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Abstract

The feedback gains in state-of-the-art flight control laws for commercial aircraft are scheduled as a function of values such
as airspeed, mass, and centre of gravity (CoG). If measurements or estimates of these are lost due to multiple simultaneous
sensor failures, the pilot must revert to an alternative control law, or, in the ultimate case, directly command control
surface positions. This work develops a robust backup load-factor tracking control law, that does not depend on these
parameters, based on application of theory from robust MPC and H2 optimal control. Firstly, the methods are applied
with loss only of airdata, and subsequently also with loss of mass and CoG estimates. Local linear analysis indicates
satisfactory performance over a wide range of operating points. To keep the aircraft within an acceptable operating
region, an outer protection loop is implemented using an override approach, based on ground speed, a model of the trim
angle of attack and variation of load factor with respect to angle of attack, and a priori bounds on the wind speed.
Finally, the resulting control laws are demonstrated on the nonlinear RECONFIGURE benchmark, which is derived from
an Airbus high fidelity, industrially-validated simulator.

Keywords: Optimal control, Robust control, Aircraft control, Aerospace, Fault-tolerant control, Flight envelope
protection
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1. Introduction

Automatic control systems are integral to the operation
of modern civil airliners (Favre, 1994), reducing the pilot’s
workload through stability augmentation and providing a
consistent response to commands through the whole flight
envelope. The open-loop response of the aircraft varies
considerably, and when a linear feedback control law is
used, it is usual to schedule its parameters based on the
flight point. For example, when controlling the longitudinal
short-period mode, load factor (nz) and pitch rate (q) are
fed-back, but the control law parameters are scheduled as
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a function of a combination of airspeed, altitude, Mach
number, mass and centre-of-gravity of the aircraft. Each
parameter used must therefore be measured or estimated.

Under some specific circumstances, erroneous flight pa-
rameters can propagate downstream to the flight control
law computation, making the aircraft difficult to handle.
Hardware redundancy is the typical mitigating measure
(Brière et al., 1995; Goupil, 2011). To achieve robustness
to sensor failure, multiple sensors can be employed and a
“voting” mechanism implemented to detect and compensate
for a large class of faults (Goupil, 2011). Analytical redun-
dancy (where multiple signals are combined to reconstruct
an estimate of a parameter without explicitly measuring it)
can also be exploited, providing additional fault-tolerance
without the burden of additional physical hardware. How-
ever when too many simultaneous sensor faults occur, the
signals must be considered as polluted and ignored.

The key purpose of this paper is not the development
of new theory, but to present an approach for addressing
the requirements of a challenging, industrially-motivated
application. Section 2 presents an extension of an approach
explored in Hartley and Maciejowski (2015), for the con-
trol of the longitudinal dynamics of a large commercial
aircraft in a scenario where airspeed data is lost. Whilst
relatively unusual, this scenario can emerge due to mul-
tiple simultaneous faults on air data and angle-of-attack
sensors (so angle of attack cannot be used to estimate air-
speed). In this situation, one recourse is to switch to a
direct control law, where elevator deflection is commanded
directly. However, the presented approach aims to main-
tain a load-factor control law with reasonable robustness
and handling qualities, so as to limit the inevitable addi-
tional workload falling on the pilot. Stable operation is
also subsequently demonstrated where estimates of mass
and centre of gravity are lost. In contrast to Hartley and
Maciejowski (2015), the control synthesis approach also
considers stability of the interpolated control laws used
between design points. Prior work by Puyou and Ezerzere
(2012) achieved robustness to loss of flight parameter mea-
surements through applying non-smooth optimisation to
obtain a fixed-complexity controller robust to loss of mass
and centre of gravity estimates. The remaining scheduling
information was introduced through an inner-loop nonlin-
ear dynamic inversion (NDI) controller due to difficulties
of interpolating dynamic systems. Similarly, Varga et al.
(2014) proposed a non-scheduled backup C∗ control law,
tuned using multi-objective optimisation. In contrast, the
presently proposed approach does not require an additional
inner control loop, yet allows a load factor control law to
be maintained.

Section 3 considers flight envelope protection (e.g., Well
(2006); Falkena et al. (2011)). Flight envelope protection is
becoming a common feature of commercial aircraft, which
can automatically override the pilot (or autopilot) com-
mand to prevent the aircraft exiting the envelope within
which it has been designed to operate. This type of sys-
tem allows the pilot to reflexively perform full stick de-
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Figure 1: Schematic of inner loop control design setup

flections in response to unanticipated situations without
worrying about causing a stall. To protect against over-
speed, under-speed, and angle-of-attack limit violations,
conventionally, measurements of the airspeed and angle of
attack are employed. If the integrity of the airspeed and
angle of attack measurements is lost, the existing systems
must be disengaged. One of the requirements specified in
the RECONFIGURE Benchmark Scenario Description is
to “keep the aircraft in a safe region” in the case of detected
loss of angle of attack and airspeed measurements. The
controller described in Section 2 does not, on its own, fulfil
this requirement. A replacement flight envelope protec-
tion system is therefore proposed in Section 3, employing
ground speed measurements, a model of the aerodynamic
behaviour, and a priori bounds on the wind speed.

Section 4 presents results obtained from testing the ro-
bust inner loop controller and the outer loop flight envelope
protection system in an industrial high-fidelity nonlinear
simulator provided by Airbus for use in the RECONFIG-
URE project. Details of the simulator and the wider scope
of the project can be found in Goupil et al. (2014, 2015).

2. Inner loop load factor control law

2.1. Control problem

Airbus has provided the RECONFIGURE consortium
with linearisations of the longitudinal dynamics of an air-
craft in straight-and-level flight at 234 different flight points.
These cover an envelope of altitudes, airspeeds, masses and
centre-of-gravity (CoG), with 214 of the flight points cover-
ing “clean” aerodynamic configurations with slats and flaps
fully retracted, and a further 20 covering configurations
with the high-lift devices extended to various degrees and
landing gear also extended in some configurations. Alti-
tudes range from 5000 ft to 35000 ft, the ratio of maximum
to minimum airspeed for a given altitude-mass-CoG com-
bination is up to 1.6, and the highest mass is 2.15 times
the lowest. The rigid-body models are accompanied by
simplified linear sensor, filter and actuator models. This
study considers a setup where all elevators act in com-
mon mode, and neglect the trimmable-horizontal-stabiliser
(THS), which in any case can only control at much lower
frequency ranges than those considered. A sampling period
Ts = 0.04 s is used.
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The objective is to control only the short-period dynam-
ics (leaving the pilot or an outer loop to control the phugoid
mode). Classically the short-period dynamics are modelled
with the pitch rate q and angle-of-attack α as states, with
q, α and vertical “load factor” nz as outputs. (Strictly, the
load factor is the ratio of lift to weight, however in this
paper its deviation from trim (i.e., the acceleration normal
to the aircraft body divided by acceleration due to gravity)
is universally considered). Usually, α is not available at
sufficiently high bandwidth to be used for the innermost
control loop, so q and nz are used as feedback variables.
The control input is the elevator deflection (multiple ele-
vators operating in common mode). For design purposes,
the short-period model at each flight point is augmented
with a first-order-plus delay actuator model for the elevator
and first-order low-pass linear sensor models on q and nz,
followed by a first-order low-pass filter yielding estimates q̂
and n̂z of the true values (Figure 1). These approximate
the higher-order “true” filters, which also include notches
to attenuate certain structural modes. There is an implicit
assumption that the existing filters are unalterable.

Let x denote the combined state vector of the elevator
dynamics, short-period mode and sensors/filters and y
denote the measured output [q̂, n̂z]

T . The short-period
dynamics vary with the current airspeed, altitude, CoG,
and mass. The parameters that determine the flight point
are denoted as ϑ. The augmented linearised plant model at
a given flight point ϑ sampled at time step k, with period
Ts can be described by the parameterised linear difference
equations:

x(k + 1) = A(ϑ)x(k) +B(ϑ)u(k) (1a)

y(k) = C(ϑ)x(k) +��
���XXXXXD(ϑ)u(k). (1b)

Delays in the model result in it being strictly proper,
i.e. D(ϑ) = 0.

The specification for the RECONFIGURE project (Goupil
et al., 2014, 2015) states that the closed-loop response
should have the following time-domain characteristics. First,
the response to a step change in commanded nz should
be “substantially finished” within 6 s. The corresponding
pitch rate q should not overshoot its steady state value
by more than 30%, the load factor should not overshoot
its setpoint by more than 10%, and the “control anticipa-
tion parameter” (CAP) should be “consistent” throughout
the flight envelope. For an ideal second order model of
the short period mode, CAP is defined as q̇(0)/nz(∞) in
response to a step input. The consistency requirement
reflects the importance of pitch acceleration as a cue for
the pilot during changes in load factor. In addition it is
desirable to have a local 60◦ phase margin and a 6 dB gain
margin at the linear design points, although in degraded
conditions, it may not be possible to achieve all of these
simultaneously on top of the nominal design uncertainty.

2.2. Theoretical grounding
Let I , {1, . . . , 234} be an index for the 234 design

points, and ϑi, for i ∈ I denote the flight parameters for the

ith flight point. Define subsets of the flight points Jj ⊆ I,
j = 0, . . . , jmax, as “flight groups” such that Jm ∩ Jn =
∅, ∀m 6= n, and let ϑji denote the parameters of the
flight point indexed by the ith element of Jj . The design
objective can be posed as the finding jmax control laws κj(z)
that each stabilise all flight points in Jj , with satisfactory
tracking performance. It is assumed that parameters vary
slowly in comparison to the controlled dynamics and can
be locally approximated as time-invariant.

2.2.1. Output-feedback transformation

Since the model state cannot be measured directly, and
the sensors have their own dynamics, this is an output feed-
back control problem. One approach to output feedback
control design is to use an observer, but for an observer-
based control law, a nominal plant model would need to
be chosen (the choice of which is not obvious). Moreover,
since non-zero setpoints are to be tracked, the usual as-
sumption that observer error converges to zero is invalid.
On the other hand, a static, or arbitrary order feedback law
might be difficult to tune. The alternative used here is to
transform (1) for each flight point into a non-minimal input-
output form whose “state” is a finite time history of inputs
and outputs. The “state-observer” for this is then simply a
set of shift registers. This form was commonly used in early
implementations of MPC (Maciejowski, 2002), and has also
been recently highlighted in Granado et al. (2005); Ding
and Zou (2014) for applying state-feedback control tech-
niques for uncertain systems in an output-feedback setting.
This form also results in the controller state having the
same physical interpretation at all flight points, and thus
interpolating a feedback gain between flight points using
the remaining available parameters is a possible strategy.
The present application has the complication of multiple
measured outputs but the same principles hold. It should
be emphasised that the transformation used here for the
multiple-output case is not as simple as using Matlab’s
“ss2tf” command and extracting the coefficients. The fol-
lowing proposes a systematic method to compute such a
form.

Assume that the plant (1) is m-step observable (in
the sense that a sequence of input and output measure-
ments at m consecutive time steps is sufficient to recon-
struct the state), and that the number of states in (1) is a
whole multiple of m. Define the augmented state x̃(k) =[
u(k)T y(k)T

]T
where u(k) =

[
u(k −m) · · · u(k − 1)

]T
and y(k) =

[
y(k −m)T · · · y(k − 1)T

]T
. Letting de-

pendency on ϑ be implicit (and approximated as time-
invariant), define

Φ =


C
...

CAm−2

CAm−1

 , Γ =


D

· · ·
. . .

· · · CB D
· · · CAB CB D


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and

Ψ =
[
CAm−1B · · · CA2B CAB CB

]
where for genericity, we have included D, despite the fact
that D = 0 for the application in this paper.

Theorem 1. y(k) =
(
Ψ− CAmΦ−1Γ

)
u(k)

+ CAmΦ−1y(k) +Du(k).

Proof. At a given flight point, it holds that

y(k) = Φx(k −m) + Γu(k).

Since the plant is m-step observable,

x(k −m) = Φ−1(y(k)− Γu(k)).

From (1),

y(k) = CAmx(k −m) + Ψu(k) +Du(k)

= CAmΦ−1(y(k)− Γu(k)) + Ψu(k) +Du(k)

= (Ψ− CAmΦ−1Γ)u(k) + CAmΦ−1y(k) +Du(k).

Thus, the non-minimal state-space system is:

x̃(k + 1) =


0 I(m−1)nu 0 0

0 0 0 0

0 0 0 I(m−1)ny

(Ψ− CAmΦ−1Γ) CAmΦ−1

 x̃(k) +


0

I

0

D

u(k)

y(k) =
[

(Ψ− CAmΦ−1Γ) CAmΦ−1
]
x̃(k) +Du(k). (2)

This is generalised to systems with a higher observability
index and systems where the state dimension is not an
integer multiple of the outputs by increasing the length of
the time history of past inputs and outputs, m, until Φ is of
full row rank, and using the Moore-Penrose Pseudo-inverse,
Φ+ instead of Φ−1. The nonminimal system realisation is
denoted by the matrices Ã(ϑ), B̃(ϑ), C̃(ϑ), D̃(ϑ).

2.2.2. Robust control theory

The conventional way of designing a control law that
is robust to large degrees of parametric uncertainty is to
choose a nominal plant model and then characterise un-
certainty around it. However, such a choice is not obvious.
Instead, the tool applied here is based on robust MPC
theory and H2 control theory. Kothare et al. (1996) pro-
posed a method based on linear matrix inequalities (LMIs)
to simultaneously stabilise a set of linear plants. At each
time step, an optimisation is solved to find a controller
of the form u(k) = K(x(k))x(k) that minimises an upper
bound on a quadratic cost function over an infinite hori-
zon from the current state. Input and output constraints
can also be accommodated, albeit conservatively. Cuzzola
et al. (2002) suggests a less conservative method based
on multiple Lyapunov functions (De Oliveira et al., 1999,
2002). This is prohibitively computationally demanding
for the present application. However, Wan and Kothare

(2002) proposes an offline method, based on interpolation
of gains computed at judiciously selected states based on
set membership conditions. The present work does not con-
sider constraints: the tracking nature of the problem adds
complications when both constraints and large amounts
of plant/model mismatch are present. For tracking, the
classical technique of augmenting the plant with an integral
of the error between the load factor to be tracked and the
reference is employed. Let H = [0, 1], and Ai = 1, Bi = Ts
be the state space matrices of the (discrete-time) integrator,
then the augmented system is[

e(k + 1)
x̃(k + 1)

]
︸ ︷︷ ︸

x(k+1)

=

[
Ai −BiHC̃(ϑ)

0 Ã(ϑ)

]
︸ ︷︷ ︸

A(ϑ)

[
e(k)
x̃(k)

]
︸ ︷︷ ︸
x(k)

+

[
−BiHD̃(ϑ)

B̃(ϑ)

]
︸ ︷︷ ︸

B(ϑ)

u(k) +

[
Bi
0

]
︸ ︷︷ ︸
Br

r(k). (3)

The objective now reduces to synthesising control gains Kj

that stabilise our integrator-augmented short-period-plus-
elevator-plus-sensor input-output composite models. With
x(k) defined in (3), and weighting matrices Q, R, and S,
the control synthesis objective is, for each group Jj , to
minimise an upper bound on

min
Kj

max
ϑji∈Jj

∞∑
k=0

x(k)T (Q+KT
j RKj + SKj +KT

j S
T )x(k).

(4)
The cross term, S, in the quadratic cost function is not
always considered in the literature, but turns out to be
helpful in this application when addressing tuning (see
Section 2.3).

Lemma 1. KTRK+SK+KTST = (KT +SR−1)R(K+
R−1ST )− SR−1ST

Proof. By expansion.

Using this, the result of Cuzzola et al. (2002) can be
applied for a general quadratic cost function:

Theorem 2.
∑∞
k=0 x(k)T (Q+KT

j RKj+SKj+K
T
j S

T )x(k)
≤ γj if Yj = KjGj and for all ϑji ∈ Jj,

Gj +GTj −Xji ∗ ∗ ∗
(A(ϑji) +B(ϑji))Y Xji 0 0

(Q− SR−1ST )1/2Gj 0 γjI 0
R1/2(Yj +R−1STGj) 0 0 γjI

 ≥ 0 (5a)

[
1 x(k)T

x(k) Xji

]
≥ 0. (5b)

Corollary 1. The control law u(k) = YjG
−1
j x(k) = Kjx(k),

obtained by solution of

min
γ,Gj ,Xji,Yj

γj subject to (5) (6)

minimises an upper bound on the cost function (4).
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Figure 2: Delaunay Triangulation and barycentric interpolation

Solving (6) online for each new x(k) is not appropriate
for an aircraft inner control loop where the sampling pe-
riod is in the order of tens of milliseconds because of the
complexity of the required software, the required solution
time, and the limited computational hardware. Instead,
following the lead of Wan and Kothare (2002) the problem
is solved offline for a fixed value of x(k) = x0 and the
resulting control gain used for all x(k) for a given flight
group. Thus, the final implementation used here is no
longer “MPC” in the conventional sense, but can rather be
interpreted as a form of H2 controller.

2.2.3. Robustification to gain scheduling

A controller designed using Theorem 2 and Corollary 1
for a given “flight group” will stabilise any realisation of the
system (3) in that flight group. However, the flight groups
only correspond to samples of the envelope, corresponding
to discrete values of mass, altitude, and CoG. In reality,
these parameters can also take on values between the sam-
ples, and a gain-scheduling strategy (Rugh and Shamma,
2000) must be employed. Linear interpolation is an ap-
proach that can be used to accommodate this practical
issue.

The computation of the control gain K in the control
law u(k) = Kx(k) for a general point in the flight envelope
is illustrated in Figure 2. Consider the case when all
flight points in the flight group Jj , j = 0, . . . , jmax have
the same mass mj , altitude zj and CoG cj , but differing
airspeed. Firstly, Delaunay Triangulation is performed
over the set of points Ij = (mj , zj , cj), returning a set
of vertices Tj = {Ij1 , Ij2 , Ij3 , Ij4}, each of which defines a
tetrahedral simplex in the flight envelope. Then, given a
particular point in the flight envelope I = (m, z, c), the
simplex Tj it belongs to is found, and the control gain K
for that point is computed via barycentric interpolation of
the gains Kj1 ,Kj2 ,Kj3 ,Kj4 synthesised for flight groups
Jj1 ,Jj2 ,Jj3 ,Jj4 by solving (6).

Strictly, this interpolated control law does not guarantee
stability, since the Lyapunov function for the flight group

Figure 3: Flight group Jj with its neighbouring flight groups Nj =
{Jj1 , . . . ,Jjn} in Delaunay Triangulation

Jj1 , obtained implicitly while synthesizing control gain Kj1 ,
is not necessarily a Lyapunov function for flight groups
Jj2 ,Jj3 ,Jj4 , and vice versa. The solution to this is to
add additional LMIs to the optimisation problem in (6),
guaranteeing that a Lyapunov function for the flight group
Jj1 is also a Lyapunov function for all “neighbouring” flight
groups Nj1 = {Jj11

, . . . ,Jj1n
} that are connected by an

edge with Jj1 in Delaunay Triangulation.

Proposition 1. Let Jj, j = 0, . . . , jmax be one of the
flight groups with a set of neighbouring flight groups Nj =
{Jj1 , . . . ,Jjn}, as shown in Figure 3. Also, let the index
jmk denote the k-th flight point in the jm-th neighbouring
flight group (jm ∈ {j1, . . . , jn}). Then, if the optimisation
problem

min
γ,Gj ,Xji,Yj ,Qjmk

γj

subject to (5) and[
Gj +GTj −Qjmk ∗

A(ϑjmk)Gj +B(ϑjmk)Yj Qjmk

]
≥ 0

is feasible, the control law u(k) = Kx(k) is stabilising for
any point in the designed-for flight envelope.

Remark. The flight groups should be chosen to cover a
sufficiently dense sampling of the flight parameters so that
linear interpolation provides a good approximation of the
behaviour between the design points. No formal claim is
made about the stability if the current flight point is outside
of the region defined by the convex hull of points within
the flight groups used for design, although linear robust-
ness analysis at the design points (Section 2.3) indicates
that small excursions that do not dramatically change the
linearisation can be tolerated. An approach to maintain
the true flight parameters within an acceptable envelope
without knowledge of exact airspeed and AoA is considered
in Section 3.
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Figure 4: Linear fractional transformation representation of inner
loop controller

2.2.4. Parameterised dynamic control law
The inner-loop load factor control law, κ(z), that is

finally implemented consists of two components: a flight-
group dependent gain K, computed as described in Sec-
tion 2.2.3; and a fixed dynamic linear system with transfer
function K̃(z). Using Ai, Bi and H as defined in Sec-
tion 2.2.2, and letting As, Bsu, and Bsy denote the shift

registers formed as in (2), and ˆ̃x denote the estimate of

x̃(k) contained therein, the fixed component K̃(z) can be
described by the system:

e(k + 1)
ˆ̃x(k + 1)

e(k)
ˆ̃x(k)
u(k)

 =


Ai 0 0 −BiH Bi

0 As Bsu Bsy 0

I 0 0 0 0
0 I 0 0 0
0 0 I 0 0




e(k)
ˆ̃x(k)

u(k)
y(k)
r(k)

 .

Letting Fu( · , · ) denote the upper linear fractional
transformation (e.g., Zhou et al. (1996)), the static com-
ponent K, and the dynamic system are then combined in
feedback, as shown in Figure 4, so that

κ(z) = Fu(K̃(z),K).

2.3. Design using linear models

For synthesis, we model the actuator dynamics with a
second order discrete time transfer function. The combined
pitch rate sensor and filter, and the combined load factor
sensor and filter are each modelled as third order transfer
functions. These constitute a low-order approximation of
the real ones. The short-period dynamic model considers
only the states α, and q, a single lumped elevator input
and outputs q and nz.

For tuning, we define a performance output z(k) =
[e(k), q(k−1), nz(k−1),∆q(k−1),∆nz(k−1), u(k),∆u(k)]T ,
where ∆u(k) = u(k) − u(k − 1), and z(k) = Cp(ϑ)x(k) +
Dp(ϑ)u(k), and the objective is to thus, minimise an upper
bound on

∑∞
k=0 z(k)TQz(k) over all ϑji ∈ Jj , where we

define Q with tuning weights on the diagonal as

Q , diag {1, Qq, Qnz
, Q∆q, Q∆nz

, R,R∆} .

Thus the weights in (4) become Q = CTp QCp, R = DT
p QDp,

S = CTp QDp. As a rule of thumb, increasing Qq can damp
q overshoot and increase phase margin, but increase rise
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Figure 5: Satisfaction of linear stability margin and step response
overshoot requirements

time. Increasing Qnz
increases rise time. Increasing Q∆q

increases phase margin, but can also increase rise time.
It is more effective than Qq in this respect but does not
reduce q overshoot so much. Increasing R slows the reponse,
increases high-frequency roll off and increases gain margin,
but can reduce phase margin and increase overshoot. Q∆nz

and R∆ have less pronounced effects.
We choose x0 as a vector of zeros with unity on the

state corresponding to the previous input (this appeared
most reliable at the challenging high altitude, high mass,
rear CoG flight points).

In Hartley and Maciejowski (2015), an optimisation-
based approach was employed to obtain the tuning weights
automatically. In the present setting (including the syn-
thesis refinements of Section 2.2.3), the controller has been
tuned manually. For each flight group the initial value
Qnz = 1.1 is chosen to get an nz settling time of the de-
sired order, and R = 0.008 to attenuate high frequency
input commands. The remaining values are set to 10−6

so as to be positive but negligible and the values of R,
Qq, Q∆q are then manually increased to address design
requirements on pitch rate overshoot and phase margin
based on the aforementioned rules of thumb.

The optimisation (6) is formulated using YALMIP
(Löfberg, 2004) and solved using MOSEK. In its natural
coordinates, the problem can become very ill conditioned.
To remedy this, the chosen x0 can be scaled, or the full
problem can be scaled by similarity transformation on A(ϑ)
and equivalent scaling on all other matrices.

2.3.1. Airspeed measurement failure

The satisfaction of step response overshoot and linear
stability margin requirements described in Section 2.1 is
illustrated in Figure 5, where flight points to the left of
vertical lines (1–214) correspond to “clean” aerodynamic
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Figure 6: Step response for linear models at 5000 ft (clean configura-
tion)

configurations while flight points to the right (215–234)
cover high-lift configurations. Figure 6 shows the closed-
loop step responses of the linearised short-period model
(which includes models of the filters and elevator actua-
tor) with the control law described in Section 2.2.3, for a
clean slat/flap configuration, over the range of airspeeds
at vertices of the [0, 1]-normalised mass/CG envelope at
an altitude of 5000 ft. The rise-time to 90% (6 s) and
overshoot in q (30%) and nz (10%) are met, and the re-
sponse, whilst not as consistent as possible with a fully
scheduled control law, varies in a predictable manner. Fig-
ure 7 shows the closed-loop step responses over the vertices
of the airspeed, mass and CoG envelope at 35000 ft. Most
flight points meet the required specifications, except at
the highest-mass, most rear CoG, where it is very difficult
to simultaneously stabilise the upper and lower airspeeds.
Here, there are slight violations of rise time requirement.

2.3.2. Airspeed, mass and CoG estimates missing

When mass and CoG estimates are also polluted, a
control law can be designed to simultaneously stabilise
all vertices of the flight envelope for a given altitude, i.e.,
each group Jj contains flight points at a given altitude.
Figure 8 shows the step response at 5000 ft (for the clean
slat/flap configuration). This has been tuned to achieve at
maximum 40% overshoot in q, 10% overshoot in nz and a
linear phase margin of 40◦ at each of the design points so
as to achieve the required nz response.

2.4. Implementation aspects

Figure 9 shows a high-level functional description of the
online control task. The control law must also be defined
for small deviations outside the nominal flight envelope.
Since the grid describing the flight groups is not completely
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Figure 7: Step response for linear models at 35000 ft (clean configu-
ration)

regular, firstly, “fictitious” flight groups are used to “pad”
the flight envelope to allow it to be bounded by simple
box constraints. This is done by repeating the data for the
nearest defined flight point before performing the Delau-
nay Triangulation explained in Section 2.2.3. To clarify
this, Figure 10(a) shows the triangulation. Mass and CoG
positions are normalised into the range [0, 1] corresponding
to the bounds of their admissible values. Green markers
indicate the extended padding used to allow online use of
simple box saturation. The point-location and barycentric
interpolation task is conceptually simple and can be per-
formed using standard Matlab tools, however, the online
task can be further simplified by re-sampling the interpo-
lation offline (red markers) to partition the padded flight
envelope into cuboids, as depicted in Figure 10(b). This
allows implementation in Simulink using (for the case
where mass and CoG are available) a pre-lookup block and
an array of “Interpolation Using Prelookup” blocks. The
scenario where mass and CoG are polluted interpolates the
gains with respect to altitude only.

Flight Control Computer (FCC) software coding prac-
tices are often quite restrictive in order to facilitate verifica-
tion of stringent data integrity and real-time requirements,
and to fit with current certification processes. Therefore,
the controller has been re-implemented using a limited
library of Simulink-based blocks reflecting those limita-
tions. This library allows the use of only scalar signals and
operations and forbids the use of operations such as loops,
online optimisation and iterative code. These restrictions
allow resource usage to be easily analysed. Complexity of
the implementation of our backup control law is such that
implementing it within the constraints of this library is a
straightforward process.

The designed controller is a backup control law to be
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Figure 8: Step response for linear models at 5000 ft: no mass or CoG
data used in controller

×

∫

sh
if

t
sh

if
t

Interpolation

Reference

Select nz

q̂, n̂z

Sched. Param.

x
u

K

Figure 9: High-level functional description of implementation

used in the event of multiple simultaneous sensor failures.
Therefore, a switching strategy from the nominal fully
scheduled control law to the robust backup control law is
required. This switching strategy achieves continuity of the
control input u at the moment of switching by appropriately
initialising shift registers and the integrator based on the
past values of the nominal control law. Consequently, this
leads to reduced transients at the instant of switching.

3. Flight envelope protection

3.1. Objectives

Modern civil airliners have a flight envelope protection
facility to prevent them exiting the intended region of
operation (Well, 2006; Falkena et al., 2011). For example,
flight envelope protection can avoid getting close to a stall
due to excessive angle of attack caused by either a large
load factor command, or too low an airspeed. However, in
a scenario when airspeed and angle of attack are neither
reliably measured nor estimated, existing systems that rely
upon their values cannot be applied. The control design
presented in Section 2 is intended to track pilot load factor
commands, whilst being robust to unknown airspeed, but
does not itself address keeping the airspeed within the
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Figure 10: Flight envelope padding, triangulation and re-sampling
(normalised-CoG into the page)

designed uncertainty bounds, nor preventing commands
that lead to high angles of attack.

To complement the design of Section 2, this section
presents a flight envelope protection based on ground speed
and a simplified model of the aircraft lift. The RECON-
FIGURE Benchmark Scenario Description specifies as a
requirement that in the case of detected loss of angle of
attack and airspeed measurements, the aircraft should be
kept in a safe region of operation, and that the design
should be operable with up to 60 kts (≈ 30 m/s) head
or tail wind and up to 20 kts (≈ 10 m/s) vertical wind.
The accommodation of vertical wind means that “angle
of attack with respect to ground” (the difference between
the pitch angle and the flight path angle) is not a suitable
surrogate parameter since the resulting conservatism would
be excessive.

3.2. Design

3.2.1. Angle of attack limit

Let Wx denote the head/tail wind velocity, using the
convention that a positive wind is blowing in the direction of
the aircraft travel, so the true airspeed VTAS = VGND−Wx,
and let the a priori bounds on Wx be denoted as Wx,min

and Wx,max, and thus

VTAS ∈ [VGND −Wx,max, VGND −Wx,min].

For aeronautical applications, calibrated airspeed, VCAS, is
often the preferred measurement. Let fCASTAS (VTAS, zp) be
a function that converts from true to calibrated airspeed.
Estimates of bounds on VCAS can be computed from the
bounds on VTAS using a standard atmospheric model. Thus
for altitude zp:

VCAS ∈ [fCAS
TAS (VGND−Wx,max, zp), f

CAS
TAS (VGND−Wx,min, zp)].

For the RECONFIGURE benchmark aircraft with a
given mass and slat/flap configuration, the angle of attack
at trim, which we will denote as α0, can be modelled as a
function of calibrated airspeed and mass (CoG has little
effect). Letting m be the aircraft mass, based on data
obtained from simulations using the nonlinear RECON-
FIGURE benchmark, and pi be coefficients obtained by
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least squares regression, for each slat/flap configuration an
expression for α0 is obtained, of the form:

α0(VCAS,m) =

3∑
i=0

pi

(
VCAS

100

)i
+m

3∑
i=0

pi+4

(
VCAS

100

)i
.

The scaling factor of 1/100 is to ensure pi are well scaled.
The coefficients of this expression can also be used to form
a model for the load factor as a function of α as:

Lα(VCAS,m) = ∂nz/∂α = (m(∂α0/∂m))−1.

Making the approximation that the effect of pitch rate and
the direct effect of elevator deflection on the load factor is
small compared to the effect of the angle of attack,

nz ≈ Lα(VCAS,m)× (α− α0(VCAS,m)).

The maximum permitted angle of attack, αmax(M) is a
function of the Mach number. Letting Vs be the speed of
sound (computed from an atmospheric model as function
of zp). For a given slat/flap configuration, mass and VCAS,
the available load factor budget is:

nz,max = Lα(VCAS,m)× (αmax(VTAS/Vs)− α0(VCAS,m)).

Since the scenario considered does not permit measure-
ments of VCAS or VTAS to be used, a conservative load
factor budget is computed based on ground speed and the
wind bounds:

n̂αz,max = min
Wx∈[Wx,min,Wx,max]

nz,max (7)

s.t. VCAS = fCASTAS (VGND −Wx, zp)

M = (VGND −Wx)/Vs

nz,max = Lα(VCAS,m)[αmax(M)− α0(VCAS,m)].

The values of VMO and VS1G come from a lookup table
as a function of mass, CoG, slat/slap configuration and
altitude. For Wx ∈ [−30, 30] m/s, Figure 11 shows how
the load factor budget varies as a function of ground speed
(solid lines) for 3 different mass cases (ordered low to high),
at an altitude of 5000 ft. For comparison, the load factor

budget for the zero wind scenario (where VTAS = VGND) is
shown as a dashed line, and ground speeds of the maximum
operating speed VMO and VMO−30 m/s (to account for
wind bounds) are highlighted with vertical dashed lines.
Inevitably, using VGND and bounds on Wx reduces the
available load factor budget (the solid lines in Figure 11 lie
below the dashed ones of the corresponding colour), and
increases the minimum acceptable trim speed (the solid
lines intersect the horizontal axis to the right of the dashed
ones of the corresponding colour). However, there remains
some manœuvreability, and with sufficient ground speed,
changing the flight path angle is still feasible.

A negative load factor budget is indicative of at least
one realisation of the wind uncertainty causing an under-
speed condition. To prevent an overly aggressive descent,
in this situation, a lower saturation limit of zero is placed
on the load factor budget when the wings are level. Instead,
the flight path angle limits are modified to encourage speed
gain (Section 3.2.5). Whilst this paper does not address the
control of the lateral dynamics, when there is a non-zero
bank angle (φ), additional lift is required to maintain a
given flight path angle. This must be subtracted from the
load factor budget, which was computed based on α in
level flight. Combining these conditions gives:

nαz,max = max{n̂αz,max, 0} − (1− cosφ).

The inner loop control laws are designed to have a set-
tling time of less than 6 s, so, in reality, the aircraft does not
respond to a load factor command immediately. At high
angles of attack it is reasonable to assume that the airspeed
is decreasing. This means that the nominal equilibrium
angle of attack will be increasing and the lift derivative
decreasing simultaneously, and thus the maximum deliver-
able load factor will be decreasing. To compensate for this
dynamic behaviour it is useful to include some anticipatory
behaviour to accommodate the finite time response of the
inner load factor tracking loop. The “measurement” of
VGND can be adjusted by using the current measurement of
horizontal load factor nx to determine the current acceler-
ation, and projecting a period τα into the future assuming
constant acceleration.

3.2.2. Pitch angle limit

Let θ be the pitch angle and θmin and θmax denote its
desired operational limits. Assuming constant airspeed,
the pitch rate qss, for a steady load factor nz,ss satisfies:

|qss| ≤ (180/π)|nz,ssg/(VGND −Wx,max)|.

Upper and lower bounds on the load factor to meet these
requirements are specified as

nθz,max = π(VGND −Wx,max)(θmax − θ)/(180gτθ)

nθz,min = π(VGND −Wx,max)(θmin − θ)/(180gτθ)

where τθ is a tuning parameter corresponding to a lower
bound on the time to reach θmax or θmin from a given θ at
a particular time instant (θ + qssτθ ≤ θmax).
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3.2.3. Flight path angle limit

The flight path angle γ is the angle between the ground
velocity vector projected onto the ground, and its vertical
component. Its rate of change is proportional to the load
factor: γ̇ = (180/π)gnz/VGND. Using the same argument
as for the pitch angle, one can choose a tuning parameter
τγ corresponding to a lower bound on the time to reach
γmax or γmin and define corresponding limits on the load
factor:

nγz,max = (π/180)VGND(γmax − γ)/(gτγ)

nγz,min = (π/180)VGND(γmin − γ)/(gτγ).

3.2.4. Climb rate limit

The climb rate should be limited to [żmin, żmax] by
limiting the range of the flight path angle γ. Using small
angle approximations:

γzmax = (180/π)żmax/VGND, γzmin = (180/π)żmin/VGND.

3.2.5. Speed limit

Since in the scenario addressed in this paper airspeed
measurements are notably absent, ground speed in com-
bination with a priori bounds on wind speed is used as
an alternative metric for maintaining the flight envelope.
Firstly, it is necessary to define upper and lower bounds
Vmin and Vmax respectively, on the ground speed VGND.
Letting fTASCAS (VCAS, zp) be a model-based conversion from
calibrated airspeed to true airspeed, bounds are designed
as follows. The stall speed and the maximum operating
speed are converted from their values specified in terms of
VCAS, into values in terms of VTAS for the current altitude.
Then these are adjusted based on the bounds on the wind,
and finally a positive safety margin δVmin is added to the
lower bound. We choose a value of δVmin = 8.5 m/s, but
this is a tuning parameter. So:

Vmin = fTASCAS (VS1G, zp) +Wx,max + δVmin

Vmax = fTASCAS (VMO, zp) +Wx,min.

Assuming that thrust approximately cancels drag, then
the main gain or loss of speed is due to gain or loss
of altitude, with the following approximate relationship:
V̇GND ≈ −(π/180)gγ. Following our previous pattern, we
define τV as a tuning parameter with the physical inter-
pretation: Vmin ≤ VGND + V̇GNDτV ≤ Vmax. This places a
constraint on the admissible flight path angle, and can be
re-arranged to compute γVmax and γVmin. Therefore:

γVmin =
180(VGND − Vmax)

πgτV
γVmax =

180(VGND − Vmin)

πgτV
.

3.2.6. Override rules

Let nz,ref be the pilot’s load factor command. We can
consider enforcing limits on the command passed to the
inner loop controller in the following order:

1. nz,ref ← max{nz,ref , nγz,min}

2. nz,ref ← min{nz,ref , nγz,max}
3. nz,ref ← max{nz,ref , nθz,min}
4. nz,ref ← min{nz,ref , nθz,max}
5. nz,ref ← min{nz,ref , nαz,max}.

The first and second overrides ensure the flight path angle
is within design limits, and the third and fourth ensure that
the pitch angle is within design limits. The fifth override
ensures that any positive load factor commanded (either
by the pilot, or one of the other overrides) does not cause
an angle of attack limit violation.

The flight path angle limit is a function of the desired
climb rate ranges and the over and under-speed limits. In
principle, the limits should be:

γmax = min{γVmax, γ
z
max} γmin = max{γVmin, γ

z
min}.

Before doing this, it is essential to take care to ensure that
γmax ≥ γmin. If the current point is already significantly
underspeed then it is possible for γVmax to be more negative
than γzmin. An analogous situation holds for overspeed. In
such a case, we choose to prioritise the climb rate constraint
and override

γVmax ← max{γVmax, γ
z
min}, γVmin ← min{γVmin, γ

z
max}.

To avoid an unintended descent or climb as a result of the
protection loop competing with the autothrust, if for some
reason it is is enabled (i.e., if this design were to be applied
in a non-fault condition, or engines were used to maintain
a ground speed instead of an airspeed), we also override:

γmax ← max{γmax, 0} γmin ← min{γmin, 0}.

3.3. Implementation aspects

Most of the numerical operations in the protection loop
are simple. Here we propose some approximations to the
two most complex tasks. Since the value of αmax( · ) comes
from a lookup table, the optimisation (7) can be non-trivial.
However an approximate solution can be obtained by eval-
uating the cost over a grid (for example, Wx,min, 0, and
Wx,max) and taking the minimum value. Also, the exact
function for converting from TAS to CAS fCASTAS (VTAS, zp)
involves the computation of some non-integer roots, which
is not supported by the flight code library that is targeted.
For online implementation, we approximate the conversion
using a polynomial in VTAS and zp, with terms up to third
order in each parameter.

To accommodate the scenario where mass estimation
has been invalidated, an upper bound on the aircraft mass
can be passed to the protection loop. This will impose
the most conservative set of bounds on the flight envelope
given the remaining assumptions on the aircraft model
and the wind bounds, and consequently a reduced level of
performance.
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Figure 12: Closed-loop simulation (no airspeed) in nonlinear RE-
CONFIGURE benchmark: all design points for clean configuration
at 5000 ft with mass-CoG-altitude scheduled control law

4. Performance evaluation on a high fidelity model

The RECONFIGURE benchmark simulator (Goupil
et al., 2014, 2015) is a high-fidelity industrially-validated
nonlinear simulator provided to the RECONFIGURE con-
sortium by Airbus. It is comprised of two parts: a compiled
“black box” running on a Linux server, which simulates the
flight dynamics; and a Simulink-based interface containing
parts of the flight control computer logic with sufficient
hooks to allow replacement of the built-in benchmark con-
trol law by a custom design. The two parts communicate
over a network link. To demonstrate the behaviour of
the proposed designs, the control law is implemented as
a “Model Reference Block” in Simulink and connected in
place of the nominal (fully scheduled) benchmark control
law.

4.1. Inner loop load factor control law

Firstly, the inner loop is demonstrated. To prevent
distortion of the load factor command, and to allow visual
analysis of the consistency of the responses at different flight
points, all protection and autothrust laws are disabled.

4.1.1. Airspeed measurement failure

When airspeed measurements are unavailable, but mass
and CoG are usable, the design from Section 2.3.1 is demon-
strated, interpolated based on mass, CoG and altitude.
Figure 12 shows the closed-loop responses to a sequence of
pilot sidestick commands corresponding to a small back-
ward deflection at t = 5 s followed by a return to neutral
at t = 16 s, a small forward deflection at t = 27 s and neu-
tral at t = 38 s, from straight-and-level trim points at an
altitude of 5000 ft, for each of the range of mass, CoG and
airspeed combinations corresponding to the design points.
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Figure 13: Estimated CAP (no airspeed) in nonlinear RECONFIG-
URE benchmark for clean configuration at 5000 ft with mass-CoG-
altitude scheduled control law
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Figure 14: Closed-loop simulation (no airspeed) in nonlinear RE-
CONFIGURE benchmark: all design points for clean configuration
at 27500 ft with mass-CoG-altitude scheduled control law

The load factor command is plotted as a black dashed
line, and the point 6 s after the first change in setpoint is
highlighted to emphasise that the load factor transient is
substantially finished within this time. The initial gradients
of the pitch rate trajectories following the command are
similar, indicating a consistent control anticipation param-
eter (CAP). An estimate of the CAP, formally for an ideal
two state model with a step at t = 0 defined as q̇(0)/nz(∞),
but in this non-ideal case with a highly augmented system,
approximated as the maximum pitch acceleration divided
by the load factor setpoint during the period from 5 s
to 11 s is shown in Figure 13. The variation in CAP is
small, and moreover its variation with respect to mass and
airspeed is predictable. There is minimal overshoot on the
nz and q trajectories. The drift on the input trajectories
is a function of the gradual reduction in airspeed as the
aircraft gains altitude. Figures 14 and 15 show the corre-
sponding simulations at an altitude of 27500 ft. Again, the
load factor transient is substantially finished 6 s after the
first change in setpoint, and the CAP is consistent. The
CAP at this altitude is slightly lower than at 5000 ft but its
variation with mass and airspeed remains predictable. Two
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Figure 15: Estimated CAP (no airspeed) in nonlinear RECONFIG-
URE benchmark for clean configuration at 27500 ft with mass-CoG-
altitude scheduled control law
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Figure 16: Closed-loop simulation (no airspeed) in nonlinear RE-
CONFIGURE benchmark: all design points for non-clean (high lift)
configurations at 5000 ft with mass-CoG-altitude scheduled control
law

of the pitch rate trajectories in Figure 14 appear anomalous
with larger pitch rate overshoots, despite adequate load
factor trajectories. These correspond to the two highest
mass cases (both substantially above maximum landing
weight) at the lowest airspeeds in the grid of design points.
The overshoot is commensurate with that achieved by the
fully scheduled benchmark control law (not shown) with
autothrust disabled (and the flight points are below “VLS”,
the lowest selectable speed with autothrust enabled).

Figure 16 shows responses for the 20 non-clean (high
lift) design points. These design points cover a substantially
lower set of air speeds than for the clean configurations.
Only the initial transient is shown, since with the protection
loops disabled some of the trajectories enter a stall due
to low airspeed. The CAP varies more than in the clean
configuration (seen from the initial gradient of q), but it
should be noted that these simulations cover 4 distinct
slat/flap configurations. The slight tracking offset is to
be expected, due to airspeed changes in the absence of
autothrust acting as a ramp disturbance, whilst the control
law only has a single integrator.
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Figure 17: Closed-loop simulation (altitude only) in nonlinear RE-
CONFIGURE benchmark: all design points at 5000 ft with altitude-
only scheduled control law
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Figure 18: Estimated CAP (no airspeed) in nonlinear RECONFIG-
URE benchmark for clean configuration at 5000 ft with altitude-only
scheduled control law

4.1.2. Airspeed, mass and CoG estimates missing

Figure 17 shows the closed-loop responses for an altitude
of 5000 ft to a control law synthesised as described in
Section 2.3.2 to depend upon neither airspeed, CoG nor
mass estimates, i.e. for a given altitude each simulation will
use the same control law. Performance is adequate, except
for the high-mass, rear CoG and low airspeed scenario, in
which, due to absence of protection loops and autothrottle,
the airspeed deviates from the design envelope and the
quality of control deteriorates. Elevator responses are
more “cautious” than the scenario where CoG and mass
are available. The estimated CAP for these simulations is
shown in Figure 18. It is a little bit lower than for the mass-
CoG-altitude scheduled control law, but still consistent
(this can also be seen from the initial gradient of q being
similar for all scenarios in Figure 17).

4.2. Flight envelope protection

Figure 19 shows the results using the nonlinear RE-
CONFIGURE benchmark with the same inner loop control
law as demonstrated in Section 4.1, and the outer loop
protection system described in Section 3. (Numerical val-
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ues of units cannot be shown due to the RECONFIGURE
confidentiality constraints.) The unused, but implicitly
constrained, parameters VCAS and α are also shown in this
experiment to verify the effectiveness of the approach. The
simulations consider an initial altitude of 5000 ft, for a
mass case at the upper limit of the permitted envelope, the
CoG at its rearmost position, an initial VCAS approximately
mid-way between stall speed and maximum speed, and a
clean slat/flap configuration. Between t = 5 and t = 15,
the maximum load factor is commanded. The engine thrust
is held at the trim equilibrium value. Three scenarios are
shown — the first with no wind, the second with a tail-
wind entering at t = 10, and the third with a head-wind
entering at t = 10. In all cases, the load factor command
is attenuated substantially, but an initial increase in flight
path angle is visible. As the speed nears its lower bound,
the flight path angle falls back. In the case of no wind,
and a head-wind, the angle of attack remains far from the
upper limit. On the other hand, in the case of the tail
wind, the angle of attack transiently reaches its upper limit
before converging to a value slightly below it. It should be
noted, that to recover a climb whilst meeting the imposed
envelope limits, more engine thrust would be needed to
increase the speed. The pilot must command this, or a
ground-speed based autothrust law could be implemented,
but that is beyond the scope of this paper.

5. Conclusions

A robust load-factor tracking control law for the lon-
gitudinal dynamics of an aircraft has been proposed and
demonstrated in linear and nonlinear simulation. The per-
formance requirements are met over a large region of the
flight envelope, and a further degraded control law which
does not require even mass or centre of gravity estimates has
also been demonstrated. Heavy computation is relegated to
the offline design phase, and the online computational task
involves only simple operations. In comparison to Hartley
and Maciejowski (2015), where a preliminary version of
this work was presented, the behaviour between design
points has been more rigorously considered. In addition, a
substitute for the invalidated outer angle of attack and air-
speed protection loops has been implemented, based upon
command limiting as a function of ground speed, a priori
bounds on the wind speed and an a priori model of the trim
angle of attack and load factor behaviour. The proposed
approaches do not pose any fundamental incompatibility
with existing software implementation approaches. Nor do
they require substantial conceptual changes in high level
architecture, with a one-to-one mapping between their roles
and the systems that they are intended to take over from
during the fault scenario. As part of the concluding stages
of the RECONFIGURE project, the designs have been
submitted for verification and benchmarking using the tool
described in Fernández et al. (2015). Future work will relax
the architectural and coding compatibility considerations,
and investigate to what degree replacing the override rules

in the protection loop with a more complex online optimi-
sation based MPC scheme can reduce the conservatism of
the ultimate achievable, compliant, load factor.
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slat/flap configuration at 5000 ft, for heavy, rear CoG aircraft
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