histogram of selected MS-associated SNPs which share a

pleiotropic association with one or more infectious disease phenotypes and symptoms in the

FinnGen study.

Of the 32 selected MS-associated SNPs, 18 (56%) are also associated with one or more infectious

disease phenotypes.
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Joint polygenic selection analysis

Figure S28. Dot plot showing the R-scores from the J-PALM tests of MS against each of 49

overlapping traits in UK Biobank.

The dotted red lines show the Bonferroni corrected significance threshold. No marginal trait

significantly attenuates the signal of selection seen in MS.
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Figure S29. Dot plot showing the R-scores from the J-PALM tests of MS against each of 66

overlapping traits in FinnGen.

The dotted red lines show the Bonferroni corrected significance threshold. No marginal trait

significantly attenuates the signal of selection seen in MS.
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Rheumatoid arthritis

The CLUES results for all genome-wide significant RA associations are available in ST10, and the

results for the subset of statistically independent markers used in the PALM analysis are available in

ST9.

Pan-ancestry analysis

The PALM results for the pan-ancestry analysis of RA, using 153 LD-pruned markers, found

statistically significant evidence for directional polygenic selection (p = 3.26e-3; ω = -0.007).

Figure S30. Stacked line plot of the pan-ancestry PALM analysis for Rheumatoid arthritis,

showing the CLUES inferred allele frequency trajectories of each statistically independent SNP

(n=153).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted

by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from

0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are

sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Western hunter-gatherer ancestral path

The PALM results for the WHG ancestral path analysis of RA, using 153 LD-pruned markers, found

no significant evidence for directional polygenic selection (p = 8.63e-1; ω = -0.001).

Figure S31. Stacked line plot of the WHG ancestry PALM analysis for Rheumatoid arthritis,

showing the CLUES inferred allele frequency trajectories of each statistically independent SNP

(n=153).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted

by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from

0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are

sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Eastern hunter-gatherer ancestral path

The PALM results for the EHG ancestral path analysis of RA, using 153 LD-pruned markers, found

no significant evidence for directional polygenic selection (p = 6.24e-1; ω = -0.003).

Figure S32. Stacked line plot of the EHG ancestry PALM analysis for Rheumatoid arthritis,

showing the CLUES inferred allele frequency trajectories of each statistically independent SNP

(n=153).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted

by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from

0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are

sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Caucasus hunter-gatherer ancestral path

The PALM results for the CHG ancestral path analysis of RA, using 153 LD-pruned markers, found

statistically significant evidence for directional polygenic selection (p = 6.33e-2; ω = -0.014).

Figure S33. Stacked line plot of the CHG ancestry PALM analysis for Rheumatoid arthritis,

showing the CLUES inferred allele frequency trajectories of each statistically independent SNP

(n=153).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted

by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from

0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are

sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Anatolian farmer ancestral path

The PALM results for the ANA ancestral path analysis of RA, using 153 LD-pruned markers, found

statistically significant evidence for directional polygenic selection (p = 1.49e-1; ω = -0.006).

Figure S34. Stacked line plot of the ANA ancestry PALM analysis for Rheumatoid arthritis,

showing the CLUES inferred allele frequency trajectories of each statistically independent SNP

(n=153).

Individual trajectories have been polarised to show the frequency of the positive risk allele, weighted

by their scaled effect size. The y-axis shows the scaled polygenic risk score (PRS), which ranges from

0 to 1, representing the maximum possible additive genetic risk in a population. SNP trajectories are

sorted by their CLUES p-values and direction of effect, with selected SNPs that increase risk plotted

on top. SNPs are coloured by their marginal p-values, and significant SNPs are shown in yellow.
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Cross ancestry comparisons

Figure S35. Density plots of the change over time in scaled PRS for each SNP in each marginal

ancestry for Rheumatoid arthritis.

Delta PRS per SNP is calculated from the CLUES models by taking the difference between the

maximum likelihood estimates of the frequency of each SNP in the most recent and most ancient time

points, weighted by the scaled effect size of the SNP in the focal trait.
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Figure S36. Scatter plots showing the delta PRS per SNP and the directional -log10(p-value) for

each SNP in each marginal ancestry for Rheumatoid arthritis.

Solid lines with shading show the best-fit linear regressions and standard errors. SNPs that do not

achieve statistical significance in the marginal CLUES test but which have a large delta PRS are

labelled as outliers.

Pleiotropic UK Biobank traits

Figure S37. Allele frequency plots for positively selected RA-associated SNPs that are also

associated with other phenotypes in the UK Biobank. Traits 1-5.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered

according to the number of common SNPs, portions of the trajectory with low posterior density are

cropped off, and the background is shaded for the approximate time period in which the ancestry

existed as an actual population.
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Figure S38. Allele frequency plots for positively selected RA-associated SNPs that are also

associated with other phenotypes in the UK Biobank. Traits 6-10.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered

according to the number of common SNPs, portions of the trajectory with low posterior density are

cropped off, and the background is shaded for the approximate time period in which the ancestry

existed as an actual population.
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Figure S39. Allele frequency plots for positively selected RA-associated SNPs that are also

associated with other phenotypes in the UK Biobank. Traits 11-15.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal UK Biobank trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered

according to the number of common SNPs, portions of the trajectory with low posterior density are

cropped off, and the background is shaded for the approximate time period in which the ancestry

existed as an actual population.
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Figure S40. Upset plot showing a histogram of selected RA-associated SNPs which share a

pleiotropic association with one or more marginal phenotypes in the UK Biobank.

Top 20 traits shown. Of the 55 selected RA-associated SNPs, 49 (89%) are also associated with one or

more of the top 20 genetically correlated phenotypes.

Pleiotropic FinnGen traits
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Figure S41. Allele frequency plots for positively selected RA-associated SNPs that are also

associated with other phenotypes in the FinnGen study. Traits 1-5.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal FinnGen trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered according

to the number of common SNPs, portions of the trajectory with low posterior density are cropped off,

and the background is shaded for the approximate time period in which the ancestry existed as an

actual population.

Figure S42. Allele frequency plots for positively selected RA-associated SNPs that are also

associated with other phenotypes in the FinnGen study. Traits 6-10.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal FinnGen trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered according

to the number of common SNPs, portions of the trajectory with low posterior density are cropped off,

and the background is shaded for the approximate time period in which the ancestry existed as an

actual population.
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Figure S43. Allele frequency plots for positively selected RA-associated SNPs that are also

associated with other phenotypes in the FinnGen study. Traits 11-15.

SNPs are shown with their maximum likelihood trajectories, and polarised by the direction of their

effect on the marginal FinnGen trait (i.e. showing the ‘risk’ allele). Phenotypes are ordered according

to the number of common SNPs, portions of the trajectory with low posterior density are cropped off,

and the background is shaded for the approximate time period in which the ancestry existed as an

actual population.

78



Figure S44. Upset plot showing a histogram of selected RA-associated SNPs which share a

pleiotropic association with one or more marginal phenotypes in the FinnGen study.

Top 20 traits shown. Of the 55 selected RA-associated SNPs, 43 (78%) are also associated with one or

more of the top 20 genetically correlated phenotypes.
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Figure S45. Upset plot showing a histogram of selected RA-associated SNPs which share a

pleiotropic association with one or more infectious disease phenotypes and symptoms in the

FinnGen study.

Of the 55 selected RA-associated SNPs, 29 (53%) are also associated with one or more infectious

disease phenotypes and symptoms.
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Discussion

To understand how natural selection has influenced the genetic component of auto-immune disease

risk, we sought to model the allele frequency trajectories of risk associated variants through time, in a

large panel of ancient genomes, and to test for evidence of polygenic selection acting on two

auto-immune diseases: (i) multiple sclerosis (MS); and (ii) rheumatoid arthritis (RA).

We used two different callsets of trait associated variants for our two auto-immune diseases. The first

callset contained fine-mapped variants; however, a large fraction of these variants were not callable in

our imputed ancient dataset, due to quality control filtering and the difficulty of accurately inferring

HLA alleles in ancient samples31. The resulting loss of so many high-effect HLA variants meant that

our polygenic selection tests were statistically underpowered, and we did not identify any evidence of

selection using this callset. To address this loss of statistical power, we ascertained a second callset of

statistically independent and genome-wide significant markers, by LD-pruning the full set of

genome-wide summary statistics for each auto-immune disease.

For multiple sclerosis, our our LD-pruned analyses identified statistically significant evidence of

positive polygenic selection for trait associated variants in the ALL analysis (p = 1.02e-5; ω =0.017),

and in the WHG (p = 7.22e-5; ω = 0.021), EHG (p = 2.60e-3; ω = 0.016) and CHG (p =3.06e-2; ω =

0.009) ancestral paths, but not in the ANA (p = 6.43e-1; ω = 0.004) path. For rheumatoid arthritis, our

analyses identified statistically significant evidence of negative polygenic selection for trait associated

variants in the ALL analysis (p = 3.26e-3; ω = -0.007) only, although the CHG (p = 6.33e-2; ω =

-0.014) path came close to reaching nominal significance. The WHG (p = 8.63e-1; ω = -0.001), EHG

(p = 6.24e-1; ω = -0.003) and ANA (p = 1.49e-1; ω = -0.006) ancestral paths showed no significant

evidence of selection, although they all exhibited a negative selection gradient.

Our results also demonstrate that the strength of evidence for selection in a marginal selection test

(i.e., the p-value for an individual SNP) is only partially correlated with the longitudinal effect of that

variant on the trait itself (Figues S18. and S36). Our CLUES selection test is best powered to identify

selection under a model in which the change in frequency is rapid. When changes in frequency occur

gradually over a long period of time, it is harder to reject a neutral model of drift. Consequently, small

but rapid changes in allele frequencies achieve low p-values, whilst large but slow changes achieve

higher p-values. These small rapid changes may achieve statistical significance in a marginal test,

whilst having very little longitudinal effect on the trait of interest. Conversely, large gradual changes

with substantial longitudinal effect may not achieve statistical significance in a marginal test.
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We caution that our results do not indicate that either MS or RA were directly under selection; and we

are not suggesting that MS was evolutionary adaptive, or that ancient people suffered from either of

these diseases. Rather, we observe that there is a very high degree of pleiotropy in auto-immune

disease associated variants, consistent with the hypothesis that selection has favoured a strong

immune response to exposure to environmental pathogens as a result of the transition to a pastoralist

lifestyle, which may have driven the observed positive signals of polygenic selection for MS. We also

note that RA has many overlapping SNPs with MS, and that the direction of effect for these SNPs is

often opposing between the two traits.

Because MS would not have conferred a fitness advantage on ancient individuals, it is likely that this

selection was driven by traits with shared genetic architecture, of which increased risk for MS in the

present is a pleiotropic by-product. We therefore looked at LD-pruned MS-associated SNPs that

showed statistically significant evidence for selection using CLUES (n=32) and which also had a

genome-wide significant trait association (p < 5e-8) in any of the 4,359 traits from the UK

Biobank13,14 and 2,202 traits from the FinnGen study15. We observed that many selected SNPs were

also associated with a variety of other traits, including type 1 diabetes (FinnGen, n=21), celiac disease

(FinnGen, n=19; UKB, n=18), ankylosing spondylitis (FinnGen, n=17), white blood cell count (UKB,

n=16), and lymphocyte count (n=16 UKB) (Figure S19 - S26). To determine if the observed signal of

polygenic selection favouring MS risk could be better explained by selection acting on a genetically

correlated trait, we performed a systematic analysis of traits in UK Biobank and FinnGen with at least

20% overlap among the MS-associated selected SNPs (n=115 traits). Using a joint test in PALM,

specifically designed for disentangling polygenic selection on correlated traits, we did not identify any

UK Biobank or FinnGen traits where the selection signal favouring MS risk was significantly

attenuated by selection acting on a genetically correlated trait, when accounting for the number of

tests (Figures S28 - S29). In the UK Biobank the trait which showed the strongest attenuating effect

in the ALL ancestry path was mean platelet (thrombocyte) volume (30100_irnt) (p = 1.06e-3),

although it did not achieve nominal significance. In the FinnGen study, the trait which showed the

strongest attenuating effect in the ALL ancestry path was psoriatic arthropathies (M13_PSORIARTH)

(p = 8.46e-3). These results show that the signal of polygenic selection favouring MS risk is at least

partially independent of all other tested traits, consistent with our hypothesis that genetic risk for MS

is the result of a complex evolutionary response to changes in exposure to multiple pathogens during

the Bronze Age.
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Yaoling Yang1,2, Daniel Lawson1,2

1Department of Statistical Sciences, School of Mathematics, University of Bristol, UK
2Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, UK

Methods

Definition

In population genetics, linkage disequilibrium (LD) is defined as the non-random association of

alleles at different loci in a given population (Slatkin, 20081). We propose an ancestry linkage

disequilibrium (LDA) approach to measure the association of ancestries between SNPs.

Let denote the probability of the th ancestry ( ) at the th SNP ( ) of a𝐴(𝑖, 𝑗, 𝑘) 𝑘 𝑘 = 1,..., 𝐾 𝑗 𝑗 = 1,..., 𝐽

chromosome for the th individual ( ).𝑖 𝑖 = 1,..., 𝑁

We define the distance between SNP and as the average norm between ancestries at those𝑙 𝑚 𝐿
2

SNPs. Specifically we compute the norm for the th genome as𝐿
2

𝑖

.𝐷
𝑖
(𝑙, 𝑚) = ||𝐴(𝑖, 𝑙, ·) − 𝐴(𝑖, 𝑚, ·)||

2
= 1

𝐾
𝑘=1

𝐾

∑ (𝐴(𝑖, 𝑙, 𝑘) − 𝐴(𝑖, 𝑚, 𝑘))2

Then we compute the distance between SNP and by averaging :𝑙 𝑚 𝐷
𝑖
(𝑙, 𝑚)

.𝐷(𝑙, 𝑚) = 1
𝑁

𝑖=1

𝑁

∑ 𝐷
𝑖
(𝑙, 𝑚)

We define as the theoretical distance between SNP and if there were no linkage𝐷*(𝑙, 𝑚) 𝑙 𝑚

disequilibrium of ancestry (LDA) between them. is estimated by𝐷*(𝑙, 𝑚)

,𝐷*(𝑙, 𝑚) ≈ 1
𝑁

𝑖=1

𝑁

∑ ||𝐴(𝑖*, 𝑙, ·) − 𝐴(𝑖, 𝑚, ·)||
2

where are re-sampled without replacement at SNP . Using the empirical distribution of𝑖* ∈ {1,..., 𝑁} 𝑙

ancestry probabilities accounts for variability in both the average ancestry and its distribution across
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SNPs. Ancestry assignment can be very precise in regions of the genome where our reference panel

matches our data, and uncertain in others where we only have distant relatives of the underlying

populations.

The LDA between SNP and is a similarity, defined in terms of the negative distance𝑙 𝑚 − 𝐷(𝑙, 𝑚)

normalized by the expected value under no LD, as:𝐷*(𝑙, 𝑚)

.𝐿𝐷𝐴(𝑙, 𝑚) = 𝐷*(𝑙,𝑚)−𝐷(𝑙,𝑚)

𝐷*(𝑙,𝑚)

LDA therefore takes an expected value 0 when haplotypes are randomly assigned at different SNPs,

and positive values when the ancestries of haplotypes are correlated.

LDA is a pairwise quantity. To arrive at a per-SNP property, we define the LDA score (LDAS) of SNP

as the total LDA of this SNP with the rest of the genome, i.e. the integral of the LDA for that SNP.𝑗

Because this quantity decreases to zero as we move away from the target SNP, this is in practice

computed within an cM-window (we use as LDA is approximately zero outside this region in𝑋 𝑋 = 5

our data) on both sides of the SNP. Note that we measure this quantity in terms of the genetic distance,

and therefore LDAS is measuring the length of ancestry-specific haplotypes compared to

individual-level recombination rates.

As a technical note, when the SNPs approach either end of the chromosome, they no longer have a

complete window, which results in a smaller LDAS. This would be appropriate for measuring total

ancestry correlations, but to make LDAS useful for detecting anomalous SNPs, we use the LDAS of

the symmetric side of the SNP to estimate the LDAS within the non-existent window.

where is the genetic distance (i.e. position in cM) of SNP , and is the total genetic distance𝑔𝑑(𝑙) 𝑙 𝑡𝑔

of a chromosome. We also assume the LDA on either end of the chromosome equals the LDA of the

SNP closest to the end: and𝐿𝐷𝐴(𝑗, 𝑔𝑑 = 0) = 𝐿𝐷𝐴(𝑗, 𝑙
𝑚𝑖𝑛(𝑔𝑑)

)

, where is the genetic distance, and are the𝐿𝐷𝐴(𝑗, 𝑔𝑑 = 𝑡𝑑) = 𝐿𝐷𝐴(𝑗, 𝑙
𝑚𝑎𝑥(𝑔𝑑)

) 𝑔𝑑 𝑙
𝑚𝑖𝑛(𝑔𝑑)

𝑙
𝑚𝑎𝑥(𝑔𝑑)

indexes of the SNP with the smallest and largest genetic distance, respectively.
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The integral is computed assuming linear interpolation of the LDA score
𝑔𝑑(𝑗)−𝑋

𝑔𝑑(𝑗)+𝑋

∫ 𝐿𝐷𝐴(𝑗, 𝑙)𝑑𝑔𝑑

between adjacent SNPs.

LDA thus quantifies the correlations between the ancestry of two SNPs, measuring the proportion of

individuals who have experienced a recombination leading to a change in ancestry, relative to the

genome-wide baseline. The LDA score is the total amount of genome in LDA with each SNP

(measured in recombination map distance).

Simulation for selection: LDA

An ancient population evolved for 2200 generations before splitting into two sub-populations𝑃
0

𝑃
1

(Steppe) and (Farmer). After evolving 400 generations, we added mutation “ ” and “ ” at the𝑃
2

𝑚
1

𝑚
2

different locus in and . Both added mutations were then positively selected in the following 300𝑃
1

𝑃
2

generations, after which they merged to , where both added mutations experienced strong positive𝑃
3

selection for 20 generations. Finally, we sampled 1000 individuals from to compute their ancestry𝑃
3

proportions of and using the "chromosome painting" technique, and calculated the LDA score𝑃
1

𝑃
2

of the simulated chromosome positions.

The above describes the simulation in Figure S46.

We investigated balancing selection at 2 loci as well. The balancing selection in and ensured the𝑃
1

𝑃
2

mutated allele reaches around 50% frequency, while positive selection made the mutated allele

become almost the only allele. In , if or was positively selected, its frequency reached more𝑃
3

𝑚
1

𝑚
2

than 80% regardless of whether the allele experienced balancing or positive selection in or ,𝑃
1

𝑃
2

because we set a strong positive selection. If or was balancing selected in , its frequency𝑚
1

𝑚
2

𝑃
3

slightly increased, e.g. if underwent balancing selection in , it had 25% frequency when was𝑚
1

𝑃
1

𝑃
3

created, and the frequency reached around 37.5% after 20 generations of balancing selection in .𝑃
3

The results (Figure S47) show that positive selection in resulted in low LDA scores around the𝑃
3

selected locus, if this allele was not uncommon (i.e. had 50% (balancing selection) or 100% frequency

(positive selection) in subpopulation or ). Note that the balancing selection in or worked𝑃
1

𝑃
2

𝑃
1

𝑃
2
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the same as “weak positive selection”, because and were rare when they first occured, which𝑚
1

𝑚
2

were positively selected until 50% frequency.

We also performed simulations for selection at a single locus (Figure S47 & Figure S48).

Stage 1: We added a mutation in the 1600 generation in , which then underwent balancing𝑚
1

𝑃
0

selection until generation 2200, when split into and , where the frequency of was around𝑃
0

𝑃
1

𝑃
2

𝑚
1

50%.

Stage 2: Then we explored different combinations of positive, balancing and negative selection of 𝑚
1

in and . the frequency of reached 80%, 50% and 20% when it was positively, balancing or𝑃
1

𝑃
2

𝑚
1

negatively selected, respectively, until generation 2899. Here we sampled 20 individuals each in 𝑃
1

and as the ancient samples.𝑃
2

Stage 3: Then and merged into in generation 2900. In , for each combination of selection𝑃
1

𝑃
2

𝑃
3

𝑃
3

in Stage 2, we simulated positive, balancing and negative selection for . The selection lasted for 20𝑚
1

generations, and then we sampled 4000 individuals from as the modern population.𝑃
3

Results: when was positively selected in only one of and , and it experienced negative𝑚
1

𝑃
1

𝑃
2

selection in , the LDA scores around the locus of were low. Otherwise, no abnormal LDA𝑃
3

𝑚
1

scores were found at .𝑚
1
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Results

Simulation for LDA scores with selection in one or two loci

Figure S46: Simulating Low LDA score.

Left: A simulated history in which a single population splits into two (“Steppe” and “Farmer”) after

2200 generations and experiences positive selection on different loci ( in and in ). After𝑚
1

𝑃
1

𝑚
2

𝑃
2

2900 generations the populations merge (“Europeans”) but selection continues on both loci.
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Figure S47: LDAS simulation with positive or balancing selection in the modern population.

The left two columns show simulations with a single variant satisfying the observed constraint that

modern-day frequencies are not decreasing (i.e. not negative selection). The right column shows

simulations with two variants, also obeying this constraint. The model for simulating 2 loci is the

same as in Figure S46, and that for 1 locus is in the top right of this plot (which differs only in the

location of the selected variant in the separated populations).
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Figure S48: LDAS simulation with single locus negatively selected in the modern population.

In two cases this generates a low LDAS score, which requires recent negative selection (which is

ruled out for HLA by the observed frequency trend). The model used is in the top right of Figure S47.
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LDA score for chromosome 2 and 6

Figure S49: LDAS on chromosome 6 and 2.

LDA score is a) high in the LCT/MCM6 region while is b) low in the HLA region.
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LD plot for chromosome 6 MS-associated SNPs

Figure S50: Pairwise Linkage Disequilibrium (LD) plot (measured by D’) for all the

MS-associated SNPs on chromosome 6.
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Introduction

Autoimmune disease susceptibility is unlikely to be selected due to any beneficial effect on survival.

We propose that an increase in the risk of autoimmune disease is more likely a byproduct of selection

for gene variants associated with, e.g., advantageous immune responses to the pathogenic challenges

ancient populations faced.

The current incidence of RA (Figure S51) is approximately 100 times higher than that of MS.

Although people commonly develop RA between the age of 35 to 60, it can occur at any age. The

average age of early-onset RA is 14. MS can develop at any age, but onset usually occurs between

20-40. Women are more frequently affected by both RA and MS. Studies of ancient skeletons suggest

that RA has affected people for thousands of years but the prevalence over time is unknown

(Entezami et al., 2011). MS leaves no unique marks on the skeleton, so we cannot know how

frequently MS developed in ancient times; the first MS patient was described in 1859.

RA and MS are autoimmune diseases with genetic and environmental risk factors. While several

pathogens are thought to play a part in MS disease development, EBV has been identified as a major

risk factor for MS, especially if infection occurs after 18 years of age (Bjornevik et al., 2022). In

contrast, although several bacteria and respiratory viruses have been implicated as potential RA

disease triggers, no single pathogen stands out (Joo et al., 2019). Multiple RA studies suggest that

mucosal surfaces, particularly the periodontal region, lung and gut, may be sites of inflammation and

potential generation of RA-related autoimmunity in the preclinical period of the disease (Deane et al.,

2017). Whether the pathogens that trigger MS and RA today were present to the same extent in

ancient times is unknown.
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HLA-DRB1*15:01 has been associated with some protection against tuberculosis (Tervi et al., 2022),

while HLA-DRB1*04:01 has been suggested to be associated with better outcomes in, e.g., hepatitis

C virus (HCV) (Hydes et al., 2015), Hepatitis B virus (HBV) (Yan et al., 2012), and SARS-CoV-2

infections (Langton et al., 2021) in people of European descent, and with strong immune responses to

influenza peptides (Danke & Kwok, 2003).

Figure S51. Modern prevalences of RA.

Modern-day geographical distribution of RA prevalence in Eurasia and North Africa. Prevalence data
for RA (cases per 100,000) was obtained from Safiri et al. (2019).
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Figure S52. Association between genome-wide Steppe ancestry, MS prevalence and DRB1*15:01
frequency in modern populations in the UK Biobank.
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Figure S53. Ancient and modern prevalences of HLA-DRB1*04:01 (rs3817964).

Top: Ancient distributions of HLA-DRB1*04:01, the largest genetic risk factor in RA. Average
frequency across all populations is shown (blue line, 10 time bins) as well as the Bronze Age (red
shading).
Bottom: Modern distribution of HLA-DRB1*04:01 in Eurasian and North African populations in the
UK Biobank. NB the tag SNPs may be less effective at tagging these types in non-European
populations, so we urge caution in interpretation - especially in African populations.
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Figure S54. Modern prevalences of MS.

Modern-day geographical distribution of MS prevalence in Eurasia and North Africa. Prevalence data
for MS (cases per 100,000) was obtained from Atlas of MS, third edition (2020).
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Methods

Pleiotropic trait analysis

To investigate possible selective pressures driving these signals, we analysed the pleiotropic

pathogen- and/or infectious disease-associated effects of alleles found to have been under positive

selection (Supplementary Note 6) in each of the four ancestry paths and the pan-ancestry path by

systematically searching for associations in existing literature in PubMed, the UK Biobank, and the

Finngen Biobank.

We observed three main types of protective links: (i) to distinct pathogens, e.g., herpes simplex virus

(HSV), or their associated diseases, e.g., chickenpox, which is caused by varicella zoster virus (VZV),

(ii) to diseases affecting specific systems, e.g., respiratory infections, or, (iii) to distinct diseases

caused by nonspecific parasites, bacteria, fungi or viruses in, e.g., the skin and subcutis. These SNP

associations are shown in ST11 and ST12.

Our analyses had several limitations. We cannot identify alleles associated with protection against

pathogens known to have exerted strong selective pressures on human populations throughout history

for which no GWAS data exists, e.g., plague and smallpox. Neither is robust GWAS data available

that identify alleles associated with protection against pathogens which we currently vaccinate most of

the populations against, e.g., mumps, rubella, measles, H. influenza and polio. Moreover, some studies

are small, and some SNP associations might differ between ethnicities (for example due to different

LD patterns between populations). As a result, many of these associations are suggestive rather than

conclusive and may be limited to European populations.
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Results

Pleiotropic trait analysis of SNPs associated with multiple sclerosis

We identified 32 selected MS SNPs (ST8, ST11); of these, six (6/32, 19%) were not associated with

protection against any specific pathogen or infectious disease. Two of these seven selected SNPs were

associated with positive selection of the risk allele for MS. In many of these cases, SNPs were

associated with, e.g., decreased risk of diabetes type I and coeliac disease (rs3134931; OR 0.750 and

0.818, respectively), coeliac disease and malabsorption (rs3806156; OR 0.658 and 0.672,

respectively), diabetes and coeliac disease (rs9368699; OR 0.339 and 0.308, respectively), which

suggests the presence of potentially strong, non-infectious selective forces.

We observed shared protective alleles when considering Epstein-Barr Virus (EBV). 1/32 positively

selected SNPs (~3%) were associated with a lower risk of EBV-associated disease: this conferred

protection to both EBV and HSV in ANA (rs2735076; HLA-A).

Overall, 4/32 SNPs (~13%) were linked to protection against cellulitis and/or abscesses in different

body parts, usually encompassing arms, hands, legs, feet and toes (ST11) (rs2735076, HLA-A, ANA

path; rs9261588, TRIM26, WHG and pan-ancestral paths; rs1077667, TNFSF14, ANA path;

rs1794275, ANA and WHG but in opposite directions). For each SNP there were additional links to

protection against different pathogens and/or diseases such as herpes simplex virus (HSV), keratitis

and keratoconjunctivitis (rs1794275), HSV and EBV (rs2735076), and retrovirus infection

(rs9261588).

This analysis revealed two protective alleles against the mumps virus (MuV) (rs2070600, AGER,

WHG and EHG paths; rs241447, HLA-DOB, WHG and EHG paths). Both SNPs were also associated

with protection against a range of other pathogens.

Four of the 32 SNPs (~13%) were associated with protection against chickenpox or shingles (caused

by varicella zoster virus (VZV)) and each were found in unique genes. One SNP was selected

exclusively in the CHG path (rs7747873, HLA-E), one in the EHG, WHG and CHG paths (2735046,

HLA-F), one in the WHG, and pan-ancestral paths (rs17576984, PGBD1), and one in the CHG path

(rs9266773, MICA). Whereas no other protective effects were associated with rs17576984, the other

four SNPs were associated with protection against other non-specific or specific pathogens or

diseases, e.g., coronavirus, viral infections, pyogenic arthritis, sexually transmitted diseases

(rs9266773, MICA).
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One SNP was associated with protection against influenza or influenza and pneumonia: rs210131 was

exclusively selected in the EHG and pan-ancestral paths (rs210131, BAK1).

Two SNPs were associated with protection against streptococcus pneumonia: one in WHG

(rs9296015, NOTCH4), and one in WHG and the pan-ancestry paths (rs3129934, TSBP1). Several

SNPs were associated with protection against non-specific viral or bacterial pneumonia (ST11).

Three SNPs were associated with protection against non-specific or specific parasites, and some had

additional protective effects against viruses and/or bacteria or broadly against infection regardless of

associated pathogen. One parasite-associated protective SNP was observed in the WHG and EHG

paths (rs241447, HLA-DOB), one in the WHG path (rs7200786, CLEC16A; specifically protective

against helminths), and one SNP was shared between the ANA and EHG paths (rs757260, TRIM40).

We found four selected SNPs were linked to protection against gastrointestinal infections; two of

these were specifically linked to protection against clostridium difficile in CHG and the pan-ancestry

paths (rs416622, HLA-DOA) and in the ANA path (rs1077394, APOM). Moreover, one SNP was

protective against bacterial enteritis in CHG and WHG (rs9268530, BTNL2) and one against

intestinal infections in the WHG and EHG paths (rs241447, HLA-DOB). One SNP was protective

against spirochetes in WHG (rs2248372, HCP5, MICB); no protective SNPs were found against

spirochetes in the RA analysis.

One MS-risk SNP was associated with protection against cytomegalovirus (CMV) infection

(rs12210887, NEU1). This protective allele was selected in the WHG and pan-ancestry paths.

We found several SNPs linked to protection against pneumonia caused by streptococcus (n=2,

rs9296015, NOTCH4, WHG and rs3129934, TSBP1, WHG and pan-ancestral paths). One SNP was

associated with protection against infection with mycobacteria, including Mycobacterium tuberculosis

in the WHG path (rs4902647, ZFP36L1). Overall, most of the associated SNPs allowed for protection

against pathogens/diseases affecting the respiratory system, the gastrointestinal tract, and genitalia. A

complete list of SNP associations is available in ST11 and are outlined in Extended Data Figure 9.1.

Pleiotropic trait analysis of SNPs associated with rheumatoid arthritis
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We identified 55 selected RA SNPs (ST9, ST12); 17 (31%) were not associated with protection

against any specific pathogen or infectious disease (ST12). Seven of these 17 selected SNPs were

associated with positive selection of the risk allele for RA in EHG, WHG, ANA, or CHG. SNPs were

associated with e.g., a reduced risk of thyrotoxicosis (OR 0.889), intestinal malabsorption (OR 0.722),

and celiac disease (OR 0.691) (rs2294880, BTNL2, WHG), or a lower risk of malabsorption (OR

0.608, rs9380260, MICB, CHG) and celiac disease (OR 0.628, rs9380260, MICB, CHG). In the other

12 cases, the selected variant alleles decreased the risk of RA. As RA could also develop in ancient

times (Entezami et al., 2011), the disease itself and the impaired ability to combat other infections

caused by RA-associated inflammation (Listing et al., 2013), would likely impose a negative selective

pressure on the risk alleles as it would negatively impact the affected person's chances of survival.

In the RA analysis, two protective alleles against HSV were selected in the WHG path (rs72887765,

RGL2), and the ANA, CHG, EHG, WHG and the pan-ancestral paths (rs9927316, LINC02132).

One RA-associated SNP was linked to a lower risk of EBV infection (1/55 SNPs, 2%) resulting in

infectious mononucleosis (rs3130062, ATP6V1G2), and positive selection was only identified in the

WHG and pan-ancestry paths.

The RA selection analysis included one protective allele against MuV (rs404860, NOTCH4) in the

ANA, CHG and the pan-ancestry paths. This SNP was different from the protective SNPs found in the

WHG and EHG paths in the MS selection analysis.

Six RA-risk SNPs were associated with protection against cellulitis and abscesses and were also

linked to a reduction of the risk of several other pathogens and diseases. One SNP was linked to broad

protection against bacterial and parasitic diseases and was found in the EHG and WHG paths

(rs3130192, HLA-DPA1). One SNP was linked to a decreased risk of dermatophytosis and erysipelas

and was selected in the WHG path (rs3087243, CTLA4). Postdysenteric arthropathy typically

manifests after a bacterial gastrointestinal infection. Two SNPs were selected in either the WHG and

pan-ancestry paths (rs2240069, TRIM31), or only in ANA (rs1953126, PHF19); these also decreased

the risk of viral hepatitis in pregnancy and during the puerperium (rs2240069, TRIM31) or

bronchopneumonia and lung abscesses (rs1953126, PHF19). Of the two SNPs selected in the WHG

path, one also protected against meningitis and other infections caused by Neisseria meningitidis

(rs8075737, NEUROD2). One SNP was selected in the ANA and pan-ancestry paths and protected

against sexually transmitted diseases and optic neuritis (rs3130182; HLA-DPB1) and one SNP

selected in WHG decreased the risk of puerperal infections, i.e infections during childbirth and during

the subsequent 6 weeks thereafter (rs2301888, PADI6).
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We observed one selected SNPs associated with protection against measles. This was selected in

EHG, CHG, ANA and the pan-ancestry analysis (rs707939, MSH5).

Five SNPs were associated with protection against VZV-associated disease (9%). Of these SNPs, one

was only associated with protection against VZV and was observed in the CHG path (rs2523668,

MICB), while the rest also have been associated with protection against other pathogens/diseases. One

was selected in the CHG, EHG and pan-ancestry paths (rs4713242, HLA-F), and was broadly

protective against several viruses (e.g., viral haemorrhagic fevers and coronavirus). One SNP was

found in the EHG path (rs1265096, PSORS1C2), and one in the CHG, EHG, ANA and pan-ancestry

paths (rs6902493, CYP21A2). None of the VZV-protective SNPs in the MS and the RA analyses

overlapped.

Two SNPs were protective against tuberculosis; one was only selected in the ANA path (rs7764777,

HLA-G) and one was selected in the EHG, CHG, ANA and the pan-ancestry paths (rs2596543,

MICA). This latter SNP is also associated with protection against candida infections. One SNP was

associated with protection against pneumococcal pneumonia and was shared between the ANA and

WHG paths (rs2856822, HLA-DPA1). One SNP was associated with protection against

asthma-related pneumonia, and was selected in the ANA path (rs9262138, DHX16). One SNP was

associated with protection against asthma-related acute respiratory infections in ANA, CHG and the

pan-ancestry paths (rs404860, NOTCH4).

Five SNPs were associated with protection against parasites; all of these had additional protective

effects against bacteria and possibly viruses and fungi (ST12). Two were also associated with

protection against some sexually transmitted diseases, including one also protecting against influenza.

All but one of the parasite-protective alleles were exclusively selected in one population path: EHG

(rs876938, PRXL2B and rs1042663, CF8), and WHG (rs3128947, HLA-DOA and rs2894381,

HLA-DQ2). The one shared SNP was selected in the EHG and WHG paths (rs3130192, HLA-DPA1).

Two SNPs were linked to protection against viral hepatitis; the first SNP was associated with

protection against hepatitis A, B and C virus and was selected in CHG (rs7383287, HLA-DOB). This

was also associated with protection against clostridium difficile and the latter against a vast range of

pathogens. The second was associated with protection against other forms of viral hepatitis

(rs2240069, TRIM31) and was selected in the WHG and pan-ancestry paths. One SNP was associated

with protection against arthropod-borne and other viral haemorrhagic fevers and was selected in the

EHG, CHG and pan-ancestry paths (rs4713242, HLA-F).

104



We found one selected SNP was linked to protection against gastrointestinal infections; this was

specifically linked to protection against clostridium difficile in CHG (rs7383287, HLA-DOB), and

also offered protection against several other pathogens.

Overall, we found that 38 of the 55 (69%) RA-risk SNPs were associated with specific pathogens

and/or diseases. Of these 38 SNPs, many were associated with pathogens or diseases linked to

mucosal surfaces in the mouth, respiratory tract, or with pathogens which first replicate in the

respiratory tract (e.g., measles (Lin et al., 2021), mumps (Katoh et al., 2015), EBV (Egan et al., 1995),

VZV (Zerboni et al., 2014)), to gastrointestinal infections caused by parasites, bacteria or viruses, to

urinary tract infections, or to infections in the genital tract. A complete list of SNP associations is

available in ST12 and are outlined in Extended Data Figure 9.1.
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Discussion

The SNPs associated with the risk of MS or RA under selection were often linked to protection

against the same pathogens or diseases, e.g. EBV, HSV, VZV, mumps, acute respiratory infections,

tuberculosis, viral hepatitis, cellulitis and abscesses and sexually transmitted diseases/genital

infections. Some protective alleles were linked to a single pathogen or disease while others were

associated with several pathogens and/or diseases. The observation that the MS and RA risk SNPs in

most cases were linked to the same pathogens and/or diseases suggests that we have identified some

of the significant infectious challenges encountered by ancient Bronze Age populations (Extended

Data Figure 9.1).

Within the MS and RA analyses, we often identified protective SNPs in different genes selected for by

the same pathogen(s)/diseases within the same or different ancestry paths. We also observed some

shared SNPs between ancestral paths that were selected by the same pathogen(s)/disease. However,

the number of MS- and RA-associated SNPs linked to protection against a given pathogen or disease

could vary significantly.

In the MS analysis, one EBV-protective SNP was observed (~3% of all SNPs), in the ANA path

(rs2735076; HLA-A). In the RA analysis, one SNP (~2% of all SNPs) was linked to a lower risk of

EBV infection (rs3130062, ATP6V1G2) and positive selection was identified in the WHG and

pan-ancestry paths. This result suggests that adaptation to decrease the risk of infection by a given

pathogen - or the risk associated with a given disease once infected - can occur through modifications

of genes affecting multiple different immune response pathways which might haphazardly increase or

decrease the risk associated with a given autoimmune disease. In some populations, this adaptation

increases or decreases the risk of MS or RA through one or several immune pathways; in other

populations, the risk is increased or decreased through changes in different immune pathways or

combinations of pathways. The population structure of EBV correlates with the genetic ancestry of

infected populations and EBV diversification has been found to be shaped by host immune responses

(Wegner et al., 2019).

It is perhaps surprising that MS-associated risk SNPs can be associated with protection against EBV, a

significant risk factor for MS, especially if people are infected after puberty (Bjornevik et al., 2022). It

is tempting to speculate that the protective effects of some of these allele variants might be

age-dependent, but no data exists to prove or disprove the suggestion.
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Distinct protective mumps alleles were found in the MS and RA analyses in the pan-ancestry path and

in the CHG or ANA paths, respectively. Accurate estimates of the origin of mumps are not available

at present, but Hippocrates described an outbreak of mumps on the Greek island of Thasos at

approximately 2432 YBP, suggesting that the selective pressure from mumps could have been

significant even earlier, and that mumps was not endemic in the Bronze Age but occurred as local and

severe outbreaks.

The many unique SNPs within the different populations associated with protection against the same

pathogen or disease(s) suggest that population-specific adaptations were common. In the MS selection

analysis, we found one SNP linked to protection against HSV in the ANA path (rs2735076, HLA-A).

In contrast, in the RA analysis, two SNPs were linked to protection against HSV and were selected in

the ANA, CHG, WHG, EHG and pan-ancestry paths (rs9927316, LINC02132-LINC01082), and in

the WHG (rs72887765, RGL2) path. The HSV-protective SNPs in the RA analysis were different

from the one observed in the MS analysis. These results suggest that HSV circulated in all the

analysed Bronze Age populations. Phylogenetic analyses have estimated that the European lineage of

HSV originated approximately 5000 years before the present (YBP) (Guellil et al., 2022). This result

suggests that the Bronze age lifestyles, increased population densities and population dispersals

resulted in an increased incidence of HSV facilitating the generation of a European HSV lineage.

In the MS selection analysis, four of the 32 SNPs (~13%) were associated with protection against

chickenpox or shingles/zoster (caused by VZV) and each were found in unique genes. One SNP was

selected exclusively in the CHG path (rs7747873, HLA-E), one in the WHG and CHG paths

(rs2735046, HLA-F), one in the EHG, WHG, and pan-ancestral paths (rs17576984, PGBD1), and one

in the CHG and ANA path (rs9266773, MICA). Similarly, in the RA analysis, five SNPs were

associated with protection against VZV-associated disease (9%). Of these SNPs, one was only

associated with protection against VZV and was observed in the CHG (rs2523668, MICB) path, while

the rest also have been associated with protection against other pathogens/diseases. The percentage of

protective SNPs against VZV was higher than against any other specific pathogen in both the MS

(4/32, 13%) and RA (5/55, 9%) analyses, making it tempting to speculate that the selective pressure

on the Bronze Age populations from this virus might have been especially strong. VZV appears to be

a uniquely human pathogen as no animal reservoir has been identified. Although VZV might have

migrated with modern humans out of Africa, the greatest diversity is found in Europe and the VZV

strains currently in existence seems to have originated in Europe about ~5000 years ago (Weinert et

al., 2015; Pontremoli et al., 2019), i.e. during the Bronze age.

Our results highlight that interrogating SNPs associated with only one autoimmune disease risk can

thwart the understanding of virus selection pressures in the analysed populations. We found no
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overlap between the many EBV- and VZV-associated protective SNPs in the MS and RA selection

analysis.

Among the MS-risk SNPs, no protective alleles were found against measles (measles morbillivirus

(MeV)).   In contrast, among the RA-risk SNPs we identified one MeV protective SNPs in the EHG,

ANA, CHG, and the pan-ancestry paths (rs707939, MSH5).

MeV is an exclusively human pathogen, and it is assumed, though not formally established, that it

results from a spill-over from cattle infected with Rinderpest morbillivirus (RPV). MeV and RPV are

closely related to Peste des petite ruminants virus (PPRV), which primarily infects wild and domestic

goats and sheep, bharals, ibexes, and gazelles, but can cause infections in other hosts like camels and

dogs (Dou et al., 2020). Phylogenetic analysis has estimated that the divergence between PPRV and

the Mev/RPV ancestor happened at approximately 5221 YBP (95% HPD: 6655 - 3923 YBP),

coinciding with an increase in pastoralism (Dux et al., 2020). The divergence between MeV and RPV

is estimated to have occurred at about 2530 YBP (95% HPD: 3196 - 2187 YBP) (Dux et al., 2020).

These estimates are calculated based on very few old MeV sequences and are uncertain. Although

RPV primarily infects cattle, it also can infect humans. As the host range of the common ancestor to

MeV/RPV is unknown, selective pressure from morbillivirus on ancient populations might predate the

MeV/PRV split. Nevertheless, these results suggest that MeV, and possible other morbilliviruses,

might have exerted a selective pressure on human populations since ~5000 YBP, and for sure since

2500 YBP, which is in line with the MeV-associated protective alleles identified in our RA-risk SNP

analysis.

In the MS analysis, we observed a SNP linked to protection against spirochetes. It is unlikely to have

been positively selected because it protects against syphilis; this disease is caused by treponema

pallidum and the prevailing, but unproven, theory is that syphilis was brought into Europe (Naples,

Italy) in 1493 AD by the ship from the New World (America). However, new studies have

demonstrated a high diversity in the treponema pallidum family in Europe during the last ~1500 years

and have estimated the origin of the European lineages at approximately 5000 YBP (Majander et al.,

2020). Moreover, the spirochete protective SNP could also, or only, have been selected to combat

Borrelia burgdorferi, a bacteria transmitted to humans through the bite of infected ticks causing Lyme

disease.

We observed one SNP that exclusively protected against infection with mycobacteria including

tuberculosis in WHG in the MS selection analyses (rs4902647, ZFP36F1) and one weakly protective

allele against respiratory tuberculosis in the RA selection analysis which was selected in the EHG

path (rs2596543, MICA). MICA has been demonstrated to be involved in the immune response to
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several bacterial infections apart from tuberculosis; these include brucellosis and listeriosis (Das et al.,

2001).

HLA DRB1*15:01 is associated with protection against TB in European populations but not in other

ethnic groups (Tervi et al., 2022). Studies have suggested a Neolithic emergence of the

Mycobacterium tuberculosis complex (Bos et al., 2014; Sabin et al., 2020), with a particularly strong

disease burden in the last 2,000 years (Kerner et al., 2021). TB can be transmitted through respiratory

aerosols and humans can contract zoonotic TB from cattle (Mycobacterium bovis) through

consumption of unpasteurised milk and handling sick animals (Gompo et al., 2020). Human TB can

also, but less frequently, infect cattle (Lombard et al., 2021). Cold climate, overcrowding, and

consumption of unpasteurized milk is known to facilitate transmission and lack of UV light and

Vitamin D can increase the risk of TB reactivation (Fares 2011).

HLA DRB1*04:01 is associated with increased risk of RA and with better outcomes in, e.g., hepatitis

C virus (HCV) (Hydes et al., 2015), Hepatitis B virus (HBV) (Yan et al., 2012), and SARS-CoV-2

infections (Langton et al., 2021), and with strong immune responses to influenza peptides (Danke &

Kwok, 2003). We have found that RA risk was greatest in WHG and EHG and that the overall risk of

RA has been under negative selection since the Bronze Age. It might be important to underscore that

we estimate genetic risk in WHG and EHG, not disease incidence. While the genetic risk in WHG and

EHG was high, their exposure to several respiratory or gastrointestinal pathogens linked to triggering

RA was probably low. Consequently, their high genetic risk likely did not necessarily translate into

high disease frequencies because of a lack of exposure to pathogen triggers. However, when these

genetic risk factors were then present during the Bronze Age, the increased population sizes and the

associated increased risk of transmission of ‘crowd diseases’, e.g., influenza, coronavirus infections,

measles and morbilli, suddenly increased the risk of triggering RA pathogenesis. The inflammatory

immune responses linked to RA pathogenesis have been estimated to approximately double the risk of

a serious outcome of subsequent infections (Listing et al., 2013). Consequently, the effect of novel

lifestyles during the Bronze Age might have resulted in a negative selection of alleles conferring a

genetic risk of RA.

We found that most of the RA-risk SNPs linked to protection against pathogens and/or infectious

diseases were protective against pathogens and/or diseases infecting mucosal surfaces. This result is

somewhat surprising as multiple RA studies suggest that mucosal surfaces might be sites of

inflammation and potential generation of RA-related autoimmunity in the preclinical period of the

disease (Deane at al., 2017). However, this adaptation pattern to pathogens that might be disease

triggers is in line with our observation that two MS-associated risk SNPs are also associated with

protection against EBV, a major environmental MS risk factor. It is tempting to speculate that our RA
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results might reflect host adaptation in genes related to RA-risk that aim to reduce the risk of infection

or serious illness by pathogens that might trigger RA. If this speculation is correct, then some of the

SNPs linked to protection against a given pathogen might reveal which pathogens are most likely to

trigger autoimmune disease. Determining whether these speculations are correct will require further

studies.

Several SNPs were associated with protection against bacterial and viral pneumonia. One SNP was

associated with protection against influenza in the MS analysis in the EHG and pan-ancestry paths,

and one was identified only in WHG in the RA analysis. None of the SNPs selected in the MS and RA

analysis overlapped.

The MS and the RA selection analyses revealed several protective alleles against parasites within

many population paths suggesting that parasites exerted strong selective pressure on each population.

None of these SNPs were overlapping between the MS and RA analyses. Likewise, several SNPs

were associated with cellulitis and abscesses within the MS-risk SNPs (n=4), and within the RA-risk

SNPs (n=6), but none overlapped. Cellulitis and abscesses are usually caused by bacteria, typically

staphylococcus or streptococcus, that enter the skin and subcutaneous tissue through cuts and

abrasions. Such lesions are likely to occur frequently, and our results suggest that strong selective

pressures acted on reducing the harmful effects of these bacterial infections.

We found protective alleles against unique pathogens or diseases among the MS-risk and the RA-risk

SNPs. The unique specific pathogens or diseases found among the MS-risk SNPs included

streptococcus pneumonia (rs9296015, NOTCH4, WHG; rs3129934, TSBP1, WHG and pan-ancestry

paths) and spirochetes (rs2248372, HCP5, MICB, WHG). Among the RA-risk SNPS, three SNPs

reduced the risk of unique diseases or pathogens: pneumococcal pneumonia (rs2856822, HLA-DPA1,

ANA, WHG), Entamoeba histolytica (rs3128947, HLA-DOA, WHG), and meningococcal infection

(rs8075737, NEUROD2, WHG). Entamoeba histolytica causes amebiasis or amebic dysentery; today

about 1/500 recorded infections are fatal.

Our analysis of MS- and RA-risk SNPs suggests that the growing population sizes and extensive

population dispersals of the Bronze Age likely facilitated zoonosis (e.g., possibly MeV) and disease

transmission of e.g., HSV and VZV. The infectious challenges from new pathogens and the more

intense spread and exposure to old pathogens, e.g. through overcrowded living conditions, the use of

manure and human waste as fertilisers and consumption of unpasteurised dairy products, likely

resulted in the selection of strong anti-parasite Th2 responses and strong antiviral and antibacterial

Th1 responses. Because Th2 responses hamper the efficiency of Th1 responses, an increase in the

strength of the former will necessitate an increase in the latter if survival is to be ensured. While the
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immune response adaptations during the Bronze Age facilitated survival, today, in places with, e.g.,

better hygiene and less exposure to parasites, these strong immune responses can misfire and result in

autoimmune diseases.
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