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We present Hall effect measurements on MnSi/Si(111) epilayers and find an anomalous Hall
contribution that is significantly smaller than in bulk crystals, which enables the observation of an
additional contribution to the anomalous signal previously overlooked in MnSi. Our measurements
indicate the signal is not due to skyrmions in MnSi thin films, which are absent in out-of-plane fields,
but rather are the result of scattering from the cone phase. The absence of magnetic contrast in the
transmission electron microscopy (TEM) measurements are consistent with this interpretation. We
provide a method to model TEM images of skyrmions lattices to determine the conditions necessary
for their observation in other B20 epilayers with an anisotropy that is favourable to their formation.

PACS numbers: 73.50.Jt, 75.25.-j, 75.30.-m, 75.70.Ak

I. INTRODUCTION

Chiral interactions in magnetic systems are unique
in their ability to stabilize 2-dimensional (2D) solitons
known as skyrmions, as first predicted by Bogdanov et
al.1,2. The potential for these self-assembled magnetic
nanostructures to be exploited in spintronic devices3–5

with high mobility6 currently makes them a topic of
great interest. Investigations of the chiral B20 family
of crystals have played a prominant role in the study of
skyrmions. Skyrmions are observed in bulk B20 crystals
in a small pocket of the phase diagram near the order-
ing temperature, referred to as the A-phase7–10. In con-
trast, nanostructures are found to provide important in-
teractions by way of finite size effects, surface states11,12

and anisotropy13–15 that stabilize skyrmions over a broad
temperature and field range. Examples include me-
chanically thinned crystals16–18, epitaxial films19–21, and
nanowires22.

As conduction electron spins adiabatically follow the
local magnetization of the skyrmions, they acquire a
Berry phase that acts as an effective magnetic field,
Beff

23,24. Since Beff is typically greater than 10 T 25,26,
this can lead to an appreciable topological Hall effect
(THE). The appearance of a THE in the A-phase27 of
bulk MnSi has led to the notion that a THE is proof
of the existence of skyrmions. One of the difficulties
with making such a conclusion is that there are many
physical phenomena that give rise to Hall effects and the
extraction a topological contribution amongst other con-
tributions can be difficult. In this Paper, we argue that
scattering from the cone phase produces a Hall resistance
in MnSi/Si(111) epilayers that has previously been mis-
interpreted as a THE from skyrmions.

Li et al. present Hall effect and Lorentz microscopy
measurements of MnSi thin films grown on Si(111)
substrates28. From this data, they conclude that the
ground state structure is helimagnetic with an in-plane
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FIG. 1. (Color on-line) Some of the possible chiral magnetic
states in B20 magnets in out-of-plane magnetic fields: (a)
distorted helix (helicoidal phase), (b) skyrmion lattice phase,
(c) cone phase.

propagation vector (Fig. 1(a)) and that skyrmions are
produced in out-of-plane magnetic fields (Fig. 1(b)).
These results are in contradiction with several papers on
this material system29. Two complementary polarized
neutron reflectometry measurements30,31 and SQUID
magnetometry30 determine that the ground state heli-
cal structure propagates along the the out-of-plane [111]
direction as a result of an easy-plane uniaxial anisotropy,
the demagnetizing field and the exchange anisotropy32.
In out-of-plane magnetic fields, there are no first-order
magnetic phase transitions that would signal the appear-
ance of skyrmions. This result is explained by theoret-
ical analysis that shows the easy-plane anisotropy sup-
presses skyrmions in out-of-plane magnetic fields and
makes the cone phase (Fig. 1(c)) the thermodynamically
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stable phase over the entire out-of-plane magnetic phase
diagram15.

In order to address the discrepancy, we performed
Hall effect measurements of MnSi/Si(111) and simu-
lated transmission electron micrographs of the skyrmions
phase. We present Hall effect data in section III with
an interpretation that is consistent with measurements
of both thin films and bulk crystals. This has im-
portant implications not only for other B20 epilayers,
including FeGe/Si(111)20,33, Fe1−xCoxSi/Si(111)25,34,35

and Mn1−xFexSi/Si(111)36 and MnGe/Si(111)37, but for
bulk chiral magnets as well. In section IV we present
calculations of the magnetic contrast produced in TEM
images of skyrmions in thin films under optimal image
conditions. These calculations provide a simple means
of determining the material parameters necessary to ob-
serve skyrmions by TEM and at the same time reinforce
our interpretation of the Hall effect data.

II. SAMPLE PREPARATION

MnSi thin films were grown with a thickness that
ranged between d = 12.7–38.8 nm. The films were
grown by molecular beam epitaxy on insulating Si sub-
strates (resistivity ρ > 50 Ωm), as described in Ref.
30, and were capped with a protective 20 nm thick
amorphous Si layer. The four-probe resistivity mea-
surements were done on pattern Hall bars with gold
wire leads attached with indium solder. The samples
were prepared by photolithographic patterning using
SPR220 3.0 photoresist and were either wet-etched with
a 45:35:15 acetic:nitric:hydrofluoric acid mixture, or were
dry-etched with a 2 keV Ar-ion gun. The residual resis-
tivity ratios of the samples presented in Sect. III were
26.7 and 34.5. Plan-view and cross-sectional TEM spec-
imens were prepared by low-angle mechanical polishing
as described in Ref. 38.

III. HALL EFFECT

A. Standard Phenomenological Model

The Hall effect in magnetic materials is typically bro-
ken into three terms. The diagonal component of the
resistivity tensor,

ρyx = ρOyx + ρAyx + ρTyx (1)

includes contributions from the ordinary Hall effect ρOyx,

as well as the anomalous ρAyx and the topological ρTyx con-
tributions. The ordinary contribution due to the Lorentz
force ρOyx = µ0R0H is expressed in terms of the Hall co-
efficient R0 and applied magnetic field µ0H. The anoma-
lous contribution,

ρAyx = ρext
yx + ρint

yx , (2)

is separated into extrinsic and intrinsic contributions and
is usually assumed to be linear in the out-of-plane compo-
nent of the magnetization M . The extrinsic term ρext

yx =

αρxxM + βρ2
xxM is composed of the skew scattering39,

parametrized by α, and side jump scattering40 described
by the coefficient β. Until recently, elastic and inelastic
scattering were considered to contribute equally to ρyx,
which is not true in general41. The elastic component can
be separated out by expressing the scattering in terms of
the residual resistivity ρ0 = ρxx(H = 0, T = 0). The
skew scattering is then described by,

ρskew
yx = (α0ρ0 + α1(ρxx − ρ0))M, (3)

which is parameterized in terms of the temperature in-
dependent coefficients α0 and α1. A similar decomposi-
tion of the side jump contribution ρsjyx is also necessary
in general. Although the role of inelastic scattering re-
mains an open question42, there is evidence to suggest
that phonon contributions are small relative to defect
scattering41,43,44. In the MnSi thin films, however, an
inelastic term seems necessary as discussed below.

The original work of Karplus and Luttinger45 on the
intrinsic origin of the Hall effect can be interpreted in
terms of a Berry phase effect46. Due to the differences
in topology of the Fermi surface for up and down spins,
the Berry phase that the electrons acquire in momentum-
space leads to an anomalous velocity responsible for an
intrinsic contribution to the AHE. This contribution is
given by ρint

yx ∼ ρ2
xxM in Ref. 45. The sensitivity of the

intrinsic mechanism to the Fermi level is reflected in its
temperature dependence47. Equations (1) - (3) and ρint

yx

together with measurements of ρxx(H,T ) and M(H,T )
can be used to fit the ρyx data to determine the corre-
sponding coefficients. In the case of bulk MnSi crystals,
Lee et al. 48 are able to fit their data to ρAyx = SHρ

2
xxM

with a temperature independent SH -parameter. For
their samples, which have a residual resistivity ratios in
the range of 40 to 80, they find that a skew scattering
contribution is negligible, and argue that ρAyx is due only
to intrinsic scattering.

In the case of epitaxial films where the residual resistiv-
ity ratios are lower, defect scattering cannot be ignored.
Ab initio calculations recently demonstrated that side-
jump and intrinsic contributions can be comparable in
size49. Since, ρsjyx and ρint

yx have the same functional form
independent of scattering rate, it is very difficult to sepa-
rate these contributions experimentally and therefore we
group them into one term, ρint,sj

yx = ρint
yx + ρsjyx,

ρint,sj
yx = b(T )ρ2

xxM, (4)

and do not attempt to separate the elastic from the in-
elastic contribution to ρsjyx.

A small THE is found in the A-phase of MnSi27, but
was found to be an order of magnitude larger at high
pressure50. This discrepancy was found to be due to
the difference in temperatures of the A-phases in MnSi
under ambient and high pressure, as demonstrated by
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field cooling MnSi at ambient pressure through the pre-
cursor region26. This field cooling approach is able to
catch metastable skyrmion lattices in a low temper-
ature state15, as demonstrated in magnetic force mi-
croscopy measurements of (Fe,Co)Si51. The THE due
to skyrmions,

ρTyx ' PR0Beff , (5)

depends on the polarization of the conduction electrons,
P , and the effective magnetic field Beff = ns(h/e) given
by the skyrmion winding number density23:

ns =
1

4π
n ·
(
∂n

∂x
× ∂n

∂y

)
, (6)

where n is the local direction of the magnetization. The
integral of this quantity over the skyrmion unit cell gives
the topological charge, which is -1 for skyrmions.

B. Experiment

Data were collected on a Physical Properties Measure-
ment System (PPMS) system (made by Quantum De-
sign) over a temperature range of 2 - 300 K in fields
up to 9 T. Because of the non-zero susceptibility above
the saturation field, it is very difficult to separate ρOyx
from ρAyx. For bulk crystals, Lee et al. obtain a value of

R0 = 7.32 × 10−11 Ωm/T from a fit to their data with
ρyx(H) = ρOyx + SHρ

2
xxM . Whereas the slope ρyx(H)

provides a second estimate of R′0 = 17 × 10−11 Ωm/T
at a temperature T = 2.8 K that is reported to be more
consistent with the interpretation of the topological Hall
effect52.

In order to parametrize the high-field behavior of our
samples, we fit ρyx between µ0H = 7.5 and 8.5 T, far
above the saturation field (HC2), and assign the slope to
the ordinary Hall coefficient R′0 and the intercept to the

anomalous Hall contribution at high field, ρA
′

yx. We adopt
a prime notation here to indicated parameters extracted
from the behavior well above HC2. Figure 2 shows the
temperature dependences of R′0 and ρA

′

yx. The ordinary
contribution is comparable to the bulk value R′0 = 17 ×
10−11 Ωm/T 52. However, the anomalous contribution
dips near the Curie temperature (TC ' 42 K, Ref. 21),
with a value that is approximately 2− 3 times smaller in
magnitude than the dip ρA

′

yx ' −1.5× 10−9 Ωm found in

bulk MnSi48.
We use the dependence of ρA

′

yx on resistivity to gain
some insight into the minimum phenomenological model
necessary to fit the data for magnetic fields that are much
higher than the fields where any contribution from a
nonuniform magnetization might be present. In Fig. 3
we plot the quantity ρA

′

yx/M versus ρxx, where the value
for the magnetization at µ0H = 9 T is estimated from an
extrapolation of the SQUID data between 3 and 5 T (see
Fig. 10). If the Hall signal were predominantly due to de-
fect and intrinsic/side-jump scattering, the data would
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FIG. 2. (Color online) Temperature dependence of Hall effect
for d = 25.4 and 38.8 nm thick MnSi films. The inset shows
the Hall resistivity for the d = 25.4 nm sample measured
at T = 30 K. The Hall resistivity is parameterized by the
intercept (a), and slope (b) of the Hall resistance determined
at fields above µ0H = 7.5 T.

have parabolic distribution centred about ρxx = 0 (as-
suming b(T ) is constant). The approximately linear de-
pendence on ρxx for lower ρxx values requires the α1 term
in Eq. (3) to fit the data. As shown in the analysis be-
low, b(T ) is relatively small except at the lowest tem-
peratures. The curvature in the data reflects either an
intrinsic and/or a side jump contribution.

Complications arise at lower fields where ρOyx+ρskew
yx +

ρint,sj
yx is insufficient to fit the Hall data. Below the crit-

ical field HC2, the system transitions continuously from
the field induced ferromagnetic state into a conical phase.
The failure of this standard phenomenological model in
the cone phase is reflected in a plot of (ρyx−ρOyx)/M ver-

sus M2 in Fig. 4. The filled points correspond to fields
below the saturation field, HC2. In this field range, the
ρxx does not vary appreciably (see Fig. 9) and there-
fore Fig. 4 should be approximately a straight line if the
anomalous contribution followed the standard assump-
tion, ρAyx ∼ M . The linear behavior of Fig. 4 reflects

an M3 dependence to the Hall effect below the satura-
tion field. It is this dependence that produces the dome-
shaped feature in ρAyx at low field in Fig. 5. We find that
the following form fits the data well:

ρother
yx = c(T )

(
M

Ms
−
(
M

Ms

)3
)
, (7)

where c(T ) is a temperature dependent fitting parameter
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FIG. 3. The high-field anomalous Hall resistivity from
Fig. 2(a) divided by the magnetization for the 25.4 nm and
38.8 nm samples between T = 5 and 40 K. The solid lines
represent fits to the data with Eqs. (3) and (4). The values
for b(T ) are given in Fig. 7(a).

and Ms is the magnetization at the saturation field HC2.
We set ρother

yx = 0 for fields H > HC2 and therefore we do
not consider the small increase in M above HC2 in this
term12, i.e. the contribution ρother

yx is a term related to
the magnetic texture below this field.

We fit ρyx to Eqs. (1) - (4) and (7) with R0(T ), α0,
α1, b(T ) and c(T ) as fitting parameters. The values for
R0(T ) and α0 are found from the high-field Hall mea-
surements (Figs. 2(b) and 3). The parameter α0, which
can vary substantially from sample to sample, as pointed
out in Ref. 36, was found to be 10 ± 3 nm/A for the
25.4 nm sample and −47± 6 nm/A for the 38.8 nm sam-
ple. The c(T ) parameter determined from the fit is ap-
proximately equal to the slope of Fig. 4 and is plotted in
Fig. 7(c). The remaining two parameters, α1 and b(T ),
were found iteratively by requiring that they fit both the
high-field Hall data in Fig. 3 and the low field data if
Fig. 5. The values for b(T ) are shown in Fig. 7(a) and
we obtain α1 = 28± 2 nm/A for the 25.4 nm sample and
20±1 nm/A for the 38.8 nm sample.

There is a clear difference in behavior between the
value for b in films and bulk. As T increases above 15 K,
b(T ) falls by nearly an order of magnitude below the value
of SH measured in bulk MnSi. This difference could be
due to a combination of the difference in the intrinsic con-
tribution that is very sensitive to changes in the Fermi
surface that might be brought about by strain, and to
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FIG. 4. (Color online) (a) Isothermal anomalous Hall resistiv-
ity ρAyx = ρyx − ρOyx divided by the magnetization and (b) the
magnetoresistance (ρxx(H) − ρxx(0))/ρxx(0) versus M2 for a
d = 25.4 nm MnSi film at temperatures between T = 5 and
40 K. The filled circles represent the data below the saturation
field HC2 and the open circles represent the data above.

side jump scattering from the increase in the number of
defects in films compared to bulk crystals.

Our fits to the Hall effect data interpret the small
ρAyx observed in Fig. 2 as a competition between intrin-
sic scattering and extrinsic scattering. Alternatively, if
the inelastic scattering parameter α1 is not included in
the fit and the small ρAyx is interpreted in terms of an
intrinsic/side-jump scattering term, the low-field fits are
equally good. However, the high-field behavior fits much
less well. Additionally, the b parameter is much smaller
in magnitude and opposite sign (b ∼ -0.007 V −1) com-
pared to bulk MnSi. Regardless of how we decompose the
AHE data, the smaller AHE in films enabled us to un-
cover an additional contribution to the Hall effect in the
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FIG. 5. (Color online) Isothermal Hall resistivity for the d =
25.4 nm MnSi film as a function of applied field. The lines
represent simultaneous fits to the data below µ0H = 5 T and
the high field data in Fig. 3. Data sets from neighbouring
temperatures are offset vertically by 0.1× 10−9Ωm from each
other for clarity.

cone phase of MnSi that has previously been neglected
as we describe below. Both fits yield the same ρother

yx

contribution to the Hall effect.
In Fig. 6(a), we use the fits to extract the ρother

yx con-
tribution from the data,

ρother
yx = ρyx − ρOyx − ρskew

yx − ρint,sj
yx , (8)

which has the same size, sign and shape as the contri-
bution attributed to a THE in Ref. 28. The sign of this
contribution is positive, whereas Refs. 27 and 50 report
a ρTyx < 0 in bulk crystlas. Li et al. attribute this differ-
ence to a possible reversal in the polarization of the con-
duction electrons in both their 10 nm and 50 nm thick
MnSi films. Such a change in the density of states at
the Fermi level seems unlikely given the small strain in a
50 nm thick film32. A second difficulty with attributing
ρother
yx to skyrmions is the absence of a discontinuity in
ρyx that would signal a first-order phase transition from
a cone phase to a skyrmion phase, as is observed in bulk
MnSi27,50. One might question whether disorder in the
films’ crystal structure might broaden such transitions,
as observed in Mn1−xFexSi crystals26, and make them
difficult to detect. However, the relatively sharp transi-
tions into the skyrmion phase observed in MnSi/Si(111)
for in-plane magnetic fields would suggest otherwise21.

A comparison to measurements on bulk crystals sug-
gests ρother

yx is not due to a topological spin texture, but
is due to a previously unaccounted intrinsic contribution.
In Fig. 6(b) we plot ρother

yx extracted from measurements

on bulk crystals by Lee et al.48 for a measurement at
T = 20 K. Note that ρother

yx for bulk MnSi has the same
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FIG. 6. (a) The difference between the measured and the fit-
ted ρyx (filled circles), as given by Eq. (8) at temperatures
between 5 K and 40 K. The solid line is a fit to this addi-
tional component to the Hall effect. The curves are offset
vertically for clarity. (b) Evidence for the additional com-
ponent in measurements in bulk MnSi crystals: the squares
represent the difference between the measured and fitted Hall
data from T = 20 K from Lee et al.48 The thick black is a fit
to the difference using Eq. 7. The dashed lines in (a) and (b)
indicate the saturation field HC2.

size and sign as ρyx at T = 25 K. The same ρother
yx con-

tribution is also present in the data in Ref. 53. In bulk
samples at T = 20 K, the cone phase is the thermody-
namically stable phase below the field HC2, which does
not contribute to ρTyx since it has zero topological charge.
The reason that this term was perviously neglected was
because ρother

yx ≈ 6 × 10−11 Ωm is small compared to

ρAyx ≈ 40 × 10−11 Ωm measured at T = 20 K in bulk
MnSi.

The reason for the failure of the standard phenomeno-
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FIG. 7. (Color online) The solid points represent the param-
eters used to fit the anomalous Hall effect data as a function
of temperature for the 25.4 nm and 38.8 nm thick MnSi films.
The b parameter is compared to the intrinsic contribution
of the anomalous Hall effect found in bulk MnSi crystals re-
ported in Ref. 53 (open triangles).

logical model to explain the Hall effect in MnSi is likely
due to fact that it does not account for scattering from a
conical spin structure. Recently Porter et al. have used a
giant magnetoresistance model to explain the magnetore-
sistance in the conical phase of FeGe/Si(111) epilayers33.
If the conduction electrons are unable to adiabatically
follow the conical spin texture, spin mixing of the spin
channels will give rise to additional sources of scatter-
ing. This contribution to ρxx is proportional to M2,
as shown in Fig. 4(b). Indeed, the magnetoresistance
is found to have an M2 dependence in the cone phase as
found for FeGe/Si(111)33. The atypical M3 dependence
in ρother

yx is then naturally explained as skew scattering

ρskew
yx ∝ ρxxM from the conical phase. This analysis sug-

gests that ρother
yx is not a topological contribution, but

is correction to the model of the AHE that accounts for

differences in scattering in ferromagnets and helical mag-
nets.

IV. TRANSMISSION ELECTRON
MICROSCOPY

Here we introduce a method to simulate images of
skyrmions taken with a transmission electron microscope
to judge the conditions under which they could be ob-
served and which will enable images of skyrmions to be
analysed quantitatively to give absolute values of the flux
density as was done recently for flux vortices in supercon-
ductors 54.

The magnetic contrast observed in an out-of-focus elec-
tron micrograph is determined by changes in the compo-
nent of the magnetic flux density normal to the electron
beam projected through the sample thickness. In the
case of the cone phase found in MnSi/Si(111) epilayers in
out-of-plane magnetic fields (see Fig. 1(c)), the projected
magnetic flux is constant across a domain and therefore
no magnetic contrast would be observed in an electron
micrograph.

The first step in calculating the appearance of electron
micrographs is to find the vector potential. By splitting
the specimen into an infinite number of magnetic dipoles
and summing the vector potentials from each, the vector
potential A(r) can be related to the magnetization M(r)
via:

A(r) =
µ0

4π

∫
M(R)×

(
r−R

|r−R|3

)
d3R. (9)

where r and R are position vectors and µ0 is the perme-
ability of free space. As this is a convolution, it is treated
most simply as a multiplication in Fourier space 55:

Ã(k) = − iµ0

2π

M̃(k)× k

k2
, (10)

where we use the convention that if f(r) is a func-

tion in real-space, its Fourier transform is f̃(k) =∫
f(r)e−2πik.rd3r.
If Cartesian coordinates are introduced with z parallel

to the electron beam and x, y in the plane of the spec-
imen, the magnetic contribution to the phase shift the
electron beam has suffered as it exits the specimen is
related to the vector potential via the Aharanov-Bohm
formula 56:

φ(x, y) = −2πe

h

∫ ∞
−∞

Az(x, y, z)dz. (11)

In Fourier space, this becomes:

φ̃(kx, ky) = −2πe

h
Ãz(kx, ky, 0). (12)
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and thus

φ̃(kx, ky) =
iedµ0

h

[
M̃⊥(kx, ky)× k⊥

]
z

k2
⊥

, (13)

where d is the film thickness, k⊥ ≡ (kx, ky, 0) and

M̃⊥(kx, ky) is the two-dimensional Fourier transform of
the magnetization averaged along z through the thickness
of the sample.

Any expression for the magnetization may be used in
the above equation but instructive analytical expressions
for the image intensity may be obtained by using the
leading-order approximation for the magnetization given
by Mühlbauer et al. 7:

M(r) =
M0

3

3∑
j=1

(
nj1cos(2πQj .r + αj)

+nj2sin(2πQj .r + αj)
)

(14)

where M0 is the saturation magnetization, nj1 and nj2
are unit vectors which are mutually perpendicular to Qj

and to one another and αj are constants giving the rel-
ative phase of each helix. The so-called triple-Q state
is realized for α1 = α2 = α3 = 3π/2 and produces a
hexagonal lattice similar to the skyrmion lattice shown
in Fig. 1(b).

In a conventional electron microscopy experiment, the
specimen is thinned to produce an electron-transparent
sheet approximately 50 nm thick with the wavevectors
Qj lying in the plane of the sheet and the electron beam
impinging normal to its surface. The magnetization in
Eqn. 14 produces a phase shift which oscillates as a func-
tion of position in real space with a maximum phase shift
given by φ0 = µ0M0ed/(hQ). Values for M0 and Q in
several materials are given in Table I and φ0 is 0.04 rad
for 50 nm thick MnSi and 0.09 rad for Fe0.5Co0.5Si show-
ing that these are in the weak phase limit, φ0 � 1 rad.
Thus the magnetic contribution to the wavefunction of
the electrons as they emerge from the specimen can be
related to the phase shift via:

ψ0(x, y) = exp [iφ(x, y)] ≈ 1 + iφ(x, y). (15)

For 50 nm thick FeGe, φ0 = 0.85 rad and the appearance
of the image should be calculated without approximating
the exponential in the above equation.

An in-focus image is the squared modulus of the exit-
plane wavefunction and it is immediately clear that such
an image will show no contrast as I0(x, y) = |ψ0(x, y)|2 =
1. In order to visualise skyrmions (or any other magnetic
object), out-of-focus images must be taken. An out-of-
focus image is equivalent to propagating the exit wave-
function through free-space by a distance ∆f , known as
the defocus. This can be done using the Fresnel-Kirchoff
integral 57 but as this is a convolution, the relationship
between the exit-plane wavefunction ψ0 and the defo-
cussed wavefunction ψ∆f is more conveniently expressed

!"

#" $" %"

x

y

FIG. 8. (a) The maximum magnetic contrast, Cmax, from
a skyrmion lattice produced in an electron micrograph un-
der optimal defocus conditions for 300 kV electrons. The
red points are calculated from simulations of skyrmion lat-
tices obtained from energy minimization calculations of a
Dzyaloshinskii model of MnSi with the parameters given in
Table I (see Ref. 11). The solid line is a fit to the calculations
with Eq. (20). The right-most inset shows the dependence
of the calculated contrast on the defocus setting. The left-
most inset shows one unit cell of the intensity distribution
calculated from the simulations of the in-plane components
of the magnetization averaged over the film thickness, (b)
Mx, and (c) My for a d = 10 nm film. The simulations are
for a fixed magnetization modulus, in contrast to the triple-Q
state whose variations in magnetization modulus ∆M/M are
shown in (d).

as a multiplication in Fourier space:

ψ̃∆f (kx, ky) = ψ̃0(kx, ky)e−iπλ∆fk2 , (16)

where λ is the electron wavelength. The intensity in the
defocussed image is then I∆f (x, y) = |ψ∆f (x, y)|2.

In the weak-phase approximation, Mühlbauer et al.’s
model for the magnetization is simple enough to give an
analytic solution for the intensity distribution in an out-
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of-focus image:

I∆f (r) = 1− 2 sin(πλ∆fQ2)
ed

hQ

µ0M0

3
×

3∑
j=1

sin (2πQj .r + αj) . (17)

It can be seen that the contrast from the skyrmion array
oscillates as a function of defocus and the defocus that
gives the largest contrast is

∆foptimal =
1

2λQ2
. (18)

At this defocus the contrast for the triple-Q states is

Cmax ≡
Imax − Imin

Imax + Imin
=

3ed

2hQ
µ0M0, (19)

Thus skyrmions are most readily observed in thick

samples with a high magnetization and widely spaced
skyrmions.

However, owing to the constructive and destructive
interference of the helical waves in the triple-Q con-
struction, the ansatz contains spatial variations of the
magnetization modulus, ∆M/M , that span -0.3 to 0.8
(Fig. 8(d)), which cause a reduction in the magnetic
image contrast. We therefore compare Eq. 19 to cal-
culations of the contrast that use numerically calcu-
lated skyrmion lattices obtained from solutions to the
Dzyaloshinskii model, the details of which are given in
Ref. 11, together with Eqs. (13) - (16) and (18). These re-
alistic simulations yield rigorous nonlinear solutions with
fixed magnetization modulus (Fig. 8(b)and (c)). The cal-
culations include twisting of the skyrmions near the sur-
face that contribute to their stability. These twists do
reduce the projected magnetization, and therefore also
the contrast, although the reduction is small. The re-
sults of the simulations shown in Fig. 8(a) are found to
be nearly linear in thickness and magnetization in the
weak-phase limit, with optimal defocus settings, shown
in the inset, that are the same as calculated in Eq. (18).
Therefore we are able to correct the analytical results
with a scaling factor γ = 1.58,

Cmax = γ
3ed

2hQ
µ0M0. (20)

We now compare several thin film materials listed in
Table I in which skyrmions have been observed. The min-
imum detectable contrast is usually taken to be 3% 63 and
we use this criterion to give a minimum thickness dmin be-
low which skyrmions would likely be undetectable. We
note that the thickness of the thin films measured for
FeGe (15 nm - 75 nm)17, Fe0.5Co0.5Si (several tens of
nm)16, and MnSi (∼ 50 nm)18, are all above the mini-
mum film thickness dmin where Cmax = 3% is expected.
A comparison of the experimental images in Refs. 16–18
shows that, as predicted, images of skyrmions in MnSi are

TABLE I. The minimum thickness for the observation of
skyrmions with optimal defocus settings for 300 kV electrons
calculated from Eq. 20

Material Ref. µ0M0 1/Q ∆fopt dmin

(T) (nm) (mm) (nm)

FeGe [58, 59] 1.0 70 1.24 0.8

Fe0.5Co0.5Si [60, 16] 0.087 90 2.06 7.0

MnSi [61, 62] 0.18 18 0.082 17

the noisiest, the noise is less for Fe0.5Co0.5Si and least for
FeGe.

In the case of MnSi/Si(111) thin films, µ0M0 =
0.20 T14, and 1/Q = 14 nm 30. For the 10 nm thick
MnSi layer image in Fig. 1 of Ref. 28, the maximum con-
trast is 1.5%, which is likely unobservable. If we use the
wavelength 1/Q = 8.5 nm reported in Ref. 28, we obtain
Cmax = 0.9% making the observation of skyrmions even
less likely. TEM micrographs of a 26.7 nm sample taken
at room temperature are shown in Ref. 29, and reproduce
all of the contrast features visible in Fig. 1 of Ref. 28.
Given the temperature is far above TC = 44 K, these
features are clearly not of magnetic origin, but rather
are structural artifacts due to moiré fringes and surface
defects. No new features could be discerned from the
d = 26.7 nm sample in a defocus series taken at T = 10 K.
We note that the Cmax = 4% for this sample is just above
the detection limit.

V. CONCLUSION

This Paper presents a consistent interpretation of the
collection of measurements that exist for MnSi/Si(111).
One of the unresolved questions about MnSi epilayers was
the origin of the anomalous Hall signal. We show that
deviations of the Hall resistivity data from fits with the
standard phenomenological model of the Hall effect, rep-
resented by a term ρother

yx , are not due to skyrmions. Our
study finds a component of the Hall signal of the order
ρother
yx ' 5×10−11 Ωm in the cone phase of MnSi/Si(111)

as well as bulk MnSi crystals. We interpret this contribu-
tion as an AHE due to skew scattering that results from
nonadiabatic spin transport through a conical magnet.
We hope that this work will motivate the development
of a rigorous theoretical treatment of the anomalous Hall
effect for conical magnets to account for differences in the
scattering in the states above and below the saturation
field.

Our analysis cautions about drawing conclusion on the
existence of skyrmions from Hall effect measurements
without consideration for the scattering from the coni-
cal texture. This raises questions about the existence of
skyrmions in FeGe/Si(111) films in out-of-plane fields ev-
idenced from Hall Effect measurement in Ref. 20. Con-
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trary to this original report of skyrmions in easy-axis
films, Porter et al. find a hard-axis anisotropy for an
82 nm thick film, which would be expected to suppress
skyrmions33. Given the difficulty in extracting multiple
contributions to ρyx it is very difficult to prove the exis-
tence of skyrmions from Hall effect measurements alone.
Supporting evidence from complementary techniques is
important in the search for these solitonic states. To aid
in this task, we provided a simple model for calculating
the magnetic contrast in electron micrographs that can
be used to guide the choice of material parameters in
TEM experiments.
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VI. APPENDIX

Here we provide measurements of the resistivity and
magnetization that were used to fit the Hall effect data
for the 25.4 nm thick MnSi sample in Sect. III. In Fig. 9
(a) we show the resistivity measured on cooling the sam-
ple from room temperature. The residual resistivity ra-
tio of this samples is ρxx(T = 300 K) / ρxx(T = 0 K) =
183µΩcm / 6.65 µΩcm = 27.5. The magnetoresistance
is presented in Fig. 9 (b). The magnetic moment is ob-
tained after subtraction of the substrate contribution as
described in12. The moment at zero field is determined
by extrapolation of the high-field M −H curves to zero
field.
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P. Böni, Physica B 404, 3163 (2009), proceedings of the
International Conference on Strongly Correlated Electron
Systems.

54 J. C. Loudon, C. J. Bowell, N. D. Zhigadlo, J. Karpinski,
and P. A. Midgley, Phys. Rev. B 87, 144515 (2013).

55 M. Beleggia and Y. Zhu, Phil. Mag. 83, 1045 (2003).
56 Y. Aharanov and D. Bohm, Phys. Rev. 115, 485 (1959).
57 E. Hecht, Optics, 2nd edtn. (Addison-Wesley, Mas-

sachusetts, 1974).
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