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Abstract 

We introduce comparative connectomics, the quantitative study of cross-species 

commonalities and variations in brain network topology that aims to discover general 

principles of network architecture of nervous systems and the identification of species-

specific features of brain connectivity. Comparing connectomes derived from simple to 

more advanced species we identify two conserved themes of wiring: The tendency to 

organize network topology into communities that serve specialized functionality and the 

general drive to enable high topological integration by means of investment of neural 

resources in short communication paths, hubs and rich clubs. Within the space of wiring 

possibilities that conform to these common principles, we argue that differences in 

connectome organization between closely related species support adaptations in cognition 

and behavior.  

 

Comparing brains 

Comparative biology and comparative neuroscience generally aim to discover common 

plans of organization while also accounting for diversity among species. A key objective of 

comparative studies of brain architecture is to achieve an understanding of the 

neurobiological basis for the emergence of complex brain structure and function. For 

example, several classic studies on the cellular composition of the primate cortex have 

addressed cross-species homologies [1-3] and contemporary comparative analyses have 

highlighted common cortical phenotypes and important roles of genetic and epigenetic 

interactions in development for creating cross-species diversity [4, 5]. Together, these and 

many other comparative studies have laid the foundations for our understanding of 

mammalian brain anatomy and function. 

 One major focus has been on the growing size of brains from smaller to larger 

animals [6-9] and in particular the significant increase in volume required by the expansion 
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of anatomical connections [10-12]. A seminal observation is that the proportion of brain 

mass spent on cortical white matter follows an allometric scaling relationship between 

body and brain size across the entire spectrum of simpler to higher-order mammalian 

species [13, 14]. In small mammals like the mouse only around 11% of total brain volume is 

composed of white matter, in contrast to 27% in the macaque monkey, 40% in chimpanzees 

and 41% in humans (data taken from [13]). However, despite a larger volume of white 

matter, maintaining constant connection density among an increasing number of neurons 

and regions in larger brains will quickly outstrip the volume that can be allocated to long-

distance neural wiring [15-17]. Thus the scaling between brain size and white matter volume 

implies a lower proportion of directly connected neural elements in larger sized brains [15, 

17, 18], making it more and more difficult for neural elements to communicate via direct 

connections. Maintaining fast and efficient neural communication brings significant benefits 

to brain function, arguably leading to a fundamental tension or tradeoff [19] between the 

conservation of neural resources that can be spent on long-distance connectivity and the 

promotion of efficient communication to support complex neural processing. These apparent 

opposing or competitive pressures highlight the importance of the topological organization 

of nervous systems that must provide an arrangement of neural elements and connections to 

balance the amount of neural resources used for connectivity while at the same time 

enabling effective information transfer in the service of brain function.  

 

Comparative connectomics 

The examination of brain network topology is a core element of the field of ‘connectomics’ 

[20], the emerging science of structural and functional brain networks [21-24]. The 

increasing availability of connectomes of multiple animal species (Figure 1) opens up a new 

opportunity for the comparative analysis of network architecture across species. The goal of 

this review is to introduce “comparative connectomics”, defined as the comparison of the 
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topological layout of nervous systems across species, with the aim of identifying common 

principles and variations in network features. Comparative connectomics can provide insight 

into general principles of neural wiring that apply across species and examine to what extent 

variations in connectivity between species may form the basis for differences in brain 

function. As we will discuss, connectomes of different species reconstructed by a broad 

range of methodologies (see box 1) can be compared by applying a consistent set of network 

analysis measures and graph analytical tools (see box 2) to enable quantitative comparison 

of the topological architecture of the nervous systems across and between species. We begin 

with an overview of currently available systems-level connectome maps, ranging from 

invertebrates such as Caenorhabditis elegans (a nematode or roundworm) and Drosophila 

melanogaster (fruit fly), to the macroscale connectome maps of mammalian species such as 

rodents, old-world monkeys, great apes and humans (Figure 1). Using graph theory as a 

general framework to quantify topological features of network organization, we first 

identify common aspects of brain network topology. We then turn to differences in neural 

wiring and brain network organization among closely related species suggesting that 

variations in connectome topology subserve species-specific behavioral and cognitive 

adaptations. 

 

Connectomes from Simpler to More Advanced Animals 

Nearly 30 years ago, serial electron microscope reconstructions of the nervous system of the 

hermaphrodite nematode Caenorhabditis elegans [25] served as the foundation for the 

assembly of a near-complete neuronal connectivity network of 890 gap junctions, 6393 

chemical synapses and 1410 neuromuscular junctions among 279 neurons of the worm’s 

somatic nervous system [26]. This seminal work inspired later efforts to map the posterior 

nervous system of the C. elegans adult male [27], as well as the reconstruction of (partial) 
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neuronal connectomes of other worm species, including that of the roundworm Pristionchus 

pacificus [28] and the marine worm Platynereis dumerilii [29].  

Early graph theoretical analyses showed the C. elegans nervous system to exhibit a 

small-world network organization [30] with high clustering (see box 2) and short paths, 

indicating preferred connectivity into locally clustered circuits, combined with the presence 

of relatively few long-distance connections that mediate topological short-cuts and facilitate 

efficient global communication [31]. Further analyses disclosed preferential formation of 

specific local motifs [26] and a community structure of densely intra-connected and 

sparsely inter-connected sub-networks or modules [32], an organization that roughly aligns 

with a classification of neurons into sensory, motor and interneuronal categories [26](Figure 

2).  

Network analyses of the C. elegans connectome have played a prominent role in 

discussions of wiring minimization models [33, 34], which advocate that the conservation of 

wiring governs the spatial placement of neuronal elements and accounts for the formation of 

spatially localized circuits. However, these analyses have also revealed that some neurons 

and their connections deviate from optimal spatial placement as predicted by a strict 

minimization of wiring cost [33, 35, 36], which argues for other, non-geometric biological 

factors to play a role in the topology of the C. elegans nervous system. Indeed, one of the 

most prominent features of the adult worm’s connectome is the non-uniform distribution of 

synaptic connectivity (i.e. node degree) across neurons [26, 37] with the majority of 

synaptic connections maintained by a small set of highly connected neurons. These hub 

neurons maintain dense interconnectivity with each other despite being spatially distributed 

in both the anterior and posterior extremities of the worm’s body. These findings are 

indicative of a biologically expensive rich club organization of the adult C. elegans 

connectome in which high-degree elements form a densely centralized core [32]. 

Interestingly, hub neurons constituting the rich club of the adult C. elegans had previously 
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been categorized as command interneurons with known functional importance for 

information integration [26], coordinated movement and adaptive behaviors of the animal 

[32]. Furthermore, in C. elegans, these hub neurons have been noted to appear as one of the 

first elements of the nervous system [38], suggesting a central role of rich club architecture 

in nervous system development [32, 39].  

 Other projects aiming at neuron-scale connectivity maps have focused on the 

reconstruction of the connectome of Drosophila, for example by imaging a sample of 

approximately 12,000 of the >100,000 neurons that make up the adult fly brain [40]. 

Grouping of individually imaged neurons into over 40 morphologically distinguishable 

brain areas resulted in a detailed interregional connectome map [40]. Subsequent refinement 

of this map and detailed graph theoretical analysis showed several highly connected hub 

regions as well as five network communities (modules) of densely interconnected regions 

[41]. These five communities largely correspond to known olfactory, visual, 

mechanosensory/auditory and premotor systems of the fly brain, suggesting that their 

topological structure forms the anatomical substrate for specialized functional processing 

(Figure 2). Wiring economy has been suggested to play a major role in local neuron and 

connectivity placement in the Drosophila brain [42]. However, as in C. elegans, a modular 

structure minimizing the expense of wiring is supplemented by the presence of a highly 

connected rich club [41]. Rich club regions are found distributed across all modules of the 

Drosophila nervous system and their remote geometric placement implies a high cost of 

wiring of their interconnecting pathways [41](Figure 3). Parallel mapping efforts employing 

electron microscopy serial sectioning and reconstruction of neuronal circuits in the 

Drosophila larva have provided detailed wiring diagrams of multisensory circuits that are 

similar to those of the adult fly brain in demonstrating complex patterns of convergence to 

enable multimodal information integration [43]. These and other studies establish important 
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links between the topology of neuronal circuits and the sensory/behavioral functions of the 

brain. 

 Reconstructions of whole-brain connectome maps of more complex species 

predominantly involve the tracking of macroscale axonal projections between large-scale 

brain areas. Such reconstructions include mappings of the avian pigeon brain, revealing a 

modular network architecture and densely connected hub areas [44], as well as detailed 

mappings of the macroscale systems of several rodent and primate species. Recent 

comprehensive mapping efforts utilized a large number of injections of anterograde tracers 

combined with high-throughput serial tomography optical imaging for a detailed 

reconstruction of the mouse connectome [45]. Although such automated reconstruction 

procedures will inevitably be prone to some level of measurement error and statistical noise 

[45], standardized experimental conditions allowed tracking of an unprecedented number 

(>15,000) of directed projections between over 200 areas of the mouse brain. A parallel 

effort involved the detailed mapping of over 600 macroscale cortico-cortical pathways 

combining both anterograde and retrograde tracer experiments [46]. Network analysis of 

these mouse connectome maps revealed dense local clustering of wiring and modular 

organization, combined with the existence of topologically short pathways [45, 46]. 

Furthermore, the strength of anatomical connectivity was noted to approximate a log-normal 

distribution ranging over 5 orders of magnitude [45]. Projection strengths of anatomical 

pathways generally were strongest between spatially neighboring regions and decayed 

monotonically as a function of increasing connection distance. This argues in favor of an 

important role of geometric factors in shaping the topology of mouse wiring [45]. However, 

similar to the invertebrate species considered earlier, wiring cost of the mouse connectome 

is not strictly minimized and its modular organization is complemented by the existence of 

high-degree rich club hubs mediating biologically expensive (long distance) connections 

between modules [47, 48] (Figure 3). Generative modeling approaches proved successful in 
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reproducing the modular aspects of connectome topology of the mouse brain simply by 

minimizing wiring cost, but these models failed to account for the emergence of long-

distance connections until the penalty imposed on spatial distance was adaptively relaxed 

for higher degree hubs [47]. 

 A different approach aiming to build a rat cortical connectome involved collating 

data across >16,000 literature reports of tract tracing experiments. Collectively, these data 

captured 1,923 cortical association macro-connections spanning 73 gray-matter areas of the 

rat cerebral cortex, together with an ordinal assessment of connection strength [49]. Graph 

theoretical examination revealed short communication paths, high clustering, connected 

communities largely coinciding with functionally specialized systems [49], and a central 

rich club [49, 50] comprising a set of highly connected, spatially distributed and multimodal 

cortical areas [49] (Figure 3). 

 Consensus matrices obtained by collating data across large numbers of tracing 

experiments have also been built for the cat [51], ferret [52] and macaque brains [53]. One 

of the earliest mappings of a mammalian cerebral system involved the compilation of the 

macroscale cat connectome, describing 65 cortical areas and >1000 cortico-cortical 

pathways [51]. Network analysis of the cat connectome showed short length paths and 

strong clustering of anatomical wiring within functionally specialized motor, visual, 

auditory and fronto-limbic subsystems [54]. Follow-up analysis identified different types of 

hub areas in the cat cortex [55], and defined a central, reciprocally interconnected core 

module [56, 57] corresponding to a rich club of cortical hubs [58].  

 The systematic analysis of anatomical connectivity patterns in the macaque brain 

was propelled forward by the early connectomics pioneer Rolf Kötter (1961-2010) who 

founded the open-access Collation of Connectivity Data for the Macaque (CoCoMac) 

database, which aggregated data from hundreds of macaque tract-tracing experiments [53, 

59]. Graph theoretical analyses of macaque connectome maps revealed high clustering, a 



 9 

hierarchical ordering of wiring from primary to multimodal areas [60], short path lengths, 

pronounced modular organization [61-63], as well as the presence of spatially distributed 

but centrally connected cortical hub areas [55, 62](Figure 3). As already noted by early 

computational analyses of macaque interareal connectivity [64], inverse correlations 

between projection density and geometric length suggest an important role of spatial or 

geometric factors in shaping the topology of macaque interareal projections [65]. However, 

modeling analyses of macaque connectivity have also pointed out an important role for 

topological factors in shaping macaque connectivity, e.g. the drive to enable efficient 

communication pathways by means of the formation of high-cost long-distance projections 

[35] and the high investment of connectivity around hubs and a rich club core [55, 66, 67]. 

These network attributes are difficult to account for by purely geometric factors.  

 The development of diffusion-weighted imaging combined with tractography has 

allowed for the assembly of the macroscale human connectome [68-72]. Despite the caveats 

and limitations regarding the interpretation of the diffusion MRI signal [73-75] and its use in 

connectome reconstruction (see for discussion [68, 76-78]), diffusion weighted imaging is 

currently one of the most widely used methods for the assessment of anatomical 

connectivity in the human brain. Several large-scale efforts, including the Human 

Connectome Project [79], are delivering unprecedented amounts of high-quality human 

connectome data, and advances in ex vivo imaging techniques might provide even more 

detailed maps of post mortem animal and human wiring in the future (see Box 1). 

Paralleling key features of connectome topology already reviewed for other animals, 

network analysis of the human connectome has shown an organization of densely connected 

communities that form the anatomical wiring skeleton of known functional domains [80-

85](Figure 2). This modular structure is complemented by anatomically long-distance 

projections that support topologically short-distance global communication paths [68, 69], 
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combined with densely connected and topologically central communication hubs [68, 71, 

86-88] that form a central rich club in the human brain [39, 89-92] (Figure 3).  

 

Having surveyed our current knowledge of connectome topology across a range of species, 

we are now in a position to examine the potential principles that may drive common themes 

in wiring patterns, as well the important roles of cross-species variations in differentiating 

behavioral and cognitive adaptations. 

 

Common Principles of Connectome Wiring  

We first discuss which general principles may underlie common themes of connectome 

organization observed across species. Across the range of species studied so far, we observe 

a strong tendency at both micro and macro scales of network organization for neurons 

(micro) or brain regions (macro) to connect to their spatial and topological neighbors, 

favoring the formation of spatially co-localized, topologically clustered cliques or 

communities [80] (Figure 2). This community architecture largely coincides with the 

formation of physiologically specialized functional domains in nervous systems, consistent 

with the idea that anatomical wiring plays an important role in the functional differentiation 

of cortical areas [93-95]. Cross-species comparison shows a high level of consistency of 

functional domains across species, with human, macaque and rodents showing several 

homologous primary and higher-order associative limbic and cognitive networks [96-99]. 

The conservation of wiring has long been proposed as a fundamental rule governing the 

local layout of circuits [34, 47, 64, 65, 100-102]. Geometric constraints promote the 

emergence of functionally specialized network communities in nervous systems. Across 

species, it has been hypothesized that the growth of brain volume across species favors the 

existence of local modules [103, 104] while penalizing the formation of long-range 

connectivity as such connections become more and more expensive in terms of neural 
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resources. Support for such notions come from studies examining the volume of white 

matter connectivity tracts across a wide range of primate species, revealing long-distance 

(and thus costly) connectivity in the corpus callosum to be lower in larger primate brains, 

while intra-hemispheric white matter volume is enlarged [105]. A more local organization 

of cortical wiring in larger brains may promote the emergence of specialized brain 

functionality in larger animals [103, 104, 106-108]. For example, a stronger modularity 

structure of connectome wiring may have played a role in the formation of more spatially 

localized cortical fields for visual, sensory and motor information processing in larger 

mammalian brains [109], as well as increased brain lateralization, preferred hand-use, and 

the development of specialized traits like language processing in humans [110-112].  

 A second general theme of connectome topology includes the drive of nervous 

systems to invest resources in network attributes that bring topological integration (Figure 

3). Across the range of examined species, all nervous systems show topologically short and 

efficient paths, regardless of increasing brain network size. Although modeling studies have 

generally succeeded in accounting for parsimonious local wiring and cost-controlled 

community structure, they have difficulty explaining the formation of long-distance 

pathways (essential for efficient communication paths) unless constraints on wiring cost are 

relaxed [47, 101, 102, 113]. Across species, the consistent presence of long-distance 

connections that violate strict minimization of wiring suggests a general drive of neural 

systems to invest neural resources in network attributes that maintain short communication 

relays.  

The strong drive to invest costly resources in network attributes that bring 

topological integration may become even more apparent from the consistent allocation of 

neural assets to the formation of a densely connected core or rich club [32, 87, 114]. This 

general tendency to centralize connectivity appears to be ubiquitous: it is observed across 

spatial scales (e.g. from patterns of information flow in microcircuits [115-117] to whole-
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brain systems), as well as across small and large nervous systems of vastly different species 

(see also Box 3).  

Communication in nervous systems goes beyond the simple relaying of messages 

along shortest paths and involves continual processing of information at each neural step. 

The centralization of neural connectivity into a connective core may thus bring important 

benefits with regard to information integration [32, 87, 118, 119], potentially facilitating 

higher-order brain functionality that thrives on integrated information, such as coordinated 

movement in the worm [32] and/or executive functioning in humans [120]. Due to their 

central embedding in network topology, hubs and their connections can attract and 

disseminate a large proportion of all neural communication [89, 119], forming an 

anatomical substrate for the exchange of information between otherwise segregated 

domains. This has led to the theoretical idea that hubs and rich clubs provide an anatomical 

infrastructure [87] for the formation of a “global workspace” [121-123] or “connective core” 

[124], a functional construct in which information from different parts of the system is 

integrated. These ideas are supported by observations demonstrating that hub regions in 

mammalian species tend to overlap with multimodal association cortex [125, 126], display 

an intricate neuronal architecture with heavily branched pyramidal neurons [127-131], pose 

high energy demands [19, 90, 132], and form convergence zones between different 

functional networks [133-135].  

The common theme across nervous systems to invest neural resources in network 

attributes that bring topological integration argues for a more diverse set of principles than 

strict conservation of neural resources to shape the connectivity layout of nervous systems 

[136, 137]. Rather, the drive to invest neural resources in dense connectivity around an 

integrative core appears to favor the emergence of connectome attributes that are 

advantageous for enabling short pathways and transmodal communication. Offsetting their 

greater biological cost in terms of neural and metabolic resources, these topological features 
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may bring strong potential benefits for integrative neural processing and cognitive brain 

function and behavior. 

 

Variations Support Behavioral and Cognitive Adaptations 

Although we argue for common cross-species themes in connectome organization, a 

proposed tradeoff between pressures to conserve wiring cost and pressures to maximize 

topological integration [19, 138] cannot, by itself, account for the abundant diversity in 

brain connectivity and nervous system organization across species. Multiple factors, 

including variations in environmental factors, genes and genetic regulatory networks 

operating during development combine to generate a diverse set of brain networks even 

across closely related species. A natural next question, then, is how differences in 

connectome wiring between species relate to species-specific differences in behavior and 

information processing. This question is most productively explored by comparing 

connectomes of relatively closely related species that share a basic anatomical plan and an 

overlapping behavioral repertoire. 

 One example is offered by comparative studies of the nervous systems of 

roundworms. Comparison between reconstructions of microscale neural networks of the 

pharyngeal systems of C. elegans and P. pacificus  showed significant differences in neural 

connectivity that could be linked to their distinct feeding behaviors [28]. P. pacificus, in 

contrast to the bacterial feeder C. elegans, is a predator with a distinct anatomy of its mouth 

areas. Side-by-side comparison of the layout of synaptic connectivity of the pharyngeal 

systems of the two species revealed significant differences [28] (Figure 4), with P. pacificus 

showing increased connectivity around neural elements controlling tooth-like denticles. 

Comparative network centrality analysis further showed that presumptive communication 

paths and information flow in P. pacificus are much more tuned towards the control of 

pharyngeal motor neurons. Thus, differences in connectome topology appear to constitute at 
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least part of the biological basis for the substantial divergence in feeding behavior between 

the two worm species [28]. In addition, a second comparative example in the roundworm 

(not across species but gender) is provided by dimorphic differences in neural wiring of the 

reproductive system of C. elegans. Male worms include 383 neurons (in comparison to 302 

of hermaphrodites) with dimorphic changes in neurons and connectivity mostly focused 

around the formation of circuits related to mating and reproduction [25, 27]. Male worms, 

but not hermaphrodites, are capable of sexual adaptive learning that facilitates effective 

mate finding and, interestingly, a recent study revealed a key role of specific neurons and 

their wiring in the emergence of this behavior [139]. Detailed reconstruction of synaptic 

connectivity revealed two newly discovered neurons to be incorporated in existing circuits 

during late development, with the newly added connectivity and accompanying change in 

network structure allowing the male worm to add sex-specific learning plasticity to its 

functional repertoire [139]. 

 Comparative connectivity analyses between primate species have similarly argued 

for a relationship between subtle differences in connectome wiring and divergent behavior 

[140]. For example, bonobos and chimpanzees share a recent common ancestor but they 

show quite distinct social interactive behavior, with bonobos showing less aggression and 

higher social tolerance as compared to chimpanzees (see [140, 141] for a discussion). 

Comparative analysis of MRI-derived reconstructions of brain connectivity between the two 

species shows anatomical connectivity between the amygdala and anterior cingulate regions, 

a network of subcortical and cortical areas involved in the modulation of social and 

emotional behavior [142, 143], to be stronger in bonobo apes than in chimpanzees [140]. 

Furthermore, comparative MRI studies between macaques, chimpanzees and humans [110], 

have linked elaboration of anatomical connectivity of the arcuate fasciculus connecting 

temporal and frontal cortical areas to the development of language and speech processing in 

humans (Figure 4) [110, 144]. 
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 In addition to evidence for behaviorally-related connectivity differences in specific 

circuits, comparative connectome examinations between primates and humans have further 

offered support for a role of variations in system level connectivity patterns in the 

evolutionary emergence of specific advanced brain functions. Although studies have 

reported a general homology of connectome organization across macaque, chimpanzee and 

human, there is evidence for significant species-specific differences in the wiring of parietal 

and medial prefrontal regions [67, 145]. Comparative connectome analyses suggest that 

areas of the frontal cortex in humans exhibit a less central position as compared to 

homologous areas in macaques and chimpanzees [67, 104]. In addition, functional 

connectivity hubs in the human brain have been argued to exhibit a more spatially 

distributed organization compared to non-human primates [146], differences that may 

contribute to the increasing functional specialization of frontal cortical areas [104]. 

Potentially more, and more centrally connected hubs in other parts of the cortex may confer 

higher robustness and bring greater support for the functional involvement of other areas in 

global processing [146]. These thoughts are supported by recent comparisons between 

chimpanzees and humans, which revealed strong expansion of the precuneus in humans 

[147]. Indeed, the precuneus is one of the most central and most connected hub areas of the 

human brain [68, 114]. These ideas parallel observations that variations in connectome 

organization and hub wiring relate to individual variation in cognitive processing in humans 

[120, 148-152].  

 

Concluding remarks and future directions 

The central idea of this review is that nervous systems of different species exhibit both 

common themes and important variations in connectome organization. We argue that 

connectome architecture may follow general principles of wiring, shaped by forces that 

minimize the expenditure of biological resources and forces that favor functionally 
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important topological attributes that benefit efficient communication and global integration. 

A competition and trade-off between these opposing forces can account for the ubiquity of 

connectomes that are generally parsimoniously wired while allowing for features that can 

promote topological integration. We further argue that, within the envelope of wiring 

solutions that conform to these general principles, subtle variations in connectome 

organization support species-specific adaptations in behavior and cognitive functioning.  

 The ideas put forth in this review, in particular our thoughts on adaptive changes of 

network attributes to form biological underpinnings of variations in brain function, of course 

need thorough empirical testing. Comparative studies that employ uniform acquisition 

methodology to map (see box 1) and study (see box 2) connectomes across species are 

needed to rigorously map commonalities and differences of connectivity patterns. 

Furthermore, investments in studies that explicitly address the diversity of brain 

architectures are needed to draw more secure inferences about the putatively universal 

principles shaping connectome evolution. This would require examinations across a much 

wider range of species than currently available. For example, besides the work of 

reconstructing connectomes of nematode, insect, avian and mammalian species, as 

summarized in this review, comparative connectomics could be extended further to 

encompass the nervous systems of animals with a completely different body plan but who 

may nevertheless share universal attributes of connectome organization (see box 3). In 

addition to the collection of more comprehensive and consistent empirical data, this 

burgeoning field would benefit from computational modeling studies that simulate 

generative mechanisms behind cross-species network evolution and test the roles of network 

attributes with respect to functional diversity [118], dynamics [83, 153], resilience and 

integration [154, 155]. 

 In focusing on patterns of brain connectivity, comparative connectomics is subject to 

several important limitations. First, today’s comparative connectomics is constrained by the 
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divergent methodologies used to assess connectivity at different scales and in different 

species (e.g. electron microscopy, tract-tracing, MRI, see box 1). This limitation underscores 

the importance of finding ways to reconstruct connectomes more uniformly across different 

nervous systems. Second, it is important to note that the architecture of a nervous system 

must be considered in the context of the overall structural anatomy, physiology and 

ecological embedding of the organism [156]. Among many other factors, an organism’s 

body plan, the arrangement and physiology of its sensory apparatus, and the geometry of its 

musculoskeletal system, are obviously important factors that shape, constrain and enable 

behavioral (and cognitive) function, as well as the layout of the nervous system. The 

common themes of connectome organization highlighted in this review cut across vast 

differences in body plan and “evolutionary complexity”. This suggests that the observed 

principles of wiring reflect universal features of efficient and effective network organization 

that cause common connectome patterns to be found across a wide range of species.  

Viewed from another perspective, they may define hard limitations to connectome 

formation that cannot easily be contravened by natural selection. The competitive pressures 

of parsimonious wiring and topological integration impose general trajectories and 

boundaries that define the space of network topologies that are geometrically and 

functionally possible. This space is embedded within a “theoretical morphospace” of 

biological forms [157] and defines the realm within which connectome topologies can vary, 

at least in principle, and contribute to adaptations that support different behavioral and 

cognitive specialization. The size and shape of this common morphospace, how it constrains 

the possible behavioral and cognitive repertoire [158-160], and how it compares to the total 

morphospace of natural and human-engineered networks (see box 4) all remain important 

open questions.  
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We hope that, with growing access to connectome data from a range of species, comparative 

connectomics may become a useful addition to the spectrum of approaches aiming to 

account for cross-species commonalities and differences in brain structure and function. 
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Box 1. Connectome reconstruction methods 

Different methodologies can be applied for the reconstruction of connectome maps. Electron 

microscopy techniques have enabled reconstruction of the C. elegans nervous system at the 

synaptic level [25]. Tracer injection techniques combined with high-throughput serial tomography 

optical imaging have enabled a high-resolution reconstruction of the mouse connectome [45] and 

systematic collations of data across high numbers of tracing experiments have resulted in grouped 

consensus matrices of the cat, macaque and rat brains. Advances in in vivo diffusion MRI 

techniques have made it increasingly feasible to reconstruct macroscale connectomes of individual 

brains of great apes [145] and humans. The development of techniques like CLARITY [161] and 

3D Polarized Light Imaging (3D-PLI) may bring unprecedented high resolution reconstructions of 

animal and human connectome wiring in the near future.  

 Today, the field of comparative connectomics is limited by the fact that connectome maps of 

different species are being acquired with different types of methodology, restricting direct 

comparison of connectomes across a wide range of species. For example, the C. elegans 

connectome describes neuron-to-neuron interactions at the microscale, while the macaque and cat 

connectome describe region-to-region connections at the macroscale level of nervous system 

organization. In addition, while electron microscopy, tract-tracing and MRI-derived connectome 

reconstructions can provide information on the strength of connections (in graph theoretical 

analysis often referred to as ‘weighted networks’), connectome maps derived from cumulative 

collation of data across published literature are often limited in only providing information on the 

presence or absence of connections (referred to in connectome literature as ‘binary networks’) or 

coarse categorization of the magnitude of pathways. 

We thus argue that there are two aspects that are critical for enabling comparative studies in 

the future. First, it is crucial to establish ways to interpolate across different methodologies, ideally 

by directly comparing brain connectivity patterns derived by multiple techniques in the same 

organism, for example tract tracing and noninvasive neuroimaging [76, 162, 163]. Second, the 
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application of the same technique to multiple species (e.g., [28, 145]) facilitates cross-species 

comparisons.  

 
 
Box 2. Graph theory. The connectomes of different species can be compared by applying a 

consistent set of network analysis methods. These methods are principally drawn from the 

mathematical field of graph theory, enabling quantitative comparison between species using the 

same mathematical language. Within this approach a nervous system is described as a graph, 

consisting of a collection of nodes (e.g. neurons, brain areas) and a collection of edges describing 

the pairwise relationships between nodes (e.g. synaptic connections, macroscopic axonal 

projections)(Figure I). Once such a mathematical description of a network is made, graph 

theoretical metrics can be used to describe –and, across species, compare– topological properties of 

the network. The metric of degree represents the number of connections attached to a node of the 

network. Clustering describes the tendency of nodes to form closed triangles, such that the nearest 

neighbors of a node are also directly connected to each other. The metric of clustering reflects the 

tendency of a network to form topologically local circuits, and is often interpreted as a metric of 

information segregation in networks. A path describes a route of information transfer between two 

nodes in a network, with the metric of path length describing the number of steps (comprising 

unique edges) crossed when traveling from one node to another node in a network. The shortest 

path length expresses the minimal number of steps needed to travel between nodes, and is often 

interpret as a metric of the efficiency of information transfer between nodes of a network. Hubs are 

nodes with a high degree and a topologically central position in the overall network, with the core 

of a network describing a set of highly connected nodes that are mutually densely connected. The 

related concept of rich club organization describes the propensity of highly connected nodes to be 

more densely connected to each other than expected based on the individual degree of the nodes. A 

network’s community structure refers to the tendency of a network to form densely connected 

subgraphs or modules, corresponding to a subset of nodes that are densely connected to each other 
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and sparsely connected to nodes in other modules. In nervous systems, anatomical modules often 

overlap with known functional systems. 

 

Box 3. Nerve nets 

The nematode, insect, avian and mammalian species discussed in this review all describe species 

that display a central brain system. Others, like jellyfish, hydra and starfish do not have a 

centralized brain. Instead, their nervous system comprises as a ‘nerve net’ (Figure IIA) with 

neurons distributed across most parts of the animal, a type of system organization reflecting their 

distinct body plan [164, 165]. The nervous systems of jellyfish and hydra are often described as a 

simple network in which neurons are only connected to their spatial neighbors (in network terms 

this would make a simple ‘regular graph’ or spatial ‘grid’ with no modules, short paths or hubs).  

Recent studies have however suggested that the nervous systems of adult jellyfish and hydra 

may exhibit a much more diverse architecture, including potential concentration of neural elements 

into complex structures facilitating information integrative processes [165-167]. The nervous 

systems of adult jellyfish consist of multiple components (see [164] for an introduction on jellyfish 

nervous systems), including sensory structures (rhopalia, Figure IIB) that are connected via an 

interconnecting nerve ring(s) system running around the bell (Figure IIB). This nerve ring is 

involved in integrating the swimming, visual and tentacle system [165] and argued to represent a 

rudimentary central nervous system [168, 169].  

Thus although the basic plan of the nerve nets of species like jellyfish and hydra may be laid 

out quite differently from the nervous systems of the species discussed in this review, we argue that 

there may be common topological attributes, for example a centralized system of interconnected 

neuronal structures. This suggestion calls for further expansion of the currently available set of 

connectomes beyond those discussed in this review, and emphasizes the need for comparative 

connectomics to examine commonalities and differences in nervous system architecture across a 

(much) wider range of species.  
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Box 4. Comparative analysis of different classes of networks 

Going beyond the examination of shared topological features across nervous systems, the 

generalized mathematical language of graph theory also offers tools for the comparison of the 

organization of brain networks to other classes of networks studied by very different scientific 

disciplines. Many real-world systems operate as some sort of interaction or communication 

network, including for example social networks, gene regulatory networks, computer networks and 

transportation networks. Similar to brain networks, many of these real-world networks display an 

efficient small-world organization, a pronounced community structure with densely connected 

modules, as well as the formation of hubs and rich clubs [30, 37, 170]. Going beyond the 

comparison of networks within the class of nervous systems, the field of ‘comparative network 

analysis’ examines commonalities and differences across a broad range of network classes.  

A core concept in this context is that of network morphospace [157], which examines 

underlying morphological characteristics of networks by describing common and differentiating 

aspects across networks compared to the total space of possible networks. Applications of 

morphospace analysis include examinations of the capacity of brain networks to diffuse and route 

signals in comparison to social, gene regulatory and email networks [171]. A complementary 

approach is based on applications of spectral graph theory [172], with the spectrum describing the 

multiset of eigenvalues of a network’s adjacency matrix.  Networks showing overlapping spectra 

display common organizational and functional features. For example, spectral examinations have 

shown similar features between nervous systems and the organization of ecological networks, an 

observation that may provide clues to selection pressures playing a role in the evolution of both 

systems [173].  

Comparative network analysis allows for the examination of commonalities and differences 

between classes of networks. In particular, it provides a powerful approach to answer the question 

of which topological network attributes are specific to nervous systems and which represent more 
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universal properties of network organization [174]. As such, it provides a unique tool to examine 

which network properties are unique to brain networks, and which properties are shared with other 

types of communication and interaction networks.   

 

Glossary 

Allometric scaling: relationship between body size and shape, morphometry and function 

of brain parts across species where one or more of these measures change exponentially or 

nonlinearly 

Adjacency matrix: A systematic description of the absence or presence of a connection or 

edge between all pairs of nodes of a network, represented in the form of a square matrix. 

Association matrix: A summary of the absence or presence (potentially including 

information on the strength of an association) of all pairwise associations of network nodes, 

represented in the form of a square matrix. 

Brain network: Any set of structural or functional relations among brain elements. 

Connectivity: Description of the anatomical projections (e.g. synaptic connections, axonal 

tracts) between brain network nodes (e.g. neurons, cortical areas). 

Connectome: Comprehensive network map of the neural connections of a nervous system. 

Connectomics: A subfield of neuroscience that studies the reconstruction and analysis of 

connectomes   

Comparative connectomics: the quantitative study of cross-species commonalities and 

variations in brain network topology 

Functional connectivity: statistical relationship between time-series of physiological 

activity (e.g. fMRI, spike trains) of neural elements (e.g. neurons, brain regions). 

Graph: A mathematical description of a network, consisting of a collection of nodes (e.g. 

neurons, brain areas) and a collection of edges describing the pairwise relationships between 

nodes (e.g. synaptic connections, macroscopic axonal projections) (see Box 2).  
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Homology: Properties of nervous system organization (e.g. cellular architecture, wiring 

organization) that are shared between species 

Morphospace: Originally defined in evolutionary theory as the space of all possible body 

shapes or morphologies for a given group of organisms 

Network: In nervous systems, a network describes the set of neural elements (e.g. neurons, 

brain regions) and their relationships (e.g. synaptic connections, macroscale pathways, 

functional interactions). 

Rich club organization: the property of a network to display an increasing level of 

connectivity between subsets of highly connected nodes, a level of connectivity higher than 

would be expected on the basis of the individual degree of the subset of nodes alone. 

Scale-free organization: A class of networks with a degree distribution that follows a 

power law, or, more generally, a type of broad-scale or fat-tailed degree distribution. 

Small-world organization: A class of networks that shows both a high level of clustering 

(like a regular lattice) and short characteristic paths (like a random graph). 

Spectral graph theory: A branch of graph theory that studies networks by examining the 

spectrum of eigenvalues and eigenvectors of the network’s adjacency matrix 

Topology: The topological structure of a network describes the arrangement of connections 

in a network and is invariant to any continuous spatial deformation of the system. 
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Figures 

Figure 1. Connectomes across species. The Figure displays reconstructed connectomes of 

eight different species, including (upper row from left to right, and lower row from left to 

right) Caenorhabditis elegans (roundworm) [26], Drosophila (fruit fly) [40], pigeon [44], 

mouse [45], rat [49], cat [51], rhesus monkey (macaque, FE91 atlas) [53, 175] and human 

(Human Connectome Project data, 220 cortical regions, [129]). Connectomes are 

represented as connectivity matrices with rows and columns depicting source and target 

regions (grouping regions participating in the same community together) and with the 

elements of the connectivity matrices showing the reconstructed projections. Pathways are 

grouped into weak (blue), medium (yellow) and strong (orange). 

 

Figure 2. Community structure. Studies have shown consistent community organization 

of nervous systems across species, including (A) the C. elegans neuronal network, and (B) 

Drosophila, (C) macaque and (D) human connectomes. Anatomical communities obtained 

by graph theoretical analysis often with known functional domains, as for example the 

olfactory (yellow), visual (purple and orange, left and right), auditory/mechanosensory 

(magenta) and pre-motor (red) functional systems of the fly brain (panel B) [41]. Modular 

decomposition of the human connectome as derived from diffusion weighted imaging 

revealed the formation of at least six anatomical communities overlapping spatial domains 

of the human brain. A, C and D reprinted under the creative Commons Attribution License 

from [26], [62] and [68], B adapted and reproduced with permission from [41].  

 

Figure 3. Hubs and rich club organization across species. Connectome studies have 

shown hub and rich club organization for (A) the microscale C. elegans nervous system, as 

well as for the macroscale brain networks of (B) mouse, (C) rat, (D) macaque and (E) 

human. Analysis of the C. elegans connectome has revealed a small set of highly connected 
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rich club hub neurons distributed across anterior (red nodes) and posterior (yellow nodes) 

parts of the animal. (B) Network analysis of the mouse connectome has shown the existence 

of highly connected and highly central connector hubs (red nodes), which mediated most of 

the inter-modular connections between functionally specialized modules of the community 

structure (nodes are color-coded by modular affiliation). (C) Network analysis of the rat 

connectome has shown the rich club (red line) to participate across multiple functional 

domains (depicted as colored blocks). (D) Connectome analysis of the macaque brain has 

revealed rich club members (red nodes) to be spatially distributed across the cortex. (E) 

Network studies of the human connectome have similarly shown the existence of highly 

connected hubs in the human brain (depicted as red, yellow, blue and green regions). These 

hub areas are distributed across multiple functional domains and show strong rich club 

organization. A and E adapted and reproduced from [32] and [72] under the Creative 

Commons Attribution-Noncommercial-Share License, B adapted and reproduced with 

permission from [47], C adapted and reproduced with permission from [49], D reprinted 

under the Creative Commons License from [66].  

 

Figure 4. Connectivity comparison across species. (A) A side-by-side comparison of the neuronal 

organization (upper panel) and wiring (graphs in the lower panel) of the pharyngeal system across 

two worm species, P. pacificus (right) and C. elegans (left). A comparison between the two systems 

(consisting of the same number and same types of neurons) reveals wiring differences: the predator 

P. pacificus shows higher complexity of connectivity around neural elements controlling the tooth-

like denticles as compared to C. elegans [28]. (B) Comparison of macroscale connectivity between 

macaque (top), chimpanzees (middle) and humans (bottom) revealed more elaborate connectivity of 

the arcuate fasciculus in humans, a tract important for complex language processing [110]. (C) 

Comparison of whole-brain functional connectivity patterns between macaques and humans 

revealed areas of both weaker (blue areas) and stronger functional connectivity across the cortex 
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(red areas) in humans as compared to macaques, as well as overall more spatially diffuse hub 

structure in humans [146]. A adapted and reproduced with permission from [28], B adapted and 

reproduced with permission from [110], C adapted and reproduced under the Creative Commons 

Attribution-Noncommercial-Share License from [146]. 

 

Figure Box 2. Graph metrics. Figure illustrates (from left to right) the mathematical description of 

a network as a graph consisting of nodes and edges, the metric of degree, a communication path, 

the metric of clustering, the formation of a densely connected rich club or core and the community 

structure of a network, reflecting the formation of densely connected subgraphs or modules within 

the network. 

 

Figure Box 3. Jellyfish nerve net. (A) The nervous system of a jellyfish involves a nerve net. (B) 

Sensory structures (rhopolia) in several jellyfish species include concentrated neural structures that 

are interconnected by an organized nerve ring (RN in B and also shown in panel C), potentially 

supporting multiple communication pathways. A adapted and reproduced with permission from 

[165], B adapted and reproduced with permission from B [164] (RN depicts nerve ring). 
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