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Abstract

Over the last decade or so, Approximate Message Passing (AMP) algorithms have become
extremely popular in various structured high-dimensional statistical problems. Although the origins
of these techniques can be traced back to notions of belief propagation in the statistical physics
literature, our goals in this work are to present the main ideas of AMP from a statistical perspective
and to illustrate the power and flexibility of the AMP framework. Along the way, we strengthen
and unify many of the results in the existing literature.

1 Introduction

Approximate Message Passing (AMP) refers to a class of iterative algorithms that have been success-
fully applied to a number of statistical estimation tasks such as linear regression (Donoho et al., 2009;
Bayati and Montanari, 2011; Krzakala et al., 2012), generalised linear models (Rangan, 2011; Schniter
and Rangan, 2014; Mondelli and Venkataramanan, 2020) and low-rank matrix estimation (Mat-
sushita and Tanaka, 2013; Deshpande and Montanari, 2014; Deshpande et al., 2016; Montanari and
Richard, 2016; Kabashima et al., 2016; Lesieur et al., 2017; Rangan and Fletcher, 2018; Montanari
and Venkataramanan, 2021). Moreover, these techniques are also popular and practical in a variety
of engineering and computer science applications such as imaging (Fletcher and Rangan, 2014; Vila
et al., 2015; Metzler et al., 2017), communications (Schniter, 2011; Jeon et al., 2015; Barbier and Krza-
kala, 2017; Rush et al., 2017) and machine learning (Manoel et al., 2017; El Alaoui et al., 2018; Yang,
2019; Emami et al., 2020; Pandit et al., 2020). AMP algorithms have two features that make them
particularly attractive. First, they can easily be tailored to take advantage of prior information on the
structure of the signal, such as sparsity or other constraints. Second, under suitable assumptions on a
design or data matrix, AMP theory provides precise asymptotic guarantees for statistical procedures in
the high-dimensional regime where the ratio of the number of observations n to dimensions p converges
to a constant (Bayati and Montanari, 2012; Donoho et al., 2013; Donoho and Montanari, 2016; Sur
et al., 2017). More generally, AMP has been used to obtain lower bounds on the estimation error of
first-order methods (Celentano et al., 2020). In generalised linear models, low-rank matrix estimation
and neural network models, it also plays a fundamental role in understanding the performance gap
between information-theoretically optimal and computationally feasible estimators (Aubin et al., 2019,
2020; Barbier et al., 2019; Lelarge and Miolane, 2019; Reeves and Pfister, 2019). In these settings, it
is conjectured that AMP achieves the optimal asymptotic estimation error among all polynomial-time
algorithms (cf. Celentano and Montanari, 2022).

The purpose of this article is to give a comprehensive and rigorous introduction to what AMP can
offer, as well as to unify and formalise the core concepts within the large body of recent work in the
area. We mention here that many of the original ideas of AMP were developed in the physics and

1



engineering literature, and involved notions such as ‘loopy belief propagation’ (e.g. Koller and Fried-
man, 2009, Section 11.3) and the ‘replica method’ (e.g. Tanaka, 2002; Guo and Verdú, 2005; Mézard
and Montanari, 2009; Rangan et al., 2009; Krzakala et al., 2012). Our starting point, however, will
be an abstract AMP recursion, whose form depends on whether or not the data matrix is symmetric;
we will study the symmetric case in detail, and then present the asymmetric version, which can be
handled via a reduction argument. The striking and crucial feature of this recursion is that when
the dimension is large, the empirical distribution of the coordinates of each iterate is approximately
Gaussian, with limiting variance given by a scalar iteration called ‘state evolution’.

Rigorous formulations of the key AMP property are given in Theorems 2.1 and 2.3 (for the symmetric
case) and Theorem 2.5 (for the asymmetric case), which can be found in Sections 2.1 and 2.2 respec-
tively. Here, we both strengthen earlier related results, and seek to make the underlying arguments
more transparent. These ‘master theorems’, which can be viewed as asymptotic results on Gaussian
random matrices, can be adapted to analyse variants of the original AMP recursion that are geared to-
wards more statistical problems. In this aspect, we focus on two canonical statistical settings, namely
estimation of low-rank matrices in Section 3, and estimation in generalised linear models (GLMs) in
Section 4. The former encompasses Sparse Principal Component Analysis (Jolliffe et al., 2003; Zou
et al., 2006; Deshpande and Montanari, 2014; Wang et al., 2016; Gataric et al., 2020), submatrix
detection (Ma and Wu, 2015), hidden clique detection (Alon et al., 1998; Deshpande and Montanari,
2015), spectral clustering (von Luxburg, 2007), matrix completion (Candès and Recht, 2009; Zhu et
al., 2019), topic modelling (Blei et al., 2003) and collaborative filtering (Su and Khoshgoftaar, 2009).
The latter provides a holistic approach to studying a suite of popular modern statistical methods, in-
cluding penalised M-estimators such as the Lasso (Tibshirani, 1996) and SLOPE (Bogdan et al., 2015),
as well as more traditional techniques such as logistic regression. A novel aspect of our presentation in
Section 4 is that we formalise the connection between AMP and a broad class of convex optimisation
problems, and then show how to systematically derive exact expressions for the asymptotic risk of
estimators in GLMs. We expect that our general recipe can be applied to a wider class of GLMs than
have been studied in the AMP literature to date.

To preview the statistical content in this tutorial and highlight some recurring themes, we now discuss
two prototypical applications of AMP that form the basis of Sections 3 and 4 respectively. First,
suppose that we wish to estimate an unknown signal v ∈ Rn based on an observation

A =
λ

n
vv> +W,

where λ > 0 is fixed and W ∈ Rn×n is a symmetric Gaussian noise matrix. In this so-called spiked
Wigner model (see Section 3.1 and the references therein), a popular and well-studied estimator of v
is the leading eigenvector ϕ̂ of A, which can be approximated via the power method, with iterates

vk+1 =
Avk

‖Avk‖
.

An AMP algorithm in this context can be interpreted as a generalised power method that produces a
sequence of estimates v̂k of v via iterative updates of the form

v̂k = gk(v
k), vk+1 = Av̂k − bkv̂k−1

for k ∈ N0, where we emphasise the following two characteristic features:

(i) Each ‘denoising’ function gk : R → R is applied componentwise to vectors, and can be chosen
appropriately to exploit different types of prior information about the structure of v (e.g. to
encourage v̂k to be sparse).

(ii) In the ‘memory’ term −bkv̂k−1, which is called an ‘Onsager’ correction in the AMP literature (e.g.
Donoho et al., 2009; Bayati and Montanari, 2011), the scalar bk is defined as a specific function
of vk to ensure that the iterates vk+1 have desirable statistical properties; see (3.3) below.
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One way to incorporate additional structural information on v into the spiked model is to assume that
its entries are drawn independently from some prior distribution π on R; for example, we can enforce
sparsity through priors that place strictly positive mass at 0. Then under appropriate conditions,
AMP theory guarantees that, for each k, the components of the estimate v̂k have approximately the
same empirical distribution as those of gk(µkv + σkξ); here, ξ ∼ Nn(0, In) is a ‘noise’ vector that
is independent of the signal v ∈ Rn, and the ‘signal’ and ‘noise’ parameters µk ∈ R, σk > 0 are
determined by a scalar state evolution recursion that depends on (gk) and the prior distribution π;
see (3.6). This distributional characterisation effectively reduces the analysis of the high-dimensional
v̂k to a much simpler univariate denoising problem, where the aim is to reconstruct V ∼ π based on
a single corrupted observation of the form µkV + σkG with G ∼ N(0, 1) representing independent
Gaussian noise. The functions gk can then be chosen in such a way that the ‘effective signal-to-noise
ratios’ (µk/σk)

2 are large and gk(µkV + σkG) accurately estimates V . This ensures that the resulting
AMP estimates v̂k = gk(v

k) have low asymptotic estimation error as n→∞.

For instance, suppose that the entries of v are drawn uniformly at random from {−1, 1}. Then
provided we initialise the AMP algorithm with v0 = ϕ̂ and v̂−1 = λ−1ϕ̂, where ‖ϕ̂‖ =

√
nλ2(λ2 − 1)+,

it turns out that the asymptotic mean squared error (MSE) of v̂k is minimised by choosing gk to be
the function x 7→ tanh(µkx/σ

2
k); see Section 3.3. Figure 1 illustrates that the limiting MSE of the

AMP estimates v̂k decreases with the iteration number k, and in particular that they improve on the
pilot spectral estimator v̂−1 (which is agnostic to the structure of v).

Figure 1: Asymptotic mean-squared error plots for estimation of a signal v ∈ Rn with i.i.d. U{−1, 1} entries in
the rank-one spiked model, based on an AMP algorithm with denoising functions gk : x 7→ tanh(µkx/σ

2
k) and

spectral initialisation (v0 = ϕ̂ and v̂−1 = λ−1ϕ̂ with ‖ϕ̂‖ =
√
nλ2(λ2 − 1)+). See Sections 3.2–3.3, where we

also discuss how to consistently estimate λ when it is unknown (Remark 3.12).

Left : Plot of AMSEk(λ) := limn→∞ ‖v̂k − v‖2/n against the iteration number k for the AMP estimates v̂k ≡
v̂kλ(n), when λ = 1.7. AMSEk(λ) decreases monotonically to some AMSE∞(λ) as k →∞; see Theorem 3.10(c).

Right : Plots of AMSE−1(λ) = 1 ∧ λ−2 for the pilot spectral estimator v̂−1 and AMSE∞(λ) for AMP, with
λ ∈ [0, 3]. The spectral estimator undergoes the so-called BBP phase transition at λ = 1; see Section 3.1.

As a second example, consider the linear model y = Xβ + ε, where β ∈ Rp is the target of inference,
ε ∈ Rn is a noise vector, and X ∈ Rn×p is a random design matrix with independent N(0, 1/n) entries.
In high-dimensional regimes where p is comparable in magnitude to, or even much larger than n, a
popular (sparse) estimator is the Lasso (Tibshirani, 1996), which for λ > 0 is defined by

β̂L,λ ∈ argmin
β̃∈Rp

{
1

2
‖y −Xβ̃‖2 + λ‖β̃‖1

}
.

In the literature on high-dimensional estimation, upper bounds on the prediction and estimation error
of the Lasso have been obtained under suitable conditions on the design matrixX, such as the restricted
isometry property or compatibility conditions (e.g. Bühlmann and van de Geer, 2011). AMP offers
complementary guarantees by providing exact formulae for the asymptotic risk in the ‘large system
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limit’ where n, p → ∞ with n/p → δ ∈ (0,∞), and with the components of β drawn independently
from a prior distribution on R. To motivate the form of the AMP algorithm in this setting, first
consider the iterative soft thresholding algorithm (ISTA) for solving the Lasso optimisation problem,
whose update steps can be written as

r̂k = y −Xβ̂k, β̂k+1 = STληk

(
β̂k + ηkX

>r̂k
)

for k ∈ N0; (1.1)

here, r̂k is the current residual, ηk > 0 is a deterministic step size, and for t > 0, the soft-thresholding
function STt : w 7→ sgn(w)(|w| − t)+ is applied componentwise to vectors. This is an instance of
the general-purpose proximal gradient method (Parikh and Boyd, 2013, Sections 4.2 and 4.3). An
‘accelerated’ version of (1.1) called FISTA (Beck and Teboulle, 2009) bears a closer resemblance to
an AMP algorithm, where the iterates of the latter are given by

r̂k = y −Xβ̂k +
‖β̂k‖0
n

r̂k−1, β̂k+1 = STtk+1

(
β̂k +X>r̂k

)
for k ∈ N0. (1.2)

Here, each tk > 0 is a deterministic threshold and ‖β̂k‖0 denotes the number of non-zero entries of
β̂k ∈ Rp. By comparison with (1.1), we observe that r̂k in (1.2) is a corrected residual, whose definition
includes an additional memory term that is crucial for ensuring that the empirical distribution of the
iterates can be characterised exactly. Indeed, for each fixed k ∈ N, the entries of the AMP estimate
β̂k of β have approximately the same empirical distribution as those of STtk(β+σkξ) when p is large;
here ξ ∼ Np(0, Ip) is a noise vector that is independent of β, the noise level σk > 0 is determined by
the state evolution recursion defined in (4.41) below, and the scalar denoising function STtk induces
sparsity.

Bayati and Montanari (2012) proved that in the asymptotic regime above, the AMP iterates (r̂k, β̂k)
converge in a suitable sense to a fixed point (r̂∗, β̂∗), and a key property of (1.2) is that for any such
fixed point, β̂∗ is a Lasso solution; see (4.42) below. It follows that the performance of the Lasso is
precisely characterised by a fixed point of the state evolution recursion (4.41); see Theorem 4.5. Since
the above properties are proved under a Gaussian design, the main utility of AMP in this setting is
not so much as an efficient Lasso computational algorithm, but rather as a device for gaining insight
into the statistical properties of the estimator. In Section 4, the above theory is developed as part of
an overarching AMP framework for linear models and generalised linear models (GLMs).

Note that in both of the examples above, the limiting empirical distributions of the entries of the AMP
iterates can be decomposed into independent ‘signal’ and ‘noise’ components, and the effective signal
strength and noise level are determined by a state evolution recursion. In Sections 3 and 4, we show
how to derive these asymptotic guarantees by applying the master theorems in Section 2 to suitable
abstract recursions, which track the evolution of the asymptotically Gaussian ‘noise’ components of
the AMP iterates. We discuss various extensions in Section 5, and provide proofs in the Appendix
(Section 6), with supplementary mathematical background deferred to Section 7. As a guide to the
reader, we remark that rigorous formulations of the results in this monograph require a number of
technical conditions. While we take care to state these precisely, and discuss them at appropriate
places, we emphasise that these should generally be regarded as mild. We therefore recommend that
the reader initially focuses on the main conclusions of the results.

The statistical roots of AMP lie in compressed sensing (Donoho et al., 2009, 2013). A reader ap-
proaching the subject from this perspective can consult Montanari (2012), Tramel et al. (2014) and
Schniter (2020) for accessible expositions of the motivating ideas and the connections with message
passing algorithms on dense graphs. Alternatively, for comprehensive reviews of AMP from a statisti-
cal physics perspective, see Zdeborová and Krzakala (2016), Krzakala et al. (2012) and Lesieur et al.
(2017).

In spin glass theory, an AMP algorithm was proposed as an iterative scheme for solving the Thouless–
Anderson–Palmer (TAP) equations corresponding to a Sherrington–Kirkpatrick model with specific
parameters (Mézard et al., 1987; Mézard and Montanari, 2009; Talagrand, 2011; Bolthausen, 2014).

4



The estimation problem here is equivalent to one of reconstructing a symmetric rank-one matrix in
a Gaussian spiked model. Bolthausen (2014) proved a rigorous state evolution result for AMP in
this specific setting, by introducing a conditioning argument that became an essential ingredient in
subsequent analyses of AMP (Bayati and Montanari, 2011; Javanmard and Montanari, 2013; Berthier
et al., 2020; Fan, 2022). See Section 6.2 for a detailed discussion of this proof technique.

In this article, we restrict our focus to AMP recursions in which the random matrices are Gaussian.
However, as we discuss in Section 5, several recent works have extended AMP and its state evolution
recursion to more general non-Gaussian settings. For matrices with independent sub-Gaussian entries,
results on the ‘universality’ of AMP were first established by Bayati et al. (2015) and later in greater
generality by Chen and Lam (2021). In addition, to accommodate the class of rotationally invariant
random matrices, a number of extensions of the original AMP framework have recently been proposed,
including Orthogonal AMP (Ma and Ping, 2017; Takeuchi, 2020) and Vector AMP (Schniter et al.,
2016; Rangan et al., 2019b), as well as the general iterative schemes of Opper et al. (2016), Çakmak and
Opper (2019) and Fan (2022). Some of these are closely related to expectation propagation (Opper and
Winther, 2005; Kabashima and Vehkaperä, 2014). In all of the above variants of AMP, the recursion
is tailored to the spectrum of the random matrix.

1.1 Notation and preliminaries

Here, we introduce some notation used throughout this tutorial, and present basic properties of Wasser-
stein distances, pseudo-Lipschitz functions, as well as the complete convergence of random sequences.

General notation: For n ∈ N, let e1, . . . , en be the standard basis vectors in Rn. For r ∈ [1,∞], we
write ‖x‖r for the `r norm of x ≡ (x1, . . . , xn) ∈ Rn, so that ‖x‖r = (

∑n
i=1 |xi|r)1/r when r ∈ [1,∞)

and ‖x‖∞ = max1≤i≤n |xi|. We also define ‖x‖n,r := n−1/r‖x‖r = (n−1
∑n

i=1 |xi|r)1/r for r ∈ (1,∞).
Let 〈· , ·〉 and ‖·‖ := ‖·‖2 be the standard Euclidean inner product and norm on Rn respectively, and
define 〈· , ·〉n to be the scaled Euclidean inner product on Rn given by 〈x, y〉n := n−1〈x, y〉 for x, y ∈ Rn,
which induces the norm ‖·‖n := ‖·‖n,2. We denote by 1n := (1, . . . , 1) ∈ Rn the all-ones vector and
write 〈x〉n := 〈x,1n〉n = n−1

∑n
i=1 xi for each x ∈ Rn.

For D ∈ N and x1, . . . , xD ∈ Rn, we denote by νn(x1, . . . , xD) := n−1
∑n

i=1 δ(x1i ,...,x
D
i ) the joint em-

pirical distribution of their components, and for a function f : RD → R, write f(x1, . . . , xD) :=(
f(x1

i , . . . , x
D
i ) : 1 ≤ i ≤ n

)
∈ Rn for the row-wise application of f to (x1 · · · xD).

By a Euclidean space (E, ‖·‖E) we mean a finite-dimensional inner product space over R, equipped
with the norm induced by its inner product; examples include (Rn, ‖·‖) for n ∈ N and (Rk×`, ‖·‖F) for
k, ` ∈ N, where ‖·‖F is the Frobenius norm induced by the trace inner product (A,B) 7→ tr(A>B).

Gaussian orthogonal ensemble: We write W ∼ GOE(n) if W = (Wij)1≤i,j≤n takes values in the
space of all symmetric n× n matrices, and has the property that (Wij)1≤i≤j≤n are independent, with
Wij ∼ N(0, 1/n) for 1 ≤ i < j ≤ n and Wii ∼ N(0, 2/n) for i = 1, . . . , n. Writing On for the set of all
n×n orthogonal matrices, we note the orthogonal invariance property of the GOE(n) distribution: if
Q ∈ On and W ∼ GOE(n), then Q>WQ ∼ GOE(n).

Complete convergence of random sequences: The asymptotic results below are formulated in
terms of the notion of complete convergence (e.g. Hsu and Robbins, 1947; Serfling, 1980, Chapter 1.3).
This is a stronger mode of stochastic convergence than almost sure convergence, and is denoted
throughout using the symbol

c→. In Definition 1.1 and Proposition 1.2 below, we give two equivalent
characterisations of complete convergence and introduce some associated stochastic O symbols.

Definition 1.1. Let (Xn) be a sequence of random elements taking values in a Euclidean space
(E, ‖·‖E). We say that Xn converges completely to a deterministic limit x ∈ E, and write Xn

c→ x or
c-limn→∞Xn = x, if Yn → x almost surely for any sequence of E-valued random elements (Yn) with

Yn
d
= Xn for all n.
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We write Xn = oc(1) if Xn
c→ 0, and write Xn = Oc(1) if Yn = Oa.s.(1) (i.e. lim supn→∞ ‖Yn‖E <∞

almost surely) for any sequence of E-valued random elements (Yn) with Yn
d
= Xn for all n.

Proposition 1.2. For a sequence (Xn) of random elements taking values in a Euclidean space
(E, ‖·‖E), we have

(a) Xn = oc(1) if and only if
∑

n P(‖Xn‖E > ε) <∞ for all ε > 0;

(b) Xn = Oc(1) if and only if there exists C > 0 such that
∑

n P(‖Xn‖E > C) <∞.

For a deterministic x ∈ E, we see that Xn
c→ x if and only if

∑
n P(‖Xn − x‖E > ε) < ∞ for all

ε > 0. Moreover, if Xn
c→ x, then Xn = Oc(1). The proof of Proposition 1.2, along with various other

properties of complete convergence and a calculus for oc(1) and Oc(1) notation, is given in Section 7.1;
see also Remark 6.1.

Wasserstein distances and pseudo-Lipschitz functions: For D ∈ N and r ∈ [1,∞), we write
P(r) ≡ PD(r) for the set of all Borel probability measures P on RD with

∫
RD ‖x‖

r dP (x) < ∞. For
P,Q ∈ PD(r), the r-Wasserstein distance between P and Q is defined by

dr(P,Q) := inf
(X,Y )

E(‖X − Y ‖r)1/r,

where the infimum is taken over all pairs of random vectors (X,Y ) defined on a common probability
space with X ∼ P and Y ∼ Q. For P, P1, P2, . . . ∈ PD(r), we have dr(Pn, P ) → 0 if and only
if both

∫
RD ‖x‖

r dPn(x) →
∫
RD ‖x‖

r dP (x) and Pn → P weakly (e.g. Villani, 2003, Theorem 7.12).
Furthermore, for L > 0, we write PLD(r, L) for the set of functions ψ : RD → R such that

|ψ(x)− ψ(y)| ≤ L‖x− y‖ (1 + ‖x‖r−1 + ‖y‖r−1) (1.3)

for all x, y ∈ RD, and denote by PLD(r) :=
⋃
L>0 PLD(r, L) the class of pseudo-Lipschitz functions

f : RD → R of order r. Note that PLD(1, L) is precisely the class of all (3L)-Lipschitz functions on RD,
and that PLD(s) ⊆ PLD(r) for any 1 ≤ s ≤ r. Moreover, for any probability measure P ∈ PD(r), we
have |

∫
Rd ψ dP | ≤ L

∫
RD(‖x‖+‖x‖r) dP (x)+ |ψ(0)| <∞ for all ψ ∈ PLD(r, L). Now for P,Q ∈ PD(r),

we define

d̃r(P,Q) := sup
ψ∈PLD(r,1)

∣∣∣∣ ∫
RD

ψ dP −
∫
RD

ψ dQ

∣∣∣∣. (1.4)

In Section 7.4, we show (among other things) that d̃r, dr are metrics on PD(r) that induce the same
topology (Remark 7.18).

2 Master theorems for abstract AMP recursions

2.1 Symmetric AMP

In this subsection, we present an abstract AMP recursion that was first studied by Bolthausen (2014)
in a special case*, and subsequently by Bayati and Montanari (2011, Section 4) and Javanmard and
Montanari (2013) in greater generality. Let (fk)

∞
k=0 be a sequence of Lipschitz functions fk : R2 → R,

and for n ∈ N, let W ≡ W (n) ∈ Rn×n be a symmetric matrix and γ ≡ γ(n) ∈ Rn be a vector of
auxiliary information. Given m−1 ≡ m−1(n) := 0 ∈ Rn and an initialiser h0 ≡ h0(n) ∈ Rn, recursively
define mk ≡ mk(n) ∈ Rn, bk ≡ bk(n) ∈ R and hk+1 ≡ hk+1(n) ∈ Rn by

mk := fk(h
k, γ), bk := 〈f ′k(hk, γ)〉n =

1

n

n∑
i=1

f ′k(h
k
i , γi), hk+1 := Wmk − bkmk−1 (2.1)

*In a 2009 workshop, Bolthausen presented his analysis of AMP for the TAP equations, which inspired the work
of Bayati and Montanari (2011); see Section 3 of the latter.
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for k ∈ N0. Here, f ′k : R2 → R is a bounded, Borel measurable function that agrees with the partial
derivative of fk with respect to its first argument, wherever the latter is defined. Note that for each
y ∈ R, the Lipschitz function x 7→ fk(x, y) is differentiable Lebesgue almost everywhere (e.g. Federer,
1996, Theorem 3.1.6) with weak derivative x 7→ f ′k(x, y).

In its generic form, (2.1) is not intended for use as an algorithm to solve any particular estimation
problem, but for the following reasons, it underpins the statistical framework for AMP:

(i) State evolution characterisation of limiting Gaussian distributions: In an asymptotic regime
where conditions (A0)–(A5) below are satisfied (in particular where (A0) requires W to be
Gaussian), the key mathematical property of (2.1) is given by (2.3) below: for fixed k ∈ N,
the empirical distributions of the components of hk ≡ hk(n) converge completely in Wasserstein
distance to a Gaussian limit N(0, τ2

k ) as n→∞. The variances τ2
k are determined by the state

evolution recursion (2.2) below, which depends on the choice of Lipschitz functions (fk : k ∈ N0).
As we will discuss later in this subsection, the so-called Onsager correction term −bkmk−1 plays
a pivotal role in ensuring that the asymptotic distributions are indeed Gaussian.

(ii) Basis for the construction and analysis of AMP algorithms: In statistical settings, (2.1) cannot
be used as a practical procedure when γ and/or W are unobservable; for example, in Section 3
on low-rank matrix estimation, γ represents the unknown target of inference and W is a noise
matrix. Instead, one can replace γ and/or W in (2.1) with observed quantities to design an AMP
algorithm that produces a sequence of valid estimates of γ; see (3.3) for instance. To analyse the
statistical performance of these AMP estimates, it is helpful to be able to recast the algorithm
as an abstract recursion of the form (2.1), because its asymptotic characterisation yields exact
expressions for the limiting estimation error in terms of the state evolution parameters. Moreover,
through judicious choices of the Lipschitz functions fk, the AMP estimates can be tailored to
different types of prior information about the structure of γ.

(iii) Precursor to other abstract AMP recursions: By generalising and transforming (2.1), we can
obtain state evolution descriptions of the limiting behaviour in a number of related abstract
AMP iterations, including those in which the input matrix need not be symmetric (Section 2.2)
and/or the iterates themselves are matrices rather than vectors (Section 6.7). These facilitate
the analysis of a wider class of AMP algorithms that are not covered directly by (2.1) alone; see
for example Section 4 on GAMP.

We will now formalise point (i) above through Theorem 2.1 below. More generally, in Theorem 2.3,
we will establish the Wasserstein limit of the joint empirical distributions of the components of
h1, . . . , hk, γ ∈ Rn for each fixed k as n → ∞. In view of (ii) and (iii), we will refer to these re-
sults as ‘master theorems’ for symmetric AMP.

We will consider a probabilistic setup where for each n ∈ N, we have an AMP recursion (2.1) based
on a random triple (m0, γ,W ) ≡

(
m0(n), γ(n),W (n)

)
such that

(A0) W ≡W (n) ∼ GOE(n) and is independent of (m0, γ) ≡
(
m0(n), γ(n)

)
.

Recalling the concepts and definitions from Section 1.1, we assume that for some r ∈ [2,∞) and
τ1 ∈ (0,∞), the inputs to (2.1) also satisfy the following conditions as n→∞:

(A1) There exists a probability distribution π ∈ P1(r) such that the empirical distribution νn(γ) of
the components of γ ≡ γ(n) satisfies dr

(
νn(γ), π

) c→ 0.

(A2) ‖m0‖n ≡ (n−1
∑n

i=1 |m0
i |2)1/2 c→ τ1 and ‖m0‖n,r ≡ (n−1

∑n
i=1 |m0

i |r)1/r = Oc(1).

(A3) There exists a Lipschitz F0 : R → R such that taking γ̄ ∼ π, we have E
(
F0(γ̄)2

)
≤ τ2

1 and

〈m0, φ(γ)〉n = n−1
∑n

i=1 f0(h0
i , γi)φ(γi)

c→ E
(
F0(γ̄)φ(γ̄)

)
for all Lipschitz φ : R→ R.
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(A1) holds if for each n, the entries of γ ≡ γ(n) are drawn independently from a distribution π on R
with a finite rth moment. In general, π can be thought of as a ‘limiting prior distribution’ in statistical
applications. (A2) includes a boundedness assumption on the empirical rth moment of m0 ≡ m0(n).
Both (A1) and (A2) are less stringent and more natural than analogous conditions on (2r − 2)th

moments in the existing literature on AMP; see Remark 6.4, which also discusses (A3).

Given π ∈ P1(r) from (A1) and τ1 ∈ (0,∞) from (A2), the state evolution parameters (τ2
k : k ∈ N)

are defined inductively by
τ2
k+1 := E

(
fk(Gk, γ̄)2

)
, (2.2)

where Gk ∼ N(0, τ2
k ) and γ̄ ∼ π are independent. Since the functions fk are Lipschitz and E(γ̄2)1/2 ≤

E(|γ̄|r)1/r <∞ under (A1), it follows by induction that τ2
k ∈ [0,∞) for all k.

We will make two further mild regularity assumptions. Suppose that if r > 2, then

(A4) π
(
{y ∈ R : x 7→ fk(x, y) is non-constant}

)
> 0 for each k ∈ N.

This is a ‘non-degeneracy’ condition that ensures that τ2
k > 0 for all k ∈ N; see also Lemma 2.2 below.

Henceforth, we will write µ⊗ µ′ for the product of two measures µ, µ′.

(A5) For each k ∈ N, the set Dk of discontinuities of f ′k satisfies (λ ⊗ π)(Dk) = 0, where λ denotes
Lebesgue measure on R.

This guarantees the existence of a deterministic limit for bk ≡ bk(n) in (2.1) as n → ∞ for each k
(see Remark 2.4 below), and is satisfied by the functions fk that are typically used in statistical
applications, such as those based on soft-thresholding functions STt : u 7→ sgn(u)(|u| − t)+ for t > 0.
See Section 6.1 for some technical remarks on (A1)–(A5), which can be skipped on a first reading.

We are now ready to state our first master theorem, which is a substantial result in random ma-
trix theory. As mentioned in (i) above, this reveals in particular that the asymptotic distributional
behaviour of the AMP iterates is governed by the scalar recursion (2.2).

Theorem 2.1. Suppose that (A0)–(A5) hold for a sequence of symmetric AMP recursions (2.1)
indexed by n ∈ N. Then for each k ∈ N, we have dr

(
νn(hk, γ), N(0, τ2

k ) ⊗ π
) c→ 0 as n → ∞, or

equivalently

d̃r
(
νn(hk, γ), N(0, τ2

k )⊗ π
)

= sup
ψ∈PL2(r,1)

∣∣∣∣ 1n
n∑
i=1

ψ(hki , γi)− E
(
ψ(Gk, γ̄)

)∣∣∣∣ c→ 0 as n→∞, (2.3)

where Gk ∼ N(0, τ2
k ) and γ̄ ∼ π are independent.

In the AMP literature, this conclusion is usually stated as

1

n

n∑
i=1

ψ(hki , γi)
a.s.→ E

(
ψ(Gk, γ̄)

)
as n→∞, for every ψ ∈ PL2(r). (2.4)

In fact,
a.s.→ can be strengthened to

c→, and the resulting version of (2.4) is equivalent to (2.3); in other
words, it can be upgraded automatically to a convergence statement that holds uniformly over the
class PL2(r, 1) of pseudo-Lipschitz test functions. See Remarks 6.1 and 6.2 for further details.

To gain some insight into the form of the recursion (2.1) and its asymptotic characterisation in The-
orem 2.1, suppose for simplicity that γ ≡ γ(n) = 0 ∈ Rn for all n, and first consider k = 1. Since
m0 ≡ m0(n) is independent of W ≡ W (n) for each n by (A0), it follows that h1 ≡ h1(n) = Wm0 is
conditionally Gaussian given m0. In fact, conditional on m0,

h1 and h1,0 := ‖m0‖nZ̃ + ζ̃m0 = τ1Z̃ + ∆1 are identically distributed for each n,
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where Z̃ ∼ Nn(0, In) is independent of ζ̃ ∼ N(0, 1/n), and where ∆1 := (‖m0‖n − τ1)Z̃ + ζ̃m0; see
Lemma 6.14, (6.5) and (6.20).

By (A2), ‖m0‖n
c→ τ1 and ‖m0‖n,r = Oc(1) as n → ∞, from which it follows (by the triangle

inequality for ‖·‖n,r) that ‖∆1‖n,r ≡ (n−1
∑n

i=1 |∆1
i |r)1/r c→ 0; see H1(a) at the start of Section 6.5.

This means that ∆1 has asymptotically vanishing influence on the empirical distribution of the entries

of h1,0 d
= h1 ∈ Rn as n→∞, while the empirical distribution of the entries of τ1Z̃ converges completely

in dr to N(0, τ2
1 ) (essentially by the strong law of large numbers, or the concentration inequality in

Lemma 7.12). This yields the conclusion of Theorem 2.1 for h1, and also implies that

‖m1‖2n = ‖f1(h1, 0)‖2n =
1

n

n∑
i=1

f1(h1
i , 0)2 c→ E

(
f1(G1, 0)2

)
= τ2

2 ,

‖m1‖rn,r = ‖f1(h1, 0)‖rn,r =
1

n

n∑
i=1

|f1(h1
i , 0)|r c→ E

(
|f1(G1, 0)|r

)
<∞.

These limits follow from the state evolution recursion (2.2) and the fact that f1 is Lipschitz, whence
f2

1 , |f1|r ∈ PL2(r); see Corollary 7.21(b). Continuing inductively in this vein, we conclude that for
each fixed k ∈ N, the Gaussian distribution N(0, τ2

k ) in Theorem 2.1 is the dr limit of the empirical

distribution of the entries of h̆k ≡ h̆k(n) ∈ Rn in the ‘toy’ recursion

h̆1 := W̆ 0m0, m̆k := fk(h̆
k, γ), h̆k+1 := W̆ km̆k for k ∈ N, (2.5)

where each W̆ k ≡ W̆ k(n) ∼ GOE(n) is independent of m0, γ (= 0 here) and W̆ 0, . . . , W̆ k−1, and hence
of m̆k.

On the other hand, observe that in the original recursion (2.1), the same GOE(n) matrix W ≡W (n)
appears in every iteration, so W and mk are not in general independent for k ∈ N, and in fact Wmk

is not asymptotically Gaussian in the above sense. To compensate for this, the Onsager correction
−bkmk−1 is designed specifically as a debiasing term to ensure that hk+1 = Wmk − bkmk−1 has the
same limiting behaviour as h̆k+1 in (2.5) above. Indeed, an important technical step in the proof
of Theorem 2.1 is to characterise the conditional distribution of Wmk given m0, γ and the previous
iterates h1, . . . , hk (Proposition 6.11), and then show that the ‘non-Gaussian components’ thereof are
asymptotically cancelled out by the Onsager term.

This ingenious conditioning technique was first developed by Bolthausen (2014) and Bayati and Mon-
tanari (2011), and later used extensively in the analysis of various other AMP iterations in which W is
drawn from a rotationally invariant matrix ensemble. For example, Berthier et al. (2020) introduced
a ‘Long AMP’ recursion in which each iterate hk+1 is defined more explicitly in terms of the Gaus-
sian part of the conditional distribution of Wfk(h

k, γ). For the symmetric AMP recursion (2.1), the
relevant results on conditional distributions are stated in Section 6.2, where we discuss the subtleties
in their derivation, and then rigorously proved in Section 6.3.

We give a technical summary of the proof of Theorem 2.1 in Section 6.4, where the key result is
Proposition 6.16, and defer the formal arguments to Section 6.5. The proof proceeds by induction on
k ∈ N and actually establishes a more general result (Theorem 2.3 below) that implies Theorem 2.1:
in particular, for fixed k ∈ N, the joint empirical distribution of the components of h1, . . . , hk ∈ Rn
converges completely in dr to a Gaussian limit Nk(0, T̄

[k]) as n→∞.

The sequence (T̄[k] ∈ Rk×k : k ∈ N) of covariance matrices is defined recursively as an extension of
the state evolution (2.2), and we will see from (2.9) below that the covariances can be characterised
as limits of inner products 〈mk−1,m`−1〉n between iterates mk−1,m`−1 in (2.1) as n → ∞. First, let
G1 ∼ N(0, τ2

1 ) and T̄1,1 := τ2
1 , so that T̄[1] ≡ Var(G1) = T̄1,1 ≥ 0. For a general k ≥ 2, suppose

inductively that we have already defined a non-negative definite T̄[k−1] ∈ R(k−1)×(k−1) with entries
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T̄
[k−1]
ij = T̄i,j for 1 ≤ i, j ≤ k − 1, and then let

T̄k,` = T̄`,k :=

{
E
(
F0(γ̄) · fk−1(Gk−1, γ̄)

)
for ` = 1

E
(
f`−1(G`−1, γ̄) · fk−1(Gk−1, γ̄)

)
for ` = 2, . . . , k,

(2.6)

where F0 is as in (A3) and γ̄ ∼ π is independent of (G1, . . . , Gk−1) ∼ Nk−1(0, T̄[k−1]). Define T̄[k] to

be the k × k matrix with entries T̄
[k]
ij = T̄i,j for 1 ≤ i, j ≤ k, so that T̄[k−1] is the top-left principal

(k − 1)× (k − 1) submatrix of T̄[k]. For every a ≡ (a1, . . . , ak) ∈ Rk, we have

a>T̄[k]a = E
{(
a1F0(γ̄) +

∑k
`=2 a`f`−1(G`−1, γ̄)

)2}
+ a2

1

{
τ2

1 − E
(
F0(γ̄)2

)}
≥ 0 (2.7)

since E
(
F0(γ̄)2

)
≤ τ2

1 by (A3), so T̄[k] ∈ Rk×k is non-negative definite. In fact, we have the following:

Lemma 2.2. Under (A4), T̄[k] ∈ Rk×k is positive definite and hence invertible for every k ∈ N.

The proof of this fact is given in Section 6.6. By induction, we have τ2
k = E

(
fk−1(Gk−1, γ̄)2

)
= T̄k,k > 0

for all k ∈ N, so (2.6) does indeed extend (2.2). Our second master theorem is the following:

Theorem 2.3. Under the hypotheses of Theorem 2.1, dr
(
νn(h1, . . . , hk, γ), Nk(0, T̄

[k]) ⊗ π
) c→ 0 for

each fixed k ∈ N as n→∞, or equivalently

d̃r
(
νn(h1, . . . , hk, γ), Nk(0, T̄

[k])⊗π
)

= sup
ψ∈PLk+1(r,1)

∣∣∣∣ 1n
n∑
i=1

ψ(h1
i , . . . , h

k
i , γi)−E

(
ψ(G1, . . . , Gk, γ̄)

)∣∣∣∣ c→ 0

(2.8)
as n→∞, where (G1, . . . , Gk) ∼ Nk(0, T̄

[k]) and γ̄ ∼ π are independent. In particular,

T̄k,` = c-lim
n→∞

〈mk−1,m`−1〉n for all k, ` ≥ 1. (2.9)

In statistical applications featuring AMP iterates of the form
(
vk ≡ vk(n) : k, n ∈ N

)
, we sometimes

require joint convergence guarantees of the form (2.8) in addition to results along the lines of the
original Theorem 2.1. For example, see Step (II) of the analysis of (3.28) in Section 3.3 and also Step 3
of the general recipe of Section 4.4. In both cases, we need to track the limiting covariances as well as
the limiting variances (state evolution parameters) to show that limk→∞ limn→∞ ‖vk+1 − vk‖n

c→ 0,
i.e. that the asymptotic differences between successive AMP iterates become negligible for large k.

Remark 2.4. The precise form of the Onsager coefficient bk in (2.1) is essentially due to Stein’s
lemma; see (6.19) and Proposition 6.16(g) below. The latter shows that under (A5),

bk(n) = 〈f ′k(hk, γ)〉n
c→ E

(
f ′k(Gk, γ̄)

)
=: b̄k

for each k as n→∞. The conclusions of Theorems 2.1 and 2.3 remain valid if we replace bk ≡ bk(n)
with b̄k in the recursion (2.1) for all k, n, in which case (A5) is no longer needed.

For 1 ≤ j, ` ≤ k, since ψ : (x1, . . . , xk, y) 7→ xjx` lies in PLk+1(2) ⊆ PLk+1(r), (2.8) implies that

〈hj , h`〉n
c→ E(GjG`) = T̄j,`. Thus, the limiting covariance structure of h1, . . . , hk is given by T[k],

which in general is not a diagonal matrix. By contrast, while h̆k in the toy recursion (2.5) has the
same asymptotics as hk as n→∞, it turns out that h̆1, . . . , h̆k are asymptotically independent, in the
sense that the dr limit of the joint empirical distribution of their components is a centred Gaussian
with covariance diag(τ2

1 , . . . , τ
2
k ).

2.2 Asymmetric AMP

For n, p ∈ N, the abstract asymmetric AMP recursion (2.10) below is based on a matrix W ∈ Rn×p,
two vectors β ∈ Rp and γ ∈ Rn of auxiliary information and two sequences (gk, fk+1 : k ∈ N0) of
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Lipschitz functions gk, fk+1 : R2 → R. Given q−1 := 0 ∈ Rn, b0 ∈ R and m0 ∈ Rp, we inductively
define

ek := Wmk − bkqk−1, qk := gk(e
k, γ), ck := n−1∑n

i=1 g
′
k(e

k
i , γi),

hk+1 := W>qk − ckmk, mk+1 := fk+1(hk+1, β), bk+1 := n−1∑p
j=1 f

′
k+1(hk+1

j , βj)
(2.10)

for k ∈ N0. Here, g′k, f
′
k+1 : R2 → R are bounded, Borel measurable functions that agree with the

partial derivatives of gk, fk+1 respectively with respect to their first arguments, wherever the latter
are defined.

A master theorem for (2.10) is stated below as Theorem 2.5, whose hypotheses and conclusions are
similar to those of Theorems 2.1 and 2.3 for the symmetric iteration (2.1). Consider a sequence
of recursions (2.10) indexed by n ∈ N and p ≡ pn, for which n/p → δ ∈ (0,∞) as n → ∞. In
this asymptotic regime, suppose that there exist r ∈ [2,∞) and σ0 ∈ (0,∞) for which the following
analogues of (A0)–(A5) hold:

(B0) For each n, the matrix W ≡ W (n) has entries Wij
iid∼ N(0, 1/n) for 1 ≤ i ≤ n and 1 ≤ j ≤ p,

and is independent of (m0, β, γ) ≡
(
m0(n), β(n), γ(n)

)
.

(B1) There exist probability distributions πβ̄, πγ̄ ∈ P1(r) such that writing νp(β) and νn(γ) for
the empirical distributions of the components of β ∈ Rp and γ ∈ Rn respectively, we have
dr
(
νp(β), πβ̄

) c→ 0 and dr
(
νn(γ), πγ̄

) c→ 0.

(B2)
√
p/n ‖m0‖p ≡ (n−1

∑p
j=1 |m0

j |2)1/2 c→ σ0 and ‖m0‖p,r ≡ (p−1
∑p

j=1 |m0
j |r)1/r = Oc(1).

(B3) There exists a Lipschitz F0 : R → R such that taking β̄ ∼ πβ̄, we have E
(
F0(β̄)2

)
≤ σ2

0 and

〈m0, φ(β)〉p = p−1
∑p

j=1 f0(h0
j , βj)φ(βj)

c→ E
(
F0(β̄)φ(β̄)

)
for all Lipschitz φ : R→ R.

(B4) For each k ∈ N0, we have πγ̄
(
{y ∈ R : x 7→ gk(x, y) is non-constant}

)
> 0 and

πβ̄
(
{y ∈ R : x 7→ fk+1(x, y) is non-constant}

)
> 0.

(B5) For each k ∈ N0, writing Dk, Ck+1 for the sets of discontinuities of g′k, f
′
k+1 respectively, we have

(λ⊗ πγ̄)(Dk) = (λ⊗ πβ̄)(Ck+1) = 0, where λ denotes Lebesgue measure on R.

State evolution: With σ0 > 0 as above, inductively define

τ2
k+1 := E

(
gk(G

σ
k , γ̄)2

)
and σ2

k+1 := δ−1 E
(
fk+1(Gτk+1, β̄)2

)
(2.11)

for k ∈ N0, where we take Gσk ∼ N(0, σ2
k) to be independent of β̄ ∼ πβ̄, and Gτk+1 ∼ N(0, τ2

k+1) to be
independent of γ̄ ∼ πγ̄ .

Limiting covariance structure: Let Σ̄[1] ≡ Σ̄0,0 := σ2
0 and T̄[1] ≡ T̄1,1 := τ2

1 , and for a general k ∈
N, suppose inductively that we have already defined non-negative definite matrices Σ̄[k], T̄[k] ∈ Rk×k

with entries Σ̄
[k]
ij = Σ̄i−1,j−1 and T̄

[k]
ij = T̄i,j for 1 ≤ i, j ≤ k. Then let

Σ̄k,` = Σ̄`,k :=

{
δ−1 E

(
F0(β̄) · fk(Gτk, β̄)

)
for ` = 0

δ−1 E
(
f`(G

τ
` , β̄) · fk(Gτk, β̄)

)
for ` = 1, . . . , k,

(2.12)

where (Gτ1 , . . . , G
τ
k) ∼ Nk(0, T̄

[k]) is independent of γ̄ ∼ πγ̄ , and define Σ̄[k+1] ∈ R(k+1)×(k+1) by

Σ̄
[k+1]
ij := Σ̄i−1,j−1 for 1 ≤ i, j ≤ k + 1. As in (2.7), it is easily verified that Σ̄[k+1] is non-negative

definite. In addition, let

T̄k+1,` = T̄`,k+1 := E
(
g`−1(Gσ`−1, γ̄) · gk(Gσk , γ̄)

)
for ` = 1, . . . , k + 1, (2.13)

where (Gσ0 , . . . , G
σ
k) ∼ Nk+1(0, Σ̄[k+1]) is independent of β̄ ∼ πβ̄, and define T̄

[k+1]
ij := T̄i,j for 1 ≤ i, j ≤

k+ 1, so that the resulting matrix T̄[k+1] ∈ R(k+1)×(k+1) is again non-negative definite. Under (B4), it
can be shown as in Lemma 2.2 that Σ̄[k], T̄[k] are positive definite for all k ∈ N, and also that (2.12)–
(2.13) extends (2.11), with σ2

k−1 = Σ̄k−1,k−1 > 0 and τ2
k = T̄k,k > 0 for all k.
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Theorem 2.5. Suppose that (B0)–(B5) hold for a sequence of asymmetric AMP recursions (2.10)
indexed by n ∈ N and p ≡ pn with n/p→ δ ∈ (0,∞). Then for each fixed k ∈ N0, we have

d̃r
(
νn(ek, γ), N(0, σ2

k)⊗ πγ̄
)

= sup
ψ∈PL2(r,1)

∣∣∣∣ 1n
n∑
i=1

ψ(eki , γi)− E
(
ψ(Gσk , γ̄)

)∣∣∣∣ c→ 0,

d̃r
(
νp(h

k+1, β), N(0, τ2
k+1)⊗ πβ̄

)
= sup

ψ∈PL2(r,1)

∣∣∣∣1p
p∑
j=1

ψ(hk+1
j , βj)− E

(
ψ(Gτk+1, β̄)

)∣∣∣∣ c→ 0,

(2.14)

d̃r
(
νn(e0, . . . , ek, β), Nk+1(0, Σ̄[k+1])⊗ πβ̄

)
= sup

ψ∈PLk+2(r,1)

∣∣∣∣ 1n
n∑
i=1

ψ(e0
i , . . . , e

k
i , γi)− E

(
ψ(Gσ0 , . . . , G

σ
k , γ̄)

)∣∣∣∣ c→ 0,

d̃r
(
νp(h

1, . . . , hk+1, β), Nk+1(0, T̄[k+1])⊗ πβ̄
)

= sup
ψ∈PLk+2(r,1)

∣∣∣∣1p
p∑
j=1

ψ(h1
j , . . . , h

k+1
j , βj)− E

(
ψ(Gτ1 , . . . , G

τ
k+1, β̄)

)∣∣∣∣ c→ 0

(2.15)

as n→∞. Equivalent statements hold with dr in place of d̃r.

Together with the master theorems in Section 2.1, Theorem 2.5 can be generalised to abstract AMP
recursions with matrix-valued iterates; see Section 6.7.

Similarly to the discussion after Theorem 2.1, one can argue that for each k ∈ N0, the Gaussian
distributions N(0, σ2

k) and N(0, τ2
k+1) in (2.14) are the dr limits of the empirical distributions of the

entries of ĕk ∈ Rn and h̆k+1 ∈ Rp respectively in the toy recursion

ĕ0 := W̃ 0m0, h̆k+1 := W̆ kgk(ĕ
k, γ), ĕk+1 := W̃ k+1fk(h̆

k+1, β) for k ∈ N0 (2.16)

as n, p → ∞ with n/p → δ. Here, each iteration features a new matrix with i.i.d. N(0, 1/n) entries
that is independent of everything thus far. In the original abstract iteration (2.10), where the same
Gaussian matrix W is used throughout, the Onsager correction terms −bkqk−1 and −ckmk are designed
to ensure that ek ∈ Rn and hk+1 ∈ Rp have the same limiting behaviour as ĕk and h̆k+1 respectively.
We note however that the asymptotic joint empirical distributions in (2.15) are in general different
from those in (2.16). Indeed, the limiting covariance matrices in (2.16) are diagonal whereas Σ̄ and
T̄ in (2.12)–(2.13) are usually not diagonal; see the end of Section 2.1 for a similar comparison of the
symmetric recursions (2.1) and (2.5).

One way to establish Theorem 2.5 is to analyse the asymmetric recursion (2.10) directly, by adapting
the techniques and arguments from the proof of Theorem 2.3 for the symmetric iteration (2.1). An
important first step is to obtain an analogue of Proposition 6.11 that characterises the conditional
distribution of each of the iterates in (2.10), given the inputs m0, β, γ and all the previous iterates. This
then sets up an inductive proof along the lines of Proposition 6.16 (Bayati and Montanari, 2011). Rush
and Venkataramanan (2018) established a finite-sample version of Theorem 2.5 under finite-sample
analogues of its hypotheses (see Remark 6.3).

There is an alternative derivation of Theorem 2.5 that proceeds by first embedding (2.10) within a
suitable symmetric recursion (featuring a GOE(n + p) matrix), whose output at iteration k ∈ N0

contains h` when k = 2` and e` when k = 2` + 1 (Javanmard and Montanari, 2013; Berthier et al.,
2020). The construction of this augmented recursion is based on a slightly more general version of the
original symmetric iteration (2.1) that offers the additional flexibility to apply (two) different Lipschitz
functions to different components of each AMP iterate.
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3 Low-rank matrix estimation

3.1 An AMP algorithm for estimating a symmetric rank-one matrix

In this subsection, we will motivate and analyse an AMP algorithm for reconstructing a symmetric
rank-one matrix based on an observation

A ≡ A(n) =
λ

n
vv> +W ∈ Rn×n (3.1)

for some n ∈ N, where λ > 0 is a deterministic scalar, v ≡ v(n) ∈ Rn is the signal (or ‘spike’) that we
wish to estimate, and W ≡ W (n) ∼ GOE(n) is a noise matrix. The asymptotic setting of interest to
us here is one where ‖v‖n ≡ n−1/2 ‖v‖ converges to 1 as n→∞; see (3.4) below.

A natural estimator of v is a principal eigenvector ϕ̂ ≡ ϕ1(A) ∈ Rn (with ‖ϕ̂‖n = 1) corresponding
to the largest eigenvalue λ1(A) of the observation matrix A. A cornerstone of the spectral theory of
such ‘deformed’ GOE matrices is the so-called ‘BBP’ phase transition. This was first established in
the seminal paper of Baik et al. (2005) and later explored in greater generality by Baik and Silverstein
(2006), Féral and Péché (2007), Capitaine et al. (2009) and Benaych-Georges and Nadakuditi (2011),
among many others. See Johnstone and Paul (2018) for an accessible summary of this line of work,
which reveals that in the limiting regime where ‖v‖n converges to 1, the eigenstructure of A ≡ A(n)
for large n exhibits two different types of qualitative behaviour depending on whether λ ≤ 1 or λ > 1.
In particular, when n → ∞, it follows from the concentration results in Knowles and Yin (2013,
Theorems 2.7 and 6.3) that

λ1(A)
c→

{
λ+ λ−1 > 2 if λ > 1

2 if λ ∈ (0, 1],

|〈ϕ̂, v〉|
‖ϕ̂‖ ‖v‖

c→

{√
1− λ−2 if λ > 1

0 if λ ∈ (0, 1];
(3.2)

see also Peng (2012, Theorem 3.1) for the former and Corollary 3.4 below for the latter.

In the ‘supercritical’ phase when λ > 1, the effect of the spike v can be seen in the limiting expressions
above: with high probability, ϕ̂ is at least partially aligned with v (although it does not estimate v
consistently) and λ1(A) is an outlier that is separated from the ‘bulk’ of the spectrum of A. Indeed, the
remaining eigenvalues of A are asymptotically distributed according to the Wigner semicircle law on
[−2, 2], and it can be shown that the second-largest eigenvalue λ2(A) of A ≡ A(n) satisfies λ2(A)

c→ 2
as n→∞, so the limiting spectral gap λ1(A)− λ2(A) is strictly positive.

On the other hand, in the ‘subcritical’ phase when λ ≤ 1, the noise matrix W obscures the signal
in (3.1) to such an extent that ϕ̂ is asymptotically uninformative as an estimator of v, as evidenced
by the asymptotic orthogonality in (3.2), and λ1(A) remains attached to the bulk of the eigenvalues
of A. In this low signal-to-noise regime, the limits for λ1(A) and ϕ̂ in (3.2) are the same as for the
leading eigenvalue and eigenvector of W respectively.

A further limitation of the classical spectral estimator ϕ̂ is that it is unable to exploit any additional
information about the structure of v that may be relevant for inference. For example, in some matrix
estimation problems such as hidden clique detection and non-negative or sparse principal component
analysis, there are natural constraints that force v to be non-negative or sparse, or to lie in some
finite set such as {0, 1}n (Alon et al., 1998; Zou et al., 2006; Vu and Lei, 2013; Deshpande and
Montanari, 2015; Montanari and Richard, 2016). A Bayesian approach to modelling a structured
signal v is to assume that its components are drawn from some suitable prior distribution that is fully
or partially known. However, for general priors, a practical issue is the lack of efficient (i.e. polynomial-
time) algorithms for computing or accurately approximating the Bayes estimator of v with respect to
quadratic loss, namely the posterior mean E(v |A).

We will now present a generic (and computationally feasible) AMP procedure (3.3) for estimating v (cf.
Deshpande and Montanari, 2014; Deshpande et al., 2016; Montanari and Venkataramanan, 2021),
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and obtain an exact characterisation of its asymptotic performance in terms of a state evolution
recursion (Theorem 3.1 and Corollary 3.2). Guided by these theoretical guarantees, we will explain
in Sections 3.2 and 3.3 how the inputs to the algorithm can be specialised further to take advantage
of different types of prior information, and thereby produce estimators that outperform ϕ̂ in terms of
asymptotic mean squared error.

Let (gk)
∞
k=0 be a sequence of Lipschitz functions on R with corresponding weak derivatives g′k. Given

v̂−1 ≡ v̂−1(n) := 0 ∈ Rn and an initialiser v0 ≡ v0(n) ∈ Rn for some n ∈ N, we recursively define
vk ≡ vk(n) ∈ Rn, bk ≡ bk(n) ∈ R and v̂k+1 ≡ v̂k+1(n) ∈ Rn by

v̂k := gk(v
k), bk := 〈g′k(vk)〉n =

1

n

n∑
i=1

g′k(v
k
i ), vk+1 := Av̂k − bkv̂k−1 (3.3)

for k ∈ N0. This has a very similar form to the abstract recursion (2.1) that we studied in Section 2.1,
the main difference being that (3.3) is a valid algorithm with the data matrix A ≡ A(n) in place of
the unobserved noise matrix W ≡W (n).

As mentioned in the Introduction, we can view (3.3) as a generalised power iteration, in which the
additional Onsager correction term −bkv̂k−1 is crucial for ensuring that the iterates vk have the desired
asymptotic distributional properties. In fact, we will see in Section 3.3 that for a specific choice of
linear functions gk given by (3.27), the corresponding recursion (3.3) is asymptotically equivalent to
a standard power iteration that converges to the principal eigenvector ϕ̂ of A.

To set up our asymptotic framework, consider a sequence of recursions (3.3) indexed by n ∈ N, for
which the following conditions hold:

(M0) The noise matrix W ≡ W (n) ∼ GOE(n) in (3.1) is independent of (v̂0, v) ≡
(
v̂0(n), v(n)

)
for

each n.

(M1) There exist µ0, σ0 ∈ R and independent random variables U, V with E(U2) = E(V 2) = 1, such
that

sup
ψ∈PL2(2,1)

∣∣∣∣ 1n
n∑
i=1

ψ(v0
i , vi)− E

{
ψ
(
µ0V + σ0U, V

)}∣∣∣∣ c→ 0.

In other words, writing µ̄0 for the distribution of (µ0V + σ0U, V ), and νn(v0, v) for the joint
empirical distribution of the components of v0, v ∈ Rn for n ∈ N, we have

d̃2

(
νn(v0, v), µ̄0

) c→ 0 or equivalently d2

(
νn(v0, v), µ̄0

) c→ 0.

(M2) For each k ∈ N, the function g′k : R → R is continuous Lebesgue almost everywhere, i.e. the set
of discontinuities of g′k has Lebesgue measure 0.

Henceforth, we will write π for the distribution of V , which can be viewed as the ‘limiting prior
distribution’ of the components of the signal v ≡ v(n). Note that while v is only identifiable up to
sign in the original spiked model (3.1), knowledge of π may help us to distinguish v from −v in the
limit n → ∞, for example if π has non-zero mean. By considering the PL2(2) functions (x, y) 7→ y2,
(x, y) 7→ xy and (x, y) 7→ x2, we deduce from (M1) that

‖v‖2n =
1

n

n∑
i=1

v2
i

c→ E(V 2) = 1, (3.4)

λ〈v̂0, v〉n
c→ λE

(
V g0(µ0V + σ0U)

)
=: µ1 and ‖v̂0‖2n

c→ E
(
g0(µ0V + σ0U)2

)
=: σ2

1. (3.5)

State evolution: Starting with µ1 ∈ R and σ1 ∈ [0,∞), we inductively define state evolution
parameters µk ∈ R and σk ∈ [0,∞) for k ∈ N by

µk+1 := λE
(
V gk(µkV + σkG)

)
, σ2

k+1 := E
(
gk(µkV + σkG)2

)
, (3.6)

14



where V ∼ π and G ∼ N(0, 1) are independent. Note that since each gk is Lipschitz and E(V 2) =
E(G2) = 1, we indeed have µk ∈ R and σk ∈ [0,∞) for all k by induction; we will see below that these
represent the effective signal strength and effective noise level respectively at iteration k.

Limiting covariance structure: We now extend (3.6) by specifying the covariance matrices of the
limiting Gaussian distributions in Theorem 3.1 below. Let Σ̄[1] = Σ̄1,1 := σ2

1 ≥ 0. For a general k ≥ 2,
suppose inductively that we have already defined a non-negative definite Σ̄[k−1] ∈ R(k−1)×(k−1) with

entries Σ̄
[k−1]
ij = Σ̄i,j for 1 ≤ i, j ≤ k − 1, and then let

Σ̄k,` = Σ̄`,k :=

{
E
(
g0(µ0V + σ0U) · gk−1(µk−1V + σk−1Gk−1)

)
for ` = 1

E
(
g`−1(µ`−1V + σ`−1G`−1) · gk−1(µk−1V + σk−1Gk−1)

)
for ` = 2, . . . , k,

(3.7)

where (σ1G1, . . . , σk−1Gk−1) ∼ Nk−1(0, Σ̄[k−1]) is independent of (U, V ) from (M1). Let Σ̄[k] be the

k × k matrix with entries Σ̄
[k]
ij := Σ̄i,j for 1 ≤ i, j ≤ k, so that Σ̄[k−1] is the top-left principal

(k− 1)× (k− 1) submatrix of Σ̄[k]. It can be verified as in (2.7) that Σ̄[k] is non-negative definite. By
induction, σ2

k = E
(
gk−1(µk−1V + σk−1G)2

)
= Σ̄k,k for all k ∈ N, so (3.7) does indeed extend (3.6).

We are now ready to state the main result of this subsection, which for each k ∈ N establishes the
2-Wasserstein (d2) limit of the joint empirical distributions of the components of v0, v1, . . . , vk, v ∈ Rn
as n→∞.

Theorem 3.1. Suppose that (M0)–(M2) hold for a sequence of AMP iterations (3.3), where for each
n ∈ N, the symmetric matrix A ≡ A(n) is generated according to the spiked model (3.1) for some fixed
λ > 0 that does not depend on n. Then for each k ∈ N, we have

sup
ψ∈PLk+2(2,1)

∣∣∣∣ 1n
n∑
i=1

ψ(v0
i , v

1
i . . . , v

k
i , vi)−E

(
ψ(µ0V +σ0U, µ1V +σ1G1, . . . , µkV +σkGk, V )

)∣∣∣∣ c→ 0 (3.8)

as n→∞, where (σ1G1, . . . , σkGk) ∼ Nk(0, Σ̄
[k]) is independent of (U, V ) from (M1). In other words,

writing ν̆k for the distribution of (µ0V + σ0U, µ1V + σ1G1, . . . , µkV + σkGk, V ), we have

d̃2

(
νn(v0, v1, . . . , vk, v), ν̆k

) c→ 0 or equivalently d2

(
νn(v0, v1, . . . , vk, v), ν̆k

) c→ 0 as n→∞.

Before discussing Theorem 3.1 and its proof, we note that as an immediate consequence of (3.8),
Corollary 3.2 below yields an exact expression for the asymptotic deviation of v̂k = gk(v

k) from v
with respect to any pseudo-Lipschitz loss function of order 2. In particular, the asymptotic mean
squared error and empirical correlation in (3.10) and (3.11) respectively depend only on λ and the
state evolution parameters µk+1, σk+1.

Corollary 3.2. In the setting of Theorem 3.1, fix k ∈ N and let n → ∞. Then taking Gk ∼ N(0, 1)
to be independent of V ∼ π, we have

1

n

n∑
i=1

ψ(v̂ki , vi)
c→ E

{
ψ
(
gk(µkV + σkGk), V

)}
(3.9)

for all ψ ∈ PL2(2). Consequently,

‖v̂k − v‖2n
c→ E

{(
gk(µkV + σkGk)− V

)2}
= σ2

k+1 −
2µk+1

λ
+ 1 (3.10)

and
|〈v̂k, v〉n|
‖v̂k‖n‖v‖n

c→
∣∣E(V gk(µkV + σkGk)

)∣∣√
E
(
gk(µkV + σkGk)2

) =
|µk+1|
λσk+1

. (3.11)

Remark 3.3. Observe that ‖vk‖2n
c→ E

(
(µkV +σkGk)

2
)

= µ2
k+σ2

k and ‖v̂k−1‖2n = ‖gk−1(vk−1)‖n
c→ σ2

k

for all k ∈ N, so ‖vk‖2n − ‖v̂k−1‖2n and ‖v̂k−1‖2n are strongly consistent estimators of µ2
k and σ2

k

respectively.
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Interpretation: Through the state evolution recursion (3.6), Corollary 3.2 establishes a precise
correspondence between the asymptotic behaviour of the AMP iterates

(
v̂k ≡ v̂k(n) : n ∈ N

)
and

a univariate deconvolution problem, where we estimate V by gk(µkV + σkGk) when given a single
noisy observation µkV + σkGk. In this context, the quantity ρk := (µk/σk)

2 can be interpreted as
an effective signal-to-noise ratio, which arises naturally in (3.11) above. Returning to the spiked
model (3.1), we can think of v̂k ≡ v̂k(n) = gk(v

k) as an estimate of v ≡ v(n) based on an ‘effective
observation’ vk ≡ vk(n) whose components have approximately the same empirical distribution as
those of µkv + σkξ when n is large, where ξ ≡ ξ(n) ∼ Nn(0, In) is independent of v.

Theorem 3.1 and Corollary 3.2 can be rigorously proved by means of an instructive application of
the master theorems for the abstract symmetric AMP iteration (2.1) in Section 2.1. In the next few
paragraphs (which can be skipped on a first reading), we will outline the key arguments in the setting
of Corollary 3.2; a full proof of the more general Theorem 3.1 can be found in Section 6.8.

In summary, we begin by rewriting the AMP algorithm (3.3) in terms of the ‘noise’ components
ŭk ≡ ŭk(n) := vk−µkv of the effective observations vk, and aim to show that the corresponding noise
variables in the limiting univariate problem are indeed Gaussian (and independent of V ), with mean 0
and variance σ2

k given by (3.6). To this end, it can be seen that the resulting recursion (3.12) below
for (ŭk : k ∈ N) is very similar to an iteration of the abstract form (2.1), whose exact asymptotics are
given by Theorems 2.1 and 2.3. In addition to these main workhorse results, some additional technical
arguments are needed to take care of a ‘correction term’ in (3.12) below with asymptotically vanishing
influence.

The conclusion is that for each k, the joint empirical distribution νn(ŭk, v) of the entries of ŭk(n) =
vk(n) − µkv(n) and v ≡ v(n) converges completely in d̃2 to the distribution of (σkGk, V ) as n → ∞.
Equivalently, νn(vk, v) converges completely in d̃2 to the distribution of (µkV + σkGk, V ) as n→∞,
whence the conclusion (3.9) of Corollary 3.2 follows straightforwardly.

Proof sketch for Corollary 3.2. More precisely, under the spiked model (3.1), A is the sum of inde-
pendent signal and noise matrices λvv>/n and W respectively, so (3.3) becomes vk+1 ≡ vk+1(n) =
λ〈v̂k, v〉nv +Wgk(v

k)− bkgk−1(vk−1) for k, n ∈ N. Rearranging this and defining

δk ≡ δk(n) := λ〈v̂k−1, v〉n − µk

for all k and n, we see that ŭk ≡ ŭk(n) = vk(n)− µkv(n) satisfies

ŭ1 = Wv̂0 + δ1v, ŭk+1 = Wgk(ŭ
k + µkv)− bkgk−1(ŭk−1 + µk−1v) + δk+1v for k ∈ N, (3.12)

where bk ≡ bk(n) = 〈g′k(vk)〉n = 〈g′k(ŭk + µkv)〉n. Setting u1 := Wv̂0 and dropping the final δk+1v
term from the right hand side of (3.12), we obtain a related recursion

uk+1 ≡ uk+1(n) := Wgk(u
k + µkv)− b̃kgk−1(uk−1 + µk−1v) for k ∈ N, (3.13)

where b̃k ≡ b̃k(n) := 〈g′k(uk + µkv)〉n. This is an instance of (2.1) with fk, f
′
k : R2 → R given by

fk(x, y) = gk(x+µky) and f ′k(x, y) = g′k(x+µky) for x, y ∈ R. Under (M0)–(M2), it is straightforward
to verify that (A0)–(A5) are satisfied with

τ2
1 = c-lim

n→∞
‖v̂0‖2n = σ2

1 and τ2
k+1 = E

(
fk(σkGk, V )2

)
= E

(
gk(µkV + σkGk)

2
)

= σ2
k+1 (3.14)

for all k ∈ N (by induction), in view of the state evolution recursion for (σk : k ∈ N) in (3.5)–(3.6). It
follows from Theorem 2.1 that for each k in (3.13), the joint empirical distribution νn(uk, v) converges
completely in d2 to the distribution N(0, σ2

k)⊗ π of (σkGk, V ) as n→∞.

It now remains to establish that the δk+1v term in (3.12) has asymptotically negligible effect, in
the sense that the iterates in (3.12) remain close to those in (3.13) and hence have the same limiting
distributions. Specifically, it can be shown by induction on k ∈ N that δk(n)

c→ 0, that ‖ŭk−uk‖n
c→ 0

and hence that d̃2

(
νn(ŭk, v), N(0, σ2

k) ⊗ π
) c→ 0 as n → ∞ for each fixed k. The arguments involved
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are fairly routine, and are spelled out in detail in Section 6.8. We mention here that the first part of
the inductive step reveals the origins of the state evolution recursion for (µk : k ∈ N) in (3.5)–(3.6): it
follows from the inductive hypothesis d̃2

(
νn(ŭk, v), N(0, σ2

k)⊗ π
) c→ 0 that

λ〈v̂k, v〉n =
λ

n

n∑
i=1

vigk(ŭ
k
i + µkvi)

c→ λE
(
V gk(µkV + σkG)

)
= µk+1

as n→∞, so indeed δk+1(n)
c→ 0 as n→∞.

We conclude this subsection by noting that for a given sequence of (random) spikes v ≡ v(n) satis-
fying (M1), the quality of the estimates v̂k ≡ v̂k(n) clearly depends on the vectors v0 ≡ v0(n) that
are used to initiate the AMP iterations, as well as the sequence of Lipschitz functions gk : R→ R. In
the next two subsections, we will describe how these inputs to (3.3) can be suitably chosen to achieve
good estimation performance, based on the information that we have about the distribution of V .

3.2 Spectral initialisation

In the context of the spiked model (3.1), it is helpful to think of AMP as a method by which we can
potentially improve a ‘pilot’ estimator v̂0 ≡ v̂0(n) = g0(v0) of v ≡ v(n), in the sense that we may be
able to increase the asymptotic empirical correlation in (3.11) (i.e. the effective signal-to-noise ratio)
by repeatedly iterating (3.3). To this end, a minimum requirement is that we obtain effective signal-
to-noise ratios ρk+1 that are strictly positive, since the corresponding estimates v̂k ≡ v̂k(n) ought to
be at least partially aligned with v in the limit n→∞.

When E(V ) 6= 0, we will see in Section 3.3 that if the functions gk are chosen appropriately, then it
suffices to take v0 ≡ v0(n) = c1n ≡ (c, . . . , c) ∈ Rn for each n, where c ∈ R is fixed. However, this
does not work when E(V ) = 0: in this case, µ0 = c-limn→∞〈c1n, v〉n = 0 in (M1), and for any choice
of (gk), the state evolution recursion (3.6) then yields µk = 0 and ρk = (µk/σk)

2 = 0 for all k ∈ N
(since V and Gk are independent). For each k, it follows from (3.11) that 〈v̂k, v〉n

c→ 0 as n→∞, so
v̂k ≡ v̂k(n) is asymptotically uninformative as an estimator of v ≡ v(n).

Thus, when E(V ) = 0, we require µ0 6= 0 and pilot estimators that have non-zero asymptotic empirical
correlation with v. For n ∈ N, consider initialising the AMP algorithm (3.3) with v0 = cϕ̂ for some
c 6= 0, where ϕ̂ ≡ ϕ̂(n) is a normalised principal eigenvector of A ≡ A(n) with ‖ϕ̂‖n = 1. This is almost
surely well-defined up to its sign, and yields an initial estimate with the desired property precisely
when λ > 1; indeed, recall from (3.2) that |〈ϕ̂, v〉n|/‖v‖n

c→
√

1− λ−2 > 0 for such λ. Using the
orthogonal invariance of W ∼ GOE(n), Proposition 3.4 below extends this convergence result to show
that

{(
ϕ̂(n), v(n)

)
: n ∈ N

}
satisfies condition (M1) with µ0 =

√
1− λ−2, σ0 = 1/λ and U ∼ N(0, 1),

provided that 〈ϕ̂, v〉n ≥ 0 for all n; see Remark 3.6 below for further discussion of this final issue.

Proposition 3.4. Suppose that V ∼ π satisfies E(V 2) = 1 and d2

(
νn(v), π

) c→ 0 as n → ∞, where
νn(v) = n−1

∑n
i=1 δvi denotes the empirical distribution of v ≡ v(n) for n ∈ N. If λ > 1 in (3.1), and

each ϕ̂ ≡ ϕ̂(n) is a principal eigenvector of A ≡ A(n) whose direction is chosen so that 〈ϕ̂, v〉n ≥ 0
for all n, then

sup
ψ∈PL2(2,1)

∣∣∣∣ 1n
n∑
i=1

ψ(ϕ̂i, vi)− E
{
ψ
(√

1− λ−2 V + λ−1G0, V
)}∣∣∣∣ c→ 0

as n→∞, where G0 ∼ N(0, 1) is independent of V .

For proofs of more general results of this type for finite-rank perturbations of GOE matrices, see Mon-
tanari and Venkataramanan (2021, Lemma C.1 and Corollary C.3).

In the subsequent asymptotic analysis of the AMP algorithm (3.3) with spectral initialisation, an
additional technical challenge stems from the fact that ϕ̂ ≡ ϕ̂(n) is not independent of the noise matrix
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W ≡ W (n) for any n. This means that condition (M0) does not hold in general, so the theory from
Section 3.1 is not directly applicable in this setting. Nevertheless, Montanari and Venkataramanan
(2021) established Theorem 3.5 below to recover the desired conclusion for this particular initialisation,
with the same state evolution parameters µk, σk as defined in (3.6) but a slightly modified limiting
covariance structure. For fixed c 6= 0, let µ0 := c

√
1− λ−2 and Σ̄[0] = Σ̄0,0 ≡ σ2

0 := c2/λ2. For a
general k ∈ N, suppose inductively that we have already defined a non-negative definite Σ̄[k−1] ∈ Rk×k

with entries Σ̄
[k−1]
ij = Σ̄i,j for 0 ≤ i, j ≤ k − 1, and then let

Σ̄k,` = Σ̄`,k :=

{
λ−1 E

(
(µ0V + σ0G0) · gk−1(µk−1V + σk−1Gk−1)

)
for ` = 0,

E
(
g`−1(µ`−1V + σ`−1G`−1) · gk−1(µk−1V + σk−1Gk−1)

)
for ` = 1, . . . , k,

(3.15)

where (σ0G0, σ1G1, . . . , σk−1Gk−1) ∼ Nk(0, Σ̄
[k−1]) is independent of V ∼ π. Let Σ̄[k] be the (k +

1) × (k + 1) matrix with entries Σ̄
[k]
ij := Σ̄i,j for 0 ≤ i, j ≤ k. Similarly to (3.7), Σ̄[k] is non-negative

definite, and if we take U ∼ N(0, 1) to be independent of V ∼ π in the state evolution recursion (3.6),
then Σ̄k,k = σ2

k by induction. However, unlike in Section 3.1, observe from the first line of (3.15)
that the limiting Gaussian variables G1, G2, . . . need not be independent of U ≡ G0. This reflects
the dependence between W and the initialiser v0 = cϕ̂ for each n. To ensure that subsequent AMP
iterates in (3.3) have the correct asymptotics in this setting, we also set v−1 = λ−1c ϕ̂ instead of
v−1 = 0.

Theorem 3.5. Suppose that λ > 1 in the spiked model (3.1), and that the hypotheses of Proposition 3.4
are satisfied for a sequence of AMP algorithms (3.3) initialised with v0 ≡ v0(n) = c ϕ̂(n) and v̂−1 ≡
v̂−1(n) = λ−1c ϕ̂(n) for each n ∈ N, where 〈ϕ̂, v〉n ≥ 0 and c 6= 0 is fixed. Starting with µ0 =
c
√

1− λ−2, σ0 = c/λ and U ≡ G0 ∼ N(0, 1) in (3.5), define the state evolution parameters µk, σk, Σ̄
[k]

for k ∈ N according to (3.6) and (3.15). Then under (M2), the convergence results (3.8)–(3.11) remain
valid.

To circumvent the difficulty mentioned above, Theorem 3.5 can be proved by first applying the existing
AMP machinery to a suitably modified version of the iteration (3.3) for which (M0) is satisfied, and
then showing that this has the same asymptotics as the original procedure with spectral initialisation.
In the spiked model (3.1) where the signal matrix has rank 1, one approach along these lines is to
design a more tractable two-stage iteration, in which the input to (3.3) in the second phase is the
output of a surrogate power method that approximates v0 = c ϕ̂. This ‘artificial’ first phase takes the
form of an AMP iteration with specially chosen linear threshold functions (see (3.27) in Section 3.3)
and a (non-spectral) initialiser that is independent of W . The success of this strategy relies on the fact
that the spectral gap λ1(A)− λ2(A) of A ≡ A(n) has a strictly positive limit as n→∞ when λ > 1,
as mentioned at the start of Section 3.1. For further details of applications of this proof technique in
the GAMP setting of Section 4, see Mondelli et al. (2021) and Mondelli and Venkataramanan (2020).

We refer the reader to Montanari and Venkataramanan (2021, Appendix A) for a different proof of
Theorem 3.5 that extends more readily to a wider class of AMP algorithms for general low-rank matrix
estimation (see Section 3.5). This involves studying a variant of (3.3) in which A ≡ A(n) is replaced
with

Ã ≡ Ã(n) =
λ1(A)

n
ϕ̂ϕ̂> + P̂⊥

(
λ

n
vv> + W̃

)
P̂⊥

for each n, where λ1(A) is the maximal eigenvalue of A, the matrix P̂ := I − ϕ̂ϕ̂>/n represents the
projection onto the orthogonal complement of ϕ̂, and (crucially) W̃ ∼ GOE(n) is independent of W
and v. To relate the simplified iteration based on Ã to the original AMP procedure, an important
technical step is to show that the conditional distributions of A and Ã given

(
ϕ̂, λ1(A)

)
are close in

total variation distance when n is large.

Remark 3.6. In an estimation context where each v ≡ v(n) is unknown, it is sometimes not possible
to consistently determine the sign of the leading eigenvector of A ≡ A(n) that should be used as a
spectral initialiser, to ensure that it has non-negative asymptotic empirical correlation with v. For
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example, this is the case if the limiting prior distribution π is symmetric, i.e. V
d
= −V . On the

event of probability 1 where A has a unique maximal eigenvalue, suppose that one of the two possible
directions for the corresponding eigenvector is chosen uniformly at random when carrying out spectral
initialisation. In other words, let v0 ≡ v0(n) = εϕ̂ for each n, where 〈ϕ̂, v〉n ≥ 0 and ε ≡ ε(n) is a
Rademacher random variable that is independent of everything else. With this choice of v0, there
are two different state evolution trajectories that can arise: for ε′ ∈ {−1, 1}, let µ0(ε′) := ε′

√
1− λ−2

and σ0, U be as above, and define µk(ε
′), σk(ε

′), Σ̄[k](ε′) for k ∈ N as per (3.6)–(3.7). For the resulting
iterates vk ≡ vk(n), Theorem 3.5 implies that as n→∞, we have

sup
ψ∈PL2(2,1)

∣∣∣∣ 1n
n∑
i=1

ψ(vki , vi)− E
{
ψ
(
µk(ε)V + σk(ε)Gk, V

)∣∣ε}∣∣∣∣ c→ 0

for each k ∈ N0, as well as appropriate analogues of (3.8)–(3.11). Since E
{
ψ
(
µk(ε)V+σk(ε)Gk, V

)∣∣ε} is
random for each ψ, the empirical distribution of the components of vk(n) may not converge (completely
in d2) to a deterministic limit as n→∞, unlike in earlier results. Instead, we see that for large n, the
behaviour of the AMP iterates is characterised by a state evolution recursion with a random initial
condition µ0(ε) that depends on v0 ≡ v0(n) through the (unknown) sign ε ≡ ε(n).

3.3 Choosing the functions gk

Recall that our goal is to specialise the general AMP algorithm (3.3) to produce estimates v̂k = gk(v
k)

of v that exploit full or partial knowledge of the limiting prior distribution π from (M1). Corollary 3.2
suggests that we should aim to choose a sequence of Lipschitz ‘denoising’ functions gk : R→ R for which
each gk(µkV +σkGk) performs well as an estimator of V ∼ π in the limiting univariate problem, where
Gk ∼ N(0, 1) is independent of V for k ∈ N. More precisely, it would be desirable to ensure that the
effective signal-to-noise ratio ρk = (µk/σk)

2 is large for each k, since (3.11) tells us that the asymptotic
empirical correlation between v̂k and v is given by

√
ρk+1/λ. In fact, the implication of Lemma 3.7

below is that achieving a high effective signal-to-noise ratio ought to be our first priority, even when the
ultimate objective is for v̂k = gk(v

k) to have low asymptotic estimation error E
{
ψ
(
gk(µkV+σkGk), V

)}
with respect to some specific loss function ψ ∈ PL2(2).

Lemma 3.7. Let G ∼ N(0, 1) be independent of V ∼ π. Then for any Borel measurable loss function
ψ : R2 → [0,∞),

ρ 7→ inf
g
E
{
ψ
(
g(
√
ρV +G), V

)}
=: Rπ,ψ(ρ)

is non-increasing on [0,∞), where the infimum is over all Borel measurable functions g : R→ R. This
infimum is attained for all ρ ∈ [0,∞) if for example ψ(x, y) = Ψ(x − y) for some convex function Ψ
with Ψ(u)→∞ as |u| → ∞.

The intuition behind this result is straightforward: to minimise E
{
ψ
(
g(
√
ρV + G), V

)}
jointly over

ρ (belonging to a given range) and all measurable g, we should always begin by taking the largest
possible ρ (i.e. the least noisy

√
ρV + G) before subsequently optimising over g. A formal proof of

Lemma 3.7 is deferred to Section 6.8. The arguments therein show also that the first assertion of the
lemma remains valid if the infimum is instead taken only over Lipschitz functions (which are more
relevant to the setting of AMP).

Note that for (known) µ, σ ∈ R with (µ/σ)2 = ρ, the quantity Rπ,ψ(ρ) is the π-Bayes risk with respect
to ψ in a Bayesian mean estimation problem where we place a prior π on V and observe Y = µV +σG
(as in the paragraph above), i.e. Y |V ∼ N(µV, σ2). If there exists a Borel measurable g∗ : R → R
that attains the infimum in the definition of Rπ,ψ(ρ), then g∗(Y ) is a π-Bayes estimator of V (with
respect to ψ) based on Y .

Bayes-AMP: Suppose first that for some k ∈ N0, we are given the distribution π of V and the state
evolution parameters µk, σk (which depend on µ0, σ0 in (M1) as well as the functions g0, g1, . . . , gk−1).
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For convenience, when k = 0, we write G0 for the random variable U from (M1), and assume that its
distribution is also known. Let g∗k : R→ R be any measurable function with

g∗k(µkV + σkGk) = E(V |µkV + σkGk), (3.16)

which in principle can be computed based on Yk := µkV + σkGk. In particular, for k ∈ N, we have
Gk ∼ N(0, 1), in which case if σk > 0, then Yk has a smooth (real analytic), strictly positive Lebesgue
density pk on R. Specifically, pk(y) :=

∫
R φσk(y − µkx) dπ(x) for y ∈ R, where φσk is the density of a

N(0, σ2
k) random variable. Then by Tweedie’s formula (Robbins, 1956; Efron, 2011), we can take

g∗k(y) =
y + σ2

k (log pk)
′(y)1{σk 6=0}

µk
1{µk 6=0} =

y + σ2
k (p′k/pk)(y)1{σk 6=0}

µk
1{µk 6=0} for y ∈ R. (3.17)

For example, if π is the uniform distribution on {−1, 1} and σk 6= 0, then g∗k(y) = tanh(µky/σ
2
k) for

y ∈ R.

In the AMP literature, g∗k is referred to as the ‘Bayes optimal’ choice of threshold function in (3.3),
since the posterior mean g∗k(Yk) = E(V |Yk) is the Bayes estimator of V based on Yk with respect to
quadratic loss (often known as the minimum mean squared error (MMSE) estimator). Indeed, by the
characterisation of E(V |Yk) as an orthogonal projection,

E
{(
V − g(Yk)

)2}
= E

{(
V − g∗k(Yk)

)2}
+ E{(g∗k − g)2(Yk)} ≥ E

{(
V − g∗k(Yk)

)2}
(3.18)

for all measurable g : R→ R. In addition,

E
(
V g(Yk)

)2
E
(
g(Yk)2

) =
E
(
g∗k(Yk) g(Yk)

)2
E
(
g(Yk)2

) ≤ E
(
g∗k(Yk)

2
)

(3.19)

by the Cauchy–Schwarz inequality, with equality if g is a (non-zero) scalar multiple of g∗k. Thus, for
given µk, σk, the function g∗k simultaneously minimises the asymptotic mean squared error in (3.10) and
maximises the asymptotic empirical correlation (i.e. the effective signal-to-noise ratio ρ∗k+1) in (3.11)
over all measurable gk : R→ R.

The following result is a slight extension of Montanari and Venkataramanan (2021, Remark 2.3) (with
a different, simpler proof given in Section 6.8) that provides sufficient conditions on π under which g∗k
is Lipschitz and satisfies (M2).

Lemma 3.8. Suppose either that V has a log-concave density, or that there exist independent random

variables U0, V0 such that U0 is Gaussian, V0 is compactly supported and V
d
= U0 + V0. Then for

µk, σk 6= 0, the function g∗k in (3.17) is smooth and Lipschitz on R.

Assuming now that we have complete knowledge of the distributions of U, V as well as λ > 0 in (3.1)
and µ0, σ0 from (M1), we can construct a ‘Bayes-AMP’ algorithm of the form (3.3) by recursively
defining (g∗k : k ∈ N) and state evolution sequences (µ∗k, σ

∗
k : k ∈ N) in accordance with (3.16, 3.17)

and (3.6) respectively. We will write vk,B ≡ vk,B(n) for the resulting Bayes-AMP iterates (i.e. effective
observations) and v̂k,B ≡ v̂k,B(n) := g∗k(v

k,B) for the Bayes-AMP estimates of v ≡ v(n).

For each k ∈ N, we have µ∗k+1 = λE
(
V g∗k(Yk)

)
= λE

(
g∗k(Yk)

2
)

= λ(σ∗k+1)2 by (3.19), and since
E(V 2) = 1 by (M1), the effective signal-to-noise ratios in Bayes-AMP satisfy

ρ∗k+1 := (µ∗k+1/σ
∗
k+1)2 = λ2(σ∗k+1)2 = λ2 E

(
g∗k(Yk)

2
)

= λ2
(
1− E

{(
V − g∗k(Yk)

)2})
. (3.20)

Thus, the state evolution recursion (3.6) for Bayes-AMP can be compactly written as

ρ∗0 := (µ0/σ0)2, ρ∗k+1 := λ2
(
1−mmsek(ρ

∗
k)
)

for k ∈ N0, (3.21)

where for ρ ∈ [0,∞) we denote by

mmsek(ρ) := E
{(
V − E(V |√ρV +Gk)

)2}
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the minimum mean squared error (i.e. the Bayes risk with respect to squared error loss ψ2 : (x, y) 7→
(x − y)2) for the problem of reconstructing V based on the corrupted observation

√
ρV + Gk. For

k ∈ N, we have Gk ∼ N(0, 1), in which case we simply write mmse(ρ) for mmsek(ρ) = Rπ,ψ2(ρ). For
concreteness, we set mmse(∞) = 0, which is consistent with the fact that mmse(ρ)→ 0 as ρ→∞.

At each iteration k ∈ N, it turns out that ρ∗k+1 is the highest effective signal-to-noise ratio that can
be achieved with any choice of functions (gk) in the generic AMP procedure (3.3).

Corollary 3.9. Consider any sequence of AMP iterations
(
vk ≡ vk(n) : k, n ∈ N

)
of the form (3.3)

for which the hypotheses of Theorem 3.1 or 3.5 are satisfied with V ∼ π and suitable µ0, σ0. Let
(µk, σk : k ∈ N0) and

(
ρk = (µk/σk)

2 : k ∈ N0

)
be the associated sequences of state evolution

parameters and effective signal-to-noise ratios respectively. Define (ρ∗k : k ∈ N0) as in (3.20). Then
for each k ∈ N0 and any ψ ∈ PL2(2), the estimates v̂k ≡ v̂k(n) = gk(v

k) satisfy

|〈v̂k, v〉n|
‖v̂k‖n‖v‖n

c→
√
ρk+1

λ
≤
√
ρ∗k+1

λ
(3.22)

and
1

n

n∑
i=1

ψ(v̂ki , vi)
c→ E

{
ψ
(
gk(µkV + σkGk), V

)}
≥ Rπ,ψ(ρ∗k) as n→∞. (3.23)

This follows from (3.11) and (3.19) above, as well as Lemma 3.7, which implies in particular that
ρ 7→ mmse(ρ) is decreasing on [0,∞). See Section 6.8 for a full justification of Corollary 3.9.

Under the conditions of Lemma 3.8 above, the Bayes optimal functions g∗k are Lipschitz and sat-
isfy (M2). We can then apply the general results in Sections 3.1 and 3.2 to obtain the exact asymptotics
for Bayes-AMP, for which it follows that (3.22) holds with equality. In other words, at every iteration,
the Bayes-AMP estimate v̂k,B = g∗k(v

k,B) achieves the optimal asymptotic empirical correlation among
all AMP algorithms that are covered by the theory above. Moreover, with the initialisations in (i)
and (ii) below, Theorem 3.10 shows that Bayes-AMP achieves the objective set out at the start of
Section 3.2, namely that v̂k+1,B is a strict improvement on v̂k,B in terms of its asymptotic squared
error and empirical correlation (i.e. the effective signal-to-noise ratio ρ∗k+1) for each k. This means

that for large k and n, the performance of v̂k,B ≡ v̂k,B(n) is approximately characterised by a fixed
point of the recursion in (3.21) to which (ρ∗k) converges monotonically; see Figure 2.

Theorem 3.10. Let
(
vk,B ≡ vk,B(n) : k, n ∈ N

)
be a sequence of Bayes-AMP iterations that satisfies

either (i) or (ii) below.

(i) (Non-spectral initialisation) v0 ≡ v0(n) = c1n and v−1 ≡ v−1(n) = 0 for each n, where c ∈ R
is fixed. Suppose that the hypotheses of Theorem 3.1 are satisfied with E(V ) 6= 0, in which case
µ0 = 0, σ0 = c and ρ∗0 = 0.

(ii) (Spectral initialisation) v0 ≡ v0(n) = c ϕ̂(n) and v−1 ≡ v−1(n) = λ−1c ϕ̂(n) for each n, where
c 6= 0 is fixed and 〈ϕ̂, v〉n ≥ 0. Suppose that the hypotheses of Theorem 3.5 are satisfied with
λ > 1, in which case µ0 = c

√
1− λ−2, σ0 = c/λ and ρ∗0 = λ2 − 1.

Suppose that V ∼ π satisfies one of the conditions of Lemma 3.8. Then we have the following:

(a) The sequence (ρ∗k : k ∈ N0) of effective signal-to-noise ratios defined through (3.20) is strictly
increasing, and converges to the smallest strictly positive fixed point of ρ = λ2

(
1 − mmse(ρ)

)
,

which we denote by ρ∗AMP ≡ ρ∗AMP(λ) ∈ (0, λ2].

(b) For k ∈ N and a (convex, non-negative) loss function ψ ∈ PL2(2), suppose that g∗k,ψ : R → R
is Lipschitz and attains the infimum in the definition of Rπ,ψ(ρ∗k). Then the estimates v̂k,ψ ≡
v̂k,ψ(n) := g∗k,ψ(vk,B) satisfy (3.23) with equality, i.e. n−1

∑n
i=1 ψ(v̂k,ψi , vi)

c→ Rπ,ψ(ρ∗k) as n →
∞, and Rπ,ψ(ρ∗k) ≥ Rπ,ψ(ρ∗k+1).
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(c) The Bayes-AMP estimates v̂k,B = g∗k(v
k,B) satisfy

c-lim
n→∞

‖v̂k,B − v‖2n = 1−
ρ∗k+1

λ2
↘ 1−

ρ∗AMP(λ)

λ2
(3.24)

and c-lim
n→∞

〈v̂k,B, v〉n
‖v̂k,B‖n‖v‖n

=

√
ρ∗k+1

λ
↗
√
ρ∗AMP(λ)

λ
as k →∞. (3.25)

Figure 2: ‘Cobweb diagrams’ illustrating the conclusion of Theorem 3.10(a) that ρ∗k ↗ ρ∗AMP as k →∞, under
(i) and (ii) respectively with λ = 1.7; note that 1−mmse(0) = E(V )2:

Left, non-spectral initialisation: V ∼ π = 3
4δ0 + 1

4δ2, with E(V ) = 1/2 6= 0 and E(V 2) = 1: convergence to
ρ∗AMP occurs when ρ∗0 = 0.

Right, spectral initialisation: V ∼ π = 1
2δ−1 + 1

2δ1, with E(V ) = 0 and E(V 2) = 1: convergence to ρ∗AMP occurs
only if ρ∗0 > 0.

The proof of Theorem 3.10 is given in Section 6.8. To understand the implications of (b) above,
suppose that we wish to use AMP to obtain estimates ṽ ≡ ṽ(n) of v ≡ v(n) with small (asymptotic)
`1 estimation error n−1

∑n
i=1 |ṽi − vi|. In view of (3.23) and Theorem 3.10(b), with ψ taken to

be absolute error loss ψ1 : (x, y) 7→ |x − y|, we should first run Bayes-AMP to obtain the highest
possible effective signal-to-noise ratio ρ∗k at every iteration. Then for each k ∈ N, we should consider
g∗k,ψ1

: R → R for which g∗k,ψ1
(y) is a median of the conditional (i.e. posterior) distribution of V

given µkV + σkG = y for (Lebesgue almost) every y ∈ R. If we can find a Lipschitz g∗k,ψ1
with this

property, then v̂k,ψ1 := g∗k,ψ1
(vk,B) attains the lowest possible limiting mean absolute error Rπ,ψ1(ρ∗k) =

infg E
{∣∣V − g

(√
ρ∗k V + G

)∣∣}, among all estimators obtained from the kth iteration of some AMP
algorithm of the form (3.3). In cases where there is no suitable Lipschitz g∗k,ψ1

, for example when
V has a discrete distribution, one possible modification of the approach above would be to replace
g∗k,ψ1

with a Lipschitz approximation when constructing the estimator, in the hope that the resulting
asymptotic `1 error is close to Rπ,ψ1(ρ∗k).

As for Theorem 3.10(c), one can compare the asymptotic mean squared error (3.24) and empirical
correlation (3.25) achieved by Bayes-AMP with the corresponding Bayes optimal quantities (i.e. the
best possible limiting values that can be attained by any estimator). In a spiked model (3.1) where
the entries of v ≡ v(n) are i.i.d. with distribution π, closed-form asymptotic expressions for the
Bayes estimator E(v |A) were rigorously established by Barbier et al. (2016) and Lelarge and Miolane
(2019). It turns out that the Bayes optimal performance is characterised by a fixed point ρ∗B of ρ =
λ2
(
1−mmse(ρ)

)
that maximises a specific free-energy functional; see Montanari and Venkataramanan

(2021, Section 2.4) for further details. Thus, we can precisely characterise the performance gap between
Bayes-AMP and Bayes optimal estimation for symmetric rank-one matrix estimation. In particular,
when the equation ρ = λ2

(
1−mmse(ρ)

)
has a unique positive solution (as is the case for the U{−1, 1}

prior in Figure 1), Bayes-AMP achieves the Bayes optimal performance. Furthermore, in cases where
ρ∗AMP 6= ρ∗B (i.e. AMP is not Bayes optimal), there is currently no known polynomial-time algorithm
that is superior to Bayes-AMP in terms of the limiting effective signal-to-noise ratio in (3.25).

We remark that the optimality of Bayes-AMP among polynomial-time algorithms is conjectured only
for certain classes of statistical problems such as low-rank matrix estimation and generalised linear
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models. For tensor PCA, Hopkins et al. (2015) proposed a polynomial-time algorithm based on the
sum-of-squares hierarchy that has strictly better estimation performance than AMP (Montanari and
Richard, 2014). Subsequently, Wein et al. (2019) developed generalised spectral methods based on
statistical physics that match the performance of the sum-of-squares algorithm for tensor PCA.

Remark 3.11. Suppose that the limiting prior distribution π is symmetric, i.e. V
d
= −V , in which

case v and −v are asymptotically indistinguishable. Then E(V ) = 0, and as mentioned in Remark 3.6,
it is not possible to consistently choose the sign of the spectral initialiser in a data-driven way, so as
to ensure that 〈ϕ̂, v〉n ≥ 0 for each n. Nevertheless, the two possible state evolution trajectories for
Bayes-AMP (with spectral initialisation) are easily seen to be identical up to the sign of each µk, so
the limits in (3.24) and (3.25) remain valid for

min
ε∈{−1,1}

‖v̂k,B − εv‖2n and min
ε∈{−1,1}

〈v̂k,B, εv〉n
‖v̂k,B‖n‖v‖n

respectively.

Remark 3.12. If the limiting prior distribution π is known but some or all of λ, µ0, σ0 are not, then
starting with v̂0 ≡ v̂0(n) for some n, we can construct an ‘empirical Bayes-AMP algorithm’ based on
estimates of µk, σk for each k. Specifically, recalling Remark 3.3 and proceeding inductively, we can
use (3.17) to define ĝ∗k based on

µ̂k :=
(
‖vk‖2n − ‖v̂k−1‖2n

)1/2
and σ̂k := ‖v̂k−1‖n,

and then obtain v̂k = ĝ∗k(v
k) and vk+1 via (3.3) for each k. Alternatively, since µ∗k = λ(σ∗k)

2 ≥ 0 in

Bayes-AMP, we could instead take µ̂k = λ̂σ̂2
k = λ̂‖v̂k−1‖2n, where

λ̂ :=
λ1(A) +

√
λ1(A)2 − 4

2

is a strongly consistent estimator of λ by (3.2). Yet another approach is to first define (ρ̂k) recursively
by ρ̂1 := µ̂2

1/σ̂
2
1 and ρ̂k+1 := λ̂2

(
1 − mmse(ρ̂k)

)
for each k. In view of (3.20), we can then estimate

µk, σ
2
k by ρ̂k+1/λ̂ and ρ̂k+1/λ̂

2 respectively, and use these to define ĝ∗k and hence v̂k, vk+1 for each
k as above. The theoretical guarantees in Theorems 3.1 and 3.5 extend fairly straightforwardly to
empirical Bayes-AMP; see Montanari and Venkataramanan (2021, Lemma G.1).

Sparse signal recovery: To give another example where the AMP procedure (3.3) can be specialised
appropriately, suppose that the exact distribution π of V is not known, but that for some fixed s ∈ (0, 1)
and every n ∈ N, the spike v ≡ v(n) is known to have at most sn non-zero entries. This implies that
π satisfies π({0}) ≥ 1 − s. In line with the classical theory on denoising sparse vectors (Donoho
and Johnstone, 1994, 1998; Montanari, 2012, Section 9.3), we can take (gk)k∈N0 to be a sequence of
soft-thresholding functions

gk(y) = STtk(y) := sgn(y)(|y| − tk)+,

so that the AMP algorithm (3.3) becomes

v̂k = STtk(vk), bk =
1

n

n∑
i=1

1{v̂ki 6=0} ≡
‖v̂k‖0
n

, vk+1 = Av̂k − bkv̂k−1 for k ∈ N0. (3.26)

When each of the thresholds tk ∈ (0,∞) is suitably chosen in terms of λ and the state evolution
parameter σk (or consistent estimators thereof), Montanari and Venkataramanan (2021) establish
lower bounds on the effective signal-to-noise ratios ρk = (µk/σk)

2 that hold uniformly over the class
of distributions π with π({0}) ≥ 1 − s. In conjunction with Corollary 3.2, this analysis leads to a
theoretical guarantee on the performance of (3.26) for any sequence of ns-sparse spikes v ≡ v(n)
satisfying (M1); see Proposition 2.1 in the aforementioned paper.

We also mention that Barbier et al. (2020) recently established statistical and computational limits
for sparse signal recovery in an asymptotic regime where the expected number of non-zero entries of
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v ≡ v(n) is a sublinear function of n. Specifically, for each n, the entries of v are drawn independently
from a prior πn with πn({0}) ≥ 1− sn and sn → 0 as n→∞. In this setting, the analysis makes use
of finite-sample versions of the AMP master theorems (see Remark 6.3).

In summary, the state evolution characterisation of the AMP algorithm (3.3) allows us to choose the
functions gk in a principled way, depending on the prior information available about the signal v. A
poor choice of (gk) will lead to low effective signal-to-noise ratios ρk = (µk/σk)

2, but the asymptotic
convergence results (3.8)–(3.11) will continue to hold provided that the hypotheses of Theorem 3.1
or 3.5 are satisfied.

A key strength of the AMP framework is that it gives us the flexibility to choose non-linear functions gk,
such as the soft-thresholding functions above. Note that the MMSE denoising functions g∗k in (3.16)
are non-linear except in special cases (such as when V is Gaussian). Nevertheless, iterations with
linear gk can sometimes be useful as a theoretical device for obtaining distributional information
about spectral estimators, as the following example shows; see also Mondelli and Venkataramanan
(2020) and Mondelli et al. (2021).

Connection with the power method: Suppose that we initialise (3.3) with v̂0 ≡ v̂0(n) := µ0v+ ξ,
where µ0 6= 0 and ξ ≡ ξ(n) ∼ Nn(0, In), and define

βk :=
√

1 + µ2
k, gk(x) :=

x

βk
for x ∈ R, µk+1 :=

λ√
1 + µ−2

k

for k ∈ N0. (3.27)

These functions gk are constructed in a such a way that the corresponding state evolution formula (3.6)
yields σ2

k = 1 for every k, and parameters µk that coincide exactly with those defined in (3.27). Observe
now that the AMP iteration (3.3) corresponding to (3.27) yields

(
v̂k ≡ v̂k(n) : k ∈ N

)
satisfying

β0v̂
1 = v1 = Av̂0 and(

βk +
1

βk−1

)
v̂k+1 − 1

βk−1
(v̂k+1 − v̂k−1) = Av̂k for k ∈ N. (3.28)

The key steps in the theoretical analysis of (3.28) can be summarised as follows:

(I) When λ > 1, some elementary analysis (e.g. based on the contraction mapping theorem) shows
that

√
λ2 − 1 is a stable fixed point of the deterministic recursion for (µk) in (3.27), and hence

that βk → λ as k →∞.

(II) Using Theorem 3.1 and the covariance matrix defined in (3.7), we can obtain the d2 limit of
the joint empirical distribution of the components of v̂k+1 ≡ v̂k+1(n) and v̂k−1 ≡ v̂k−1(n) as
n → ∞; in particular, ‖v̂k+1‖n

c→ 1. It then follows from (I) and routine arguments that
limk→∞ c-limn→∞ ‖v̂k+1 − v̂k−1‖n = 0. In other words, ‖v̂k+1 − v̂k−1‖n converges completely to
some deterministic limit `k as n→∞ for each fixed k, and `k → 0 as k →∞.

(III) Thus, writing (3.28) in the form Av̂k = (λ+ λ−1)v̂k+1 + ϑk for k, n ∈ N, where

ϑk ≡ ϑk(n) :=

{(
βk +

1

βk−1

)
−
(
λ+

1

λ

)}
v̂k+1 − 1

βk−1
(v̂k+1 − v̂k−1),

we deduce from (I) and (II) that limk→∞ c-limn→∞ ‖ϑk‖n = 0.

Using these ingredients and the fact that the limiting spectral gap of A ≡ A(n) is strictly positive
when λ > 1, it can be established that

lim
k→∞

c-lim
n→∞

|〈v̂k, ϕ̂〉n|
‖v̂k‖n

= 1.

This shows that the specific instance (3.28) of the AMP iteration is asymptotically equivalent to
the well-known power method for approximating ϕ̂, although the dependence of v̂0 on the unknown v
means that we cannot use (3.28) as an algorithm in practice. Nevertheless, this asymptotic equivalence
ensures that we can apply Theorem 3.1 to obtain the d2 convergence result in Proposition 3.4 for the
joint empirical distribution of the components of ϕ̂ and the signal v.
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3.4 Confidence intervals and p-values

As a consequence of Theorem 3.1, recall from the discussion after Corollary 3.2 that for fixed k and
large n, the AMP iterates (i.e. effective observations) vk ≡ vk(n) in the generic procedure (3.3) have
the property that {(vki − µkvi)/σk : 1 ≤ i ≤ n} behaves approximately like an i.i.d. sample of size
n from the N(0, 1) distribution. Thus, for a given α ∈ [0, 1], we would expect roughly n(1 − α)
of these components to have absolute value at most zα/2 := Φ−1(1 − α/2), where Φ−1 denotes the
quantile function of the N(0, 1) distribution. Using this observation, we will now outline briefly
how to construct confidence intervals for the entries of v ≡ v(n), as well as associated p-values. By
Remark 3.3, the (possibly unknown) state evolution parameters µk, σk can be estimated consistently

by µ̂k ≡ µ̂k(n) =
(
‖vk‖2n − ‖vk−1‖2n

)1/2
and σ̂k ≡ σ̂k(n) = ‖vk−1‖n respectively for each k ∈ N, so we

define

Ĵki (n, α) :=

[
vki − zα/2 σ̂k

µ̂k
,
vki + zα/2 σ̂k

µ̂k

]
and pki ≡ pki (n) = 2

{
1− Φ

(
|vki |
σ̂k

)}
(3.29)

for k, n ∈ N, 1 ≤ i ≤ n and α ∈ [0, 1]. Montanari and Venkataramanan (2021, Corollary 3.1) showed
that for fixed k ∈ N and α ∈ [0, 1], the confidence intervals Ĵk1 (n, α), . . . , Ĵkn(n, α) have asymptotic
mean coverage level 1− α; specifically,

c-lim
n→∞

1

n

n∑
i=1

1{vi(n)∈Ĵki (n,α)} = 1− α = lim
n→∞

1

n

n∑
i=1

P
(
vi(n) ∈ Ĵki (n, α)

)
.

The first limit above can be established by considering Lipschitz approximations to indicator functions
of intervals and appealing to either Theorem 3.1 or 3.5 (for non-spectral and spectral initialisations
respectively). The dominated convergence theorem can then be applied to deduce the second equality
from the first. Note that for fixed k, α, the asymptotic width of each Ĵki (n, α) is 2zα/2/ρk, which is
minimised when the empirical Bayes-AMP iterates are used to construct these intervals.

In addition, suppose that the proportion of non-zero entries in the spike v ≡ v(n) tends to δ ∈ (0, 1)
as n→∞. Then the result cited above asserts that the p-values defined in (3.29) are asymptotically
valid for the nulls Nn := {1 ≤ i ≤ n : vi ≡ vi(n) = 0} in the following sense: for any sequence of
indices

(
i0(n) ∈ Nn : n ∈ N

)
and all fixed k ∈ N and α ∈ [0, 1], we have limn→∞ P(pki0(n) ≤ α) = α.

3.5 AMP for more general low-rank matrix estimation problems

Multivariate denoising functions: Thus far, we have only studied estimators v̂k = gk(v
k) of the

signal v based on a single AMP iterate vk. One could attempt to improve estimation accuracy by
designing estimators gk(v

0, . . . , vk) that also make use of all previous iterates, where gk : Rk+1 → R
is a Lipschitz function that is applied row-wise to (v0 · · · vk). In the Gaussian spiked model (3.1),
consider a more general AMP algorithm with the same initialisers v̂−1, v0 ∈ Rn as in Section 3.1 or 3.2,
but with iterates inductively defined by

v̂k := gk(v
0, v1, . . . , vk), bkj := 〈∂jgk(v0, . . . , vk)〉n = n−1∑n

i=1 ∂jgk(v
0
i , . . . , v

k
i ) for 1 ≤ j ≤ k

vk+1 := Av̂k −
∑k

j=0 bkj v̂
j−1 (3.30)

for k ∈ N0. Here, ∂jgk is a weak derivative of the Lipschitz function (x0, x1 . . . , xk) 7→ gk(x0, x1 . . . , xk)
with respect to xj for 0 ≤ j ≤ k. In the setting of Section 3.1, the recursions (3.6)–(3.7) for the state
evolution parameters µk, σk, Σ̄

[k] instead become

µk+1 := λE
(
V gk(µkV + Ḡk)

)
, σ2

k+1 := E
(
gk(µkV + Ḡk)2

)
,

Σ̄k,` = Σ̄`,k := E
(
g`−1(µ`−1V + Ḡ`−1) · gk−1(µk−1V + Ḡk−1)

)
for 1 ≤ ` ≤ k.

(3.31)
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Here, µ` := (µ0, . . . , µ`) and Ḡ` := (σ0U, σ1G1, . . . , σ`G`) are (`+ 1)-dimensional random vectors for
0 ≤ ` ≤ k, with (σ1G1, . . . , σkGk) ∼ Nk(0, Σ̄

[k]) independent of (U, V ) from (M1). In the case of spec-
tral initialisation, the recursion (3.15) for Σ̄[k] generalises analogously. By relatively straightforward
extensions of the proofs of Theorem 2.3 and Corollary 3.2, it follows that

1

n

n∑
i=1

ψ(v̂ki , vi)
c→ E

{
ψ
(
gk(µkV + Ḡk), V

)}
, (3.32)

provided that the hypotheses of Theorem 3.1 or 3.5 are satisfied. The limiting univariate problem is
therefore to estimate V ∼ π based on µkV + Ḡk = (µ0V + σ0U, µ1V + σ1G1, . . . , µkV + σkGk).

If the prior distribution π and the initial µ0, σ0 are known, then we can recursively define the Bayes-
AMP denoisers g∗k : Rk+1 → R and state evolution sequences

(
µ∗k, σ

∗
k, Σ̄

[k] : k ∈ N
)

via the posterior
means

g∗k(µ∗
kV + Ḡ∗

k) = E(V |µ∗
kV + Ḡ∗

k) (3.33)

and (3.31). Although we might hope that the resulting estimates v̂k = g∗k(µ∗
kV +Ḡ∗

k) of v are superior
to those in Section 3.3, it turns out that in the setting of Theorem 3.10, they are in fact identical to
the Bayes-AMP estimates v̂k,B defined earlier. This is a consequence of the Gaussianity of the noise
matrix W in the spiked model, which manifests itself in the following fact (whose proof is given in
Section 6.8).

Lemma 3.13. Let
(
v0 ≡ v0(n) : n ∈ N

)
be a sequence of (non-spectral or spectral) initialisers that

satisfies either condition (i) or (ii) of Theorem 3.10. Consider the resulting Bayes-AMP iterations(
vk ≡ vk(n) : k, n ∈ N

)
of the form (3.30) with g∗k and µ∗k, σ

∗
k, Σ̄

[k] as above. Then for every k ∈ N,
the random variable V ∼ π is conditionally independent of µ∗

k−1V + Ḡ∗
k−1 given µ∗kV +σ∗kGk, whence

g∗k(µ∗
kV + Ḡ∗

k) = E(V |µ∗
kV + Ḡ∗

k) = E(V |µ∗kV + σ∗kGk). (3.34)

Consequently, g∗k depends only on its last argument and b∗kj = 0 for 1 ≤ j ≤ k − 1, so
(
vk ≡ vk(n) :

k, n ∈ N
)

coincides with the sequence
(
vk,B ≡ vk,B(n) : k, n ∈ N

)
of Bayes-AMP iterations based on

the univariate threshold functions g∗k in (3.16, 3.17).

Thus, the Bayes-AMP estimates v̂k,B in Section 3.3 are actually Bayes optimal over a wider class of
estimators arising from AMP algorithms (3.30) with separable multivariate denoisers. In particular,
to define the Bayes-AMP denoising functions in this Gaussian setting, it suffices to track the state
evolution scalars µ∗k, σ

∗
k rather than the full limiting covariance matrices Σ̄[k]. As we will see below,

this is in sharp contrast to AMP iterations with general non-Gaussian rotationally invariant matrices.
Note also that the conditional independence in Lemma 3.13 is specific to Bayes-AMP, and is not
guaranteed to hold for the state evolution sequence and limiting random variables associated with a
general AMP iteration of the form (3.30).

Estimation of a rectangular rank-one matrix: Let A ∈ Rn×p be an observation matrix given by

A ≡ A(n) =
λ

n
uv> +W ′, (3.35)

where W ′ is a Gaussian noise matrix with W ′ij
iid∼ N(0, 1/n) for 1 ≤ i ≤ n and 1 ≤ j ≤ p, and seek to

estimate one or both of the unknown vectors u ∈ Rn and v ∈ Rp.

An important example of this observation scheme is a spiked covariance model (Johnstone, 2006;

Johnstone and Lu, 2009) where a1, . . . , an
iid∼ Np(0,Σ) with Σ := (λvv> + Ip)/n ∈ Rp×p. In this case,

the matrix A ∈ Rn×p with rows a1, . . . , an is of the form (3.35) with u ∼ Nn(0, In).

By analogy with the symmetric case in Section 3.1, an AMP algorithm for the model (3.35) can be
obtained by replacing the Gaussian matrix W in the abstract asymmetric AMP iteration (2.10) with
the data matrix A (Rangan and Fletcher, 2012; Deshpande and Montanari, 2014). For k ∈ N0 and
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generic sequences of Lipschitz functions (fk)
∞
k=0 and (gk)

∞
k=0 satisfying (M2), the corresponding AMP

procedure takes the form

uk := Afk(v
k)− bkgk−1(uk−1), ck := n−1∑n

i=1 g
′
k(u

k
i ),

vk+1 := A>gk(u
k)− ckfk(vk), bk+1 := n−1∑p

i=1 f
′
k+1(vk+1

i )
(3.36)

for k ∈ N0. Based on an appropriate state evolution recursion, analogues of Theorems 3.1 and 3.5
can be formulated for (3.36) with non-spectral and spectral initialisations respectively. These results
apply to an asymptotic regime where n, p→∞ with n/p→ δ for some δ ∈ (0, 1), and where a version
of (M1) holds (with ‖u‖n, ‖v‖p

c→ 1 and the empirical distributions of the components of u and v
converging completely in d2 to suitable limits). A suitable spectral initialiser for (3.36) is v0 = ϕ̂R, a
principal right singular vector of A with ‖ϕ̂R‖p = 1 (Montanari and Venkataramanan, 2021, Section 4).
The associated spectral threshold is at

√
δ: if n/p → δ and λ > 1/

√
δ, then the limiting empirical

correlation |〈ϕ̂R, v〉n|/‖v‖n is strictly positive (Paul, 2007; Bai and Silverstein, 2010).

Estimation of rank-s matrices for s > 1: The general rank-s spiked models take the form

A =

s∑
j=1

λj
n
vjv
>
j +W (symmetric); A =

s∑
j=1

λj
n
vju
>
j +W ′ (asymmetric) (3.37)

for some λ1 ≥ · · · ≥ λs, where (vj ∈ Rn : 1 ≤ j ≤ s) and (uj ∈ Rp : 1 ≤ j ≤ s) are sets of unknown

orthogonal vectors (with ‖vj‖n, ‖uj‖p
c→ 1 for all j), and where the Gaussian noise matrices W,W ′ are

as in (3.3) and (3.36) respectively. Parker et al. (2014a,b), Kabashima et al. (2016), Lesieur et al. (2017)
and Montanari and Venkataramanan (2021) proposed generalisations of the AMP algorithms (3.3)
and (3.36) for estimating u1, . . . , us, v1, . . . , vs (and hence the signal matrices) in (3.37). For s > 1,
the main difference with the rank-one case is that the iterates in these procedures are matrices rather
than vectors.

More precisely, in the symmetric case, each iterate is an n×s matrix to which a row-wise thresholding
function is applied to obtain updated estimates of v1, . . . , vs. When the initialiser is a matrix consisting
of eigenvectors corresponding to the s largest eigenvalues of A, a rigorous state evolution result was
obtained by Montanari and Venkataramanan (2021, Section 6). Similarly, in the rectangular case,
the iterates are n × s and p × s matrices and we can take the columns of the initialising matrix
to be right singular vectors of A. Additional complications arise when λ1, . . . , λs are not pairwise
distinct. In these degenerate cases, not all of the vectors v1, . . . , vs are identifiable up to sign in (3.37).
Indeed, if some λ occurs with multiplicity r > 1, then by applying any orthogonal transformation that
fixes the r-dimensional subspace spanned by the corresponding signal vectors, we can obtain another
valid representation of the signal matrix while leaving A unchanged. There is therefore an inherent
ambiguity in the definition of the spectral initialisers above. By analogy with Remark 3.6 for the
s = 1 case, the AMP state evolution consequently has a random initialiser that is defined using a
Haar-distributed orthogonal matrix. Conditioned on this initialisation, the state evolution parameters
for the subsequent iterations are deterministic.

Universality: As mentioned in the Introduction, the theoretical framework for AMP was originally
built around Gaussian random matrices, but the conclusions of Theorems 3.1 and 3.5 (as well as
the master theorems in Section 2) have now been extended to encompass more general random ma-
trix ensembles. In so-called ‘spiked Wigner’ models of the form (3.1), the symmetric noise matrices
W ≡ W (n) have independent upper-triangular entries (Wij : 1 ≤ i ≤ j ≤ n) that are uniformly
subexponential across n ∈ N with E(Wij) = 0 and Var(Wij) = (1 + δij)/n. It was previously known
that the eigenstructure of the corresponding observation matrix A undergoes the BBP phase transition
described in Section 3.1 at the same spectral threshold λ = 1 as for ‘spiked GOE’ matrices; see for
instance Anderson et al. (2010), Knowles and Yin (2013) and Perry et al. (2018). Recently, Chen and
Lam (2021, Examples 2.1 and 2.2) used the method of Slepian interpolation to prove that in AMP
algorithms of the form (3.30) based on matrices A from rank-one spiked Wigner models, the iterates
have the same asymptotics as in the original Gaussian setting, with or without spectral initialisation.
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In a different direction, Fan (2022) developed a more general class of AMP procedures for symmetric
and rectangular rank-one spiked models (3.1, 3.35) in which the noise matrices are orthogonally in-

variant. In the symmetric case, this means that W ≡W (n) satisfies W
d
= Q>WQ for all deterministic

orthogonal Q ∈ Rn×n, and it can be shown that the only such W with independent, mean-zero upper-
triangular entries are scalar multiples of GOE matrices (e.g. Mehta, 2004). For other orthogonally
invariant W , Opper et al. (2016) and Fan (2022, Section 3) modified the AMP algorithm (3.30) to
allow vk+1 to depend on all previous iterates via

v̂k = gk(v
0, v1, . . . , vk) and vk+1 = Av̂k −

k∑
j=0

bkj v̂
j−1 for k ∈ N0, (3.38)

in a such a way that the joint empirical distributions have well-defined Wasserstein limits. To achieve
this, the technical crux is to design suitable Onsager coefficients bk1, . . . , bkk that depend on the
limiting spectral distribution of W (when it exists) through its moments and free cumulants, which
also determine the corresponding state evolution sequences. Asymptotic convergence results similar
in spirit to Theorems 3.1 and 3.10 can then be established for iterations of the form (3.38) and their
Bayes-AMP versions. In particular, for each k, the components of the effective observation vk behave
like those of µkv+σkξ for large n, where ξ ∼ Nn(0, In) is independent of v as before but the recursions
for µk, σk are significantly more involved than (3.31). As in Section 3.3, it turns out that for large
k, the Bayes-AMP estimates v̂k of the spike v can substantially improve on the spectral estimator
(namely a leading eigenvector of the observation matrix A) in terms of asymptotic mean squared
error (Fan, 2022, Remark 3.2). Unlike in the Gaussian setting of Lemma 3.13 however, the Bayes
optimal denoisers g∗k : Rk+1 → R may depend on all of their arguments and must be defined with
respect to the full limiting covariance structure (Fan, 2022, Remark 3.3).

4 GAMP for generalised linear models

In this section, we give a unified treatment of a class of AMP algorithms for models of the following
generic form: suppose that we generate a design matrix X ∈ Rn×p with rows x1, . . . , xn ∈ Rp, and
observe y ≡ (y1, . . . , yn) ∈ Rn satisfying

yi = h(x>i β, εi) for i = 1, . . . , n, (4.1)

where β ≡ (β1, . . . , βp) is the target of inference, ε ≡ (ε1, . . . , εn) is a vector of noise variables and

h : R2 → R is a known function. We will focus on the random design setting where x1, . . . , xn
iid∼

Np(0, Ip/n), which is a common assumption in high-dimensional statistics and compressed sensing.
Frequently, ε1, . . . , εn are assumed to be independent of each other and of X, in which case (4.1)
becomes

yi |xi ∼ Qi(· |x>i β), (4.2)

where Qi(· | z) denotes the distribution of h(z, εi) for a fixed z ∈ R and 1 ≤ i ≤ n. In statistics, (4.2) is
traditionally referred to as a generalised linear model (GLM) for (x1, y1), . . . , (xn, yn) if the conditional
distributions of yi given xi have densities of exponential dispersion family form (Pace and Salvan, 1997)

u 7→ a(σ2
i , u) exp

{
uΘ(µi)−K(Θ(µi))

σ2
i

}
(4.3)

with respect to either Lebesgue measure on R or counting measure on Q. In (4.3), the mean parameter
µi ∈ M ⊆ R is related to xi via µi = η−1(x>i β) for some strictly increasing, twice differentiable link
function η, and σi ∈ D ⊆ (0,∞) is the dispersion parameter, while a,K,Θ are fixed functions with
K ′′ > 0 on R and Θ = (K ′)−1. The GLM framework encompasses a broad class of parametric models,
including the standard linear model, phase retrieval (where yi = (x>i β)2+εi for 1 ≤ i ≤ n), and logistic,
binomial and Poisson regression (e.g. McCullagh and Nelder, 1989; Agresti, 2015). Sometimes, ‘GLM’
is used as an umbrella term to describe more general models of the form (4.1, 4.2).
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Likelihood-based inference for β in (4.2, 4.3) is justified by classical asymptotic theory when p is fixed
and n → ∞, or when p grows sufficiently slowly with n (Portnoy, 1984, 1985, 1988). However, in
modern high-dimensional regimes where n, p→∞ and the aspect ratio n/p of the design matrix X is
bounded, different tools are needed to construct and analyse estimators of β, and it is in this context
that we introduce the GAMP paradigm below.

4.1 Master theorem for GAMP

The generalised AMP (GAMP) algorithm proposed by Rangan (2011) iteratively produces estimates
β̂k, θk of β ∈ Rp and θ := Xβ ∈ Rn respectively in (4.1), via update steps of the following form: given
r̂−1 := 0 ∈ Rn, b0 ∈ R and an initialiser β̂0 ∈ Rp, recursively define

θk := Xβ̂k − bkr̂k−1, r̂k := gk(θ
k, y), ck := n−1∑n

i=1 g
′
k(θ

k
i , yi),

βk+1 := X>r̂k − ckβ̂k, β̂k+1 := fk+1(βk+1), bk+1 := n−1∑p
j=1 f

′
k+1(βk+1

j )
(4.4)

for k ∈ N0. Here, gk : R2 → R and fk+1 : R→ R are Lipschitz in their first argument, and g′k : R2 → R,
f ′k+1 : R → R agree with the partial derivatives of gk, fk+1 respectively with respect to their first
arguments, wherever the latter are defined. As in previous sections, these functions are understood to
act componentwise on their vector arguments in (4.4). The goal of Section 4 is to develop the theory
and applications of GAMP, whose statistical utility can be summarised in the following key points:

(i) Exact asymptotic characterisation via state evolution: The Onsager correction terms −bkr̂k−1,
−ckβ̂k are designed to ensure that in a high-dimensional limiting regime where n, p → ∞ with
n/p → δ ∈ (0,∞), the empirical distributions of the entries of the iterates in (4.4) converge
to well-defined Wasserstein limits. These asymptotic distributions are characterised by the
state evolution recursion (4.6)–(4.7) below. Consequently, for each fixed k ∈ N0, the entries of
β̂k+1 ∈ Rp have approximately the same empirical distribution as those of fk+1(µkβ+σkξ) when
p is large; here, β ∈ Rp is the unknown signal, ξ ∼ Np(0, Ip) is an independent noise vector,
µk, σk are the effective signal strength and noise level respectively, and fk+1 can be viewed as a
denoising function. This result facilitates a targeted approach to inference for structured signals
β, whereby informed choices of (fk, gk : k ∈ N0) can be made to accommodate different types of
prior information (Section 4.2).

(ii) Link to convex optimisation problems: For suitable choices of fk, gk, the GAMP recursion (4.4)
can be interpreted as an alternating minimisation procedure for solving a convex optimisation
problem of the form (4.22), and the fixed points of this iteration are minimisers of the convex
objective function (Proposition 4.4 in Section 4.4). Together with the state evolution description
of (4.4), this forms the basis of a systematic approach to deriving exact performance guarantees
for the Lasso and other (penalised or unpenalised) M-estimators in high-dimensional GLMs
(Sections 4.5–4.7).

In this subsection, we address point (i) above and formally state a ‘master theorem’ for GAMP
(Theorem 4.2). Consider a sequence of recursions (4.4) indexed by n ∈ N and p ≡ pn, where n/p →
δ ∈ (0,∞) as n→∞, and assume that

(G0) For each n, the design matrix X ≡ X(n) ∈ Rn×p has i.i.d. N(0, 1/n) entries and is independent
of
(
β̂0(n), β(n), ε(n)

)
∈ Rp × Rp × Rn.

At first sight, it would appear that the GAMP algorithm (4.4) is an instance of the abstract asymmetric
AMP recursion (2.10), but in models (4.1) where (G0) holds, the crucial difference in the probabilistic
structure is that the observation vector y ≡ y(n) ∈ Rn is in general not independent of X ≡ X(n). This
means that condition (B0) does not hold with γ = y, so the original master theorem for asymmetric
AMP (Theorem 2.5) cannot be directly applied in this setting, and in fact does not give the correct
limiting distributions for (4.4).
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Instead, Theorem 4.2 below is derived from a general state evolution result for matrix-valued AMP
iterations (Section 6.7), under suitable analogues of (B1)–(B5) on the inputs to the GAMP recur-
sions (4.4) as n→∞ and n/p→ δ: for some r ∈ [2,∞), suppose that

(G1) There exist random variables β̄ ∼ πβ̄ and ε̄ ∼ Pε̄ with E(β̄2) > 0 and E(|β̄|r),E(|ε̄|r) <∞, such
that writing νp(β) and νn(ε) for the empirical distributions of the components of β ≡ β(p) and

ε ≡ ε(n) respectively, we have dr
(
νp(β), πβ̄

) c→ 0 and dr
(
νn(ε), Pε̄

) c→ 0.

(G2) ‖β̂0‖p,r = Oc(1) and there exists a non-negative definite Σ0 ∈ R2×2 such that β̆0 := (β β̂0) ∈ Rp×2

satisfies
1

n
(β̆0)>β̆0 =

1

n

(
β>β β>β̂0

(β̂0)>β (β̂0)>β̂0

)
c→ Σ0.

(G3) There exists a Lipschitz F0 : R → R such that 〈β̂0, φ(β)〉p
c→ E

(
F0(β̄)φ(β̄)

)
and E

(
F0(β̄)2

)
≤

(Σ0)22 for all Lipschitz φ : R→ R.

(G4) For each k ∈ N0, the function fk+1 is non-constant on R, and g̃k : (z, u, v) 7→ gk(u, h(z, v)) is
Lipschitz on R3 with Pε̄

(
{v : (z, u) 7→ g̃k(z, u, v) is non-constant}

)
> 0.

We remark here that while (G2) is in general a stronger requirement than (B2), both (G2) and (G3)
are implied by (G1) if for some fixed c ∈ R we have β̂0 ≡ β̂0(n) = c1p for all n. As in Section 3,
constraints on β ≡ β(n) such as sparsity or entrywise non-negativity will be reflected in the form of
the ‘limiting prior distribution’ πβ̄. Note that

(Σ0)11 = c-lim
n→∞

(
p

n
· ‖β‖

2

p

)
=

E(β̄2)

δ
> 0 (4.5)

by (G1) and (G2). Also, the condition on ε ≡ ε(n) in (G1) is satisfied if ε1, . . . , εn
iid∼ Pε̄ for each n.

State evolution: With Σ0 as in (G2), the state evolution parameters
(
µk ∈ R, σk ∈ [0,∞), Σk ∈

R2×2 : k ∈ N
)

are recursively defined by

µk+1 := E
(
∂z g̃k(Z,Zk, ε̄)

)
, σ2

k+1 := E
(
g̃k(Z,Zk, ε̄)

2
)

= E
(
gk(Zk, Y )2

)
, (4.6)

Σk+1 :=
1

δ

(
E(β̄2) E{β̄fk+1(µk+1β̄ + σk+1Gk+1)}

E{β̄fk+1(µk+1β̄ + σk+1Gk+1)} E{fk+1(µk+1β̄ + σk+1Gk+1)2}

)
(4.7)

for k ∈ N0, where we take (Z,Zk) ∼ N2(0,Σk) to be independent of ε̄ ∼ Pε̄, define Y := h(Z, ε̄), and
take Gk+1 ∼ N(0, 1) to be independent of β̄ ∼ πβ̄. Under (G4), it can be shown as in Lemma 2.2
that if σ1 > 0, then σk > 0 and Σk is positive definite for all k ∈ N. In (4.6), ∂z g̃k denotes the partial
derivative of g̃k with respect to its first argument; observe that by (G4), z 7→ g̃k(z, u, v) is Lipschitz
and hence differentiable almost everywhere for all (u, v) ∈ R2, so µk+1 is well-defined.

Stein’s lemma (Lemma 6.20) can be used to derive some alternative expressions for µk+1 that will be
useful later on; see Mondelli and Venkataramanan (2020, Proposition 3.1) or Section 6.9 for the proof
of the following lemma.

Lemma 4.1. For each k ∈ N, letting G̃k ∼ N(0, 1) be independent of (Z, ε̄), we have (Z,Zk, ε̄)
d
=

(Z, µZ,kZ + σZ,kG̃k, ε̄), where

µZ,k :=
E
(
β̄fk(µkβ̄ + σkG̃k)

)
E(β̄2)

=
Σ21

Σ11
,

σ2
Z,k :=

E(β̄2)E
(
fk(µkβ̄ + σkG̃k)

2
)
− E

(
β̄fk(µkβ̄ + σkG̃k)

)2
δ E(β̄2)

= Σ22 −
Σ2

12

Σ11
,

(4.8)

with Σ ≡ Σk. Thus, µk+1 = E
(
∂z g̃k(Z, µZ,kZ + σZ,kG̃k, ε̄)

)
and σ2

k+1 = E
(
g̃k(Z, µZ,kZ + σZ,kG̃k, ε̄)

2
)
.

Moreover,

µk+1 =
δ

E(β̄2)
E
(
Zgk(Zk, Y )

)
− µZ,k E

(
g′k(Zk, Y )

)
= E

(
E(Z |Zk, Y )− E(Z |Zk)

Var(Z |Zk)
gk(Zk, Y )

)
. (4.9)
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Before stating the main result of this subsection, we make an further regularity assumption that is
similar to (B5).

(G5) For each k ∈ N0, writing Dk ⊆ R2 for the set of discontinuities of g′k, we have P
(
(Zk, Y ) ∈ Dk

)
=

0, and f ′k+1 is continuous Lebesgue almost everywhere.

Theorem 4.2. Suppose that (G0)–(G5) hold for a sequence of GAMP recursions (4.4) indexed by n
and p ≡ pn, with n/p→ δ ∈ (0,∞) and σ1 > 0. Then for each k ∈ N0, we have

sup
ψ∈PL2(r,1)

∣∣∣∣1p
p∑
j=1

ψ(βk+1
j , βj)− E

(
ψ(µk+1β̄ + σk+1Gk+1, β̄)

)∣∣∣∣ c→ 0, (4.10)

sup
ψ∈PL3(r,1)

∣∣∣∣ 1n
n∑
i=1

ψ(θki , θi, εi)− E
(
ψ(µZ,kZ + σZ,kG̃k, Z, ε̄)

)∣∣∣∣ c→ 0 (4.11)

as n, p→∞ with n/p→ δ, where θi ≡ θi(n) = x>i β for n ∈ N and 1 ≤ i ≤ n.

Writing νp(β
k, β) for the joint empirical distribution of the components of βk, β ∈ Rp, and ν̆k for the

distribution of (µkβ̄ + σkGk, β̄), we can express the conclusion of (4.10) as

d̃r
(
νp(β

k, β), ν̆k
) c→ 0, or equivalently dr

(
νp(β

k, β), ν̆k
) c→ 0 as n→∞.

Likewise, (4.11) says that the joint empirical distribution νn(θk, θ, ε) converges completely in dr to the

distribution of (µZ,kZ + σZ,kG̃k, Z, ε̄)
d
= (Zk, Z, ε̄).

Interpretation: Informally, when p is large, the components of βk have approximately the same
empirical distribution as those of µkβ + σkξ, where ξ ∼ Np(0, Ip) is independent of β ∈ Rp. By
analogy with the limiting univariate problem of estimating β̄ ∼ πβ̄ based on a corrupted observation

µkβ̄ + σkGk, we can regard βk as an effective observation and ρk := (µk/σk) as an effective signal-to-
noise ratio; recall the discussion after Corollary 3.2.

Remark 4.3. Similarly to Remark 2.4, it turns out that in the setting of Theorem 4.2, condition (G5)
ensures that

ck =
1

n

n∑
i=1

g′k(θ
k
i , yi)

c→ E
(
g′k(Zk, Y )

)
=: c̄k,

bk+1 =
1

n

p∑
j=1

f ′k+1(βk+1
j )

c→
E
(
f ′k+1(µk+1β̄ + σk+1Gk+1)

)
δ

=: b̄k+1

(4.12)

as n, p→∞ with n/p→ δ, for each k ∈ N0. In fact, the theorem holds under (G0)–(G4) if bk, ck are
replaced with b̄k, c̄k respectively in (4.4), in which case (G5) is not needed.

By defining an augmented state evolution that specifies the covariance structure of the limiting Gaus-
sians G1, G2, . . . and G̃1, G̃2, . . . , we can establish the dr limits of the joint empirical distributions
νp(β

1, . . . , βk, β) and νn(θ0, . . . , θk, θ), similarly to (3.7) and Theorem 3.1. For simplicity of presen-
tation, we do not state this stronger conclusion. Its proof is identical in most respects to that of
Theorem 4.2, which we now summarise.

Proof (sketch) of Theorem 4.2. As mentioned previously, the overall objective is to handle the depen-
dence of y on X (through θ = Xβ) in (4.4), and show that the ‘noise’ component β̃k ≡ β̃k(n) :=
βk − µkβ of the effective observations is approximately Gaussian (and independent of β) for large n.
To this end, consider rewriting the second update step as

β̃k+1 ≡ βk+1 − µk+1β = X>g̃k(θ, θ
k, ε)−

(
β fk(β̃

k + µkβ)
)( µk+1

〈∂2g̃k(θ, θ
k, ε)〉n

)
. (4.13)
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Here, g̃k(θ, θ
k, ε) = gk(θ

k, y) = r̂k (applying g̃k componentwise), fk(β̃
k + µkβ) = fk(β

k) = β̂k and
∂2g̃k(z, u, v) := g′k(u, h(z, v)) agrees with the partial derivative of g̃k with respect to its second argu-
ment, wherever the latter is defined. A useful feature of (4.13) is that unlike y, the noise vector ε is
independent ofX by (G0). Since both θ and θk depend onX, this suggests treating θ̃k := (θ θk) ∈ Rn×2

as a single entity, and rewriting the first update step in (4.4) as

θ̃k ≡ (θ θk) = X
(
β fk(β̃

k + µkβ)
)
− g̃k−1(θ, θk−1, ε)

(
0

p

n
〈f ′k(β̃k + µkβ)〉p

)
, (4.14)

where p
n〈f

′
k(β̃

k + µkβ)〉p = p
n〈f

′
k(β

k)〉p = bk. In doing so, we have recast (4.4) as a matrix-valued
AMP iteration (4.13)–(4.14) that is no longer a valid algorithm for practical purposes, but is more
amenable to theoretical analysis. Indeed, its asymptotics can be derived by applying a master theorem
for abstract recursions (6.52) of this type; see Section 6.7. The significance of the definition of µk+1 =
E
(
∂z g̃k(Z,Zk, ε̄)

)
≡ E

(
∂1g̃k(Z,Zk, ε̄)

)
in (4.6) is that the final term in (4.13) is a non-linear correction

based on the derivative (gradient) of g̃k. The final term in (4.14) has a similar interpretation as a
multivariate analogue of the original bk in (4.4), and together these ensure that the limiting empirical
distributions of the iterates in (4.13)–(4.14) are indeed Gaussian.

4.2 Choosing the functions fk, gk, and inference for β

Asymptotic estimation error: Since the functions fk in (4.4) are Lipschitz by assumption, it follows
as in Corollary 3.2 that in the setting of Theorem 4.2 above, the asymptotic estimation error of β̂k

with respect to any loss function ψ ∈ PL2(r) is given by

1

p

p∑
j=1

ψ(β̂kj , βj)
c→ E

{
ψ
(
fk(µkβ̄ + σkGk), β̄

)}
(4.15)

for each k ∈ N, as n, p → ∞ with n/p → δ. In particular, taking ψ(x, y) = |x − y|q for q ∈ [1, r], we

obtain the asymptotic normalised `q error c-limp→∞ p
−1‖β̂k − β‖q = E

{(
fk(µkβ̄ + σkGk)− β̄

)q}1/q
.

Bayes-GAMP: If the limiting prior distribution πβ̄, the limiting noise distribution Pε̄ and the initial

Σ0 ∈ R2×2 are known, then guided by Lemma 3.7, we can proceed as in Section 3.3 and choose fk, gk
in (4.4) so as to maximise the effective signal-to-noise ratios ρk = (µk/σk)

2 and ρZ,k := (µZ,k/σZ,k)
2

for each k.

Specifically, given the matrix Σ ≡ Σk ∈ R2×2 in (4.7) for some k ∈ N0, we can obtain µZ,k, σZ,k
from (4.8); conversely, given µZ,k, σZ,k, we can recover Σ since Σ11 = δ−1E(β̄2) is known, and (4.8)
yields Σ21 = Σ11µZ,k and Σ22 = σ2

Z,k + Σ11µ
2
Z,k. Now take (Z,Zk) ∼ N2(0,Σk) to be independent of

ε̄ ∼ Pε̄, and let Y = h(Z, ε̄), so that Y and Zk are conditionally independent given Z. Based on the
joint distribution of (Z,Zk, Y ), let g∗k : R2 → R be a measurable function satisfying

g∗k(Zk, Y ) =
E(Z |Zk, Y )− E(Z |Zk)

Var(Z |Zk)
, (4.16)

where E(Z |Zk) = mkZk with

mk :=
Σ21

Σ22
=
µZ,k
σ2
Z,k

Var(Z |Zk), Var(Z |Zk) = Σ11 −
Σ2

21

Σ22
=

Σ11σ
2
Z,k

σ2
Z,k + Σ11µ2

Z,k

=

(
δ

E(β̄2)
+ ρZ,k

)−1

.

Then by (4.6), (4.9) and the Cauchy–Schwarz inequality, we have

ρk+1 =
µ2
k+1

σ2
k+1

=
E
(
g∗k(Zk, Y ) gk(Zk, Y )

)2
E
(
gk(Zk, Y )2

) ≤ E
(
g∗k(Zk, Y )2

)
,

with equality when gk is a (non-zero) scalar multiple of g∗k.
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Now given µk, σk for some k ∈ N, we wish to find fk : R → R such that defining Σ ≡ Σk as in (4.8),
the quantity

ρZ,k =
µ2
Z,k

σ2
Z,k

=
Σ2

21Σ−2
11

Σ22 − Σ2
21Σ−1

11

=

(
Σ22

Σ2
21

Σ2
11 − Σ11

)−1

is as large as possible. Since Σ11 = δ−1E(β̄2) is fixed, this amounts to maximising

Σ2
21

Σ22
=

E
(
β̄fk(µkβ̄ + σkG̃k)

)2
E
(
fk(µkβ̄ + σkG̃k)2

) .
Again by the Cauchy–Schwarz inequality (see (3.19) in Section 3.3), this can be done by taking fk to
be any (non-zero) scalar multiple of f∗k satisfying

f∗k (µkβ̄ + σkG̃k) = E(β̄ |µkβ̄ + σkG̃k), (4.17)

in which case Σ21 = Σ22 < Σ11. An exact expression for f∗k is given by Tweedie’s formula (3.17),
and if β̄ ∼ πβ̄ satisfies the conditions of Lemma 3.8, then f∗k is Lipschitz. As we saw in (3.18), the

choice fk = f∗k also minimises the asymptotic mean squared error E
{(
fk(µkβ̄ + σkGk) − β̄

)2}
, for

given µk, σk; in other words, f∗k is the Bayes optimal (i.e. MMSE) denoising function.

By recursively defining gk = g∗k (or some scalar multiple thereof) and fk+1 = f∗k+1 for k ∈ N using (4.16)
and (4.17), together with corresponding sequences (µ∗k, σ

∗
k, µ
∗
Z,k, σ

∗
Z,k : k ∈ N) of state evolution pa-

rameters through (4.6)–(4.7), we obtain a Bayes-GAMP algorithm of the form (4.4). A version of this
was originally derived by Rangan (2011, Section IV-B) as an approximation to a sum-product loopy
belief propagation algorithm. The limiting empirical distributions for the Bayes-GAMP iterates can
be obtained from Theorem 4.2, provided that the functions f∗k and g̃∗k : (z, u, v) 7→ g∗k(u, h(z, v)) are
all Lipschitz and (G0)–(G5) are satisfied.

Even when πβ̄ is not completely known, it can still be possible to tailor the choices of fk, gk to
wider classes of limiting prior distributions that induce certain types of structure in the signals β. For
instance, if we are told that β ∈ Rp has at most sp non-zero entries for some s ∈ (0, 1) and every p ≡ pn,
then as in Section 3.3, we can take each fk to be a soft-thresholding function Stk : u 7→ sgn(u)(|u|−tk)+

for some tk > 0. Using an AMP recursion (4.19) of this form (for the linear model in Section 4.3)
with appropriately chosen thresholds tk, Bayati and Montanari (2012) derived exact high-dimensional
asymptotics for the Lasso estimator; see Section 4.5.

Spectral initialisation: Under the conditions of Theorem 4.2, it follows from (4.15) and Lemma 4.1
that for each k ∈ N, the estimates β̂k in the generic GAMP procedure (4.4) satisfy 〈β̂k, β〉p =

p−1
∑p

j=1 β̂
k
j βj

c→ E
(
β̄fk(µkβ̄ + σkGk)

)
= µZ,k E(β̄2) as n, p → ∞ with n/p → δ. To ensure that

µZ,k 6= 0 for some k, and hence that the corresponding β̂k has non-zero asymptotic empirical correla-

tion with the signal β, it is sometimes necessary to start with pilot estimators β̂0 ∈ Rp that themselves
have the property that c-limp→∞〈β̂0, β〉p 6= 0. Indeed, suppose that the limiting random variables in
the state evolution recursion (4.6)–(4.7) are such that

E(β̄) = 0 and E(Z |Y ) = 0 almost surely, (4.18)

where the latter condition is equivalent to (3.13) in Mondelli and Venkataramanan (2020). Now given
estimates β̂0 ∈ Rp for which c-limn→∞〈β̂0, β〉p = δ(Σ0)21 = 0, we see from Lemma 4.1 that µZ,0 = 0
and Z0 is independent of (Z, Y ), whence g∗0(Z0, Y ) = E(Z |Y )/Var(Z) = 0 almost surely in (4.16) and
µ1 = E

(
g∗0(Z0, Y ) g0(Z0, Y )

)
= 0 by (4.9). This means that µZ,1 E(β̄2) = δ(Σ1)21 = E

(
β̄f1(σ1G1)

)
= 0

by the independence of β̄ and G1. Continuing inductively, we conclude that µk = µZ,k = 0 for all

k ∈ N, irrespective of the choices of gk, fk+1 for k ∈ N0, so β̂k is asymptotically uninformative as an
estimator of β ∈ Rp for every k ∈ N0.

Thus, while there are some GLMs (such as the linear model in Section 4.3) in which it suffices to take
β̂0 = c1p for some fixed c ∈ R, a different initialiser is required when (4.18) holds. We note that the
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second condition therein is satisfied in the phase retrieval model, where yi = h(x>i β, εi) = (x>i β)2 + εi
for 1 ≤ i ≤ n, and more generally in all non-identifiable models of the form (4.1) where h(z, w) =
h(−z, w) for all z, w (and hence Q(· | z) = Q(· | −z) in (4.2) for all z). Indeed, for such functions h, we
have E(Z |Y ) = E

(
Z |h(Z, ε̄)

)
= −E

(
Z |h(Z, ε̄)

)
and hence E(Z |Y ) = 0 almost surely.

Mondelli and Venkataramanan (2020) established a version of Theorem 4.2 for GAMP algorithms in
which β̂0 is taken to be a leading eigenvector of X>DX ∈ Rp×p, where D = diag

(
g(y1), . . . , g(yn)

)
∈

Rn×n for some g : R → R. Since this spectral initialiser is correlated with the random design matrix
X, condition (G0) for the original Theorem 4.2 does not hold in general. As mentioned in Section 3.2,
the authors overcome this obstacle by analysing a two-phase artificial GAMP iteration in which the
first stage effectively approximates β̂0 by the power method.

Confidence intervals and p-values: For fixed k and large n, Theorem 4.2 tells us that {(βki −
µkβi)/σk : 1 ≤ i ≤ n} behaves approximately like an i.i.d. sample of size n from the N(0, 1) distri-
bution. Thus, to carry out inference for β, we can proceed similarly as in Section 3.4, to which we
refer the reader for further details. We mention here that if the state evolution parameters µk, σk
are unknown, then they can be estimated consistently by µ̂k :=

(
‖βk‖2p − ‖r̂k−1‖2n

)1/2
/E(β̄2)1/2 and

σ̂k := ‖r̂k−1‖n provided that E(β̄2) > 0 is known. Indeed, by (4.10) and (4.11) respectively,

‖βk‖2p
c→ E

(
(µkβ̄ + σkGk)

2
)

= E(β̄2)µ2
k + σ2

k,

‖r̂k−1‖2n = ‖gk−1(θk−1, y)‖2n = ‖g̃k−1(θ, θk−1, ε)‖ c→ E
(
g̃k−1(Z,Zk, ε̄)

2
)

= E
(
gk−1(Zk, Y )2

)
= σ2

k

for each k ∈ N as n, p→∞ with n/p→ δ.

4.3 AMP for the linear model

Much of the early work on AMP (e.g. Donoho et al., 2009; Bayati and Montanari, 2011, 2012; Krzakala
et al., 2012) was centred around the standard linear model

y = Xβ + ε,

where ε1, . . . , εn
iid∼ Pε̄ have second moment σ2 > 0 and a finite rth moment for some r ∈ [2,∞) (or

more generally where the empirical distribution νn(ε) = n−1
∑n

i=1 δεi converges completely in dr to
Pε̄ as n→∞). This is a special case of the model (4.1) with h(z, v) = z + v.

Given r̂−1 = 0 ∈ Rn, b0 ∈ R and an initial estimator β̂0 ∈ Rp, the original AMP algorithm of Donoho
et al. (2009) and Bayati and Montanari (2011) can be recovered by setting gk(u, v) := v−u for u, v ∈ R
in the GAMP recursion (4.4), so that ck = 〈g′k(θk, y)〉n = −1 and

r̂k = y −Xβ̂k + bkr̂
k−1, β̂k+1 = fk+1(X>r̂k + β̂k), bk+1 =

1

n

p∑
j=1

f ′k+1(βk+1
j ) (4.19)

for k ∈ N0. Here, r̂k = gk(θ
k, y) = y − θk = y −Xβ̂k + bkr̂

k−1 is a ‘corrected’ residual at iteration k,
and βk+1 = X>r̂k + β̂k is the effective observation.

State evolution: The GAMP state evolution equations (4.6)–(4.7) simplify to the recursion

µk ≡ 1, σ2
1 = σ2 + E

(
(Z − Z0)2

)
, σ2

k+1 = σ2 +
1

δ
E
{(
β̄ − fk(β̄ + σkGk)

)2}
(4.20)

for k ∈ N, where (Z,Z0) ∼ N2(0,Σ0), and β̄ ∼ πβ̄ is independent of Gk ∼ N(0, 1). Note that by (G2),

σ2
1 = σ2 + c-limn→∞ n

−1‖β− β̂0‖2, and that if the pilot estimate of β ∈ Rp is taken to be β̂0 = 0 ∈ Rp
for each p ≡ pn, then Z0 ≡ 0 and σ2

1 = σ2 + E(Z2) = σ2 + δ−1E(β̄2).
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Asymptotic estimation error: Under (G0)–(G5) with r ∈ [2,∞), the main result of Bayati and
Montanari (2011, Theorem 1) on the asymptotic performance of the estimators β̂k in (4.19) can be
stated as

sup
ψ∈PL2(r,1)

∣∣∣∣1p
p∑
j=1

ψ(β̂kj , βj)− E
{
ψ
(
fk(β̄ + σkGk), β̄

)}∣∣∣∣ c→ 0 as n, p→∞ with n/p→ δ, (4.21)

for each k ∈ N, where σk is as in (4.20). This can be obtained as a special case of Theorem 4.2
and (4.15). Alternatively, (4.21) can be established via a direct reduction to an abstract asymmetric
AMP recursion of the type in Section 2.2; see Bayati and Montanari (2011, Section 3.3). This involves
writing (4.19) in terms of ek := ε− r̂k and hk+1 := βk+1− β, which turn out to be the asymptotically
Gaussian ‘noise’ components of r̂k and βk+1 respectively.

Originally, the dr convergence result (4.21) was derived under a stronger version of (G1) that assumed
d2r−2 convergence to limiting distributions πβ̄, Pε̄ with finite (2r−2)th moments. In (G1), we relax this
to a more natural dr condition under which the conclusion still holds; see the first part of Remark 6.4.
We also mention that under suitable finite-sample analogues of the conditions above, a complementary
finite-sample version of (4.21) was established by Rush and Venkataramanan (2018) in the case r = 2;
see Remark 6.3.

Link to Bayes-GAMP: If the limiting prior distribution πβ̄ is known, then to minimise the effective

noise variance σ2
k+1, we can take fk in (4.19) to be the Bayes optimal f∗k from (4.17). In general,

gk : (u, v) 7→ v − u does not coincide with g∗k in (4.16). However, when Pε̄ = N(0, σ2) with σ2 > 0,

β̂0 ≡ β̂0(n) = 0 for every n and fk = f∗k for each k ∈ N, it turns out that (4.19) is an instance of a Bayes-
GAMP procedure (with gk ∝ g∗k) that maximises the effective signal-to-noise ratios ρk = (µk/σk)

2

and ρZ,k = (µZ,k/σZ,k)
2 at each iteration. Indeed, in this special case, it can be verified by direct

computation that

g∗k(u, v) = ck

(
Σ21

Σ22
u− v

)
= ck(u− v) = −ckgk(u, v)

for each k ∈ N0, where Σ ≡ Σk ∈ R2×2 is as in (4.7), with Σ21 = Σ22 = 0 < Σ11 when k = 0 and
Σ21 = δ−1E(β̄f∗k (µkβ̄ + σkGk)

)
= δ−1E(f∗k (µkβ̄ + σkGk)

2
)

= Σ22 < Σ11 = δ−1E(β̄2) by (4.17) when
k ∈ N, and

ck = − Σ11 − Σ22

Σ11 − Σ22 + σ2
< 0

is deterministic. Here, δ(Σ11 − Σ22) = E
{(
β̄ − E(β̄ |µkβ̄ + σkGk)

)2}
is the minimum mean squared

error for the problem of estimating β̄ based on µkβ̄ + σkGk.

4.4 GAMP algorithms for convex optimisation

Given y ∈ Rn and X ∈ Rn×p with rows x1, . . . , xn, many statistical estimators of β in (4.1) are defined
as minimisers of objective functions of the form β̃ 7→ C(β̃;X, y) :=

∑n
i=1 `(x

>
i β̃, yi) +

∑p
j=1 J(β̃j), or

equivalently as solutions to constrained optimisation problems of the form

minimise
n∑
i=1

`(θ̃i, yi) +

p∑
j=1

J(β̃j) over (β̃, θ̃) ∈ Rp × Rn with θ̃ = Xβ̃, (4.22)

where ` : R2 → R is a loss function and J : R→ R is a penalty function. In particular, consider a GLM
of the form (4.2) in which yi | (xi, β) ∼ q(· |x>i β) for 1 ≤ i ≤ n, where q(· | z) is a Lebesgue density on
R for each z ∈ R. Then the maximum likelihood estimators (MLEs) of β and θ = Xβ are given by

(β̂MLE, θ̂MLE) := argmin
(β̃,θ̃)∈Rp×Rn

θ̃=Xβ̃

n∑
i=1

− log q(yi | θ̃i).
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If in addition β1, . . . , βp
iid∼ pβ̄ for some prior density pβ̄, then the maximum a posteriori (MAP)

estimates of β and θ are

(β̂MAP, θ̂MAP) := argmin
(β̃,θ̃)∈Rp×Rn

θ̃=Xβ̃

(
n∑
i=1

− log q(yi | θ̃i) +

p∑
j=1

− log pβ̄(β̃j)

)
.

Assuming henceforth that ` and J are convex in their first arguments, we will now design a GAMP
iteration (4.29) whose fixed points are solutions to the associated optimisation problem (4.22); see
Proposition 4.4 below. By exploiting this connection and applying the GAMP theory from Section 4.1,
we will explain later how to obtain a statistical payoff in the form of exact high-dimensional asymptotics
for estimators defined by (4.22).

To begin the construction, fix two sequences of deterministic scalars b̄k > 0 and c̄k < 0 for k ∈ N0.
These will later be assigned appropriate values in (4.29) below, but for the time being, we will treat
them as generic constants. For k ∈ N0, define ḡk, gk : R2 → R and fk+1 : R→ R by

ḡk(u, v) := argmin
z∈R

{
`(z, v) +

1

2b̄k
(z − u)2

}
, gk(u, v) :=

ḡk(u, v)− u
b̄k

, (4.23)

fk+1(w) := argmin
z∈R

{
J(z)− c̄k

2

(
z +

w

c̄k

)2}
. (4.24)

Note that since ` and J are assumed to be convex in their first arguments, ḡk(u, v) and fk+1(w) are
well-defined as unique minima of strongly convex functions. The pertinence of this specific choice
of gk, fk+1 will become apparent through Proposition 4.4 below and its proof. At this point, it is
helpful to recall that for a convex function M: R → R and η > 0, the associated proximal operator
proxηM : R→ R is given by

proxηM(z) := argmin
t∈R

{
ηM(t) +

1

2
(t− z)2

}
, (4.25)

and moreover that proxηM is always non-decreasing and 1-Lipschitz (cf. Parikh and Boyd, 2013,
Sections 2.3 and 3.1). We see that ḡk(u, v) = proxb̄k`(·,v)(u) and fk+1(w) = prox−J/c̄k(−w/c̄k) for

u, v, w ∈ R, so ḡk, gk, fk+1 are all Lipschitz with constants 1, b̄−1
k and |c̄k|−1 respectively, and hence

weakly differentiable with respect to their first arguments. Writing ḡ′k, g
′
k, f
′
k+1 for the corresponding

weak derivatives, we have

f ′k+1(w) ≥ 0, ḡ′k(u, v) ≤ 1 and hence g′k(u, v) ≤ 0 (4.26)

for all u, v, w. If in addition ` and J are twice continuously differentiable, then J ′(fk+1(w)) −(
c̄kfk+1(w) + w

)
= 0 for each w, so it follows from the implicit function theorem that

f ′k+1(w) =
(
J ′′(fk+1(w))− c̄k

)−1
and similarly ḡ′k(u, v) =

(
b̄k`
′′(fk+1(w)) + 1

)−1
(4.27)

for all u, v, w, where `′′ denotes the second partial derivative of ` with respect to its first argument.

We will now define a GAMP recursion of the form (4.4) as a precursor to the iteration (4.29) that
will subsequently be used to analyse the statistical properties of the solutions to the optimisation
problem (4.22). Given ŝ−1 := 0 ∈ Rn, a fixed b0 > 0 and an initialiser β̂0 ∈ Rp, inductively define

θk := Xβ̂k − bkŝk−1, θ̂k := ḡk(θ
k, y), ck := n−1∑n

i=1 g
′
k(θ

k
i , yi), ŝk := gk(θ

k, y),

βk+1 := X>ŝk − ckβ̂k, β̂k+1 := fk+1(βk+1), bk+1 := n−1∑p
j=1 f

′
k+1(βk+1

j ) (4.28)

for k ∈ N0. Note that ŝk = (θ̂k − θk)/b̄k, and that if ` and J are convex and twice continuously
differentiable with respect to their first arguments, then (4.27) yields

ck =
1

b̄k

(
1

n

n∑
i=1

ḡ′k(θ
k
i , yi)− 1

)
= − 1

n

n∑
i=1

`′′(θ̂ki , yi)

b̄k`′′(θ̂
k
i , yi) + 1

, bk+1 =
1

n

p∑
j=1

1

J ′′(β̂k+1
j )− c̄k

.
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If the hypotheses of Theorem 4.2 are satisfied by a sequence of recursions (4.28), then the limiting
empirical distributions of the iterates therein are characterised by the associated state evolution pa-
rameters (µk, σk,Σk : k ∈ N) defined through (4.6)–(4.7). Moreover, with (Z,Zk) ∼ N2(0,Σk) and
Y = h(Z, ε̄) as in Lemma 4.1 for each fixed k, recall from (4.12) that bk

c→ δ−1 E
(
f ′k(µkβ̄ + σkGk)

)
and ck

c→ E
(
g′k(Zk, Y )

)
as n, p→∞ with n/p→ δ ∈ (0,∞).

Based on this observation, we will define b̄k and c̄k above to coincide with these limiting values, and
substitute these deterministic quantities for the random bk, ck in (4.28) to obtain the following modified
recursion. As before, we start with ŝ−1 := 0 ∈ Rn, b̄0 > 0, β̂0 ∈ Rp, as well as a positive definite
Σ0 ∈ R2×2 as in (G2). Given β̂k, ŝk−1 and b̄k,Σk for a general k ∈ N0, we inductively define ḡk, gk as
in (4.23), along with

θk := Xβ̂k − b̄kŝk−1, θ̂k := ḡk(θ
k, y), c̄k := E

(
g′k(Zk, Y )

)
, ŝk := gk(θ

k, y),

βk+1 := X>ŝk − c̄kβ̂k, β̂k+1 := fk+1(βk+1), b̄k+1 := δ−1 E
(
f ′k+1(µk+1β̄ + σk+1Gk+1)

)
.

(4.29)

In (4.29), we take (Z,Zk) ∼ N2(0,Σk) and Y = h(Z, ε̄) as above, and define the state evolution
parameters µk+1, σk+1 as in (4.6) based on gk, while using c̄k and (4.24) to specify fk+1. Finally,
define Σk+1 in terms of fk+1, µk+1, σk+1 according to (4.7). We emphasise that the functions ḡk, fk+1

are indeed well-defined through (4.23)–(4.24) for all k since b̄k > 0 > c̄k by (4.26) and the fact that
proxM is non-constant for any convex M: R→ R.

The iteration (4.29) has two important features that make it a useful theoretical tool. First, Remark 4.3
ensures that its iterates are characterised by the state evolution parameters (µk, σk,Σk : k ∈ N) under
the hypotheses of Theorem 4.2. In addition, the following result highlights the significance of (4.29)
as an optimisation procedure for the original constrained problem (4.22).

Proposition 4.4 (Rangan et al., 2016, Theorem 1). In (4.22), suppose that ` and J are convex in
their first arguments, and define the associated Lagrangian by

L(β̃, θ̃, s) :=
n∑
i=1

`(θ̃i, yi) +

p∑
j=1

J(β̃j) + s>(θ̃ −Xβ̃) (4.30)

for β̃ ∈ Rp and θ̃, s ∈ Rn. Then the iterates in (4.29) satisfy

β̂k+1 = argmin
β̃∈Rp

{
L(β̃, θ̂k, ŝk)− c̄k

2
‖β̃ − β̂k‖2

}
, (4.31)

θ̂k+1 = argmin
θ̃∈Rn

{
L(β̂k+1, θ̃, ŝk) +

1

2b̄k+1
‖θ̃ −Xβ̂k+1‖2

}
, (4.32)

ŝk+1 = ŝk +
(θ̂k+1 −Xβ̂k+1)

b̄k+1
. (4.33)

for k ∈ N0. Moreover, if (β∗, θ∗, β̂∗, θ̂∗, ŝ∗) is a fixed point of (4.29), then (β̂∗, θ̂∗) is a solution to the
optimisation problem (4.22), i.e. β̂∗ ∈ argminβ̃∈Rp C(β̃;X, y).

In fact, the proof we give in Section 6.9 reveals that Proposition 4.4 holds for any choice of deterministic
scalars b̄k > 0 and c̄k < 0 in the first column of (4.29), provided that these are also used to define
ḡk, fk+1. The characterisation in (4.31)–(4.33) shows that the GAMP algorithm (4.29) is closely related
to (but not completely identical to) a ‘linearised’ Alternating Direction Method of Multipliers (ADMM)
procedure (Parikh and Boyd, 2013, Section 4.4.2) for optimising (4.22). Alternating algorithms of
this type are particularly well-suited to handling objective functions of the form (4.30) since each
minimisation step involves only one of J and ` (while (4.33) is a dual update step). The forms of the
quadratic penalties in (4.31)–(4.32) ensure that the ‘augmented Lagrangians’ therein are separable,
and hence can be minimised separately in each coordinate of β̃ or θ̃. This is why β̂k+1, θ̂k+1 are
obtained from βk+1, θk+1 by componentwise applications of fk+1, ḡk+1 respectively, whose expressions
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in (4.23)–(4.24) emerge naturally from (4.31)–(4.32). See also Boyd et al. (2011) for an accessible
introduction to ADMM, and Rangan et al. (2016) for further details on the connection between
GAMP and conventional convex optimisation algorithms.

Based on Proposition 4.4 and the reasoning above, we might expect the high-dimensional limiting
behaviour of the estimators β̂∗ ∈ argminβ̃∈Rp C(β̃;X, y) to be governed by some fixed point of the state
evolution for (4.29) (if it exists). To prove this, we might hope to be able to establish convergence of
both the GAMP iteration (4.29) and its state evolution to their respective fixed points (in the sense
of (4.36) below). We conclude this subsection by setting out a general strategy along these lines. In
Sections 4.5–4.7, we will go on to demonstrate that it unifies existing derivations of high-dimensional
asymptotic results for the Lasso, and M-estimators in the linear model and logistic regression model.

Step 1: For given ` and J (and fixed n and p ≡ pn), find a fixed point of (4.29) together with its state
evolution, satisfying

θ∗ := Xβ̂∗ − b̄∗ŝ∗, θ̂∗ := ḡ∗(θ
∗, y), c̄∗ := E

(
g′∗(Z∗, Y )

)
, ŝ∗ := g∗(θ

∗, y),

β∗ := X>ŝ∗ − c̄∗β̂∗, β̂∗ := f∗(β
∗), b̄∗ := δ−1 E

(
f ′∗(µ∗β̄ + σ∗G∗)

)
.

(4.34)

Here, f∗, ḡ∗, g∗ are defined in terms of b̄∗ > 0, c̄∗ < 0 as in (4.23)–(4.24), with (Z,Z∗) ∼ N2(0,Σ∗) and
Y = h(Z, ε̄), while G∗ ∼ N(0, 1) is independent of β̄ ∼ πβ̄ and µ∗, σ∗,Σ∗, f∗, g∗ satisfy (4.6)–(4.7). In
each of the subsequent examples, the system (4.34) reduces to a smaller set of (non-linear) equations.
The existence and uniqueness of a state evolution fixed point usually needs to be verified on a case-
by-case basis, and may depend on the values of parameters such as the limiting sampling ratio δ and
the asymptotic signal strength E(β2)/δ (the variance of Z above).

Step 2: If Step 1 yields suitable f∗, ḡ∗, g∗, b̄∗, c̄∗, then consider the following ‘stationary’ version
of (4.29) for each n and p ≡ pn:

θk := Xβ̂k − b̄∗ŝk−1, θ̂k := ḡ∗(θ
k, y), ŝk := g∗(θ

k, y),

βk+1 := X>ŝk − c̄∗β̂k, β̂k+1 := f∗(β
k+1).

(4.35)

Henceforth, we will use (4.35) as a theoretical device rather than as a practical algorithm, which gives
us the flexibility to initialise it with ŝ−1 = 0 ∈ Rn and an ‘oracle’ β̂0 = f∗(µ∗β + σ∗ξ) ∈ Rp, where
ξ ∼ Np(0, Ip) is independent of the signal β ∈ Rp. This is a convenient choice because it ensures that
Σ0 = Σ∗ and hence that the state evolution for (4.35) is stationary, i.e. µk = µ∗, σk = σ∗ and Σk = Σ∗
for all k ∈ N. In addition, as n, p → ∞ with n/p → δ under (G1), the d2 limit of the empirical
distribution of the entries of β̂0 is the distribution of f∗(µ∗β̄ + σ∗G∗) by construction, and under the
hypotheses of Theorem 4.2, this is also true of β̂k for each fixed k ∈ N by Remark 4.3. The remaining
technical challenge to establish the same distributional limit for the fixed point β̂∗, which solves the
optimisation problem (4.22) by Proposition 4.4.

Step 3: Show that the estimates β̂k in (4.35) converge to β̂∗ ∈ argminβ̃∈Rp C(β̃;X, y) in the sense
that

lim
k→∞

c-lim
p→∞

‖β̂k − β̂∗‖2

p
= 0. (4.36)

In the examples in Sections 4.5–4.7, this is achieved by first establishing a ‘Cauchy property’

c-lim
p→∞

‖β̂k+1 − β̂k‖2

p
= 0, c-lim

n→∞

‖ŝk+1 − ŝk‖
n

2

= 0

for each k (using the limiting covariance structure mentioned after Theorem 4.2), and then proving
that for large k and p, the original convex cost function β̃ 7→ C(β̃;X, y) is approximately minimised
by β̂k in the following sense: if γ̂k ∈ Rp belongs to the subgradient of C(· ;X, y) at β̂k for k ∈ N and
p ≡ pn, then

lim
k→∞

c-lim
p→∞

‖γ̂k‖2

p
= 0. (4.37)
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If C(· ;X, y) is strongly convex (on a subset of its domain that contains β̂k, β̂∗) with high probability,
then the desired conclusion (4.36) follows readily from (4.37) and the basic inequality C(β̂∗;X, y) ≤
C(β̂k;X, y); see (98)–(100) in Donoho and Montanari (2016). Otherwise (as in the case of the Lasso
in Section 4.5), further work must be done to show that in a random design setting, it is vanishingly
unlikely that ‖γ̂k‖p is small but ‖β̂k− β̂∗‖p is large (cf. Bayati and Montanari, 2012, Theorem 1.8 and
Lemma 3.1).

4.5 AMP for the Lasso

In high-dimensional linear models y = Xβ + ε, the Lasso (Tibshirani, 1996) is a popular method for
obtaining sparse estimates of β ∈ Rp via `1-penalised least squares. Given X ∈ Rn×p, y ∈ Rn and a
regularisation parameter λ > 0, the Lasso estimator is defined by

β̂L,λ ∈ argmin
β̃∈Rp

{
1

2
‖y −Xβ̃‖2 + λ‖β̃‖1

}
. (4.38)

In the random design setting of (G0) and (G1), Bayati and Montanari (2012) derived an exact ex-
pression (4.46) for the asymptotic estimation error of β̂L,λ as n, p → ∞ with n/p → δ ∈ (0,∞). By
following the GAMP recipe in Section 4.4, we will show how to design and calibrate an AMP iteration
that is central to the proof of their main result (Theorem 4.5 below).

To begin with, note that β̂L,λ solves a convex optimisation problem of the form (4.22) with ` : (u, v) 7→
(u− v)2/2 and J : x 7→ λ|x|. For k ∈ N0, the corresponding ḡk, gk, fk+1 in (4.23)–(4.24) are given by

ḡk(u, v) =
u+ b̄kv

1 + b̄k
, gk(u, v) =

v − u
1 + b̄k

, fk+1(w) = −STλ/c̄k

(
−w
c̄k

)
= −STλ(w)

c̄k
, (4.39)

where as in Section 3.3, we denote by STt the soft-thresholding function w 7→ sgn(w)(|w| − t)+ for
t > 0. Given r̂−1 = 0 ∈ Rn, b̃0 ≡ b̄0 > 0 and β̂0 ∈ Rp, the resulting GAMP algorithm (4.29) can be
succinctly written as

r̂k = y −Xβ̂k + b̃kr̂
k−1, β̂k+1 = STtk+1

(
X>r̂k + β̂k

)
for k ∈ N0, (4.40)

where r̂k := y − θ̂k. Observe that (4.40) is (asymptotically equivalent to) an instance of the AMP
recursion (4.19) in Section 4.3 for the linear model, whose state evolution formula is given by (4.20),
with µk = 1 for all k. By (4.29) and (4.39), the deterministic scalars b̃k := b̄k/(1 + b̄k−1) > 0 and
tk+1 := λ(1 + b̄k) = −λ/c̄k > 0 in (4.40) are related to each other and the state evolution parameters
σ2
k via

σ2
1 = σ2 + E

(
(Z − Z0)2

)
, t1 = λ(1 + b̃0), b̃k =

E
(
ST′tk(β̄ + σkGk)

)
δ

=
P
(
|β̄ + σkGk| > tk

)
δ

,

σ2
k+1 = σ2 +

E
{(
β̄ − STtk(β̄ + σkGk)

)2}
δ

, tk+1 = λ+ b̃ktk = λ+
tk P

(
|β̄ + σkGk| > tk

)
δ

(4.41)

for k ∈ N. Here, β̄ ∼ πβ̄ and Gk ∼ N(0, 1) are independent, (Z,Z0) ∼ N2(0,Σ0), and σ2 > 0 is the
second moment of Pε̄.

Proceeding as in Step 1 in Section 4.4, we now seek a fixed point (r̂∗, β̂∗, b̃∗, σ∗, t∗ > 0) of (4.40)–(4.41)
satisfying

r̂∗ = y −Xβ̂∗ + b̃∗r̂
∗, b̃∗ =

t∗ − λ
t∗

, β̂∗ = STt∗

(
X>r̂∗ + β̂∗

)
, (4.42)

σ2
∗ = σ2 +

E
{(
β̄ − STt∗(β̄ + σ∗G∗)

)2}
δ

, t∗ = λ

(
1− P(|β̄ + σ∗G∗| > t∗)

δ

)−1

, (4.43)
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where β̄ ∼ πβ̄ and G∗ ∼ N(0, 1) are independent. Noting that the condition (4.42) simplifies to

β̂∗ = STt∗

(
β̂∗+ t∗λ

−1X>(y−Xβ̂∗)
)
, we can either apply Proposition 4.4 or verify the Karush–Kuhn–

Tucker (KKT) conditions directly to deduce that β̂∗ is a Lasso solution satisfying (4.38).

The next task is to show that for any λ > 0 in (4.38) and δ, σ > 0, there exist unique solutions
σ∗ ≡ σ∗(λ, δ, σ) > 0 and t∗ ≡ t∗(λ, δ, σ) to the non-linear equations in (4.43). To this end, Bayati and
Montanari (2012, Proposition 1.3) first verified that for fixed α > 0, there is a unique σ̃α ≡ σ̃α(δ, σ)
satisfying

σ̃2
α = σ2 +

E
{(
β̄ − STασ̃α(β̄ + σ̃αG∗)

)2}
δ

provided that

υ(α) := (1 + α2)Φ(−α)− αφ(α) <
δ

2
, (4.44)

where φ and Φ denote the standard Gaussian density and distribution functions respectively. Since
υ : R → R is a strictly decreasing continuous function with range (0,∞), (4.44) holds for all positive
α > υ−1(δ/2). In addition, some elementary calculus shows that for some α0 ≡ α0(δ, σ) ≥ υ−1(δ/2),
the map

α 7→ Λδ,σ(α) := ασ̃α

(
1− P(|β̄ + σ̃αG∗| > ασ̃α)

δ

)
is a continuous bijection from (α0,∞) to (0,∞) (Bayati and Montanari, 2012, Proposition 1.4 and
Corollary 1.7), so that for any λ > 0, there is a unique α∗ ≡ α∗(λ, δ, σ) > α0 such that λ = Λδ,σ(α∗).
It follows from this that σ∗ = σ̃α∗ and t∗ = α∗σ∗ are the unique solutions to (4.43).

For n ∈ N and p ≡ pn, the resulting ‘stationary’ AMP iteration (4.35) in Step 2 in Section 4.4 takes
the form

r̂k = y −Xβ̂k + b̃∗r̂
k−1, β̂k+1 = STt∗

(
X>r̂k + β̂k

)
for k ∈ N0, (4.45)

where r̂−1 = 0 ∈ Rn, b̃∗ = δ−1 P(|β̄ + σ∗G∗| > t∗), and β̂0 = STt∗(β + σ∗ξ) ∈ Rp is an oracle initialiser
with ξ ∼ Np(0, Ip) taken to be independent of the signal β ∈ Rp. Under the hypotheses of Theorem 4.2,
it follows from Remark 4.3 and (4.15) that for each fixed k ∈ N0, the empirical distribution of the
entries of β̂k ≡ β̂k(n) converges completely in d2 to the distribution of STt∗(β̄ + σ∗G∗) as n, p → ∞
with n/p→ δ.

Theorem 4.5 below asserts that the same asymptotic conclusion holds for the fixed point β̂∗ of (4.45),
which is a Lasso solution by virtue of (4.42). The additional technical challenge in its proof is to show
that the AMP iterates β̂k in (4.45) actually converge to a fixed point in the sense of (4.36), when we
take n, p→∞ followed by k →∞ (Bayati and Montanari, 2012, Theorem 1.8).� This constitutes Step
3 in Section 4.4, and as mentioned there, the arguments involved turn out to be highly non-trivial in
this case because the Lasso objective function in (4.38) is not strongly convex.

Theorem 4.5 (Bayati and Montanari, 2012, Theorem 1.5). Consider a sequence of linear models
y = Xβ+ ε satisfying (G0) and (G1) for r = 2 as n, p→∞ with n/p→ δ ∈ (0,∞). Suppose that the
limiting prior distribution πβ̄ satisfies πβ̄({0}) > 0, so that an asymptotically non-vanishing proportion

of the entries of β ∈ Rp are equal to 0. For λ > 0, let β̂L,λ ∈ Rp be a Lasso estimator (4.38) for each
p ≡ pn, and let σ∗ ≡ σ∗(λ, δ, σ) > 0 and t∗ ≡ t∗(λ, δ, σ) > 0 be the unique solutions to (4.43). Then

sup
ψ∈PL2(2,1)

∣∣∣∣1p
p∑
j=1

ψ(β̂L,λ
j , βj)− E

{
ψ
(
STt∗(β̄ + σ∗G), β̄

)}∣∣∣∣ c→ 0 (4.46)

�Bayati and Montanari (2012) originally established this result for a AMP recursion (4.40) initialised with β̂0 = 0,
in which the thresholds are defined instead by tk+1 = α∗σk+1 in (4.41) with α∗ = α∗(λ, δ, σ) as above, and the state
evolution sequence (σk) is non-constant but converges to σ∗. Their analysis yields the same conclusion for (4.45), and
also shows that (4.48) holds even though ψ : (u, v) 7→ 1{u6=0} is discontinuous.
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as n, p→∞ with n/p→ δ, where β̄ ∼ πβ̄ is independent of G ∼ N(0, 1). In particular, the asymptotic
mean squared error of the Lasso estimator is given by

c-lim
p→∞

‖β̂L,λ − β‖2

p
= E

{(
β̄ − STt∗(β̄ + σ∗G)

)2}
= δ(σ2

∗ − σ2). (4.47)

We emphasise once again the complex, non-linear dependence of σ∗ in (4.46) on the asymptotic
sparsity level πβ̄({0}) and λ, δ, σ > 0 through (4.43), and also the fact the asymptotic guarantees
of Theorem 4.5 hold for a fixed value of the regularisation parameter λ > 0. Mousavi et al. (2018)
showed that the asymptotic mean squared error of β̂L,λ in (4.47) is a quasi-convex function of λ (i.e.
decreasing on (0, λ∗] and increasing on [λ∗,∞) for some λ∗ > 0), and moreover that

c-lim
p→∞

‖β̂L,λ‖0
p

≡ c-lim
p→∞

1

p

p∑
j=1

1{β̂L,λ
j 6=0} = P

(
STt∗(β̄ + σ∗G∗) 6= 0

)
= P(|β̄ + σ∗G∗| > t∗) = δb̃∗(λ, δ, σ)

(4.48)
is a decreasing function of λ, as might be intuitively expected.

When the Lasso is used to perform variable selection (possibly with an adaptive choice of λ), Su et al.
(2017) established a tradeoff between the false discovery proportion and false negative proportion
along the regularisation path λ 7→ β̂L,λ in the high-dimensional asymptotic regime above. To this
end, by extending the results of Bayati and Montanari (2012), they proved that these two quantities
converge uniformly to deterministic limits over λ ∈ [λmin, λmax], for any 0 < λmin < λmax.

Li and Wei (2021) derived precise asymptotics in the over-parametrised regime p < n for the minimum
`1 norm interpolator

β̂Int := argmin
β̃∈Rp, y=Xβ̃

‖β̃‖1,

which corresponds to taking the limit λ ↘ 0 in the Lasso problem. To achieve this, they extended
the existing machinery outlined above to sequences of AMP iterations for Lasso estimators with
decreasing values of the regularisation parameter λ ≡ λn ↘ 0. Their analysis reveals that in the
regime n/p→ δ < 1, the asymptotic generalisation error of β̂Int can exhibit several phases of descent
and ascent as δ decreases (i.e. as the model complexity increases). This intriguing multiple descent
behaviour of the generalisation risk curve has been observed empirically for a variety of popular
procedures in statistics and machine learning, including random forests and neural networks (e.g.
Belkin et al., 2019; Geiger et al., 2019; Advani et al., 2020; Nakkiran et al., 2021). The theoretical
study of this phenomenon is a very active area of current research (e.g. Bartlett et al., 2020; Belkin
et al., 2020; d’Ascoli et al., 2020; Liang and Rakhlin, 2020; Mei and Montanari, 2020; Hastie et al.,
2022); see Dar et al. (2021) for a survey of recent developments.

Remark 4.6. The SLOPE estimator (Bogdan et al., 2015; Su and Candès, 2016; Bellec et al., 2018)
is a generalisation of the Lasso that solves a regularised least squares problem in which the penalty is
a sorted `1 norm: for λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, define

β̂SLOPE(λ1, . . . , λp) ∈ argmin
β̃∈Rp

{
1

2
‖y −Xβ̃‖2 +

p∑
j=1

λj |β̃|(j)
}
, (4.49)

where |β̃|(1) ≥ |β̃|(2) ≥ . . . ≥ |β̃|(p) are the absolute values of the entries of β̃ arranged in decreasing
order. This is a convex optimisation problem that produces sparse solutions like the Lasso, but offers
more flexibility due to the choices available for λ1, . . . , λp. For example, SLOPE can be used to control
the false discovery rate in variable selection via a judicious choice of these regularisation parameters.
Note however that when the λj are distinct, the optimisation problem (4.49) is not of the form (4.22)
since the SLOPE penalty is not an additively separable function of the components of β̃. Consequently,
the GAMP construction (4.29) in Section 4.4 is not applicable to this setting.

Nevertheless, Bu et al. (2021) show that an appropriately tuned AMP algorithm converges to the
SLOPE solution in the sense of (4.36), under assumptions similar to those for Theorem 4.5. This
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AMP iteration for SLOPE is somewhat similar to that for the Lasso, the main difference being that
the soft-thresholding function in (4.40) is replaced by the proximal operator associated with the SLOPE
penalty. This proximal operator is non-separable (i.e. does not act componentwise on its vector input),
which is why the analysis is based on master theorems recently obtained by Berthier et al. (2020) for
AMP recursions with non-separable denoising functions.

4.6 AMP for M-estimation in the linear model

Consider again the linear model y = Xβ + ε from Section 4.3, and define an M-estimator of β ∈ Rp
by

β̂M ∈ argmin
β̃∈Rp

n∑
i=1

M(yi − x>i β̃) (4.50)

for some convex M: R→ R that is bounded below. The existence of β̂M is guaranteed if for example

M is strongly convex. If ε1, . . . , εn
iid∼ fε̄ for some known (strictly positive log-concave) density fε̄, then

taking M = − log fε̄ in (4.50) yields a maximum likelihood estimator of β; see Dümbgen et al. (2011,
Section 3) for a maximum likelihood approach to estimating β when fε̄ is unknown. Other popular
choices of M include squared error loss w 7→ w2, Huber loss w 7→ w2

1{|w|≤B} + (2|w| − B)B1{|w|>B}
(for robust regression) with B > 0, and quantile loss w 7→ τw − 1{w<0} (for quantile regression)

with τ ∈ (0, 1). In a classical setting where the dimension p is fixed, x1, . . . , xn
iid∼ PX on Rp and

ε1, . . . , εn
iid∼ Pε̄ on R for all n, Huber (1964, 1973) proved that

√
n(β̂M − β)

d→ Np(0,Σ
M) as n→∞, with ΣM :=

∫
R(M′)2 dPε̄(∫
R M′′ dPε̄

)2 (∫
Rp
xx> dPX

)−1

, (4.51)

under appropriate regularity conditions on M and the score function S := M′; see also Huber and
Ronchetti (2009) and van der Vaart (1998, Example 5.28). When ε̄ ∼ Pε̄ has a differentiable density
fε̄, it follows from the Cauchy–Schwarz inequality that the variance functional

V (S; ε̄) :=
E
(
S(ε̄)2

)
E
(
S′(ε̄)

)2 =

∫
R(M′)2 dPε̄(∫
R M′′ dPε̄

)2 (4.52)

that appears in (4.51) is bounded below by the Fisher information I(Pε̄) :=
∫
R (f ′ε̄/fε̄)

2 dPε̄, with

equality when M = − log fε̄ (in which case the maximum likelihood estimator β̂M is asymptotically
efficient).

In contrast to (4.51), Donoho and Montanari (2016) showed that the M-estimator β̂M suffers from
variance inflation (and cannot be asymptotically efficient) in high-dimensional regimes where n, p→∞
with n/p→ δ ∈ (1,∞). AMP machinery plays a pivotal role in the analysis that leads to their main
result (stated as Theorem 4.7 below), and as in Section 4.5, we will now present the main steps within
the context of the GAMP framework of Sections 4.1 and 4.4.

Observing that the convex optimisation problem in (4.50) is an instance of (4.22) with ` : (u, v) 7→
M(u− v) and J ≡ 0 (i.e. no penalty term), we first write down an associated GAMP algorithm (4.53)
based on the general construction in Section 4.4. For η > 0, define a ‘smoothed’ version of ηM by

Mη(z) := min
t∈R

{
ηM(t) +

1

2
(t− z)2

}
for z ∈ R. (The function η−1Mη is called a Moreau envelope of M.) We note here that proxηM(z)
in (4.25) is the unique t that achieves this minimum for each z ∈ R, and also that Mη is convex
and differentiable with Sη(z) := (Mη)

′(z) = z − proxηM(z) for all z; see for example Rockafellar
(1997, Theorem 31.5) and Parikh and Boyd (2013, Section 3.2). Moreover, Sη is non-decreasing and
1-Lipschitz (cf. Parikh and Boyd, 2013, Sections 2.3 and 3.1).
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For k ∈ N0, the functions ḡk, gk, fk+1 in (4.23)–(4.24) are given by

ḡk(u, v) = v − proxb̄kM(v − u) = u+ Sb̄k(v − u), gk(u, v) =
Sb̄k(v − u)

b̄k
, fk+1(w) = −w

c̄k
.

Given b̄0 > 0, β̂0 ∈ Rp and r̂0 := y − Xβ̂0, we now write the GAMP algorithm (4.29) in terms of
r̂k = y − θk and β̂k+1 = fk+1(βk+1) = −βk+1/c̄k, and obtain the recursion

β̂k+1 =
δb̄k+1

b̄k
X>Sb̄k(r̂k) + β̂k, r̂k+1 = y −Xβ̂k+1 +

b̄k+1

b̄k
Sb̄k(r̂k) for k ∈ N0, (4.53)

where b̄k+1 = −1/(δc̄k). Moreover, expressing the state evolution recursion (4.6)–(4.7) for (4.29) in

terms of µ̃k := δb̄kµk, σ̃k := δb̄kσk and τk := E
(
(Z − Zk)

2
)1/2

with (Z,Zk) ∼ N(0,Σk), we have

τ0 = E
(
(Z − Z0)2

)1/2
and

µ̃k+1 = δ E
(
S′b̄k(ε̄+ τkGk)

)
, σ̃2

k+1 = δ2 E
(
Sb̄k(ε̄+ τkGk)

2
)
,

b̄k+1 = − 1

δc̄k
=

b̄k

δ E
(
S′
b̄k

(ε̄+ τkGk)
) , τ2

k+1 =
E(β̄2)(µ̃k+1 − 1)2 + σ̃2

k+1

δ

(4.54)

for k ∈ N0, where ε̄ ∼ Pε̄ is independent of Gk ∼ N(0, 1).

Turning now to Step 1 in Section 4.4, we seek a fixed point (r̂∗, β̂∗, b̄∗ > 0, µ̃∗, σ̃∗, τ∗) of (4.53)–(4.54)
satisfying

0 = δX>Sb̄∗(r̂
∗), r̂∗ = y −Xβ̂∗ + Sb̄∗(r̂

∗), (4.55)

µ̃∗ = δ E
(
S′b̄∗(ε̄+ τ∗G∗)

)
= 1, τ2

∗ = δ E
(
Sb̄∗(ε̄+ τ∗G∗)

2
)
, σ̃∗ =

√
δτ∗, (4.56)

where ε̄ ∼ Pε̄ is independent of G∗ ∼ N(0, 1), and µ∗ = µ̃∗/(δb̄∗) and σ∗ = σ̃∗/(δb̄∗) are fixed points
of the original state evolution equation (4.6). By Proposition 4.4, β̂∗ solves the M-estimation problem
in (4.50). Assuming that

M is continuously differentiable and S = M′ is absolutely continuous with sup
w∈R

S′(w) <∞, (4.57)

Donoho and Montanari (2016, Lemma 6.5) showed that for any τ > 0, the map b 7→ E
(
S′b(ε̄+τG∗)

)
=:

Fτ (b) is continuous on (0,∞) with limb→0 Fτ (b) = 0 and limb→∞ Fτ (b) = 1, and hence that there
exists b ≡ bτ > 0 satisfying E

(
S′b(ε̄ + τG∗)

)
= δ−1 for δ ∈ (1,∞). Using this, they deduced that

under (4.57), there exists a unique solution (τ∗, b̄∗) to (4.56) for any such δ (Donoho and Montanari,
2016, Corollary 4.4).

The functions f∗, g∗ in Step 2 in Section 4.4 are given by f∗ : w 7→ δb̄∗w and g∗ : (u, v) 7→ Sb̄∗(v−u)/b̄∗,
so for n ∈ N and p ≡ pn, the ‘stationary’ AMP iteration (4.35) can be written as

β̂k+1 = X>Sb̄∗(r̂
k) + β̂k, r̂k+1 = y −Xβ̂k+1 + Sb̄∗(r̂

k) for k ∈ N0. (4.58)

Here, r̂0 = y−Xβ̂0 and β̂0 = β+ σ̃∗ξ = f∗(µ∗β+σ∗ξ) ∈ Rp, where ξ ∼ Np(0, Ip) is independent of the
signal β ∈ Rp. This choice of oracle initialiser ensures that the corresponding state evolution sequence
is stationary with τk = τ∗ for all k ∈ N0. Then under the conditions (G0)–(G5) of Theorem 4.2 with
r = 2, it follows from Remark 4.3 and (4.10) that for each fixed k ∈ N, the empirical distributions
of the components of r̂k − ε ∈ Rn and β̂k − β ∈ Rp converge completely in d2 to N(0, τ2

∗ ) and
N(0, σ̃2

∗) = N(0, δτ2
∗ ) respectively as n, p→∞ with n/p→ δ ∈ (1,∞).

We remark that this result can in fact be derived by directly transforming (4.58) into an abstract
asymmetric AMP iteration of the form (2.10). Note in particular that since h(z, v) = z+v in (4.1) for
the linear model and Sη is 1-Lipschitz for all η > 0, the function g̃k = g̃∗ : (z, u, v) 7→ Sb̄∗(z+ v− u)/b̄∗
in (G4) is indeed Lipschitz.
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As in Section 4.5, the remaining ingredient (Step 3 in Section 4.4) is to show that the iterates
β̂k in (4.58) converge in the sense of (4.36) to some β̂∗ satisfying (4.55), which is an M-estimator
by Proposition 4.4. Under (4.57) and the additional assumption that M is strongly convex, i.e.
infw∈R S′(w) > 0, the conclusion of Donoho and Montanari (2016, Theorem 4.1) is indeed that

lim
k→∞

c-lim
p→∞

‖β̂k − β̂∗‖2

p
= 0. (4.59)

Together with the state evolution characterisation of the iterates in (4.58), this leads to the following
characterisation of the asymptotic performance of the M-estimator.

Theorem 4.7 (Donoho and Montanari, 2016, Theorem 4.2). Consider a sequence of linear models
y = Xβ + ε satisfying (G0) and (G1), with n/p → δ ∈ (1,∞) as n, p → ∞. Assume that the loss
function M is continuously differentiable, and that the score function S = M′ is absolutely continuous
with 0 < infw∈R S′(w) ≤ supw∈R S′(w) <∞. Let (τ∗, b̄∗) be the unique fixed point of (4.56). Then

sup
ψ∈PL2(2,1)

∣∣∣∣1p
p∑
j=1

ψ(β̂M
j − βj , βj)− E

(
ψ(
√
δτ∗G, β̄)

)∣∣∣∣ c→ 0 (4.60)

as n, p → ∞ with n/p → δ, where G ∼ N(0, 1). In particular, the asymptotic mean squared error of
β̂M is given by

c-lim
p→∞

‖β̂M − β‖2

p
= V (Sb̄∗ ; ε̄+ τ∗G) =

E
(
Sb̄∗(ε̄+ τ∗G)2

)
E
(
S′
b̄∗

(ε̄+ τ∗G)
)2 =

τ2
∗ /δ

1/δ2
= δτ2

∗ . (4.61)

Under condition (G1) on the signal vectors β ∈ Rp, Theorem 4.7 provides the limiting joint empirical
distribution of the entries of β̂M, β ∈ Rp. It turns out that even in the absence of (G1), we have

sup
ψ∈PL1(2,1)

∣∣∣∣1p
p∑
j=1

ψ(β̂M
j − βj)− E

(
ψ(
√
δτ∗G)

)∣∣∣∣ c→ 0,

as evidenced by the fact that β̄ does not appear in the state evolution recursion (4.56). Comparing
the variance functional V (Sb̄∗ ; ε̄ + τ∗G) in (4.61) with that in the classical setting, namely V (S; ε̄)
in (4.52), we emphasise the following points of difference. First, the asymptotic variance in the high-
dimensional setting depends on Sb̄∗ = M′

b̄∗
, the score function of a regularised version of M (rather

than M itself). In addition, the ‘effective noise’ in the high-dimensional regime is ε̄+ τ∗G, rather than
ε̄. In fact, Donoho and Montanari (2016, Corollary 4.3) showed that

V (Sb̄∗ ; ε̄+ τ∗G) ≥ 1

1− δ−1
· 1

I(Pε̄)
, (4.62)

where I(Pε)
−1 is the classical lower bound. This shows that the M-estimator is inefficient in high

dimensions, particularly so when δ is close to 1.

We also mention that Donoho and Montanari (2015, Theorem 2.2) extended the conclusion (4.60) to
M-estimators defined with respect to the Huber loss function, which is not strongly convex on R and
hence is not covered by Theorem 4.7. Donoho and Montanari (2016, Section 6) noted an interesting
connection between the Lasso and Huber M-estimators, as a special case (J : w 7→ λ|w|) of a duality
relationship between the following optimisation problems:

(i) The regularised least squares problem

minimise
1

2
‖y̆ − X̆β̆‖2 +

p∑
j=1

J(β̆j) over β̆ ∈ Rn

based on X̆ ∈ R(n−p)×n and y̆ ∈ Rn−p, with convex penalty J : R→ R;

(ii) The unpenalised M-estimation problem (4.50) based on X ∈ Rn×p, y ∈ Rn satisfying X̆X = 0
and y̆ = X̆y, with convex loss function M: w 7→ minz∈R {J(z) + (z − w)2/2}.
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4.7 GAMP for logistic regression

To further illustrate the generality and utility of the GAMP framework, we will now demonstrate how
it can be applied to a popular non-linear GLM, namely the logistic regression model with canonical
logit link. Suppose that we observe (x1, y1), . . . , (xn, yn) ∈ Rp × {0, 1} with

P(yi = 1 |x>i β) =
ex
>
i β

1 + ex
>
i β

= ζ ′(x>i β), where ζ(z) := log(1 + ez) (4.63)

for 1 ≤ i ≤ n. Equivalently, we may view this as an instance of the model (4.1) with ε1, . . . , εn
iid∼ U [0, 1]

and h(z, v) = 1{v≤ζ′(z)}, so that yi = h(x>i β, εi) = 1{εi≤ζ′(x>i β)} for each i, and seek to estimate β ∈ Rp
by maximum likelihood via

β̂MLE ∈ argmin
β̃∈Rp

n∑
i=1

{
ζ(x>i β̃)− yix>i β̃

}
, (4.64)

where the objective function in (4.64) is the negative log-likelihood. Albert and Anderson (1984)
showed that this MLE exists if and only if X0 := {xi : 1 ≤ i ≤ n, yi = 0} and X1 := {xi : 1 ≤
i ≤ n, yi = 1} are not (strongly) linearly separable, i.e. for any β̃ 6= 0, there either exists xi0 ∈ X0

with x>i0 β̃ > 0 or xi1 ∈ X1 with x>i1 β̃ < 0. In the random design setting of (G0) where x1, . . . , xn
iid∼

Np(0, Ip/n) for each n and p ≡ pn, Candès and Sur (2020) established a sharp phase transition for the

existence of β̂MLE. Specifically, they proved that there exists a decreasing function sMLE : (0,∞) →
[0,∞) with the following property: if the signals β ∈ Rp are such that n−1/2‖β‖ c→ κ ∈ (0,∞) as
n, p → ∞ with n/p → δ ∈ (1,∞), then β̂MLE exists with probability tending to 0 if κ > sMLE(1/δ),
and exists with probability tending to 1 if κ < sMLE(1/δ).

Henceforth, we will restrict attention to the latter regime, and use the GAMP formalism in Sections 4.1
and 4.4 to explain how to derive a result of Sur and Candès (2019a,b) on the high-dimensional asymp-
totics of β̂MLE, which is formally stated as Theorem 4.8 below. Recall from (4.5) that for a sequence of
logistic regression models (4.63) satisfying (G1), the asymptotic signal strength κ2 = c-limn→∞ ‖β‖2/n
is equal to E(β̄2)/δ. Noting that β̂MLE in (4.64) solves a convex optimisation problem of the form (4.22)
with J ≡ 0 and `(u, v) = ζ(u)− vu, we see that the functions ḡk, gk, fk+1 in (4.23)–(4.24) are given by

ḡk(u, v) = proxb̄kζ(u+ b̄kv) = u+ b̄kv − b̄kζ ′
(
proxb̄kζ(u+ b̄kv)

)
,

gk(u, v) = v − ζ ′
(
proxb̄kζ(u+ b̄kv)

)
, fk+1(w) = −w

c̄k
(4.65)

for k ∈ N0, since bζ ′(proxbζ(u)) + proxbζ(u)− u = 0 by the definition of proxbζ in (4.25) for b > 0.

Given b̄0 > 0, β̂0 ∈ Rp and θ0 := Xβ̂0, the GAMP recursion (4.29) therefore takes the form

β̂k+1 = δb̄k+1X
>{y − ζ ′(proxb̄kζ(θ

k + b̄ky)
)}

+
b̄k+1

b̄k
β̂k,

θk+1 = Xβ̂k+1 − b̄k+1

{
y − ζ ′

(
proxb̄kζ(θ

k + b̄ky)
)} (4.66)

for k ∈ N0, where b̄k+1 = −1/(δc̄k). Using (4.9) from Lemma 4.1, as well as (4.27), we now write the
corresponding state evolution recursion (4.6)–(4.7) for (4.66) in terms of µ̃k := δb̄kµk and σ̃k := δb̄kσk.
This yields

b̄k+1 =
b̄k
δ

(
1− E

{
1

1 + b̄kζ ′′
(
proxb̄kζ(Zk + b̄kY )

)})−1

,

µ̃k+1 =
δ2b̄k+1

E(β̄2)
E
(
Z
{
Y − ζ ′

(
proxb̄kζ(Zk + b̄kY )

)})
+ µ̃k, (4.67)

σ̃2
k+1 = δ2b̄2k+1 E

({
Y − ζ ′

(
proxb̄kζ(Zk + b̄kY )

)}2)
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for k ∈ N0, where given independent Z ∼ N(0,E(β̄2)/δ), G̃k ∼ N(0, 1) and ε̄ ∼ Pε̄, we set

Y = h(Z, ε̄) = 1{ε̄≤ζ′(Z)}, Zk = µZ,kZ + σZ,kG̃k = µ̃kZ + δ−1/2 σ̃kG̃k

in view of (4.63), (4.8) and the definition of fk+1 in (4.65). Sur and Candès (2019b, Section 3.1)
showed that (4.67) is equivalent to the original state evolution recursion they defined in Sur and
Candès (2019a, Section 4.1).

In accordance with Step 1 in Section 4.4, we seek a fixed point (β̂∗, θ∗, µ̃∗, σ̃∗, b̄∗ > 0) of (4.66)–(4.67)
satisfying

θ∗ = Xβ̂∗ − b̄∗
{
y − ζ ′

(
proxb̄∗ζ(θ

∗ + b̄∗y)
)}
, 0 = X>

{
y − ζ ′

(
proxb̄∗ζ(θ

∗ + b̄∗y)
)}
, (4.68)

σ̃2
∗ = δ2b̄2∗ E

({
Y − ζ ′

(
proxb̄∗ζ(Z∗ + b̄∗Y )

)}2)
, 0 = E

(
Z
{
Y − ζ ′

(
proxb̄∗ζ(Z∗ + b̄∗Y )

)})
, (4.69)

1− 1

δ
= E

{
1

1 + b̄∗ζ ′′
(
proxb̄∗ζ(Z∗ + b̄∗Y )

)}, (4.70)

where Z∗ := µ̃∗Z + δ−1/2 σ̃∗G̃∗ with Z ∼ N(0,E(β̄2)/δ) independent of G̃∗ ∼ N(0, 1). It turns
out that there exists a unique solution (µ̃∗, σ̃∗, b̄∗ > 0) to (4.69)–(4.70) precisely when E(β̄2)/δ ≡
κ2 < sMLE(1/δ)2 (Sur and Candès, 2019b, Lemma 7 and Remark 1), in which case β̂MLE exists with
probability tending to 1. By Proposition 4.4, β̂∗ in (4.68) is an MLE for β in the logistic regression
model.

Proceeding as in Step 2 in Section 4.4, we can use the fixed points in (4.68)–(4.70) to construct a
stationary version of (4.66) based on f∗ : w 7→ δb̄∗w and g∗ : (u, v) 7→ v−ζ ′

(
proxb̄∗ζ(u+ b̄∗v)

)
. For each

n ∈ N and p ≡ pn, let β̂0 := µ̃∗β+ σ̃∗ξ = f∗(µ∗β+σ∗ξ) ∈ Rp be an oracle initialiser with ξ ∼ Np(0, Ip)

taken to be independent of the signal β ∈ Rp. Then setting θ0 = Xβ̂0, we inductively define

β̂k+1 = δb̄∗X
>{y−ζ ′(proxb̄∗ζ(θ

k+b̄∗y)
)}

+β̂k, θk+1 = Xβ̂k−b̄∗
{
y−ζ ′

(
proxb̄∗ζ(θ

k+b̄∗y)
)}

(4.71)

for k ∈ N0. By the choice of β̂0 above, the associated state evolution recursion (4.67) is stationary, i.e.
µ̃k = µ̃∗ and σ̃k = σ̃∗ for all k ∈ N0. Consequently, under the hypotheses of Theorem 4.2 with r = 2,
it follows from Remark 4.3 that for each fixed k ∈ N, the joint empirical distribution of the entries of
β̂k, β ∈ Rp converges completely in d2 to the distribution of (µ̃∗β̄+ σ̃∗G, β̄) as n, p→∞ with n/p→ δ,
where β̄ ∼ πβ̄ is independent of G ∼ N(0, 1). On a technical note, we remark that the function

g̃∗ : (z, u, v) 7→ g∗(u, h(z, v)) = 1{v≤ζ′(z)} − ζ ′
(

proxb̄∗ζ
(
u+ b̄∗1{v≤ζ′(z)}

))
in (G4) is not Lipschitz since h : (z, v) 7→ 1{v≤ζ′(z)} is not continuous, so an additional approximation
argument is needed to formally justify the application of Theorem 4.2.

Finally, we discuss Step 3 in Section 4.4, whose aim is to show that the iterates in (4.71) converge in
the sense of (4.36) to a fixed point β̂∗ ≡ β̂MLE satisfying (4.68). This is the content of Sur and Candès
(2019b, Theorem 7), and follows from similar arguments to those used by Donoho and Montanari
(2016) to prove (4.59) for the M-estimators in Section 4.6. An additional technical obstacle in this
setting is that ζ : z 7→ log(1 + ez) and hence the negative log-likelihood function in (4.64) are strongly
convex on compact sets but not on the entirety of their domains. One way to address this issue
is to show that β̂k, β̂MLE are contained in some sufficiently large Euclidean ball with overwhelming
probability. Indeed, it follows from the state evolution characterisation of (4.71) that ‖β̂k‖2/p = Oc(1)
for each fixed k; in addition, Sur and Candès (2019b, Theorem 4) established the boundedness property
‖β̂MLE‖2/p = Oc(1) in the regime κ < sMLE(1/δ) where β̂MLE exists with probability tending to 1.

Theorem 4.8 (Sur and Candès, 2019a, Theorem 2). Consider a sequence of logistic regression mod-
els (4.63) satisfying (G0) and (G1) for r = 2 as n, p → ∞ with n/p → δ ∈ (1,∞). Assume that
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E(β̄2)/δ ≡ κ2 < sMLE(1/δ)2, so that (4.64) defines a maximum likelihood estimator β̂MLE with proba-
bility tending to 1, and there exist µ̃∗, σ̃∗, b̄∗ satisfying (4.69)–(4.70). Then

sup
ψ∈PL2(2,1)

∣∣∣∣1p
p∑
j=1

ψ
(
β̂MLE
j − µ̃∗βj , βj

)
− E

(
ψ(σ̃∗G, β̄)

)∣∣∣∣ c→ 0

as n, p→∞ with n/p→ δ, where G ∼ N(0, 1) is independent of β̄ ∼ πβ̄. In particular,

1

p

p∑
j=1

(
β̂MLE
j − µ̃∗βj

) c→ 0,
1

p

p∑
j=1

(
β̂MLE
j − µ̃∗βj

)2 c→ σ̃2
∗,

‖β̂MLE − β‖2

p

c→ (µ̃∗ − 1)2 E(β̄2) + σ̃2
∗.

Thus, for large p, the components of β̂MLE ∈ Rp have approximately the same empirical distribution as
those of µ̃∗β + σ̃∗ξ (the oracle initialiser β̂0 in (4.71) above), so we can interpret µ̃∗ as an asymptotic
bias factor and σ̃2

∗ as a limiting variance. Sur and Candès (2019a) observe empirically that when
n, p → ∞ with δ ∈ (1,∞), both the limiting bias and variance are larger than they would be in
classical settings where p is fixed or grows sufficiently slowly with n (in which case β̂MLE would be
asymptotically unbiased (with µ̃∗ = 1) and asymptotically efficient as n → ∞). Their Figure 7
illustrates that this high-dimensional phenomenon becomes increasingly pronounced when either δ is
reduced or κ is enlarged; in fact, when κ approaches the critical value sMLE(1/δ) for the existence of
β̂MLE, the value of µ̃∗ diverges to infinity, as does the ratio between σ̃∗ and the Cramér–Rao lower
bound.

It is instructive to compare the high-dimensional asymptotic performance of β̂MLE in the logistic
model with that of the M-estimator (4.50) in the linear model. Note that while both estimators
exhibit variance inflation (as quantified by Theorems 4.7 and 4.8), only the former suffers from bias
inflation. Indeed, in the linear model, the AMP state evolution recursion (4.56) yields µk = 1 for all
k, and hence µ∗ = 1 (implicitly) in Theorem 4.7 for the M-estimator; see also (4.20) in Section 4.3.

5 Conclusions and extensions

With the abstract AMP recursions in Section 2 as our starting point, we have shown how to design
and analyse AMP algorithms for estimating structured signals, both in low-rank spiked models with
Gaussian noise matrices and in GLMs with Gaussian design matrices. In high-dimensional asymptotic
regimes where the matrix dimensions scale proportionally to each other, we have illustrated how
to apply the abstract master theorems to derive precise state evolution characterisations of AMP
estimation performance, which we have stated as complete convergence guarantees.

In Section 4, we have presented a general recipe that uses AMP systematically to obtain exact ex-
pressions for the asymptotic error of penalised and unpenalised M-estimators in GLMs with Gaussian
design matrices. An alternative approach to deriving such guarantees is via Gaussian comparison
inequalities and the convex Gaussian min-max theorem (CGMT) (Thrampoulidis et al., 2015). These
techniques have recently been used to analyse the performance of regularised M-estimators (Thram-
poulidis et al., 2018), the Lasso (Miolane and Montanari, 2021), boosting (Liang and Sur, 2022) and
convex-constrained least squares estimators (Han, 2022), as well as to elucidate the so-called ‘double
descent’ phenomenon in over-parametrised binary classification models (Deng et al., 2019; Kini and
Thrampoulidis, 2020).

Remaining within the realm of Gaussian matrices, we mention that the results in this monograph can
be extended to AMP recursions with (i) non-separable denoising functions that do not act componen-
twise on their vector arguments, and can therefore take advantage of correlation between entries of
the signal (Ma et al., 2019; Berthier et al., 2020); (ii) matrices with independent entries and a block-
wise variance structure (Javanmard and Montanari, 2013). With a carefully chosen variance structure
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(‘spatial coupling’), AMP has been shown to achieve the information-theoretic limit for compressed
sensing (Donoho et al., 2013).

In the setting of AMP for asymmetric matrices in Section 2.2, the results of Theorem 2.5 can be
generalised to matrices with i.i.d. sub-Gaussian entries with mild additional assumptions (Bayati et al.,
2015; Chen and Lam, 2021). It is likely that the proof strategies in these papers can be developed
further to extend other theoretical results (such as Theorem 4.2 for GAMP) to these more general
random matrix ensembles.

When the data matrix does not have i.i.d. Gaussian entries, AMP is not guaranteed to converge, and
in fact can even diverge in sometimes pathological ways; see Rangan et al. (2019a) for a discussion of
this issue. For this reason, a number of other AMP-based algorithms have been introduced that allow
for this assumption to be weakened in various ways, such as Vector AMP (VAMP) (Rangan et al.,
2019b), orthogonal AMP (OAMP) (Ma and Ping, 2017; Takeuchi, 2020) and other generalisations of
AMP for rotationally invariant matrices (Opper et al., 2016; Fan, 2022).

Vector AMP (VAMP) is an iterative algorithm (based on Expectation Propagation) for estimation
in rotationally invariant linear models (Rangan et al., 2019b; Takeuchi, 2020, 2021b) and generalised
linear models (Schniter et al., 2016; Pandit et al., 2020). Rangan et al. (2019b) and Pandit et al.
(2020) showed that the asymptotic estimation error of VAMP (with optimal denoising functions)
coincides with the statistical physics-based prediction for the Bayes-optimal error whenever the state
evolution recursion has a unique fixed point. Orthogonal AMP (Ma and Ping, 2017; Takeuchi, 2020)
is an algorithm that is equivalent to VAMP for estimation in rotationally invariant linear models.
Recently, Ma et al. (2021) studied the performance of Expectation Propagation (an algorithm closely
related to VAMP) for rotationally invariant GLMs, and analysed the impact of the spectrum on
the estimation performance. VAMP has also been used to obtain the asymptotic risk of convex-
penalized estimators for rotationally invariant GLMs (Gerbelot et al., 2020a,b). A few lower complexity
alternatives to VAMP have also been proposed, including convolutional AMP (Takeuchi, 2021a),
Memory AMP for linear models (Liu et al., 2021), and Generalised Memory AMP for GLMs (Tian et
al., 2021).

Fan (2022) and Zhong et al. (2021) provide a master theorem for an abstract AMP recursion defined
via a rotationally invariant random matrix. Compared with the original Gaussian setting of Section 2,
AMP recursions with general rotationally invariant random matrices have two key differences, as seen
in (3.38): (i) the presence of multiple memory terms, accounting for all the preceding iterates, and
(ii) thresholding functions that act on all the preceding iterates rather than just the current one.
The abstract AMP recursion of Fan (2022) and Zhong et al. (2021) has been used to derive AMP
algorithms with state evolution guarantees for low-rank matrix estimation with rotationally invariant
noise (Opper et al., 2016; Çakmak and Opper, 2019; Fan, 2022; Zhong et al., 2021; Mondelli and
Venkataramanan, 2021), as discussed in Section 3.5. See also Venkataramanan et al. (2021) for an
application of this more general AMP framework to GLMs defined via rotationally invariant matrices.

Though the focus in this tutorial has been on low-rank matrix estimation and generalised linear models,
both AMP and Vector AMP have been applied to a number of other statistical problems including
tensor PCA (Montanari and Richard, 2014) and inference in multilayer neural networks (Manoel et al.,
2017; Fletcher et al., 2018; Emami et al., 2020). AMP has also been used to obtain lower bounds on the
limiting estimation error of a broad class of general first-order methods such as gradient descent and
mirror descent (Celentano et al., 2020). An active area of current research is to determine whether
AMP outperforms all other polynomial-time algorithms in low-rank matrix estimation and GLMs.
In these settings, the statistical-computational gap has been precisely characterised in terms of the
critical points of a ‘potential function’ (Lelarge and Miolane, 2019; Barbier et al., 2019). As mentioned
in Section 3.3, the performance of both Bayes-AMP and the Bayes optimal estimator correspond to
(possibly different) critical points of this function, and when the potential function has a single critical
point, Bayes-AMP achieves Bayes optimal performance. This connection suggests that AMP will play
an important role in understanding statistical-computational gaps in a wider context.
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6 Appendix: proofs and technical remarks

In addition to the definitions in Section 1.1, we introduce the following notation. The Moore–
Penrose pseudoinverse of a matrix A ∈ Rk×` will be denoted by A+ ∈ R`×k. This satisfies A+ =
(A>A)+A> (e.g. Barata and Hussein, 2012, Proposition 3.2), and if k = ` and A is invertible, then
A+ = A−1. For non-negative, real-valued functions f, g, we write f . g if there exists a universal
constant C > 0 such that f ≤ Cg; more generally, given parameters α1, . . . , αN , we write f .α1,...,αN g
if there exists C ≡ Cα1,...,αN > 0, depending only on α1, . . . , αN , such that f ≤ Cg.

6.1 Technical remarks on the master theorems in Section 2.1

In this subsection, we will make some general observations that unify Theorems 2.1 and 2.3 with
other master theorems in the AMP literature (e.g. Bolthausen, 2014; Bayati and Montanari, 2011;
Javanmard and Montanari, 2013). There are a number of respects in which our results are presented
differently and/or in slightly greater generality, and we discuss each of these in turn.

Remark 6.1 (Complete convergence). In Section 6.4, we will also establish the following variants of
Theorem 2.1, neither of which implies the other (or the original theorem): for a sequence of symmetric
AMP recursions (2.1) satisfying (A0), (A4) and (A5), and an associated sequence of state evolution
parameters (τ2

k : k ∈ N) as in (2.2), the following hold for each fixed k ∈ N as n→∞:

(a) Suppose that (A1)–(A3) hold with
p→ and Op(1) in place of

c→ and Oc(1) respectively. Then

dr
(
νn(hk, γ), N(0, τ2

k )⊗ π
) p→ 0, or equivalently d̃r

(
νn(hk, γ), N(0, τ2

k )⊗ π
) p→ 0.

(b) Suppose instead that (A1)–(A3) hold with
a.s.→ and Oa.s.(1) in place of

c→ and Oc(1) respec-
tively, and moreover that

(
W (n) : n ∈ N

)
is independent of

(
m0(n), γ(n) : n ∈ N

)
. Then

dr
(
νn(hk, γ), N(0, τ2

k )⊗ π
) a.s.→ 0, or equivalently d̃r

(
νn(hk, γ), N(0, τ2

k )⊗ π
) a.s.→ 0.

Stronger versions of these statements can be formulated as analogues of Theorem 2.3. We now ex-
plain why we have stated our AMP master theorems (and all subsequent asymptotic results in the
monograph) in terms of complete convergence.

� Complete convergence is stronger than almost sure convergence and convergence in probability, so
the conclusions of Theorems 2.1 and 2.3 provide stronger convergence guarantees than (a) and (b).

� In view of Remark 7.1, neither the conditions (A0)–(A3) nor their analogues in (a) impose any
restrictions on the dependence structure across n ∈ N of the random triples

(
m0(n), γ(n),W (n)

)
that generate the AMP iterates. By contrast, the additional assumption in (b) is somewhat un-
natural from a statistical point of view, except perhaps when

(
m0(n), γ(n) : n ∈ N

)
is taken to be

deterministic sequence that satisfies the other conditions in (b). Note however that this special case
is covered by Theorems 2.1 and 2.3, which yield stronger conclusions than (b), as mentioned above.

� The method of proof of Theorems 2.1 and 2.3 (via Proposition 6.16) is well-suited to complete
convergence and convergence in probability, but appears not to be able to handle almost sure
convergence directly; it is not clear whether (b) holds in general if we only assume (A0) rather
than the stronger independence condition above. The reason for this is that in many of the key
technical arguments, the convergence of some random sequence (Xn) of interest is established by first

identifying a more tractable sequence (Yn) such that Yn
d
= Xn for all n. To show that Xn

c→ x for
some deterministic x, or that Xn = Oc(1), it suffices to prove that Yn

c→ x or Yn = Oc(1) respectively

in view of Definition 1.1 of complete convergence. Similarly, Yn
p→ x implies that Xn

p→ x, and
Yn = Op(1) implies that Xn = Op(1). However, if Yn

a.s.→ x, then it does not necessarily follow that

Xn
a.s.→ x, and if Yn = Oa.s.(1), then it need not be the case that Xn = Oa.s.(1).
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Remark 6.2 (Uniformity over PLD(r, 1) and the link between pseudo-Lipschitz functions and Wasser-
stein convergence). Many asymptotic convergence results for AMP iterations are stated in the form

1

n

n∑
i=1

ψ(Xk
ni) ; E

(
ψ(X̄k)

)
∈ R as n→∞, for every ψ ∈ PLD(r), (6.1)

where r ∈ [2,∞), ; denotes one of the three modes of stochastic convergence discussed in Remark 6.1,
the random vectors X̄k, Xk

ni take values in RD for some fixed D ∈ N, and k ∈ N is a fixed iteration
number; usually, each Xk

ni depends on the ith coordinates of vector quantities in the first k iterations

of an AMP recursion indexed by n. Recalling the definition (1.4) of d̃r, we deduce from Corollary 7.21
that any conclusion of the form (6.1) can be automatically upgraded to a uniform statement

d̃r(µ
k
n, µ̄

k) = sup
ψ∈PLD(r,1)

∣∣∣∣ 1n
n∑
i=1

ψ(Xk
ni)− E

(
ψ(X̄k)

)∣∣∣∣; 0 as n→∞ (6.2)

featuring the same mode of convergence ; as in (6.1), where we write µkn for the empirical distribution
of Xk

n1, . . . , X
k
nn on RD, and µ̄k for the distribution of the limiting random vector X̄k. Furthermore,

by Corollary 7.21, both (6.1) and (6.2) are equivalent to the assertion that dr(µ
k
n, µ̄

k) ; 0. In essence,
this is because dr, d̃r are equivalent metrics, in the sense that they generate the same topology on
the space PD(r) of probability distributions on RD with a finite rth moment; see Theorem 7.17 and
Remark 7.18.

On a technical note, the measurability of the random quantities d̃r(µ
k
n, µ̄

k) and dr(µ
k
n, µ̄

k) is guaranteed
by analytic considerations; it is shown in Proposition 7.16 that the supremum in (6.2) can instead be
taken over a deterministic countable subset T ′ ⊆ PLD(r) of bounded Lipschitz functions.

Remark 6.3 (Finite-sample analysis). To complement and refine some of the asymptotic conclu-
sions of the type (6.1) for general AMP procedures, the relevant proof techniques have been adapted
to establish concentration inequalities for quantities of the form n−1

∑n
i=1 ψ(Xk

ni) − E
(
ψ(X̄k)

)
for

k, n ∈ N and fixed arbitrary ψ ∈ PLD(r, 1), under suitable assumptions. For r = 2, such finite-sample
guarantees were obtained for asymmetric recursions by Rush and Venkataramanan (2018) and for
symmetric recursions by Barbier et al. (2020). Their conclusions can be generalised to r > 2 with
the aid of Lemma 7.12, a general concentration result for sums of pseudo-Lipschitz functions of in-
dependent Gaussian random variables. It would be interesting to see whether the above results can
be extended to derive a stronger finite-sample analogue of Theorem 2.1 in the form of a concentra-
tion inequality for d̃r

(
νn(hk, γ), N(0, τ2

k ) ⊗ π
)

= supψ∈PL2(r,1)

∣∣n−1
∑n

i=1 ψ(hki , γi) − E
(
ψ(Gk, γ̄)

)∣∣ or

dr
(
νn(hk, γ), N(0, τ2

k )⊗ π
)

for k, n ∈ N.

Remark 6.4 (Conditions (A2) and (A3)). For r ≥ 2, conclusions of the form (6.1) have previously
been derived for general AMP iterations under a boundedness assumption on the (2r− 2)th moments
of the empirical distributions νn(m0) for n ∈ N. In (A2), we relax this to a boundedness condition
‖m0‖n,r = Oc(1) on the empirical rth moments, which is more natural and in line with what one
would expect for a dr convergence result. To accommodate this weaker assumption, we apply Hölder’s
inequality rather than the Cauchy–Schwarz inequality in Lemma 7.24, which is used in a key estimate
in the proof of Proposition 6.16(c) below; see (6.30) and (6.47). By making similar alterations to the
statements and proofs of other AMP results, it ought to be possible to avoid any mention of (2r−2)th

empirical moments.

The primary purpose of (A3) is to ensure that the asymptotic dependence between different iterates
hj , h` (as measured by the inner product 〈hj , h`〉n between them) has a deterministic limiting expres-
sion, namely T̄j,` as defined in (2.6); see also Proposition 6.16(d, e, f). The existence of the limiting
covariance structure captured by (2.6) is crucial to the success of the proof strategy for Theorems 2.1
and 2.3; in fact, its existence is a necessary condition for the more general conclusion in Theorem 2.3,
as can be seen by taking ψ(x1, . . . , xk) := xjx` therein for 1 ≤ j, ` ≤ k.
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Remark 6.5. Since π ∈ P1(r) by (A1), recall from Section 1.1 that if γ̄ ∼ π, then E
(
ψ(γ̄)

)
=
∫
R ψ dπ <

∞ for all ψ ∈ PL1(r), the set of all pseudo-Lipschitz functions on R of order r. Thus, in (A3), given
Lipschitz functions F0, φ on R, Lemma 7.22 ensures that x 7→ F0(x)φ(x) lies in PL1(2) ⊆ PL1(r) since
r ≥ 2, so E

(
F0(γ̄)φ(γ̄)

)
is finite.

It can be shown by fairly routine arguments that the following condition implies the first condition
in (A2) as well as (A3); see Section 6.6 for a full justification.

(A1+) There exists a Lipschitz function f̃0 : R2 → R and a probability distribution ν̃0 ∈ P1(2) such
that writing µ0 for the distribution of

(
f̃0(η̄, γ̄), γ̄

)
when η̄ ∼ ν̃0 and γ̄ ∼ π are independent,

we have d2

(
νn(m0, γ), µ0

) c→ 0.

In applications, (A1+) can be more convenient to verify than (A3). Note that if d2

(
νn(h0, γ), ν̃0⊗π

) c→
0 with ν̃0 as above, then (A1+) holds with f̃0 = f0.

Remark 6.6. At least when r = 2, the master theorems in Section 2 can be extended to abstract
recursions for which the non-degeneracy condition (A4) does not hold and the limiting covariance
matrices need not be positive definite. These degenerate cases can be handled by first perturbing the
Lipschitz functions fk and then applying a continuity argument that has some similarities with the
proof of Theorem 3.1 in Section 6.8. One of the intermediate steps relies on the fact that ‖W‖2→2 :=
supu6=0 ‖Wu‖2/‖u‖2 = Oc(1) for W ∼ GOE(n) as n → ∞ (e.g. Anderson et al., 2010; Knowles and
Yin, 2013); see Javanmard and Montanari (2013, Section 4.2.1), Berthier et al. (2020, Section 5.4)
and Fan (2022, Appendix D) for further details.

These perturbation arguments do not generalise straightforwardly to dr convergence results for r 6= 2
since ‖W‖r→r := supu6=0 ‖Wu‖r/‖u‖r is not Oc(1) or even Op(1) for r ∈ [1, 2) ∪ (2,∞]. Indeed, given
r ∈ [1, 2) and independent Z ∼ Nn(0, In) and ζ ∼ N(0, 1/n), Lemma 6.14 yields

‖W‖r→r ≥ ‖We1‖r
d
= ‖n−1/2Z + ζe1‖r = n1/r−1/2‖Z‖n,r + op(1),

where ‖Z‖n,r
c→ E(|Z1|r)1/r ∈ (0,∞). Moreover, ‖W‖r→r = ‖W‖r′→r′ whenever 1/r + 1/r′ = 1.

Remark 6.7. (A5) is a non-vacuous albeit very mild condition. For any Lipschitz f : R2 → R, the
partial derivative ∂f

∂x is bounded on its domain of definition, which is a Borel set of full Lebesgue

measure. Nevertheless, there are examples of Lipschitz f : R2 → R for which ∂f
∂x cannot be extended

to a function on R2 that is continuous (λ ⊗ π)-almost everywhere (see Remark 7.15). That said, it
is inconceivable that such pathological choices of fk would be made in any practical AMP procedure,
where the functions f ′k usually have the property that {x ∈ R : (x, y) ∈ Dk} is finite for every y ∈ R,
and hence satisfy (A5).

6.2 Conditional distributions for symmetric AMP

In this subsection, we fix n ∈ N, and in most places, we suppress the dependence on n of all quantities
such as W ≡ W (n) and hk ≡ hk(n). When we refer to orthonormal sets, it is implicit that the
constituent vectors have unit Euclidean norm, i.e. that the underlying inner product is 〈· , ·〉, not
〈· , ·〉n. All statements concerning conditional distributions can be understood formally in terms of
the rigorous definition of regular conditional probability, as outlined in Section 7.2. The proofs of the
results below are given in Section 6.3.

In the setting of Section 2.1, define the n× k matrices

Hk ≡ Hk(n) :=
(
h1 · · · hk

)
, Mk ≡Mk(n) :=

(
m0 m1 · · · mk−1

)
, Yk ≡ Yk(n) :=

(
y0 y1 · · · yk−1

)
,

where yj ≡ yj(n) := Wmj = hj+1 + bjm
j−1 for j = 0, 1, . . . , k − 1. For convenience, we also define

M0(n) = Y0(n) := 0 ∈ Rn. Then the symmetric AMP recursion (2.1) can be rewritten as WMk = Yk
for k ∈ N.
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For each 0 ≤ k ≤ n−1, let Pk := MkM
+
k = Mk(M

>
k Mk)

+M>k and P⊥k := In−Pk be the n×n matrices
representing the orthogonal projections onto Im(Mk) := span{mj : 0 ≤ j ≤ k−1} and Vk := Im(Mk)

⊥

respectively, and define rk := rank(Mk) = dim Im(Mk). Let
⊥
mk := P⊥k m

k for 0 ≤ k ≤ n − 1, so that

the span of
⊥
mk is the orthogonal complement of Vk+1 within Vk. Furthermore, define S−1 := {∅,Ω}

to be the trivial σ-algebra, and for k ∈ N0, let

Sk := σ(γ,m0, hj : 1 ≤ j ≤ k).

Then since bk,m
k are measurable functions of hk and γ, we see from (2.1) that

Sk = σ(γ,m0, yj : 0 ≤ j ≤ k − 1), (6.3)

and that m0, . . . ,mk and r0, . . . , rk+1 are Sk-measurable for each −1 ≤ k ≤ n − 1. (It is not true in
general that P(rk = k) = 1 for all 1 ≤ k ≤ n− 1, even in recursions (2.1) with non-pathological fk.)

Our first task is to establish an important fact (Proposition 6.8) that will be used to derive the
(regular) conditional distributions of W and hk+1 given Sk in Proposition 6.11 below, for each fixed

k ∈ {0, 1, . . . , n − 1}. We will use the symbol ‘
d
= |Sk ’ to indicate (almost-sure) equality of conditional

distributions given Sk, a notion that is defined formally in Section 7.2.

Proposition 6.8. Fix 0 ≤ k ≤ n − 1 and suppose as in (A0) that W ∼ GOE(n) is independent of
(m0, γ). If Ũk is any Sk−1-measurable n×(n−rk) matrix whose columns form an orthonormal basis of
Vk, then given Sk−1, the matrix Ũ>k WŨk has conditional distribution GOE(n−rk) and is conditionally
independent of Sk. Consequently, Ũ>k WŨk has conditional distribution GOE(n− rk) given Sk, and if

W̃ ∼ GOE(n) is independent of Sk, then Ũ>k WŨk
d
= |Sk Ũ>k W̃ Ũk.

Remark 6.9. Consider the important special case where P(rk = k) = 1. Then under the hypotheses
of the proposition, Ũ>k WŨk ∼ GOE(n − k) is conditionally independent of Sk given Sk−1, and is
independent of Sk.

Remark 6.10. To explicitly construct a (random) Ũk with the above properties, consider applying
the Gram–Schmidt procedure to m0, . . . ,mk−1, e1, . . . , en ∈ Rn (in that order) and retaining only
the non-zero vectors in the output (which are all normalised to have unit Euclidean length). This
yields an Sk−1-measurable orthonormal basis m̃1, . . . , m̃n of Rn, where m̃1, . . . , m̃rk are obtained from
m0, . . . ,mk−1 and therefore span Im(Mk), while m̃rk+1, . . . , m̃n span Vk = Im(Mk)

⊥. Thus, we can
take Ũk =

(
m̃rk+1 · · · m̃n

)
.

The main result of this subsection is Proposition 6.11 below, which plays a crucial role in the inductive
proof of the AMP master theorems given in Sections 6.4 and 6.5. For each k ∈ {1, . . . , n− 1}, let

αk ≡ αk(n) ≡ (αk1 , . . . , α
k
k) := M+

k m
k = (M>k Mk)

+M>k m
k ∈ Rk (6.4)

be a vector of projection coefficients satisfying Pkm
k = Mkα

k =
∑k

`=1 α
k
` m

`−1. When Mk has full
rank (i.e. when rk = k), note that αk = (M>k Mk)

−1M>k m
k is the unique vector with this property.

In addition, let B1 := (0, 0) ∈ R2 and Bk := diag(b0, . . . , bk−1) ∈ Rk×k for k ∈ {2, . . . , n}, so that
Yk = Hk + (0 Mk−1)Bk for all k ∈ {1, . . . , n}.
Proposition 6.11. For n ∈ N, consider a symmetric AMP recursion (2.1) for which (A0) holds.
For k ∈ {0, 1, . . . , n− 1}, let both W̃ k ≡ W̃ k(n) ∼ GOE(n) and (Z̃k+1, ζ̃k+1) ≡

(
Z̃k+1(n), ζ̃k+1(n)

)
∼

Nn(0, In)⊗N(0, 1/n) be independent of Sk. Then

W
d
= |S0 W̃ 0 and h1 d

= |S0 ‖m0‖nZ̃1 + ζ̃1m0 =: h1,0, (6.5)

and for each k ∈ {1, . . . , n− 1}, we have

W
d
= |Sk WPk + (WPk)

>P⊥k + P⊥k W̃
kP⊥k = YkM

+
k + (YkM

+
k )>P⊥k + P⊥k W̃

kP⊥k (6.6)

hk+1 d
= |Sk Hkα

k + P⊥k (W̃ k ⊥mk) +
{

(M+
k )>H>k

⊥
mk − bkmk−1 + (0 Mk−1)Bkα

k
}

d
= |Sk

k∑
`=1

αk` h
` + ‖ ⊥mk‖n(P⊥k Z̃

k+1) + ζ̃k+1 ⊥mk +Mk(M
>
k Mk)

+

(
vk,k −

k∑
`=1

αk` v
k,`−1

)
(6.7)

=: hk+1,k,
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where vk,` ≡ vk,`(n) := H>k m
` − b`M>k m`−1 ∈ Rk for ` ∈ {0, . . . , k}.

The crux of the proof of Proposition 6.11 is to establish (6.6), which characterises the conditional
distribution of W given Sk. It is intuitively helpful to think of this as being obtained by conditioning W
on the ‘linear constraints’ Wm0 = y0, . . . ,Wmk−1 = yk−1. However, since m1, . . . ,mk−1 are random
and depend on W , this heuristic argument is not sufficient on its own to constitute a formal proof of
Proposition 6.11. For the benefit of readers interested in the technicalities, we give a more detailed
explanation below.

Observe that for fixed k ∈ N and deterministic y, a0, a1, . . . , ak ∈ Rn, the event Ωy,a0,...,ak := {γ =

y,m0 = a0, h1 = a1, . . . , hk = ak} can be expressed as

Ωy,a0,...,ak = {γ = y,m0 = a0,Wtj = zj for all 0 ≤ j ≤ k − 1} = {γ = y,m0 = a0,WTk = Zk}, (6.8)

where tj := fj(a
j , y) ∈ Rn and zj := aj+1 + 〈f ′j(aj , y)〉n fj−1(aj−1, y) for 0 ≤ j ≤ k − 1, and Tk :=

(t0 t1 · · · tk−1) and Zk := (z0 z1 · · · zk−1) are fixed n× k matrices. Now for W ∼ GOE(n) and any
fixed T ∈ Rn×k of rank p, we can derive the conditional distribution of W given WT by writing

W = WP +
(
P + P⊥

)>
WP⊥ = WP + (WP )>P⊥ + P⊥WP⊥, (6.9)

where P := TT+ and P⊥ := In − TT+ represent the orthogonal projections onto Im(T ) and Im(T )⊥

respectively. The first two terms on the right hand side of (6.9) are measurable functions of WP =
(WT )T+ (and hence WT ), while the third term P⊥WP⊥ is independent of WT . Thus, E(W |WT ) =
WP + (WP )>P⊥. Moreover, we can write P⊥ = Ũ Ũ>, where the columns of Ũ form an orthonormal
basis for Im(T )⊥, so that P⊥WP⊥ = Ũ(Ũ>WŨ)Ũ>, and Ũ>WŨ ∼ GOE(n − p) is independent of
WT . For Z ∈ Rn×k, this enables us to interpret ‘the conditional distribution of W given WT = Z’ as
the distribution of

ZT+ + (ZT+)>P⊥ + Ũ>W̃ Ũ ,

where W̃ ∼ GOE(n− p). We denote this distribution by LZ(T ).

In view of (6.8) and the assumption that W is independent of (m0, γ) in (A0), it is then tempting to
argue heuristically that

W | ‘{γ = y,m0 = a0, h1 = a1, . . . , hk = ak}’ d
= W | ‘{γ = y,m0 = a0,WTk = Zk}’
d
= W | ‘{WTk = Zk}’ ∼ LZk(Tk),

and conclude on this basis that W has (regular) conditional distribution Lω ≡ LYk(ω)

(
Mk(ω)

)
given

Sk = σ(γ,m0, h1, . . . , hk), noting that Mk(ω) = Tk and Yk(ω) = Zk for ω ∈ Ωy,a0,...,ak . However, this
line of reasoning appears to involve conditioning explicitly on an event of potentially zero probability,
and is not formally justified by the above argument; cf. the Borel paradox (Dudley, 2002, pp. 350–351)
for the associated hazards.

As mentioned above, the issue is that Mk is random and is in general not independent of W , whereas
the distributional claims in the previous paragraph relied on the fact that T was fixed. Nevertheless,
the key point is that the randomness of Mk and its dependence on W turn out not to cause irrec-
oncilable difficulties, due to the conditional independence established in Proposition 6.8. It follows
from this result that E(W | Sk) = WPk + (WPk)

>P⊥k , so the conditional distributional equality (6.6)
in Proposition 6.11 and the decomposition (6.11) in its proof are the appropriate analogues of (6.9).

6.3 Proofs of results in Section 6.2

A key ingredient in the proof of Proposition 6.8 is Lemma 6.12 below, which extends the orthogonal
invariance property of the GOE(n) distribution. Given a finite collection of disjoint measurable spaces
(X1,A1), . . . , (Xm,Am), we equip the disjoint union

⊔m
k=1 Xk with the σ-algebra

{⊔m
k=1Ak : Ak ∈

Ak for all k
}

.
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Lemma 6.12. Let G ⊆ F be a sub-σ-algebra and let X : (Ω,F ,P) →
⊔n
k=1 Rk×k be a measurable

function. Suppose that there is a partition of Ω into disjoint events Ω1, . . . ,Ωm ∈ G such that for each
k = 1, . . . ,m, the map X takes values in Rnk×nk on Ωk and has conditional distribution GOE(nk) given
G on Ωk, for some (deterministic) nk ∈ {1, . . . , n}. Moreover, let Q = (Q1 Q2) : (Ω,F ,P)→

⊔n
k=1 Ok

be a G-measurable function such that on each event Ωk, the map Q takes values in Onk , and Q1, Q2

have `k and nk − `k columns respectively, for some (deterministic) `k ∈ {1, . . . , nk − 1}. Then, given
G, we have the following:

(a) Q>XQ has conditional distribution GOE(nk) on Ωk for every k = 1, . . . ,m;

(b) Q>2 XQ2 has conditional distribution GOE(nk − `k) on Ωk for every k = 1, . . . ,m;

(c) Q>XQ1 and Q>2 XQ2 are conditionally independent.

Remark 6.13. Note that if n1 = · · · = nm = n, then under the first condition of the lemma, it follows
from Remark 7.4 that X has unconditional distribution GOE(n) and is independent of G. Thus, in the
instructive special case where m = 1 and 1 ≤ `1 < n = n1, the result above simplifies to the following:
suppose that X ∼ GOE(n), and is independent of G, and moreover that Q = (Q1 Q2) : (Ω,F ,P)→ On

is a G-measurable map such that Q1, Q2 have `1 and n− `1 columns respectively. Then

(a) Q>XQ ∼ GOE(n) and is independent of G;

(b) Q>2 XQ2 ∼ GOE(n− `1) and is independent of G;

(c) Q>XQ1 and Q>2 XQ2 are independent, and also conditionally independent given G.

Proof of Lemma 6.12. (a) For ` = 1, . . . , n, let A` and B` be the Borel σ-algebras on X` := R`×`
and Y` := O` respectively. Define φ` : X` × Y` → X` by φ`(M,J) := J>MJ , and for J ∈ O`, let
ιJ : X` → X`×Y` be the map M 7→ (M,J). Then the orthogonal invariance property of GOE(`) can be
restated as GOE(`) = GOE(`)◦(φ`◦ιJ)−1 for every J ∈ O`. Thus, observing that φnk(X,Q) = Q>XQ
on Ωk, and applying Lemma 7.6(b) to φnk , we see that Q>XQ has conditional distribution GOE(nk)
given G on Ωk, as required.

(b) For k = 1, . . . ,m, let ψk : Xnk → Xnk−`k denote the map that extracts the lower-right (nk − `k)×
(nk−`k) block of entries of an nk×nk matrix. Then ψk(W ) ∼ GOE(nk−`k) whenever W ∼ GOE(nk),
so GOE(nk−`k) = GOE(nk)◦ψ−1

k = GOE(nk)◦(φnk ◦ιJ)−1◦ψ−1
k for every J ∈ Onk . We can therefore

apply Lemma 7.6(b) to ψk ◦ φnk to conclude that Q>2 XQ2 has conditional distribution GOE(nk − `k)
given G on Ωk.

(c) For ω ∈ Ω, let Pω, Qω and Rω respectively denote the conditional distributions of Q>XQ1,
Q>2 XQ2 and (Q>XQ1, Q

>
2 XQ2) given G. For k = 1, . . . ,m, let ψ̃k : Xnk → Rnk×`k denote the map

that extracts the first `k columns of a nk × nk matrix. Now define Ψk : Xnk → Rnk×`k × Xnk−`k by
Ψk(M) :=

(
ψ̃k(M), ψk(M)

)
. Then ψ̃k(W ) and ψk(W ) are independent whenever W ∼ GOE(nk), so

GOE(nk)◦Ψ−1
k =

(
GOE(nk)◦ψ̃−1

k

)
⊗
(
GOE(nk)◦ψ−1

k

)
. Since (Q>XQ1, Q

>
2 XQ2) = (Ψk◦φk)(X,Q) on

Ωk, we may apply Lemma 7.6(b) to ψ̃k ◦φnk , ψk ◦φnk and Ψk ◦φnk to deduce that Rω = Pω⊗Qω for all
ω ∈ Ωk. Since k ∈ {1, . . . ,m} was arbitrary, we conclude that Rω = Pω⊗Qω for all ω ∈ Ω =

⊔m
k=1 Ωk,

which together with Lemma 7.9(b) implies that Q>XQ1 and Q>2 XQ2 are conditionally independent
given G.

Proof of Proposition 6.8. We argue by induction on k ∈ {0, 1, . . . , n − 1}. The case k = 0 is trivial
since W ∼ GOE(n) and is independent of (m0, γ) by assumption. For a general 1 ≤ k ≤ n− 1 (when
n ≥ 2), let Ũk−1 be any Sk−2-measurable n× (n− rk−1) matrix whose columns form an orthonormal
basis of Vk−1, and fix an arbitrary Sk−1-measurable n × (n − rk) matrix Ũk whose columns form an
orthonormal basis of Vk. Moreover, let E ≡ Ek−1 be the event { ⊥mk−1 6= 0} = {rk = rk−1 + 1} ∈ Sk−1,
and note that n− rk−1 ≥ n− k + 1 ≥ 2.
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Next, define an Sk−1-measurable n × (n − rk−1) matrix Ǔ by setting Ǔ := (
⊥
mk−1 Ũk) on E and

Ǔ := Ũk on Ec = { ⊥mk−1 = 0}. Letting Ŭ be the Sk−1-measurable n× (n− rk−1 − 1) matrix obtained
by removing the first column Ǔe1 of Ǔ , we therefore have Ũk = Ŭ on E and Ũk = Ǔ on Ec. Now
Ǔ , Ũk−1 have orthonormal columns that span Vk−1, so Q := Ũ>k−1Ǔ is an Sk−1-measurable orthogonal

(n− rk−1)× (n− rk−1) matrix such that Ǔ>WǓ = Q>
(
Ũ>k−1WŨk−1

)
Q. By the inductive hypothesis,

Ũ>k−1WŨk−1 has conditional distribution GOE(n− rk−1) given Sk−1, so it follows from parts (a) and

(b) respectively of Lemma 6.12 (with ` ≡ 1 and N = n − rk−1 ≥ 2) that Ǔ>WǓ and Ŭ>WŬ
have conditional distributions GOE(n− rk−1) and GOE(n− rk−1 − 1) respectively given Sk−1. Since
Ũ>k WŨk = Ǔ>WǓ on Ec = {rk = rk−1} ∈ Sk−1 and Ũ>k WŨk = Ŭ>WŬ on E = {rk = rk−1 + 1} ∈
Sk−1, we deduce from Lemma 7.6(a) that Ũ>k WŨk has conditional distribution GOE(n − rk) given
Sk−1, as required.

In addition, it holds trivially that 0 and Ǔ>WǓ are conditionally independent given Sk−1, and
Lemma 6.12(c) implies that Ǔ>W (Ǔe1) = Q>(Ũ>k−1WŨk−1

)
Qe1 and Ŭ>WŬ are also condition-

ally independent given Sk−1. Since W
⊥
mk−1 = 0 on Ec and Ǔe1 =

⊥
mk−1 on E, an application of

Lemma 7.9(a) shows that Ǔ>W
⊥
mk−1 (and hence σ(Sk−1, Ǔ

>W
⊥
mk−1) by Lemma 7.8) is conditionally

independent of Ũ>k WŨk given Sk−1. Moreover, WPk−1 = WMk−1M
+
k−1 = Yk−1M

+
k−1, mk−1,

⊥
mk−1, Ǔ

and P⊥k−1 = Ǔ Ǔ> are Sk−1-measurable, so

yk−1 = W
(
Pk−1 + P⊥k−1

)
mk−1 = (WPk−1)mk−1 +

(
Pk−1 + P⊥k−1

)>
W
⊥
mk−1

= (WPk−1)mk−1 + (WPk−1)>
⊥
mk−1 + Ǔ

(
Ǔ>W

⊥
mk−1

)
(6.10)

is measurable with respect to σ(Sk−1, Ǔ
>W

⊥
mk−1). Thus, given Sk−1, we conclude that Ũ>k WŨk is

conditionally independent of yk−1, and hence conditionally independent of Sk = σ(Sk−1, y
k−1) by

Lemma 7.8 and (6.3). Therefore, since Ũ>k WŨk has conditional distribution GOE(n− rk) given Sk−1,
it also has conditional distribution GOE(n− rk) given σ(Sk−1, Sk) = Sk.

Finally, it remains to show that if W̃ ∼ GOE(n) is independent of Sk, then Ũ>k W̃ Ũk also has conditional
distribution GOE(n − rk) given Sk. To see this, let m̃1, . . . , m̃rk be an Sk-measurable orthonormal
basis of Im(Mk), obtained for example by applying the Gram–Schmidt procedure to m0, . . . ,mk−1,
as in Remark 6.10 above. Then taking Q1 =

(
m̃1 · · · m̃rk

)
and Q2 = Ũk, we see that Q = (Q1 Q2)

satisfies the hypotheses of Lemma 6.12 with Ωj = {rk = j} ∈ Sk and `j = j ≤ n = nj for j = 1, . . . , k.
The desired conclusion now follows directly from Lemma 6.12(b), and this completes the inductive
step.

As mentioned above, the proof of Proposition 6.11 relies crucially on the final assertion in Proposi-
tion 6.8. To obtain the conditional distributional equalities in (6.5) and (6.7), we will also apply the
following elementary fact.

Lemma 6.14. If W ∼ GOE(n) and u ∈ Rn is fixed, then Wu
d
= ‖u‖nZ + ζu, where Z ∼ Nn(0, In)

and ζ ∼ N(0, 1/n) are independent.

Proof of Lemma 6.14. The result holds trivially when u = 0, and is also true when u = e1 since
We1 ∼ Nn

(
0, diag(2/n, 1/n, . . . , 1/n)

)
. For a general u ∈ Rn \ {0}, let Q ∈ Rn×n be an orthogonal

matrix with Qe1 = u/‖u‖, so that Q>u = ‖u‖e1. Then

Wu
d
= QWQ>u = Q(We1)‖u‖ d

= Q(‖e1‖nZ + ζe1)‖u‖ d
= ‖u‖nZ + ζu,

as required, where we have used the orthogonal invariance of W ∼ GOE(n), the result for e1 and the
orthogonal invariance of Z ∼ Nn(0, In) respectively to obtain the distributional equalities above.

Proof of Proposition 6.11. We start by proving (6.6) for every k ∈ {0, 1, . . . , n − 1}. Let Ũk be any
Sk−1-measurable n× (n−rk) matrix whose columns form an orthonormal basis of Vk; see Remark 6.10
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for a specific construction of Ũk. Similarly to (6.10) in the proof of Proposition 6.8, we can write

W = WPk +
(
Pk + P⊥k

)>
WP⊥k

= WPk + (WPk)
>P⊥k + P⊥k WP⊥k

= WPk + (WPk)
>P⊥k + Ũk

(
Ũ>k WŨk

)
Ũ>k (6.11)

d
= |Sk WPk + (WPk)

>P⊥k + Ũk
(
Ũ>k W̃

kŨk
)
Ũ>k = WPk + (WPk)

>P⊥k + P⊥k W̃
kP⊥k ,

where W̃ k ∼ GOE(n) is independent of Sk. To justify the key distributional equality after (6.11), we
can apply Lemma 7.6(c); indeed, note that WPk = YkM

+
k , Ũk and P⊥k = ŨkŨ

>
k are Sk-measurable, and

that Ũ>k WŨk
d
= |Sk Ũ>k W̃ kŨk by the final assertion of Proposition 6.8. By replacing WPk with YkM

+
k

in the display above, we obtain (6.6) for every k ∈ {0, 1, . . . , n−1}, as desired. Since I−P0 = P⊥0 = In,

this specialises to W
d
= |S0 W̃ 0 when k = 0, which is the first part of (6.5).

Using (6.6), we now derive the conditional distribution of hk+1 given Sk for k ∈ {0, 1, . . . , n−1}. When
k = 0, we have h1 = Wm0, so the associated identity in (6.5) follows directly from the first part of (6.5),
Lemma 6.14 and Lemma 7.6(c). Turning now to (6.7) with k ≥ 1, we have hk+1 = Wmk − bkmk−1,
where bk,m

k−1 are Sk-measurable, so we can deduce from (6.6) and Lemma 7.6(c) that

hk+1 d
= |Sk YkM

+
k m

k + (YkM
+
k )>P⊥k m

k + P⊥k W̃
kP⊥k m

k − bkmk−1

= Ykα
k + (YkM

+
k )>

⊥
mk + P⊥k (W̃ k ⊥mk)− bkmk−1

= Hkα
k + (0 Mk−1)Bkα

k + (HkM
+
k )>

⊥
mk + P⊥k (W̃ k ⊥mk)− bkmk−1. (6.12)

Indeed, to obtain the final equality above, observe that Yk = Hk+(0 Mk−1)Bk and B>k (0 Mk−1)>
⊥
mk =

B>k (0 Mk−1)>P⊥k m
k = 0 in view of the fact that P⊥k Mk−1 = 0. Since

⊥
mk is Sk-measurable and

W̃ k ∼ GOE(n) is independent of Sk (and therefore has conditional distribution GOE(n) given Sk), it

follows from Lemmas 6.14 and 7.6(b) that W̃ k ⊥mk d
= |Sk ‖

⊥
mk‖nZ̃k+1 + ζ̃k+1 ⊥mk. Now since P⊥k and all

the other summands in (6.12) are Sk-measurable, a further application of Lemma 7.6(c) shows that
the random variable in (6.12) and

Hkα
k + P⊥k

(
‖ ⊥mk‖nZ̃k+1 + ζ̃k+1 ⊥mk

)
+ (HkM

+
k )>

⊥
mk −

{
bkm

k−1 − (0 Mk−1)Bkα
k
}

=

k∑
`=1

αk` h
` + P⊥k

(
‖ ⊥mk‖nZ̃k+1 + ζ̃k+1 ⊥mk

)
+ (HkM

+
k )>

⊥
mk −

(
bkm

k−1 −
k∑
`=1

αk` b`−1m
`−2

)
(6.13)

are identically distributed given Sk. Finally, recall that
⊥
mk = (I −Pk)mk = mk −

∑k
`=1 α

k
` m

`−1, and
that (M+

k )>M>k m
` = P>k m

` = Pkm
` = m` for all 0 ≤ ` ≤ k − 1 by the definition of the projection

matrix Pk = MkM
+
k . It follows that P⊥k (ζ̃k+1 ⊥mk) = ζ̃k+1 ⊥mk and

(M+
k )>H>k

⊥
mk = (M+

k )>
(
H>k m

k −
k∑
`=1

αk` H
>
k m

`−1

)

bkm
k−1 −

k∑
`=1

b`−1α
k
` m

`−2 = (M+
k )>

(
bkM

>
k m

k−1 −
k∑
`=1

αk` b`−1M
>
k m

`−2

)
.

Thus, since (M+
k )> = Mk(M

>
k Mk)

+, the random variable hk+1,k defined in (6.7) is identical to that

in (6.13), so we conclude from (6.12) that hk+1 d
= |Sk hk+1,k, as required.

6.4 Proof outline for the AMP master theorems in Section 2.1

Recalling the definition (2.6) of the limiting covariance matrices T̄[k] ∈ Rk×k in Theorem 2.3, we first
outline a standard construction of a single random sequence (Ḡk : k ∈ N) satisfying (Ḡ1, . . . , Ḡk) ∼
Nk(0, T̄

[k]) for each k. Let T̄[k],k+1 := (T̄1,k+1, . . . , T̄k,k+1) ∈ Rk and

ᾱk ≡ (ᾱk1 , . . . , ᾱ
k
k) :=

(
T̄[k]

)−1
T̄[k],k+1 ∈ Rk (6.14)
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for each k ∈ N, where the latter is well-defined since T̄[k] is positive definite under (A4) by Lemma 2.2.
It is easily verified that if (G1, . . . , Gk+1) ∼ Nk+1(0, T̄[k+1]), then G[k] := (G1, . . . , Gk) and ξk+1 :=

Gk+1 −G>[k] ᾱ
k = Gk+1 −

∑k
`=1 ᾱ

k
` G` are uncorrelated and hence independent. This means that

G>[k] ᾱ
k =

k∑
`=1

ᾱk` G` = E(Gk+1 |G1, . . . , Gk)

for each k. Moreover, since T̄k+1 = Cov(G1, . . . , Gk+1) is positive definite and ξk+1 is a non-trivial
linear combination of G1, . . . , Gk+1, it follows under (A4) that

0 < Var(ξk+1) = Var(ξk+1 |G1, . . . , Gk) = Var(Gk+1 |G1, . . . , Gk)

= Var(Gk+1)−Var
(
G>[k] ᾱ

k
)

= T̄k+1,k+1 − (ᾱk)>T̄[k] ᾱk

= τ2
k+1 − (T̄[k],k+1)>

(
T̄[k]

)−1
T̄[k],k+1 =:

⊥
τ2
k+1 (6.15)

for k ∈ N, so that
⊥
τk+1 ∈ (0,∞) satisfies

⊥
τ2
k+1 = Var(ξk+1) ≤ Var(Gk+1) = τ2

k+1. Now let Ḡ1 ∼
N(0, τ2

1 ), and for k ∈ N, inductively define

Ḡk+1 :=
k∑
`=1

ᾱk` Ḡ` +
⊥
τk+1

⊥

ζk+1, (6.16)

where
⊥

ζk+1 ∼ N(0, 1) is independent of (Ḡ1, . . . , Ḡk). Then (Ḡk : k ∈ N) is a random sequence with
(Ḡ1, . . . , Ḡk) ∼ Nk(0, T̄

[k]) for each k, as desired. With the above definitions in place, we record here
some key identities. In view of (2.6), we certainly have

Cov(Ḡk, Ḡ`) = E(ḠkḠ`) = T̄k,` =


τ2

1 if k = ` = 1

E
(
F0(γ̄) · fk−1(Ḡk−1, γ̄)

)
if k > ` = 1

E
(
f`−1(Ḡ`−1, γ̄) · fk−1(Ḡk−1, γ̄)

)
if k ≥ ` ≥ 2,

(6.17)

where f1, f2, . . . are the Lipschitz functions in the AMP recursion (2.1), and τ1 and F0 are as in (A2)
and (A3) respectively. This fact underlies an important assertion (Proposition 6.16(e) below) in our
inductive proof of the master theorems. Moreover, for k, ` ∈ N and any Lipschitz function ϕ : R→ R
with weak derivative ϕ′, we have

E
(
Ḡk ϕ(Ḡ`)

)
= E

(
ϕ′(Ḡ`)

)
E(ḠkḠ`) = E

(
ϕ′(Ḡ`)

)
T̄k,`. (6.18)

This follows from Stein’s lemma, a general formulation of which can be found in Tsybakov (2009,
Lemma 3.6) and Lemma 6.20.

Lemma 6.15 (Stein’s lemma). If Z ∼ N(0, σ2) and ϕ : R → R is an absolutely continuous function
with weak derivative ϕ′ such that ϕ′(Z) is integrable, then E

(
Zϕ(Z)

)
= σ2 E

(
ϕ′(Z)

)
.

Indeed, the first equality in (6.18) follows from Lemma 6.15 upon writing Ḡk = (T̄k,`/T̄`,`) Ḡ` + ξk`,
where ξk` has zero mean and is independent of Ḡ`, so that E

(
ξk` ϕ(Ḡ`)

)
= 0.

Our choice of functions (fk)
∞
k=0 and (f ′k)

∞
k=0 in (2.1) ensures that for any fixed y ∈ R, we can take

ϕ = f`(· , y) and ϕ′ = f ′`(· , y) in (6.18) to see that E
(
Ḡk f`(Ḡ`, y)

)
= E

(
f ′`(Ḡ`, y)

)
E(ḠkḠ`) for k, ` ∈ N.

We deduce from this (and Lemma 7.7) that if γ̄ ∼ π is independent of Ḡ1, Ḡ2, . . . , then

E
(
Ḡk f`(Ḡ`, γ̄)

)
= E

(
f ′`(Ḡ`, γ̄)

)
E(ḠkḠ`) = b̄` T̄k,` (6.19)

for all k, ` ∈ N, where b̄` := E
(
f ′`(Ḡ`, γ̄)

)
. This forms part of assertion (f) in Proposition 6.16 below.

To complete our technical preparations for the main derivations below, we will set up a more explicit
connection between the Gaussian variables Ḡk+1 ∼ N(0, τ2

k+1) in (6.16) and the random vectors
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hk+1,k ≡ hk+1,k(n) defined for n ∈ N and k ∈ {0, 1, . . . , n− 1} in (6.5) and (6.7) in Section 6.2 above.
For such n and k, Proposition 6.11 asserts that hk+1(n) and hk+1,k(n) are identically distributed given
Sk ≡ Sk(n) = σ(γ,m0, hj : 1 ≤ j ≤ k), and we now write hk+1,k(n) = h̃k+1(n) + ∆k+1(n), where

h̃1 ≡ h̃1(n) := τ1Z̃
1 and ∆1 ≡ ∆1(n) := (‖m0‖n − τ1)Z̃1 + ζ̃1m0, (6.20)

and

h̃k+1 ≡ h̃k+1(n) :=

k∑
`=1

ᾱk` h
` +

⊥
τk+1Z̃

k+1, (6.21)

∆k+1 ≡ ∆k+1(n) :=
k∑
`=1

(αk` − ᾱk` )h` +Mk(M
>
k Mk)

+

(
vk,k −

k∑
`=1

αk` v
k,`−1

)
− ‖⊥mk‖n(PkZ̃

k+1) + (‖ ⊥mk‖n −
⊥
τk+1)Z̃k+1 + ζ̃k+1 ⊥mk. (6.22)

Recall that (Z̃k+1, ζ̃k+1) ≡
(
Z̃k+1(n), ζ̃k+1(n)

)
∼ Nn(0, In) ⊗N(0, 1/n) was taken to be independent

of Sk ≡ Sk(n) in Proposition 6.11, where we also defined αk ≡ αk(n) and vk,` ≡ vk,`(n) for 0 ≤ ` ≤ k.

In the decomposition above, we have defined h̃k+1 in (6.21) to mimic the expression for the limiting
Gaussian variable Ḡk+1 in (6.16). Contrasting the definitions of hk+1,k and h̃k+1 in (6.7) and (6.21)
respectively for k ∈ {0, 1, . . . , n − 1}, we see that the random quantities αk and ‖ ⊥mk‖n in (6.7)
are replaced in (6.21) with the deterministic ᾱk ∈ Rk and

⊥
τk+1 ∈ (0,∞) from (6.14) and (6.15)

respectively; these turn out to be the correct limiting values in Proposition 6.16(i, j) below under the
non-degeneracy assumption (A4).

We are now in a position to state the main result of this subsection. To ease notation, we will often
suppress the dependence on n of quantities such as hk ≡ hk(n), vk,` ≡ vk,`(n), αk ≡ αk(n) and
∆k ≡ ∆k(n).

Proposition 6.16. For a sequence of symmetric AMP recursions (2.1) satisfying (A0)–(A5) as well
as (A4), the following hold as n→∞ for each k ∈ N:

(a) ‖∆k‖n,r
c→ 0;

(b) ‖hj‖n,r = Oc(1) for 1 ≤ j ≤ k;

‖mj‖n,r = Oc(1) for 0 ≤ j ≤ k;

(c) n−1
∑n

i=1 ψ(h1
i , . . . , h

k
i , γi)

c→ E
(
ψ(Ḡ1, . . . , Ḡk, γ̄)

)
for every ψ ∈ PLk+1(r);

(d) n−1
∑n

i=1m
0
i φ(h1

i , . . . , h
k
i , γi)

c→ E
(
F0(γ̄) · φ(Ḡ1, . . . , Ḡk, γ̄)

)
for every φ ∈ PLk+1(1);

(e) 〈mj−1,m`−1〉n
c→ E(ḠjḠ`) = T̄j,` for 1 ≤ j, ` ≤ k + 1;

(f) 〈hj ,m`〉n = 〈hj , f`(h`, γ)〉n
c→ E

(
Ḡjf`(Ḡ`, γ̄)

)
= E

(
f ′`(Ḡ`, γ̄)

)
E(ḠjḠ`) = b̄` T̄j,` for 1 ≤ j, ` ≤ k;

〈hj ,m0〉n
c→ 0 for 1 ≤ j ≤ k;

(g) bk = 〈f ′k(hk, γ)〉n
c→ E

(
f ′k(Ḡk, γ̄)

)
= b̄k;

(h) vk,`/n = (H>k m
` − b`M>k m`−1)/n

c→ 0 for 0 ≤ ` ≤ k;

(i) αk
c→ ᾱk;

(j) ‖ ⊥mk‖n
c→ ⊥
τk+1 = Var1/2(Ḡk+1 | Ḡ1, . . . , Ḡk).

Remark 6.17. Under (A4) and the alternative hypotheses of Remark 6.1(a), the assertions (a)–(j)

above remain valid if we replace
c→ with

p→ and Oc(1) with Op(1) throughout.
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To establish Proposition 6.16, we proceed by induction on k ∈ N and prove the assertions (a)–(i) one
at a time (in that order). Here, we will give a technical summary of the inductive argument (which can
be read alongside the detailed proof in Section 6.5) to highlight its overall structure and key features.
Henceforth, we write Hk(· · · ) for parts (· · · ) of the inductive hypothesis for k ∈ N.

Hk(e, f): These are obtained as direct consequences of the inductive hypotheses Hk(c, d) by choosing
suitable pseudo-Lipschitz functions ψ ∈ PLk+1(2) ⊆ PLk+1(r) that depend on at most three of their
k + 1 arguments. We use Hk(d) to handle the inner products that feature m0 and apply Hk(c) to
those that do not. In Hk(e), the limiting value of 〈mj−1,m`−1〉n = 〈fj−1(hj−1, γ), f`−1(h`−1, γ)〉n is
shown to be {

E
(
fj−1(Ḡj−1, γ̄) · f`−1(Ḡ`−1, γ̄)

)
= E(ḠjḠ`) for 2 ≤ j, ` ≤ k + 1

E
(
F0(γ̄) · fj−1(Ḡj−1, γ̄)) = E(Ḡ1Ḡ`) for 1 = j < ` ≤ k + 1,

where the two equalities are drawn from (6.17) and form the basis of the definition of the limiting co-
variances T̄j,` in (2.6). Moreover, for 1 ≤ j, ` ≤ k, the identity E

(
Ḡjf`(Ḡ`, γ̄)

)
= E

(
f ′`(Ḡ`, γ̄)

)
E(ḠjḠ`)

in the first line of Hk(f) comes from (6.19). These identities (6.17) and (6.19) ultimately provide the
crucial link between the limiting values of 〈hj ,m`〉n and b` 〈mj−1,m`−1〉n in Hk(h).

Hk(g, h): This is also derived from Hk(c), but since f ′k : R2 → R need not lie in PL2(r), we instead
apply the analytic Lemmas 7.10 and 7.14 rather than imitate the proofs of Hk(e, f). See the proof of
Corollary 7.21(b) for a similar argument. Hk(h) follows immediately from Hk(e, f, g).

Hk(i, j): We see from Hk(e) that the matrices M>k Mk/n ∈ Rk×k converge completely to the limiting
covariance matrix T̄[k] = Cov(Ḡ1, . . . , Ḡk) ∈ Rk×k, which is positive definite under (A4). In Hk(i),
we consider αk = (M>k Mk/n)+(M>k m

k/n) ∈ Rk, a vector of projection coefficients defined in (6.4).
It follows from Hk(e) that (M>k Mk/n)+ and M>k m

k/n converge completely to (T̄[k])−1 and T̄[k],k+1

respectively, and hence that αk
c→ (T̄[k])−1 T̄[k],k+1 = ᾱk, as defined in (6.14). For Hk(j), we recall

the definitions at the start of Section 6.2 and write

‖ ⊥mk‖2n = ‖P⊥k mk‖2n = ‖mk‖2n − ‖Pkmk‖2n = ‖mk‖2n − (αk)>(M>k Mk/n)αk.

Applying Hk(e, i) to the individual terms on the right hand side above, we deduce that ‖ ⊥mk‖2n
c→

T̄k+1,k+1 − (ᾱk)>T̄[k] ᾱk =
⊥
τ2
k+1, as defined in (6.15).

Hk+1(a): It is thanks to the key fact Hk(h) and the presence of the Onsager term −bkmk−1 in the
original AMP recursion (2.1) (and subsequently in (6.7) in Proposition 6.11) that the ‖·‖n,r norm of
the second term in (6.22) converges completely to 0. Using Hk(b, i, j) to handle some of the remaining
terms in this definition (6.22) of the deviation term ∆k+1, we conclude that ‖∆k+1‖n,r

c→ 0.

Hk+1(b): Using the distributional equality hk+1 d
= hk+1,k = h̃k+1 + ∆k+1 =

∑k
`=1 ᾱ

k
` h

` +
⊥
τk+1Z̃

k+1 +
∆k+1 from Proposition 6.11 and (6.21, 6.22), we deduce from Hk+1(a) and the inductive hypothesis
Hk(b) that ‖hk+1‖n,r = Oc(1). Since ‖γ‖n,r = Oc(1) by (A1) and fk+1 is Lipschitz, this in turn implies
that ‖mk+1‖n,r = ‖fk(hk+1, γ)‖n,r = Oc(1).

Hk+1(c): This is the main assertion in Proposition 6.16; by Corollary 7.21(b), it is in fact equivalent
to the conclusion (2.8) of Theorem 2.3. We first condition on Sk = σ(γ,m0, hj : 1 ≤ j ≤ k) and
appeal to Proposition 6.11, which asserts that for each n > k, the conditional distribution of hk+1 ≡
hk+1(n) given Sk is identical to that of hk+1,k ≡ hk+1,k(n) from (6.7). With hk+1,k = h̃k+1 + ∆k+1 in
place of hk+1 on the left hand side of Hk+1(c), we use Hk+1(a, b) to show that the ‘deviation’ term
∆k+1 ≡ ∆k+1(n) from (6.22) has asymptotically negligible effect, so that hk+1,k can in fact be replaced
with h̃k+1 in all relevant expressions. In (6.21), h̃k+1 was defined as

∑k
`=1 ᾱ

k
` h

` +
⊥
τk+1Z̃

k+1, where∑k
`=1 ᾱ

k
` h

` is a deterministic linear combination of the previous iterates h1, . . . , hk, and
⊥
τk+1Z̃

k+1 is
a new Gaussian variable that has i.i.d. components and is independent of Sk.

In view of this, the proof of Hk+1(c) can be completed in two stages (given by (6.42) and (6.40)
below): the influence of the latter Gaussian term can first be understood by appealing to Hk+1(b)
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and a general concentration result for sums of pseudo-Lipschitz functions of independent Gaussians
(Lemma 7.12), before we subsequently reintroduce the randomness in γ,m0, h1, . . . , hk and apply the
inductive hypothesis Hk(c) to account for this. The appearance of the new limiting Gaussian variable
Ḡk+1 on the right hand side of Hk+1(c) (in addition to the existing Ḡ1, . . . , Ḡk from Hk(c)) can be
explained through its definition in (6.16), which matches up neatly with the definition (6.21) of h̃k+1

and the two-stage argument we have just outlined; see (6.40) and (6.41) in the proof.

Hk+1(d): The proof of this is similar in spirit to that of Hk+1(c), except that it also makes use of
condition (A3). Note also that Hk+1(d) applies only to Lipschitz φ : Rk+2 → R rather than general
φ ∈ PLk+2(r), but this is sufficient for our purposes in the subsequent proofs of Hk+1(e, f).

The proofs we give for Hk+1(c, d) combine aspects of the asymptotic and finite-sample arguments (see
Remark 6.3) in the existing AMP literature. Proposition E.1 in Fan (2022) provides the basis for an
alternative asymptotic approach, whose details we omit.

6.5 Proofs for Sections 2.1 and 6.1

Proof of Proposition 6.16. Since we are carrying out an asymptotic analysis, we may assume without
loss of generality that n > k in the proofs of Hk(a, . . . , i) for each k ∈ N; this enables us to apply the
results on conditional distributions from Section 6.2. Note also that we use Tn, Tn1, T

′
n1, Tn2 to refer

to different quantities of interest in different parts of the proof. In Lemma 7.2 and Remark 7.3, we
state versions of the continuous mapping theorem and Slutsky’s lemma for complete convergence, as
well the ‘arithmetic rules’ for oc and Oc symbols. We will apply these repeatedly in the arguments
below, often without further comment or explanation.

First, we prove H1(a, b, c, d), which form the base case for the induction.

H1(a): By (6.20), ∆1 ≡ ∆1(n) = (‖m0‖n − τ1)Z̃1 + ζ̃1m0, where (Z̃1, ζ̃1) ≡ (Z̃1(n), ζ̃1(n)) ∼
Nn(0, In)⊗N(0, 1/n) for each n. Taking ζ ∼ N(0, 1), we have |ζ̃1| d= n−1/2 |ζ| c→ 0 by Example 1(a),
and ‖Z̃1‖n,r = (n−1

∑n
i=1 |Z̃1

i |r)1/r c→ E(|ζ|r)1/r ∈ (0,∞) by Lemma 7.12 and Proposition 1.2. More-

over,
∣∣‖m0‖n − τ1

∣∣ c→ 0 and ‖m0‖n,r = Oc(1) by (A2). Putting everything together, we recall from
Remark 7.3 the ‘arithmetic rules’ (7.1) for oc and Oc symbols, and conclude using the triangle inequal-
ity for ‖·‖n,r that

‖∆1‖n,r ≤
∣∣‖m0‖n − τ1

∣∣ ‖Z̃1‖n,r + |ζ̃1| ‖m0‖n,r = oc(1)Oc(1) + oc(1)Oc(1) = oc(1).

H1(b): Recall from (6.5) in Proposition 6.11 and (6.20) that

h1 ≡ h1(n)
d
= |S0 h̃1(n) + ∆1(n) = h1,0(n) ≡ h1,0 (6.23)

for each n ∈ N, where h̃1 ≡ h̃1(n) = τ1Z̃
1 and Z̃1 ∼ Nn(0, In) is independent of S0 = σ(γ,m0). Then

‖∆1‖n,r = oc(1) by H1(a) and ‖h̃1‖n,r = τ1‖Z̃1‖n,r = Oc(1) as in the proof of H1(a), so

‖h1‖n,r
d
= ‖h1,0‖n,r ≤ ‖h̃1‖n,r + ‖∆1‖n,r = Oc(1) + oc(1) = Oc(1).

We already have ‖m0‖n,r = Oc(1) by (A2). In addition, ‖γ‖n,r = (n−1
∑n

i=1 |γi|r)1/r c→ E(|γ̄|r)1/r

by (A1), so ‖γ‖n,r = Oc(1). Letting L′ > 0 be such that the function f1 in the AMP recursion (2.1)
lies in PL2(1, L′), we have |f1(x, y)| ≤ |f1(0, 0)|+ L′(|x|+ |y|) for all (x, y) ∈ R2, so we can apply the
triangle inequality for ‖·‖n,r to deduce that

‖m1‖n,r = ‖f1(h1, γ)‖n,r ≤ |f1(0, 0)| ‖1n‖n,r + L′(‖h1‖n,r + ‖γ‖n,r) = Oc(1).

H1(c): For each n, note that (γ, h1)
d
= |S0 (γ, h1,0) by (6.23) and Lemma 7.6(c). Thus, for each fixed

ψ ∈ PL2(r), it follows that n−1
∑n

i=1 ψ(h1
i , γi)

d
= n−1

∑n
i=1 ψ(h1,0

i , γi) =: Tn for each n, so in view of
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the third bullet point in Remark 6.1, it is enough to show that Tn
c→ E

(
ψ(Ḡ1, γ̄)

)
as n→∞. To this

end, we write

Tn =
1

n

n∑
i=1

ψ(h̃1
i , γi) +

1

n

n∑
i=1

{
ψ(h1,0

i , γi)− ψ(h̃1
i , γi)

}
=: Tn1 + Tn2

for each n, and aim to prove that Tn1
c→ E

(
ψ(Ḡ1, γ̄)

)
and Tn2

c→ 0, which together imply the desired
conclusion.

Before proceeding, we briefly describe the techniques that we use to determine the limit of (Tn1) and
also to prove H1(d) and Hk+1(c, d) later on. It is instructive to consider the following two special
cases where the claim is easier to establish. If ψ depends only on its first argument, then since
h1(n) = τ1Z̃

1(n) and Z̃1(n) ∼ Nn(0, In) for each n, the result follows readily from the concentration
inequality (7.6) in Lemma 7.12 and the characterisation of complete convergence in Proposition 1.2.
On the other hand, if ψ depends only on its second argument, then since

(
γ ≡ γ(n) : n ∈ N

)
satisfies (A1) by assumption, we can appeal directly to Corollary 7.21(b).

For general ψ ∈ PL2(r), we seek to combine these two different lines of reasoning by exploiting the
independence of h̃1(n) and S0 ≡ S0(n) = σ(γ,m0) for each n. This allows γ(n) and h̃1(n) to be handled
separately (to a large extent) when we decompose Tn1 as a sum of E(Tn1 | S0) and Tn1 − E(Tn1 | S0)
in (6.24) and (6.25) respectively. For the latter, it is helpful to first think of γ(n) as being fixed when
applying Lemma 7.12 to the Gaussian h̃1, before subsequently accounting for the randomness of γ(n)
using (A1).

Define Ψ: R → R by Ψ(y) := E
(
ψ(τ1Z, y)

)
with Z ∼ N(0, 1). For each n, since Z̃1 ≡ Z̃1(n) ∼

Nn(0, In) is independent of S0 ≡ S0(n) = σ(γ,m0), we deduce from Lemma 7.7 that E
(
ψ(h̃1

i , γi)
∣∣S0

)
=

E
(
ψ(τ1Z̃

1
i , γi)

∣∣S0

)
= Ψ(γi) almost surely, for every 1 ≤ i ≤ n. Since Ψ ∈ PL1(r) by Lemma 7.23(b),

it follows from (A1) and Corollary 7.21(b) that n−1
∑n

i=1 Ψ(γi)
c→ E

(
Ψ(γ̄)

)
as n→∞, where γ̄ ∼ π.

A further application of Lemma 7.7 shows that if Ḡ1 ∼ N(0, τ2
1 ) is independent of γ̄, then E

(
Ψ(γ̄)

)
=

E
(
E
{
ψ(Ḡ1, γ̄)

∣∣ γ̄})= E
(
ψ(Ḡ1, γ̄)

)
, so in summary, we have

1

n

n∑
i=1

E
(
ψ(h̃1

i , γi)
∣∣S0

)
=

1

n

n∑
i=1

Ψ(γi)
c→ E

(
Ψ(γ̄)

)
= E

(
ψ(Ḡ1, γ̄)

)
. (6.24)

To complete the proof that Tn1
c→ E

(
ψ(Ḡ1, γ̄)

)
, we must therefore show that

T ′n1 :=
1

n

n∑
i=1

{
ψ(h̃1

i , γi)− E
(
ψ(h̃1

i , γi)
∣∣S0

)} c→ 0 (6.25)

as n→∞. To this end, let L > 0 be such that ψ ∈ PL2(r, L), and for each y ∈ R, define ψy, ψ̄y : R→ R
by ψy(z) := ψ(τ1z, y) and ψ̄y(z) := ψy(z) − E

(
ψy(Z)

)
, where Z ∼ N(0, 1). Then by Lemma 7.23(a),

there exists K0 > 0, depending only on τ1 and r, such that ψy ∈ PL1(r,K0Ly) with Ly := L(1∨|y|r−1).
For fixed n ∈ N and y1, . . . , yn ∈ R, define L̆ ≡ L̆(y1, . . . , yn) := (Ly1 , . . . , Lyn). Let r′ := r/(r − 1) ∈
(1, 2] be the Hölder conjugate of r, so that 1/r + 1/r′ = 1, and note that since ‖·‖p′ ≤ ‖·‖p for
1 ≤ p ≤ p′ ≤ ∞, we have

‖L̆‖∞
n1/r′

≤ ‖L̆‖2
n1/r′

≤ ‖L̆‖r
′

n1/r′
= ‖L̆‖n,r′ =

(
1

n

n∑
i=1

|Lyi |r
′
)1/r′

≤ L
(

1 +
1

n

n∑
i=1

|yi|r
)1/r′

= L(1 + ‖y‖rn,r)1/r′ . (6.26)
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By Lemma 7.12, there exists a universal constant C > 0 such that if Z1, . . . , Zn
iid∼ N(0, 1), then

P (n, t, y1, . . . , yn) := P
(∣∣∣∣ 1n

n∑
i=1

ψ̄yi(Zi)

∣∣∣∣ ≥ t)

≤ exp

(
1−min

{(
nt

(Cr)rK0‖L̆‖2

)2

,

(
nt

(Cr)rK0‖L̆‖∞

)2/r})
≤ exp

(
1−min

{(
n1/rt

(Cr)rK0‖L̆‖n,r′

)2

,

(
n1/rt

(Cr)rK0‖L̆‖n,r′

)2/r})
=: Er(n, t,K0‖L̆‖n,r′) ≡ Er

(
n, t,K0‖L̆(y1, . . . , yn)‖n,r′

)
(6.27)

for every t ≥ 0. Returning to (6.25), we see that

ψ(h̃1
i , γi)− E

(
ψ(h̃1

i , γi)
∣∣S0

)
= ψγi(Z̃

1
i )− E

(
ψγi(Z̃

1
i )
∣∣S0

)
= ψ̄γi(Z̃

1
i )

for all 1 ≤ i ≤ n, where the final equality follows from Lemma 7.7 and the fact that Z̃1 ≡ Z̃1(n) is
independent of S0 ≡ S0(n) = σ(γ,m0). We deduce from this and (6.27) that

P(|T ′n1| > ε | S0) = P
(∣∣∣∣ 1n

n∑
i=1

ψ̄γi(Z̃
1
i )

∣∣∣∣ ≥ ε ∣∣∣ S0

)
= P (n, ε, γ1, . . . , γn) ≤ Er

(
n, ε,K0L̆0(n)

)
(6.28)

for every n and ε > 0, where the second equality is again obtained using Lemma 7.7, and L̆0(n) :=
‖L̆(γ1, . . . , γn)‖n,r′ ≤ L(1 + ‖γ‖rn,r)1/r′ = Oc(1) by (6.26) and (A1). Thus, by Proposition 1.2,

there exists L̄0 ∈ (0,∞) such that for n ∈ N, the events A0(n) := {L̆0(n) ≤ L̄0} ∈ S0(n) satisfy∑∞
n=1 P

(
A0(n)c

)
<∞. Moreover, for each n and ε > 0, it follows from (6.28) that

P
(
{|T ′n1| > ε} ∩A0(n)

∣∣S0

)
= P(|T ′n1| > ε | S0)1A0(n) ≤ P (n, ε, γ1, . . . , γn)1A0(n)

≤ Er
(
n, ε,K0L̆0(n)

)
1A0(n) ≤ Er(n, ε,K0L̄0),

where we have used the fact that A0(n) ∈ S0(n) to obtain the first equality above. Recalling the
expression for Er(n, ε,K0L̄0) in (6.27), we see that

∑∞
n=1Er(n, ε,K0L̄0) < ∞, and hence conclude

that for every ε > 0, we have

∞∑
n=1

P(|T ′n1| > ε) ≤
∞∑
n=1

P
(
{|T ′n1| > ε} ∩A0(n)

)
+
∞∑
n=1

P
(
A0(n)c

)
=

∞∑
n=1

E
{
P
(
{|T ′n1| > ε} ∩A0(n)

∣∣S0

)}
+

∞∑
n=1

P
(
A0(n)c

)
≤
∞∑
n=1

Er(n, ε,K0L̄0) +
∞∑
n=1

P
(
A0(n)c

)
<∞, (6.29)

which together with Proposition 1.2 implies (6.25). Together with (6.24), this shows that Tn1
c→

E
(
ψ(Ḡ1, γ̄)

)
, as claimed.

Next, we bound |Tn2| for each n. Letting L > 0 be such that ψ ∈ PL2(r, L), we can apply Lemma 7.24
to see that

|Tn2| ≤
1

n

n∑
i=1

∣∣ψ(h1,0
i , γi)− ψ(h1,0

i −∆1
i , γi)

∣∣
≤ 2

r
2
−1L‖∆1‖n,r

(
1 + ‖h1,0‖r−1

n,r + ‖h1,0 −∆1‖r−1
n,r + 2‖γ‖r−1

n,r

)
.r L‖∆1‖n,r

(
1 + ‖h1,0‖r−1

n,r + ‖∆1‖r−1
n,r + ‖γ‖r−1

n,r

)
, (6.30)

where the final bound is obtained using the triangle inequality for ‖·‖n,r and the fact that (a+b)r−1 ≤
2r−2(ar−1 + br−1) for a, b ≥ 0. Now ‖h1,0‖n,r

d
= ‖h1‖n,r = Oc(1) by H1(b) and ‖∆1‖n,r = oc(1) by
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H1(a), so |Tn2| = oc(1)
(
1 + Oc(1) + oc(1)

)
= oc(1). We conclude that n−1

∑n
i=1 ψ(h1

i , γi)
d
= Tn =

Tn1 + Tn2
c→ E

(
ψ(Ḡ1, γ̄)

)
, as desired.

H1(d): For each n, we have (γ,m0, h1)
d
= (γ,m0, h1,0) by (6.23) and Lemma 7.6(c), so for each fixed

φ ∈ PL2(1), it follows that

1

n

n∑
i=1

m0
i φ(h1

i , γi)
d
=

1

n

n∑
i=1

m0
i φ(h̃1

i , γi) +
1

n

n∑
i=1

m0
i

{
φ(h1,0

i , γi)− φ(h̃1
i , γi)

}
=: Tn1 + Tn2. (6.31)

By similar (and slightly simpler) arguments to those in H1(c), we will prove that Tn1
c→ E

(
F0(γ̄) ·

φ(Ḡ1, γ̄)
)

and Tn2
c→ 0 as n→∞.

For Tn1, define Φ: R→ R by Φ(y) := E
(
φ(τ1Z, y)

)
with Z ∼ N(0, 1). For each n, recalling once again

that Z̃1 ≡ Z̃1(n) ∼ Nn(0, In) is independent of S0 ≡ S0(n) = σ(γ,m0), we deduce from Lemma 7.7
that E

(
φ(h̃1

i , γi)
∣∣ S0

)
= Φ(γi) almost surely, for every 1 ≤ i ≤ n. Now since Φ is Lipschitz by

Lemma 7.23(b), it follows from (A3) that if Ḡ1 ∼ N(0, τ2
1 ) is independent of γ̄ ∼ π, then

1

n

n∑
i=1

m0
i E
(
φ(h̃1

i , γi)
∣∣S0

)
=

1

n

n∑
i=1

m0
i Φ(γi)

c→ E
(
F0(γ̄)Φ(γ̄)

)
= E

(
F0(γ̄) · E

{
φ(Ḡ1, γ̄)

∣∣ γ̄})= E
(
F0(γ̄) · φ(Ḡ1, γ̄)

)
.

(6.32)

To complete the proof that Tn1
c→ E

(
F0(γ̄) · φ(Ḡ1, γ̄)

)
, we must therefore show that

T ′n1 := n−1
n∑
i=1

m0
i

{
φ(h̃1

i , γi)− E
(
φ(h̃1

i , γi)
∣∣S0

)} c→ 0. (6.33)

To this end, let L > 0 be such that φ ∈ PL2(1, L) on R. For u, y ∈ R, define φu,y : R → R by
φu,y(z) := u

{
φ(τ1z, y) − E

(
φ(τ1Z, y)

)}
, where Z ∼ N(0, 1), so that φu,y ∈ PL2(1, Lτ1|u|). Since

Z̃1 ∼ Nn(0, In), it follows from (7.12) in Remark 7.13 that for every v ≡ (v1, . . . , vn) ∈ Rn and t ≥ 0,
we have

P̃ (n, t, v) := P
(∣∣∣∣ 1n

n∑
i=1

φvi,yi(Z̃
1
i )

∣∣∣∣ ≥ t) ≤ exp

{
1−

(
nt

CLτ1‖v‖2

)2}
≤ exp

{
1−

(
n1/2t

CLτ1‖v‖n

)2}
=: Ẽr(n, t, Lτ1‖v‖n), (6.34)

where C > 0 is a suitable universal constant. Recalling once again that Z̃1 is independent of S0 =
σ(γ,m0), we deduce using Lemma 7.7 that m0

i

{
φ(h̃1

i , γi) − E
(
φ(h̃1

i , γi)
∣∣ S0

)}
= φm0

i ,γi
(Z̃1

i ) for all
1 ≤ i ≤ n. Thus, for each n and ε > 0, we have

P(|T ′n1| > ε | S0) = P
(∣∣∣∣ 1n

n∑
i=1

φm0
i ,γi

(Z̃1
i )

∣∣∣∣ ≥ ε ∣∣∣ S0

)
= P̃ (n, ε,m0) ≤ Ẽr(n, ε, Lτ1‖m0‖n). (6.35)

Since ‖m0‖n
c→ τ1 by (A2), Proposition 1.2 ensures that the events Ã0(n) := {‖m0‖n ≤ τ1 +1} ∈ S0(n)

satisfy
∑∞

n=1 P
(
Ã0(n)c

)
<∞. Moreover, for each n and ε > 0, it follows from (6.34) that

P
(
{|T ′n1| > ε} ∩ Ã0(n)

∣∣S0

)
= P(|T ′n1| > ε | S0)1Ã0(n) ≤ P̃ (n, ε,m0)1Ã0(n) (6.36)

≤ Ẽr(n, ε, Lτ1C0)1Ã0(n) ≤ Ẽr(n, ε, Lτ1C0),

where we have used the fact that Ã0(n) ∈ S0(n) to obtain the first equality above. Recalling the
expression for Ẽr(n, ε, C0) in (6.34), we see that

∑∞
n=1 Ẽr(n, ε, Lτ1C0) < ∞. Thus, for every ε > 0,

63



we conclude as in (6.29) that

∞∑
n=1

P(|T ′n1| > ε) ≤
∞∑
n=1

P
(
{|T ′n1| > ε} ∩ Ã0(n)

)
+
∞∑
n=1

P
(
Ã0(n)c

)
≤
∞∑
n=1

Ẽr(n, ε, Lτ1C0) +

∞∑
n=1

P
(
Ã0(n)c

)
<∞, (6.37)

which implies (6.33) in view of Proposition 1.2, and hence that Tn1
c→ τ̃ E

(
φ(Ḡ1)

)
in (6.31).

As for Tn2 in (6.31), let L > 0 be as above, so that φ ∈ PL2(1, L). For each n, recalling from (6.23)
that h1,0 = h̃1 + ∆1, we now apply the Cauchy–Schwarz inequality to see that

|Tn2| ≤
1

n

n∑
i=1

|m0
i |
∣∣φ(h1,0

i , γi)− φ(h1,0
i −∆1

i , γi)
∣∣ ≤ L

n

n∑
i=1

|m0
i | |∆1

i | ≤ L‖m0‖n‖∆1‖n.

Since ‖m0‖n
c→ τ1 by (A2) and ‖∆1‖n ≤ ‖∆1‖n,r = oc(1) by H1(a), we conclude that Tn2 =

Oc(1) oc(1) = oc(1). This completes the proof of H1(d).

Turning to the inductive step, we consider a general k ∈ N and suppose that Hk(b, c, d) have already
been established. The assertions Hk(e, . . . , j) and Hk+1(a, b, c, d) will now be proved, in that order.
Note that PLk+1(2) ⊆ PLk+1(r) since r ≥ 2.

Hk(e): In the case j = ` = 1, we have
∣∣‖m0‖n − τ1

∣∣ c→ 0 by (A2), so 〈m0,m0〉n
c→ τ2

1 = T̄1,1 = E(Ḡ2
1)

by (6.17). Now fix j, ` ∈ {2, . . . , k + 1}. Then ψ̃j` : (x1, . . . , xk, y) 7→ fj−1(xj−1, y)f`−1(x`−1, y) lies
in PLk+1(2) ⊆ PLk+1(r) by Lemma 7.22 and the fact that fj−1, f`−1 in the AMP recursion (2.1) are
Lipschitz by assumption. Thus, by taking ψ = ψ̃j` in Hk(c), we see that

〈mj−1,m`−1〉n =
1

n

n∑
i=1

fj−1(hj−1
i , γi) f`−1(h`−1

i , γi)

c→ E
(
fj−1(Ḡj−1, γ̄) · f`−1(Ḡ`−1, γ̄)

)
= T̄j,` = E(ḠjḠ`),

where the final equalities are taken from (6.17). To handle the remaining case where {j, `} = {1, k+1},
note that since fk is Lipschitz, the map φk+1 : (x1, . . . , xk, y) 7→ fk(xk, y) lies in PLk+1(1). Thus, by
taking φ = φk+1 in Hk(d), we deduce that

〈m0,mk〉n =
1

n

n∑
i=1

m0
i fk(h

k
i , γi)

c→ E
(
F0(γ̄) · fk(Ḡk, γ̄)

)
= T̄1,k+1 = E(Ḡ1Ḡk+1),

where the final equalities are again taken from (6.17).

Hk(f): This proof is very similar to that of Hk(e). First fix 1 ≤ j, ` ≤ k. By Lemma 7.22, the function
(x1, . . . , xk, y) 7→ xjf`(x`, y) lies in PLk+1(2) ⊆ PLk+1(r), so by applying Hk(c) again, we deduce that

〈hj ,m`〉n =
1

n

n∑
i=1

hji f`(h
`
i , γi)

c→ E
(
Ḡjf`(Ḡ`, γ̄)

)
= E

(
f ′`(Ḡ`, γ̄)

)
E(ḠjḠ`) = b̄` T̄j,`,

where the final equalities are taken from (6.19). For the second part of Hk(f), we fix 1 ≤ j ≤ k and
apply Hk(d) with the PLk+1(1) function (x1, . . . , xk, y) 7→ xj to see that

〈hj ,m0〉n =
1

n

n∑
i=1

m0
i h

j
i
c→ E

(
F0(γ̄)Ḡj

)
= 0

by the independence of Ḡj ∼ N(0, τ2
j ) and γ̄ ∼ π.
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Hk(g): In view of Definition 1.1 of complete convergence, it suffices to show that if (βn) is any

sequence of random variables with βn
d
= 〈f ′k(hk, γ)〉n for each n, then βn

a.s.→ E
(
f ′k(Ḡk, γ̄)

)
. For any

such sequence (βn), we first seek to construct a random sequence
(
(ηn, θn) ∈ Rn × Rn : n ∈ N

)
such

that (ηn, θn)
d
=
(
hk(n), γ(n)

)
for each n, and

(
〈f ′k(ηn, θn)〉n : n ∈ N

)
= (βn : n ∈ N) almost surely as

random sequences. This can be done by applying Lemma 7.10, where we take gn : Rn × Rn → R to
be the measurable function (x, y) 7→ 〈f ′k(x, y)〉n = n−1

∑n
i=1 f

′
k(xi, yi) for each n.

Since (ηn, θn)
d
=
(
hk(n), γ(n)

)
for each n by construction, it follows from the inductive hypothesisHk(c)

that n−1
∑n

i=1 ϕ(ηni, θni)
d
= n−1

∑n
i=1 ϕ(hki , γi)

c→ E
(
ϕ(Ḡk, γ̄)

)
for every ϕ ∈ PL2(r), where (Ḡk, γ̄) ∼

N(0, τ2
k ) ⊗ π =: µ̄k. Consequently, denoting by µ̃kn := νn(ηn, θn) = n−1

∑n
i=1 δ(ηni,θni) the joint

empirical distribution of the components of ηn and θn for each n, we deduce using Corollary 7.21(a)
that dr(µ̃

k
n, µ̄

k)
a.s.→ 0, and hence that (µ̃kn) converges weakly to µ̄k with probability 1. By (A5), f ′k is

bounded, Borel measurable and continuous µ̄k-almost everywhere, so we may now apply Lemma 7.14
to conclude that βn = 〈f ′k(ηn, θn)〉n =

∫
R2 f

′
k dµ̃

k
n →

∫
R2 f

′
k dµ̄

k = E
(
f ′k(Ḡk, γ̄)

)
almost surely. This

completes the proof of Hk(g).

Hk(h): For 1 ≤ ` ≤ k, it follows from Hk(e, f, g) that

vk,`j /n = 〈hj ,m`〉n − b` 〈mj−1,m`−1〉n
c→ b̄` T̄j,` − b̄` T̄j,` = 0

for all 1 ≤ j ≤ k. For ` = 0, we have m−1 = 0 by definition, so vk,0j /n = 〈hj ,m0〉n
c→ 0 for all

1 ≤ j ≤ k by the second part of Hk(f).

Hk(i): Recall from (6.4) that αk = (M>k Mk/n)+(M>k m
k/n) ∈ Rk. It follows from Hk(e) that

(M>k Mk/n)j` = 〈mj−1,m`−1〉n
c→ T̄j,` and (M>k m

k/n)j = 〈mj−1,mk〉n
c→ T̄j,k+1 for all 1 ≤ j, ` ≤ k.

In the notation of Section 6.4, this means that M>k m
k/n

c→ T̄[k],k+1 ∈ Rk and M>k Mk/n
c→ T̄[k] ∈

Rk×k. Under (A4), Lemma 2.2 ensures that T̄[k] is positive definite and hence invertible, we now apply
the continuous mapping theorem for complete convergence (Lemma 7.2) to deduce that

αk = (M>k Mk/n)+(M>k m
k/n)

c→
(
T̄[k]

)−1
T̄[k],k+1 = ᾱk,

as defined in (6.14).

Hk(j): Recalling (6.4) as well as the definitions at the start of Section 6.2, we can write

‖ ⊥mk‖2n = ‖P⊥k mk‖2n = ‖mk‖2n − ‖Pkmk‖2n = ‖mk‖2n − (αk)>(M>k Mk/n)αk.

Now ‖mk‖2n
c→ T̄k+1,k+1 = τ2

k+1 and M>k Mk/n
c→ T̄[k] ∈ Rk×k by Hk(e), and αk

c→ ᾱk ∈ Rk by Hk(i),
so

‖ ⊥mk‖2n = ‖mk‖2n − (αk)>(M>k Mk/n)αk
c→ T̄k+1,k+1 − (ᾱk)>T̄[k] ᾱk =

⊥
τ2
k+1,

as defined in (6.15).

Hk+1(a): Denote by Rn1, . . . , Rn5 the individual summands (in the order in which they appear) in the
definition (6.22) of ∆k+1 ≡ ∆k+1(n) ∈ Rn. To establish that ‖∆k+1‖n,r

c→ 0, it suffices to show that

‖Rns‖n,r
c→ 0 for s = 1, . . . , 5. Observe first that since αk

c→ ᾱk ∈ Rk by Hk(i) and ‖h`‖n,r = Oc(1)

for all 1 ≤ ` ≤ k by Hk(b), we have ‖Rn1‖n,r ≤
∑k

`=1 |αk` − ᾱk` | ‖h`‖n,r =
∑k

`=1 oc(1)Oc(1) = oc(1).

As for Rn2, we know from Hk(e) that (M>k Mk/n)j` = 〈mj−1,m`−1〉n
c→ T̄j,` for all 1 ≤ j, ` ≤ k, so

M>k Mk/n
c→ T̄[k] ∈ Rk×k, which is positive definite by Lemma 2.2. We can now apply the continuous

mapping theorem for complete convergence (Lemma 7.2) to deduce that (M>k Mk/n)+ c→ (T̄[k])−1; see

Hk(i) above for a similar argument. By Hk(h), we have vk,`/n
c→ 0 ∈ Rk for all 0 ≤ ` ≤ k, so

w̃k ≡ w̃k(n) := (M>k Mk)
+

(
vk,k −

k∑
`=1

αk` v
k,`−1

)
c→ 0,
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formally by Slutsky’s lemma for complete convergence (Lemma 7.2). Since ‖m`−1‖n,r = Oc(1) for 1 ≤
` ≤ k by Hk(b), we have ‖Rn2‖n,r = ‖Mkw̃

k‖n,r ≤
∑k

`=1 |w̃k` | ‖m`−1‖n,r =
∑k

`=1 oc(1)Oc(1) = oc(1).

Turning to Rn3 and introducing ξ1, . . . , ξk
iid∼ N(0, 1), we see from Lemma 6.18 that ‖PkZ̃k+1‖n,r

is stochastically dominated by
∑k

i=1 |ξi|/n1/r for each n > k. By Example 1(a),
∑k

i=1 |ξi|/n1/r ≤
kmax1≤i≤k |ξi|/n1/r = oc(1), so ‖PkZ̃k+1‖n,r

c→ 0. Since ‖ ⊥mk‖n
c→ ⊥
τk+1 ∈ (0,∞) by Hk(j), we deduce

that ‖Rn3‖n,r = ‖ ⊥mk‖n‖PkZ̃k+1‖n,r = oc(1).

For the remaining summands Rn4 and Rn5, the arguments are similar to those in the proof of H1(a).
Recall that (Z̃k+1, ζ̃k+1) ≡

(
Z̃k+1(n), ζ̃k+1(n)

)
∼ Nn(0, In)⊗N(0, 1/n). Introducing ζ ∼ N(0, 1), we

have |ζ̃k+1| d= n−1/2 |ζ| c→ 0 by Example 1(a), and ‖Z̃k+1‖n,r = (n−1
∑n

i=1 |Z̃
k+1
i |r)1/r c→ E(|ζ|r)1/r ∈

(0,∞) by Lemma 7.12 and Proposition 1.2. By Hk(j), we have ‖ ⊥mk‖n −
⊥
τk+1 = oc(1). Moreover,

αk = ᾱk+oc(1) = Oc(1) by Hk(i) and ‖m`‖n,r = Oc(1) for 0 ≤ ` ≤ k by Hk(b), so it follows from (6.4)
that

‖ ⊥mk‖n,r = ‖(I − Pk)mk‖n,r ≤ ‖mk‖n,r +
k∑
`=1

|αk` | ‖m`−1‖n,r = Oc(1) +
k∑
`=1

Oc(1)Oc(1) = Oc(1).

Putting everything together, we see that

‖Rn4‖n,r + ‖Rn5‖n,r =
∣∣‖ ⊥mk‖n−

⊥
τk+1

∣∣ ‖Z̃k+1‖n,r + |ζ̃k+1| ‖ ⊥mk‖n,r = oc(1)Oc(1) + oc(1)Oc(1) = oc(1).

We have now shown that ‖Rns‖n,r
c→ 0 for s = 1, . . . , 5, so ‖∆k+1‖n,r ≤

∑5
s=1 ‖Rns‖n,r

c→ 0.

Hk+1(b): By the inductive hypothesis Hk(b), we have ‖hj‖n,r = Oc(1) for all 1 ≤ j ≤ k and ‖mj‖n,r =
Oc(1) for all 0 ≤ j ≤ k. Now let j = k+1. For each integer n > k, recall from (6.7) in Proposition 6.11
and (6.21) that

hk+1(n)
d
= |Sk h

k+1,k(n) = h̃k+1(n) + ∆k+1(n) =
k∑
`=1

ᾱk` h
`(n) +

⊥
τk+1Z̃

k+1(n) + ∆k+1(n), (6.38)

where the deterministic ᾱk ∈ Rk is taken from (6.14) and Z̃k+1 ≡ Z̃k+1(n) ∼ Nn(0, In) is independent
of Sk ≡ Sk(n) = σ(γ,m0, h1, . . . , hk). Then ‖∆k+1‖n,r = oc(1) by Hk+1(a) and ‖Z̃k+1‖n,r = Oc(1), as
in the last part of the proof of Hk+1(a) above. It follows from this and Hk(b) that

‖hk+1‖n,r
d
= ‖hk+1,k‖n,r ≤

k∑
`=1

|ᾱk` | ‖h`‖n,r + ‖∆k+1‖n,r = Oc(1) + oc(1) = Oc(1).

In addition, letting L′ > 0 be such that fk+1 is L′-Lipschitz, we can argue as in the proof of H1(b) to
deduce that

‖mk+1‖n,r = ‖fk+1(hk+1, γ)‖n,r ≤ |fk+1(0, 0)|+ L′(‖hk+1‖n,r + ‖γ‖n,r) = Oc(1).

Hk+1(c): We again make use of the distributional equality (6.38), which together with Lemma 7.6(c)

implies that (γ, h1, . . . , hk, hk+1)
d
= |Sk (γ, h1, . . . , hk, hk+1,k) for each integer n > k. Thus, for any fixed

ψ ∈ PLk+2(r), it follows that n−1
∑n

i=1 ψ(h1
i , . . . , h

k
i , h

k+1
i , γi)

d
= n−1

∑n
i=1 ψ(h1

i , . . . , h
k
i , h

k+1,k
i , γi) =:

Tn for each such n, so it suffices to show that Tn
c→ E

(
ψ(Ḡ1, . . . , Ḡk, Ḡk+1, γ̄)

)
. We decompose Tn as

1

n

n∑
i=1

ψ(h1
i , . . . , h

k
i , h̃

k+1
i , γi) +

1

n

n∑
i=1

{ψ(h1
i , . . . , h

k
i , h

k+1,k
i , γi)− ψ(h1

i , . . . , h
k
i , h̃

k+1
i , γi)} =: Tn1 + Tn2

(6.39)
for each n > k, and seek to establish that Tn1

c→ E
(
ψ(Ḡ1, . . . , Ḡk, Ḡk+1, γ̄)

)
and Tn2

c→ 0 by imitating
and extending the analogous arguments in the proof of H1(c).
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For Tn1, define Ψ: Rk+1 → R by Ψ(x1, . . . , xk, y) := E
{
ψ
(
x1, . . . , xk,

∑k
`=1 ᾱ

k
` x` +

⊥
τk+1Z, y

)}
with

Z ∼ N(0, 1). For each integer n > k, since Z̃k+1 ≡ Z̃k+1(n) ∼ Nn(0, In) is independent of Sk ≡
Sk(n) = σ(γ,m0, h1, . . . , hk), we deduce from (6.38) and Lemma 7.7 that

E
(
ψ(h1

i , . . . , h
k
i , h̃

k+1
i , γi)

∣∣Sk) = E
{
ψ
(
h1
i , . . . , h

k
i ,
∑k

`=1 ᾱ
k
` h

`
i +

⊥
τk+1Z̃

k+1
i , γi

)∣∣Sk} = Ψ(h1
i , . . . , h

k
i , γi)

almost surely, for every 1 ≤ i ≤ n. Now since Ψ ∈ PLk+1(r) by Lemma 7.23(b), it follows from the
inductive hypothesis Hk(c) that

1

n

n∑
i=1

E
(
ψ(h1

i , . . . , h
k
i , h̃

k+1
i , γi)

∣∣Sk) =
1

n

n∑
i=1

Ψ(h1
i , . . . , h

k
i , γi)

c→ E
(
Ψ(Ḡ1, . . . , Ḡk, γ̄)

)
, (6.40)

where the equality above holds almost surely for each n > k. Taking
⊥

ζk+1 ∼ N(0, 1) to be independent
of Ḡ[k] := (Ḡ1, . . . , Ḡk) and γ̄, we apply Lemma 7.7 again to see that

E
(
Ψ(Ḡ1, . . . , Ḡk, γ̄)

)
= E

(
E
{
ψ
(
Ḡ1, . . . , Ḡk,

∑k
`=1 ᾱ

k
` Ḡ` +

⊥
τk+1

⊥

ζk+1, γ̄
)∣∣Ḡ[k], γ̄

})
(6.41)

= E
{
ψ
(
Ḡ1, . . . , Ḡk,

∑k
`=1 ᾱ

k
` Ḡ` +

⊥
τk+1

⊥

ζk+1, γ̄
)}

= E
(
ψ(Ḡ1, . . . , Ḡk, Ḡk+1, γ̄)

)
,

where the final equality follows from the definition of Ḡk+1 in (6.16). To complete the proof that
Tn1

c→ E
(
ψ(Ḡ1, . . . , Ḡk, Ḡk+1, γ̄)

)
, we must therefore show that

T ′n1 :=
1

n

n∑
i=1

{
ψ(h1

i , . . . , h
k
i , h̃

k+1
i , γi)− E

(
ψ(h1

i , . . . , h
k
i , h̃

k+1
i , γi)

∣∣Sk)} c→ 0. (6.42)

To this end, let L > 0 be such that ψ ∈ PLk+2(r, L), and for each v ≡ (x1, . . . , xk, y) ∈ Rk+1, define
ψv, ψ̄v : R→ R by ψv(z) := ψ

(
x1, . . . , xk,

∑k
`=1 ᾱ

k
` x`+

⊥
τk+1z, y

)
and ψ̄v(z) := ψv(z)−E

(
ψv(Z)

)
, where

Z ∼ N(0, 1). Then by Lemma 7.23(a), there exists Kk > 0, depending only on the deterministic
ᾱk ≡ (ᾱk1 , . . . , ᾱ

k
k),

⊥
τk+1 and r, such that ψv ∈ PL1(r,KkL‖v‖) with L‖v‖ = L(1 ∨ ‖v‖r−1). For a

fixed integer n > k and v(1), . . . , v(n) ∈ Rk+1, define L̆ ≡ L̆
(
v(1), . . . , v(n)

)
:=
(
L‖v(1)‖, . . . , L‖v(n)‖

)
.

Let r′ = r/(r − 1) ∈ (1, 2] be as in the proof of H1(c), so that 1/r + 1/r′ = 1, and note that since
‖·‖p′ ≤ ‖·‖p for 1 ≤ p ≤ p′ ≤ ∞, we have

‖L̆‖∞
n1/r′

≤ ‖L̆‖2
n1/r′

≤ ‖L̆‖r
′

n1/r′
= ‖L̆‖n,r′ =

(
1

n

n∑
i=1

(
L‖v(i)‖

)r′)1/r′

≤ L
(

1 +
1

n

n∑
i=1

‖v(i)‖r
)1/r′

. (6.43)

By Lemma 7.12, it follows as in (6.27) that there exists a universal constant C > 0 such that if

Z1, . . . , Zn
iid∼ N(0, 1), then

P
(
n, t, v(1), . . . , v(n)

)
:= P

(∣∣∣∣ 1n
n∑
i=1

ψ̄v(i)(Zi)

∣∣∣∣ ≥ t)

≤ exp

(
1−min

{(
nt

(Cr)rKk‖L̆‖2

)2

,

(
nt

(Cr)rKk‖L̆‖∞

)2/r})
≤ exp

(
1−min

{(
n1/rt

(Cr)rKk‖L̆‖n,r′

)2

,

(
n1/rt

(Cr)rKk‖L̆‖n,r′

)2/r})
= Er(n, t,Kk‖L̆‖n,r′) ≡ Er

(
n, t,Kk

∥∥L̆(v(1), . . . , v(n)
)∥∥
n,r′

)
(6.44)

for every t ≥ 0. Next, define the Sk-measurable vectors υ
(i)
k := (h1

i , . . . , h
k
i , γi) for 1 ≤ i ≤ n. Returning

to (6.42) and recalling (6.38), we see that

ψ(h1
i , . . . , h

k
i , h̃

k+1
i , γi)− E

(
ψ(h1

i , . . . , h
k
i , h̃

k+1
i , γi)

∣∣Sk) = ψ
υ
(i)
k

(Z̃k+1
i )− E

(
ψ
υ
(i)
k

(Z̃k+1
i )

∣∣Sk)
= ψ̄

υ
(i)
k

(Z̃k+1
i )
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for all 1 ≤ i ≤ n, where the final equality follows from Lemma 7.7 and the fact that Z̃k+1 ≡ Z̃k+1(n)
is independent of Sk ≡ Sk(n). We deduce from this and (6.44) that

P(|T ′n1| > ε | Sk) = P
(∣∣∣∣ 1n

n∑
i=1

ψ̄
υ
(i)
k

(Z̃k+1
i )

∣∣∣∣ ≥ ε ∣∣∣ Sk) = P
(
n, ε, υ

(1)
k , . . . , υ

(n)
k

)
≤ Er

(
n, ε,Kk

∥∥L̆(υ(1)
k , . . . , υ

(n)
k

)∥∥
n,r′

)
(6.45)

for every n > k and ε > 0, where the second equality is again obtained using Lemma 7.7. Now
by (6.43) and Hölder’s inequality, which ensures that ‖·‖ ≡ ‖·‖2 ≤ (k + 1)

1
2
− 1
r ‖·‖r on Rk+1, we have

L̆k(n) :=
∥∥L̆(υ(1)

k , . . . , υ
(n)
k

)∥∥
n,r′
≤ L

(
1 +

1

n

n∑
i=1

‖υ(i)
k ‖

r

)1/r′

.k,r L

{
1 +

1

n

n∑
i=1

k∑
`=1

(∣∣h`i∣∣r + |γi|r
)}1/r′

= L

(
1 +

k∑
`=1

(
‖h`‖rn,r + ‖γ‖rn,r

))1/r′

(6.46)

for each n > k. Since ‖h`‖n,r = Oc(1) for 1 ≤ ` ≤ k by Hk(b) and ‖γ‖n,r = Oc(1) by (A1), this means
that L̆k(n) = Oc(1). Thus, by Proposition 1.2, there exists L̄k ∈ (0,∞) such that for integers n > k,
the events Ak(n) := {L̆k(n) ≤ L̄k} ∈ Sk(n) satisfy

∑∞
n=k+1 P

(
Ak(n)c

)
<∞. Moreover, for each n > k

and ε > 0, it follows from (6.45) that

P
(
{|T ′n1| > ε} ∩Ak(n)

∣∣Sk) = P(|T ′n1| > ε | Sk)1Ak(n) ≤ P
(
n, ε, υ

(1)
k , . . . , υ

(n)
k

)
1Ak(n)

≤ Er
(
n, ε,KkL̆k(n)

)
1Ak(n) ≤ Er(n, ε,KkL̄k),

where we have used the fact that Ak(n) ∈ Sk(n) to obtain the first equality above. Recalling the
expression for Er(n, ε,KkL̄k) in (6.44), we see that

∑∞
n=k+1Er(n, ε,KkL̄k) <∞, and hence conclude

as in (6.29) that for every ε > 0, we have

∞∑
n=k+1

P(|T ′n1| > ε) ≤
∞∑

n=k+1

P
(
{|T ′n1| > ε} ∩Ak(n)

)
+

∞∑
n=k+1

P
(
Ak(n)c

)
≤

∞∑
n=k+1

Er(n, ε,KkL̄k) +

∞∑
n=k+1

P
(
Ak(n)c

)
<∞,

which implies (6.42) in view of Proposition 1.2. Together with (6.40) and (6.41), this shows that
Tn1

c→ E
(
ψ(Ḡ1, . . . , Ḡk, Ḡk+1, γ̄)

)
in (6.39), as claimed.

The final step in the proof of Hk+1(c) is to show that Tn2
c→ 0 in (6.39). Letting L > 0 be such that

ψ ∈ PLk+2(r, L), we can apply Lemma 7.24 as in (6.30) to see that

|Tn2| ≤
1

n

n∑
i=1

∣∣ψ(h1
i , . . . , h

k
i , h

k+1,k
i , γi)− ψ(h1

i , . . . , h
k
i , h

k+1,k
i −∆k+1

i , γi)
∣∣

≤ L(k + 2)
r
2
−1 ‖∆k+1‖n,r

(
1 + 2

k∑
`=1

‖h`‖r−1
n,r + 2‖γ‖r−1

n,r + ‖hk+1,k‖r−1
n,r + ‖hk+1,k −∆k+1‖r−1

n,r

)

.k,r L‖∆k+1‖n,r
(

1 +
k∑
`=1

‖h`‖r−1
n,r + ‖hk+1,k‖r−1

n,r + ‖γ‖r−1
n,r + ‖∆k+1‖r−1

n,r

)
(6.47)

for each integer n > k. Now ‖hk+1,k‖n,r
d
= ‖hk+1‖n,r for each such n, and recall from Hk+1(a) that

‖∆k+1‖n,r = oc(1) and from Hk+1(b) that ‖h`‖n,r = Oc(1) for 1 ≤ ` ≤ k + 1. Thus, Tn2
c→ 0
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by (6.47), and we conclude from (6.39) that n−1
∑n

i=1 ψ(h1
i , . . . , h

k
i , h

k+1
i , γi)

d
= Tn = Tn1 + Tn2

c→
E
(
ψ(Ḡ1, . . . , Ḡk, Ḡk+1, γ̄)

)
, as required.

Hk+1(d): The arguments in this proof are similar to those given for H1(d) and Hk+1(c), so we
outline the key steps without going into the full details. By (6.38) and Lemma 7.6(c), we have

(γ,m0, h1, . . . , hk, hk+1)
d
= |Sk (γ,m0, h1, . . . , hk, hk+1,k) for each n > k, so for fixed φ ∈ PLk+2(1), it

follows that n−1
∑n

i=1m
0
i φ(h1

i , . . . , h
k
i , h

k+1
i )

d
= n−1

∑n
i=1m

0
i φ(h1

i , . . . , h
k
i , h

k+1,k
i ) =: Tn for each such

n. Using (6.38), we now write

Tn =
1

n

n∑
i=1

m0
i φ(h1

i , . . . , h
k
i , h̃

k+1
i , γi) +

1

n

n∑
i=1

m0
i

{
φ(h1

i , . . . , h
k
i , h

k+1,k
i , γi)− φ(h1

i , . . . , h
k
i , h̃

k+1
i , γi)

}
=: Tn1 + Tn2 (6.48)

for each n > k, and aim to prove that Tn1
c→ E

(
F0(γ̄) ·φ(Ḡ1, . . . , Ḡk, γ̄)

)
and Tn2

c→ 0, which together
imply the desired conclusion.

For Tn1, recall once again from (6.21) or (6.38) that h̃k+1(n) =
∑k

`=1 ᾱ
k
` h

`(n) +
⊥
τk+1Z̃

k+1(n) for each
n, where Z̃k+1 ≡ Z̃k+1(n) ∼ Nn(0, In) is independent of Sk ≡ Sk(n) = σ(γ,m0, h1, . . . , hk). Define
Φ: Rk+1 → R by Φ(x1, . . . , xk, y) := E

{
φ
(
x1, . . . , xk,

∑k
`=1 ᾱ

k
` x`+

⊥
τk+1Z, y

)}
with Z ∼ N(0, 1). Then

Φ ∈ PLk+1(1) by Lemma 7.23(b), and as in (6.40) and (6.41), it follows from the inductive hypothesis
Hk(d) and Lemma 7.7 that

1

n

n∑
i=1

m0
i E
(
φ(h1

i , . . . , h
k
i , h̃

k+1
i , γi)

∣∣Sk) =
1

n

n∑
i=1

m0
i Φ(h1

i , . . . , h
k
i , γi)

c→ E
(
F0(γ̄) · Φ(Ḡ1, . . . , Ḡk, γ̄)

)
= E

(
F0(γ̄) · φ(Ḡ1, . . . , Ḡk, Ḡk+1, γ̄)

)
. (6.49)

Next, we show as in (6.42) that

T ′n1 :=
1

n

n∑
i=1

m0
i

{
φ(h1

i , . . . , h
k
i , h̃

k+1
i , γi)− E

(
φ(h1

i , . . . , h
k
i , h̃

k+1
i , γi)

∣∣Sk)} c→ 0. (6.50)

To this end, for each u ∈ R and v ≡ (x1, . . . , xk, y) ∈ Rk+1, define φu,v, φ̄u,v : R → R by φu,v(z) :=

uφ
(
x1, . . . , xk,

∑k
`=1 ᾱ

k
` x` +

⊥
τk+1z, y

)
and φ̄u,v(z) := φu,v(z)− E

(
φu,v(Z)

)
, where Z ∼ N(0, 1). Since

φ ∈ PLk+2(1), we deduce from Lemma 7.23(a) that there exists K ′ > 0, depending only on the
deterministic ᾱk ≡ (ᾱk1 , . . . , ᾱ

k
k),

⊥
τk+1 and r, such that φ̄u,v ∈ PL1(1, LK ′|u|) for each u ∈ R and

v ∈ Rk+1. Now define the Sk-measurable vectors υ
(i)
k := (h1

i , . . . , h
k
i , γi) for 1 ≤ i ≤ n, as in (6.45), and

let Ẽr be as in (6.34). Then by Lemma 7.7 and (7.12) in Remark 7.13, it follows as in (6.34), (6.44)
and (6.45) that for each n > k and ε > 0, we have

P(|T ′n1| > ε | Sk) = P
(∣∣∣∣ 1n

n∑
i=1

φ̄
m0
i , υ

(i)
k

(Z̃k+1
i )

∣∣∣∣ ≥ ε ∣∣∣ Sk) ≤ Ẽr(n, ε, LK ′‖m0‖n). (6.51)

Now m0 ≡ m0(n) is measurable with respect to S0 ⊆ Sk ≡ Sk(n) for each n, and ‖m0‖n = Oc(1)
by (A2), so we conclude as in (6.36) and (6.37) that

∑
n P(|T ′n1| > ε) < ∞ for all ε > 0. Thus,

T ′n1
c→ 0 by Proposition 1.2, as claimed in (6.50).

Finally, we prove that Tn2
c→ 0. Let L > 0 be such that φ ∈ PLk+2(1, L), and for n > k and 1 ≤ i ≤ n,

define υ
(i)
k+1 = (h1

i , . . . , h
k
i , h

k+1,k
i , γi) and υ̃

(i)
k+1 = (h1

i , . . . , h
k
i , h̃

k+1
i , γi) = (h1

i , . . . , h
k
i , h

k+1,k
i −∆k+1

i , γi)
as in (6.47), where the final equality is obtained from (6.22). As in the proof of H1(d), we now apply
the Cauchy–Schwarz inequality and the fact that ‖·‖n ≡ ‖·‖n,2 ≤ ‖·‖n,r to see that

|Tn2| ≤
1

n

n∑
i=1

|m0
i |
∣∣φ(υ

(i)
k+1)− φ(υ̃

(i)
k+1)

∣∣ ≤ L

n

n∑
i=1

|m0
i ||∆k+1

i | ≤ L‖m0‖n‖∆k+1‖n.
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Since ‖m0‖n
c→ τ1 by (A2) and ‖∆k+1‖n ≤ ‖∆k+1‖n,r = oc(1) by Hk+1(a), we conclude that Tn2 =

oc(1), as required. Together with (6.48), (6.49), (6.50), this yields Hk+1(d), and hence completes the
inductive step for Proposition 6.16.

Proof of Remark 6.17. Under (A0), (A4) and (A5), if instead (A1)–(A3) hold with
c→ and Oc(1)

replaced with
p→ and Op(1) respectively, then as explained in the third bullet point in Remark 6.1,

we can make the same replacements in the proof of Proposition 6.16 and most of the arguments go
through as before. However, a few alterations are required in the proofs of (c, d) and (g), which we
now describe.

First, in the proof of H1(d), the goal in (6.33) is now to show that T ′n1
p→ 0 as n → ∞. Instead of

proceeding as in (6.36) and (6.37), we return to (6.35), where we note that if ε > 0 is fixed and (A2)

takes the form ‖m0‖n
p→ τ1, then P(|T ′n1| > ε | S0) ≤ Ẽr(n, ε, Lτ1‖m0‖n) = op(1) by Slutsky’s lemma

and the definition of Ẽr in (6.34). Then for every ε > 0, it follows from the bounded convergence

theorem that P(|T ′n1| > ε) = E
(
P(|T ′n1| > ε | S0)

)
→ 0 as n→∞, so T ′n1

p→ 0, as desired.

In the proofs of Hk+1(c, d), the analogues of (6.42) and (6.50) can be derived from (6.45, 6.46)
and (6.51) respectively in much the same way; for the former, since ‖h`‖n,r = Op(1) for 1 ≤ ` ≤ k by

the modified Hk(b), (6.46) implies that L̆k(n) .k,r LK
(
1 +

∑k
`=1 ‖h`‖rn,r

)1/r′
= Op(1).

In addition, Hk(g) now reads bk = 〈f ′k(hk, γ)〉n
p→ E

(
f ′k(Ḡk, γ̄)

)
= b̄k. To prove this, we can argue

along subsequences, similarly to the proof of Corollary 7.21(b).

Proofs of Theorems 2.1 and 2.3. Theorem 2.1 follows from Theorem 2.3, which in turn is a immediate
consequence of Proposition 6.16(c) and Corollary 7.21(b).

Proofs for Remark 6.1. (a) Convergence in probability : This is immediate from Remark 6.17 and
Corollary 7.21(b).

(b) Almost sure convergence: The random sequences Υ :=
(
m0(n) : n ∈ N

)
and Γ :=

(
γ(n) : n ∈ N

)
take values in E :=

∏∞
n=1 Rn, whose cylindrical and Borel σ-algebras coincide by Kallenberg (1997,

Lemma 1.2). Let E∗ be the set of all (u, v) ∈ E ×E such that (A1)–(A3) hold when Υ = u ≡
(
u(n) :

n ∈ N
)

and Γ = v ≡
(
v(n) : n ∈ N

)
are non-random. It can be verified that E∗ is a Borel subset of

E × E.

For k ∈ N, let µ̄k := N(0, τ2
k )⊗π and µkn := νn(hk, γ) for n ∈ N. In the special case where (Υ,Γ) ∈ E∗

is deterministic, Theorem 2.1 implies that for each k, the resulting sequence of AMP iterates
(
hk(n) :

n ∈ N
)

satisfies dr(µ
k
n, µ̄

k)
c→ 0. Note that for each n, we can write dr(µ

k
n, µ̄

k) = dr
(
νn(hk, γ), µ̄k

)
=

gn
(
m0(n), γ(n),W (n)

)
for some (non-random) Borel measurable gn : Rn × Rn × Rn×n → R. Indeed,

we see from (2.1) that hk ≡ hk(n) is a deterministic Borel measurable function of m0(n), γ(n) and
W (n). Moreover for all x, x′ ∈ Rn and the corresponding empirical distributions νn(x), νn(x′) of their
components, we have∣∣dr(νn(x), µ̄k

)
− dr

(
νn(x′), µ̄k

)∣∣ ≤ dr(νn(x), νn(x′)
)
≤
(
n−1∑n

i=1 |xi − x′i|r
)1/r

= ‖x− x′‖n,r
since dr is a metric, so x 7→ dr

(
νn(x), µ̄k

)
is continuous on Rn.

Since {(a1, a2, . . . ) ∈ RN : limn→∞ an = 0} is a Borel subset of RN, we conclude that g : (u, v) 7→
P
{

limn→∞ gn
(
u(n), v(n),W (n)

)
= 0
}

is a well-defined Borel measurable function on E ×E satisfying
g(u, v) = 1 for all (u, v) ∈ E∗.

Now suppose more generally that (Υ,Γ) and
(
W (n) : n ∈ N

)
are independent. If (Υ,Γ) ∈ E∗ almost

surely, then for the corresponding sequence of AMP iterates
(
hk(n) : n ∈ N

)
from (2.1),

P
(

lim
n→∞

dr(µ
k
n, µ̄

k) = 0
)

= P
(

lim
n→∞

gn
(
m0(n), γ(n),W (n)

)
= 0
)

= E
{
P
(

lim
n→∞

gn
(
m0(n), γ(n),W (n)

)
= 0

∣∣∣ Υ,Γ
)}

= E
(
g(Υ,Γ)

)
≥ E

(
g(Υ,Γ)1{(Υ,Γ)∈E∗}

)
= 1,
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where the third equality follows from the independence assumption and Lemma 7.7. Therefore,
dr(µ

k
n, µ̄

k)
a.s.→ 0 as n→∞, and moreover d̃r(µ

k
n, µ̄

k)
a.s.→ 0 by Corollary 7.21(a).

6.6 Auxiliary results and proofs for Section 2

Proof of Lemma 2.2. We proceed by induction on k, noting first that the base case k = 1 is trivial
since T̄[1] = τ2

1 > 0 by (A4). Now for k ≥ 2 and a ≡ (a1, . . . , ak) ∈ Rk, recall the expression (2.7)
for a>T̄[k]a. If a1 6= 0 = a2 = · · · = ak, then a>T̄[k]a = (a1τ1)2 > 0 as in the base case. On the
other hand, if aL 6= 0 for some 2 ≤ L ≤ k, then by (A4), we can find BL ⊆ R with π(BL) > 0
such that xL−1 7→ aLfL−1(xL−1, y) is non-constant whenever y ∈ BL. For all such y, note that
(x1, . . . , xk−1) 7→

∑k
`=2 a`f`−1(x`−1, y) is non-constant on Rk−1. Now by the inductive hypothesis,

(G1, . . . , Gk−1) has a positive definite covariance matrix T̄[k−1], so the random variable a1F0(y) +∑k
`=2 a`f`−1(G`−1, y) is non-degenerate whenever y ∈ BL. Since γ̄ ∼ π is independent of G1, . . . , Gk−1

and P(γ̄ ∈ BL) = π(BL) > 0, it follows that a1F0(γ̄) +
∑k

`=2 a`f`−1(G`−1, γ̄) is also non-degenerate.
Thus, in all cases, it follows from (2.7) and (A3) that a>T̄[k]a > 0 whenever a 6= 0, as claimed.

Proof of Remark 6.5. Since f̃0 is Lipschitz and η̄, γ̄ ∈ P1(2), we have E
{∥∥(f̃0(η̄, γ̄), γ̄

)∥∥2}
< ∞, so

µ0 ∈ P2(2). By Corollary 7.21(b), an equivalent formulation of (A1+) is that

1

n

n∑
i=1

ψ(m0
i , γi)

c→ E
{
ψ
(
f̃0(η̄, γ̄), γ̄

)}
for all ψ ∈ PL2(2). In particular, (x, y) 7→ x2 lies in PL2(2), so ‖m0‖2n = n−1

∑n
i=1 |m0

i |2
c→

E
(
f̃0(η̄, γ̄)2

)
=: τ2

1 , which yields the first part of (A2). Moreover, the function F0 : R → R defined

by F0(y) := E
(
f̃0(η̄, y)

)
is Lipschitz, and since η̄, γ̄ are independent, it follows from Lemma 7.7 and

Jensen’s inequality that

E
(
F0(γ̄)2

)
= E

{
E
(
f̃0(η̄, γ̄)

∣∣ γ̄)2} ≤ E
{
E
(
f̃0(η̄, γ̄)2

∣∣ γ̄)} = τ2
1 .

For each Lipschitz φ : R→ R, Lemma 7.22 ensures that (x, y) 7→ xφ(y) belongs to PL2(2), so

〈m0, φ(γ)〉n =
1

n

n∑
i=1

m0
i φ(γi)

c→ E
(
f̃0(η̄, γ̄) · φ(γ̄)

)
= E

{
E
(
f̃0(η̄, γ̄)

∣∣ γ̄)φ(γ̄)
}

= E
(
F0(γ̄)φ(γ̄)

)
,

where the final equality again follows from Lemma 7.7. Therefore, (A3) also holds.

The following auxiliary result is used in the proof of Proposition 6.16(a) to control the third summand
in the deviation term ∆k+1 defined in (6.22).

Lemma 6.18. For n ∈ N and k ∈ {0, 1 . . . , n− 1}, let Z̃k+1 ≡ Z̃k+1(n) be as in Proposition 6.11, so

that Z̃k+1 ∼ Nn(0, In) is independent of Sk. If ξ1, . . . , ξk
iid∼ N(0, 1) and r ≥ 1, then ‖PkZ̃k+1‖n,r is

stochastically dominated by
∑k

i=1 |ξi|/n1/(r∨2).

Proof. Note that Pk is an Sk-measurable projection matrix of rank rk ≤ k. Since Z̃k+1 is inde-
pendent of Sk, it therefore has conditional distribution Nn(0, In) given Sk by Remark 7.4. Now let

ξ1, . . . , ξk
iid∼ N(0, 1) be independent of Sk and let {m̃1, . . . , m̃rk} be any Sk-measurable orthonormal

basis of Im(Mk) = Im(Pk), as in Remark 6.10. Recall that if Z ∼ Nn(0, In) and P ∈ Rn×n is a deter-
ministic projection matrix of rank p, then PZ ∼ N(0, P ), which is also the distribution of

∑p
i=1 ζiui

when ζ1, . . . , ζp
iid∼ N(0, 1) and {u1, . . . , up} is any orthonormal basis of Im(P ). We deduce from this

and Lemma 7.6(b) that PkZ̃
k+1 and

∑rk
i=1 ξim̃

i both have conditional distribution Nn(0, Pk) given Sk.

This implies that ‖PkZ̃k+1‖n,r
d
= ‖

∑rk
i=1 ξim̃

i‖n,r.

Now for all x ∈ Rn, we have ‖x‖n,r = n−1/r‖x‖r ≤ n−1/(r∨2)‖x‖2 by Hölder’s inequality and the
fact that ‖·‖p′ ≤ ‖·‖p for 1 ≤ p ≤ p′. Since ‖m̃i‖2 = 1 for all i by definition, it follows from this
and the triangle inequality for ‖·‖n,r that ‖

∑rk
i=1 ξim̃

i‖n,r ≤
∑rk

i=1 |ξi| ‖m̃i‖n,r ≤
∑rk

i=1 |ξi|/n1/(r∨2) ≤∑k
i=1 |ξi|/n1/(r∨2). Combining this with the conclusion of the previous paragraph yields the result.
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6.7 AMP with matrix-valued iterates

As mentioned in Section 2.1, state evolution characterisations can be obtained for more general abstract
AMP recursions in which the iterates are matrices rather than vectors. Here, we will briefly describe
the extended version of the asymmetric iteration (2.10), which is used to establish the master theorem
for GAMP in Section 4.1.

For n, p ∈ N, let W ∈ Rn×p, β ∈ Rp and γ ∈ Rn be as in (B0). For `E , `H ∈ N, let (gk, fk+1 : k ∈ N0)
be two sequences of Lipschitz functions gk : R`E × R → R`H and fk+1 : R`H × R → R`E , which are
applied row-wise to matrices. Given Q−1 := 0 ∈ Rn×`H , B0 ∈ R`E×`H and M0 ∈ Rp×`E , inductively
define

Ek := WMk −Qk−1B>k , Qk := gk(E
k, γ), Ck := n−1∑n

i=1 g
′
k(E

k
i , γi),

Hk+1 := W>Qk −Mk C>k , Mk+1 := fk+1(Hk+1, β), Bk+1 := n−1∑p
j=1 f

′
k+1(Hk+1

j , βj)
(6.52)

for k ∈ N0. Here, Eki and Hk+1
j denote the ith and jth rows of Ek ∈ Rn×`E and Hk+1 ∈ Rp×`H

respectively. Also, g′k : R`E×R→ R`H×`E and f ′k+1 : R`H×R→ R`E×`H are bounded, Borel measurable
functions that agree with the derivatives (Jacobians) of gk, fk+1 respectively with respect to their first
arguments, wherever the latter are defined.

Consider now a sequence of recursions (6.52) indexed by n and p ≡ pn with n/p → δ ∈ (0,∞) as
n → ∞, and assume appropriate analogues of (B0)–(B5) with r ∈ [2,∞). In particular, suppose
in place of (B2) that (M0)>M0/n

c→ Σ0 for some non-negative definite Σ0 ∈ R`E×`E , and that
p−1

∑p
i=1

∑`E
j=1 |M0

ij |r = Oc(1). The state evolution recursion for (6.52) is then defined analogously to
that in (2.11), via

Tk+1 := E
(
gk(G

σ
k , γ̄) gk(G

σ
k , γ̄)>

)
∈ R`H×`H ,

Σk+1 := δ−1 E
(
fk+1(Gτk+1, β̄)fk+1(Gτk+1, β̄)>

)
∈ R`E×`E

(6.53)

for k ∈ N0, where we take Gσk ∼ N`E (0,Σk) to be independent of γ̄ ∼ πγ̄ , and Gτk+1 ∼ N`H (0,Tk+1)
to be independent of β̄ ∼ πβ̄.

For k ∈ N0, it can be shown that the empirical distributions of the rows of (Ek γ) and (Hk+1 β) con-
verge completely in dr to N`E (0,Σk)⊗πγ and N`H (0,Tk+1)⊗πβ respectively as n, p→∞ with n/p→ δ.
Similarly as in Remark 2.4, these limiting distributions remain unchanged if one or both of Ck, Bk+1

are replaced with the deterministic matrices C̄k := E
(
g′k(G

Σ
k , γ̄)

)
and B̄k+1 := δ−1E

(
f ′k+1(GT

k+1, β̄)
)

respectively. Moreover, by generalising the definitions (2.12)–(2.13) of the limiting covariance matrices
in line with (6.53), one can obtain the dr limits of the joint empirical distributions for (6.52) above.

The proofs of these results are conceptually very similar to that of Theorem 2.5. For further details,
see Javanmard and Montanari (2013), who first consider a generalisation of the symmetric itera-
tion (2.1) with matrix-valued iterates, and then handle the asymmetric case by a reduction argument.

6.8 Proofs for Section 3

Proof of Theorem 3.1. As described in the proof sketch on page 16, we introduce the recursion (3.13)
given by u1 ≡ u1(n) = Wv̂0 = Wg0(v0) and

uk+1 ≡ uk+1(n) = Wgk(u
k + µkv)− b̃kgk−1(uk−1 + µk−1v)

= Wfk(u
k, v)− b̃kfk−1(uk−1, v)

for k, n ∈ N, where fk(x, y) = gk(x+ µky) and f ′k(x, y) = g′k(x+ µky) for x, y ∈ R, and b̃k ≡ b̃k(n) =
〈g′k(uk + µkv)〉n = 〈f ′k(uk, v)〉n. First, we verify that this is an iteration of the form (2.1) to which
we can apply the master theorems from Section 2.1 for symmetric AMP. Indeed, it follows from (M0)
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and (M1) respectively that (3.13) satisfies (A0) and (A1+), where the latter holds with m0 = v,
γ = v, γ̄ = V ∼ π, η̄ = U and f̃0(x, y) = f0(µ0x + σ0y) for x, y ∈ R. By Remark 6.5, (A1+) implies
that (A1)–(A3) hold with r = 2 and τ1 = c-limn→∞ ‖v̂0‖2n = σ2

1. As verified in (3.14), the state
evolution parameters (τk : k ∈ N) for (3.13) satisfy τ2

k = σ2
k for all k in view of (3.6). Finally, by (M2),

each fk : R2 → R is Lipschitz and the corresponding f ′k satisfies (A5).

Consequently, for each k ∈ N, it follows from Theorem 2.3 that

sup
ψ∈PLk+1(2,1)

∣∣∣∣ 1n
n∑
i=1

ψ(v0
i , v

1
i , . . . , v

k
i , vi)− E

(
ψ(µ0V + σ0U, σ1G1, . . . , σkGk, V )

)∣∣∣∣ c→ 0

as n → ∞, where (σ1G1, . . . , σkGk) ∼ Nk(0, Σ̄
[k]) is taken to be independent of (U, V ) from (M1).

Since Φk : (x1, . . . , xk, y) 7→ (x1 + µ1y, . . . , xk + µky, y) is a linear map with Lipschitz constant L̃k :=
‖(µ1, . . . , µk, 1)‖, we have L̃−2

k (ψ ◦Φk) ∈ PLk+1(2, 1) whenever ψ ∈ PLk+1(2, 1), so it follows from the
display above that

sup
ψ∈PLk+2(2,1)

∣∣∣∣ 1n
n∑
i=1

ψ(v0
i , v

1
i + µ1vi, . . . , v

k
i + µkvi, vi)

− E
(
ψ(µ0V + σ0U, µ1V + σ1G1, . . . , µkV + σkGk, V )

)∣∣∣∣ c→ 0 (6.54)

as n→∞. Defining ∆̃k ≡ ∆̃k(n) := vk − (uk + µkv) ∈ Rn for k, n ∈ N, we can apply Lemma 7.24 to
see that

sup
ψ∈PLk+2(2,1)

∣∣∣∣ 1n
n∑
i=1

ψ(v0
i , v

1
i , . . . , v

k
i , vi)− ψ(v0

i , v
1
i + µ1vi, . . . , v

k
i + µkvi, vi)

∣∣∣∣
≤

(
k∑
`=1

‖∆̃`‖2n

)1/2(
1 +

k∑
`=1

(
‖v`‖n + ‖u` + µ`v‖n

)
+ 2
(
‖v0‖n + ‖v‖n

))

≤

(
k∑
`=1

‖∆̃`‖2n

)1/2(
1 +

k∑
`=1

(
‖∆̃`‖n + 2‖u` + µ`v‖n

)
+ 2
(
‖v0‖n + ‖v‖n

))
(6.55)

for all k and n, where ‖·‖n ≡ ‖·‖n,2 = n−1/2 ‖·‖ on Rn. For every ` ∈ N, it follows from (M1) and (6.54)
that

‖v0‖n
c→ E

(
(µ0V + σ0U)2

)
= µ2

0 + σ2
0, ‖v‖2n → E(V 2) = 1

and ‖u` + µ`v‖2n =
1

n

n∑
i=1

(u`i + µ`vi)
2 c→ E

(
(µ`V + σ`G`)

2
)

= µ2
` + σ2

` (6.56)

as n→∞. We will now establish by induction on k ∈ N that

‖∆̃k‖n = ‖vk − (uk + µkv)‖n
c→ 0 as n→∞ (6.57)

and hence that the conclusion (3.8) of Theorem 3.1 holds for every k. For the base case k = 1, we
have ‖v‖n

c→ 1 by (3.4) and λ〈v̂0, v〉n
c→ µ1 by (3.5), so

‖∆̃1‖n = ‖v1 − (u1 + µ1v)‖n = ‖Av̂0 − (Wv̂0 + µ1v)‖n = |λ〈v̂0, v〉n − µ1| ‖v‖n
c→ 0

as n → ∞. It follows from this and (6.54)–(6.56) that (3.8) holds when k = 1. For a general k ≥ 2,
we write

∆̃k+1 ≡ ∆̃k+1(n) = vk+1 − (uk+1 + µk+1v)

= Agk(v
k)− bkgk−1(vk−1)−

(
Wgk(u

k + µkv)− b̃kgk−1(uk−1 + µk−1v) + µk+1v
)

=
(
λ〈v, gk(vk)〉n − µk+1

)
v +W

(
gk(v

k)− gk(uk + µkv)
)

+
(
b̃kgk−1(uk−1 + µk−1v)− bkgk−1(vk−1)

)
=: Rn1 +Rn2 +Rn3 (6.58)
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for each n ∈ N, and consider Rn1, Rn2, Rn3 in turn. First, since (x1, . . . , xk, y) 7→ ygk(xk) belongs to
PLk+1(2) in view of Lemma 7.22, it follows from the inductive hypothesis (3.8) and the definition of
µk+1 in (3.6) that λ〈v, gk(vk)〉n = n−1

∑n
i=1 λvi gk(v

k
i )

c→ λE
(
V gk(µkV + σkGk)

)
= µk+1. Together

with (6.56), this implies that ‖Rn1‖n = |λ〈v, gk(vk)〉n − µk+1| ‖v‖n
c→ 0 as n→∞.

Next, since ‖W‖ ≡ ‖W‖2→2 = Oc(1) (e.g. Anderson et al., 2010; Knowles and Yin, 2013) and gk is
Lk-Lipschitz for some Lk > 0, the inductive hypothesis (6.57) ensures that

‖Rn2‖n ≤ ‖W‖ ‖gk(vk)− gk(uk + µkv)‖n ≤ Lk‖W‖ ‖vk − (uk + µkv)‖n = Lk‖W‖ ‖∆̃k‖n
c→ 0

as n→∞. Similarly, ‖∆̃k−1‖n
c→ 0 by induction and gk−1 is Lk−1-Lipschitz for some Lk−1 > 0, so as

a first step towards controlling ‖Rn3‖n, we have

‖gk−1(uk−1 + µk−1v)− gk−1(vk−1)‖n ≤ Lk−1‖∆̃k−1‖n
c→ 0.

Note that since (x1, . . . , xk, y) 7→ gk−1(xk−1)2 lies in PLk+1(2) by Lemma 7.22, it follows from (6.54)
that

‖gk−1(uk−1 + µk−1v)‖2n
c→ E

(
gk−1(µk−1V + σk−1Gk−1)2

)
= σ2

k

as n → ∞. Furthermore, since g′k satisfies (M2), we can apply the inductive hypothesis (3.8) and

argue as in the proof of Proposition 6.16(f) to see that bk ≡ bk(n) = 〈g′k(vk)〉n = n−1
∑n

i=1 g
′
k(v

k
i )

c→
E
(
g′k(µkV + σkGk)

)
. Similar reasoning based on (6.54) yields b̃k ≡ b̃k(n) = n−1

∑n
i=1 g

′
k(v

k
i + µkvi)

c→
E
(
g′k(µkV + σkGk)

)
, so b̃k(n)− bk(n)

c→ 0 as n→∞. Putting everything together, we conclude that

‖Rn3‖n ≤ |b̃k − bk|‖gk−1(uk−1 + µk−1v)‖n + |bk|‖gk−1(uk−1 + µk−1v)− gk−1(vk−1)‖n
c→ 0,

and hence that ‖∆̃k+1‖n ≤ ‖Rn1‖n + ‖Rn2‖n + ‖Rn3‖n
c→ 0 as n→∞. Combining this with (6.54)–

(6.56) yields the desired conclusion (3.8), so the inductive step is complete.

Proof of Corollary 3.2. For ψ ∈ PL2(2), note that since gk : R → R is Lipschitz by assumption,
(x0, x1, . . . , xk, y) 7→ ψ

(
gk(xk), y

)
is a PLk+2(2) function to which we can apply (3.8). This yields (3.9),

which specialises to (3.10) when ψ = ψ2 : (x, y) 7→ (x−y)2 is squared error loss. Finally, by considering
the PL2(2) functions (x, y) 7→ ygk(x), (x, y) 7→ gk(x)2 and (x, y) 7→ y2, we deduce from (3.9) that as
n→∞, we have

〈v̂k, v〉n
c→ E

(
V gk(µkV + σkGk)

)
= µk+1

as in the paragraph after (6.58) above,

‖v̂k‖2n =
1

n

n∑
i=1

gk(v
k
i )2 c→ E

(
gk(µkV + σkGk)

2
)

= σ2
k+1

and ‖v‖2n
c→ E(V 2) = 1 as in (3.4). Combining these, we obtain (3.11).

Proof of Lemma 3.8. Fix µ 6= 0 and σ > 0, and let V ∼ π andG ∼ N(0, 1) be independent. Then µV +
σG has Lebesgue density y 7→ p(y) :=

∫
R φσ(y − µx) dπ(x) > 0, where φσ : z 7→ (

√
2πσ)−1e−z

2/(2σ2)

is the density of σG ∼ N(0, σ2). Moreover, since all the derivatives of φσ are bounded on R, we can

differentiate repeatedly under the integral sign to see that p(j)(y) =
∫
R φ

(j)
σ (y−µx) dπ(x) for all y and

j ∈ N0, so p is a smooth function on R. For each y ∈ R, define πy to be the distribution on R with
density (i.e. Radon–Nikodym derivative)

dπy
dπ

: x 7→ φσ(y − µx)∫
R φσ(y − µx′) dπ(x′)

=
φσ(y − µx)

p(y)
(6.59)

with respect to π. It is easily verified that πy is the “conditional distribution of V given µV +σG = y”,
formally in the sense of Remark 7.5(II). It follows from this and Dudley (2002, Theorem 10.2.5) that
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taking Vy ∼ πy and defining g(y) := E(Vy) =
∫
R x dπy(x) for y ∈ R, we have E(V |µV + σG) =

g(µV + σG). For each y, note that

g(y) =

∫
R xφσ(y − µx) dπ(x)∫
R φσ(y − µx) dπ(x)

=

∫
R µ
−1
(
yφσ(y − µx) + φ′σ(y − µx)

)
dπ(x)∫

R φσ(y − µx) dπ(x)
=
y + σ2(log p)′(y)

µ
,

(6.60)
so (3.17) holds and g is infinitely differentiable on R, and by similar calculations,

g′(y) =
1 + σ2(log p)′′(y)

µ
=

µ

σ2

σ2
(
1 + σ2(log p)′′(y)

)
µ2

=
µ

σ2
Var(Vy) ≥ 0.

We now consider in turn the two conditions on π in the statement of the lemma.

(i) If V ∼ π has a log-concave density, then the density p of µV + σG is also log-concave (Prékopa,
1980), so (log p)′′ ≤ 0 on R. Thus, 0 ≤ g′ ≤ |µ|−1 on R, so g is Lipschitz with constant |µ|−1.

(ii) Suppose first that π is supported on a compact interval [a, b]. Then for each y ∈ R, the distri-
bution πy has a density with respect to π (by definition), so it is also supported on [a, b]. Thus,

Var(Vy) ≤ E
{(
Vy − (a + b)/2

)2} ≤ (b − a)2/4 for all y, whence g is Lipschitz with constant
|µ|(b− a)2/(4σ2), and

−1 ≤ σ2(log p)′′(y) ≤ µ2(b− a)2

4σ2
− 1. (6.61)

More generally, suppose that π is the distribution of U0 + V0, where U0 ∼ N(0, σ2
0) with σ0 ≥ 0,

and V0 ∼ π0 is independent of U0 and supported on some compact interval [a, b]. Then p is the

density of µV + σG
d
= µU0 +

√
σ2 + µ2σ2

0 G, so it follows from (6.60) and (6.61) that

1

|µ|

(
1− σ2

σ2 + µ2σ2
0

)
≤ |g′| ≤ 1

|µ|

{
1 +

σ2

σ2 + µ2σ2
0

(
µ2(b− a)2

4(σ2 + µ2σ2
0)
− 1

)}
on R. The expression on the right hand side is therefore a Lipschitz constant for g.

Proof of Lemma 3.7. Let ψ : R2 → [0,∞) be any measurable loss function, and fix s1, s2 ∈ (0,∞) with
s1 > s2. Taking G′ ∼ N(0, s2

1 − s2
2), V ∼ π and G ∼ N(0, 1) to be jointly independent, we first claim

that
Rπ,ψ(s−2

2 ) = inf
g

E
{
ψ
(
g(V + s2G), V

)}
= inf

g̃
E
{
ψ
(
g̃(V + s2G,G

′), V
)}
, (6.62)

where the infima are taken over all measurable g : R → R and g̃ : R2 → R respectively. Indeed, the
first equality holds since V + s2G = s2(

√
ρV +G) when ρ = s−2

2 , and the middle expression is clearly
bounded below by the final one, so it remains to prove the reverse inequality. For any fixed g̃ : R2 → R,
we have

Ψ̃(a) := E
{
ψ
(
g̃(V + s2G, a), V

)}
≥ inf

g
E
{
ψ
(
g(V + s2G), V

)}
= Rπ,ψ(s−2

2 )

for all a ∈ R, so it follows from Lemma 7.7 that E
{
ψ
(
g̃(V + s2G,G

′), V
)}

= E
(
Ψ̃(G′)

)
≥ Rπ,ψ(s−2

2 ),

and hence that (6.62) holds. Since (V, V + s2G+G′)
d
= (V, V + s1G), we deduce that

Rπ,ψ(s−2
2 ) = inf

g̃
E
{
ψ
(
g̃(V + s2G,G

′), V
)}
≤ inf

g
E
{
ψ
(
g(V + s2G+G′), V

)}
= inf

g
E
{
ψ
(
g(V + s1G), V

)}
= Rπ,ψ(s−2

1 ).

In addition, arguing as above for (6.62), we have

Rπ,ψ(s−2
1 ) = inf

g
E
{
ψ
(
g(V + s1G), V

)}
≤ inf

a∈R
E
(
ψ(a, V )

)
= inf

g
E
{
ψ
(
g(G), V

)}
= Rπ,ψ(0).

Thus, ρ 7→ Rπ,ψ(ρ) is non-increasing on [0,∞).
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Finally, fix ρ ∈ (0,∞) and for each y ∈ R, let Vy ∼ πy be a random variable whose density with
respect to π is given by (6.59) with µ =

√
ρ and σ = 1, so that πy is the conditional (i.e. posterior)

distribution of V given
√
ρV + G = y. It follows from Brown and Purves (1973, Theorem 3) that if

the posterior risk function
ry : a 7→ E

(
ψ(a, Vy)

)
attains its infimum on R for Lebesgue almost every y ∈ R, then there exists a measurable g∗ ≡
g∗ρ : R → R with g∗(y) ∈ argmina∈R E

(
ψ(a, Vy)

)
for Lebesgue almost every y ∈ R, whence Rπ,ψ(ρ) =

E
{
ψ
(
g∗(
√
ρV +G), V

)}
. This is the case (for every ρ) if ψ(x, y) = Ψ(x− y) for some convex function

Ψ with Ψ(u) → ∞ as |u| → ∞, in which case ry : a 7→ E
(
ψ(Vy, a)

)
is convex with ry(a) → ∞ as

|a| → ∞, for each y ∈ R.

Corollary 6.19. Given independent random variables V ∼ π and G ∼ N(0, 1), the function ρ 7→
mmse(ρ) := E

{(
V − E(V |√ρV + G)

)2}
is non-increasing on [0,∞). Moreover, if V satisfies one of

the conditions of Lemma 3.8, then ρ 7→ mmse(ρ) is also continuous on (0,∞).

Proof of Corollary 6.19. Recall that whenever X,Y are random variables with E(X2) <∞, it follows

from an orthogonal decomposition of the type (3.18) that E
{(
X−E(X |Y )

)2}
= ming E

{(
X−g(Y )

)2}
,

where the minimum is over all measurable functions g : R → R. Thus, by Lemma 3.7, ρ 7→ mmse(ρ)
is non-increasing on [0,∞).

Now fix s1 > s2 > 0, and as in the proof of Lemma 3.7, let G′ ∼ N(0, s2
1− s2

2), V ∼ π and G ∼ N(0, 1)

be jointly independent, so that (V, V + s2G + G′)
d
= (V, V + s1G). Then under the conditions of

Lemma 3.8, it follows from (i) and (ii) in its proof that there exists a Lipschitz g∗2 : R → R with
g∗2(V + s2G) = E(V |V + s2G) = E(V | s−1

2 V + G) and Lipschitz constant Ls2 ≤ Cπ(1 ∨ s−2
2 ), where

Cπ > 0 depends only on π. Thus,

mmse(s−2
2 ) ≤ mmse(s−2

1 ) = min
g

E
{(
V − g(V + s1G)

)2}
≤ E

{(
V − g∗2(V + s1G)

)2}
= E

{(
V − g∗2(V + s2G+G′)

)2}
= E

{(
V − g∗2(V + s2G)

)2}
+ E

{(
g∗2(V + s2G)− g∗2(V + s2G+G′)

)2}
≤ mmse(s−2

2 ) + Ls2 E(|G′|2)

≤ mmse(s−2
2 ) + Cπ (s2

1s
2
2 ∨ s2

1)(s−2
2 − s

−2
1 ). (6.63)

To justify the equality in the third-last line, note that g∗2(V + s2G) = E(V |V + s2G,G
′) by the

independence of G′ and (V,G), so for any measurable g̃ : R2 → R with E
(
g̃(V + s2G,G

′)2
)
< ∞, we

have E
{(
V −g∗2(V +s2G)

)
g̃(V +s2G,G

′)
}

= 0. We deduce from (6.63) that ρ 7→ mmse(ρ) is Lipschitz
on (ρ′,∞) for every ρ′ > 0, and hence that it is continuous on (0,∞).

Proof of Corollary 3.9. Given any sequence of functions (gk) for which the corresponding AMP itera-
tions (3.3) satisfy the hypotheses of Theorem 3.1 or 3.5, we prove (3.22) by induction on k ∈ N0. For
each such k, it follows from (3.11) and (3.19) that as n→∞, we have

|〈v̂k, v〉n|
‖v̂k‖n‖v‖n

c→
√
ρk+1

λ
=

∣∣E(V gk(µkV + σkGk)
)∣∣√

E
(
gk(µkV + σkGk)2

) ≤√E
(
E(V |µkV + σkGk)2

)
=
√

1−mmsek(ρk),

where we set ρ0 ≡ ρ∗0 = (µ0/σ0)2 and write G0 for the random variable U from (M1) when k = 0. Now√
1−mmse0(ρ∗0) =

√
ρ∗1/λ by (3.21), so ρ1 ≤ ρ∗1 and (3.22) holds when k = 0. For a general k ∈ N,

we have ρk ≤ ρ∗k by induction, so since ρ 7→ mmse(ρ) ≡ mmsek(ρ) is non-increasing by Corollary 6.19,
we deduce that

√
1−mmse(ρk) ≤

√
1−mmse(ρ∗k) =

√
ρ∗k+1/λ and hence that ρk+1 ≤ ρ∗k+1. This

completes the inductive step for (3.22).

As for (3.23), we can apply (3.9), the definition of Rπ,ψ(ρ), the fact that ρk ≤ ρ∗k and Lemma 3.7 (in

that order) to conclude that n−1
∑n

i=1 ψ(v̂ki , vi)
c→ E

{
ψ
(
gk(µkV +σkGk), V

)}
≥ Rψ,π(ρk) ≥ Rψ,π(ρ∗k),

as required.
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Proof of Theorem 3.10. Under the conditions of Lemma 3.8, each g∗k : R → R is Lipschitz and satis-
fies (M2), and by Corollary 6.19, ρ 7→ λ2

(
1 − mmse(ρ)

)
=: mλ(ρ) is non-decreasing on [0,∞) and

continuous on (0,∞).

(a) We will show that if either (i) or (ii) holds, then

ρ∗AMP ≡ ρ∗AMP(λ) := inf{ρ > 0 : ρ = mλ(ρ)} > 0, ρ∗0 ∈ [0, ρ∗AMP], ρ∗1 > 0,

mλ(ρ) ≥ ρ for all ρ ∈ [0, ρ∗AMP], ρ∗k+1 = mλ(ρ∗k) for all k ∈ N0.
(6.64)

Note that since mλ(ρ) ≤ λ2 for all ρ ∈ [0,∞), we always have ρ∗AMP(λ) ≤ λ2.

(i) Non-spectral initialisation: In this case, (M1) holds with µ0 = 0, σ0 = 1, ρ∗0 = 0 and U = 1.
Since E(V ) 6= 0 and E(V 2) = 1 by (M1), ρ∗1 = λ2

(
1−mmsek(0)

)
= λ2

(
1−Var(V )

)
= λ2 E(V )2 =

mλ(0) > 0, and therefore ρ∗k+1 = mλ(ρ∗k) for all k ∈ N0. In addition, mλ(ρ) ≥ mλ(0) = ρ∗1 > ρ
for all ρ ∈ [0, ρ∗1), so ρ∗AMP ≥ ρ∗1 > 0 and mλ(ρ) > ρ for all ρ ∈ [0, ρ∗AMP).

(ii) Spectral initialisation: By Proposition 3.4, (M1) holds with U ≡ G0 ∼ N(0, 1), so ρ∗k+1 = mλ(ρ∗k)

for all k ∈ N0. Since mmse(ρ) is the minimum value of E
{(
V − g(

√
ρV +G)

)2}
as g ranges over

all measurable functions,

mλ(ρ) ≥ λ2
(

1− inf
a,b∈R

E
{(
V − a(

√
ρV +G)− b

)2})
= λ2

(
1− 1− E(V )2

1 + ρ {1− E(V )2}

)
≥ λ2ρ

1 + ρ

for all ρ ∈ [0,∞), where the equality above can be verified by a routine calculation. Recalling
that λ > 1, we have mλ(ρ) ≥ λ2ρ/(1 + ρ) > ρ for all ρ ∈ [0, λ2 − 1), so ρ∗AMP ≥ λ2 − 1 = ρ∗0 > 0
and mλ(ρ) > ρ for all ρ ∈ (0, ρ∗AMP). Moreover, ρ∗1 = mλ(ρ∗0) ≥ ρ∗0 > 0.

To complete the proof of (a), note that if 0 ≤ ρ∗k ≤ ρ∗AMP for some k ∈ N0, then by (6.64) and the
fact that ρ 7→ mλ(ρ) is non-decreasing, we have 0 ≤ ρ∗k ≤ mλ(ρ∗k) = ρ∗k+1 ≤ mλ(ρ∗AMP) = ρ∗AMP. Since
ρ∗1 > 0, it follows by induction that (ρ∗k) is an increasing sequence that converges to some ρ∗ ∈ (0, ρ∗AMP].
By the continuity of mλ on (0,∞), we conclude that ρ∗ = limk→∞ ρ

∗
k+1 = limk→∞mλ(ρ∗k) = mλ(ρ∗)

and hence that ρ∗ = ρ∗AMP.

(b) Since g∗k,ψ is Lipschitz by assumption, it follows from Theorem 3.1 that n−1
∑n

i=1 ψ(v̂k,ψi , vi)
c→

Rπ,ψ(ρ∗k); see the proof of Corollary 3.2. Moreover, ρ∗k < ρ∗k+1 by (a) and Rπ,ψ is non-increasing by
Lemma 3.7, so Rπ,ψ(ρ∗k) ≥ Rπ,ψ(ρ∗k+1).

(c) Since each g∗k is Lipschitz and ρ∗k ↗ ρ∗AMP by (a), this is an immediate consequence of (3.10)
and (3.11) from Corollary 3.2.

Proof of Lemma 3.13. This proof proceeds by induction on k. We will first present the argument for
the non-spectral initialisation in Theorem 3.10 and then outline the appropriate modifications for the
spectral case.

(i) Non-spectral initialisation: Defining the state evolution parameters µ∗k, σ
∗
k, Σ̄

[k] and limiting random
variables as in the paragraph containing (3.33), we claim that

Cov

(
σ∗kGk
µ∗k

,
σ∗`G`
µ∗`

)
=

Σ̄k,`

µ∗k µ
∗
`

=
1

ρ∗k
and V ⊥⊥ (µ∗

k−1V + Ḡ∗
k−1) | (µ∗kV + σ∗kGk) (6.65)

for all k ≥ ` ≥ 1, where we use the notation of Section 7.2 to denote conditional independence. For
k = 1, we have Var(σ∗1G1/µ

∗
1) = (σ∗1/µ

∗
1)2 = 1/ρ∗1. Moreover, µ∗

k−1V + Ḡ∗
k−1 = µ0V + σ0U = cU

by condition (i) of Theorem 3.10, and U ⊥⊥ (V, µ∗1V + σ∗1G1) by definition in (3.31). Therefore,
V ⊥⊥ cU | (µ∗1V + σ∗1G1), which verifies (6.65) when k = 1.

77



For a general k ≥ 2 and 1 ≤ ` ≤ k, it follows from (3.31) and (3.33) that

Σ̄k,` = E
(
g∗`−1(µ∗

`−1V + Ḡ∗
`−1) · g∗k−1(µ∗

k−1V + Ḡ∗
k−1)

)
= E

(
E(V |µ∗

`−1V + Ḡ∗
`−1) · E(V |µ∗

k−1V + Ḡ∗
k−1)

)
= E

(
V E(V |µ∗

`−1V + Ḡ∗
`−1)

)
= µ∗`/λ

= E
(
E(V |µ∗

`−1V + Ḡ∗
`−1)2

)
= (σ∗` )

2,

(6.66)

where we have used the tower property of conditional expectation to obtain the last two equalities
above. Thus, ρ∗k = (µ∗k/σ

∗
k)

2 = λµ∗k and

Cov

(
σ∗kGk
µ∗k

,
σ∗`G`
µ∗`

)
=

Σ̄k,`

µ∗k µ
∗
`

=
1

λµ∗k
=

1

ρ∗k
. (6.67)

Now for 1 ≤ ` ≤ k, let Z` := σ∗`G`/µ
∗
` and ζ` := Z` − Zk, so that Cov(ζ`, Zk) = 0 by (6.67).

Since (ζ1, . . . , ζk−1, Zk) is a Gaussian random vector that is independent of (U, V ), it follows that
(ζ1, . . . , ζk−1), Zk, U and V are mutually independent, whence V ⊥⊥ (cU, ζ1, . . . , ζk−1, V +Zk) | (V +Zk)
by Lemma 7.8. Writing µ∗`V + σ∗`G` = µ∗` (V +Z`) = µ∗`

(
(V +Zk) + ζ`

)
for 1 ≤ ` ≤ k, we deduce that

V ⊥⊥ (cU, µ∗1V + σ∗1G1, . . . , µ
∗
k−1V + σ∗k−1Gk−1) | (µ∗kV + σ∗kGk),

which completes the inductive step for (6.65). An immediate consequence of this conditional indepen-
dence is (3.34), which implies that g∗k depends only its last argument and b∗kj = 〈∂jg∗k(v0, . . . , vk)〉n = 0
for 1 ≤ j ≤ k − 1. Thus, with the denoising functions g∗k given by (3.34), we see by induction that
the state evolution recursion (3.31) reduces to that in (3.20), and hence that (3.30) coincides with the
Bayes-AMP iteration (vk,B ≡ vk,B(n) : k, n ∈ N) in Section 3.3.

(ii) Spectral initialisation: In this case, the initial state evolution parameters are µ∗0 =
√

1− λ2 and
σ∗0 = 1/λ. We will show by induction that (6.65) holds for all k ≥ ` ≥ 0, with the convention
µ∗
−1V + Ḡ∗

−1 = 0. The base case k = 0 is trivial since Var(σ∗0G0/µ
∗
0) = (σ∗0/µ

∗
0)2 = 1/ρ∗0 = 1/(λ2− 1)

and the second part of (6.65) holds vacuously. For a general k ∈ N, (6.66) once again holds for all
1 ≤ ` ≤ k, and for ` = 0, the appropriate generalisation of the first line of (3.15) yields

Σ̄k,0 = λ−1 E
(
(µ∗0V + σ∗0G0) · g∗k−1(µ∗

k−1V + Ḡk−1)
)

= λ−1 E
(
(µ∗0V + σ∗0G0) · E(V |µ∗

k−1V + Ḡ∗
k−1)

)
= λ−1 E

(
V (µ∗0V + σ∗0G0)

)
= µ∗0/λ,

where we have used the tower property of conditional expectation in the second equality. It then
follows that (6.67) holds for all 0 ≤ ` ≤ k. Defining Z` and ζ` as above for 0 ≤ ` ≤ k, we deduce that
V ⊥⊥ (ζ0, ζ1, . . . , ζk−1, V + Zk) | (V + Zk), and the rest of the argument is essentially the same as in
(i).

6.9 Proofs for Section 4

The proof of Lemma 4.1 makes use of the following multivariate version of Stein’s lemma.

Lemma 6.20. Let g : Rd → R be such that for j = 1, . . . , d, the function xj 7→ g(x1, . . . , xd) is
absolutely continuous for Lebesgue almost every (x1, . . . , xj−1, xj+1, . . . , xd) ∈ Rd−1, with weak deriva-
tive ∂jg : Rd → R satisfying E

(
|∂jg(X)|

)
< ∞. Let ∇g(x) := (∂1(x), . . . , ∂d(x)) for x ∈ Rd. If

X ∼ Nd(0,Σ) with Σ positive definite, then

E
(
Xg(X)

)
= ΣE

(
∇g(X)

)
.

Proof. The result for Σ = Id is stated as Tsybakov (2009, Lemma 3.6). For a general non-negative
definite Σ ∈ Rd×d, let g̃(z) = g(Σ1/2z) for z ∈ Rd. Then ∇g̃(z) = Σ1/2∇g(Σ1/2z) for all z (Fourdrinier
et al., 2018, Theorem 2.1; Fan, 2022, Proposition E.5), so by taking Z ∼ Nd(0, Id), we conclude that

E
(
Xg(X)

)
= Σ1/2 E

(
Zg̃(Z)

)
= Σ1/2 E

(
∇g̃(Z)

)
= ΣE

(
∇g(X)

)
.
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Proof of Lemma 4.1. The first assertion follows from the following standard fact: let (X1, X2) be
a Gaussian random vector with E(X1) = E(X2) = 0 and Σij := Cov(Xi, Xj) for i, j ∈ {1, 2}. If
Σ11 = Var(X1) is invertible, then AX1 and X2 − AX1 are uncorrelated and hence independent when

A := Σ21Σ−1
11 . Thus, (X1, X2)

d
= (X1, AX1 + G), where AX1 = E(X2 |X1) and G ∼ N(0,Σ22 −

Σ21Σ−1
11 Σ12) is independent of X1. For (4.8), we deduce from Lemma 6.20 that

E
(
Zg̃k(Z,Zk, v)

)
= Σ11 E

(
∂1g̃k(Z,Zk, v)

)
+ Σ12 E

(
∂2g̃k(Z,Zk, v)

)
for all v ∈ R, where Σ ≡ Σk is as in (4.7). Thus, since (Z,Zk)

d
= (Z, µZ,kZ + σZ,kG̃k) is independent

of ε̄ in (4.6), and µZ,k = Σ21/Σ11 by the first part of the lemma,

E
(
Zgk(Zk, Y )

)
= E

(
Zg̃k(Z,Zk, ε̄)

)
= Σ11 E

(
∂1g̃k(Z,Zk, ε̄)

)
+ Σ12 E

(
∂2g̃k(Z,Zk, ε̄)

)
(6.68)

=
E(β̄2)

δ

{
µk+1 + µZ,k E

(
g′k(Zk, Y )

)}
,

which yields the first equality. Next, by the tower property of expectation, the final expression in (4.9)
can be written as

E
(
E(Z |Zk, Y )− E(Z |Zk)

Var(Z |Zk)
gk(Zk, Y )

)
= E

(
Z − E(Z |Zk)
Var(Z |Zk)

g̃k(Z,Zk, ε̄)

)
.

Since Z is conditionally Gaussian given Zk and ε̄ is independent of (Z,Zk), a further (conditional)
application of Stein’s lemma yields

E
(
Z − E(Z |Zk)
Var(Z |Zk)

g̃k(Z,Zk, ε̄)

∣∣∣∣ Zk) =
E
{(
Z − E(Z |Zk)

)
g̃k(Z,Zk, ε̄)

∣∣Zk}
Var(Z |Zk)

= E
(
∂1g̃k(Z,Zk, ε̄)

∣∣Zk),
so by taking expectations, we obtain the second identity for µk+1.

Proof of Proposition 4.4. Consider the right hand side of (4.31) and write J̄(β̃) :=
∑p

j=1 J(β̃j) for

β̃ ∈ Rp. Using the expression for the Lagrangian (4.30), and ignoring terms that do not depend on β̃,
we obtain

argmin
β̃∈Rp

{
L(β̃, θ̂k, ŝk)− c̄k

2
‖β̃ − β̂k‖2

}
= argmin

β̃∈Rp

{
J̄(β̃)− β̃>X>ŝk − c̄k

2
‖β̃ − β̂k‖2

}
= argmin

β̃∈Rp

{
J̄(β̃)− c̄k

2

∥∥∥∥β̃ +
X>ŝk − c̄kβ̂k

c̄k

∥∥∥∥2}

= argmin
β̃∈Rp

{
J̄(β̃)− c̄k

2

∥∥∥∥β̃ +
βk+1

c̄k

∥∥∥∥2}
= β̂k+1,

(6.69)

where the third and final equalities follow from the definitions of βk+1 and β̂k+1 = fk+1(βk+1) re-
spectively in (4.29), with fk+1 as in (4.24). Similarly, in view of the definition of ḡk in (4.23), we can
obtain (4.32) by completing the square. For (4.33), we can apply (4.29) to see that

ŝk+1 =
θ̂k+1 − θk+1

b̄k+1
=
θ̂k+1 − (Xβ̂k+1 − b̄k+1ŝ

k)

b̄k+1
= ŝk +

(θ̂k+1 −Xβ̂k+1)

b̄k+1
. (6.70)

For the final assertion of Proposition 4.4, if (β∗, θ∗, β̂∗, θ̂∗, ŝ∗) is a fixed point of the algorithm (4.29),
then θ̂∗ = Xβ̂∗ by (4.33), and (for example by considering subgradients) it follows from (4.31)
and (4.32) respectively that

β̂∗ = argmin
β̃∈Rp

L(β̃, θ̂∗, ŝ∗) = argmin
β̃∈Rp

{
J̄(β̃)− (Xβ̃)>ŝ∗

}
,

θ̂∗ = argmin
θ̃∈Rn

L(β̂∗, θ̃, ŝ∗) = argmin
θ̃∈Rn

{
¯̀(θ̃, y) + θ̃>ŝ∗

}
,

where ¯̀(θ̃, y) :=
∑n

i=1 `(θ̃i, yi). Thus, for all (β̃, θ̃) ∈ Rp × Rn with θ̃ = Xβ̃, we have

J̄(β̃) + ¯̀(θ̃, y) =
(
J̄(β̃)− (Xβ̃)>ŝ∗

)
+
(
¯̀(θ̃, y) + θ̃>ŝ∗

)
≥
(
J̄(β̂∗)− (Xβ̂∗)>ŝ∗

)
+
(
¯̀(θ̂∗, y) + (θ̂∗)>ŝ∗

)
= J̄(β̂∗) + ¯̀(θ̂∗, y),

so (β̂∗, θ̂∗) is a solution to the optimisation problem (4.22), as required.
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7 Supplementary mathematical background

7.1 Basic properties of complete convergence

Proof of Proposition 1.2. For (a), suppose that
∑

n P(‖Xn‖E > ε) < ∞ for all ε > 0. Then for any

sequence (Yn) of E-valued random elements with Yn
d
= Xn for all n, the first Borel–Cantelli lemma

implies that P(‖Yn‖E > ε infinitely often) = 0 for all ε > 0 and hence that Yn → 0 almost surely.
This shows that Xn

c→ 0. Conversely, suppose that
∑

n P(‖Xn‖E > ε) = ∞ for some ε > 0. Then

for a sequence (Yn) of independent E-valued random elements with Yn
d
= Xn for all n, the second

Borel–Cantelli lemma implies that P(‖Yn‖E > ε infinitely often) = 1 and hence that Yn 9 0 almost
surely. Thus, Xn 6

c→ 0.

The argument for (b) is similar. If
∑

n P(‖Xn‖E > C) < ∞ for all C > 0, then Xn = Oc(1) by the
first Borel–Cantelli lemma. Conversely, suppose that

∑
n P(‖Xn‖E > C) = ∞ for all C > 0. Then

for a sequence (Yn) of independent E-valued random elements with Yn
d
= Xn for all n, the second

Borel–Cantelli lemma implies that P(‖Yn‖E > C infinitely often) = 1 for all C > 0 and hence that
lim supn→∞ ‖Yn‖E =∞ almost surely. Thus, (Xn) is not Oc(1).

Remark 7.1. For a random sequence (Xn) taking values in a Euclidean space (E, ‖·‖E), it can be seen
from Definition 1.1 and Proposition 1.2 that complete convergence (to a degenerate limit) is a property
of the marginal distributions of the random elements X1, X2, . . . and not of their joint dependence
structure (i.e. the specific coupling between them), so X1, X2, . . . need not be defined on the same
probability space. Thus, just as for weak convergence or convergence in probability to a degenerate
limit (but not almost sure convergence), there is a meaningful notion of complete convergence for
sequences (µn) of Borel probability measures on E: defining B̄(x, ε) := {x′ ∈ E : ‖x′ − x‖E ≤ ε} for
ε > 0, we write µn

c→ δx if
∑

n µn
(
B̄(x, ε)c

)
<∞ for all ε > 0.

Example 1. Let (Xn) be any sequence of random variables for which there exist c1, c2, β > 0 such
that P(|Xn| > t) ≤ c1 exp(−c2t

β) for all t > 0 and n ∈ N. Let (an) be a deterministic sequence of real
numbers. If an = o(1), then clearly anXn = op(1), and if an = O(1), then anXn = Op(1). Moreover:

(a) If |an|β log n → 0, then for every t > 0, there exists N ∈ N such that c2(t/|an|)β ≥ 2 log n
for all n > N , so

∑
n P(|anXn| > t) ≤ N +

∑
n>N c1e

−2 logn < ∞. Thus, anXn = oc(1) by
Proposition 1.2(a).

(b) If lim supn→∞ |an|β log n <∞, then there exists t > 0 and N ∈ N such that c2(t/|an|)β ≥ 2 log n
for all n > N , so

∑
n P(|anXn| > t) <∞ as in (i). Thus, anXn = Oc(1) by Proposition 1.2(b).

Suppose in addition that there exist c′1, c
′
2, β
′ > 0 such that P(|Xn| > t) ≥ c′1 exp(−c′2tβ

′
) for all t > 0

and n ∈ N.

(c) If lim infn→∞ |an|β
′
log n > 0, then there exist t > 0 and N ∈ N such that c′2(t/|an|)β

′ ≤ log n
for all n > N , so

∑
n P(|anXn| > t) ≥

∑
n≥N c1e

− logn = ∞. Thus, (anXn) is not oc(1) in view
of Proposition 1.2(a).

(d) If |an|β
′
log n → ∞, then for every t > 0, there exists N ∈ N such that c′2(t/|an|)β

′ ≤ log n
for all n > N , so

∑
n P(|anXn| > t) = ∞ as in (iii). Thus, (anXn) is not Oc(1) in view of

Proposition 1.2(b).

For instance, suppose that Xn = X ∼ N(0, 1) for all n. Then Xn → X almost surely and Xn = Op(1)

but (Xn) is not Oc(1), and Xn/ log1/2 n→ 0 almost surely but (Xn/ log1/2 n) is not oc(1).

Using Proposition 1.2, it is straightforward to verify that the continuous mapping theorem and Slut-
sky’s lemma remain valid when stated in terms of complete convergence.
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Lemma 7.2. Let (Xn), (Yn) be sequences of random elements taking values in Euclidean spaces E,E′

respectively such that Xn
c→ x and Yn

c→ y for some deterministic limits x ∈ E and y ∈ E′. Then
(Xn, Yn)

c→ (x, y) in E × E′ and g(Xn)
c→ g(x) in E′ for any function g : E → E′ that is continuous

at x. If in addition x lies in some open set U ⊆ E, then 1{Xn /∈U}
c→ 0.

Consequently, Xn + Yn
c→ x + y when E = E′. Moreover, XnYn

c→ xy when E = R and E′ is
any Euclidean space (in the case of scalar multiplication), or when E = Rk×` and E′ = R` for some
k, ` ∈ N (in the case of matrix multiplication). If in addition k = ` and x−1 ∈ E is well-defined, then
1{Xn is not invertible}

c→ 0 and X+
n Yn

c→ x−1y.

Proof. For the first part of the lemma, we apply Proposition 1.2(a). Since ‖(x̃, ỹ)‖2E×E′ = ‖x̃‖2E+‖ỹ‖2E′
for any (x̃, ỹ) ∈ E × E′, we have∑

n

P
(
‖(Xn, Yn)− (x, y)‖E×E′ > ε

)
≤
∑
n

{
P(‖Xn − x‖E > ε/

√
2) + P(‖Yn − y‖E′ > ε/

√
2)
}
<∞

for all ε > 0, so (Xn, Yn)
c→ (x, y) by Proposition 1.2(a). If g : E → E′ is continuous at x ∈ E, then

for each ε > 0, there exists δ > 0 such that ‖g(x̃)− g(x)‖E′ < ε whenever ‖x̃− x‖E < δ, so∑
n

P(‖g(Xn)− g(x)‖E′ > ε) ≤
∑
n

P(‖Xn − x‖E > δ) <∞.

This holds for all ε > 0, so g(Xn)
c→ g(x) by Proposition 1.2(a). When x lies in some open set

U ⊆ E, there exists ε > 0 such that P(Xn /∈ U) ≤ P(‖Xn − X‖E > ε), so 1{Xn /∈U}
c→ 0, again by

Proposition 1.2(a).

Having established the first part of the lemma, we can now apply the facts above to deduce the
remaining assertions. Indeed, when E = E′, the function g : (x̃, ỹ) 7→ x̃ + ỹ is continuous on E × E′
and we know that (Xn, Yn)

c→ (x, y), so it follows that Xn + Yn
c→ x + y. When E = R or when

E = Rk×` and E′ = R` for some k, ` ∈ N, the scalar and matrix multiplication maps (respectively)
are continuous on E × E′. Therefore, it follows similarly that XnYn

c→ xy.

If in addition k = `, then x̃+ = x̃−1 for all invertible x̃ ∈ E = Rk×k, so the map x̃ 7→ x̃+ is
continuous on the set U of all invertible x̃ ∈ E, which is open. A further application of the continuous
mapping result above shows that if x is invertible, then 1{Xn is not invertible}

c→ 0 and X+
n Yn

c→ x−1y,
as required.

Remark 7.3. By a similar application of Proposition 1.2, it can be shown that the stochastic oc
and Oc symbols obey the ‘arithmetic rules’ of standard O notation. Written in compact form, some
examples of these are as follows (for sequences defined on spaces with compatible dimensions):

Oc(1) +Oc(1) = Oc(1), oc(1) + oc(1) = oc(1), Oc(1) + oc(1) = Oc(1),

Oc(1)Oc(1) = Oc(1), oc(1) oc(1) = oc(1), Oc(1) oc(1) = Oc(1),
(7.1)

where the assertions in the second line apply to scalar multiplication or matrix multiplication as
appropriate. (The proofs are straightforward and are therefore omitted.) To give another example of
a basic fact that follows directly from Definition 1.1 or Proposition 1.2, let E,E′ be Euclidean spaces
and suppose that g : E → E′ is bounded on every bounded subset of E. Then for any sequence (Xn)
of E-valued random elements such that Xn = Oc(1), we also have g(Xn) = Oc(1).

7.2 Regular conditional distributions and conditional independence

First, we recall the notion of conditional expectation: if (Ω,F ,P) is a probability space and G ⊆ F is a
sub-σ-algebra, we write P|G for the restricted probability measure on (Ω,G) given by P|G (B) := P(B)
for B ∈ G. If Y : (Ω,F ,P) → R is a random variable with E(|Y |) < ∞, then there exists a G-
measurable random variable Z = E(Y | G) with the property that E(Z1E) = E(Y 1E) for all E ∈ G

81



(Dudley, 2002, Chapter 10.1). We call Z the conditional expectation of Y given G, noting that it is
unique up to P|G-almost sure equivalence. For F ∈ F , we also write P(F | G) := E(1F | G).

If X is a measurable function from (Ω,F ,P) to a measurable space (X,A), we say that PX|G : Ω×A →
[0, 1] is a (regular) conditional distribution for X given G if

(i) for every ω ∈ Ω, the set function PX|G(ω, ·) is a probability measure on A;

(ii) for each A ∈ A, the map PX|G(·, A) is G-measurable, and PX|G(ω,A) = P(X−1(A) | G)(ω) for
P|G-almost every ω ∈ Ω, so that P(X−1(A) ∩ E) =

∫
E PX|G(ω,A) dP(ω) for all E ∈ G.

We say that (X,A) is a Borel space if there exist a Borel subset S ⊆ [0, 1] (equipped with the restriction
BS of the Borel σ-algebra on [0, 1] to S) and a bijection f : (X,A) → (S,BS) such that both f and
f−1 are measurable. Examples of Borel spaces (X,A) include Polish spaces (i.e. separable, completely
metrisable topological spaces) X equipped with their Borel σ-algebras A (Kallenberg, 1997, Theorem
A1.6).

Whenever (X,A) is a Borel space, there exists a conditional distribution PX|G , and moreover, if
P ′ is another such conditional distribution, then P ′(ω, ·) = PX|G(ω, ·) for P|G-almost every ω ∈ Ω;
see Kallenberg (1997, Theorem 5.3) and Dudley (2002, Theorem 10.2.2). For brevity, we will write
‘X has conditional distribution P ≡ Pω given G on an event Ω0 ∈ G’ to mean that there exists a
conditional distribution PX|G , and we can take PX|G(ω, ·) = Pω(·) for P|G-almost every ω ∈ Ω0. When
we omit the phrase ‘on an event Ω0 ∈ G’, we mean that the statement holds for P|G-almost every
ω ∈ Ω.

For measurable X,X ′ : (Ω,F ,P) → (X,A), we say that X,X ′ are identically distributed given G, and

write X
d
= |G X ′, if there exist conditional distributions PX|G and P ′X′|G for X,X ′ respectively, and

Pω(·) ≡ PX|G(ω, ·) = P ′X′|G(ω, ·) ≡ P ′ω(·) for P|G-almost every ω ∈ Ω.

Remark 7.4. For example, X has distribution Q on (X,A) and is independent of G if and only if X
has conditional distribution Pω = Q for all ω ∈ Ω.

Remark 7.5. Let X : (Ω,F ,P)→ (X,A) be as above and consider the important special case where
G = σ(Y ) for some measurable map Y from (Ω,F ,P) to a measurable space (Y,B). Denote by P
the joint distribution of (X,Y ) : (Ω,F ,P) → (X × Y,A ⊗ B) and by P Y the (marginal) distribution
of Y on (Y,B). We note here that a random variable Z : (Ω,F ,P) → R is σ(Y )-measurable if and
only if Z = g ◦ Y for some measurable function g : (Y,B)→ R (i.e. ‘Z(ω) depends on ω only through
Y (ω)’); see for example Dudley (2002, Theorem 4.2.8). Using this fact and the defining property (ii)
above, it can be verified (as in Dudley, 2002, Theorem 10.2.1) that there exists a regular conditional
distribution PX|σ(Y ) : Ω×A → [0, 1] if and only if there is a family of probability distributions (Qy)y∈Y
on (X,A) such that the following hold for every A ∈ A:

(I) y 7→ Qy(A) is a measurable function from (Y,B) to R;

(II) P (A×B) = P
(
X−1(A) ∩ Y −1(B)

)
=
∫
B Qy(A) dP Y (y) for all B ∈ B.

In this case, for P|σ(Y )-almost every ω ∈ Ω, we have PX|σ(Y )(ω,A) = QY (ω)(A) for all A ∈ A. Note

that (Qy)y∈Y is only unique up to P Y -almost sure equivalence, in the sense that if (Q′y)y∈Y satisfies

(I) and Qy = Q′y for P Y -almost every y ∈ Y, then (Q′y)y∈Y also satisfies (II). In view of (I), the map
(y,A) 7→ Qy(A) is said to be a probability kernel. An interpretation of (II) is that it makes precise
the notion of disintegrating the joint distribution P of (X,Y ) into the marginal distribution P Y of Y
and the distributions (Qy)y∈Y, where (for P Y -almost every y ∈ Y) we can view Qy as the “conditional
distribution of X given Y = y”. Indeed, by analogy with the construction of the usual product measure
and Fubini’s theorem (e.g. Dudley, 2002, Chapter 4.4), it can be shown that if φ : (X×Y,A⊗B)→ R
is P -integrable (i.e. φ is measurable and E

(
|φ(X,Y )|

)
<∞), then

(III) x 7→ φ(x, y) is A-measurable for all y ∈ Y and Qy-integrable for P Y -almost every y ∈ Y;
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(IV) y 7→
∫
X
φ(x, y) dQy(x) is B-measurable and P Y -integrable;

(V)
∫
X×Y φ(x, y) dP (x, y) =

∫
Y

(∫
X
φ(x, y) dQy(x)

)
dP Y (y).

This generalisation of Fubini’s theorem is sometimes known as the disintegration theorem, and is de-
rived from (II) using a monotone class argument; see Dudley (2002, Theorem 10.2.1(II)) and Kallenberg
(1997, Theorem 5.4).

Lemma 7.6. Let (X,A), (Y,B) be measurable spaces and let (Z, C) be a Borel space. Let φ : (X ×
Y,A⊗ B)→ (Z, C) be a measurable function and let G ⊆ F be a σ-algebra.

(a) If E ∈ G and X1, X2 : (Ω,F ,P)→ (X,A) are measurable functions with conditional distributions
P ≡ Pω and Q ≡ Qω respectively given G, then the measurable function X : (Ω,F ,P) → (X,A)
satisfying X = X1 on E and X = X2 on Ec has conditional distribution R(·) ≡ Rω(·) :=
Pω(·)1{ω∈E} +Qω(·)1{ω∈Ec} given G.

(b) For D ∈ A⊗B and y ∈ Y, let Dy := {x ∈ X : (x, y) ∈ D} = ι−1
y (D), where ιy : X→ X×Y denotes

the map x 7→ (x, y). Fix Ω0 ∈ G. Suppose that X : (Ω,F ,P)→ (X,A) has conditional distribution
P ≡ Pω given G on Ω0, and that Y : (Ω,F ,P)→ (Y,B) is G-measurable. If Z : (Ω,F ,P)→ (Z, C)
is a measurable map that agrees with φ(X,Y ) on Ω0, then Z has conditional distribution P̃ ≡
P̃ω = Pω ◦ (φ ◦ ιY (ω))

−1 given G on Ω0, so that P̃ω(C) = Pω
(
φ−1(C)Y (ω)

)
for all C ∈ C and

ω ∈ Ω0.

(c) Suppose that X,X ′ : (Ω,F ,P)→ (X,A) are measurable functions satisfying X
d
= |G X ′, and that

Y : (Ω,F ,P)→ (Y,B) is G-measurable. Then φ(X,Y )
d
= |G φ(X ′, Y ).

The result in (b) has an intuitive interpretation. Suppose for simplicity that Ω0 = Ω, and fix ω ∈ Ω. Let
µ := Pω be taken from the conditional distribution of X given G, and assume that Y is G-measurable.
To obtain the corresponding P̃ω from the conditional distribution of φ(X,Y ) given G, Lemma 7.6(b)
tells us that we can take P̃ω to be the distribution of φ(U, y), where U ∼ µ and y := Y (ω). In essence,
the reason for this is that since Y is G-measurable, we can think of Y as being ‘fixed’ once we have
conditioned on G.

Proof. (a) The fact that Rω(·) is a probability measure on A for P|G-almost every ω ∈ Ω follows
immediately from the corresponding facts for Pω(·) and Qω(·). For each A ∈ A, the map ω 7→ Rω(A)
is a composition of G-measurable functions (since E ∈ G by assumption), so is G-measurable.

For A ∈ A, let χA : X→ {0, 1} denote the indicator function of A. Then

χA ◦X = (χA ◦X1)1E + (χA ◦X2)1Ec .

Since 1E and 1Ec are G-measurable, it follows that

P
(
X−1(A)

∣∣ G)(ω) = E
(
(χA ◦X1)1E

∣∣ G)(ω) + E
(
(χA ◦X2)1Ec

∣∣ G)(ω)

= E
(
χA ◦X1

∣∣ G)(ω)1E(ω) + E
(
(χA ◦X2)

∣∣ G)(ω)1Ec(ω)

= Pω(A)1E(ω) +Qω(A)1Ec(ω) = Rω(A)

for P|G-almost every ω ∈ Ω, as required.

(b) This can be deduced from Kallenberg (1997, Theorem 5.4) and part (a) above, but we give a
direct proof here for completeness. Note that for P|G-almost every ω ∈ Ω0, the set function P̃ω is the
push-forward (image measure) of Pω induced by the measurable map x 7→ φ ◦ ιY (ω)(x) from (X,A) to

(Z, C); thus, P̃ω is indeed a probability measure for P|G-almost every ω ∈ Ω0.

Now let D denote the collection of all D ∈ A ⊗ B for which ω 7→ Pω
(
DY (ω)

)
is G-measurable and

Pω
(
DY (ω)

)
= P

(
(X,Y )−1(D)

∣∣ G)(ω) for P|G-almost every ω ∈ Ω0. If D = A×B for some A ∈ A and

83



B ∈ B, then DY (ω) = A if Y (ω) ∈ B, and DY (ω) = ∅ if Y (ω) /∈ B. Thus,

Pω
(
DY (ω)

)
= Pω(A)1{Y (ω)∈B} = P

(
X−1(A)

∣∣ G)(ω)1{Y (ω)∈B}

= E
(
χA ◦X

∣∣ G)(ω) · (χB ◦ Y )(ω) = E
(
(χA ◦X) · (χB ◦ Y )

∣∣ G)(ω)

= P
(
(X,Y )−1(D)

∣∣ G)(ω)

for P|G-almost every ω ∈ Ω0, where we have used the fact that χB ◦ Y is G-measurable in the
penultimate equality. Thus D ⊇ {A×B : A ∈ A, B ∈ B}, which is a π-system that generates D. Now
suppose that D1, D2 ∈ D with D1 ⊆ D2. Then

Pω
(
(D2 \D1)Y (ω)

)
= Pω

(
D
Y (ω)
2 \DY (ω)

1

)
= Pω

(
D
Y (ω)
2

)
− Pω

(
D
Y (ω)
1

)
= P

(
(X,Y )−1(D2)

∣∣ G)(ω)− P
(
(X,Y )−1(D1)

∣∣ G)(ω)

= P
(
(X,Y )−1(D2 \D1)

∣∣ G)(ω)

for P|G-almost every ω ∈ Ω0, so D2 \D1 ∈ D. Finally, let (Dn) be an increasing sequence of sets in D,

and let D :=
⋃∞
n=1Dn. Then DY (ω) =

⋃∞
n=1D

Y (ω)
n and (X,Y )−1(D) =

⋃∞
n=1(X,Y )−1(Dn), so that

Pω
(
DY (ω)

)
= lim

n→∞
Pω
(
DY (ω)
n

)
= lim

n→∞
P
(
(X,Y )−1(Dn)

∣∣ G)(ω) = P
(
(X,Y )−1(D)

∣∣ G)(ω)

for P|G-almost every ω ∈ Ω0, where we have used the conditional monotone convergence theorem in
the final equality (Dudley, 2002, Theorem 10.1.7). Thus, D ∈ D, and it follows from Dynkin’s lemma
that D = A⊗ B.

Finally, if C ∈ C, then D := φ−1(C) ∈ A⊗ B, so that for P|G-almost every ω ∈ Ω0,

Pω
(
φ−1(C)Y (ω)

)
= Pω

(
DY (ω)

)
= P

(
(X,Y )−1(D)

∣∣ G)(ω)

= P
(
(X,Y )−1(D)

∣∣ G)(ω) · 1Ω0(ω) = P
(
(X,Y )−1(D) ∩ Ω0

∣∣ G)(ω)

= P
(
Z−1(C) ∩ Ω0

∣∣ G)(ω) = P
(
Z−1(C)

∣∣ G)(ω),

as required, since Ω0 ∈ G.

(c) This follows directly from (b) on setting Ω0 = Ω.

The following useful result is a special case of Kallenberg (1997, Theorem 5.4) and can be derived
using the definition of conditional expectation (Dudley, 2002, Problem 10.1.9), or alternatively using
regular conditional distributions and standard measure-theoretic devices (similarly to the proofs of
Lemma 7.6(b) above and Dudley (2002, Theorem 10.2.5)).

Lemma 7.7. Let X,Y be measurable functions from (Ω,F ,P) to measurable spaces (X,A), (Y,B)
respectively, and let φ : (X × Y,A ⊗ B) → R be a measurable function satisfying E

(
|φ(X,Y )|

)
< ∞.

Let G ⊆ F be a σ-algebra, and suppose that Y is G-measurable. If X has distribution Q on (X,A) and
is independent of G, then E

(
φ(X,Y )

∣∣G)(ω) =
∫
X
φ
(
x, Y (ω)

)
dQ(x) for P|G-almost every ω ∈ Ω.

Next, for σ-algebras G1,G2,G3 ⊆ F , we say that G1 and G2 are conditionally independent given G3,
and write G1 ⊥⊥ G2 | G3, if P(A1 ∩ A2 | G3) = P(A1 | G3)P(A2 | G3) almost surely for all A1 ∈ G1 and
A2 ∈ G2, or equivalently if P

(
A1 |σ(G2,G3)

)
= P(A1 | G3) almost surely for all A1 ∈ G1 (Kallenberg,

1997, Proposition 5.6). If this holds with G1 = σ(X) for some random variable X, we also say that X
and G2 are conditionally independent given G3, and write X ⊥⊥ G2 | G3 (and similarly for G2 and G3).
The following basic facts follow straightforwardly from the definition of conditional independence.

Lemma 7.8 (Kallenberg, 1997, Corollary 5.7(i)). We have G1 ⊥⊥ G2 | G3 if and only if σ(G1,G3) ⊥⊥
G2 | G3.

Lemma 7.9. Let (X,A) and (Y,B) be measurable spaces and let G ⊆ F be a σ-algebra.

(a) For i = 1, 2, let Xi : (Ω,F ,P)→ (X,A) and Yi : (Ω,F ,P)→ (Y,B) be measurable functions such
that Xi ⊥⊥ Yi | G. For E ∈ G, let X : (Ω,F ,P) → (X,A) be the measurable function satisfying
X = X1 on E and X = X2 on Ec, and define Y similarly. Then X ⊥⊥ Y | G.
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(b) Suppose that the measurable maps X : (Ω,F ,P) → (X,A) and Y : (Ω,F ,P) → (Y,B) have con-
ditional distributions P ≡ Pω and Q ≡ Qω respectively given G. Then X ⊥⊥ Y | G if and only if
(X,Y ) : (Ω,F ,P)→ (X× Y,A⊗ B) has conditional distribution R ≡ Rω := Pω ⊗Qω given G.

Proof. (a) For fixed A ∈ A and B ∈ B, write χA : (X,A) → {0, 1} and χB : (Y,B) → {0, 1} for the
respective indicator functions, and for i = 1, 2, note that

E
(
(χA ◦Xi) · (χB ◦ Yi)

∣∣ G) = P
(
X−1
i (A) ∩ Y −1

i (B)
∣∣ G) = P

(
X−1
i (A)

∣∣ G)P(Y −1
i (B)

∣∣ G)
= E(χA ◦Xi | G)E(χB ◦ Yi | G)

almost surely, since Xi ⊥⊥ Yi | G. As in the proof of Lemma 7.6(a), we have χA ◦X = (χA ◦X1)1E +
(χAc ◦X2)1Ec and χB ◦ Y = (χB ◦ Y1)1E + (χBc ◦ Y2)1Ec , so it follows that

P
(
X−1(A) ∩ Y −1(B)

∣∣ G) = E
(
(χA ◦X) · (χB ◦ Y )

∣∣ G)
= E

(
(χA ◦X1) · (χB ◦ Y1)1E + (χA ◦X2) · (χB ◦ Y2)1Ec

∣∣ G)
= E

(
(χA ◦X1) · (χB ◦ Y1)

∣∣ G)1E + E
(
(χA ◦X2) · (χB ◦ Y2)

∣∣ G)1Ec
= E(χA ◦X1 | G)E(χB ◦ Y1 | G)1E + E(χA ◦X2 | G)E(χB ◦ Y2 | G)1Ec

= E
(
(χA ◦X1)1E + (χA ◦X2)1Ec

∣∣ G)E((χB ◦ Y1)1E + (χB ◦ Y2)1Ec | G
)

= E(χA ◦X | G)E(χB ◦ Y | G) = P
(
X−1(A)

∣∣ G)P(Y −1(B)
∣∣ G),

where we have used the fact that E ∈ G to obtain the third-last equality. Since this holds for all
A ∈ A and B ∈ B, the result follows.

(b) For A ∈ A and B ∈ B, note that

P
(
X−1(A) ∩ Y −1(B)

∣∣ G)(ω) = P
(
(X,Y )−1(A×B)

∣∣ G)(ω) (7.2)

P
(
X−1(A)

∣∣ G)(ω) · P
(
Y −1(B)

∣∣ G)(ω) = Pω(A)Qω(B) = Rω(A×B) (7.3)

for P|G-almost every ω ∈ Ω. Thus, if (X,Y ) has conditional distribution R ≡ Rω = Pω ⊗ Qω given
G, then for any A ∈ A and B ∈ B, the right hand sides of (7.2) and (7.3) agree for P|G-almost every
ω ∈ Ω, so the same is true of the left hand sides. This shows that X ⊥⊥ Y | G.

Conversely, suppose that X ⊥⊥ Y | G and let D be the collection of all D ∈ A ⊗ B such that
Rω(D) = (Pω ⊗Qω)(D) = P

(
(X,Y )−1(D)

∣∣ G)(ω) for P|G-almost every ω ∈ Ω. Then for any A ∈ A
and B ∈ B, the left hand sides of (7.2) and (7.3) agree for P|G-almost every ω ∈ Ω, so D contains a
π-system {A × B : A ∈ A, B ∈ B} that generates A⊗ B. Similarly to the proof of Lemma 7.6(b), it
can be verified that D is a d-system, so it follows from Dynkin’s lemma that D = A ⊗ B, and hence
that (X,Y ) has conditional distribution R ≡ Rω = Pω ⊗Qω, as required.

7.3 Auxiliary probabilistic results

The following general result is used in the proofs of some important complete convergence statements
in Sections 6.4 and 7.4, specifically Proposition 6.16(g) and Corollary 7.21(b).

Lemma 7.10. Let (Xn), (Yn) be sequences of measurable functions defined on (Ω,F ,P) such that
Xn, Yn take values in Polish spaces En, E

′
n respectively for each n ∈ N. Suppose that there exist Borel

measurable functions gn : En → E′n such that Yn
d
= gn(Xn) for each n. Then there exists a sequence

of measurable functions X̃n : Ω → En such that X̃n
d
= Xn for all n and

(
g1(X̃1), g2(X̃2), . . .

)
=

(Y1, Y2, . . . ) almost surely (viewed as random sequences taking values in
∏∞
n=1E

′
n, equipped with its

cylindrical (i.e. Borel) σ-algebra).

This is an extension to random sequences of the following result for pairs of random elements: given
random elements X1, X2 taking values in E1, E2 respectively, let (Y1, Y2) ∼ π be any coupling of

g1(X1), g2(X2). Then there exists a coupling (X ′1, X
′
2) ∼ π′ of X1, X2 such that

(
g1(X ′1), g2(X ′2)

) d
=

85



(Y1, Y2), i.e. π = π′ ◦ (g1, g2)−1. This can be proved by applying the gluing lemma from optimal
transport (Villani, 2003, Lemma 7.6) or a simpler version of the general argument below.

Given an arbitrary coupling (Y1, Y2, . . . ) of the random elements g1(X1), g2(X2), . . . , the first (and
most important) step in the proof below is to ‘lift’ this to produce a suitable coupling (X ′1, X

′
2, . . . ) of

the random elements X1, X2, . . . , in such a way that
(
g1(X ′1), g2(X ′2), . . .

) d
= (Y1, Y2, . . . ) as random

sequences. Intuitively, the key construction can be interpreted as the output of the following two-stage
procedure:

(A) Denoting by π the (given) distribution of (Y1, Y2, . . . ) on
∏∞
n=1E

′
n, we first draw (Y ′1 , Y

′
2 , . . . ) ∼ π;

(B) Having obtained (Y ′1 , Y
′

2 , . . . ) = (y1, y2, . . . ) from Step A, we then generate X ′1, X
′
2, . . . by sam-

pling independently from Q1
y1 , Q

2
y2 , . . . , where Qnyn denotes the “conditional distribution of Xn

given gn(Xn) = yn”.

Step B ensures that X ′1, X
′
2, . . . are conditionally independent given (Y ′1 , Y

′
2 , . . . ). To make rigorous

sense of this informal description and to validate the construction, we use the language of disintegra-
tion of measures, as outlined in Remark 7.5. There are similarities here with the proof of the gluing
lemma (Villani, 2003, Lemma 7.6). To verify that the random sequences

(
gn(X ′n)

)
and (Yn) have the

same distribution on
∏∞
n=1E

′
n, it suffices to show that they have the same finite-dimensional distribu-

tions, i.e. that
(
g1(X ′1), . . . , gn(X ′n)

) d
= (Y1, . . . , Yn) for all n. Finally, to upgrade all the distributional

equalities above to almost-sure equalities, we appeal to a general result from abstract probability
theory (Kallenberg, 1997, Corollary 5.11), which is also proved using disintegration techniques.

Remark 7.11. To guarantee the existence of a random sequence (X̃1, X̃2, . . . ) with a given distribution
on
∏∞
n=1E

′
n, we require the underlying probability space (Ω,F ,P) to be rich enough to support a

sequence of independent U [0, 1] random variables. This can be assumed without loss of generality,
since otherwise we can work with the product space (Ω× [0, 1],F ⊗B[0,1],P⊗ µ[0,1]), where B[0,1] and
µ[0,1] denote the Borel σ-algebra and Lebesgue measure on [0, 1] respectively.

Proof of Lemma 7.10. For each n, denote by Bn,B′n the Borel σ-algebras of En, E
′
n respectively. It

follows from Dudley (2002, Theorem 2.5.7) and Kallenberg (1997, Lemma 1.2) that
∏n
j=1E

′
j and∏n

j=1Ej are Polish spaces with Borel σ-algebras
⊗n

j=1 B′j and
⊗n

j=1 Bj respectively. Denote by µn, πn
the distributions of Yn and (Y1, . . . , Yn) on (E′n,B′n) and

(∏n
j=1E

′
j ,
⊗n

j=1 B′j
)

respectively. Since En is
a Polish space, we know from Section 7.2 that there exists a regular conditional distribution for Xn

given σ
(
gn(Xn)

)
. Equivalently, there is a family of probability distributions (Qny )y∈E′n on En satisfying

conditions (I) and (II) in Remark 7.5, where we take X := Xn, Y := gn(Xn)
d
= Yn and P Y := µn. It

follows from Remark 7.5(II) that P(Xn ∈ A) =
∫
E′n
Qny (A) dµn(y) for all A ∈ Bn, and moreover that∫

B′
1B(y) dµn(y) = P

(
gn(Xn) ∈ B ∩B′

)
= P

(
Xn ∈ g−1

n (B), gn(Xn) ∈ B′
)

=

∫
B′
Qny
(
g−1
n (B)

)
dµn(y)

(7.4)
for B,B′ ∈ B′n. Thus, for all B ∈ B′n, we have Qny

(
g−1
n (B)

)
= 1B(y) for µn-almost every y ∈ E′n.

For each n ∈ N, we now define a new measure π′n on
(∏n

j=1Ej ,
⊗n

j=1 Bj
)

by

π′n(A) :=

∫
∏n
j=1 E

′
j

(∫
E1

· · ·
∫
En

1A(x1, . . . , xn) dQnyn(xn) · · · dQ1
y1(x1)

)
dπn(y1, . . . , yn) (7.5)

for A ∈
⊗n

j=1 Bj . That this a well-defined probability measure follows from Remark 7.5(III, IV) and
the monotone convergence theorem. For each n, we claim that

(i) π′n+1(A× En+1) = π′n(A) for every A ∈
⊗n

j=1 Bj ;

(ii) P(Xn ∈ An) = π′n
(∏n−1

j=1 Ej ×An
)

for every An ∈ Bn;

86



(iii) πn = π′n◦(g1, . . . , gn)−1, where (g1, . . . , gn) :
(∏n

j=1Ej ,
⊗n

j=1 Bj
)
→
(∏n

j=1E
′
j ,
⊗n

j=1 B′j
)

denotes

the measurable map (x1, . . . , xn) 7→
(
g1(x1), . . . , gn(xn)

)
.

Property (i) is immediate from (7.5) and the fact that πn+1(B × E′n) = πn(B) for all B ∈
⊗n

j=1 B′j .
To verify (ii), observe that

π′n
(∏n−1

j=1 Ej ×An
)

=

∫
∏n
j=1 E

′
j

∫
En

1An(xn) dQnyn(xn) dπn(y1, . . . , yn)

=

∫
E′n

Qnyn(An) dµn(yn) = P(Xn ∈ An),

where the final equality is obtained from Remark 7.5(II) as above. As for (iii), fix Bj ∈ B′j for 1 ≤ j ≤ n
and note that by (7.4) and (7.5), we have

π′n
(∏n

j=1 g
−1
j (Bj)

)
=

∫
∏n
j=1 E

′
j

Q1
y1

(
g−1

1 (B1)
)
· · · Qnyn

(
g−1
n (Bn)

)
dπn(y1, . . . , yn)

=

∫
∏n
j=1 E

′
j

1B1(y1) · · ·1Bn(yn) dπn(y1, . . . , yn) = πn
(∏n

j=1Bj
)
.

This means that πn and π′n◦(g1, . . . , gn)−1 agree on
{∏n

j=1Bj : Bj ∈ B′j for all 1 ≤ j ≤ n
}

, a π-system
that generates

⊗n
j=1 Bj , so (iii) holds.

Since the distributions π′1, π
′
2, . . . on the Polish spaces E1, E1 × E2, . . . satisfy the consistency con-

dition (i), we deduce from the Daniell–Kolmogorov extension theorem (Kallenberg, 1997, Theo-
rem 5.14) and Remark 7.11 that exists a sequence (X ′n)n∈N of random elements X ′n : Ω → En such

that (X ′1, . . . , X
′
n) ∼ π′n on

∏n
j=1Ej for each n. Then by (ii) and (iii) above, we have X ′n

d
= Xn

and
(
g1(X ′1), . . . , gn(X ′n)

)
∼ π′n ◦ (g1, . . . , gn)−1 = πn for each n, where πn was defined to be the

distribution of (Y1, . . . , Yn). Thus, the sequences
(
gn(X ′n)

)
and (Yn) have the same finite-dimensional

distributions; in other words, their distributions agree on
{∏N

j=1Bj ×
∏∞
j=N+1E

′
j : N ∈ N, Bj ∈

B′j for all 1 ≤ j ≤ N
}

, a collection of cylindrical sets that generate the cylindrical σ-algebra B′ of∏∞
n=1E

′
n. (By Kallenberg (1997, Lemma 1.2), B′ is the Borel σ-algebra of

∏∞
n=1E

′
n.) We conclude

that
(
g1(X ′1), g2(X ′2), . . .

) d
= (Y1, Y2, . . . ) as random sequences taking values in

(∏∞
n=1E

′
n,B′

)
.

Finally, we apply Kallenberg (1997, Corollary 5.11) with T =
∏∞
n=1En, S =

∏∞
n=1E

′
n, η = (X ′n),

ξ = (Yn) and f : T → S given by f(x1, x2, . . . ) =
(
g1(x1), g2(x2), . . .

)
; note that T, S are Polish

spaces (e.g. Dudley, 2002, Theorem 2.5.7) and that f is Borel measurable. Having already shown that

f(η)
d
= ξ, we deduce from Kallenberg (1997, Corollary 5.11) that there exists (X̃n) ≡ η̃

d
= η = (X ′n)

satisfying
(
gn(X̃n)

)
= f(η̃) = ξ = (Yn) almost surely, as required.

In the proofs of Proposition 6.16(a, c), we apply the concentration inequality below for sums of pseudo-
Lipschitz functions of independent Gaussian random variables.

Lemma 7.12. There exists a universal constant C > 0 such that the following holds for all n ∈ N,

r ≥ 2 and t ≥ 0: if Z1, . . . , Zn
iid∼ N(0, 1), L ≡ (L1, . . . , Ln) ∈ (0,∞)n and fi ∈ PL1(r, Li) for

1 ≤ i ≤ n, then

P
(∣∣∣∣ 1n

n∑
i=1

{
fi(Zi)− E

(
fi(Zi)

)}∣∣∣∣ ≥ t) ≤ exp

(
1−min

{(
nt

(Cr)r‖L‖2

)2

,

(
nt

(Cr)r‖L‖∞

)2/r})
. (7.6)

Proof. We first consider the case n = 1. For arbitrary r ≥ 2 and L > 0, we may assume without loss
of generality that f ≡ f1 ∈ PL(r, L) satisfies f(0) = 0, so that |f(x)| = |f(x)− f(0)| ≤ L(|x|+ |x|r) ≤
2L(|x| ∨ |x|r) for all x ∈ R. Thus, if Z ∼ N(0, 1), then

P(|f(Z)| ≥ s) ≤ P
(
|Z| ∨ |Z|r ≥ s/(2L)

)
≤ e−

1
2

min
{
( s
2L)

2
, ( s

2L)
2/r

}
(7.7)
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for all s ≥ 0, and

E
(
|f(Z)|

)
L

≤ E(|Z|+ |Z|r) =

(√
2

π
+

2r/2√
π

Γ

(
r + 1

2

))
=: υr

by direct computation. Now Γ(x) < e1/(12x)(x/e)x
√

2π/x for all x > 0 by a non-asymptotic version of
Stirling’s formula; see for example Gordon (1994, Theorem 5) and Dümbgen et al. (2021, Lemma 10).
Since r ≥ 2, we have (r + 1)/e < r and (

√
2− 1)rr/2 ≥ 2(

√
2− 1) > 1/

√
π. Therefore,

υr
2
≤ 1√

2

(
1√
π

+

(
r + 1

e

)r/2
e

1
6(r+1)

− 1
2

)
≤ 1√

2

(
1√
π

+ rr/2
)
< rr/2. (7.8)

Thus, for t ≥ Lυr, we deduce from (7.7) and (7.8) that

P
{∣∣f(Z)− E

(
f(Z)

)∣∣ ≥ t} ≤ P
{
|f(Z)| ≥ t− E

(
|f(Z)|

)}
≤ e−

1
2

min
{
( t
2L
−υr

2 )
2
, ( t

2L
−υr

2 )
2/r

}

≤ e
1
2
− 1

2( t
2L
−υr

2 )
2/r

≤ e
1+r
2
− 1

2( t
2L)

2/r

≤ e1−( t
2L)

2/r 1
r+1 , (7.9)

where the third inequality follows from the fact that a2/r ≤ |a − b|2/r + b2/r for r ≥ 2 as above
and any a, b ≥ 0. Now (7.9) holds trivially for all t ∈ [0, Lυr) since 1 − (r + 1)−1{t/(2L)}2/r >
1− (r + 1)−1(υr/2)2/r > 0 by (7.8), so (7.6) holds with C = 3 when n = 1.

We now derive (7.6) for general n ≥ 2 with the aid of Theorem 3.1 and Proposition A.3 in Kuchibhotla
and Chakrabortty (2018); see also Theorem 1 and Corollary 2 in Bakhshizadeh et al. (2020). As in
Sections 2 and 3 of Kuchibhotla and Chakrabortty (2018), we begin by defining ϑβ : [0,∞) → [0,∞)
for each β > 0 by ϑβ(x) := exp(xβ) − 1. Moreover, for β, λ > 0, let ϑβ,λ : [0,∞) → [0,∞) be the

continuous, strictly increasing function with inverse given by ϑ−1
β,λ(t) := log1/2(1 + t) + λ log1/β(1 + t)

for t ≥ 0. For a random variable X and a strictly increasing function g : [0,∞) → [0,∞) satisfying
g(0) = 0, we write Ξg(X) := inf

{
θ > 0 : E

(
g(|X|/θ)

)
≤ 1
}
∈ [0,∞], setting inf ∅ =∞ by convention.

Note that Ξg(X) is precisely the g-Orlicz norm of X when g is convex, but that Ξg does not in general
define a norm when g is not convex (for example when g = ϑβ for β ∈ (0, 1), as in the proof below).

For arbitrary n ≥ 2, r ≥ 2 and L ≡ (L1, . . . , Ln) ∈ (0,∞)n, let f1, . . . , fn ∈ PL(r, Li) and Z1, . . . , Zn
iid∼

N(0, 1), and assume without loss of generality that Xi := fi(Zi) satisfies E(Xi) = 0 for all 1 ≤ i ≤ n.
Setting β := 2/r ∈ [0, 1] and θi := 2{4(r+1)}r/2 Li for 1 ≤ i ≤ n, we now integrate up the bound (7.9)
to see that

E
(
ϑβ(|Xi|/θi)

)
=

∫ ∞
0

P
(
ϑβ(|Xi|/θi) ≥ t

)
dt =

∫ ∞
0

P
(
|Xi| ≥ θiϑ−1

β (t)
)
dt

=

∫ ∞
0

P
(
|Xi| ≥ 2(r + 1)r/2Li {4 log(1 + t)}1/β

)
dt

≤
∫ ∞

0
e(1 + t)−4 dt = e/3 < 1, (7.10)

whence Ξϑβ (Xi) ≤ θi = 2{4(r + 1)}r/2 Li <∞. This shows that X1, . . . , Xn are independent, centred
sub-Weibull random variables of order β = 2/r, in the sense of Definition 2.2 in Kuchibhotla and
Chakrabortty (2018). Then applying Kuchibhotla and Chakrabortty (2018, Theorem 3.1) with a =
(1/n, . . . , 1/n) ∈ Rn and b :=

(
Ξϑβ (X1)/n, . . . ,Ξϑβ (Xn)/n

)
in their notation, we deduce from (7.10)

that

Ξϑβ,λβ

(
1

n

n∑
i=1

Xi

)
≤ 2eCβ‖b‖2, where

{
Cβ := (2e2/e/β)1/β(128π)1/4 e3+ 1

24

λβ := (41/β/
√

2) ‖b‖∞/‖b‖2.
(7.11)
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It then follows from Proposition A.3 in Kuchibhotla and Chakrabortty (2018) that

P
(∣∣∣∣ 1n

n∑
i=1

Xi

∣∣∣∣ ≥ 4eCβ‖b‖2 max
(
s1/2, λβs

1/β
))
≤ e1−s

for all s ≥ 0, and hence that

P
(∣∣∣∣ 1n

n∑
i=1

Xi

∣∣∣∣ ≥ t) ≤ exp

(
1−min

{(
t

4eCβ‖b‖2

)2

,

(
t

4eC ′β‖b‖∞

)β})
for all t ≥ 0, where C ′β := (41/β/

√
2)Cβ. Since β = 2/r and Ξϑβ (Xi) ≤ 2{4(r+1)}r/2 Li for 1 ≤ i ≤ n,

we have
n‖b‖p =

∥∥(Ξϑβ (X1), . . . ,Ξϑβ (Xn)
)∥∥
p
≤ 2{4(r + 1)}r/2 ‖L‖p

for p ∈ {2,∞}. Moreover, 2{4(r + 1)}r/2Cβ ≤ 2{4(r + 1)}r/2C ′β . {4e1/e(r + 1)}r, so we can indeed
find a suitable universal constant C > 0 in (7.6) such that the desired conclusion holds for all n ∈ N,
r ≥ 2, L ≡ (L1, . . . , Ln) ∈ (0,∞)n and t ≥ 0, as required.

Remark 7.13. When r > 2, f ∈ PL1(r) and Z ∼ N(0, 1), the moment generating function of f(Z)
may not be finite anywhere except at 0 if f(Z) has heavier tails than an exponential random variable
(for example when f(z) = sgn(z)|z|r for z ∈ R). In these situations, the standard Chernoff method
fails, which is why we apply different techniques that can handle general sub-Weibull random variables.

While we are primarily concerned with the case r ≥ 2 in the proof of Proposition 6.16, there is an
analogue of (7.6) when r ∈ [1, 2), namely

P
(∣∣∣∣ 1n

n∑
i=1

{
fi(Zi)− E

(
fi(Zi)

)}∣∣∣∣ ≥ t) ≤ exp

(
1−min

{(
nt

C‖L‖2

)2

,

(
nt

C‖L‖r̃

)2/r})
, (7.12)

where C > 0 is a suitable universal constant and r̃ := 2/(2 − r) ∈ [2,∞) is the Hölder conjugate
of 2/r. This can be proved using a Chernoff bound (e.g. Boucheron et al., 2013, Exercise 2.27), or
alternatively using Kuchibhotla and Chakrabortty (2018, Theorem 3.1) once again, where we instead
take β := 2/r, Cβ := 4e+ 2(2 log 2)r/2 and λβ := (41+1/βC−1

β e/
√

2) ‖b‖r̃/‖b‖2 in (7.11).

The proof of Proposition 6.16(g) makes use of the following straightforward consequence of the defi-
nition of weak convergence.

Lemma 7.14. On a Euclidean space E, if (µn) is a sequence of Borel probability measures that
converges weakly to a Borel probability measure µ, then

∫
E g dµn →

∫
E g dµ for any bounded, Borel

measurable g : E → R that is continuous µ-almost everywhere (in the sense that the set of discontinu-
ities of g has µ-measure 0).

Proof. Writing A ⊆ E for the set of discontinuities of g, we have µ(A) = 0 by assumption. By
Skorokhod’s representation theorem (e.g. Kallenberg, 1997, Theorem 3.30), there exist random vari-
ables X,X1, X2, . . . defined on a common probability space such that X ∼ µ, Xn ∼ µn for all n
and Xn → X almost surely. Then g(Xn) → g(X) almost surely on the event {X ∈ Ac}, which has
probability µ(Ac) = 1, so an application of the dominated (or bounded) convergence theorem shows
that

∫
E g dµn = E

(
g(Xn)

)
→ E

(
g(X)

)
=
∫
E g dµ, as required.

Remark 7.15. For each Lipschitz function fk : R2 → R in the AMP recursion (2.1), we assume
in (A5) that there exists some f ′k that satisfies the hypotheses of Lemma 7.14 above with µ = λ⊗ π;
recall that λ denotes Lebesgue measure on R and the probability distribution π is as in (A1). To see
why (A5) is a non-vacuous (albeit very mild) condition, consider Borel probability measures on RD of
the form µ = λ ⊗ ν, where D ≥ 2 and ν is some probability measure on RD−1. We will now give an
example of a Lipschitz function G : RD → R whose partial derivative ∂G

∂x1
cannot be extended beyond

its domain of definition to a function g : RD → R that is continuous µ-almost everywhere, for any µ
of the above form.
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Denote by C ⊆ [0, 1] the fat Cantor set (e.g. Aliprantis and Burkinshaw, 1998, pp. 140–141), which
has the property that for all x ∈ C and ε > 0, both (x − ε, x + ε) ∩ C and (x − ε, x + ε) ∩ Cc have
positive Lebesgue measure. Then for any f : R → R with f = 1C Lebesgue almost everywhere, we
have {f(u) : u ∈ (x − ε, x + ε)} = {0, 1} for all x ∈ C and ε > 0, so f is discontinuous on C,
which has Lebesgue measure 1/2 > 0. Note that F : x 7→

∫ x
−∞ 1C(t) dt is a Lipschitz function on

R with F ′(x) = 1C(x) for Lebesgue almost every x ∈ R. Thus, for general D ∈ N, the function
G : (x1, . . . , xD) 7→ F (x1) is Lipschitz on RD. Moreover, if g : RD → R agrees with ∂G

∂x1
wherever the

latter is defined, then g is discontinuous on C × RD−1, which has strictly positive µ-measure when
µ = λ⊗ ν as above.

7.4 Wasserstein convergence and pseudo-Lipschitz functions

Throughout this subsection, we fix D ∈ N and r ∈ [1,∞), and write P(r) ≡ PD(r) for the set of
probability measures P on RD with

∫
RD ‖x‖

r dP (x) <∞ (i.e. a finite rth moment). For P,Q ∈ P(r),

recall from Section 1.1 the definitions of d̃r(P,Q) and the r-Wasserstein distance dr(P,Q).

The primary purpose of this subsection is to establish Theorem 7.17 and its probabilistic Corollary 7.21,
which can be viewed as extensions of Villani (2003, Theorem 7.12). These show in particular that d̃r
and dr are metrics on P(r) that induce the same topology (Remark 7.18), and also formalise the link
between functions in PLD(r) and convergence in dr (or equivalently d̃r).

As a first step towards the proof of Theorem 7.17, it is helpful to establish the following.

Proposition 7.16. There exists a countable set T ′r of bounded Lipschitz functions on RD with the
property that d̃r(P,Q) = supψ∈T ′r

∣∣∫
RD ψ dP −

∫
RD ψ dQ

∣∣ ∈ [0,∞) for all P,Q ∈ P(r).

A key property of the set T ′r we construct is that for any ψ ∈ PLD(r), there exists a sequence (ψ`) in
T ′r that converges uniformly to ψ on compact subsets of RD. In subsequent proofs, we will write Q(f)
as shorthand for

∫
RD f dQ when Q is a signed Borel measure on RD and f : RD → R is a Q-integrable

function.

Proof. For N ∈ N, let BN ≡ B̄D(0, N) := {x ∈ RD : ‖x‖ ≤ N} and define fN (x) := (N − ‖x‖) ∨ 0 ∧ 1
for x ∈ RD, so that fN is 1-Lipschitz on RD, fN = 1 on BN−1 and fN = 0 on Bc

N . In the argument
below (and in the proof of Theorem 7.17), we will use fN as a substitute for the (discontinuous)
indicator function 1BN in several places. Note in particular that if g̃ : BN → R is Lipschitz on BN ,
then the function g : RD → R defined by g(x) := g̃(x)fN (x) is Lipschitz and supported on the compact
set BN .

Recalling the definitions of d̃r,P(r) from (1.4) and writing P̃LD(r, 1) for the set of all φ ∈ PLD(r, 1)
satisfying φ(0) = 0, we see from (1.3) that

d̃r(P,Q) = sup
φ∈P̃LD(r,1)

|(P−Q)(φ)| ≤ sup
φ∈P̃LD(r,1)

(P+Q)(|φ|) ≤
∫
RD

(‖x‖+‖x‖r) d(P+Q)(x) <∞ (7.13)

for all P,Q ∈ P(r). If φ ∈ P̃LD(r, 1), then∣∣φ(x)− φ(y)
∣∣ ≤ ‖x− y‖(1 + ‖x‖r−1 + ‖y‖r−1

)
≤ (1 + 2N r−1)‖x− y‖

for all x, y ∈ BN , so φ|BN belongs to the set of (1 + 2N r−1)-Lipschitz functions g : BN → R satisfying
g(0) = 0, which we denote by GN . Since BN is compact and GN is uniformly bounded and equicon-
tinuous, GN is therefore compact for the supremum norm on BN by the Arzelà–Ascoli theorem (e.g.
Dudley, 2002, Theorem 2.4.7). It is therefore totally bounded, so for each m ∈ N, we can find a finite
subset H̃N,m ⊆ GN such that for any g ∈ GN , there exists h̃ ∈ H̃N,m with supx∈BN |g(x)− h̃(x)| < 1/m.

Each h̃ ∈ H̃N,m can be associated with a function h : RD → R defined by h(x) := h̃(x)fN (x). By
the reasoning in the previous paragraph, the collection HN,m of all such h is a finite set of bounded
Lipschitz functions supported on BN .
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Consequently, T ′r :=
⋃
N,m∈NHN,m is a countable set of bounded Lipschitz functions on RD, and we

claim that this has the desired property that d̃r(P,Q) = supψ∈T ′r |(P −Q)(ψ)| for any two probability
measures P,Q ∈ P(r). Indeed, for fixed P,Q ∈ P(r), the function ψr : x 7→ ‖x‖+‖x‖r is integrable with
respect to both P and Q on RD, so by the dominated convergence theorem, we have P

(
ψr1BcN−1

)
→ 0

and Q
(
ψr1BcN−1

)
→ 0 as N → ∞. Thus, for an arbitrary ε > 0, there exists a sufficiently large

N ≡ Nε,r ∈ N such that P
(
ψr1BcN−1

)
< ε/4 and Q

(
ψr1BcN−1

)
< ε/4. Choosing m ≡ mε ∈ N such that

1/m < ε/4, we deduce from the previous paragraph that for any φ ∈ P̃LD(r, 1), there exists h̃ ∈ H̃N,m
such that supx∈BN |φ(x)− h̃(x)| < 1/m < ε/4. Letting h be the corresponding function in HN,m ⊆ T ′r,
we have

|(P −Q)(φ)| ≤ |(P −Q)
(
φ(1− fN )

)
|+ |(P −Q)(φfN − h)|+ |(P −Q)(h)|

≤ (P +Q)
(
|φ|(1− fN )

)
+ (P +Q)(|φfN − h|) + supψ∈T ′r |(P −Q)(ψ)| (7.14)

by the triangle inequality. Since φ ∈ P̃LD(r, 1), we have |φ(x)| = |φ(x)− φ(0)| ≤ ‖x‖+ ‖x‖r = ψr(x)
for all x ∈ RD, whence

(P +Q)
(
|φ|(1− fN )

)
≤ (P +Q)

(
|φ|1BcN−1

)
≤ (P +Q)

(
ψr1BcN−1

)
< ε/2

by our choice of N and the fact that 0 ≤ 1− fN ≤ 1BcN−1
. Moreover,

(P +Q)(|φfN − h)| ≤ 2 supx∈BN |φ(x)fN (x)− h(x)| ≤ 2 supx∈BN |φ(x)− h̃(x)| < 2/m < ε/2

by our choice of h, so it follows from (7.14) that |(P −Q)(φ)| < ε+ supψ∈T ′r |(P −Q)(ψ)|. Since this

holds for every φ ∈ P̃LD(r, 1) and all ε > 0, the result follows.

Theorem 7.17. Let P ∈ PD(r) and let (Pn) be a sequence of probability measures in PD(r). Then
there exists a countable set Tr ⊆ PLD(r) such that the following are equivalent:

(i)
∫
RD ψ dPn →

∫
RD ψ dP for all ψ ∈ Tr;

(ii) d̃r(Pn, P )→ 0;

(iii) dr(Pn, P )→ 0.

A suitable set Tr ⊆ PLD(r) can be constructed by enlarging the set T ′r of bounded Lipschitz functions
defined in (the proof of) Proposition 7.16.

Remark 7.18. Using Theorem 7.17, we can verify that d̃r is a metric on P(r) ≡ PD(r) that generates
the same topology as dr. Indeed, it is clear from (1.4) and (7.13) that d̃r takes values in [0,∞) and
satisfies the triangle inequality on P(r). In addition, if P,Q ∈ P(r) are such that d̃r(P,Q) = 0,
then by taking Pn = Q for all n in (ii) above, we deduce that dr(P,Q) = 0. Since dr is a metric on
P(r) (e.g. Villani, 2003, Theorem 7.3), this yields P = Q, as required. In fact,

(
P(r), dr

)
is a separable,

complete metric space (e.g. Panaretos and Zemel, 2020, Theorem 2.2.7 and Proposition 2.2.8), so by
the equivalence (ii) ⇔ (iii) in Theorem 7.17, the same is true of

(
P(r), d̃r

)
.

Proof. (i) ⇒ (ii): As in the proof of Proposition 7.16, the function fN : x 7→ (N − ‖x‖) ∨ 0 ∧ 1 once
again serves as a Lipschitz surrogate for the indicator function 1BN of BN ≡ B̄D(0, N) = {x ∈ RD :
‖x‖ ≤ N} for each N ∈ N in the argument below; note that fN = 1 on BN−1, fN = 0 on Bc

N and fN
is 1-Lipschitz on RD. In view of this and the fact that ψr : x 7→ ‖x‖ + ‖x‖r belongs to PLD(r), the
function ψr(1− fN ) also lies in PLD(r) for every N ∈ N.

Let H̃N,m and HN,m be the finite sets constructed in the proof of Proposition 7.16 for each N,m ∈ N,
and let T ′r :=

⋃
N,m∈NHN,m. Since T ′r is a set of bounded Lipschitz functions, we certainly have

T ′r ⊆ PLD(r). We claim that Tr := T ′r ∪ {ψr(1 − fN ) : N ∈ N} is a countable subset of PLD(r) with
the required property. To see this, suppose that (i) holds for this set Tr, i.e. that Pn(ψ)→ P (ψ) for all

ψ ∈ Tr. As noted in (7.13), we have d̃r(Pn, P ) = sup
φ∈P̃LD(r,1)

|(Pn−P )(φ)| for all n, where P̃LD(r, 1)
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denotes the set of all φ ∈ PLD(r, 1) satisfying φ(0) = 0, so it suffices to show that the latter quantity
converges to 0.

We will consider a decomposition (7.15) similar to (7.14) in the proof of Proposition 7.16, taking par-

ticular care in this instance to ensure that the subsequent bounds hold uniformly over φ ∈ P̃LD(r, 1).
Observe that since ψr(1− fN )→ 0 pointwise on RD as N →∞, and ψr(1− fN ) is dominated by the
P -integrable function ψr on RD for each N , we have P

(
ψr(1−fN )

)
→ 0 as N →∞ by the dominated

convergence theorem. Thus, for an arbitrary ε > 0, there exists a sufficiently large N ≡ Nε,r ∈ N
such that P

(
ψr(1− fN )

)
< ε/4, and we also fix m ≡ mε ∈ N such that 1/m < ε/4. With this choice

of N and m, it follows from the defining property of H̃N,m that for any φ ∈ P̃LD(r, 1), there exists

h̃φ ∈ H̃N,m such that supx∈BN |φ(x)− h̃φ(x)| < 1/m < ε/4. Letting hφ be the corresponding function
in HN,m as above, we have

|(Pn − P )(φ)| ≤
∣∣(Pn − P )

(
φ(1− fN )

)∣∣+ |(Pn − P )(φfN − hφ)|+ |(Pn − P )(hφ)|
≤ (Pn + P )

(
|φ|(1− fN )

)
+ (Pn + P )(|φfN − hφ|) + max

ψ∈HN,m
|(Pn − P )(ψ)| (7.15)

by the triangle inequality. Now for every φ ∈ P̃LD(r, 1), we have |φ(x)| = |φ(x)−φ(0)| ≤ ‖x‖+‖x‖r =
ψr(x) for all x ∈ RD. Since Pn

(
ψr(1− fN )

)
→ P

(
ψr(1− fN )

)
as n→∞ by assumption, this implies

that

lim sup
n→∞

sup
φ∈P̃LD(r,1)

(Pn + P )
(
|φ|(1− fN )

)
≤ lim sup

n→∞
(Pn + P )

(
ψr(1− fN )

)
= 2P

(
ψr(1− fN )

)
< ε/2.

(7.16)

Moreover, for any φ ∈ P̃LD(r, 1), the functions φfN and hφ are both supported onBN , and |φfN−hφ| =
|φ− h̃φ| fN ≤ |φ− h̃φ| < ε/4 on BN , so

lim sup
n→∞

sup
φ∈P̃LD(r,1)

(Pn + P )(|φfN − hφ|) ≤ 2 sup
φ∈P̃LD(r,1)

sup
x∈BN

|φ(x)fN (x)− hφ(x)| < ε/2. (7.17)

Finally, since HN,m is finite and Pn(ψ) → P (ψ) for all ψ ∈ HN,m ⊆ Tr by assumption, we have
maxψ∈HN,m |(Pn − P )(ψ)| → 0. Combining this with (7.15), (7.16) and (7.17), we conclude that

lim sup
n→∞

d̃r(Pn, P ) = lim sup
n→∞

sup
φ∈P̃LD(r,1)

|(Pn − P )(φ)| < ε/2 + ε/2 = ε.

Since ε > 0 was arbitrary, the desired conclusion follows.

(ii) ⇒ (iii): Suppose that d̃r(Pn, P ) → 0 and let ψ : RD → R be a (bounded) L-Lipschitz function,
for some L > 0. Then ψ̃(·) := ψ(·)/L ∈ PLD(r, 1), so Pn(ψ) = LPn(ψ̃) → LP (ψ̃) = P (ψ). Hence

Pn
d→ P . Moreover, the function x 7→ ‖x‖r belongs to PL(r, (r/2) ∨ 1) since by Lemma 7.20 below,∣∣‖x‖r − ‖y‖r∣∣ ≤ r ∨ 2

2

∣∣‖x‖ − ‖y‖∣∣(‖x‖r−1 + ‖y‖r−1
)
≤ r ∨ 2

2
‖x− y‖

(
‖x‖r−1 + ‖y‖r−1

)
(7.18)

for all x, y ∈ RD, so
∫
RD ‖x‖

r dPn(x)→
∫
RD ‖x‖

r dP (x). We conclude that dr(Pn, P )→ 0.

(iii) ⇒ (i): We will show here that if (iii) holds, then Pn(ψ) → P (ψ) for all ψ ∈ PLD(r). Indeed,

suppose that Pn
d→ P and

∫
RD ‖x‖

r dPn(x)→
∫
RD ‖x‖

r dP (x). Now for L > 0 and any ψ ∈ P̃LD(r, L),
we have |ψ(x)| ≤ L‖x‖(1 + ‖x‖r−1) ≤ 2L(1 + ‖x‖r) for all x ∈ RD. Thus, since ψ is continuous on
RD and x 7→ |ψ(x)|/(1 + ‖x‖r) is bounded on RD, it follows from (iii) and Dümbgen et al. (2011,
Lemma 4.5) that Pn(ψ)→ P (ψ).

Remark 7.19. The proof of the implication (i) ⇒ (ii) in Theorem 7.17 is similar to the argument
in Dudley (2002) showing that (b) implies (c) in his Theorem 11.3.3, where it is established that the
bounded Lipschitz metric induces the topology of weak convergence (of probability measures on a
separable metric space).
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To obtain a sharp pseudo-Lipschitz constant for x 7→ ‖x‖r in (7.18) above, we apply the following
elementary inequality.

Lemma 7.20. If a, b ≥ 0 and r ≥ 1, then |ar − br| ≤ max(1, r/2) |a− b| (ar−1 + br−1).

Proof. Suppose without loss of generality that 0 ≤ b ≤ a. If r ≥ 2, then t 7→ rtr−1 is convex on [0,∞),
so

ar − br =

∫ b

a
rtr−1 dt ≤

∫ b

a
r

(
t− b
a− b

ar−1 +
a− t
a− b

br−1

)
dt =

r

2
(a− b)(ar−1 + br−1).

If r ∈ [1, 2], then 0 ≤ (ab)r−1(a2−r − b2−r) = abr−1 − bar−1, so ar − br ≤ (a− b)(ar−1 + br−1).

When we have a sequence of possibly random probability measures Pn ≡ Pn(ω) on RD, we can apply
the deterministic Theorem 7.17 to obtain Corollary 7.21 below, in which we equip P(r) with the Borel
σ-algebra Br ≡ B

(
P(r)

)
associated with the dr (or equivalently the d̃r) metric. Note that d̃r(Pn, P )

is measurable (i.e. a bona fide random variable) for each n by Proposition 7.16. The measurability
of dr(Pn, P ) is guaranteed by Villani (2009, Corollary 5.22); see also Panaretos and Zemel (2020,
Lemma 2.4.6).

Corollary 7.21. Fix P ∈ P(r) ≡ PD(r) and let (Pn) be a sequence of random elements Pn : Ω→ P(r).

(a) Then the following are equivalent:

(i)
∫
RD ψ dPn

a.s.→
∫
RD ψ dP for every ψ ∈ PLD(r);

(ii) d̃r(Pn, P )
a.s.→ 0;

(iii) dr(Pn, P )
a.s.→ 0.

(b) The same equivalences hold if the mode of convergence in (i)–(iii) is instead taken to be either
convergence in probability or complete convergence.

Thus, to establish the seemingly stronger conclusions in (ii) and (iii) for a random sequence of distri-
butions Pn, a putative limit P ∈ PD(r) and any of the above modes of stochastic convergence, it is
sufficient (and sometimes more convenient) to show that the appropriate version of (i) holds for each
ψ ∈ PLD(r) in turn. This is the approach we take in the proofs of the master theorems for symmetric
AMP (Theorems 2.1 and 2.3).

Proof. (a) The implications (ii)⇒ (iii)⇒ (i) are immediate from Theorem 7.17. As for (i)⇒ (ii), note
that for each ψ ∈ PLD(r) in (i), the event Ω(ψ) of probability 1 on which

∫
RD ψ dPn →

∫
RD ψ dP may

depend (a priori) on ψ. The key point is that under (i), Theorem 7.17 ensures that this convergence
is actually uniform over PLD(r, 1) on a countable intersection of such events Ω(ψ). More precisely,
letting Tr ⊆ PLD(r) be as in Theorem 7.17, we see that

⋂
ψ∈Tr Ω(ψ) is an event of probability 1 on

which (ii) and (iii) hold.

(b) Convergence in probability :

(i) ⇒ (ii): First, we prove that if Pn(ψ)
p→ P (ψ) for each ψ ∈ PLD(r), then d̃r(Pn, P )

p→ 0, or
equivalently that every subsequence of

(
d̃r(Pn, P ) : n ∈ N

)
has a further subsequence that converges

almost surely to 0. It suffices to show that for any subsequence (Qk) ≡ (Pnk), there is a further
subsequence (Qk`) such that with probability 1, we have Qk`(ψ) → P (ψ) for all ψ ∈ Tr ⊆ PLD(r);
indeed, the desired conclusion then follows directly from (a). To this end, enumerate the elements of

the countable set Tr as ψ1, ψ2, . . . and apply a diagonal argument: since Qk(ψ1)
p→ P (ψ1), we can

extract a subsequence (Qk1,`) of (Qk) such that Qk1,`(ψ1)
a.s.→ P (ψ1) as `→∞. Continuing inductively,

we see that for each J ∈ N, there exist a subsequence (QkJ,`) of (QkJ−1,`
) and an event of probability

1 on which QkJ,`(ψj) → P (ψj) as ` → ∞ for all 1 ≤ j ≤ J . Finally, let Qk` := Qk`,` for ` ∈ N, and
observe that with probability 1, we have QkJ,`(ψj)→ P (ψj) as `→∞ for all j ∈ N, as required.
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(ii) ⇒ (iii) ⇒ (i): As above, we can argue along subsequences of (Pn) and then appeal directly to the
corresponding implications in (a).

Complete convergence:

(i) ⇒ (ii): Suppose that Pn(ψ)
c→ P (ψ) for every ψ ∈ PLD(r). In view of Definition 1.1 of complete

convergence, it suffices to show that if (βn) is any sequence of random variables with βn
d
= d̃r(Pn, P )

for each n, then βn
a.s.→ 0. For any such sequence (βn), we first seek to construct a sequence

(
P̃n) of

random elements P̃n : Ω→
(
P(r), d̃r

)
such that P̃n

d
= Pn on

(
P(r),Br

)
for each n and

(
d̃r(P̃n, P ) : n ∈

N
)

= (βn : n ∈ N) almost surely as random sequences. Since
(
P(r), d̃r) is a Polish space, a suitable(

P̃n) can be obtained by applying Lemma 7.10, where for each n, we take gn :
(
P(r), d̃r

)
→ R to be

the 1-Lipschitz (and hence Borel measurable) function Q 7→ d̃r(P,Q).

For each ψ ∈ PLD(r), we see from the definition of d̃r in (1.4) that Q 7→ Q(ψ) =
∫
RD ψ dQ is also a 1-

Lipschitz (and hence Borel measurable) function from
(
P(r), d̃r

)
to R, so P̃n(ψ) : Ω→ R is measurable

(i.e. a random variable). Now P̃n
d
= Pn for each n by construction, so for every ψ ∈ PLD(r), it follows

that P̃n(ψ)
d
= P̃n(ψ) for each n and hence that P̃n(ψ)

a.s.→ P (ψ). Thus, by the implication (i) ⇒ (ii) in
(a) above, we conclude that βn = d̃r(P̃n, P )→ 0 almost surely, as required.

(ii) ⇒ (iii) ⇒ (i): To establish these remaining implications, observe that it suffices to show the
following: if Fn, Gn : P(r) → R are Borel measurable functions for which it is known from (a) that
Fn(Pn)

a.s.→ 0 implies Gn(Pn)
a.s.→ 0, then Fn(Pn)

c→ 0 implies Gn(Pn)
c→ 0. To prove this, we

can proceed as in the argument for (i) ⇒ (ii): given any random sequence (βn) such that βn
d
=

Gn(Pn) for each n, Lemma 7.10 yields a sequence (P̃n) of random elements P̃n : Ω → P(r) such that

Fn(P̃n)
d
= Fn(Pn) and βn = Gn(P̃n) almost surely for each n. Then Fn(P̃n)

a.s.→ 0, so (a) implies that
βn = Gn(P̃n)→ 0 almost surely. This completes the proof.

We conclude this subsection with some straightforward results on pseudo-Lipschitz functions.

Lemma 7.22. For D ∈ N, if f ∈ PLD(r) and g ∈ PLD(s) for some r, s ≥ 1, then fg ∈ PLD(r + s)
and |f |p ∈ PLD(pr) for all p ≥ 1.

Proof. There exists L > 0 such that f ∈ PLD(r, L) and g ∈ PLD(s, L). Letting L′ := L∨|f(0)|∨|g(0)|,
we have

|f(x)| ≤ |f(0)|+ |f(x)− f(0)| ≤ L′(1 + ‖x‖+ ‖x‖r) ≤ 2L′(1 + ‖x‖r)
|g(x)| ≤ |g(0)|+ |g(x)− g(0)| ≤ L′(1 + ‖x‖+ ‖x‖s) ≤ 2L′(1 + ‖x‖s)

(7.19)

for all x ∈ RD. Therefore, fixing arbitrary x, y ∈ RD and setting a := ‖x‖ ∨ ‖y‖, we see that

|f(x)g(x)− f(y)g(y)|
≤ |f(x)| |g(x)− g(y)|+ |g(x)| |f(x)− f(y)|
≤ 2L′L ‖x− y‖

{(
1 + ‖x‖r

)(
1 + ‖x‖s−1 + ‖y‖s−1

)
+
(
1 + ‖x‖s

)(
1 + ‖x‖r−1 + ‖y‖r−1

)}
≤ 2L′L ‖x− y‖ (2 + 2ar−1 + ar + 2as−1 + as + 4ar+s−1)

≤ 20L′L ‖x− y‖ (1 + ar+s−1)

≤ 20L′L ‖x− y‖ (1 + ‖x‖r+s−1 + ‖y‖r+s−1).

This shows that fg ∈ PLD(r+ s). For p ≥ 1, we have (a+ b)p−1 ≤ (1∨2p−2)(ap−1 + bp−1) for a, b ≥ 0,
and it follows from Lemma 7.20 and (7.19) that∣∣|f(x)|p − |f(y)|p

∣∣ ≤ p ∨ 2

2
|f(x)− f(y)|

(
|f(x)|p−1 + |f(y)|p−1

)
≤ L(2L′)p−1(p ∨ 2)

2
‖x− y‖ (1 + ‖x‖r + ‖y‖r)

(
(1 + ‖x‖r)p−1 + (1 + ‖y‖r)p−1

)
.p L(L′)p−1 ‖x− y‖ (1 + ‖x‖r + ‖y‖r)

(
1 + ‖x‖(p−1)r + ‖y‖(p−1)r

)
.p L(L′)p−1 ‖x− y‖ (1 + ‖x‖pr + ‖y‖pr)
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for all x, y ∈ RD. Thus, |f |p ∈ PLD(pr), as required.

Lemma 7.23. Let ψ ∈ PLD+1(r, L) for some D ∈ N, r ≥ 1 and L > 0. Fix c ≡ (c1, . . . , cD) ∈ RD
and τ > 0.

(a) For fixed x ≡ (x1, . . . , xD) ∈ RD, define ψx : R→ R by ψx(z) := ψ
(
x1, . . . , xD,

∑D
`=1 c` x` + τz

)
.

Then ψx ∈ PL1(r, L‖x‖,τ ), where La,τ := Lτ max{1 + (2∨ 2r−1)(1 + ‖c‖)r−1ar−1, (1∨ 2r−2)τ r−1}
for a ≥ 0.

(b) Let Z ∼ N(0, 1) and define Ψ: RD → R by Ψ(x1, . . . , xD) := E
{
ψ
(
x1, . . . , xD,

∑D
`=1 c` x`+τZ

)}
.

Then Ψ ∈ PLD(r, Lτ ), where Lτ := L(1 + ‖c‖) max{1 + (2 ∨ 2r−1)E(|τZ|r−1), (1 ∨ 2r−2)(1 +
‖c‖)r−1}.

Proof. For x ≡ (x1, . . . , xD) ∈ RD and z ∈ R, note first that∥∥(x1, . . . , xD,
∑D

`=1 c` x` + τz
)∥∥r−1 ≤

(
‖x‖+ |

∑D
`=1 c` x`|+ τ |z|

)r−1

≤ {(1 + ‖c‖)‖x‖+ τ |z|}r−1 (7.20)

≤ (1 ∨ 2r−2)
{

(1 + ‖c‖)r−1‖x‖r−1 + τ r−1|z|r−1
}
, (7.21)

where the three bounds above are obtained using the triangle inequality, the Cauchy–Schwarz inequal-
ity and the fact that (a+ b)r−1 ≤ (1 ∨ 2r−2)(ar−1 + br−1) for a, b ≥ 0.

(a) For z, z′ ∈ R, we have

|ψx(z)− ψx(z′)|
=
∣∣ψ(x1, . . . , xD,

∑D
`=1 c` x` + τz

)
− ψ

(
x1, . . . , xD,

∑D
`=1 c` x` + τz′

)∣∣
≤ Lτ |z − z′|

{
1 + 2(1 ∨ 2r−2)(1 + ‖c‖)r−1‖x‖r−1 + (1 ∨ 2r−2) τ r−1

(
|z|r−1 + |z′|r−1

)}
≤ L‖x‖,τ |z − z′|

(
1 + |z|r−1 + |z′|r−1

)
,

where the first bound follows from (7.21) and the fact that ψ ∈ PLD+1(r, L).

(b) For x, y ∈ RD, we have

|Ψ(x)−Ψ(y)|
≤ E

{∣∣ψ(x1, . . . , xD,
∑D

`=1 c` x` + τZ
)
− ψ

(
y1, . . . , yD,

∑D
`=1 c` y` + τZ

)∣∣}
≤ L(1 + ‖c‖)‖x− y‖

{
1 + 2(1 ∨ 2r−2)E(|τZ|r−1) + (1 ∨ 2r−2)(1 + ‖c‖)r−1

(
‖x‖r−1 + ‖y‖r−1

)}
≤ Lτ‖x− y‖

(
1 + ‖x‖r−1 + ‖y‖r−1

)
,

where the second bound again follows from (7.20), (7.21) and the fact that ψ ∈ PLD+1(r, L).

Lemma 7.24. Suppose that ψ ∈ PLD(r, L) for some D ∈ N, r ∈ [2,∞) and L > 0. Then for any
n ∈ N and vectors x` ≡ (x`1, . . . , x

`
n) and y` ≡ (y`1, . . . , y

`
n) for 1 ≤ ` ≤ D, we have

1

n

n∑
i=1

|ψ(x1
i , . . . , x

D
i )−ψ(y1

i , . . . , y
D
i )| ≤ LD

r
2
−1

(
D∑
`=1

‖x` − y`‖rn,r

)1/r (
1 +

D∑
`=1

(
‖x`‖r−1

n,r + ‖y`‖r−1
n,r

))
.

Proof. For 1 ≤ i ≤ n, define X(i) := (x1
i , . . . , x

D
i ) and Y (i) := (y1

i , . . . , y
D
i ), and let r′ := r/(r − 1) ∈

(1, 2] be the Hölder conjugate of r, so that 1/r + 1/r′ = 1. Then since ψ ∈ PLD(r, L), an application
of Hölder’s inequality yields the bound

1

n

n∑
i=1

|ψ(x1
i , . . . , x

D
i )− ψ(y1

i , . . . , y
D
i )| = 1

n

n∑
i=1

|ψ(X(i))− ψ(Y (i))|

≤ 1

n

n∑
i=1

L‖X(i) − Y (i)‖
(
1 + ‖X(i)‖r−1 + ‖Y (i)‖r−1

)
≤ L

(
1

n

n∑
i=1

‖X(i) − Y (i)‖r
)1/r( 1

n

n∑
i=1

(
1 + ‖X(i)‖r−1 + ‖Y (i)‖r−1

)r′)1/r′

. (7.22)
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Since ‖·‖ ≡ ‖·‖2 ≤ D
1
2
− 1
r ‖·‖r on RD, we see that

1

n

n∑
i=1

‖X(i) − Y (i)‖r ≤ D
r
2
−1

n

n∑
i=1

D∑
`=1

|x`i − y`i |r = D
r
2
−1

D∑
`=1

‖x` − y`‖rn,r. (7.23)

In addition, by applying the triangle inequality for ‖·‖n,r′ and arguing as in (7.23), we have(
1

n

n∑
i=1

(
1 + ‖X(i)‖r−1 + ‖Y (i)‖r−1

)r′)1/r′

≤ 1 +

(
1

n

n∑
i=1

‖X(i)‖r
)1/r′

+

(
1

n

n∑
i=1

‖Y (i)‖r
)1/r′

≤ 1 +

(
D

r
2
−1

D∑
`=1

‖x`‖rn,r
) r−1

r

+

(
D

r
2
−1

D∑
`=1

‖y`‖rn,r
) r−1

r

≤ 1 + (D
r
2
−1)

r−1
r

D∑
`=1

(
‖x`‖r−1

n,r + ‖y`‖r−1
n,r

)
, (7.24)

where the final bound follows since ‖·‖r ≤ ‖·‖r−1 on RD. Combining (7.22)–(7.24) yields the desired
conclusion.
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machine: computational to statistical gaps in learning a two-layers neural network. J. Stat. Mech.
Theory Exp., 124023.

Aubin, B., Loureiro, B., Maillard, A., Krzakala, F., Zdeborová, L. (2020). The spiked matrix model
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